
Logical Methods in Computer Science
Vol. 11(4:1)2015, pp. 1–39
www.lmcs-online.org

Submitted Apr. 8, 2014
Published Oct. 5, 2015

EXPRESSIVE PATH QUERIES ON GRAPHS WITH DATA ∗

PABLO BARCELÓ a, GAELLE FONTAINE b, AND ANTHONY WIDJAJA LIN c

a,b Center for Semantic Web Research & Department of Computer Science, University of Chile
e-mail address: {pbarcelo, gaelle}@dcc.uchile.cl

c Yale-NUS College, Singapore
e-mail address: anthony.w.to@gmail.com

Abstract. Graph data models have recently become popular owing to their applications,
e.g., in social networks and the semantic web. Typical navigational query languages over
graph databases — such as Conjunctive Regular Path Queries (CRPQs) — cannot express
relevant properties of the interaction between the underlying data and the topology. Two
languages have been recently proposed to overcome this problem: walk logic (WL) and
regular expressions with memory (REM). In this paper, we begin by investigating funda-
mental properties of WL and REM, i.e., complexity of evaluation problems and expressive
power. We first show that the data complexity of WL is nonelementary, which rules out
its practicality. On the other hand, while REM has low data complexity, we point out that
many natural data/topology properties of graphs expressible in WL cannot be expressed
in REM. To this end, we propose register logic, an extension of REM, which we show to
be able to express many natural graph properties expressible in WL, while at the same
time preserving the elementariness of data complexity of REMs. It is also incomparable
to WL in terms of expressive power.

1. Introduction

Graph databases have gained renewed interest due to applications, such as the semantic
web, social network analysis, crime detection networks, software bug detection, biological
networks, and others (e.g., see [1] for a survey). Despite the importance of querying graph

2012 ACM CCS: [Information systems]: Data management systems—Database design and models—
Graph-based database models; Data management systems—Query languages—Query languages for non-
relational engines; [Theory of computation]: Theory and algorithms for application domains—Database
theory—Database query languages (principles); Theory and algorithms for application domains—Database
theory—Logic and databases; Formal languages and automata theory—Regular languages.

Key words and phrases: graph databases; graph logics; RPQs; non elementary; register automata.
∗ This is the full version of the conference paper [3].

a,c Barceló is funded by the Millennium Nucleus Center for Semantic Web Research under Grant NC120004
and Fontaine by Fondecyt postdoctoral grant 3130491. Part of this work done when Lin visited Barceló
funded by Fondecyt grant 1130104. This work was also partially done when Lin was at Oxford University
supported by EPSRC (H026878).

LOGICAL METHODS
l IN COMPUTER SCIENCE DOI:10.2168/LMCS-11(4:1)2015

c© P. Barceló, G. Fontaine, and A. W-Lin
CC© Creative Commons

http://creativecommons.org/about/licenses

2 P. BARCELÓ, G. FONTAINE, AND A. W-LIN

databases, no general agreement has been reached to date about the kind of features a prac-
tical query language for graph databases should support and about what can be considered
a reasonable computational cost of query evaluation for the aforementioned applications.

Typical navigational query languages for graph databases — including the conjunctive
regular path queries [7] and its many extensions [4] — suffer from a common drawback:
they are well-suited for expressing relevant properties about the underlying topology of a
graph database, i.e., about the way in which (labeled) nodes are connected via (labeled)
edges, but not about how such topology interacts with the node ids or the data. This
drawback is shared by common specification languages for verification [6] (e.g. CTL∗),
which are evaluated over a similar graph data model (a.k.a. transition systems). Examples
of important queries that combine graph data and topology, but cannot be expressed in
usual navigational languages for graph databases, include the following [8, 13]: (Q1) Find
pairs of people in a social network connected by professional links restricted to people of the
same age. (Q2) Find pairs of cities x and y in a transportation system, such that y can
be reached from x using only services operated by the same company. In each one of these
queries, the connectivity between two nodes (i.e., the topology) is constrained by the data
(from an infinite domain, e.g., N), in the sense that we only consider paths in which all
intermediate nodes satisfy a certain condition (e.g. they are people of the same age).

Two languages, walk logic and regular expressions with memory, have recently been
proposed to overcome this problem. These languages have different goals:

(a) Walk logic (WL) was proposed by Hellings et al. [8] as a unifying framework for
understanding the expressive power of path queries over graph databases. Its strength is
on the expressiveness side. The underlying data model of WL is that of (node or edge)-
labeled directed graphs. In this context, WL can be seen as a natural extension of FO
with path quantification, plus the ability to check whether positions p and p′ in paths π
and π′, respectively, have the same data values. In their paper, Hellings et al. assume the
restriction that each node carries a distinct data value (and, therefore, that this data value
serves as an identifier for the node). However, as we shall see, this makes no difference in
terms of the results that we can obtain.

(b) Regular expressions with memory (REMs) were proposed by Libkin and Vrgoč [10]
as a formalism for comparing data values along a single path, while retaining a reasonable
complexity for query evaluation. The strength of this language is on the side of efficiency.
The data model of the class of REMs is that of edge-labeled directed graphs, in which
each node is assigned a data value from an infinite domain. REMs define pairs of nodes
in the graph database that are linked by a path satisfying a given condition c. Each such
condition c is defined in a formalism inspired by the class of register automata [9], allowing
some data values to be stored in the registers and then compared against other data values.
The evaluation problem for REMs is Pspace-complete (same as for FO over relational
databases), and can be solved in polynomial time in data complexity [10], i.e., assuming
queries to be fixed.1 This shows that the language is, in fact, well-behaved in terms of the
complexity of query evaluation.

The aim of this paper is to investigate the expressiveness and complexity of query
evaluation for WL and the class of REMs with the hope of finding a navigational query

1Recall that data complexity is a reasonable measure of complexity in the database scenario [17], since
queries are often much smaller than the underlying data.

EXPRESSIVE PATH QUERIES ON GRAPHS WITH DATA 3

language for data graphs that strikes a good balance between these two important aspects
of query languages.

Contributions. We start by considering WL, which is known to be a powerful formalism in
terms of expressiveness. Little is known about the cost of query evaluation for this language,
save for the decidability of the evaluation problem and NP-hardness of its data complexity.
Our first main contribution is to pinpoint the exact complexity of the evaluation problem for
WL (and thus answering an open problem from [8]): we prove that it is non-elementary, and
that this holds even in data complexity, which rules out the practicality of the language.

We thus move to the class of REMs, which suffers from the opposite drawback: Although
the complexity of evaluation for queries in this class is reasonable, the expressiveness of
the language is too rudimentary for expressing some important path properties due to its
inability to (i) compare data values in different paths and (ii) express branching properties
of the graph database. An example of an interesting query that is not expressible as an
REM is the following: (Q) Find pairs of nodes x and y, such that there is a node z and a
path π from x to y in which each node is connected to z. Notice that this is the query that
lies at the basis of the queries (Q1) and (Q2) we presented before.

Our second contribution then is to identify a natural extension of this language, called
register logic (RL), that closes REMs under Boolean combinations and existential quantifi-
cation over nodes, paths and register assignments. The latter allows the logic to express
comparisons of data values appearing in different paths, as well as branching properties of
the data. This logic is incomparable in expressive power to WL. Besides, many natural
queries relating data and topology in data graphs can be expressed in RL including: the
query (Q), hamiltonicity, the existence of an Eulerian trail, bipartiteness, and connected
graphs with an even number of nodes. We then study the complexity of the problem of query
evaluation for RL, and show that it can be solved in elementary time (in particular, that it
is Expspace-complete). This is in contrast to WL, for which even the data complexity is
non-elementary. With respect to data complexity, we prove that RL is Pspace-complete.
We then identify a slight extension of its existential-positive fragment, which is tractable
(NLogspace) in data complexity and can express many queries of interest (including the
query (Q)). The idea behind this extension is that atomic REMs can be enriched with an
existential branching operator – in the style of the class of nested regular expressions [5] –
that increases expressiveness without affecting the cost of evaluation.

Organization of the paper. Section 2 defines our data model. In Section 3, we briefly
recall the definition of walk logic and some basic results from [8]. In Section 4, we prove
that the data complexity of WL is nonelementary. Section 5 contains our results concerning
register logic. We conclude in Section 6 with future work.

2. The Data Model

We start with a definition of our data model: data graphs.

Definition 2.1 (Data graph). Let Σ be a finite alphabet. A data graph G over Σ is a tuple
(V,E, κ), where V is the finite set of nodes, E ⊆ V × Σ × V is the set of directed edges
labeled in Σ (that is, each triple (v, a, v′) ∈ E is to be seen as an edge from v to v′ in G

labeled a), and κ : V → D is a function that assigns a data value in D to each node in V .

This is the data model adopted by Libkin and Vrgoč [10] in their definition of REMs.
In the case of WL [8], the authors adopted graph databases as their data model, i.e., data

4 P. BARCELÓ, G. FONTAINE, AND A. W-LIN

graphs G = (V,E, κ) such that κ is injective (i.e. each node carries a different data value).
In such a case we can think of κ(v) as the identifier (id) of v, for each v ∈ V . We shall
adopt the general model of [10] since none of our complexity results are affected by the
data model: upper bounds hold for data graphs, while all lower bounds are proved in the
more restrictive setting of graph databases. However, for the sake of the comparison with
the expressiveness of WL, many of our examples are constructed in the scenario of graph
databases, that is, when κ(v) serves as an id for node v.

There is also the issue of edge-labeled vs node-labeled data graphs. Our data model is
edge-labeled, but the original one for WL is node-labeled [8]. We have chosen to use the
former because it is the standard in the literature [2]. Again, this choice is inessential, since
all the complexity results we present in the paper remains true if the logics are interpreted
over node-labeled graph databases or data graphs (applying the expected modifications to
the syntax).

Finally, in several of our examples we use logical formulas to express properties of
undirected graphs. In each such case we assume that an undirected graph H is represented
as a graph database G = (V,E, κ) over unary alphabet Σ = {a}, where V is the set of nodes
of H and E is a symmetric relation (i.e. (v, a, v′) ∈ E iff (v′, a, v) ∈ E). In particular, since
G = (V,E, κ) is a graph database we have that κ is injective, i.e., each node is uniquely
determined by its data value.

3. Walk Logic

WL is an elegant and powerful formalism for defining properties of paths in graph databases,
which was originally proposed in [8] as a yardstick for measuring the expressiveness of
different path logics.

The syntax of WL is defined with respect to countably infinite sets Π of path variables
(that we denote as π, π1, π2, . . .) and T (π), for each π ∈ Π, of position variables of sort π.
We assume that different sorts are associated with distinct position variables. We denote
position variables by t, t1, t2, . . . , and write tπ when we need to emphasize that position
variable t is of sort π.

Definition 3.1 (Walk logic (WL)). The set of formulas of WL over finite alphabet Σ is
defined by the following grammar, where (i) a ∈ Σ, (ii) t, t1, t2 are position variables of any
sort, (iii) π is a path variable, and (iv) tπ1 , t

π
2 are position variables of the same sort π:

φ, φ′ := Ea(t
π
1 , t

π
2) | tπ1 < tπ2 | t1 ∼ t2 | ¬φ | φ ∨ φ′ | ∃tφ | ∃πφ

As usual, WL formulas without free variables are called Boolean.

To define the semantics of WL we need to introduce some terminology. A path (a.k.a.
walk in [8]) in the data graph G = (V,E, κ) is a finite, nonempty sequence

ρ = v1a1v2 · · · vn−1an−1vn,

such that (vi, ai, vi+1) ∈ E for each 1 ≤ i < n. The set of positions of ρ is {1, . . . , n}, and vi is
the node in position i of ρ, for 1 ≤ i ≤ n. The intuition behind the semantics of WL formulas
is as follows. Each path variable π is interpreted as a path ρ = v1a1v2 · · · vn−1an−1vn in
the data graph G, while each position variable t of sort π is interpreted as a position
1 ≤ i ≤ n in ρ (that is, position variables of sort π are interpreted as positions in the
path that interprets π). The atomic formula Ea(t

π
1 , t

π
2) is true iff π is interpreted as path

ρ = v1a1v2 · · · vn−1an−1vn, the position p2 that interprets t2 in ρ is the successor of the

EXPRESSIVE PATH QUERIES ON GRAPHS WITH DATA 5

position p1 that interprets t1 (i.e. p2 = p1 +1), and node in position p1 is linked in ρ by an
a-labeled edge to node in position p2 (that is, ap1 = a). In the same way, tπ1 < tπ2 holds iff
in the path ρ that interprets π the position that interprets t1 is smaller than the one that
interprets t2. Furthermore, t1 ∼ t2 is the case iff the data value carried by the node in the
position assigned to t1 is the same than the data value carried by the node in the position
assigned to t2 (possibly in different paths). We formalize the semantics of WL below.

Let G = (V,E, κ) be a data graph and φ a WL formula. Assume that Sφ is the set that
consists of (i) all position variables tπ and path variables π such that tπ is a free variable of φ,
and (ii) all path variables π such that π is a free variable of φ. Intuitively, Sφ defines the set
of (both path and position) variables that are relevant to define the semantics of φ over G.
An assignment α for φ over G is a mapping that associates a path ρ = v1a1v2 · · · vn−1an−1vn
in G with each path variable π ∈ Sφ, and a position 1 ≤ i ≤ n with each position variable of
the form tπ in Sφ (notice that this is well-defined since π ∈ Sφ every time a position variable
of the form tπ is in Sφ). As usual, we denote by α[t → i] and α[π → ρ] the assignments
that are equal to α except that t is now assigned position i and π the path ρ, respectively.

We say that G satisfies φ under α, denoted (G,α) |= φ, if one of the following holds
(we omit Boolean combinations which are standard):

• φ = Ea(t
π
1 , t

π
2), the path α(π) is v1a1v2 · · · vn−1an−1vn, and it is the case that α(tπ2) =

α(tπ1) + 1 and a = aα(tπ
1
).

• φ = tπ1 < tπ2 and α(tπ1) < α(tπ2).
• φ = (t1 ∼ t2), t1 is of sort π1, t2 is of sort π2, and κ(v1) = κ(v2), where vi is the node in
position α(ti) of α(πi), for i = 1, 2.

• φ = ∃tπψ and one of the following holds:
(1) tπ does not appear free in ψ, or
(2) both tπ and π appear free in ψ, and there is a position i in α(π) such that (G,α[tπ →

i]) |= ψ, or
(3) tπ appears free in ψ, π does not appear free in ψ, and there is a path ρ in G and a

position i in ρ such that (G,α[π → ρ, tπ → i]) |= ψ.
• φ = ∃πψ and the following holds:
(1) π does not appear free in ψ, or
(2) there is a path ρ in G such that (G,α[π → ρ]) |= ψ.

Example 3.1. A simple example from [8] that shows that WL expresses NP-complete
properties is the following query that checks if a graph G has a Hamiltonian path:

∃π
(

∀tπ1∀t
π
2 (t

π
1 6= tπ2 → tπ1 6∼ tπ2) ∧ ∀π′∀tπ

′

1 ∃tπ2 (t
π′

1 ∼ tπ2)
)

.

In fact, this query expresses that there is a path π in G that does not repeat nodes (because
π satisfies ∀tπ1∀t

π
2 (t

π
1 6= tπ2 → tπ1 6∼ tπ2)), and every node belongs to such path (because π

satisfies ∀π′∀tπ
′

1 ∃tπ2 (t
π′

1 ∼ tπ2), and, therefore, every node that occurs in some path π′ in the
graph database also occurs in π). Note that this formula uses in an essential way the fact
that G is a graph database, i.e., that each node is uniquely identified by its data value. ✷

4. WL Evaluation is Non-elementary in Data Complexity

In this section we pinpoint the precise complexity of query evaluation for WL. It was proven
in [8] that this problem is decidable. Although the precise complexity of this problem was
left open in [8], one can prove that this is, in fact, a non-elementary problem by an easy

6 P. BARCELÓ, G. FONTAINE, AND A. W-LIN

translation from the satisfiability problem for FO formulas – which is known to be non-
elementary [15, 16]. In databases, however, one is often interested in a different measure
of complexity – called data complexity [17] – that assumes the formula φ to be fixed. This
is a reasonable assumption since databases are usually much bigger than formulas. Often
in the setting of data complexity the cost of evaluating queries is much smaller than in the
general setting in which formulas are part of the input. The main result of this section
is that the data complexity of evaluating WL formulas is nonelementary even over graph
databases, which rules out its practicality.

Let φ be a WL formula without free variables. The evaluation problem for φ, denoted
Eval(WL,φ), is defined as follows: Given a data graph G, is it the case that G |= φ? We
prove the following:

Theorem 4.1. The evaluation problem for WL is non-elementary in data complexity. In
particular, for each k ∈ Z>0, there is a finite alphabet Σ and a Boolean formula φ over Σ,
such that the problem Eval(WL,φ) of evaluating the WL formula φ is k-Expspace-hard.
In addition, the latter holds even if the input is restricted to the class of graph databases.

We prove the above result by showing that for all natural numbers k, the data complex-
ity of the model checking problem for WL is k-ExpSpace-hard. For all natural numbers
k and f0, we provide a reduction to the class of problems solvable by a Turing machine
using a tape of size tower (k, f0n) given an input word of size n, where tower (1, n) := 2n

and tower (k + 1, n) = 2tower(k,n).
More precisely, for all natural numbers k > 0, there is a Turing machine M and a

constant f0 such that the following problem is k-ExpSpace-hard: given a word w of size
n, is there an accepting run of M over w using at most tower (k, f0n) cells? We prove that
there is a formula φ ∈ WL such that for all words w of size n, there is a graph Gw such that

Gw � φ iff there is an accepting run of M over w using at most tower (k, f0n) cells.
(4.1)

Before giving a proof, we sketch the case k = 1 here, which illustrates the proof idea. LetM
be a Turing machine M such that the following problem is ExpSpace-hard: given a word
w of size n, is there an accepting run of M over w using at most 2f0n cells? The formula φ
that we will define and satisfying equivalence (4.1) is of the form

∃πψ(π),

where ψ is a formula that does not contain any quantification over path variables. Given a
word w of size n, the label of the path π in the graph Gw will encode an accepting run of
M over the word w in the following way.

Given a word w of size n, consider a configuration C of the run of M over w where the
head is scanning the cell number i0, the machine is in state q and the content of the tape
is the word w′ = w′

0 . . . w
′
j (j = 2f0n − 1). We may encode the configuration C by the word

eC = dC0 . . . d
C
j where each dCi encodes the information in cell number i and j = 2f0n − 1.

More precisely, we define dCi as a word of the form

c(i) (q′i, w
′
i), (4.2)

where c(i) and q′i are defined as follows. The word c(i) is the binary encoding of the number
i. The letter w′

i is the content of the cell i. The letter q′i is equal to the dummy symbol $
if the head is not scanning the cell number i; otherwise, q′i is equal to the state q. That is,
q′i0 = q and for all i 6= i0, q

′
i = $. We encode a run C0C1 . . . as the sequence eC0

eC1
. . . .

EXPRESSIVE PATH QUERIES ON GRAPHS WITH DATA 7

We think of a path π encoding a run as consisting of two parts: the first part contains
the encoding eC0

of the initial configuration and is a path through a subgraph Iw of Gw,
while the second part contains the encoding eC1

eC2
. . . and is a path through the subgraph

H of Gw. If Q is the set of states of M and Σ is the alphabet, we define H as the following
graph

x y

0

1

0

1

. . .

0

1

z

d1

d2

dl

. . .

where l is equal to |(Q ∪ {$}) × Σ|, {di : 1 ≤ i ≤ l} = (Q ∪ {$}) × Σ and the number of
nodes with outgoing edges with labels 0 and 1 is equal to f0n. The label of a path π′ from
the “left-most” node x to the “right-most” node z with only once occurrence of x is exactly
the description of a cell in a configuration: it is the binary encoding of a natural number
< 2f0n followed by a pair of the form (q′, a). We can define a formula φC ∈ WL such that
for all paths π starting in x and ending in z,

H � φC(π) iff the label of π is the encoding of a configuration.

We do not give details; φC has to express that the encoding of a configuration only has one
tape head, that the first number encoded in binary is 0, that the last number is 2f0n − 1
and that the encoding of the description of cell number j is followed by the description of
cell number j+1. Using the formula φC , we can define a formula φ1 such that for all paths
π,

H � φ1(π) iff the label of π is the encoding of an accepting run.

The formula φ1 has to ensure that if eCeC′ occurs in the label of π, then C and C ′ are
consecutive configurations according to M . Moreover, φ1 has to express that eventually we
reach the final state. In order to express φC and φ1, we use the ability of WL to check
whether two positions correspond to the same node. For example, in order to define φ1,
since we need to compare consecutive configurations eC and eC′ , we need to be able to
compare the content of a cell in configuration C and the content of that same cell in C ′. In
particular, we want to be able to express whether two subpaths π′0 and π′1 of π starting in
x and ending in y correspond to the binary encoding of the same number. Since the length
of such subpaths depends on n, we cannot check node by node whether the two subpaths

are equal. However, it is sufficient to check that if t
π′
0

0 and t
π′
1

1 correspond to the same node

(t
π′
0

0 ∼ t
π′
1

1), then their successors also correpond to the same node (t
π′
0

0 +1 ∼ t
π′
1

1 + 1). Note
that using the facts that π′0 and π′1 are subpaths of π, we will be able to define φ1 such
that it only contains quantifications over node variables (and no quantifications over path
variables). Similarly, in the formula φC , we use the operator ∼ in order to express that two
subpaths correspond to the binary encodings of numbers that are successors of each other.

Similarly to the way we define the graph H, we can introduce a graph Iw and a formula
φ0(π) such that

Iw � φ0(π) iff the label of π is the encoding eC0
,

where C0 is the initial configuration of the run of M over w. By adding an edge from Iw to
H, we construct a graph Gw such that for all paths π, Gw � φ0(π) ∧ φ1(π) iff the label of

8 P. BARCELÓ, G. FONTAINE, AND A. W-LIN

π is the encoding of an accepting run over w. Hence, the formula φ := ∃π(φ0(π) ∧ φ1(π))
satisfies (4.1).

For the case where k > 1, the problem to adapt the above proof is that we have to
consider Turing machine configurations whose size is bounded by a tower of exponentials of
height k. If k > 1, the binary representation of such a bound is not polynomial. The trick is
to represent such exponential towers by k-counters. A 1-counter is the binary representation
of a number. If k > 1, a k-counter is a word σ0l0 . . . σj0lj0 , where lj is a (k− 1)-counter and
σj ∈ {0, 1}.

Definition. For all natural numbers k, we consider the alphabet Σk = {ak, bk}, where ak
and bk represent 0 and 1 respectively. We define Γk as the alphabet Σ1 ∪ · · · ∪ Σk.

A 1-counter of length n is a sequence of the form

l0 . . . lf0n−1,

where for all 0 ≤ i < f0n, li ∈ Σ1. This 1-counter represents the number
∑f0n−1

i=0 li2
i. Recall

that if li is equal to a1 (resp. b1), then li represents 0 (resp. 1).
If k ≥ 2, a k-counter of length n is a sequence of the form

σ0l0 . . . σj lj ,

where for all 0 ≤ i ≤ j, li ∈ Σk, σi is a (k − 1)-counter representing the number i and

j = tower (k − 1, f0n) − 1. This k-counter represents the number
∑j

i=0 li2
i. Again recall

that if li is equal to a1 (resp. b1), then li represents 0 (resp. 1).
A (k, f0n, p)-description (over an alphabet ∆) is a sequence

σpdp . . . σjdj ,

where for all p ≤ i ≤ j, di ∈ ∆, σi is a (k − 1)-counter representing the number i and
j = tower (k, f0(n − 1)) − 1. A (f0k, n)-description (over an alphabet ∆) is a (k, f0n, 0)-
description.

Note that a (k, f0n)-description over the alphabet Σk is a k-counter of length n. If ∆
is the alphabet (Q ∪ {$}) × Σ (where Q is the set of states and Σ is the alphabet of the
machine), a (k, f0n)-description over ∆ is of the form

l0(x0, y0) . . . lj(xj , yj)

where j = tower (k, f0n) − 1. Hence, if we define c(i) in (4.2) as the k-counter encoding
the number i, the encoding of a configuration (as defined above) is nothing but a (k, f0n)-
description.

In particular, if we want to encode a run as the label of a path satisfying some
well-chosen formula in a well-chosen graph, we should also be able to encode (k, f0n, p)-
descriptions as labels of paths. We show how to do so in the following lemma.

Notation. Given a path π in a graph over an alphabet ∆, we denote by l(π) the label of
π. Given an alphabet ∆′ ⊆ ∆, we denote by l∆′(π) the trace of l(π) over the alphabet ∆′,
that is, the subsequence of l(π) obtained by deleting the letters that do not belong to ∆′.

Let G′ = (V ′, E′, κ′) be a subgraph of G = (V,E, κ) and let π be a path in G and of
the form

v1a1v2 . . . vn−1anvn,

where (vi, ai, vi+1) ∈ E for all 1 ≤ i < n. Assume that there are i0 and i1 such that i0 ≤ i1
and

{vi : vi ∈ V ′, 1 ≤ i ≤ n} = {vi0 , . . . , vi1},

EXPRESSIVE PATH QUERIES ON GRAPHS WITH DATA 9

that is, once the path leaves G′, it never goes back to G′. Then we define the trace π′ of π
on G′ as the subpath

vi0ai0vi0+1 . . . vi1−1ai1vi1 ,

that is, π′ is the longest subpath of φ with nodes in G′.
In order to make notation easier, we also abbreviate the formula

∃s Ea(s, t)

by a(t).
Given a formula φ(π, s, t) with path variable π and node variables s and t, we denote

by φ(πs,t) the formula obtained by replacing in φ(π, s, t) each quantification of the form

∃rπ

by
∃rπ s.t. (s < r < t).

Intuitively, we “restrict” the path π to the nodes occurring between s and t.

Lemma 4.2. For all n and k and for all alphabets ∆, there are formulas φ∆k,n,p(π) (0 ≤ p <

n) and a graph G∆
k,n satisfying the following. There is a unique node with an outgoing (resp.

incoming) edge with label i∆k,n (resp. f∆k,n); moreover, that node has no incoming (resp.

outgoing) edge. That node is called the initial (resp. final) node. Finally, G∆
k,n � φ∆k,n,p(π)

iff the label l(π) of π satisfies the following conditions:

• only the first edge of π is labeled i∆k,n,

• only the last edge of π is labeled f∆k,n,

• if k ≥ 2 and ∆′ = ∆ ∪ Γk−1, then l∆′(π) is a (k, f0n, p)-description over ∆;
• if k = 1, lΣ1

(π) is a 1-counter of length n.

We let φ∆k,n(π) be an abbreviation for φ∆k,n,0(π).

Moreover, if ∆ = Σk, then there are formulas succk,n(π, π
′), number ik,n (1 ≤ i ≤ n),

lastk,n and eqk,n(π, π
′) such that for all paths π and π′ satisfying G∆

k,n � φ∆k,n(π) ∧ φ
∆
k,n(π

′),
we have

• G∆
k,n � succk,n(π, π

′) iff the number encoded by lΓk
(π′) is the successor of the number

encoded by lΓk
(π).

• G∆
k,n � number ik,n(π) iff lΓk

(π) is the encoding of the number i.

• G∆
k,n � lastk,n(π) iff lΓk

(π) is the encoding of the number tower (k, f0n).

• G∆
k,n � eqk,n(π, π

′) iff the number encoded by lΓk
(π′) is equal to the number encoded by

lΓk
(π).

Proof. The formulas and the graph are defined by induction on k. Suppose first that k = 1
and ∆ = Σ1. We define G0 as the following graph

i∆1,n
a1

b1
N

a1

b1

N

N

N

N
. . .

a1

b1

f∆1,n
N

N

10 P. BARCELÓ, G. FONTAINE, AND A. W-LIN

where the number of nodes with outgoing edges with labels a1 and b1, is equal to f0n. The
label N is an additional label that we introduce in order to simplify the notation in the
formulas.

We let G∆
1,n be the graph G0. We define now the formula φ∆1,n. In fact, any path π

over G0 starting with the node with no incoming edge and ending with the node with no
outgoing edge, will be such that lΣ1

(π) is the encoding of a 1-counter. Hence, we can define
φ∆1,n as the conjunction of the formula

∃sπ[¬∃tπ, t < s]

and the formula
∃sπ[¬∃tπ, s < t].

We show now how to define the formulas numi
1,n(π) (by induction on i), eqk,n(π, π

′) and

last1,n(π). For the formula last1,n(π), a path π corresponds to the encoding of the number

2f0n− 1 iff we always choose the node with label b1. Or equivalently, if we never choose the
node with label a1. Hence, we may define last1,n(π) as the formula

¬∃sπ, a1(s).

For the formula eq1,n(π, π
′), two paths π and π′ correspond to the same number iff π and π′

are equal. Since π and π′ are simple paths with the same starting node, this is equivalent
over graph databases (where each node carries a different data value) to the fact the the
following formula holds

∀tπ, (t′)π
′

[t ∼ t′ → (t+ 1) ∼ (t′ + 1)].

The formulas num i
1,n(π) is defined by induction on i. If i = 0, the path π encodes the

number 0 iff we always choose the node with label a1. Or equivalently, if we never choose
the node with label b1, which is expressed by

¬∃sπ, b1(s).

For the induction case, the path π encodes the number i+1 iff there is a path π′′ encoding
the number i and the number encoded by π is the successor of the number encoded by π′′.
Hence, we can define numi+1

1,n (π) as the formula

∃π′′(num i
1,n(π

′′) ∧ succ1,n(π
′′, π)).

In order to finish the base case, it remains to define the formula succ1,n(π, π
′). Basically,

we have to simulate addition in binary. If x1 . . . xf0n is the binary encoding of a number

i < 2f0n − 1, then the binary encoding of the number i+ 1 is the sequence x′1 . . . x
′

f0n
such

that xm is equal to

(a) 1 if xm = 0 and all the elements xm+1, . . . , xf0n are equal to 1,
(b) 0 if xm = 1 and all the elements xm+1, . . . , xf0n are equal to 1,
(c) 0 if xm = 0 and there is an element in the sequence xm+1 . . . xf0n that is equal to 0,
(d) 1 if xm = 1 and there is an element in the sequence xm+1 . . . xf0n that is equal to 0.

Case (a) can be expressed by the following formula

∀tπ, (t′)π
′

[t ∼ t′ ∧ a1(t) ∧ ∀s ∈ π[(t < s) ∧N(s− 1) → b1(s)]] → b1(t
′).

The other cases can be treated similarly. This finishes the base case.
We turn now to the induction step. If ∆ = {d1, . . . , dl}, we define G∆

k+1,n as the
following graph

EXPRESSIVE PATH QUERIES ON GRAPHS WITH DATA 11

G
Σk

k,n

d1

d2

d3

. . .

∆k+1
f

i∆k+1,n ∆k+1 f∆k+1,n

The edge with label i∆k+1,n and the edge with label ∆k+1
f are pointing to the initial node in

G
Σk

k,n. The edge with label ∆k+1 is an edge starting from the final node in GΣk

k,n.

We define now the formula φ∆k+1,n,p(π). The intuition is as follows. We encode a

(k + 1, f0n, p)-description
σpdp . . . σjdj ,

as a path π starting with the edge with label i∆k+1,n and ending with the edge with label

f∆k+1,n. Each k-counter σi will correspond to a path through the subgraph GΣk

k,n, while di will

correspond to the label of an edge occurring after the edge with label ∆k=1. The formula
φ∆k+1,n,p(π) needs to ensure that the following hold:

(a) The first edge of π is the edge with label i∆k+1,n.

(b) Each “passage” of the path π through the graph GΣk

k,n corresponds to the encoding of

a k-counter. To express this, we will use the formula φΣk

k,n(π) given by the induction

hypothesis.

(c) The first time the path π “goes through” the graph GΣk

k,n corresponds to the encoding

of the number p.

(d) Two successive “passages” of π through the graph G
Σk

k,n correspond to two successive

k-counters.
(e) The edge with label f∆k+1,n occurs after the edge with label ∆k+1

f iff the last passage

of the path π through the graph G
Σk

k,n, corresponded to the encoding of the number

tower (k, f0n). This ensures that we fully encode a (k + 1, f0n)-description, and not a
subsequence of it.

We only show how to express (b) as this is one of the most difficult cases and the other ones
can be treated similarly.

For (b) we have to express that each passage of π through the graph GΣk

k,n corresponds

to the encoding of a k-counter. Recall that by the induction hypothesis, since a (k, f0n)-

description over Σk is a k-counter of length k, the formula φΣk

k,n(π
′) is true in the graph GΣk

k,n

iff lΓk
(π′) is the encoding of a k-counter of length n.

Hence, in order to express (b), it is enough to ensure that if s is the first node of a

passage of π through GΣk

k,n and if t is the last node of that same passage, then the formula

12 P. BARCELÓ, G. FONTAINE, AND A. W-LIN

φ
Σk

k,n(πs,t) holds. We introduce a formula IF k,n(s, t, π) such that

IF k,n(s, t, π) holds iff s is the first node of a passage of π through GΣk

k,n (4.3)

and t is the last node of that same passage.

We define IF k,n(s, t, π) as the formula

i
Σk

k,n(s) ∧ Ef
Σk
k,n

(t− 1, t) ∧ (s < t) ∧ ¬∃uπ [(s < u < t) ∧
∨

i

di(u)].

This equivalent to saying that s is the initial node of GΣk

k,n, that t is the final node of GΣk

k,n

and the path “never goes out” of the graph GΣk

k,n (this can be enforced by imposing that we

do not go through the edge with label di for some i).
We define now the formula χ1(s, t, π) expressing condition (b), that is, if s is the first

node of a passage of π through GΣk

k,n and if t is the last node of that same passage, then the

formula φΣk

k,n(πs,t) holds. By (4.3), we may define χ1(s, t, π) as the formula

IF k,n(s, t, π) → φ
Σk

k,n(πs,t).

We turn now to the definitions of the formulas succk+1,n(π), num
i
k+1,n(π), eqk+1,n(π, π

′)

and lastk+1,n(π). The formulas succk+1,n(π), num
i
k+1,n(π) and lastk+1,n(π) are defined in

a similar fashion as the basis case (k = 1).
In order to define the formula eqk+1,n(π, π

′), let π and π′ be two paths satisfying the

formula φ
Σk+1

k+1,n. Recall that π corresponds to the encoding of a (k + 1)-counter

σ1d1 . . . σjdj ,

where each σi corresponds to a passage πs,t of π through G
Σk

k,n and di corresponds to the

label of an edge occurring right after that passage. Given the structure of the graph G∆
k+1,n,

that edge is the incoming edge of the node t+ 2.
The paths π and π′ correspond to the encoding of the same (k + 1)-counter if for all

passages πs,t of π through GΣk

k,n and for all passages πs′,t′ of π through GΣk

k,n such that πs,t
and πs′,t′ encode the same k-counter, we have that t + 2 and t′ + 2 are the same nodes.
By (4.3) and by the induction hypothesis, this can be expressed by the following formula
eqk+1,n(π, π

′) given by

∀sπ, tπ ∀(s′)π
′

, (t′)π
′

[IF (s, t, π) ∧ IF (s′, t′, π′) ∧ eqk,n(πs,t, πs′,t′) → (t+ 2 ∼ t′ + 2)]

This finishes the proof of Lemma 4.2.

We are now ready to prove Theorem 4.1.

Proof of Theorem 4.1. As explained earlier, we prove that for all Turing machines M and
for all k, there is a formula φ ∈ WL such that for all words w of size n, there is a graph Gw

such that

Gw � φ iff there is an accepting run of M over w using at most tower (k, n) cells.

Let (Σ, Q, δ, qi, qf) be the Turing machineM , where Σ is the input alphabet together with a
blank symbol B, q0 is the initial state, qf is the final state and δ : Q×Σ → (Q×Σ×{L,R})
is the transition map, where L stands for “left” and R stands for “right”.

EXPRESSIVE PATH QUERIES ON GRAPHS WITH DATA 13

The formula φ is a formula of the form

∃πψ(π),

where ψ is a formula that does not contain any quantification over path variables. Given
a word w, the label of π in the graph Gw is the encoding of an accepting run of M over
the word w. Recall that we encode a configuration of the machine in the following way.
Suppose that C is a configuration where the content of the tape is the word w′ = w′

0 . . . w
′
j

(j = tower (k, f0n)− 1), the head is scanning the cell number i0 and the machine is in state
q. We may encode C by the word eC = dC0 . . . d

C
j where each di is a sequence

c(i) (q′i, w
′
i),

and c(i), w′
i and q′i are defined as follows. The word c(i) is the k-counter encoding the

number i. The letter w′
i is the content of the cell i. The letter q′i is equal to $ if the head is

not scanning the cell number i; otherwise, q′i is equal to the state q. This implies that given
a configuration C, the word ecC is a (k+1, n)-counter over the alphabet ∆ := (Q∪{$})×Σ.

The run of M over the word w is a sequence of configurations of the form C0C1 We
encode the run as the word eC0

eC1
. . . (which is a sequence of (k+1, n)-counters). We will

define the formula ψ(π) and the graph Gw in such a way that a path π satisfies ψ iff the
projection of the label of π on the alphabet Γk ∪∆ is the encoding of an accepting run of
M over w.

We think of a path π encoding a run of M over w as consisting of two parts. The label
of the first part contains the encoding eC0

of the initial configuration C0. The label of the
second part contains the encoding eC1

eC2
. . . of the remaining part of the run. The first

part of the path π is a path in a subgraph Iw of Gw, while the second part is a path in the
subgraph H (independent of w) of Gw. The graph Gw will be obtained by adding an edge
from a node of Iw to a node of H.

We start by defining the graph H. Recall that ∆ is the alphabet (Q ∪ {$}) × Σ. The
graph H is defined as the graph G∆

k,n with an additional edge from the final node to the
initial node. Hence, it follows from the proof of Lemma 4.2 that H is the following graph,

G
Σk

k,n

d1

d2

dl

. . .

∆k+1
f

i∆k+1,n ∆k+1 f∆k+1,n

where ∆ = {d1, . . . , dl} and where the edges with label i∆k,n and ∆k+1
f are edges pointing to

the initial node of GΣk

k,n and the edge with label ∆k+1 is an edge starting from the final node

of GΣk

k,n. In the above paragraphs, any edge pointing to the graph GΣk

k−1,n is an edge pointing

14 P. BARCELÓ, G. FONTAINE, AND A. W-LIN

to the initial node of that graph. Similarly, any edge starting from the graph GΣk

k−1,n will
always be referring to an edge starting in the final node of the graph.

Recall that if a path π encodes a run C0C1C2 . . . , the trace of π on H will encode the
part C1C2 . . . of the run. Each configuration Ci is encoded as a (k + 1, f0n)-description
over ∆, which will correspond, as in Lemma 4.2, to a passage of the path π from the initial

node to the final node of GΣk

k−1,n.

We define now the graph Iw encoding the initial configuration of the tape. Recall that
in the initial configuration, the tape contains the word w = w0 . . . wn−1, all the cells with
number ≥ n contain the blank symbol B, the head is scanning the first cell and the state is
q0. The graph Iw is obtained by “assembling” the subgraphsK0, . . . ,Kn−1 and K, which we
will define next. For each i ≤ n, the graph Ki is such that the label of its unique maximal
path is the encoding of the cell number i in the initial configuration. The trace of the path
π on the graph K is the encoding of the contents of the cells with number ≥ n in the initial
configuration.

More precisely, we define the graphs K0, . . . ,Kn−1 and K in the following way. The
following graph is the graph K0

G
Σk

k,n

in #0 (qi, w0)

The node with label in will be the starting node of the path π. Since the trace of π in K1

encodes the content of the cell with number 0 in the initial configuration, its label must
contain the k-counter encoding the number 0 followed by the letter (qi, w0) of the alphabet
∆ (indicating that the first cell contains the letter w0, the head is scanning the first cell and
the current state is q0). Using Lemma 4.2 and the formula num0

k,n, we will impose that the

passage of π through the subgraph GΣk

k,n of K0 corresponds to the encoding of the number
0.

Next, for all 1 ≤ i ≤ n, we define Ki as the following graph

G
Σk

k,n

#i ($, wi)

Recall that we want to define Ki in such a way that the trace of π on Ki is the encoding
of the contents of the cell with number in in the initial configuration (that it, it contains
the letter wi and the head is not scanning the cell since i 6= 0). Recall that the encoding of
such a cell (and its content) is given by

c(i)($, wi),

where c(i) is the k-counter encoding the number i. We will use the formula numi
k,n given by

Lemma 4.2 to express that the passage of π through the subgraph GΣk

k,n of Ki corresponds
to the k-counter encoding i.

Finally we define the graph K as the graph

G∆B

k,n

EXPRESSIVE PATH QUERIES ON GRAPHS WITH DATA 15

where ∆B is the one-letter alphabet containing the blank symbol B. Recall that the trace
of π on the graph K will encode the contents of the cells with number ≥ n in the initial
configuration (that is, the fact that those cells contain the blank symbol and are not scanned
by the head). Since the encoding of such a cell with number i is given by

c(i)($, B)

(where c(i) is the k-counter encoding i), the label of the trace of π on K must contain the
word

c(n + 1)(B, $) . . . c(j)(B, $),

where j = tower (k, n)−1. That is, the label of the trace of π on K is the unique (k, f0n, n+
1)-description over the alphabet ∆B . We will express that the passage of π through the

graph G∆B

k,n corresponds to the (k, f0n, n + 1)-description over the alphabet ∆B using the

formula φ∆B

k,n,n+1 provided by Lemma 4.2.
We are now ready to define the graph Iw which is obtained by assembling the graphs

previously introduced in the following way.

K0 K1
. . . Kn−1 K

Each edge between two graphs in the picture above is an edge from the “left-most”
node of the first graph to the “right-most” node of the second graph. Finally the graph Gw

is the graph obtained by considering the union of the graph Iw and H and adding an edge
from the final node of K to the initial node of H.

Now that we have defined the graph Gw, we are ready to define the formula ψ. The
formula ψ(π) is obtained as the conjunction of the following formulas.

(A) First we need to express that the path π starts with the edge with label in.
(B) We need to express that eventually in a configuration, the machine reaches the final

state qf .

(C) We also have to express that each passage of the path π from the initial node of GΣk

k,n

to the final node of GΣk

k,n in the graph H corresponds to the encoding of a (k + 1, f0n)-
description.

(D) We have to express that for all i < n, the trace of π on the subgraph GΣk

k,n of the graph

Ki corresponds to the k-counter encoding i.
(E) We need to express that the trace of the path π on the subgraph G∆B

k+1,n of K is the

unique (k + 1, f0n, n+ 1)-description over the alphabet ∆B .
(F) Finally we need to express how we move from one configuration of the tape to the next

one.

Cases (A) and (B) are straightforward. Cases (C), (D) and (E) are similar and we only give
details for case (C) and case (F). By Lemma 4.2, case (C) means that

if πs,t is the subpath of π corresponding to such a passage, then φ∆k+1,n,0(πs,t) holds.
(4.4)

The node s is a node satisfying iΣk

k,n, while t is the “closest” node to s with an incoming

edge with label f∆k+1,n. This is expressed by the following formula IF∆
k+1,n(s, t, π) defined

by

i
Σk

k+1,n(s) ∧ Ef
Σk=1
k+1,n

(t− 1, t) ∧ ¬∃rπ [s < r < t ∧E
f
Σk+1

k+1,n

(r − 1, r)]. (4.5)

16 P. BARCELÓ, G. FONTAINE, AND A. W-LIN

It follows from the definitions of IF∆(s, t, π) and the graph G∆
k+1,n that

G∆
k+1,n � IF∆

k+1,n(s, t, π) iff s is the first node of a passage of π through G∆
k+1,n

and t is the last node of that same passage. (4.6)

Hence, (4.4) is equivalent to the fact that if IF∆
k+1,n(s, t, π) holds, so does the formula

φ∆k+1,n,0(πs,t). Therefore the formula

∀sπ, tπ [IF∆(s, t, π) → φ∆k+1,n,0(πs,t)]

expresses case (C).
Finally we treat the most difficult case which is case (F). We need to express how we

move from one configuration of the tape to the next one. Recall that the trace of π on the
graph H will contain the encoding of the sequence C1C2 . . . of the run, where C0C1 . . . is
the full run of the machine on the input w.

Let πs,t be the subpath of π corresponding to the encoding of a configuration Ci and
let πs′,t′ be the subpath of π corresponding to the configuration Ci+1. We need to express
how to move from the configuration Ci to the configuration Ci+1. Suppose that in the
configuration Ci, the current state is q, and the head is scanning the cell c containing the
letter u. Suppose also that δ(q, u) = (q′, v,R) (we can treat similarly the case where the
head moves to the left). In order to keep our formulas simpler, we use a slightly different
definition of a run of a Turing machine, but it would be clear that the notion of run that we
use here, can be simulated by a usual Turing machine. Here, we assume that if the machine
scans a cell c with content u and δ(q, u) = (q′, v,R), then in the next state, the machine
scans the successor c′ of c, the content of c′ is v, while the content of c is u (in the usual
definition, the content of c′ is unchanged, while the content of c is v).

Let πr,s be the subpath of π corresponding to the encoding of the cell c in the configu-
ration Ci. Let πr′,s′ be the encoding of an arbitrary cell c′ in the configuration Ci+1. If c

′ is
the successor of the cell c, then the head should scan the cell c′ and the content of c′ should
be the letter v. We express this by the formula changeR(q,a,q′,b)(r, s, r

′, s′, π) defined by

succk,n(πs,r, πr′,s′) ∧ (q, u)(s + 2) → (q′, v)(s′ + 2).

Recall that by Lemma 4.2, succk,n(πr,s, πr′,s′) is the formula expressing that the k-counter
associated with πr′,s′ is the successor of the k-counter associated with πr,s.

If c′ is not the successor of the cell c, then the head is not scanning the cell c′ and
its content remains unchanged. If πx,y is the subpath of π corresponding to the con-
tent of the cell c′ in the configuration Ci, this is expressed by the following formula
stayR

(q,u,q′,v)(r, s, x, y, r
′, s′, π) defined by

¬succk,n(πr,s, πr′,s′) ∧ (q, u)(s + 2) ∧ eqk,n(πx,y, πr′,s′) ∧ (q′′, u0)(x, y) → ($, u0)(s + 2)

where q′′ ∈ Q ∪ {$}. Recall that by Lemma 4.2, eqk,n(πx,y, πr′,s′) expresses that the k-
counters associated with πx,y and πr′,s′ are the same.

Now we need to express that the paths πr,s, πs′,s′ and πx,y correspond to the encodings
of k-counters. By Lemma 4.2, this means that those paths correspond to passages of π

through the graph GΣk

k,n. Similarly to (4.5), we introduce a formula IFΣk

k,n(r, s, π) defined by

i
Σk

k,n(r) ∧Ef
Σk
k,n

(s− 1, s) ∧ ¬∃tπ [r < t < s ∧ E
f
Σk
k,n

(t− 1, t)].

This formula expresses that the path πr,s corresponds to the encoding of a k-counter.

EXPRESSIVE PATH QUERIES ON GRAPHS WITH DATA 17

Next we also need a formula to assert that the paths πr,s and πr′,s′ appear in the
encodings of successive configurations (and similarly, that the paths πx,y and πr′,s′ appear
in the encodings of successive configurations). Since the encoding of a configuration starts
with the unique edge with label i∆k+1,n (and that edge only occurs at the beginning of the

encoding of a configuration), this is equivalent to say that there is a unique edge between
s and r′ with label i∆k+1,n. This is expressed by the formula config(s, r′, π) defined by

∃tπ [(s < t < r′) ∧ i∆k+1,n(t) ∧ ¬∃(t′)π [(s < t′ < r′) ∧ i∆k+1,n(t
′) ∧ (t′ 6= t)]].

We are now ready to define θRq,u,q′,v(π) as the following formula

∀rπ, sπ, (r′)π, (s′)π, xπ, yπ [IFΣk

k,n(r, s, π) ∧ IFΣk

k,n(r
′, s′, π) ∧ IFΣk

k,n(x, y, π) (4.7)

∧config(s, r′, π) ∧ config(y, r′π) (4.8)

→ changeR(q,u,q′,v)(s, r, s
′, r′, π) ∧ stayR

(q,u,q′,v)(r, s, x, y, r
′, s′, π)]. (4.9)

It expresses the following. Suppose that πr,s, πr,s and πr′,s′ are k-counters encoding the
numbers of three cells (this corresponds to (4.7)). Suppose that πr,s and πx,y correspond to
cells occurring in the same configuration C and that the cell corresponding to πr′,s′ occurs
in the next configuration C ′ (this is expressed by (4.8)). Then, if we “apply” the transition
δ(q, u) = (q′, v,R) to move from C to C ′, we move the head to the right and update the con-
tent of the cell being scanned (as expressed by the formula changeR(q,u,q′,v)(r, s, r

′, s′, π)) and

we leave the other cells unchanged (as expressed by the formula stayR
(q,u,q′,v)(r, s, x, y, r

′, s′, π)).

We define now the formula θR(π) as the formula
∧

{θRq,u,q′,v(π) : δ(q, u) = (q′, v,R)}.

This formula expresses how we move from one configuration to another, when the head
moves to the right. Similarly, we can define a formula θL(π) expressing how we move from
one configuration to another, when the head moves to the left.

This finishes the proof of Theorem 4.1.

As a corollary to the proof of Theorem 4.1, we obtain that data complexity is non-
elementary even for simple WL formulas that talk about a single path in a graph database.

Corollary 4.3. The evaluation problem for WL over graph databases is non-elementary in
data complexity, even if restricted to Boolean WL formulas of the form ∃πψ, where ψ uses
no path quantification and contains no position variable of sort different than π.

5. Register Logic

We saw in the previous section that WL is impractical due to its very high data complex-
ity. In this section, we start by recalling the notion of regular expressions with memory
(REM) and their basic results from [10]. In our view, this logic is rather limited in terms of
expressive power. For instance, the query (Q) from the introduction cannot be expressed
in REM. We then introduce an extension of REM, called regular logic (RL), that reme-
dies this limitation in expressive power (in fact, it can express many natural examples of
queries expressible in WL, e.g., those given in [8]) while retaining elementary complexity of
query evaluation. Finally, we study which fragments of RL are well-behaved for database
applications.

18 P. BARCELÓ, G. FONTAINE, AND A. W-LIN

5.1. Regular expressions with memory. REMs define pairs of nodes in data graphs that
are linked by a path that satisfies a constraint in the way in which the topology interacts
with the underlying data. REMs allow us to remember data values and use them later.
Data values are stored in k registers r1, . . . , rk. At any point we can compare a data value
with one previously stored in the registers. As an example, consider the REM ↓ r.a+[r=].
This can be read as follows: Store the current data value in register r (represented by the
expression ↓r), and then check that after reading a word in a+ we see the same data value
again (condition [r=]). We formally define REM next.

Let r1, . . . , rk be registers. The set of conditions c over {r1, . . . , rk} is recursively defined
as: c := r=i | c∧c | ¬c, for 1 ≤ i ≤ k. Assume that D⊥ is the extension of the set D of data
values with a new symbol ⊥. Satisfaction of conditions is defined with respect to a value
d ∈ D (the data value that is currently being scanned) and a tuple τ = (d1, . . . , dk) ∈ Dk

⊥

(the data values stored in the registers, assuming that di = ⊥ represents the fact that
register ri has no value assigned) as follows (Boolean combinations omitted): (d, τ) |= r=i
iff d = di.

Definition 5.1 (REMs). The class of REMs over Σ and {r1, . . . , rk} is defined by the
grammar:

e := ε | a | e ∪ e | e · e | e+ | e[c] | ↓ r̄.e

where a ranges over symbols in Σ, c over conditions over {r1, . . . , rk}, and r̄ over tuples of
elements in {r1, . . . , rk}.

That is, REM extends the class of regular expressions e – which is a popular mechanism
for specifying topological properties of paths in graph databases (see, e.g., [18, 2]) – with
expressions of the form e[c], for c a condition, and ↓ r̄.e, for r̄ a tuple of registers – that
define how such topology interacts with the data.

Semantics: To define the evaluation e(G) of an REM e over a data graph G = (V,E, κ),
we use a relation JeKG that consists of tuples of the form (u, λ, ρ, v, λ′), for u, v nodes in V ,
ρ a path in G from u to v, and λ, λ′ two k-tuples over D⊥. The intuition is the following:
the tuple (u, λ, ρ, v, λ′) belongs to JeKG if and only if the data and topology of ρ can be
parsed according to e, with λ being the initial assignment of the registers, in such a way
that the final assignment is λ′. We then define e(G) as the pairs (u, v) of nodes in G such
that (u,⊥k, ρ, v, λ) ∈ JeKG, for some path ρ in G from u to v and k-tuple λ over D⊥.

We inductively define relation JeKG below. We assume that λr̄=d, for d ∈ D, is the tuple
obtained from λ by setting all registers in r̄ to be d. Also, if ρ1 = v1a1v2 · · · vk−1ak−1vk and
ρ2 = vkakvk+1 · · · vn−1an−1vn are paths, then:

ρ1ρ2 := v1a1v2 · · · vk−1ak−1vkakvk+1 · · · vn−1an−1vn.

Then we define:

• JεKG = {(u, λ, ρ, u, λ) : u ∈ V, ρ = u, λ ∈ Dk
⊥
}.

• JaKG = {(u, λ, ρ, v, λ) : ρ = uav, λ ∈ Dk
⊥
}.

• Je1 ∪ e2KG = Je1KG ∪ Je2KG.
• Je1 · e2KG = Je1KG ◦ Je2KG, where Je1KG ◦ Je2KG is the set of tuples (u, λ, ρ, v, λ′) such that
(u, λ, ρ1, w, λ

′′) ∈ Je1KG and (w, λ′′, ρ2, v, λ
′) ∈ Je2KG, for some w ∈ V , k-tuple λ′′ over D⊥,

and paths ρ1, ρ2 such that ρ = ρ1ρ2.
• Je+KG = JeKG ∪ (JeKG ◦ JeKG) ∪ (JeKG ◦ JeKG ◦ JeKG) . . .
• Je[c]KG = {(u, λ, ρ, v, λ′) ∈ JeKG : (κ(v), λ′) |= c}.

EXPRESSIVE PATH QUERIES ON GRAPHS WITH DATA 19

• J↓ r̄.eKG = {(u, λ, ρ, v, λ′) : (u, λr̄=κ(u), ρ, v, λ
′) ∈ JeKG}.

For each REM e, we will use the shorthand notation e∗ to denote ε ∪ e+.

Example 5.1. The REM Σ∗ · (↓r.Σ+[r=]) ·Σ∗ defines the pairs of nodes in data graphs that
are linked by a path in which two nodes have the same data value. The REM ↓r.(a[¬r=])+

defines the pairs of nodes that are linked by a path ρ with label in a+, such that the data
value of the first node in the path is different from the data value of all other nodes in ρ. ✷

The problem Eval(REM) is, given a data graph G = (V,E, κ), a pair (v1, v2) of nodes
in V , and an REM e, is (v1, v2) ∈ e(G)? The data complexity of the problem refers again
to the case when e is considered to be fixed. REMs are tractable in data complexity and
have no worse combined complexity than FO over relational databases:

Proposition 5.1 ([10]). Eval(REM) is Pspace-complete, and Nlogspace-complete in
data complexity.

5.2. Register logic. REM is well-behaved in terms of the complexity of evaluation, but
its expressive power is rather rudimentary for expressing several data/topology properties
of interest in data graphs. As an example, the query (Q) from the introduction – which
can be easily expressed in WL – cannot be expressed as an REM (we actually prove a
stronger result later). The main shortcomings of REM in terms of its expressive power
are its inability to (i) compare data values in different paths and (ii) express branching
properties of the data.

In this section, we propose register logic (RL) as a natural extension of REM that makes
up for this lack of expressiveness. We borrow ideas from the logic CRPQ¬, presented in [4],
that closes the class of regular path queries [7] under Boolean combinations and existential
node and path quantification. In the case of RL we start with REMs and close them
not only under Boolean combinations and node and path quantification – which allow to
express arbitrary patterns over the data – but also under register assignment quantification
– which permits comparing data values in different paths. We also prove that the combined
complexity of the evaluation problem for RL is elementary (Expspace), and, thus, that in
this regard RL is in stark contrast to WL.

To define RL we assume the existence of countably infinite sets of node, path and
register assignment variables. Node variables are denoted x, y, z, . . . , path variables are
denoted π, π′, π1, π2, . . . , and register assignment variables are denoted ν, ν1, ν2, . . .

Definition 5.2 (Register logic (RL)). We define the class of RL formulas φ over alphabet
Σ and {r1, . . . , rk} using the following grammar:

atom := x = y | π = π′ | ν = ν ′ | ν = ⊥̄ | (x, π, y) | e(π, ν1, ν2)

φ := atom | ¬φ | φ ∨ φ | ∃xφ | ∃πφ | ∃νφ

Here x, y are node variables, π, π′ are path variables, ν, ν ′ are register assignment variables,
and e is an REM over Σ and {r1, . . . , rk}.

20 P. BARCELÓ, G. FONTAINE, AND A. W-LIN

Intuitively, ν = ⊥̄ holds iff ν is the empty register assignment, (x, π, y) checks that π
is a path from x to y, and e(π, ν, ν ′) checks that π can be parsed according to e starting
from register assignment ν and finishing in register assignment ν ′. The quantifier ∃ν is to
be read “there exists an assignment of data values in the data graph to the registers”.

Let G = (V,E, κ) be a data graph over Σ and φ a RL formula over Σ and {r1, . . . , rk}.
Assume that D is the set of data values that are mentioned in G, i.e., D = {κ(v) : v ∈ V }.
An assignment α for φ over G is a mapping that assigns (i) a node in V to each free node
variable x in φ, (ii) a path ρ in G to each free path variable π in φ, and (iii) a tuple λ in
Dk

⊥
to each register variable ν that appears free in φ. That is, for safety reasons we assume

that α(ν) can only contain data values that appear in the underlying data graph. This
represents no restriction for the expressiveness of the logic.

We inductively define (G,α) |= φ, for G a data graph, φ an RL formula, and α an
assignment for φ over G, as follows (we omit equality atoms and Boolean combinations
since they are standard):

• (G,α) |= ν = ⊥̄ iff α(ν) = ⊥k.
• (G,α) |= (x, π, y) iff α(π) is a path from α(x) to α(y) in G.
• (G,α) |= e(π, ν, ν ′) iff (u, α(ν), α(π), v, α(ν ′)) ∈ JeKG, assuming α(π) goes from node u to
v.

• (G,α) |= ∃xφ iff there is node v ∈ V such that (G,α[x → v]) |= φ.
• (G,α) |= ∃πφ iff there is path ρ in G such that (G,α[π → ρ]) |= φ.
• (G,α) |= ∃νφ iff there is tuple λ in Dk

⊥
such that (G,α[ν → λ]) |= φ.

Thus, each REM e is expressible in RL using the formula:

∃π∃ν∃ν ′ (ν = ⊥̄ ∧ e(π, ν, ν ′)).

Example 5.2. Recall query (Q) from the introduction: Find pairs of nodes x and y in a
graph database, such that there is a node z and a path π from x to y in which each node is
connected to z. This query can be expressed in RL over Σ = {a} and a single register r as
follows:

∃π
(

(x, π, y) ∧ ∃z∀ν(e1(π, ν, ν) → ∃z′∃π′((z′, π′, z) ∧ e2(π
′, ν, ν)))

)

,

where e1 := a∗[r=]·a∗ is the REM that checks whether the node (i.e. data) stored in register
r appears in a path, and e2 := ε[r=] · a∗ is the REM that checks if the first node of a path
is the one that is stored in register r.

In fact, this formula defines the pairs of nodes x and y such that there exists a path π
that goes from x to y and a node z for which the following holds: for every register value ν
(i.e., for every node ν) such that e1(π, ν, ν) (i.e. node ν is in π), it is the case that there is
a path π′ from some node z′ to z such that e2(π

′, ν, ν) (i.e., z′ = ν and π′ connects ν to z).
Notice that this uses the fact that the underlying data model is that of graph databases, in
which each node is uniquely identified by its data value. ✷

The limitations in expressive power of RL have also been independently recognized by
Libkin, Martens and Vrgoc [12]. In order to allow for interesting data value comparisons
while retaining reasonable complexity of evaluation, they propose to use query languages
based on the XML language XPath. These languages are not comparable in terms of
expressive power to the ones we study here.

Complexity of evaluation for RL: The evaluation problem for RL, denoted Eval(RL),
is as follows: Given a data graph G, an RL formula φ, and an assignment α for φ over G, is

EXPRESSIVE PATH QUERIES ON GRAPHS WITH DATA 21

it the case that (G,α) |= φ? As before, we denote by Eval(RL,φ) the evaluation problem
for the fixed RL formula φ.

We show next that, unlike WL, register logic RL can be evaluated in elementary time,
and, actually, with only one exponential jump over the complexity of evaluation of REMs:

Theorem 5.2. Eval(RL) is Expspace-complete. The lower bound holds even if the input
is restricted to graph databases.

Proof. We start by proving the upper bound, that is, Eval(RL) is in Expspace. The
structure of the proof is quite similar to the one that proves that CRPQ¬ queries can be
evaluated in Pspace in combined complexity [4]. The difference is that now we have to
accommodate the extra expressive power of RL, that allows to express properties of register
values and check acceptance of data walks by REMs.

Let G = (V,E, λ) be a Σ-labeled data graph and φ a RL formula over Σ and {x1, . . . , xk}.
Let us denote by D = {λ(v) : v ∈ V } and define D⊥ to be D ∪ {⊥}. Further, let α be an
assignment for φ over G. We define

• v̄ = (v1, . . . , vk1) as a tuple of nodes in G such that

{v1, . . . , vk1} = {α(x) : x is a free node variable},

• ρ̄ = (ρ1, . . . , ρk2) as a tuple of paths in G such that

{ρ1, . . . , ρk2} = {α(ρ) : ρ is a free path variable},

• λ̄ = (λ1, . . . , λk3) as a tuple of register values for {x1, . . . , xk} over G (i.e., tuples in
(D ∪ {⊥})k) such that {λ1, . . . , λk3} = {α(λ) : ρ is a free register variable}.

Further, assume that e1, . . . , em are all the REMs mentioned in φ. Our goal is to define an
Expspace procedure that checks whether (G,α) � φ. In order to do that, we first have to
introduce some new terminology.

Let τ be a first-order (FO) vocabulary

〈Nodes, Paths, Registers, Endpoints, e1, . . . , em, ⊥̄〉,

where (a) Nodes, Paths and Registers are unary relation symbols, (b) Endpoints and ei
(1 ≤ i ≤ m) are ternary relation symbols, and (c) ⊥̄ is a constant. We define, from G, an
FO structure MG over τ as follows: The domain of MG is the disjoint union of V , all the
paths that belong to G, and all k-tuples over D⊥. (Notice that each node in V is also a
path in G, but here we consider them to be different objects. That is, each v ∈ V appears
separately as a node and as a path in the domain of MG). The constant ⊥̄ is interpreted
in MG as the tuple ⊥k. The interpretation of Nodes in MG contains all those elements of
the domain that are nodes. The interpretation of Paths in MG contains all those elements
of the domain that are paths. The interpretation of Registers in MG contains all those
elements of the domain that are k-tuples over D⊥. The interpretation of the ternary relation
Endpoints contains all tuples (v, ρ, v′) such that ρ is a path in G from node v to node v′.
Finally, the interpretation of the symbol ei (1 ≤ i ≤ m) contains all tuples (λ, ρ, λ′) such
that ρ is a path in G, λ, λ′ are k-tuples over D⊥, and ei(ρ, λ, λ

′).
Let φτ be the FO formula over vocabulary τ obtained from φ by simultaneously replac-

ing (1) each subformula of the form ∃xθ (for x a node variable) with ∃x(Nodes(x) ∧ θ), (2)
each subformula of the form ∃πθ (for π a path variable) with ∃π(Paths(π) ∧ θ), (3) each
subformula of the form ∃νθ (for ν a register variable) with ∃ν(Registers(ν) ∧ θ), and (4)
each atomic formula of the form (x, π, y) with Endpoints(x, π, y).

22 P. BARCELÓ, G. FONTAINE, AND A. W-LIN

Clearly, G,α � φ iff MG, α � φτ .
Of course, MG cannot be effectively constructed from G since the set of paths in G

is potentially infinite, and, thus, MG is also potentially infinite. However, it is possible to
prove that there exists a finite structure M′

G,ρ̄ such that G,α � φ iff M′
G,ρ̄, α � φτ . We

show how to define M′
G,ρ̄ next.

Assume that the quantifier rank of φτ is k ≥ 0, where the quantifier rank of an FO
formula θ is the depth of nested quantification in θ. Let E ⊆ {e1, . . . , em}×Dk

⊥
×Dk

⊥
. A path

ρ in G satisfies E if the following holds: For each triple (ei, λ, λ
′) ∈ {e1, . . . , em}×Dk

⊥
×Dk

⊥
,

it is the case that G,α � ei(ρ, λ, λ
′) iff (ei, λ, λ

′) ∈ E . (Notice that for each path in G there is
one, and only one, subset E of {e1, . . . , em}×Dk

⊥
×Dk

⊥
that it satisfies.) For each pair (v, v′)

of nodes in V , and for every E ⊆ {e1, . . . , em} ×Dk
⊥
×Dk

⊥
, let cE,v,v′ ≥ 0 be the minimum

between k + |ρ̄| and the number of paths in G that go from v to v′ and satisfy E . We
arbitrarily pick, for each pair (v, v′) of nodes in V and for each E ⊆ {e1, . . . , em}×Dk

⊥
×Dk

⊥
,

cE,v,v′ distinct paths ρ
1
E,v,v′ , . . . , ρ

cE,v,v′

E,v,v′ from v to v′ that satisfy E .

We define the structure M′
G,ρ̄ as follows: Its domain contains all the nodes of V , each

path ρ that belongs to the tuple ρ̄, every path of the form ρi
E,v,v′ , where E ⊆ {e1, . . . , em}×

Dk
⊥
× Dk

⊥
(v, v′ ∈ V and 1 ≤ i ≤ cE,v,v′), and every tuple in Dk

⊥
. The constant ⊥̄ is

interpreted in M′
G,ρ̄ as the tuple ⊥k. The interpretation of Nodes in M′

G,ρ̄ contains all

nodes in the domain. The interpretation of Paths in M′
G,ρ̄ contains all those elements of

the domain that are paths. The interpretation of Registers in MG,ρ̄ contains all those
elements of the domain that are k-tuples over D⊥. The interpretation of the ternary relation
Endpoints contain all tuples of the form (v, ρ, v′), where v, v′ ∈ V and ρ is a path in the
domain that goes from v to v′ in G. Finally, the interpretation of ei (1 ≤ i ≤ m) in M′

G,ρ̄

contains all tuples (λ, ρ, λ′) such that ρ is a path in the domain, λ, λ′ are k-tuples over D⊥,
and ei(ρ, λ, λ

′).
By using a standard Ehrenfeucht-Fräıssé argument it is possible to prove the following:

Claim 5.2.1. The structures (MG, v̄, ρ̄, λ) and (M′
G,ρ̄, v̄, ρ̄, λ) are indistinguishable by FO

sentences of quantifier rank ≤ k.

Proof. We show that the duplicator has a winning strategy in the k-round Ehrenfeucht-
Fräıssé game played on (MG, v̄, ρ̄, λ̄) and (M′

G,ρ̄, v̄, ρ̄, λ̄). The duplicator’s response to a

spoiler move in round i ≤ k is (inductively) defined as follows (we assume without loss of
generality that the spoiler never repeats moves, i.e. in no round does the spoiler choose an
element that has already been chosen by either player in previous rounds):

• If the spoiler’s move in round i is a node in either of the two structures, then the duplicator
responds by mimicking the spoiler’s move on the other structure;

• if the spoiler’s move in round i is a k-tuple over D ∪ {⊥} in either of the two structures,
then the duplicator responds by mimicking the spoiler’s move on the other structure;

• if the spoiler’s move in round i is a path ρ in ρ̄ in either of the two structures, then again
the duplicator responds by mimicking the spoiler’s move on the other structure;

• if the spoiler plays a path ρ from node v to v′, in either of the two structures, such that
ρ satisfies E ⊆ {e1, . . . , em} × Dk

⊥
× Dk

⊥
and ρ is not a path in ρ̄, then the duplicator

responds with any path from v to v′ in the other structure that (1) satisfies E , (2) does
not belong to ρ̄, and (3) has not been previously chosen in the game. Notice that it is
always possible for the duplicator to choose such a path, since for each pair of nodes

EXPRESSIVE PATH QUERIES ON GRAPHS WITH DATA 23

v, v′ ∈ V and for each E ⊆ {e1, . . . , em} × Dk
⊥
× Dk

⊥
, the number of paths from v to v′

that satisfy E and do not belong to ρ̄ is the same up to k.

It is easy to see that duplicator’s response defined in this way always preserves a partial iso-
morphism between the two structures. This implies that the duplicator has a winning strat-
egy in the k-round Ehrenfeucht-Fräıssé game played on (MG, v̄, ρ̄, λ̄) and (M′

G,ρ̄, v̄, ρ̄, λ̄),
and, thus, by well-known results, that the structures are indistinguishable by FO sentences
of quantifier rank ≤ k.

The previous claim shows that (G,α) � φ iff (M ′
G,ρ̄, α) � φτ . Thus, a straightforward

approach to check whether (G,α) � φ would be to construct M′
G,ρ̄ and then evaluate φτ

over it. The problem with this approach is that M′
G,ρ̄ could be of double exponential size

(because there is a double exponential number of different subsets E of {e1, . . . , em}×Dk
⊥
×

Dk
⊥
), and, thus, impossible to construct in exponential space. It will be necessary to follow

a different approach.
Assume that φτ is given in prenex normal form, i.e. φτ is of the form

Q1y1 · · ·Qmym ψ(x̄, π̄, ν̄, y1, . . . , ym),

where each Qi is either ∃ or ∀, each yi is a node, path or register variable, and ψ is
quantifier-free (if φτ is not in prenex normal form, we can convert it in polynomial time
into an equivalent formula in prenex normal form). We follow a usual argument to evaluate
FO formulas on structures. The main problem with this is that some of the elements in
M′

G,ρ̄ are paths and register values, and have to be treated as such. Therefore, we define a

way of encoding paths (in exponential space) and register values (in polynomial space).
Clearly, each register value can be codified with a tuple of length k · log2 (|V |). In order

to denote that this tuple is the address of a register value (and not, say, of a path), we add
an extra bit at the beginning of the tuple which is labeled with a new symbol r. Codification
of paths requires a bit of extra work. Each path ρ is encoded with an address, that is, a
string that satisfies the following:

• It starts with a new symbol p, that states that this is the address of a path;
• the address continues with the encodings of the two endpoints v and v′ of the path
(separated with some delimiter); this part of the address uses O(log2 |V |) space;

• then the address encodes the subset E of {e1, . . . , em} × Dk
⊥
× Dk

⊥
that ρ satisfies; this

encoding can be easily expressed with a string of length m × |V |k × |V |k over alphabet
{0, 1} that flags with a 1 those elements of {e1, . . . , em} ×Dk

⊥
×Dk

⊥
that belong to E ;

• finally, the address contains an encoding of the integer i ≤ k + |ρ̄| such that ρ = ρi
E,v,v′ ;

this encoding uses O(log2 (|φ|+ |ρ̄|)) space.

Clearly, the address of a path defined in this way can be specified using at most exponential
space.

We show next how the problem of checking whether (v̄, ρ̄, λ̄) belongs to the evaluation of
φτ over M′

G,ρ̄ can be solved in exponential time by an alternating Turing machine. This will
finish the proof of the theorem, since the class of problems that can be solved in exponential
time by alternating Turing machines coincides with the class of problems that can be solved
in Expspace.

The alternating machine proceeds as follows. It first replaces in φτ each node variable x
in x̄ with the encoding of the corresponding node v of v̄, each path variable π in π̄ with the
encoding (address) of the corresponding path ρ in ρ̄, and each register variable ν in ν̄ with

24 P. BARCELÓ, G. FONTAINE, AND A. W-LIN

the encoding of the corresponding tuple λ in λ̄. Then the machine reads the formula φτ from
left-to-right. Each time it encounters an existential quantifier ∃yi it enters an existential
state, and each time it encounters a universal quantifier ∀yi it enters a universal state. In
each case, the machine “guesses” the interpretation of yi as the encoding of a node, a path
or a register value c(yi) in the domain. (Since encodings of paths are of exponential size,
this alternating machine requires at least exponential time to work). Finally, the machine
verifies that ψ(v̄, ρ̄, λ̄, c(y1), . . . , c(ym)) holds, and if that is the case it accepts. We show
next that the latter can be done in exponential time. Notice that this implies that the
whole process can be performed in exponential time.

We start with the case of the atomic formulas in ψ. In order to check whether the
element assigned to a variable belongs to the interpretation of Nodes in M′

G,ρ̄, we only have
to check that the encoding of this element does not start with a p or an r. In order to
check whether the element belongs to the interpretation of Paths (resp., Registers), it is
sufficient to check that its encoding starts with a p (resp., r). In order to check whether
the elements a, b, c assigned to variables x, π, y, respectively, are such that (a, b, c) belongs
to the interpretation of Endpoints, we only have to check that b is the encoding of a path,
a and c are encodings of nodes, and that b is a path from a to c. Finally, in order to
check whether the elements (a, b, c) assigned to a variable belongs to the interpretation of
ei (1 ≤ i ≤ m), we only have to check that a, c are register values (i.e. their encodings
start with symbol r), that b encodes a path ρ (i.e. its encoding starts with p), and that
the bit that corresponds to tuple (ei, a, c) in the part of the address b that encodes the set
E ⊆ {e1, . . . , em} ×Dk

⊥
×Dk

⊥
that ρ satisfies is set to 1.

Thus, the value of the atomic formulas involved in ψ(v̄, ρ̄, λ̄, c(y1), . . . , c(ym)) can be
computed in polynomial time (in the size of ψ(v̄, ρ̄, λ̄, c(y1), . . . , c(ym))). But since ψ is a
polysize Boolean combination of atomic formulas, the value of α(v̄, ρ̄, λ̄, c(y1), . . . , c(ym))
can be computed in polynomial time from the values of the atomic formulas. We conclude
that computing the value of α(v̄, ρ̄, λ, c(y1), . . . , c(ym)) can be done in polynomial time.

There is, however, one small issue that requires explanation in order for the previous
procedure to work properly. Assume that the procedure “guesses” the interpretation of
a variable yi in φτ to be the encoding of a path in G from v to v′ that satisfies E ⊆
{e1, . . . , em} × Dk

⊥
×Dk

⊥
. Then it is necessary to check that, if the encoding implies that

this path is ρi
E,v,v′ , then i ≤ cE,v,v′ . In order to do so, the procedure needs to check, in a

subroutine, whether there exist i different paths from v to v′ that satisfy E . The next claim
shows that this can be done in exponential space, which finishes the proof of the theorem.

Claim 5.2.2. For each pair v, v′ ∈ V , E ⊆ {e1, . . . , em} ×Dk
⊥
×Dk

⊥
, and i ≤ k + |ρ̄|, one

can check in Expspace whether there are i distinct paths in G from v to v′ that satisfy E .

Proof. Let # be a symbol not in Σ and denote by Σ# the alphabet Σ∪{#}. Let Av,v′ be the
automaton over alphabet {v}∪ (Σ#×V) defined as follows. The set of states is the disjoint
union of V with a new state s. The initial state of A is s and the final state is v′. Further,
the transition relation of A is defined as follows: (1) For every edge (v1, a, v2) ∈ E there is a
transition in A from v1 to v2 labeled (a, v2), (2) for every node v1 ∈ V there is a transition
from v1 to v1 in A labeled (#, v1), and (3) there is a transition in A from s to v labeled
v. Intuitively, Av,v′ accepts exactly those strings of the form v(a1, v1)(a2, v2) · · · (a, v

′) such
that va1v1a2v2 · · · av

′ is a path in G from v to v′, when we allow paths to loop arbitrarily
many times on #-labeled nodes.

EXPRESSIVE PATH QUERIES ON GRAPHS WITH DATA 25

Let Ai
v,v′ be the automaton over alphabet {vi} ∪ (Σ# × V)i defined as follows: The set

of states is V i∪{si}, the initial state is si and the final state is (v′)i. There is a transition in
Ai from ū = (u1, . . . , ui) to w̄ = (w1, . . . , wi) labeled t̄ = (t1, . . . , ti) iff there is a transition
labeled tℓ from uℓ to wℓ in Av,v′ , for each 1 ≤ ℓ ≤ i. (Notice that Ai

v,v′ is not exactly the i-th

product of Av,v′ with itself, as Ai
v,v′ does not contain all states in such a product). Clearly,

Ai
v,v′ is of exponential size but the size of each one of its states is polynomial. Furthermore,

it is decidable in polynomial time whether there exists a transition labeled t̄ from state ū
to w̄ in Ai

v,v′ .

Define now an automaton A′

v,v′ that is the restriction of Ai
v,v′ to those strings

vi(w1
1, . . . , w

1
i) · · · (w

p
1, . . . , w

p
i)

over alphabet {vi} ∪ (Σ# × V)i that satisfy the following:

• For each 1 ≤ ℓ ≤ i, if for some 1 ≤ j < p it is the case that wj
ℓ = (#, v′), for some v′ ∈ V ,

then for each j < k ≤ p it is the case that wk
ℓ = (#, v′).

• For each 1 ≤ ℓ, t ≤ i, if ℓ 6= t then the strings vw1
ℓ · · ·w

p
ℓ and vw1

t · · ·w
p
t over alphabet

{v} ∪ (Σ# × V) are different.

The first condition says that each projection of a string accepted by A′

v,v′ represents a path

in G from v to v′ that loops only on v′ and only at the end of the path. The second
condition ensures that any two distinct projections of a path accepted by A′

v,v′ represent
different strings.

It is not hard to prove that the language accepted by A′

v,v′ is nonempty iff there exist i

distinct paths in G from v to v′. Further, it is also not hard to see that A′

v,v′ is of exponential
size but the size of each one of its states is polynomial; and it is decidable in polynomial
time whether there exists a transition labeled t̄ from state q̄ to state q̄′ in A′

v,v′ .

Using techniques in [10], it is also possible to construct in exponential time an NFA
Av,v′,ei,λ,λ′ (ei ∈ {1, . . . ,m}, λ, λ′ ∈ Dk

⊥
) over alphabet v ∪ (Σ# × V), that accepts precisely

the strings w accepted by Av,v′ such that the path ρ from v to v′ in G that is represented by
w satisfies ei(ρ, λ, λ

′). (The main idea is to construct Av,v′,ei,λ,λ′ in such a way that, at each
position while reading w, it keeps in its state the k-tuple of data values that is stored in the
registers of ei). The set of states of Av,v′,ei,λ,λ′ is of exponential size, but each particular
state can be represented using polynomial space. Further, deciding if there is a transition
between two states of Av,v′,ei,λ,λ′ can be done in polynomial time. This means that for each
Av,v′,ei,λ,λ′ , its complement can be constructed in double exponential time, with each state
using only exponential space.

It is not hard to see, then, that one can construct in double exponential time an
automaton AE,v,v′ over alphabet {vi} ∪ (Σ# × V)i that does the following: It starts from

A′

v,v′ , and restricts acceptance to strings vi(w1
1, . . . , w

1
i) · · · (w

p
1 , . . . , w

p
i) over alphabet {v

i}∪

(Σ# × V)i such that:

• For each 1 ≤ j ≤ i and tuple (eℓ, λ, λ
′) ∈ E, it is the case that vw1

j · · ·w
p
j is accepted by

Av,v′,eℓ,λ,λ′ .
• For each 1 ≤ j ≤ i and tuple (eℓ, λ, λ

′) 6∈ E, it is the case that vw1
j · · ·w

p
j is accepted by

the complement Av,v′,eℓ,λ,λ
′ .

26 P. BARCELÓ, G. FONTAINE, AND A. W-LIN

Further, each state in AE,v,v′ can be represented using exponential space and checking
whether there is a transition between two given states of AE,v,v′ can be done in polynomial
time.

It is clear that there exist i distinct paths in G from v to v′ that satisfy E if and only if
AE,v,v′ accepts at least one string. But we can check AE,v,v′ for nonemptiness in Expspace
using a standard “on-the-fly” argument. This finishes the proof of the claim.

This also finishes the proof that Eval(RL) is in Expspace. Now we show that
Eval(RL) is Expspace-hard.

For all constants f0, we provide a reduction from the class of problems solvable by a
Turing machine using a tape of size 2f0n given an input word of size n. There are a Turing
machine M and a constant f0 such that the following problem is ExpSpace-hard: given a
word w of size n, is there an accepting run of M over w using at most 2f0n cells? We prove
that there is a formula φ ∈ RL such that for all words w of size n, there are a formula φw
and a graph Gw such that

Gw � φw iff there is an accepting run of M over w using at most 2f0n cells.

Let (Σ, Q, δ, q0, qf) be the Turing machine M , where Σ is the alphabet consisting of the
input alphabet and the blank symbol B, q0 is the initial state, qf is the final state and
δ : Q×Σ → (Q×Σ×{L,R}) is the transition map, where L stands for “left” and R stands
for “right”.

The formula φw that we associate with the machine M and a word w is a formula of
the form

∃πψw(π),

where ψw is a formula that does not contain any quantification over path variables. The
formula ψw(π) expresses that the path π in the graph Gw encodes an accepting run of M
over the word w.

As in the proof of Theorem 4.1, we encode a configuration C of a run of M in the
following way. Suppose that the content of the tape is the word w′ = w′

1 . . . w
′

2f0n
, the head

is scanning the cell number i0 and the machine is in state q. We encode the configuration C
by the word eC = dC1 & . . . dC

2f0n
& where & plays the role of a delimiter and each dCi encodes

the information in cell number i. More precisely, if ∆ is the alphabet (Q ∪ {$}) × Σ, we
define dCi as the word

c(i) (q′i, w
′
i),

where c(i) and q′i are defined as follows. The word c(i) is the binary representation of the
number i. The letter w′

i is the content of the cell i. The letter q′i is equal to $ if the head
is not scanning the cell number i; otherwise, q′i is equal to the state q. That is, q′i0 = q and
for all i 6= i0, q

′
i = $. We encode a run C0C1 . . . as the word eC0

#eC1
. . . . We define the

formula ψw(π) and the graph Gw in such a way that a path π satisfies ψw iff the label of π
is the encoding of an accepting run of M over w.

The graph Gw is (almost) the same graph as the graph in the proof of Theorem 4.1
in the case where k = 1. That is, Gw is obtained by “linking” two graphs Iw and H. If
C0C1 . . . is an accepting run with associated path π, the trace of π on Iw will correspond
to the encoding of the initial configuration C0, while the trace of π on H is the encoding of
the run C1C2 The graph H is given by

EXPRESSIVE PATH QUERIES ON GRAPHS WITH DATA 27

1

1

0

2

1

0

3 . . . f0n

1

0

d1

d2

dl

. . .

&,#

Recall that the set {di : 1 ≤ i ≤ l} is defined as (Q ∪ {$}) × Σ. Consider a simple path
π′ starting from the node with data value 1 and ending in the node with outgoing edges
with labels & and #. Its label is of the form c(i)(q′, a); that is, it is the encoding of the
information in a cell with number i. Hence, the label of a path π starting and ending in the
node with data value 1 satisfies c(i1)d1(&∨#)c(i2)d2(&∨#) . . . c(ik)dk(&∨#), where each
dj is the encoding of the information of a cell and each c(ij) is the encoding of the number
ij . We define the formula ψ in such a way that if ψ(π) holds, the succession of encodings
of cells describe a run of M .

Next we define the graph Iw where we encode the initial configuration. Suppose that
w = w1 . . . wn. For all 1 ≤ i ≤ n, we introduce a graph Ki describing the cell number i in
the initial configuration. If b1 . . . bn is the binary encoding of the number i, the graph Ki is
given by

1 2
b1

3
b2 . . . f0n

bn (q′i, wi)

where q′1 = q0 and q
′
i = $ if i 6= 1. The label of the longest path of Ki is exactly the encoding

of cell number i in the initial configuration. Next we define the graph K which allows us
to encode the cells with number > n in the initial configuration. The graph K is given by

1

1

0

2

1

2

3 . . . f0n

1

0

($, B)

&

The label of a simple path from the node with data value 1 to the node with outgoing edge
with label & is of the form c(i)($, B); that is, it is the encoding of an unscanned cell with
a blank symbol. In particular, it is the encoding of all the cells with number > n in the
initial configuration. The graph Iw is obtained by linking together the graph K1, . . . ,Kn,K

in the following way

28 P. BARCELÓ, G. FONTAINE, AND A. W-LIN

K1 K2
$s $

. . . Kn

$
K

$

The arrow with a label s is an arrow pointing to the node of K1 with data value 1. Each
arrow with label # between two graphs is from the “right-most” node of the first graph to
the “left-most” node of the second graph. Finally, the graph Gw is defined by

Iw H
#

where the edge with label # is an edge from the “right-most” node of K to the node with
data value 1 in H. We define now a formula ψπ such that

Gw � ψ(π) iff

l(π) is the encoding of an accepting run of M over w using at most 2f0n cells,

where l(π) is the label of π. In fact it is easier to define a formula χ(π) such that

Gw � χ(π) iff

l(π) is not the encoding of an accepting run of M over w using at most 2f0n cells. (5.1)

Suppose that π is a path through Gw. The label of π is not the encoding of an accepting
run of M over w using at most 2f0n cells iff at least one of the following conditions holds.

(i) The first letter of l(π) is not the initial letter s or the run never reaches a final state, i.e.
there is no pair of the form (qf , a) for some a, occurring in l(π).

(ii) The symbol # is not at the “right place”:
− either after we reach the symbol # (i.e. we are going to enter the encoding of a

new configuration), the label contains the binary encoding of a number 6= 1,
− or after the binary encoding of the number 2f0n (that is, after encoding the infor-

mation of the last cell), the symbol # does not occur in the label of π. Since # is
used as a delimiter between encodings of configurations, this means that although
we finished encoding the last cell of a configuration, we do not move to a new
configuration.

(iii) There is a substring c(i)d&c(j)d′ (where i < 2n) such that j is not the successor of
i. That is, after encoding the information of cell number i, we do not encode the
information of cell number i+ 1.

(iv) Finally, there is a string eC#eC′ of Dπ such that C and C ′ are not successive config-
urations.

Expressing cases (i) and (ii) is fairly easy. We concentrate on (iii) and (iv). We start by
showing how to express case (iv). Suppose that c(i) and c(j) are two successive binary
encodings occurring in the label of π. Suppose c(i) = b1 . . . bf0n and c(j) = b′1 . . . b

′
f0n

. Then
j is not the successor if i iff one of the following holds.

(a) For some k, bk . . . bf0n is equal to 1 . . . 1 and b′k is not equal to 0.
(b) For some k, bk . . . bf0n is equal to 01 . . . 1 and b′k is not equal to 1.
(c) For some k, bk = 1, 0 occurs in bk+1 . . . bf0n and b′k is not equal to 1.
(d) For some k, bk = 0, 0 occurs in bk+1 . . . bf0n and b′k is not equal to 0.

EXPRESSIVE PATH QUERIES ON GRAPHS WITH DATA 29

We show how we can express (a); the other cases are similar. Case (a) is expressed by the
following REM

(Λ\∆f)
∗ ↓ r1.1

∗∆&{0, 1}∗[r=1]1Λ
∗.

where ∆f is the set {qf} ×Σ and Λ is the alphabet of the graph Gw. In the register r1, we
store the number k such that bk . . . bf0n = 1 . . . 1 (that is, we only go through edges with
label 1 until we reach an edge with label in ∆). When we reach again the node with data
value k, the label of the outgoing edge is 1, expressing that b′k = 1.

Finally we look at case (iv), i.e. how to express that there is a string eC#eC′ of Dπ such
that C and C ′ are not successive configurations. This might happen for several reasons: (A)
either we did not modify properly the content of a cell or move properly the head or (B)
we modified the content that was supposed to remain constant. We only treat case (A), as
the other case can be handled in a similar way (note that the proof of Theorem 5.3 is very
similar to this proof and there, we will treat case (B)). In case (A), we also only consider
the case of a transition moving the head to the right, the other case being symmetric.

So suppose that δ(q, a) = (q′, b, R). As in the proof of Theorem 4.1, we use a slightly
different definition of a run of a Turing machine (which is equivalent to the usual definition,
but helps us to keep our formulas simpler). We assume that if δ(q, a) = (q′, b, R) and the
machine scans a cell c with content a, then in the next state, the machine scans the successor
c′ of c, the content of c′ is b, while the content of c is a.

Let (Λ!#)
∗ be the set of words over Λ that contain at most one occurrence of #. We

define eR(q,a) as the following REM

Λ∗{0, 1} ↓ r1. . . . {0, 1} ↓ rn.(q, a)(Λ!#)
∗{0, 1}[r=1] . . . {0, 1}[r

=
f0n

]∆&{0, 1}∗(∆\{(q′, b)})Λ∗.

We store in the registers r1, . . . , rf0n the binary encoding of a number i. That number is
the number of a scanned cell with content a and the current state is q. After the next
occurrence of # (after reading a word in (Λ!#)

∗), we enter a new configuration. In that new
configuration, we reach the cell number i when we read a sequence matching the contents of
the registers. The encoding of the next cell (after reading a sequence in ∆&) must consist
of the binary encoding of a number followed by a symbol in ∆ that is not (q′, b).

If ∆R is the set {(q, a) : δ(q, a) = (q′, b, R) for some q′, b} and λ is a register of size f0n,
we define the formula

∨

{∃ν eR(q,a)(π,⊥, ν) : (q, a) ∈ ∆R},

taking care of case (iv)(A).

The increase in expressiveness of RL over REM has an important cost in data complex-
ity, which becomes intractable:

Theorem 5.3. Eval(RL) is in Pspace in data complexity. Furthermore, there is a finite
alphabet Σ and a RL formula φ over Σ and a single register r, such that Eval(RL,φ) is
Pspace-hard. In addition, the latter holds even if the input is restricted to graph databases.

Proof. The upper bound follows as a corollary to the proof of the upper bound in Theorem
5.2. In fact, it is clear that the whole process can be carried in Pspace if we assume a fixed
RL query (in fact, to obtain a Pspace upper bound we do not need more than to fix the
number of registers used in the query).

For the lower bound, we define a formula φ in RL such that for all constants f0, there
is a reduction from the class of problems solvable by a Turing machine using a tape of size
f0n given an input word of size n, to the evaluation problem of φ. More precisely, there are

30 P. BARCELÓ, G. FONTAINE, AND A. W-LIN

a Turing machine M and a constant f0 such that the following problem is PSpace)-hard:
given a word w of size n, is there an accepting run of M over w using at most f0n cells?

We prove that the formula φ is such that for all words w of size n, there is a graph Gw

such that

Gw � φ iff there is an accepting run of M over w using at most f0n cells.

Let (Σ, Q, δ, qi, qf) be the Turing machineM , where Σ is the input alphabet together with a
blank symbol B, q0 is the initial state, qf is the final state and δ : Q×Σ → (Q×Σ×{L,R})
is the transition map, where L stands for “left” and R stands for “right”.

The formula φ that we associate with the machine M is a formula of the form

∃πψ(π),

where ψ is a formula that does not contain any quantification over path variables. Given a
word w, the path π in the graph Gw will encode an accepting run of M over the word w.

Given a word w of size n, consider a configuration C of the run of M over w where
the contents of the tape is the word w′ = w′

1 . . . w
′
f0n

, the head is scanning the cell number
i0 and the machine is in state q. Similarly to the proof of Theorem 4.1, we encode the
configuration C by the word

eC = NdC1 Nd
c
2 . . . Nd

C
f0n

where each dCi encodes the information in cell number i in the configuration C. We define
dCi as the pair (q′i, w

′
i), where q

′
i is defined as follows. The letter w′

i is the contents of the
cell i. The letter q′i is equal to $ if the head is not scanning the cell number i; otherwise, q′i
is equal to the state q. That is, q′i0 = q and for all i 6= i0, q

′
i = $.

The run of M over the word w is a (possibly infinite) sequence of configurations of the
form C0C1 We encode the run as the word eC0

#eC1
. . . , where # plays the role of

a delimiter. We will define the formula ψ(π) and the graph Gw in such a way that a path
π satisfies ψ iff the label of π is the encoding (as defined above) of an accepting run of M
over w.

We think of a path π encoding a run of M over w as consisting of two parts. The label
of the first part contains the encoding eC0

of the initial configuration C0. The label of the
second part contains the encoding eC1

#eC2
. . . of the remaining part of the run. The first

part of the path π is a path in a subgraph Iw of Gw, while the second part is a path in the
subgraph H (independent of w) of Gw. The graph Gw will be obtained by adding an edge
from a node in Iw to a node in H.

The graph Iw is given by

1 2 3 . . . n+ 1

n+ 2n+ 3. . .f0n

s

N($, B)

N

($, B)N($, B)N

N ($, wn)N (q0, w0) N ($, w1) N ($, w2)

In the graph above the data value i carried by a node v indicates that the label of the
outgoing edge of v is dC0

i (where C0 is the initial configuration and dC0

i is defined as above).

Recall that dC0

i indicates the contents of the cell number i and whether or not the head is

EXPRESSIVE PATH QUERIES ON GRAPHS WITH DATA 31

scanning that cell. There is a unique path π0 from the node with no incoming edge to the
unique node with no outgoing edge. The label of π0 is

sN(qi, w0) ($, w1)N($, w2) . . . N($, wn)N($, B) . . . N($, B),

that is, the word s.eC0
, where eC0

is the encoding of the initial configuration C0.
We define now the graph H encoding the remaining part of the run of the machine.

1

. . .

. . .

. . .

2 f0n. . .

. . .

. . .

. . .

#

N

N

N

N

N

N

N

N

N

(q, a1)

(q, ak)

($, ak)

($, a1)

(q, a1)

(q, ak)

($, ak)

($, a1)

N

For all 1 ≤ i ≤ f0n, all q ∈ Q and all a ∈ Σ, the node with data value i admits outgoing
edges with label (q, a) and ($, a). A path from the “left-most” node to the “right-most”
node that does not go through the edge with label # has a label of the form

Nd1Nd2 . . . Ndf0nN,

where each di belongs to (Q ∪ {$}) × Σ, that is, an encoding of a configuration of the
machine.

Hence, a path π′ from the “left-most” node to the “right-most” node of H (possibly
going through the edge with label #) has a label of the form

eC1
#eC2

. . . eCl
,

where each eCi
is the encoding of a configuration of the machine.

We are now ready to define the graph Gw.

Iw H
#

The edge with label # is an edge from the unique node in Iw with no outgoing edge
to the “left-most” node in H. We define now the formula ψ. Let Λ be the alphabet
[(Q ∪ {$}) × Σ] ∪ {#, s}. The formula ψ must be such that

Gw � ψ(π) iff l(π) is of the form seC0
#eC1

. . . eCpΛ
∗,

32 P. BARCELÓ, G. FONTAINE, AND A. W-LIN

where l(π) is the label of π and C0 . . . Cp is an accepting run of the machine over w. In fact,
it will be intuitively easier to first define a formula χ(π) such that

Gw � χ(π) iff l(π) is not of the form seC0
#eC1

. . . eCpΛ
∗, (5.2)

and define ψ as ¬χ. The formula χ is obtained as a disjunction of the following subformulas.

• First l(π) might not satisfy seC0
#eC1

. . . eCpΛ
∗ because: (i) it does not start with the

letter s or (ii) it does not contain the encoding of a final configuration, i.e. it does not
contain any occurrence of a pair of the form (qf , a) for some a ∈ Σ. Case (i) is expressed
by the formula

∨

{eγ(π,⊥,⊥) : γ ∈ Λ, γ 6= s},

where eγ is the REM γΛ∗. Case (ii) is expressed by the formula

(Λ\∆f)
∗)(π,⊥,⊥),

where ∆f is the set {qf} × Σ. This formula express that there is no pair of the form
(qf , a), for some a ∈ Σ.

• Next l(π) might not be of the “right form” because it contains a substring of the form
eC#eC′ occurring before a pair of the form (qf , a) and such that C and C ′ are not
consecutive configurations. This might happen for several reasons: (A) either we did not
modify properly the contents of a cell or move properly the head or (B) we modified the
contents that was supposed to remain constant.

We will only treat one case. As we treated case (A) in the proof of Theorem 5.2, here
we treat case (B). As in the proof of Theorem 5.2, we also consider a slightly different
definition of a run of a Turing machine (which is equivalent to the usual definition, but
helps us to keep our formulas simpler). We assume that if δ(q, a) = (q′, b, R) and the
machine scans a cell c with content a, then in the next state, the machine scans the
successor c′ of c, the content of c′ is b, while the content of c is a.

In case (B), we make the following case distinction.
– Suppose first that case (B) happened because we modified the contents of the cell that
was scanned by the head in configuration C. Note that where when moving from C

to C ′, by definition of a run, we cannot modify the contents of the cell scanned in
configuration C.
Let (q, a) be a pair in Q × Σ and let ∆ be the set (Q ∪ {$} × Σ). We define also Λ∗

!#

as the set of words over Λ that contain at most one occurrence of the symbol #. We
let e(q,a)(π) be the formula

(Λ\∆f)
∗ ↓ r.(q, a)Λ∗

!#[r
=](∆\{(q, a) : q ∈ Q ∪ {$}})Λ∗.

Before we reach a final state, we store in register r the number of a cell that is scanned in
the current configuration and with contents a. In the next configuration (after reading
a word in Λ∗

!#), when we read the same cell, it does not contain a. That is, the label

of the edge is not a pair of the form (q, a).
The formula

∨

{∃ν e(q,a)(π,⊥, ν) : (q, a) ∈ Q× Σ},

takes care of the cases where from moving from one configuration to the next, we
modified the contents of the cell scanned in the first configuration.

– Next suppose that when moving from C to C ′, we modified the contents of a cell
that was not scanned in C. Suppose also that according to the machine, we were not
supposed to modified that contents.

EXPRESSIVE PATH QUERIES ON GRAPHS WITH DATA 33

Let a be a letter in Σ. Let ∆L be the set of pairs (q, a) such that δ(q, a) = (q′, b, L)
and let ∆R be the set of pairs (q, a) such that δ(q, a) = (q′, b, R). We define ea(π) as
the REM

(Λ\∆f)
∗(∆\∆R) ↓ r.($, a)N(∆\∆L)Λ

∗
!#[r

=](∆\($, a))Λ∗.

Before we reach a final state, in a configuration C, we store in register r the number i
of an unscanned cell with contents a. We assume that if the cell with number (i−1) (if
its exists) is scanned in C, then the head is not moving to the right (i.e. to cell number
i) in the next configuration. That is, the pair describing the cell number (i − 1) in C
is not a pair in ∆R. We also assume that if cell number (i+1) (if it exists) is scanned,
then the head is not moving to cell number i in the next configuration, i.e. cell number
(i+ 1) is not described by a pair in ∆L.
Next we express that in the next configuration, it is not the case that the cell with
number i is an unscanned cell with contents a. That is, after reading a word in Λ∗

!#,
when we see again the node stored in the register, the label of the edge is not the pair
($, a).
The formula

∨

{∃ν ea(π,⊥, ν) : a ∈ ∆},

takes care of case (B) in the case where the cell modified is a cell unscanned by the
head.

This finishes the proof of the theorem.

In the next section we introduce an interesting language, based on a restriction of RL,
that is tractable in data complexity, and thus better suited for database applications. This
language is a proper extension of REM. But before that, we make some important remarks
about the expressive power of RL.

Expressive power of RL. We now look at the expressive power of the logic RL. It was proven
in [8] that CRPQ is not subsumed by WL. Since RL subsumes CRPQ¬, it follows that RL is
not subsumed by WL. On the other hand, WL is also not subsumed by RL due to Theorem
4.1, Theorem 5.2, and the standard time/space hierarchy theorem from complexity theory.
Therefore, we have the following proposition:

Proposition 5.4. The expressive power of WL and RL are incomparable.

On the other hand, we shall argue now that many natural queries about the interaction
between data and topology are also expressible in RL. The aforementioned query (Q) is
one such example. We shall now mention other examples: hamiltonicity (H), the existence
of an eulerian trail (E), bipartiteness (B), and connected graphs with an even number of
nodes (C2). The first two are expressible in WL, while (B) and (C2) are not known to be
expressible in WL. We conjecture that they are not.

We now show how to express in RL the existence of a hamiltonian path in a graph; the
query (E) can be expressed in the same way but with two registers (to remember edges, i.e.,
consisting of two nodes). This is done with the following formula over Σ = {a} and a single
register r:

∃π
(

∀λ∀λ′¬e1(π, λ, λ
′) ∧ ∀λ(λ 6= ⊥ → e2(π, λ, λ))

)

,

where e1 := a∗ · (↓r.a+[r=]) · a∗ is the REM that checks whether in a path some node is
repeated (i.e., that it is not a simple path), and e2 := a∗[r=]a∗ is the REM that checks that

34 P. BARCELÓ, G. FONTAINE, AND A. W-LIN

the node stored in register r appears in a path. In fact, this query expresses that there is a
path π that it is simple (as expressed by the formula ∀λ∀λ′¬e1(π, λ, λ

′)), and every node of
the graph database is mentioned in π (as expressed by the formula ∀λ(λ 6= ⊥ → e2(π, λ, λ))).

We now show how to express in RL the bipartiteness property from graph theory. An
undirected graph G = (V,E) is bipartite if its set of nodes can be partitioned into two
sets S1 and S2 such that, for each edge (v,w) ∈ E, either (i) v ∈ S1 and w ∈ S2, or (ii)
v ∈ S2 and w ∈ S1. It is well-known that a graph database is bipartite if and only if it
does not have cycles of odd length. The latter is expressible in RL since the existence of an
odd-length cycle can be expressed as ∃π∃λ∃λ′e(π, λ, λ′), where e =↓r.a(aa)∗[r=].

We now show how to express in RL that a graph database is a connected graph with
an odd number of nodes. To this end, it is sufficient and necessary to express the existence
of a hamiltonian path π with an even number of edges in the graph. But this is a simple
modification of our formula for expressing hamiltonicity: we add the check that π has an
even number of edges by adding the conjunct e(π, ν, ν ′), where e = (aa)∗, and close the
entire formula under existential quantification of ν and ν ′.

5.3. Tractability in data complexity. Let RL+ be the positive fragment of RL, i.e.,
the logic obtained from RL by forbidding negation but adding conjunctions (as they were
not explicitly present in RL). It is easy to prove that the data complexity of the evaluation
problem for RL+ is tractable (NLogspace). This fragment contains the class of conjunctive
REMs, that has been previously identified as tractable in data complexity [10]. However,
the expressive power of RL+ is limited as the following proposition shows.

Proposition 5.5. The query (Q) from the introduction is not expressible in RL+.

Proof. Recall that Q is the following query: Find pairs of nodes x and y such that there
is a node z and a path π from x to y in which each node is connected to z. Suppose for
contradiction that there is a formula φ in RL+ over an alphabet Σ and registers r1, . . . , rk,
expressing ∃x∃yQ. We may assume that φ is of the form

∃x1 . . . ∃xn1
∃π1 . . . ∃πn2

∃ν1 . . . ∃νn3
ψ

where ψ is a disjunction of conjunctions of atoms. Let G = (V,E, κ) be the following graph

$

1 2 n2 n2 + 1. . .

where each edge is labeled with a. The query ∃x∃yQ is true in G; hence, the formula φ must
be true in G. That is, there is an assignment α mapping each variable xi to a node in G,
each path variable πi to a path ρi in G and each variable νi to a tuple in {⊥, $, 1, . . . , n2+1}k

such that
(G,α) � ψ.

Let G′ be the graph (V,E′, κ) where E′ is the set

{(i, a, i + 1) : 1 ≤ i < n2} ∪ {(i, a, $) : for some 1 ≤ j ≤ n2, (i, $) occurs in ρj }

EXPRESSIVE PATH QUERIES ON GRAPHS WITH DATA 35

That is, we delete the edges (i, $) that α “does not use”. By definition of E′, the formula
ψ remains true in G′ under the assignment α. In particular, φ is true in G′. This implies
that ∃x, y Q holds in G′.

Now, for all 1 ≤ j ≤ n2, there is at most one natural number i such that (i, a, $) occurs
in ρj . This is simply because there is no path going through edges (i, a, $) and (i′, a, $) if
i 6= i′. This implies that the set

{(i, a, $) : for some 1 ≤ j ≤ n2, (i, $) occurs in ρj }

contains at most n2 edges. Since G admits n2 + 1 edges of the form (i, a, $), there must be
an edge (i0, a, $) occurring in G, but not in G′. This means that G′ is a graph of the form

$

1 2 n2 n2 + 1i0i0 − 1 i0 + 1

In particular, ∃x, y Q is not true in G′, which contradicts the fact that φ is true in G′.

On the other hand, increasing the expressive power of RL+ with some simple forms of
negation leads to intractability of query evaluation in data complexity:

Proposition 5.6. There is a finite alphabet Σ and REMs e1, e2, e3, e4 over Σ and a single
register r, such that Eval(RL,φ) is Pspace-complete, where φ is either ∃π∃λ¬(e1(π,⊥, λ)∨
e2(π,⊥,⊥)) or ∃π∀λ¬(e3(π,⊥, λ) ∨ e4(π,⊥,⊥)).

Proof. By the proof of Theorem 5.3 (and using the same notation), we know that for every
Turing machine M , there is a formula χ(π) such that for all words w of size n, there is a
graph Gw (of size polynomial in n) such that

Gw � ∃π¬χ(π) iff there is an accepting run of M over w using at most cn cells.

Moreover, the formula χ(π) is a formula of the form
∨

{ei(π,⊥,⊥) : i ∈ I} ∨
∨

{∃λ fj(π,⊥, λ) : j ∈ J},

where {ei, fj : i ∈ I, j ∈ J} is a set of REMs that do not contain any ∪. Since REMs are
closed under union, χ(π) is equivalent to a formula of the form

∃λ (e(π,⊥,⊥) ∨ f(π,⊥, λ)).

Hence, the formula ∃π¬χ(π) is equivalent to

∃π∀λ¬(e(π,⊥,⊥) ∨ f(π,⊥, λ)).

This proves that Eval(RL,φ) isPspace-complete, where φ = ∃π∀λ¬(e(π,⊥,⊥)∨f(π,⊥, λ)).
Now we prove that Eval(RL,φ′) is Pspace-complete. where φ′ is a formula of the form

∃π∃λ¬(e′(π,⊥,⊥)∨f ′(π,⊥, λ)) , for some REMs e′ and f ′. The intuition is as follows. The
difference between φ and φ′ is that in φ, we may choose the data value that is in the register
after checking that f is true. However, in φ′, we must be able to store any value in the
register after checking that f ′ is true. We will make two changes to make this possible.

First, we modify the graph Gw in such a way that two arbitrary nodes are always
reachable. This can be easily achieved by adding an edge from the “right-most node” of the
graphH to the “left-most node” of the graph Iw (allowing to encode the initial configuration
of a run). Second, we modify the REMs of φ in such a way that the label of a path satisfying

36 P. BARCELÓ, G. FONTAINE, AND A. W-LIN

those REMs, encodes an accepting run and after reaching the final state, it goes through
all the nodes of Gw. Hence, once we checked that the run reaches the final state, we can
simply store any value in the register. We leave out the details, as the intuition is pretty
simple and the details a bit tedious.

In the case of basic navigational languages for graph databases, it is possible to increase
the expressive power – without affecting the cost of evaluation – by extending formulas with
a branching operator (in the style of the class of nested regular expressions [5]). The same
idea can be applied in our scenario, by extending atomic REM formulas in RL+ with such a
branching operator. The resulting language is more expressive than RL+ (in particular, this
extension can express query (Q)), yet remains tractable in data complexity. We formalize
this idea below.

The class of nested REMs (NREM) extends REM with a nesting operator 〈·〉 defined
as follows: If e is an NREM then 〈e〉 is also an NREM. Intuitively, the formula 〈e〉 filters
those nodes in a data graph that are the origin of a path that can be parsed according to
e. Formally, if e is an NREM over k registers and G is a data graph, then J〈e〉KG consists
of all tuples of the form (u, λ, ρ = u, u, λ) such that (u, λ, ρ′, v, λ′) ∈ JeKG, for some node v
in G, path ρ′ in G, and k-tuple λ′ over D⊥.

Let NRL+ be the logic that is obtained from RL+ by allowing atomic formulas of the
form e(π, λ, λ′), for e an NREM. Given a data graph G and an assignment α for π, λ and
λ′ over G, we write as before (G,α) |= e(π, λ, λ′) if and only if α(π) goes from u to v and
(u, α(λ), α(π), v, α(λ′)) ∈ JeKG. The semantics of NRL+ is thus obtained from the semantics
of these atomic formulas in the expected way. The following example shows that query (Q)
is expressible in NRL+, and, therefore, that NRL+ increases the expressiveness of RL+.

Example 5.3. Over graph databases, the query (Q) from the introduction is expressible
in NRL+ using the following formula over Σ = {a} and register r:

φ = ∃π∃λ
(

(x, π, y) ∧ e(π, λ, λ)
)

,

where e := (〈e1〉 · a)
∗〈e1〉, for e1 = a∗[r=]. Intuitively, e1 checks in a path whether its last

node is precisely the node stored in register r, and thus e checks whether every node in a
path can reach the node stored in register r. Therefore, the formula φ defines the set of
pairs (x, y) of nodes, such that there is a path π that goes from x to y and a register value
λ (i.e., a node λ) that satisfies that every node in π is connected to λ. ✷

The extra expressive power of NRL+ over RL+ does not affect the data complexity of
query evaluation:

Theorem 5.7. Evaluation of NRL+ formulas is in NLogspace in terms of data complexity.

Proof. Let G = (V,E, κ) be a data graph and φ an NRL+ formula. Also, let D = {κ(v) |
v ∈ V }. We assume without loss of generality that φ is Boolean, that is, we study the
complexity of deciding whether G |= φ. In the case when φ is not Boolean, that is, when
the input consists of G and an assignment α for φ over G, we simply replace each free
variable η in φ by α(η), and then use the evaluation algorithm we describe below for the
resulting formula.

Assume without loss of generality that φ is of the form ∃x̄∃ν̄∃π̄ψ, where x̄ is a tuple of
node variables, ν̄ is a tuple of register assignment variables, π̄ is a tuple of path variables, and
ψ is quantifier-free. Assume also that {e1, . . . , em} is the set of NREMs mentioned in φ, and

EXPRESSIVE PATH QUERIES ON GRAPHS WITH DATA 37

that each such NREM is over {r1, . . . , rk}. The evaluation algorithm does the following: It
first guesses witnesses for the existentially quantified node and register assignment variables.
Assume that the guess for x̄ is v̄, where v̄ is a tuple of nodes of the same arity than x̄, and
that the guess for ν̄ is λ̄, where λ̄ is a tuple of elements in (D ∪ {⊥})k of the same arity
than ν̄. Clearly, both v̄ and λ̄ can be represented using only logarithmic space (since φ, and
therefore k, is fixed).

The algorithm then guesses a witness ξ for each existentially quantified path variable π
in π̄. This witness codifies all the information that we need to know about the actual path ρ
that inteprets π̄. In our case, ξ is a string that lists (in a precise order) the endpoints u and
v of ρ and the tuples (e, λ, λ′), for e ∈ {e1, . . . , em} and λ, λ′ ∈ λ̄, such that (u, λ, ρ, v, λ′) ∈
JeKG. Let ξ̄ be the witnesses for the tuple π̄. It is not hard to see that ξ̄ can be represented
using logarithmic space.

Finally, the algorithm checks that the guess (v̄, λ̄, ξ̄) satisfies ψ. Since ψ is a Boolean
combination of atomic formulas, we only have to explain how to do this in logarithmic space
for each atomic formula of the logic. Atomic formulas of the form x = y, ν = ν ′ and ν = ⊥̄
are self-evident. Atomic formulas of the form π = π′ only require checking whether the
witness of π is equal to the witness of π′. Atomic formulas of the form (x, π, y) require
checking in the witness ξ of π whether its endpoints correspond to the witnesses of x and y.
Finally, formulas of the form e(π, ν, ν ′) require checking in ξ whether (u, λ, ρ, v, λ′) ∈ JeKG,
where λ and λ′ are the witnesses of ν and ν ′, respectively. Clearly, any of this can be done
in logarithmic space.

The only thing that remains to be done is checking that ξ̄ is consistent with G. That
is, we need to check the following for each path variable π that is mentioned in π̄ whose
witness in ξ̄ is ξ: There is a path ρ in G whose codification corresponds to ξ. In other words,
if ξ tells us that the endpoints of the path are u and v, we need to check in G if there is
a path ρ from u to v such that, for each e ∈ {e1, . . . , em} and λ, λ′ ∈ λ̄, it is the case that
(u, λ, ρ, v, λ′) ∈ JeKG each time that ξ tells us so. We explain next how this can be done in
NLogspace combining techniques from REM and nested regular expressions evaluation.

The algorithm starts computing, for each expression of the form 〈e〉 that appears in any
of the ei’s, the set U(e) of pairs of the form (w, λ), for w a node in G and λ a k-tuple over
D ∪ {⊥}, such that (w, λ, ρ′ = w,w, λ) ∈ J〈e〉KG. In order to do so it proceeds recursively
depending on the nesting depth of the expression 〈e〉, which is 1 if e contains no nested
subexpression, and it is 1 more than the maximum nesting depth of any subexpression of
e of the form 〈e′〉 otherwise. The algorithm starts with those expressions 〈e〉 of nesting
depth one, i.e., when e is an REM (no nesting). Using techniques from [10] it is possible to
compute in NLogspace the set U(e), for each such expression 〈e〉. Then it continues with
expressions of nesting depth two. In such case, it uses the same aforementioned techniques,
but each time the procedure is asked to check whether (w, λ, ρ′ = w,w, λ) ∈ J〈e′〉KG, for
a subexpression 〈e′〉 of nesting depth one, it simply checks whether (w, λ) ∈ U(e′). The
process continues iteratively in this way until all sets U(e), for 〈e〉 a subexpression of any
of the ei’s, are computed. Clearly, this iterative process can be performed in NLogspace.

Once the previous step is finished, the algorithm checks whether there is a path ρ from u

to v such that, for each e ∈ {e1, . . . , em} and λ, λ′ ∈ λ̄, it is the case that (u, λ, ρ, v, λ′) ∈ JeKG
each time that ξ tells us so. This can be done in NLogspace applying the same techniques
used in the previous paragraph and the knowledge provided by the sets U(e). The result
follows from the fact that NLogspace functions are closed under composition.

38 P. BARCELÓ, G. FONTAINE, AND A. W-LIN

From the proof of Theorem 5.7 it also follows that NRL+ formulas can be evaluated in
Pspace in combined complexity.

6. Conclusions and Future Work

We have proven that the data complexity of walk logic (WL) is nonelementary, which
rules out the practicality of the logic. We have proposed register logic (RL), which is an
extension of regular expressions with memory. Our results in this paper suggest that register
logic is capable of expressing natural queries about interactions between data and topology
in data graphs, while still preserving the elementary data complexity of query evaluation
(Pspace). Finally, we showed how to make register logic more tractable in data complexity
(NLogspace) through the logic NRL+, while at the same time preserving some level of
expressiveness of RL.

We leave open several problems for future work. One interesting question is to study
the expressive power of extensions of walk logic, in comparison to RL and ECRPQ¬ from [4].
For example, we can consider extensions with regularity tests (i.e. an atomic formula testing
whether a path belongs to a regular language). Even in this simple case, the expressive power
of the resulting logic, compared to RL and ECRPQ¬, is already not obvious. Secondly, we do
not know whether NRL+ is strictly more expressive than RL. Finally, we will also mention
that expressibility of bipartiteness in WL is still open (an open question from [8]). We also
leave open whether the query that a graph database is a connected graph with an even
number of nodes is expressible in WL.

References

[1] R. Angles, C. Gutiérrez. Survey of graph database models. ACM Computing Surveys 40(1), 2008.
[2] P. Barceló. Querying graph databases. In 32nd ACM Symposium on Principles of Database Systems

(PODS), pages 175-188, 2013.
[3] P. Barceló, G. Fontaine, A. W. Lin. Expressive languages for path queries on graphs with data. In

19th Conference on Logic for Programming, Artificial Intelligence, and Reasoning (LPAR), pages 71-85,
2013.

[4] P. Barceló, L. Libkin, A. W. Lin, P. T. Wood. Expressive languages for path queries over graph-
structured data. ACM Transactions on Database Systems 37(4): 31, 2012.

[5] P. Barceló, J. Pérez, J. L. Reutter. Relative expressiveness of nested regular expressions. In 6th Alberto

Mendelzon International Workshop on Foundations of Data Management (AMW), pages 180-195, 2012.
[6] E. M. Clarke, O. Grumberg, D.A. Peled. Model checking. MIT Press, 2000.
[7] I. Cruz, A. O. Mendelzon, P. T. Wood. A graphical query language supporting recursion. In ACM

SIGMOD Conference, pages 323-330, 1987.
[8] J. Hellings, B. Kuijpers, J. van den Bussche, X. Zhang. Walk logic as a framework for path query

languages on graph databases. In 15th International Conference on Database Theory (ICDT), pages
117-128, 2013.

[9] M. Kaminski, N. Francez. Finite memory automata. Theoretical Computer Science, 134(2), pages 329-
363, 1994.

[10] L. Libkin, D. Vrgoč. Regular path queries on graphs with data. In 15th International Conference on

Database Theory (ICDT), pages 74-85, 2012.
[11] L. Libkin, D. Vrgoč. Regular expressions for data words. In 18th Conference on Logic for Programming,

Artificial Intelligence, and Reasoning (LPAR), pages 274-288, 2012.
[12] L. Libkin, W. Martens, D. Vrgoč. Querying graph databases with XPath. In 16th International Confer-

ence on Database Theory (ICDT), pages 129-140, 2013.
[13] L. Libkin, J. L. Reutter, D. Vrgoc. Trial for RDF: adapting graph query languages for RDF data. In

32nd ACM Symposium on Principles of Database Systems (PODS), pages 201-212, 2013.

EXPRESSIVE PATH QUERIES ON GRAPHS WITH DATA 39

[14] A. O. Mendelzon, P. T. Wood. Finding regular simple paths in graph databases. SIAM Journal on

Computing, 24(6), pages 1235-1258, 1995.
[15] L.E. Robertson. Structure of complexity in the weak monadic second-order theories of the natural

numbers. In 6th Annual ACM Symposium on Theory of Computing (STOC), pages 161-171, 1974.
[16] L. Stockmeyer. The complexity of decision problems in automata theory and logic. Ph.D. thesis, MIT,

1974.
[17] M. Y. Vardi. The complexity of relational query languages. In 14th Annual ACM Symposium on Theory

of Computing (STOC), pages 137-146, 1982.
[18] P. T. Wood. Query languages for graph databases. SIGMOD Record 41(1), pages 50-60, 2012.

This work is licensed under the Creative Commons Attribution-NoDerivs License. To view
a copy of this license, visit http://creativecommons.org/licenses/by-nd/2.0/ or send a
letter to Creative Commons, 171 Second St, Suite 300, San Francisco, CA 94105, USA, or
Eisenacher Strasse 2, 10777 Berlin, Germany

	1. Introduction
	2. The Data Model
	3. Walk Logic
	4. WL Evaluation is Non-elementary in Data Complexity
	5. Register Logic
	5.1. Regular expressions with memory
	5.2. Register logic
	5.3. Tractability in data complexity

	6. Conclusions and Future Work
	References

