
Logical Methods in Computer Science
Vol. 11(4:4)2015, pp. 1–33
www.lmcs-online.org

Submitted Jan. 13, 2014
Published Nov. 4, 2015

FORMAL DESIGN OF ASYNCHRONOUS

FAULT DETECTION AND IDENTIFICATION COMPONENTS

USING TEMPORAL EPISTEMIC LOGIC

MARCO BOZZANO, ALESSANDRO CIMATTI, MARCO GARIO, AND STEFANO TONETTA

Fondazione Bruno Kessler, Trento, Italy
e-mail address: {bozzano, cimatti, gario, tonettas}@fbk.eu

Abstract. Autonomous critical systems, such as satellites and space rovers, must be
able to detect the occurrence of faults in order to ensure correct operation. This task is
carried out by Fault Detection and Identification (FDI) components, that are embedded
in those systems and are in charge of detecting faults in an automated and timely manner
by reading data from sensors and triggering predefined alarms.

The design of effective FDI components is an extremely hard problem, also due to
the lack of a complete theoretical foundation, and of precise specification and validation
techniques.

In this paper, we present the first formal approach to the design of FDI components
for discrete event systems, both in a synchronous and asynchronous setting. We propose
a logical language for the specification of FDI requirements that accounts for a wide class
of practical cases, and includes novel aspects such as maximality and trace-diagnosability.
The language is equipped with a clear semantics based on temporal epistemic logic, and
is proved to enjoy suitable properties. We discuss how to validate the requirements and
how to verify that a given FDI component satisfies them. We propose an algorithm for
the synthesis of correct-by-construction FDI components, and report on the applicability
of the design approach on an industrial case-study coming from aerospace.

1. Introduction

The operation of complex critical systems (e.g., trains, satellites, cars) increasingly relies
on the ability to detect when and which faults occur during operation. This function,
called Fault Detection and Identification (FDI), provides information that is vital to drive
the containment of faults and their recovery. This is especially true for fail-operational
systems, where the occurrence of faults should not compromise the ability to carry on critical
functions, as opposed to fail-safe systems, where faults are typically handled by going to a
safe state. FDI is often carried out by dedicated modules, called FDI components, running

2012 ACM CCS: [Theory of computation]: Logic—Logic and verification—Verification by model
checking; [Computing methodologies]: Artificial intelligence—Knowledge representation and reasoning—
Temporal reasoning; Artificial intelligence—Reasoning about belief and knowledge /Causal reasoning and
diagnostics; [Hardware]: Robustness—Fault tolerance /Hardware reliability.

Key words and phrases: Fault Detection and Identification; Diagnoser Synthesis; Model Checking; Tem-
poral Epistemic Logic.

LOGICAL METHODS
l IN COMPUTER SCIENCE DOI:10.2168/LMCS-11(4:4)2015

c© M. Bozzano, A. Cimatti, M. Gario, and S. Tonetta
CC© Creative Commons

http://creativecommons.org/about/licenses

2 M. BOZZANO, A. CIMATTI, M. GARIO, AND S. TONETTA

in parallel with the system. An FDI component, hereafter also referred to as a diagnoser,
processes sequences of observations, made available by predefined sensors, and is required
to trigger a set of predefined alarms in a timely and accurate manner. The alarms are then
used by recovery modules to guarantee the survival of the system without requiring external
control. Faults are often not directly observable. Their occurrence can only be inferred by
observing the effects that they have on the observable parts of the system. Moreover, faults
may have complex dynamics, and may interact with each other in complex ways.

For these reasons, the design of FDI components is a very challenging task, and also a
practical problem, as witnessed by multiple Invitations To Tender issued by the European
Space Agency [Eur10, Eur11, Eur13]. The current methodologies lack a comprehensive
theoretical foundation, and do not provide clear and effective specification and validation
techniques and tools. Most approaches asses the quality of an FDI component based on
simulation and quantitative analysis [FKN+10], that do not start from a specification of
the behavior the the FDI needs to satisfy. This leads to a uniform treatment of all faults,
while in general some faults are more important then others, and in many cases we are not
interested in the specific fault characteristics but only to know that the fault occurred in
a given part of the system (isolation). As a consequence, the design often results in very
conservative assumptions, so that the overall system features sub-optimal behaviors, and it
is not trusted during critical phases.

The goal of this paper is to propose a formal foundation to support the design of
FDI components. We provide a way to specify FDI components, and cover the following
problems: (i) validation of an FDI component specification, (ii) verification of a given FDI
component with respect to a given specification, and (iii) automated synthesis of an FDI
component from a given specification.

The specification of an FDI component is tackled by introducing a pattern-based lan-
guage. Intuitively, an FDI component is specified by stating the observable signals (the
inputs of the FDI component), the desired alarms (in terms of the unobservable state), and
by defining the relation between the two. The language supports various forms of delay (ex-
act, finite, bounded) between the occurrence of faults and the raising of the corresponding
alarm. The patterns are given a formal semantics expressed in terms of epistemic temporal
logic [HV89], where the knowledge operator is used to express the certainty of a condition,
based on the available observations. The formalization encodes properties such as alarm
correctness and alarm completeness. Correctness states that whenever an alarm is raised by
the FDI component, then its associated triggering condition did occur; completeness states
that if an alarm is not raised, then either the associated condition did not occur, or it would
have been impossible to detect it, given the available observations. Moreover, we precisely
characterize two aspects that are important for the specification of FDI requirements. The
first one is the diagnosability of the plant, i.e., whether the sensors convey enough informa-
tion to detect the required conditions. We explain how to deal with non-diagnosable plants
by introducing a more fine-grained concept of trace diagnosability, where diagnosability is
localized to individual traces. Most of the state of the art focuses on the fact that the system
is diagnosable for any execution. However, in practice, this is rarely the case, since usually
the plant is diagnosable in many situations but not in all of them. The classic example is
the one of a burnt light-bulb, of which we cannot say anything until we try to turn it on.
In this case, we would like to build a diagnoser that can raise the alarm whenever there
is no ambiguity on whether the light bulb is burnt. Therefore, we introduce the concept

FORMAL DESIGN OF ASYNCHRONOUS FDI USING TEMPORAL EPISTEMIC LOGIC 3

of trace diagnosability, intuitively accepting the fact that the plant might not always be
diagnosable.

The second important concept that we introduce is maximality. A diagnoser is maximal
if it is able to raise an alarm as soon as and whenever possible. This, in particular, means
that in all traces that are diagnosable, a maximal diagnoser needs to raise the alarm.

The approach provides a full account of synchronous and asynchronous perfect-recall
semantics for the epistemic operator. We show that the specification language correctly
captures the formal semantics and we clearly define the relation between diagnosability,
maximality and correctness.

Within our setting, the validation of a diagnoser specification is reduced to validity
checking in temporal epistemic logic, while the verification of a given diagnoser is mapped
to model checking for a temporal epistemic logic. As for synthesis, we propose an algorithm
that is proved to generate correct-by-construction diagnosers.

From the practical standpoint, the applicability of the design approach has been demon-
strated on two projects funded by the European Space Agency [AUT, FAM]. The paper ac-
tually provides the conceptual foundation underlying a design tool-set [ANY+12, BBC+14a,
BBC+14b], which has been applied to the specification, verification and synthesis of an FDI
component for a satellite.

Finally, please note the deep difference between the design of FDI components and most
diagnosis [dKK04] approaches. In most settings, diagnosis systems can benefit from powerful
computing platforms. Partial diagnoses are typically acceptable, and can be complemented
by further (post-mortem) inspections. This is typical of approaches that rely on logical
reasoning engines (e.g., SAT solvers [GARK07]). Other approaches [HD05, SSL+95, Sch04]
rely on knowledge compilation to reduce the on-line complexity. An FDI component, on
the contrary, runs on-board (as part of the on-line control strategy), and is subject to
restrictions of various nature, such as timing and computation power. FDI design thus
requires a deeper theory, which accounts for the issues of delay in raising the alarms, trace
diagnosability, and maximality. Moreover, it becomes crucial to be able to verify and certify
the effectiveness of the system, since it might not be possible to change it after deployment.

This paper is structured as follows. Section 2 provides some introductory background
and introduces our running example. Section 3 formalizes the notion of FDI. Section 4
presents the specification language. In Section 5, we discuss how to validate the require-
ments, and how to verify an FDI component with respect to the requirements. In Section 6,
we present an algorithm for the synthesis of correct-by-construction FDI components. The
results of evaluating our approach in an industrial setting are presented in Section 7. Sec-
tion 8 compares our work with previous related works. In Section 9, we draw some conclu-
sions and outline the directions for future work.

2. Background

2.1. Labeled Transition Systems. In order to model the plant and the FDI, we use a
symbolic representation of Labeled Transition Systems (LTS). Control locations and data
are represented by variables, while sets of states and transitions are represented by formulas,
and transitions are labeled with explicit events.

Given a set of variables X and a (finite) domain U of values, an assignment to X is a
mapping from the set X to the set U . We use Σ(X) to denote the set of assignments to X.

4 M. BOZZANO, A. CIMATTI, M. GARIO, AND S. TONETTA

Given an assignment a ∈ Σ(X) and X1 ⊆ X, we use a|X1
to denote the projection of a over

X1. We use F(X) to denote the set of propositional formulas over X.

Definition 2.1 (LTS). A Labeled Transition System is a tuple S = 〈V,E, I,T 〉, where:

• V is the set of state variables;
• E is the set of events;
• I ∈ F(V) is a formula over V defining the initial states;
• T : E → F(V ∪ V ′) maps an event e ∈ E to a formula over V and V ′ defining the
transition relation for e (with V ′ being the next version of the state variables).

A state s is an assignment to the state variables V (i.e., s ∈ Σ(V)). We denote by s′ the
corresponding assignment to V ′. A transition labeled with e is a pair of states 〈s, s′〉 such
that s, s′ |= T (e). A trace of S is a sequence σ = s0, e0, s1, e1, s2, . . . alternating states and
event such that s0 satisfies I and, for each k ≥ 0, 〈sk, sk+1〉 satisfies T (ek). Note that we
consider infinite traces only, and w.l.o.g. we assume the system to be dead-lock free. Given
σ = s0, e0, s1, e1, s2, . . . and an integer k ≥ 0, we denote by σk the finite prefix s0, e0, . . . , sk
of σ containing the first k+1 states. We denote by σ[k] the k+1-th state sk. We say that
s is reachable in S iff there exists a trace σ of S such that s = σ[k] for some k ≥ 0.

We say that S is deterministic iff:

(i) there is one initial state (i.e., there exists a state s such that s |= I and, for all t, if
t |= I, then s = t);

(ii) for every reachable state s, for every event e, there is one successor (i.e., there exists s′

such that 〈s, s′〉 |= T (e) and, for all t′, if 〈s, t′〉 |= T (e), then s′ = t′).

Definition 2.2 (Synchronous Product). Let

S1 = 〈V 1, E1, I1,T 1〉 and S2 = 〈V 2, E2, I2,T 2〉

be two transition systems with E1 = E2 = E. We define the synchronous product S1×S2 as
the transition system 〈V 1 ∪ V 2, E, I1 ∧ I2,T 〉 where, for every e ∈ E, T (e) = T 1(e)∧T 2(e).
Every state s of S1 × S2 can be considered as the product s1 × s2 such that s1 = s|V 1 is

a state of S1 and s2 = s|V 2 is a state of S2. Similarly, every trace σ of S1 × S2 can be

considered as the product σ1 × σ2 where σ1 is a trace of S1 and σ2 is a trace of S2.

Definition 2.3 (Asynchronous Product). Let

S1 = 〈V 1, E1, I1,T 1〉 and S2 = 〈V 2, E2, I2,T 2〉

be two transition systems. We define the asynchronous product S1 ⊗ S2 as the transition
system 〈V 1 ∪ V 2, E1 ∪E2, I1 ∧ I2,T 〉 where:

• for every e ∈ E1 \E2, T (e) = T 1(e) ∧ frame(V 2 \ V 1).
• for every e ∈ E2 \E1, T (e) = T 2(e) ∧ frame(V 1 \ V 2).
• for every e ∈ E1 ∩E2, T (e) = T 1(e) ∧ T 2(e).

where frame(X) stands for
∧

x∈X x
′ = x and is used to represent the fact that while one

transition system moves on a local event, the other transition system does not change its
local state variables. Every state s of S1 ⊗ S2 can be considered as the product s1 ⊗ s2

such that s1 = s|V 1 is a state of S1 and s2 = s|V 2 is a state of S2. If either S1 or S2

is deterministic, also every trace σ of S1 ⊗ S2 can be considered as the product σ1 ⊗ σ2

where σ1 is a trace of S1 and σ2 is a trace of S2 (more in general, the product of two traces
produces a set of traces due to different possible interleavings).

FORMAL DESIGN OF ASYNCHRONOUS FDI USING TEMPORAL EPISTEMIC LOGIC 5

In general, composing two systems can reduce the behaviors of each system and in-
troduce deadlocks. However, given two systems that do not share any state variable (e.g.,
the diagnoser and the plant), if one of the systems is deterministic (the diagnoser) then it
cannot alter the behavior of the second (the plant).

Notice that the synchronous product coincides with the asynchronous case when the
two sets of events coincide.

2.2. Linear Temporal Logic. We now present a Linear Temporal Logic extended with
past operators [Pnu77, LMS02, LPZ85], in the following simply referred to as LTL. A
formula in LTL over variables V and events E is defined as

β ::= p | e | β ∧ β | ¬β| Oβ | Y β | βSβ | Gβ | Fβ | Xβ | βUβ

where p is a predicate over F(V) and e ∈ E. Intuitively, p are the propositions over the
state of the LTS, while e represents an event.

Given a trace σ = s0, e0, s1, e1, s2, . . ., the semantics of LTL is defined as follows:

- σ, i |= p iff si |= p
- σ, i |= e iff ei = e
- σ, i |= β1 ∧ β2 iff σ, i |= β1 and σ, i |= β2
- σ, i |= ¬β iff σ, i 6|= β
- Once: σ, i |= Oβ iff ∃j ≤ i. σ, j |= β
- Yesterday: σ, i |= Y β iff i > 0 and σ, i− 1 |= β
- Since: σ, i |= β1Sβ2 iff there exists j ≤ i such that σ, j |= β2 and for all k, j < k ≤ i,
σ, k |= β1

- Finally: σ, i |= Fβ iff ∃j ≥ i. σ, j |= β
- Globally: σ, i |= Gβ iff ∀j ≥ i. σ, j |= β
- Next: σ, i |= Xβ iff σ, i+ 1 |= β
- Until: σ, i |= β1Uβ2 iff there exists j ≥ i such that σ, j |= β2 and for all k, i ≤ k < j,
σ, k |= β1.

Given an LTS S = 〈V,E, I,T 〉, S |= β iff for every trace σ of S, σ, 0 |= β.
Notice that Y β is always false in the initial state, and that we use a reflexive semantics

for the operators U , F , G, S and O. We use the abbreviations Y nβ = Y Y n−1β (with
Y 0β = β), O≤nβ = β ∨ Y β ∨ · · · ∨ Y nβ and F≤nβ = β ∨Xβ ∨ · · · ∨Xnβ.

2.3. Partial Observability. A partially observable LTS is an LTS S = 〈V,E, I,T 〉 ex-
tended with a set Eo ⊆ E of observable events.

We consider here only observations on events. In practice, observation on states are
common and relevant. However, dealing with them in the asynchronous setting makes the
formalism less clear. Therefore, we limit ourselves to observations on events and whenever
observations on state variables are needed, such as sensor readings, we incorporate them in
the events as done in [SSL+96].

The observable part of the prefix σk of a trace σ is defined recursively as follows:
obs(σ0) = ǫ (empty sequence); if e ∈ Eo, then obs(σk, e, s) = obs(σk), e; if e 6∈ Eo, then
obs(σk, e, s) = obs(σk).

Definition 2.4 (Observation Point). We say that i is an observation point for σ, denoted
by ObsPoint(σ, i), iff the last event of σi is observable, i.e., iff σi = σ′, e, s for some σ′, e, s
and e ∈ Eo.

6 M. BOZZANO, A. CIMATTI, M. GARIO, AND S. TONETTA

The notion of two traces being observationally equivalent requires that the two traces
end both or neither in an observation point. This captures the idea that a trace ending in an
observation point can be distinguished from the same trace extended with local unobservable
steps. In other terms, an observer can distinguish the instant in which it is observing and
an instant right after.

Definition 2.5 (Observational Equivalence). We say that ((σ1, i), (σ2, j)) ∈ ObsEq if and
only if:

- ObsPoint(σ1, i) iff ObsPoint(σ2, j), and

- obs(σi1) = obs(σj2).

2.4. Temporal Epistemic Logic. Epistemic logic has been used to describe and reason
about knowledge of agents and processes. There are several ways of extending epistemic
logic with temporal operators. We use the logic KL1 [HV89], extended with past operators.
A formula in KL1 is defined as

β ::= p | e | β ∧ β | ¬β| Oβ | Y β | βSβ | Fβ | Xβ | βUβ | Gβ | Kβ

KL1 can be seen as extension of LTL with past operators, with the addition of the
epistemic operator K. The intuitive semantics of Kβ is that the reasoner knows that β
holds in a state of a trace σ, by using only the observable information. This means that
Kβ holds iff β holds in all situations that are observationally equivalent. Therefore, while
in LTL the interpretation of a formula is local to a single trace, in KL1 the semantics of
the K operator quantifies over the set of indistinguishable traces. Given a trace σ1 of a
partially observable LTS, the semantics of K is formally defined as:

σ1, i |= Kβ iff ∀σ2,∀j. if ((σ1, i), (σ2, j)) ∈ ObsEq then σ2, j |= β.

Kβ holds at time i in a trace σ1 iff β holds in all traces that are observationally
equivalent to σ1 up to time i. Note that, due to the asynchronous nature of the observations,
two traces of different length might lead to the same observable trace. This definition
implicitly forces perfect-recall in the semantics of the epistemic operator, since we define
the epistemic equivalence between traces and not between states.

In many situations, we are interested in considering formulas only at observation points.
We do so by introducing the following abbreviation.

Definition 2.6 (Observed). If Eo is the set of observable events, given a formula φ, we use

x
φ
y
(read “Observed φ”) as abbreviation for φ ∧ Y

∨
e∈Eo

e.

2.5. Running Example. The Battery Sensor System (BSS) (Figure 1) will be our running
example. The BSS provides a redundant reading of the sensors to a device. Internal batteries
provide backup in case of failure of the external power supply. The safety of the system
depends on both of the sensors providing a correct reading. The system can work in three
different operational modes: Primary, Secondary 1 and Secondary 2. In Primary mode,
each sensor is powered by the corresponding battery. In the Secondary modes, instead,
both sensors are powered by the same battery; e.g., during Secondary 1, both Sensor 1 and
Sensor 2 are powered by Battery 1. The Secondary modes are used to keep the system
operational in case of faults. However, in the secondary modes, the battery in use will
discharge faster.

FORMAL DESIGN OF ASYNCHRONOUS FDI USING TEMPORAL EPISTEMIC LOGIC 7

Generator 1

Generator 2

Battery 1

Battery 2

Sensor 1

Sensor 2

Switch

Generator IN

Generator IN

Sensor OUT

Sensor OUT

Mode Selector

Device

Power

Control

Data

Figure 1. Running Example (Battery Sensor System)

We consider two possible recovery actions: i) Switch Mode, or ii) Replace the Battery-
Sensor Block (the dotted block in Figure 1). In order to decide which recovery to apply, we
are going to define a set of requirements connecting the faults to alarms. The faults and
observable information of the system are shown in Figure 2.

This example is particularly interesting because we can define two sources of delay:
the batteries, and the device resilience to wrong inputs. The batteries provide a buffer for
supplying power to the sensors. The size of this buffer is determined by the capacity of the
battery, the initial charge, and the discharge rate. For the device, we assume that two valid
sensor readings are required for optimal behavior, however, we can work in degraded mode
with only one valid reading for a limited amount of time. The device will stop working if
both sensors are providing invalid readings, or if one sensor has been providing an invalid
reading for too long.

Both a synchronous and asynchronous version of this model are possible. In the asyn-
chronous model, we have an event for each possible combination of observations (e.g., “Mode
Primary & Battery 1 Low”). In the synchronous model, we also have an additional observ-
able event (tick) that represents the passing of time in the absence of any observable event.
This event forces the synchronization of the plant with the diagnoser. The key difference
between the synchronous and asynchronous setting is the amount of information that we
can infer in this particular case. For example, if we know the initial charge level of a battery,
and we know its discharge rate (given by the operational mode), then at each point in time
we can infer the current charge of the battery. By comparing our expectation with the
available information, we can detect when something is not behaving as expected. Unfortu-
nately, there are practical settings in which the assumption of synchronicity is not realistic.
Therefore, our approach accounts for both the synchronous and asynchronous models.

Observables Possible Values
Mode Primary, Secondary 1, Secondary 2
Battery Level {1, 2} High, Mid, Low
Sensors Delta Zero, Non-Zero (|S1.Out− S2.Out| = 0)
Device Status On, Off

Component Faults
Generator Off (G1Off , G2Off)
Battery Leak (B1Leak, B2Leak)
Sensor Wrong Output (S1WO, S2WO)

Figure 2. Observables and Faults Summary

8 M. BOZZANO, A. CIMATTI, M. GARIO, AND S. TONETTA

To provide a better understanding of how the running example behaves, we provide
the LTS of each of the components. Figure 3 shows the LTS of the generator and switch.
We assume that the only way the generator can turn off is if a fault event occurs, thus the
model of the generator is rather simple. Also the switch features a rather simple model,
where the labels toS1 and toS2 are defined as:

• toS1: Mode=Secondary1 ∧ Battery1.Double ∧ Battery2.Offline
• toS1: Mode=Secondary2 ∧ Battery1.Offline ∧ Battery1.Double

thus they drive the change in operational mode of the batteries.

Onstart Off
Fault & Off PrimarySecondary

1
Secondary

2

start

toS1 toS2

Figure 3. Generator (Left) and Switch (Right) LTS

Figure 4 shows two slightly more complex components: the sensor and the device.
The sensor periodically outputs a good or a bad reading depending on the state it is in.
Notice that the transition from a good to a bad state can occur either because of a fault
(Wrong Output in Figure 2) or because the battery connected to the sensor has no charge
(Batt.c = 0), notice, in particular, that both events are not observable. The device instead
has two main transitions. The stay is defined as S1.V alue = S2.V alue ∧ Delta = Zero,
while degrade represents a discrepancy in the reading from the sensor that will eventually
lead to the device stopping: (S1.V alue 6= S2.V alue) ∧ Delta =Non-Zero. The values of
the sensors are not observable, but their difference is observable via the Delta variable.
Intuitively, the device has an intermediate state that works as a buffer, before reaching the
final Off state.

Good (N)start Bad (N) Bad (F)

Value=Good

Batt.c = 0

Fault

Value=Bad

Fault

Batt.c > 0

Value=Bad

Onstart On Off

stay

degrade

x′ = x− 1

x=0 ∧ Off

Figure 4. Sensor (Left) and Device (Right) LTS

The most complex component, the battery, is presented in Figure 5. Vertical transitions
indicate a change in operational mode of the battery. The left half of the LTS indicates
that the generator is working and feeding the battery (thus charging it) while the right half
shows that the battery is not charging. Additionally, the two central columns describe the
faulty behavior of the battery. This information is represented also in each state. Each

FORMAL DESIGN OF ASYNCHRONOUS FDI USING TEMPORAL EPISTEMIC LOGIC 9

state has an additional self-loop (not in the picture) denoting the update of the charge of
the battery, following the update rule:

charge′ = (charge + recharge − (load+ leak)) mod C

where C is the capacity, and the other variables depend on the state:

(1) Charging: recharge = 1, Not Charging: recharge = 0
(2) Primary: load = 1, Offline: load = 0, Double: load = 2
(3) Nominal: leak = 0, Faulty: leak = 2

Thus the charge of the battery can change from +1 (Nominal, Offline, Charging) to −4
(Faulty, Double, Not Charging), while staying within the bound [0, Capacity].

Every time the update of the charge causes the charge to pass a threshold, the transition
raises the observable event: Low, Mid, High. These events indicate when the charge of
the battery is above 20%, 50% and 80%. All other transitions are not observable. These
transitions have been omitted from the figure to make it more readable.

Nominal
Primary
Charging

start

Nominal
Offline
Charging

Nominal
Double
Charging

Faulty
Primary
Charging

Faulty
Offline
Charging

Faulty
Double
Charging

Faulty
Primary
Not Charging

Faulty
Offline
Not Charging

Faulty
Double
Not Charging

Nominal
Primary
Not Charging

Nominal
Offline
Not Charging

Nominal
Double
Not Charging

Figure 5. Battery LTS

3. Formal Characterization

3.1. Diagnoser. In our general setting, a plant is connected to components for Fault De-
tection and Isolation, and for Fault Recovery, as depicted in Figure 6. The role of FDI is
to collect and analyze the observable information from the plant, and to turn on suitable
alarms associated with (typically unobservable) relevant conditions. The Fault Recovery
component is intended to apply suitable reconfiguration actions based on the alarms in

10 M. BOZZANO, A. CIMATTI, M. GARIO, AND S. TONETTA

input. Recovery is beyond the scope of this work; we consider a system composed of the
plant and the FDI component.

An FDI component (also called diagnoser in the following) is a machine D that syn-
chronizes with observable traces of the plant P . D has a set A of alarms that are activated
in response to the monitoring of P . Different mechanisms to connect a diagnoser to a plant
are possible. In the synchronous case, the plant is assumed to convey to the diagnoser in-
formation at a fixed rate (including state sampling and values for event ports). This model
is adopted, for example, in [BCGT14, CPC03]. In this paper we focus on the more general
model of asynchronous case, where the diagnoser reacts to the observable events in the plant
1.

Plant

S
E
N
S
O
R
S

A
C
T
U
A
T
O
R
S

FDI FIR

Figure 6. Integration of the FDIR and Plant

Definition 3.1 (Diagnoser). Given a set A of alarms and a partially observable plant
P = 〈V P , EP , IP ,T P , EP

o 〉, a diagnoser is a deterministic LTSD(A, P) = 〈V D, ED, ID,T D〉
such that EP

o = ED, V P ∩ V D = ∅ and A ⊆ V D.

When clear from the context, we use D to indicate D(A, P). We assume that the events
of the diagnoser coincide with the observable events of the plant. This means that the
diagnoser does not have internal transitions: every transition of the diagnoser is associated
with an observable transition of the plant. We say that the alarm A is triggered when A is
true after the diagnoser synchronized with the plant (i.e., when

x
A
y
is true).

Since the synchronous case is a particular case of the asynchronous composition, in the
rest of the paper we assume that the plant and diagnoser are composed asynchronously:
i.e., D ⊗ P . Only observable events are used to perform synchronization.

The choice of using a deterministic diagnoser is driven by the following result, that
makes it easier to understand how the diagnoser will react to the plant:

Definition 3.2 (Diagnoser Matching trace). Given a diagnoser D of P and a trace σP of P ,
the diagnoser trace matching σP , denoted by D(σP), is the trace σ of D such that σ ⊗ σP
is a trace of D ⊗ P .

Note that the notion of diagnoser matching trace is well defined because, since D is
deterministic, there exists one and only one trace in D matching σP .

1The relation between the synchronous and the asynchronous combination is discussed in Section 8.1.

FORMAL DESIGN OF ASYNCHRONOUS FDI USING TEMPORAL EPISTEMIC LOGIC 11

3.2. Detection, Identification, and Diagnosis Conditions. The first element for the
specification of the FDI requirements is given by the conditions that must be monitored.
Here, we distinguish between detection and identification, which are the two extreme cases
of the diagnosis problem; the first deals with knowing whether a fault occurred in the system,
while the second tries to identify the characteristics of the fault. Between these two cases
there can be intermediate ones: we might want to restrict the detection to a particular
sub-system, or identification among two similar faults might not be of interest.

The detection task is the problem of understanding when (at least) one of the compo-
nents has failed. The identification task tries to understand exactly which fault occurred.

In the BSS every component can fail. Therefore the detection problem boils down to
knowing that at least one of the generators, batteries or sensors is experiencing a fault. For
identification, instead, we are interested in knowing whether a specific fault, (e.g., G1Off)
occurred. There are also intermediate situations (sometimes called isolation), in which we
are not interested in distinguishing whether G1Off or B1Leak occurred, as long as we know
that there is a problem in the power-supply chain.

FDI components are generally used to recognize faults. However, there is no reason to
restrict our interest to faults. Recovery procedures might differ depending on the current
state of the plant, therefore, it might be important to consider other unobservable informa-
tion of the system. For example, we might want to estimate the charge level of a battery,
or its discharge rate.

We call the condition of the plant to be monitored diagnosis condition, denoted by β.
We assume that for any point in time along a trace execution of the plant (and therefore
also of the system), β is either true or false based on what happened before that time
point. Therefore, β can be an atomic condition (including faults), a sequence of atomic
conditions, or Boolean combination thereof. If β is a fault, the fault must be identified; if
β is a disjunction of faults, instead, it suffices to perform the detection, without identifying
the exact fault.

Diagnosis condition Definition
βGenerator1, βGenerator2 G1Off , G2Off

βBattery1, βBattery2 B1Leak, B2Leak
βPSU1, βPSU2 G1Off ∨B1Leak, G2Off ∨B2Leak
βBatteries B1Leak ∨B2Leak
βSensor1, βSensor2 S1WO, S2WO

βSensors S1WO ∨ S2WO

βBS (S1WO ∨ S2WO) ∨ (B1Leak ∧B2Leak)
βSeq (B1Charge < B2Charge) ∧O(B1Charge ≥ B2Charge)
βCharging Y ((B1Charge ≤ 0) ∧ Y (B1Charge > 0)
βDepleted (B1Charge = 0) ∨ (B2Charge = 0)

Figure 7. Diagnosis conditions for the BSS

Figure 7 shows several examples of diagnosis conditions for the BSS. Notice how we
might be in complex situations such as knowing if the Battery-Sensor block is working (βBS)
or knowing some information on the evolution of the system (βSeq, βCharging). We use LTL
operators to define those diagnosis conditions, but in general, we require that a diagnosis
condition can be evaluated on a point in a trace by only looking at the trace prefix.

12 M. BOZZANO, A. CIMATTI, M. GARIO, AND S. TONETTA

β
ExactDel(A, β, 2)
BoundDel(A, β, 4)
FiniteDel(A, β)

Figure 8. Examples of alarm responses to the diagnosis condition β.

3.3. Alarm Conditions. The second element of the specification of FDI requirements is
the relation between a diagnosis condition and the raising of an alarm. This also leads to
the definition of when the FDI is correct and complete with regard to a set of alarms.

An alarm condition is composed of two parts: the diagnosis condition and the delay.
The delay relates the time between the occurrence of the diagnosis condition and the cor-
responding alarm. Although it might be acceptable that the occurrence of a fault can go
undetected for a certain amount of time, it is important to specify clearly how long this
interval can be. An alarm condition is a property of the system composed by the plant and
the diagnoser, since it relates a condition of the plant with an alarm of the diagnoser. Thus,
when we say that a diagnoser D of P satisfies an alarm condition, we mean that the traces
of the system D ⊗ P satisfy it.

Interaction with industrial experts led us to identify three patterns of alarm condi-
tions, which we denote by ExactDel(A, β, d), BoundDel(A, β, d), and FiniteDel(A, β):

1. ExactDel(A, β, d) specifies that whenever β is true, A must be triggered exactly
d steps later and A can be triggered only if d steps earlier β was true; formally, for any
trace σ of the system, if β is true along σ at the time point i, then

x
A
y
is true in σ[i + d]

(Completeness); if
x
A
y
is true in σ[i], then β must be true in σ[i− d] (Correctness).

2. BoundDel(A, β, d) specifies that whenever β is true, A must be triggered within
the next d steps and A can be triggered only if β was true within the previous d steps;
formally, for any trace σ of the system, if β is true along σ at the time point i then

x
A
y
is

true in σ[j], for some i ≤ j ≤ i + d (Completeness); if
x
A
y
is true in σ[i], then β must be

true in σ[j′] for some i− d ≤ j′ ≤ i (Correctness).
3. FiniteDel(A, β) specifies that whenever β is true, A must be triggered in a later

step and A can be triggered only if β was true in some previous step; formally, for any
trace σ of the system, if β is true along σ at the time point i then

x
A
y
is true in σ[j] for

some j ≥ i (Completeness); if
x
A
y
is true in σ[i], then β must be true along σ in some time

point between 0 and i (Correctness).

Figure 8 provides an example of admissible responses for the various alarms to the
occurrences of the same diagnosis condition β; note how in the case of BoundDel(A, β, 4)
the alarm can be triggered at any point as long as it is within the next 4 time-steps. Since A
is a state variable and the diagnoser changes it only in response to synchronizations with the
plant, every rising and falling edge of the alarm in the figure corresponds to an observation
point.

Figure 9 contains a simple specification for our running example. There are two types
of PSU (Power Supply Unit) alarms (that can be similarly defined for PSU 2). The first one
defines multiple alarms, each having a different delay i. Let us assume that each battery
has a capacity C of 10, and that this provides us with a delay of at most 10 time-units.

FORMAL DESIGN OF ASYNCHRONOUS FDI USING TEMPORAL EPISTEMIC LOGIC 13

Pattern Description
ExactDel(PSU1Exacti, βPSU1, i) Detect if the PSU 1 (Generator 1 + Battery 1)

is broken, in order to switch to secondary mode
BoundDel(PSU1Bound, βPSU1, C) Detect if the PSU (Generator 1 + Battery 1) was

broken within the bound, in order to switch to
secondary mode

BoundDel(BS, βBS ,DC) Detect if the whole Battery-Sensor block is work-
ing incorrectly, in order to replace it

FiniteDel(Discharged, βDepleted) Detect if any of the battery was ever completely
discharged

Figure 9. Example Specification for the BSS

We can instantiate 10 alarms one for each i ∈ [0, 10]. Ideally, we want to detect the exact
moment in which the PSU stop working. However, this might not be possible due to non-
diagnosability. Therefore, we define a weaker version of the alarm (PSU1Bound), in which
we say that within the time-bound provided by the battery capacity (C) we want to know
if the PSU stop working. In Section 5.1 we will prove that one alarm condition is weaker
than the other. For most alarms, we specify what recovery can be applied to address the
problem. In this way, our process of defining the alarms of interest is driven by the recovery
procedures available. If there is no automated recovery for a given situation, time-bounds
might not be relevant anymore. Therefore, we use alarms to collect information on the
historical state of the system (e.g., Discharged alarm); notice, in fact, that FiniteDel
alarm have a permanent behavior, i.e., they can never be turned off.

3.4. Diagnosability. Given an alarm condition, we need to know whether it is possible to
build a diagnoser for it. In fact, there is no reason in having a specification that cannot be
realized. This property is called diagnosability and was introduced in [SSL+95].

In this section, we define the concept of diagnosability for the different types of alarm
conditions. We proceed by first giving the definition of diagnosability in the traditional way
(à la Sampath) in terms of observationally equivalent traces w.r.t. the diagnosis condition.
Then, we prove that a plant P is diagnosable iff there exists a diagnoser that satisfies the
specification.

Definition 3.3. Given a plant P and a diagnosis condition β, we say that
ExactDel(A, β, d) is diagnosable in P iff for all σ1, i s.t. σ1, i |= β then ObsPoint(σ1, i+d)
and for all σ2, j, if ObsEq((σ1, i+ d), (σ2, j + d)), then σ2, j |= β.

Therefore, an exact-delay alarm condition is not diagnosable in P iff either there is no
synchronization after d steps (note that this is not possible in the synchronous case) or
there exists a pair of traces σ1 and σ2 such that for some i, j ≥ 0, σ1, i |= β, ObsEq((σ1, i+
d), (σ2, j + d)), and σ2, j 6|= β. We call such a pair a critical pair.

Definition 3.4. Given a plant P and a diagnosis condition β, we say that
BoundDel(A, β, d) is diagnosable in P iff forall σ1, i s.t. σ1, i |= β there exists k s.t.
i ≤ k ≤ i+ d, ObsPoint(σ1, k) and for all σ2, l, if ObsEq((σ1, k), (σ2, l)), then there exists j
s.t. l − d ≤ j ≤ l and σ2, j |= β.

14 M. BOZZANO, A. CIMATTI, M. GARIO, AND S. TONETTA

Intuitively, k, l denote points that are observationally equivalent and i, j denote the
states where the condition occurred, and their relation is such that i and j do not occur
more than d steps away from each other.

This definition takes into account occurrences of β that happened before i. Indeed,
we need to check occurrences up to d states before and after i. Consider the two traces
σ1 = apbqc and σ2 = aqbpc, where a, b, c are observable events, and β = p. We can see that
we can justify p in σ1 by looking at the occurrence of p in σ2 that is in the future. However,
we cannot justify the p in σ2 by just looking in the future, but we need to look in the past.

Definition 3.5. Given a plant P and a diagnosis condition β, we say that FiniteDel(A, β)
is diagnosable in P iff for all σ1, i s.t. σ1, i |= β then there exist k ≥ i s.t. ObsPoint(σ1, k)
and for all σ2, l if ObsEq((σ1, k), (σ2, l)) then there exists j ≤ l σ2, j |= β.

Definition 3.4 is a generalization of Sampath’s definition of diagnosability:

Definition 3.6. (Diagnosability [SSL+95]) Given a plant P and a diagnosis condition β,
we say that β is diagnosable in P iff there exists d s.t. for all σ, i, σ2, l, k ≥ i+ d if σ1, i |= β
and obs(σl2) = obs(σk1) then there exists j ≤ l s.t. σ2, j |= β.

In [SSL+95] (specifically in Section II.A), Sampath et al. also assume that there are no
cycles of unobservable events. This means that there is a du s.t. for all σ, i s.t. σ, i |= β then
there exists k s.t. 0 ≤ k ≤ du and ObsPoint(σ, i+ k).

Theorem 3.7. Let P be a plant such that there is no cycle of unobservable events, and let
p be a propositional formula, then p is diagnosable (as defined in 3.6) in P iff there exists
d such that BoundDel(A,Op, d) is diagnosable in P .

Proof.

⇒) Assume that p is diagnosable in P . Consider a trace σ1 such that for some i ≥ 0,
σ1, i |= Op. Then, for some 0 ≤ i′ ≤ i, σ1, i

′ |= p. By assumption, we know that there
is a d s.t. for all k ≥ i′ + d and any trace σ2 and point l such that obs(σl2) = obs(σk1)
then σ2, j

′ |= p for some j′, j′ ≤ l. Then σ2, j |= Op for all j ≥ j′. Since this holds for
any k and l, it holds also for the k and l that are observation points for σ1 and σ2. Let
d′ = d+ nu. Then there exists k′ < d′ such that ObsPoint(σ1, i + k′) and for all trace
σ2 and point l such that ObsEq((σ1, k

′), (σ2, l)) then σ2, j
′ |= p for some j′, j′ ≤ l. We

can conclude that BoundDel(A,Op, d′) is diagnosable in P .
⇐) Assume that BoundDel(A,Op, d) is diagnosable in P . Consider a trace σ1 such

that for some i ≥ 0 σ1, i |= p. Then σ1, i |= Op. By assumption, there exists k,
i ≤ k ≤ i + d such that ObsPoint(σ1, k) and, for any trace σ2 and point l such that
ObsEq((σ1, k), (σ2, l)) then σ2, j |= Op for some l − d ≤ j ≤ l. Let us consider σ2
and l such that obs(σl2) = obs(σk1). Then for some l′ ≤ l we have that ObsPoint(σ2, l

′)
and therefore ObsEq((σ1, k), (σ2, l

′)). Then σ2, j |= Op for some l − d ≤ j ≤ l. Thus
σ2, j

′ |= p for some j′ ≤ j and P is diagnosable.

The following theorem shows that if a component satisfies the diagnoser specification then
the monitored plant must be diagnosable for that specification. In Section 6 on synthesis we
will show also the converse, i.e., if the specification is diagnosable then a diagnoser exists.

Theorem 3.8. Let D be a diagnoser for P . If D satisfies an alarm condition then the
alarm condition is diagnosable in P .

FORMAL DESIGN OF ASYNCHRONOUS FDI USING TEMPORAL EPISTEMIC LOGIC 15

Proof. By contradiction, suppose ExactDel(A, β, d) is not diagnosable in P . Then either
there exists a trace σ1 with σ1, i |= β for some i such that ObsPoint(σ1, j) is false for all
j ≥ i or there exists a critical pair. In the first case, A is not triggered and the diagnoser
is not complete. Suppose there exists a critical pair of traces σ1 and σ2, i.e., for some
i, j ≥ 0 σ1, i |= β, ObsPoint(σ1, i+ d), ObsEq((σ1, i+ d), (σ2, j + d)), and σ2, j 6|= β. Since

D is deterministic, D(σ1) and D(σ2) have a common prefix compatible with obs(σi+d
1) =

obs(σj+d
2). If the diagnoser is complete then A is triggered in D(σ1)⊗ σ1 at position i+ d,

and so also in D(σ2) ⊗ σ2 at position j + d, but in this way the diagnoser is not correct,
which is a contradiction. If the diagnoser is correct, then A is not triggered in D(σ2)⊗σ2 at
position j + d, but so neither in D(σ1)⊗ σ1 at position i+ d, but in this way the diagnoser
is not complete, which is a contradiction.

Similarly, for FiniteDel(A, β) and BoundDel(A, β, d).

The definition above of diagnosability might be stronger than necessary, since diagnosability
is defined as a global property of the plant. Imagine the situation in which there is a critical
pair and after removing this critical pair from the possible executions of the system, our
system becomes diagnosable. This suggests that the system was “almost” diagnosable, and
an ideal diagnoser would be able to perform a correct diagnosis in all the cases except
one (i.e., the one represented by the critical pair). To capture this idea, we redefine the
problem of diagnosability from a global property expressed on the plant, to a local property
expressed on points of single traces.

Definition 3.9. Given a plant P , a diagnosis condition β and a trace σ1 such that for
some i ≥ 0 σ1, i |= β, we say that ExactDel(A, β, d) is trace diagnosable in 〈σ1, i〉 iff
ObsPoint(σ1, i+d) and for any trace σ2, for all j ≥ 0 such that ObsEq((σ1, i+d), (σ2, j+d)),
σ2, j |= β.

Definition 3.10. Given a plant P , a diagnosis condition β, and a trace σ1 such that for
some i ≥ 0 σ1, i |= β, we say that BoundDel(A, β, d) is trace diagnosable in 〈σ1, i〉 iff there
exists k s.t. i ≤ k ≤ i+ d, ObsPoint(σ1, k), and for any σ2, l if ObsEq((σ1, k), (σ2, l)), then
there exists j s.t. l − d ≤ k ≤ l and σ2, j |= β.

Definition 3.11. Given a plant P , a diagnosis condition β, and a trace σ1 such that for
some i ≥ 0, σ1, i |= β, we say that FiniteDel(A, β) is trace diagnosable in 〈σ1, i〉 iff there
exists k ≥ i s.t. ObsPoint(σ1, k) and for all σ2, l if ObsEq((σ1, k), (σ2, l)), then there exists
j ≤ l and σ2, j |= β.

A specification that is trace diagnosable in a plant along all points of all traces is
diagnosable in the classical sense, and we say it is system diagnosable. The concept of trace
diagnosability does not impose any specific behavior to the diagnoser. However, it is an
important concept that allows us to better characterize and understand the specification
and the system.

3.5. Maximality. As shown in Figure 8, bounded- and finite-delay alarms are correct if
they are raised within the valid bound. However, there are several possible variations of
the same alarm in which the alarm is active in different instants or for different periods.
We address this problem by introducing the concept of maximality. Intuitively, a maximal
diagnoser is required to raise the alarms as soon as possible and as long as possible (without
violating the correctness condition).

16 M. BOZZANO, A. CIMATTI, M. GARIO, AND S. TONETTA

Definition 3.12. D is a maximal diagnoser for an alarm condition with alarm A in P iff for
every trace σP of P , D(σP) contains the maximum number of observable points i such that
D(σP), i |= A; that is, if D(σP), i 6|= A, then there does not exist another correct diagnoser
D′ of P such that D′(σP), i |= A.

4. Formal Specification

In this section, we present the Alarm Specification Language with Epistemic operators
(ASLK). This language allows designers to define requirements on the FDI alarms including
aspects such as delays, diagnosability and maximality.

Diagnosis conditions and alarm conditions are formalized using LTL with past operators.
The definitions of trace diagnosability and maximality, however, cannot be captured by
using a formalization based on LTL. To capture these two concepts, we rely on temporal
epistemic logic. The intuition is that this logic enables us to reason on set of observationally
equivalent traces instead that on single traces (like in LTL). We show how this logic can
be used to specify diagnosability, define requirements for non-diagnosable cases and express
the concept of maximality.

4.1. Diagnosis and Alarm Conditions as LTL Properties. Let P be a set of proposi-
tions representing either faults, events or elementary conditions for the diagnosis. The set
DP of diagnosis conditions over P is any formula β built with the following rule:

β ::= p | β ∧ β | ¬β | Oβ | Y β

with p ∈ P.
We provide the LTL characterization of the Alarm Specification Language (ASL) in

Figure 10. On the left column we provide the name of the alarm condition (as defined in
the previous section), and on the right column we provide the associated LTL formalization
encoding the concepts of correctness and completeness. Correctness, the first conjunct,
intuitively says that whenever the diagnoser raises an alarm, then the fault must have
occurred. Completeness, the second conjunct, intuitively encodes that whenever the fault
occurs, the alarm will be raised. In the following, for simplicity, we abuse notation and
indicate with ϕ both the alarm condition and the associated LTL; for an alarm condition
ϕ, we denote by Aϕ the associated alarm variable A, and with τ(ϕ) the following formulas:

τ(ϕ) = Y dβ for ϕ = ExactDel(A, β, d);
τ(ϕ) = O≤dβ for ϕ = BoundDel(A, β, d);
τ(ϕ) = Oβ for ϕ = FiniteDel(A, β).

When clear from the context, we use just A and τ instead of Aϕ and τ(ϕ), respectively.

Alarm Condition LTL Formulation

ExactDel(A, β, d) G(
x
A
y
→ Y dβ) ∧ G(β → Xd

x
A
y
)

BoundDel(A, β, d) G(
x
A
y
→ O≤dβ) ∧ G(β → F≤d

x
A
y
)

FiniteDel(A, β) G(
x
A
y
→ Oβ) ∧ G(β → F

x
A
y
)

Figure 10. Alarm conditions as LTL (ASL): Correctness and Completeness

FORMAL DESIGN OF ASYNCHRONOUS FDI USING TEMPORAL EPISTEMIC LOGIC 17

Alarm Condition Diagnosability Maximality

ExactDel(A, β, d) G(β → Xd
x
KY dβ

y
) G(

x
KY dβ

y
→

x
A
y
)

BoundDel(A, β, d) G(β → F≤d
x
KO≤dβ

y
) G(

x
KO≤dβ

y
→

x
A
y
)

FiniteDel(A, β) G(β → F
x
KOβ

y
) G(

x
KOβ

y
→

x
A
y
)

Figure 11. Diagnosability and Maximality .

β
KO≤4β

A (Maximal)
A (Non-Maximal)

Figure 12. Example of Maximal and Non-Maximal traces

4.2. Diagnosability as Epistemic Property. We can write the diagnosability test for
the different alarm conditions directly as epistemic properties. The general formulation is
presented on the left column of Figure 11. In order to test for system diagnosability, we
will check whether the formula holds for all traces of the system; while to check for trace
diagnosability we will check whether the formula holds for single points in a trace. For
example, the diagnosability test for ExactDel(A, β, d) says that it is always the case that
whenever β occurs, exactly d steps afterwards, the diagnoser knows β occurred d steps
earlier. Since K is defined on observationally equivalent traces, the only way to falsify
the formula would be to have a trace in which β occurs, and another one (observationally
equivalent at least for the next d steps) in which β did not occur; but this is in contradiction
with the definition of diagnosability (Definition 3.3).

4.3. Maximality as Epistemic Property. The property of maximality says that the
diagnoser will raise the alarm as soon as it is possible to know the diagnosis condition, and
the alarm will stay up as long as possible. The property

x
Kτ

y
→

x
A
y
encodes this behavior:

Theorem 4.1. D is maximal for ϕ in P iff D ⊗ P |= G(
x
Kτ

y
→

x
A
y
).

Proof. ⇒) Suppose D is maximal and by contradiction D ⊗ P 6|= G(
x
Kτ

y
→

x
A
y
). Thus,

there exists a trace σP of P and i ≥ 0 such that D(σP) × σP , i |= (
x
Kτ

y
∧ ¬

x
A
y
) (where

D(σP) is the diagnoser trace matching σP as defined in Definition 3.2). By Definition 2.6
of

x
·
y
, i is an observation point. Let i be the j-th observation point of σP . Consider D′

obtained by D(σp) converting the trace into a transition system using a sink state so that
D′ is deterministic and setting

x
A
y
to true only in the state D(σP)[j] (thus triggering A in j

and setting it to false at the next observation point). For every trace σ′P of P matching with
D′(σP), obs(σ

′
P) = obs(σP), and thus σ′P , i |= τ (since D(σP) × σP , i |= (

x
Kτ

y
). Therefore

D′ |= G(
x
A
y
→ τ) contradicting the hypothesis.

⇐) Suppose D ⊗ P |= G(
x
Kτ

y
→

x
A
y
) and by contradiction D is not maximal for

ϕ in P . Then there exists a trace σP of P such that D(σP), i 6|= x
A
y
and there exists

another diagnoser D′ of P such that D′(σP), i |= x
A
y
and D′ ⊗ P |= G(

x
A
y
→ τ). Then,

for some j, D(σP)⊗ σP , j 6|= x
A
y
, D′(σP)⊗ σP , j |= x

A
y
, and so D(σP) ⊗ σP , j 6|= x

Kτ
y
and

σP , j |= τ . Then there exists another trace σ′P of P and j′ such that ObsEq((σ′P , j
′), (σP , j))

18 M. BOZZANO, A. CIMATTI, M. GARIO, AND S. TONETTA

and σ′P , j
′ 6|= τ . Since D′ is deterministic, D′(σ′P) and D′(σP) are equal up to position i,

and so D′ ⊗ P 6|= G(
x
A
y
→ τ) contradicting the hypothesis.

Whenever the diagnoser knows that τ is satisfied, it will raise the alarm. An example of
maximal and non-maximal alarm is given in Figure 12. Note that according to our definition,
the set of maximal alarms is a subset of the non-maximal ones.

A property related to Maximality is the capability of the diagnoser to justify the raising
of the alarm. This property is guaranteed by construction by any correct diagnoser, as shown
in the following theorem.

Theorem 4.2. Given a diagnoser D and a plant P , for each alarm A of D, with temporal
condition τ , if D is correct for A it holds that:

D ⊗ P |= G(
x
A
y
→

x
Kτ

y
)

Thus, whenever the diagnoser raises an alarm, it knows that the diagnosis condition has
occurred.

Proof. We assume by contradiction that the G(
x
A
y
→

x
Kτ

y
) is not satisfied. Therefore,

there exist σ and i such that D(σ)⊗σ, i |=
x
A
y
∧¬

x
Kτ

y
(where D(σP) is the diagnoser trace

matching σP as defined in Definition 3.2), which is equivalent to
x
A
y
∧¬Kτ (by Definition 2.6

of
x
·
y
). Thus, σ, i |= τ by correctness of D. In order for the ¬Kτ to hold, we need another

trace σ′ and j s.t. ObsEq((σ, i), (σ′, j)) and σ′, j |= ¬τ . By definition, the diagnoser is
deterministic, thus we know that for σ, σ′ at points i, j we will have the same value of A.
Therefore, D(σ′)⊗σ′, j |=

x
A
y
∧¬τ so that D is not correct, thus reaching a contradiction.

4.4. ASLK Specifications. The formalization of ASLK (Figure 13) is obtained by extend-
ing ASL (Figure 10) with the concepts of maximality and diagnosability, defined as epistemic
properties. When maximality is required we add a third conjunct following Theorem 4.1.
When Diag = Trace instead, we precondition the completeness to the trace diagnosability
(as defined in Figure 11); this means that the diagnoser will raise an alarm whenever the
diagnosis condition is satisfied and the diagnoser is able to know it.

Several simplifications are possible. For example, in the case Diag = Trace, we do not
need to verify the completeness due to the following result:

Theorem 4.3. Given a diagnoser D for a plant P and a trace diagnosable alarm condition
ϕ, if D is maximal for ϕ, then D is complete.

Proof. (ExactDel) For all σ, i if σ, i |= (β → Xd
x
KY dβ

y
), then by using the maximality

assumption, we know that σ, i |= (β → Xd
x
A
y
); thus, σ, i |= (β → Xd

x
KY dβ

y
) → (β →

Xd
x
A
y
). Similarly we can prove BoundDel and FiniteDel.

As a corollary of Theorem 4.3, the same can be applied also for system diagnosable alarm
conditions if P is diagnosable, since system diagnosability implies trace diagnosability:

Theorem 4.4. Given an alarm condition for the system diagnosable case, and a diagnoser
D for a plant P , if D is maximal for ϕ and ϕ is diagnosable in P then D is complete.

Proof. The theorem follows directly from Theorem 4.3 and the fact that if D is complete
for a trace diagnosable alarm condition that is system diagnosable, then D is also complete
for the corresponding system diagnosable alarm condition.

FORMAL DESIGN OF ASYNCHRONOUS FDI USING TEMPORAL EPISTEMIC LOGIC 19

Template Maximality = False Maximality = True

D
ia
g

=
S
y
st
em ExactDel

G(
x
A
y
→ Y dβ) ∧ G(β → Xd

x
A
y
) G(

x
A
y
→ Y dβ) ∧ G(β → Xd

x
A
y
) ∧

G(
x
KY dβ

y
→

x
A
y
)

BoundDel
G(

x
A
y
→ O≤dβ) ∧ G(β → F≤d

x
A
y
) G(

x
A
y
→ O≤dβ) ∧ G(β → F≤d

x
A
y
) ∧

G(
x
KO≤dβ

y
→

x
A
y
)

FiniteDel
G(

x
A
y
→ Oβ) ∧ G(β → F

x
A
y
) G(

x
A
y
→ Oβ) ∧ G(β → F

x
A
y
) ∧

G(
x
KOβ

y
→

x
A
y
)

D
ia
g

=
T
ra
ce

ExactDel
G(

x
A
y
→ Y dβ) ∧ G(

x
A
y
→ Y dβ) ∧

G((β → Xd
x
KY dβ

y
) → (β → Xd

x
A
y
)) G((β → Xd

x
KY dβ

y
) → (β → Xd

x
A
y
)) ∧

G(
x
KY dβ

y
→

x
A
y
)

BoundDel
G(

x
A
y
→ O≤dβ) ∧ G(

x
A
y
→ O≤dβ) ∧

G((β → F≤d
x
KO≤dβ

y
) → (β → F≤d

x
A
y
)) G((β → F≤d

x
KO≤dβ

y
) → (β → F≤d

x
A
y
)) ∧

G(
x
KO≤dβ

y
→

x
A
y
)

FiniteDel
G(

x
A
y
→ Oβ) ∧ G(

x
A
y
→ Oβ) ∧

G((β → F
x
KOβ

y
) → (β → F

x
A
y
)) G((β → F

x
KOβ

y
) → (β → F

x
A
y
)) ∧

G(
x
KOβ

y
→

x
A
y
)

Figure 13. ASLK specification patterns among the four dimensions:

Diagnosability , Maximality , Completeness and Correctness .

This Theorem is interesting because it tells us that if a specification that was required to
be system diagnosable is indeed system diagnosable, then we can just check whether the
diagnoser is maximal and avoid performing the completeness test.

Template Maximality = False Maximality = True

D
ia
g

=
S
y
st
em ExactDel

G(
x
A
y
→ Y dβ) ∧ G(β → Xd

x
A
y
) G(

x
A
y
→ Y dβ) ∧ G(β → Xd

x
A
y
)

G(
x
KY dβ

y
→ A)

BoundDel
G(

x
A
y
→ O≤dβ) ∧ G(β → F≤d

x
A
y
) G(

x
A
y
→ O≤dβ) ∧ G(β → F≤d

x
A
y
) ∧

G(
x
KO≤dβ

y
→ A)

FiniteDel
G(

x
A
y
→ Oβ) ∧ G(β → F

x
A
y
) G(

x
A
y
→ Oβ) ∧ G(β → F

x
A
y
) ∧

G(
x
KOβ

y
→ A)

D
ia
g

=
T
ra
ce

ExactDel
G(

x
A
y
→ Y dβ) ∧ G(

x
A
y
→ Y dβ) ∧

G(
x
KY dβ

y
→ A) G(

x
KY dβ

y
→ A)

BoundDel
G(

x
A
y
→ O≤dβ) ∧ G(

x
A
y
→ O≤dβ) ∧

G((β ∧ F≤d
x
KO≤dβ

y
)→ F≤d

x
A
y
) G(

x
KO≤dβ

y
→ A)

FiniteDel
G(

x
A
y
→ Oβ) ∧ G(

x
A
y
→ Oβ) ∧

G((β ∧ F
x
KOβ

y
)→ F

x
A
y
) G(

x
KOβ

y
→ A)

Figure 14. ASLK with simplified patterns for Diag = Trace

20 M. BOZZANO, A. CIMATTI, M. GARIO, AND S. TONETTA

Theorem 4.5. For all trace diagnosable and non-maximal ExactDel specifications, com-
pleteness can be replaced by maximality. Formally, for all σ, σ |= G((β → Xd

x
KY dβ

y
) →

(β → Xd
x
A
y
)) iff σ |= G(

x
KY dβ

y
→

x
A
y
)

Proof.

σ, i |=((β → Xd
x
KY dβ

y
)→ (β → Xd

x
A
y
)) iff

σ, i |=((β ∧Xd
x
KY dβ

y
)→ Xd

x
A
y
) iff

σ, i+ d |=((Y dβ ∧
x
KY dβ

y
)→

x
A
y
) iff

σ, i+ d |=((
x
Y dβ ∧KY dβ

y
)→

x
A
y
) iff

σ, i+ d |=(
x
KY dβ

y
→

x
A
y
)

Therefore, we can conclude that for all i, σ, i |= ((β → Xd
x
KY dβ

y
) → (β → Xd

x
A
y
)) iff for

all j ≥ d, σ, j |= (
x
KY dβ

y
→

x
A
y
). We conclude noting that for j < d, Y dβ is false and

therefore σ, j |= (
x
KY dβ

y
→

x
A
y
).

After applying the simplifications specified in Theorem 4.3 and Theorem 4.5 and the
equivalence

x
φ
y
→

x
ψ
y
≡

x
φ
y
→ ψ, we obtain the table in Figure 14, where the patterns in

the lower half (Diag = Trace) have been simplified.
An ASLK specification is built by instantiating the patterns defined in Figure 13. For

example, we would write ExactDelK(A, β, d, T race, T rue) for an exact-delay alarm A
for β with delay d, that satisfies the trace diagnosability property and is maximal. An
introductory example on the usage of ASLK for the specification of a diagnoser is provided
in [BCGT13]. Figure 15 shows how we extend the specification for the BSS by introducing
requirements on the diagnosability and maximality of alarms. In particular, all the alarms
that we defined are not system diagnosable. Therefore, we need to weaken the requirements
and make them trace-diagnosable. The patterns are then converted into temporal epistemic
formulae as shown in Figure 16.

ExactDelK(PSU1Exacti , βPSU1, i, T race, T rue)
BoundDelK(PSU1Bound, βPSU1, C, T race, T rue)
BoundDelK(BS, βBS ,DC, Trace, T rue)
FiniteDelK(Discharged, βDepleted, T race, False)
FiniteDelK(B1Leak, βBattery1, System, True)

Figure 15. ASLK Specification for the BSS

Alarm Formula

PSU1Exacti G(
x
PSU1Exactiy → Y iβPSU1) ∧ G(

x
KY iβPSU1y → x

PSU1Exactiy)

PSU1Bound G(
x
PSU1Boundy → O≤CβPSU1) ∧ G(

x
KO≤CβPSU1y → x

PSU1Boundy)

BS G(
x
BS

y
→ O≤DCβBS) ∧ G(

x
KO≤DCβBSy → x

BS
y
)

Discharged G(
x
Discharged

y
→ OβDeplated) ∧ G((βDeplated ∧ F

x
KOβDeplatedy)→ F

x
Discharged

y
)

B1Leak G(
x
B1Leak

y
→ OβBattery1) ∧ G(βBattery1 → F

x
B1Leak

y
) ∧ G(

x
KOβBattery1y → x

B1Leak
y
)

Figure 16. KL1 translation of ASLK patterns for the BSS

FORMAL DESIGN OF ASYNCHRONOUS FDI USING TEMPORAL EPISTEMIC LOGIC 21

In the BSS, if we assume at most one fault, then the sensor faults are neither system nor
trace diagnosable since we are only able to observe the difference in output of the sensors,
and therefore we can never be sure of which sensor is experiencing the fault. Restricting
the model to two faults, instead, makes it possible to detect when both sensors are faulty,
since the device stops working. The Battery Leak is trace diagnosable but not system
diagnosable. This means that in general, we cannot detect the battery leak, but there
is at least one execution in which we can. In particular, this is the execution in which
the mode becomes Secondary 2 when Battery 1 was charged, and we can see the battery
discharging, thus detecting the fault. Note that to detect this fault, we need to recall the
fact that previously the battery was charged, and therefore a simple diagnoser without
memory would not be able to detect this fault.

5. Validation and Verification of ASLK Specifications

Thanks to the formal characterization of ASLK , it is possible to apply formal methods for
the validation and verification of a set of FDI requirements. In validation we verify that
the requirements capture the interesting behaviors and exclude the spurious ones, before
proceeding with the design of the diagnoser. In verification, we check that a candidate
diagnoser fulfills a set of requirements.

5.1. Validation. Given a specification A for our diagnoser, we want to make sure that
it captures the designer expectations. Known techniques for requirements validation
(e.g.,[CRST12]) include checking their consistency, and their realizability, i.e., whether they
can be implemented on a given plant. Moreover, often we want to show that there exists
some condition under which the alarm might be triggered (possibility), and some other
conditions that require the alarm to be triggered (necessity).

By construction, an ASLK specification is always consistent, i.e., there are no internal
contradictions. This is due to the fact that alarm specifications do not interact with each
other, and each alarm specification can always be satisfied by a diagnosable plant. Moreover,
in Section 6, we will prove that we can always synthesize a diagnoser satisfying A, with
the only assumption that if A contains some system diagnosable alarm condition, then that
condition is diagnosable in the plant. Thus, the check for realizability reduces to checking
that the plant is diagnosable for the system diagnosable conditions in A. The diagnosability
check can be performed via epistemic model-checking (Section 4.2) or it can be reduced to
an LTL model-checking problem using the twin-plant construction [CPC03].

An alarm that is always (or never) triggered is not useful. Therefore, we need to check
under which conditions the alarm can and cannot be triggered. Moreover, there might be
some assumptions on the environment of the diagnoser (including details on the plant) that
might have an impact on the the alarms. For example, if we have a single fault assumption
for our system, an alarm that implicitly depends on the occurrence of two faults will never be
triggered. Similarly, our assumptions on the environment might provide some link between
the behavior of different components, or dynamics of faults and thus characterize the relation
between different alarms.

We consider a set of environmental assumptions E expressed as LTL properties. This
set can be empty, or include detailed information on the behavior of the environment and
plant, since throughout the different phases of the development process, we have access to
better versions of the plant model, and therefore the analysis can be refined.

22 M. BOZZANO, A. CIMATTI, M. GARIO, AND S. TONETTA

When checking possibility we want that the alarms can be eventually activated, but
also that they are not always active. This means that for a given alarm condition ϕ ∈ A,
we are interested in verifying that there is a trace σ ∈ E and a trace σ′ ∈ E s.t. σ |= F

x
Aϕy

and σ′ |= F¬
x
Aϕy. This can be done by checking the unsatisfiability of (E ∧ ϕ) → G¬

x
Aϕy

and (E ∧ ϕ)→ G
x
Aϕy.

Checking necessity provides us a way to understand whether there is some correlation
between alarms. This, in turns, makes it possible to simplify the model, or to guarantee
some redundancy requirement. To check whether Aϕ′ is a more general alarm than Aϕ

(subsumption) we check whether (E ∧ ϕ ∧ ϕ′) → G(
x
Aϕy → x

Aϕ′
y
) is valid. An example of

subsumption of alarms is given by the definition of maximality: any non-maximal alarm
subsumes its corresponding maximal version. Finally, we can verify that two alarms are
mutually exclusive by checking the validity of (E ∧ ϕ ∧ ϕ′)→ G¬(

x
Aϕy ∧ x

Aϕ′
y
).

To clarify the concepts presented in this section, we apply a necessity check on our
running example. In the Battery-Sensor, we have two alarms specified on PSU1 (Figure 15):
PSU1Exacti and PSU1Bound. Let’s take i = C = 2, thus obtaining:

- ExactDelK(PSU1Exact2 , βPSU1, 2, T race, T rue)
- BoundDelK(PSU1Bound, βPSU1, 2, T race, T rue)

we want to show that PSU1Exacti is more specific than (is subsumed by) PSU1Bound. This
means that for any plant and diagnoser, the following holds:

D ⊗ P |= (ϕPSU1Exact2
∧ ϕ′

PSU1Bound
)→ G(

x
PSU1Exact2y → x

PSU1Boundy)

By renaming with PE = PSU1Exact2 and PB = PSUBound (for brevity) and expanding
the definitions of ϕPSU1Exact2

∧ ϕ′
PSU1Bound

we have that

D ⊗ P |= (G(
x
PE

y
→ Y 2β) ∧G(

x
KY 2β

y
→

x
PE

y
) ∧

G(
x
PB

y
→ O≤2β) ∧G(

x
KO≤2β

y
→

x
PB

y
))

→ G(
x
PE

y
→

x
PB

y
)

We can apply Theorem 4.2, and therefore write:

D ⊗ P |= (G(
x
PE

y
→ Y 2β) ∧G(

x
KY 2β

y
→

x
PE

y
) ∧

G(
x
PB

y
→ O≤2β) ∧G(

x
KO≤2β

y
→

x
PB

y
) ∧

G(
x
PE

y
→

x
KY 2β

y
) ∧G(

x
PB

y
→

x
KO≤2β

y
))

→ G(
x
PE

y
→

x
PB

y
)

To prove that the above formula is valid (and therefore it is satisfied by any plant and
diagnoser), we prove that its negation is unsatisfiable:

(G(
x
PE

y
→ Y 2β) ∧G(

x
KY 2β

y
→

x
PE

y
) ∧

G(
x
PB

y
→ O≤2β) ∧G(

x
KO≤2β

y
→

x
PB

y
) ∧

G(
x
PE

y
→

x
KY 2β

y
) ∧G(

x
PB

y
→

x
KO≤2β

y
))

∧¬G(
x
PE

y
→

x
PB

y
)

The first part of this formula is composed by conjuncts in the form Gψ. This means that a
counter examples is a trace for which each state satisfies ψ. Moreover, we need one of these
states to satisfy (PE ∧ ¬

x
PB

y
). Therefore, to prove the unsatisfiable of the above formula,

FORMAL DESIGN OF ASYNCHRONOUS FDI USING TEMPORAL EPISTEMIC LOGIC 23

we can just prove that no state exists that satisfies:

(
x
PE

y
→ Y 2β) ∧ (

x
KY 2β

y
→

x
PE

y
) ∧

(
x
PB

y
→ O≤2β) ∧ (

x
KO≤2β

y
→

x
PB

y
) ∧

(
x
PE

y
→

x
KY 2β

y
) ∧ (

x
PB

y
→

x
KO≤2β

y
))

∧
x
PE

y
∧ ¬

x
PB

y

We show this by a contradiction since:

· · · ∧
x
PE

y
∧ ¬

x
PB

y

ObsPoint Def. · · · ∧
x
⊤
y
∧ PE ∧ ¬PB

Theorem 4.2 on PE · · · ∧
x
⊤
y
∧ PE ∧ ¬PB ∧KY Y β

Maximality of PB · · · ∧
x
⊤
y
∧ PE ∧ ¬PB ∧KY Y β ∧ ¬KO≤2β

†Def. of ¬K · · · ∧
x
⊤
y
∧ PE ∧ ¬PB ∧KY Y β ∧ ¬O≤2β

Def. of O≤n · · · ∧
x
⊤
y
∧ PE ∧ ¬PB ∧KY Y β ∧ ¬(β ∨ Y β ∨ Y Y β)

K Axiom (Kφ→ φ) · · · ∧
x
⊤
y
∧ PE ∧ ¬PB ∧ Y Y β ∧ ¬β ∧ ¬Y β ∧ ¬Y Y β

Thus reaching a contradiction between Y Y β and ¬Y Y β. In the step marked with † we
need to show that two observationally equivalent traces exists s.t. one satisfies O≤2β and
the other ¬O≤2β; therefore, we only need to show that one of the two (namely ¬O≤2β)
does not exist.

5.2. Verification. The verification of a system w.r.t. a specification can be performed via
model-checking techniques using the semantics of the alarm conditions:

Definition 5.1. Let D be a diagnoser for alarms A and plant P . We say that D satisfies
a set A of ASLK specifications iff for each ϕ in AP there exists an alarm Aϕ ∈ A and
D ⊗ P |= ϕ.

To perform this verification steps, we need in general a model checker for KL1 with asyn-
chronous/synchronous perfect recall such as MCK [GM04]. However, if the specification
falls in the pure LTL fragment (ASL) we can verify it with an LTL model-checker such as
nuXmv [CCD+14] thus benefiting from the efficiency of the tools in this area.

Moreover, a diagnoser is required to be deterministic. This is important, on one hand,
for implementability, on the other hand, to ensure that the composition of the plant with
the diagnoser does not reduce the behaviors of the plant. In order to verify that a given
diagnoser D = 〈V,E, I,T 〉 is deterministic, we check the following conditions:

• I must be satisfiable,
• I ∧ I[Vc/V]→ V = Vc must be valid,
• for all e ∈ E, ∀V ∃V ′.T (e) must be valid (note that this corresponds to the validity of the
pre-image of ⊤),
• for all e ∈ E, T (e) ∧ T (e)[Vc/V

′]→ V ′ = Vc must be valid.

Therefore, we can solve the problem with a finite set of satisfiability checks and pre-image
computations.

24 M. BOZZANO, A. CIMATTI, M. GARIO, AND S. TONETTA

6. Synthesis of a Diagnoser from an ASLK Specification

In this section, we discuss how to synthesize a diagnoser that satisfies a given specification
A. We considers the most expressive case of ASLK (maximal/trace diagnosable), which
also satisfies all the other cases.

The idea is to generate an automaton that encodes the set of possible states in which
the plant could be after each observations. The result is achieved by generating the power-
set of the states of the plant, also called belief states, and defining a suitable transition
relation among the elements of this set, only taking into account observable information.
Each belief state of the automaton is then annotated with the alarms that are satisfied in
all the states of the belief state. The resulting automaton is the Diagnoser.

The approach resembles the constructions by Sampath [SSL+96] and Schumann [Sch04],
with the following main differences. First, we consider LTL Past expression as diagnosis
condition, and not only fault events as done in previous works. Second, instead of providing
a set of possible diagnoses, we provide alarms. In order to raise the alarm, we need to be
certain that the alarm condition is satisfied for all possible diagnoses. This gives raise to a
3-valued alarm system: we know that the fault occurred; know that the fault did not occur;
or we are uncertain. Moreover, the approach works for the asynchronous case. Although
the use of a power-set construction in the setting of temporal epistemic logic is not novel
(e.g. [Dim09] for synchronous CTLK model-checking), the main contribution of this section
is to show the formal properties of the diagnoser, and in particular that it satisfies the
specification. In a way, this algorithm is a strong indicator of a deep connection between
the topics of temporal epistemic logic reasoning and FDI design.

6.1. Synthesis algorithm. Given a partially observable plant P = 〈V P , EP , IP ,T P , EP
0 〉,

let S be the set of states of P . The belief automaton is defined as B(P) = 〈B,E, b0, R〉
where B = 2S , E = EP

o , b0 ∈ B and R : (B×E)→ B. B represents the set of sets of states,
also called belief states. Given a belief state b, we use b∗ to represent the set of states that
are reachable from b by only using events in EP \EP

o (non observable events), and call it the
u-transitive closure. Formally, b∗ is the least set s.t. b ⊆ b∗ and if there exist e ∈ EP \ EP

o

and s′ ∈ b∗ such that 〈s′, s〉 ∈ T P (e) then s ∈ b∗. b0 is the initial belief state and contains
the states that satisfy the initial condition IP (i.e., b0 = {s | s |= IP }).

Given a belief state b and an observable event e ∈ EP
o , we define the successor belief

state b′ as:
R(b, e) = b′ = {s′ | ∃s ∈ b∗. 〈s, s′〉 |= TP (e)}

that is the set of states that are compatible with the observable event e in a state of the
u-transitive closure of b. Intuitively, we first compute the u-transitive closure of b to account
for all non-observable transitions, and then we consider all the different states that can be
reached from b∗ with an occurrence of the event e.

The diagnoser is obtained by annotating each state of the belief automaton with the
corresponding alarms. We annotate with Aϕ all the states b that satisfy the temporal
property τ(ϕ). As explained later on, any temporal τ(ϕ) can be handled by introducing
suitable propositional formulas. Therefore we consider the simplest case in which τ(ϕ) is
a propositional formula and formally say that the annotation ab of the belief state b is the
assignment to Aϕ such that ab(Aϕ) is true iff for all s ∈ b, s |= τ(ϕ). We perform the
same annotation for A¬ϕ. The diagnoser obtained by this algorithm induces three alarms,
related to the knowledge of the diagnoser. In particular, the diagnoser can be sure that

FORMAL DESIGN OF ASYNCHRONOUS FDI USING TEMPORAL EPISTEMIC LOGIC 25

function belief automaton(I, T , E, Eo)
visited← {}
edges ← {}
stack ← [I]
while not stack.is empty() do

b← stack.pop()
b∗ ← u trans closure(b, T,E)
for all o ∈ get observable events(b∗, T,Eo) do

target belief ← reachable w obs(b∗, o, T)
edges.add((b, o, target belief))
if target belief 6∈ visited then

visited.add(target belief)
stack.push(target belief)

end if
end for

end while
return Automaton(visited, edges)

end function

Figure 17. Pseudo-code of the Belief Automaton construction phase

a condition occurred (Aϕ) can be sure that a condition did not occur (A¬ϕ) or can be
uncertain on whether the condition occurred (¬Aϕ ∧ ¬A¬ϕ) – notice that, by construction,
it is not possible for both Aϕ and A¬ϕ to be true at the same time. In this way, at any
point in time we are able to understand whether we are on a trace that is not diagnosable
(and thus there is uncertainty) or whether the diagnoser knows that the condition did not
occur. This can thus provide additional insight on the behavior of the system.

Figure 17 provides a pseudo-code of the main function of the synthesis task: the con-
struction of the belief automaton. Starting from the set of initial states, we perform an
explicit visit until we have explored all belief states. For each belief state we first compute
its u-transitive closure (u trans closure) w.r.t. the non-observable events E, obtaining b∗.
We then compute the possible observable events available from b∗, and iterate over each
event oi obtaining the set of states target belief such that T (b star, oi, target belief) is sat-
isfied (reachable w obs). We can now add a transition to our automaton linking the belief
state b to the belief state target belief through the event oi. Once we have completed this
phase, we have an automaton with labeled transitions. The automaton resulting from this
function can then be annotated by visiting each state and testing whether the state entails
(or not) the alarm specification.

6.2. Running Example. We show the first step of the algorithm on a simplified version
of the battery component of our running example (Figure 5). We ignore the events related
to threshold passing of the battery (Mid, Low, High) and only consider the observable event
Off, signaled when the charge reaches zero, and the ones due to mode changes. To keep
the representation compact, we indicate each state with three symbols. For example, we
use (NPC) to indicate the state “Nominal, Primary, Charging” and (NPC) to indicate
the state “Nominal, Primary, Not Charging”. Similarly we use F, O, and D to indicate

26 M. BOZZANO, A. CIMATTI, M. GARIO, AND S. TONETTA

Faulty, Offline and Double. We recall that in the original model, the mode transitions are
observable but all other transitions are not.

In the first step (Figure 18), we take the set of initial states. This is the set of states
(NPC) for any value of the charge ∈ [0, C]. The u-transitive closure needs to take into
account all non-observable transitions. Therefore, we need to consider going from Nominal
to Faulty, from Charging to Not Charging, and their combination.

(NPC)start

(NPC)
(NPC)
(FPC)
(FPC)

u-trans

Figure 18. Expanding the initial belief state of the battery LTS.

These are all the states that are reachable before an observable event can occur. We
now take each observable event and compute the set of states that are reachable with one
of the observable events (Figure 19): the battery being discharge (Off), and the change
of mode (Offline, Double). Note that one of the belief states is smaller than the others.

(NPC)start

(NPC)
(NPC)
(FPC)
(FPC)

(NOC)
(NOC)
(FOC)
(FOC)

(NDC)
(NDC)
(FDC)
(FDC)

(NPC)
(FPC)
(FPC)

u-trans

Offline
Double

Off (NPC)start

(NOC)
(NOC)
(FOC)
(FOC)

(NDC)
(NDC)
(FDC)
(FDC)

(NPC)
(FPC)
(FPC)

Offline
Double

Off

Figure 19. Expanding the belief state via observable transitions

This is due to the fact that in our model, the discharging of the battery cannot occur if
the battery is nominal, charging and in primary mode (NPC). Thus, the fact that we
receive the Off event allows us to exclude that state. The state obtained by computing
the transitive closure is not part of our final automaton, and is provided in the figure only
to simplify the understanding.

We repeat these two steps until all belief states have been explored. We then pro-
ceed to the labeling phase, in which we label each state with the corresponding alarm.
For example, by considering the alarms ExactDel(ANC , Nominal ∧ Charging, 0) and
ExactDel(AN , Nominal, 0), we obtain the diagnoser partially represented in Figure 20.
Notice how, in the initial state we can raise the alarm ANC , and this alarm can only be
changed by an observable transition.

6.3. Formal Properties of the Synthesized diagnoser. We now show that the gener-
ated transition system is a diagnoser and that it is correct, complete and maximal. Lets
assume that ϕ is an exact delay specification, with delay zero. Any other alarm conditions

FORMAL DESIGN OF ASYNCHRONOUS FDI USING TEMPORAL EPISTEMIC LOGIC 27

ANC ,
AN

¬A¬NC

¬A¬N

start

¬ANC

¬AN

¬A¬NC

¬A¬N

¬ANC

¬AN

¬A¬NC

¬A¬N

¬ANC

¬AN

A¬NC

¬A¬N

· · · · · ·

· · ·

Offline
Double

Off

Figure 20. Annotation of the belief states

can be reduced to this case. We build a new plant P ′ by adding a monitor variable τ to P
s.t., P ′ = P × (G(τ(ϕ) ↔ τ)), where we abuse notation to indicate the synchronous compo-
sition of the plant with an automaton that encodes the monitor variable. By rewriting the
alarm condition as ϕ′ = ExactDel(Aϕ, τ , 0), we obtain that D ⊗ P |= ϕ iff D ⊗ P ′ |= ϕ′.
Thus, it is sufficient to show the following results only for the zero delay case. We define
Dϕ as the diagnoser for ϕ. Dϕ = 〈V Dϕ , EDϕ , IDϕ ,T Dϕ〉 is a symbolic representation of

B(P) with Aϕ ⊆ V Dϕ , E
Dϕ
o = EP

o and such that every state b of Dϕ represents a state in
B (with abuse of notation we do not distinguish between the two since the assignment to
Aϕ is determined by b).

Theorem 6.1. Dϕ is deterministic.

Proof. The result follows directly from the definition of the belief automaton, which is
deterministic (one initial state and one successor). Note that the assignment to Aϕ is not
relevant since it is determined by the belief state.

Lemma 6.2. For every reachable state b × s of Dϕ ⊗ P , for every trace σ reaching b × s,
for every state s′ ∈ b, there exists a trace σ′ reaching b× s′ with obs(σ) = obs(σ′).

Proof. By induction on σ. All traces are observationally equivalent in the initial state. Let
〈b1 × s1, e, b× s〉 be the last transition of σ and let σ1 be the prefix of σ without this last
transition. If e ∈ E \ Eo then obs(σ) = obs(σ1). Otherwise, for every state s′ ∈ b there
exists a transition 〈s′1, e, s

′〉 such that s′1 ∈ b
∗
1. By inductive hypothesis there exists a trace

σ′1 reaching b1× s
′
1 such that obs(σ1) = obs(σ′1). Therefore the concatenation of σ′1 with the

transition 〈b1 × s
′
1, e, b× s

′〉 results in a trace σ′ reaching b×s′ such that obs(σ) = obs(σ′).

Theorem 6.3 (Maximality). Dϕ ⊗ P |= G(
x
Kτ(ϕ)

y
→

x
Aϕy).

Proof. Consider a trace σ and i ≥ 0. If σ, i |=
x
Kτ(ϕ)

y
, then for all traces σ′ and points

j s.t. ObsEq((σ, i), (σ′, j)), σ′, j |= τ(ϕ). By Lemma 6.2, all states s ∈ σ[i] there exists a
trace σ′ with obs(σ) = obs(σ′), and therefore s |= τ(ϕ) so that σ[i] |=

x
Aϕy.

Lemma 6.4. Given a trace σ of Dϕ ⊗ P . Let σ[i] = b × s. If i is an observation point,
then s ∈ b.

Proof. By assumption, i is the n-th observation point of σ for some n. We prove the lemma
by induction on n.

28 M. BOZZANO, A. CIMATTI, M. GARIO, AND S. TONETTA

Consider the case n = 1. If σ[0] = b0 × s0, by construction of Dϕ, s0 ∈ b0. Let
σ[i − 1] = b′ × s′ and let e be the i-th (observable) event of σ. If i is the first observation
point of σ, it means that b′ = b0 and s′ ∈ b∗0. Moreover, 〈s′, s〉 ∈ T (e) and therefore s ∈ b.

Consider the case n > 1. Let j be the n− 1 observation point, σ[j] = bj × sj, σ[i− 1] =
b′ × s′ and let e be the i-th (observable) event of σ. Similarly to the previous case, b′ = bj
and s′ ∈ b∗j . Moreover 〈s′, s〉 ∈ T (e) and therefore s ∈ b.

Theorem 6.5 (Correctness). Dϕ ⊗ P |= G(
x
Aϕy → τ(ϕ)).

Proof. Consider a trace σ and i ≥ 0. Suppose σ, i |=
x
Aϕy and let σDϕ and σP be respectively

the left and right component of σ. Then, for all s ∈ σDϕ [i], s |= τ(ϕ). Since i is an
observation point, by Lemma 6.4, σP [i] ∈ σAϕ [i]. We can conclude that σ[i] |= τ(ϕ).

Theorem 6.6 (Completeness). If ϕ is an alarm condition required to be trace diagnosable,
then Dϕ is complete. If ϕ is a system diagnosable condition and ϕ is diagnosable in P , then
Dϕ is complete.

Proof. Since Dϕ is maximal and correct (Theorems 6.3 and 6.5), we can apply Theorem 4.3
(if ϕ is trace diagnosable) or Theorem 4.4 (if it is system diagnosable) to obtain completeness.

7. Industrial Experience

The methods described in this paper have been motivated by AUTOGEF, a project [Eur10,
AUT, ANY+12] funded by the European Space Agency. The main goal of the project
was the definition of a set of requirements for an on-board Fault Detection, Identification
and Recovery (FDIR) component and its synthesis. The problem was cast in the frame
of discrete event systems, communicating asynchronously, and tackled by synthesizing the
Fault Detection (FDI) and Fault Recovery (FR) components separately – with the idea that
the FDI provides sufficient diagnosis information for the FR to act on.

A similar problem was further investigated in FAME, another ESA-funded
project [Eur11, FAM, GFB+14, BBC+14a, BBC+14b]. In the context of FAME, we ad-
dressed the problem of synthesis of FDI and FR components for continuous time systems,
with synchronous communication – in particular the diagnoser communicates with the plant
by sampling the values of the sensors at periodic time intervals. In both cases, AUTOGEF
and FAME, we addressed the problem of FiniteDel diagnosis, which was of interest from
an industrial perspective.

Within AUTOGEF, the design approach initially was evaluated using scalable bench-
mark examples. Then, Thales Alenia Space evaluated AUTOGEF on an industrial case
study based on the EXOMARS Trace Gas Orbiter. This case-study is a significant appli-
cation of the approach described in this paper, since it covers all the phases of the FDIR
development process. The (nominal and faulty) behavior of the system was modeled using
a formal language. A table-based and pattern-based approach was adopted to describe the
mission phases/modes and the observability characteristics of the system. The specification
of FDIR requirements by means of patterns greatly simplified the accessibility of the tool
to engineers that were not experts in formal methods. Alarms were specified in the case
of finite delay, under the assumption of trace diagnosability and maximality of the diag-
noser. Different faults and alarms were associated with specific mission phases/modes and
configurations of the system, which enabled generation of specific alarms (and recoveries)

FORMAL DESIGN OF ASYNCHRONOUS FDI USING TEMPORAL EPISTEMIC LOGIC 29

for each configuration. The specification was validated, by performing diagnosability anal-
ysis on the system model. The synthesis routines were run on a system composed of 11
components, with 10 faults in total, and overall 90 bits of variables, and generated an FDI
component with 754 states. Finally, the correctness of the diagnoser was verified by using
model-checking routines. Synthesis and verification capabilities have been implemented on
top of the nuXmv model checker. We remark that the ability to define trace diagnosable
alarms was crucial for the synthesis of the diagnoser, since most of the modeled faults were
not system diagnosable.

A similar approach was undertaken in FAME. The industrial evaluation was carried
out on a further elaboration of the Trace Gas Orbiter case study, adapted to take into
account timings of fault propagation. The specification of the FDIR requirements and the
verification, validation and synthesis process were done in a similar way. As a difference
with AUTOGEF, the synthesis of FDI in FAME was aided by the specification of a fault
propagation model, in the form of a Timed Failure Propagation Graph (TFPG) [BBC+14a,
BCGM15]. The case study investigated fault management related to the feared event ‘loss
of the spacecraft attitude’. A total of 3 faults, instantiated for two (redundant) instances
of the Inertial Management Unit (IMU) component were considered. The synthesis of FDI
produced an FDI component with 2413 states.

Successful completion of both projects, and positive evaluations from the industrial
partner and ESA, suggest that a significant first step towards a formal model-based design
process for FDIR was achieved.

8. Related Work

8.1. From Synchronous to Asynchronous FDI. This work is closely related
to [BCGT14]. The key difference is that we extended the approach to include the asyn-
chronous composition of the plant with the diagnoser. This extension is useful in practice,
since many real-life systems as well as many high-level modeling languages adopt an asyn-
chronous, event-based view. In the synchronous case system and diagnoser share the same
time scale, and the diagnoser takes a step every time the system does. In the asynchronous
setting, on the other hand, the diagnoser takes a step only when the system exhibits an
observable behavior, (i.e., an observable event).

Although this could be seen as a minor difference, it poses nontrivial problems. First
of all, since the diagnoser cannot update the value of the alarms at every point in time,
we need to restrict the definition of Correctness and Completeness to the occurrence of a
synchronization, in which the diagnoser can update the alarms, by introducing observation
points and using the observed version

x
A
y
of A. Similarly, since the diagnoser can update

its knowledge of the plant only during synchronizations, also the epistemic operator is
considered in the observation points. Therefore, we define K as usual, but then introduce
a stronger version

x
K

y
that is the basis for most of our definitions.

The synthesis algorithm also needs to take into account multiple transitions from
the plant that are executed without synchronization. This is done by introducing the
u-transitive closure of the belief states.

Finally, to keep the formalism simple, we modeled the observability of state variables
as observable events. This is mainly due to the fact that a change in observable state vari-
ables requires the introduction of a new synchronization event between the plant and the

30 M. BOZZANO, A. CIMATTI, M. GARIO, AND S. TONETTA

diagnoser in order to allow the diagnoser to update its knowledge. This idea is consistent
with the approach defined in [SSL+96]. Also, in other works on knowledge in an asynchro-
nous setting (e.g., [vdM07]), the fact that the observer sees every observable state changes
implicitly assumes that the observable state change triggers a synchronization. Note that
this is somehow different from asynchronous systems with shared variables, where a process
can see the change of the shared variable only when/if scheduled.

We notice that the synchronous case can be embedded in the asynchronous one. In
fact, according to Def. 2.2, a synchronous product is obtained by making all events of the
plant observable: EP

o = EP . This implies that all points are observation points. Therefore,

x
A
y
= A, and the restriction of K to observation points has no effect. Also the u-transitive

closure has no effect, and we see that b∗ = b.

8.2. FDI Specification. In order to formally verify the effectiveness of an FDI component
as part of an overall fault-management strategy, both a formal model of the FDI component
(e.g., as an automaton) and of its expected behavior (requirements) is required. Contrary
to works related to diagnosis compilation, we are also interested in verifying that an FDI
satisfies a given specification. This has tremendous value when we consider the problem of
checking whether an existing system (that is familiar to the system designer) satisfies the
specification and thus is functionally equivalent to an automatically synthesized one (that
could be complex and hard to understand).

Previous works on formal FDI development have considered the specification and syn-
thesis in isolation. Our approach differs with the state of the art because we provide a
comprehensive view on the problem. Due to the lack of specification formalism for diag-
nosers, the problem of verifying their correctness, completeness and maximality was, to the
best of our knowledge, unexplored.

Concerning specification and synthesis, [JK01] is close to our work. The authors present
a way to specify the diagnoser using LTL properties, and present a synthesis algorithm
for this specification. However, problems such as maximality and trace diagnosability are
not taken into account. Another remarkable difference is that [JK01] considers diagnosis
conditions with future operators. This enables the definition of alarms that predict the
occurrence of an event (i.e. prognosis), that is currently not captured in our work.

8.3. Diagnosability. In many practical situations it is not possible to require system di-
agnosability, due, for example, to critical pairs that exists only in a particular configuration
of the system. We introduce the concept of trace diagnosability, that is a distinguishing
feature of our approach, and overcomes a strong limitation in the current state-of-the-art.

The idea of using epistemic properties to analyze the diagnosability of a system had
been already proposed in [ELMV11] and [Hua13]. Notably, the latter extends the problem
to a probabilistic setting, and draws a link with the classical definition of diagnosability,
introducing the idea of L-diagnosability (that is equivalent to our finite-delay diagnosability).
Our approach extends these works by considering other types of delay and the problem of
trace diagnosability. Moreover, we do not focus only on the diagnosability problem, but
also provide a way of specifying the diagnoser and characterize its completeness in terms of
epistemic temporal logic.

FORMAL DESIGN OF ASYNCHRONOUS FDI USING TEMPORAL EPISTEMIC LOGIC 31

We extend the results on diagnosability checking from [CPC03] in order to provide an
alternative way of checking diagnosability and redefine the concept of diagnosability at the
trace level.

8.4. Runtime Verification. The main difference between diagnosis and runtime verifica-
tion is the partial observability of the plant. Works on runtime verification assume [HR04]
that the properties to be verified are expressed over observable variables of the system. In
diagnosis, instead, we define the properties over non-observable parts of the system and
then ask whether it is possible to infer them by looking at the observable part of the sys-
tem. Therefore, while some approaches for runtime verification do not need a model of the
system (i.e., black-box approach), in diagnosis we need to have some information about the
behavior of the system. Finally, in [BLS11] the authors propose the use of a three-valued
LTL variant to define whether a trace satisfies a property, does not satisfy it or whether
there is not enough information to come to a conclusion. This might resemble the approach
presented in Section 6 by our synthesis algorithm. However, the difference is substantial.
Every time our diagnoser is uncertain, it means that there are two traces σ1 and σ2 that are
observationally equivalent, but one satisfies the property and the other does not. However,
if we could have an oracle that would tell us whether the system is in σ1 or in σ2, we could
state (without uncertainty) whether the property is satisfied or not. In [BLS11] instead,
the inconclusiveness of the monitor is intrinsic in the fact that the given trace does neither
satisfy nor violate the property.

9. Conclusions and Future Work

This paper presents a formal approach for the design of FDI components, that covers many
practically-relevant issues such as delays, non-diagnosability and maximality. The design is
based on a formal semantics provided by temporal epistemic logic and can be used both in
a synchronous and asynchronous setting. We cover the specification, validation, verification
and synthesis steps of the FDI design, and discuss the applicability of the approach on a
case-study from aerospace. To the best of our knowledge, this is the first work that provides
a formal and unified view to all the phases of FDI design.

In the future, we plan to explore the following research directions. First, we will ex-
tend FDI to deal with infinite-state systems. Secondly, we will experiment with different
assumptions on the memory requirements for the diagnoser, i.e., relax the perfect recall
assumption.

Another interesting line of research is the development of optimized reasoning tech-
niques for temporal epistemic logic. The idea is to consider the fragment that we are using,
both for verification and validation, and to evaluate and improve the scalability of the
synthesis algorithms.

Finally, we will work on integrating the FDI component with the recovery procedures.

References

[ANY+12] E. Alaña, H. Naranjo, Y. Yushtein, M. Bozzano, A. Cimatti, M. Gario, R. de Ferluc, and
G. Garcia. Automated generation of FDIR for the compass integrated toolset (AUTOGEF). In
Proc. DAta Systems In Aerospace, DASIA 2012, volume ESA SP 701, 2012.

[AUT] AUTOGEF. Dependability Design Approach for Critical Flight Software.
https://es.fbk.eu/projects/autogef.

https://es.fbk.eu/projects/autogef

32 M. BOZZANO, A. CIMATTI, M. GARIO, AND S. TONETTA

[BBC+14a] B. Bittner, M. Bozzano, A. Cimatti, R. de Ferluc, M. Gario, A. Guiotto, and Y. Yushtein. An
Integrated Process for FDIR Design in Aerospace. In Proc. IMBSA 2014, volume 8822 of LNCS,
pages 82–95, 2014.

[BBC+14b] B. Bittner, M. Bozzano, A. Cimatti, R. de Ferluc, M. Gario, A. Guiotto, and Y. Yushtein. FAME:
A Model-Based Environment for FDIR Design in Aerospace. In Short and Tutorial Proceedings
of IMBSA 2014, pages 61–62, 2014.

[BCGM15] M. Bozzano, A. Cimatti, M. Gario, and A. Micheli. SMT-Based Validation of Timed Failure
Propagation Graphs, 2015.

[BCGT13] M. Bozzano, A. Cimatti, M. Gario, and S. Tonetta. Formal Specification and Synthesis of FDI
through an Example. In Workshop on Principles of Diagnosis (DX’13), pages 174–179, 2013.
Available at URL http://www.dx-2013.org/dx13-proceedings.pdf.

[BCGT14] M. Bozzano, A. Cimatti, M. Gario, and S. Tonetta. Formal Design of Fault Detection and

Identification Components Using Temporal Epistemic Logic. In E. Ábrahám and K. Havelund,
editors, Proceedings of TACAS’14, volume 8413 of Lecture Notes in Computer Science, pages
326–340, Grenoble, France, 2014. Springer.

[BLS11] Andreas Bauer, Martin Leucker, and Christian Schallhart. Runtime verification for ltl and tltl.
ACM Transactions on Software Engineering and Methodology (TOSEM), 20(4):14, 2011.

[CCD+14] Roberto Cavada, Alessandro Cimatti, Michele Dorigatti, Alberto Griggio, Alessandro Mariotti,
Andrea Micheli, Sergio Mover, Marco Roveri, and Stefano Tonetta. The nuxmv symbolic model
checker. In Computer Aided Verification, pages 334–342. Springer, 2014.

[CPC03] A. Cimatti, C. Pecheur, and R. Cavada. Formal Verification of Diagnosability via Symbolic
Model Checking. In IJCAI, pages 363–369, 2003.

[CRST12] A. Cimatti, M. Roveri, A. Susi, and S. Tonetta. Validation of requirements for hybrid systems: A
formal approach. ACM Transactions on Software Engineering and Methodology, 21(4):22, 2012.

[Dim09] Cătălin Dima. Revisiting satisfiability and model-checking for ctlk with synchrony and perfect
recall. In Computational Logic in Multi-Agent Systems, pages 117–131. Springer, 2009.

[dKK04] J. de Kleer and J. Kurien. Fundamentals of model-based diagnosis. In Proceedings of IFAC
Safeprocess, volume 3, pages 25–36, 2004.

[ELMV11] J. Ezekiel, A. Lomuscio, L. Molnar, and S.M. Veres. Verifying Fault Tolerance and Self-
Diagnosability of an Autonomous Underwater Vehicle. In IJCAI, pages 1659–1664, 2011.

[Eur10] European Space Agency. ESTEC ITT AO/1-6570/10/NL/LvH “Dependability Design Ap-
proach for Critical Flight Software”, 2010.

[Eur11] European Space Agency. ESTEC ITT AO/1-6992/11/NL/JK “FDIR Development and Verifi-
cation & Validation Process”, 2011.

[Eur13] European Space Agency. ESTEC ITT AO/1-7263/12/NL/AK “Hardware-Software Dependabil-
ity for Launchers”, 2013.

[FAM] FAME. FDIR Development and Verification & Validation Process.
https://es.fbk.eu/projects/fame .

[FKN+10] A. Feldman, T. Kurtoglu, S. Narasimhan, S. Poll, and D. Garcia. Empirical evaluation of diag-
nostic algorithm performance using a generic framework. International Journal of Prognostics
and Health Management Volume 1, page 24, 2010.

[GARK07] A. Grastien, A. Anbulagan, J. Rintanen, and E. Kelareva. Diagnosis of discrete-event systems
using satisfiability algorithms. In AAAI, pages 305–310, 2007.

[GFB+14] A. Guiotto, R. De Ferluc, M. Bozzano, A. Cimatti, M. Gario, and Y.Yushtein. Fame process:
A dedicated development and V&V process for FDIR. In Proc. DAta Systems In Aerospace,
DASIA 2014, volume ESA SP 725 of European Space Agency, (Special Publication), 2014.

[GM04] P. Gammie and R. Van Der Meyden. Mck: Model checking the logic of knowledge. Computer
Aided Verification, pages 256–259, 2004.

[HD05] Jinbo Huang and Adnan Darwiche. On compiling system models for faster and more scalable
diagnosis. In Proceedings Of The National Conference On Artificial Intelligence, volume 20, page
300, 2005.

[HR04] K. Havelund and G. Roşu. Efficient monitoring of safety properties. International Journal on
Software Tools for Technology Transfer, 6(2):158–173, 2004.

[Hua13] X. Huang. Diagnosability in concurrent probabilistic systems. In Proceedings of the 2013 Inter-
national Conference on Autonomous Agents and Multi-agent Systems, 2013.

https://es.fbk.eu/projects/fame

FORMAL DESIGN OF ASYNCHRONOUS FDI USING TEMPORAL EPISTEMIC LOGIC 33

[HV89] J. Halpern and M. Vardi. The complexity of reasoning about knowledge and time. lower bounds.
Journal of Computer and System Sciences, 38(1):195–237, 1989.

[JK01] S. Jiang and R. Kumar. Failure diagnosis of discrete event systems with linear-time temporal
logic fault specifications. In IEEE Transactions on Automatic Control, pages 128–133, 2001.

[LMS02] F. Laroussinie, N. Markey, and P. Schnoebelen. Temporal logic with forgettable past. In 17th
IEEE Symposium on Logic in Computer Science (LICS 2002), 22-25 July 2002, Copenhagen,
Denmark, Proceedings, pages 383–392. IEEE Computer Society, 2002.

[LPZ85] O. Lichtenstein, A. Pnueli, and L. Zuck. The glory of the past. In Rohit Parikh, editor, Logics
of Programs, volume 193, pages 196–218. Springer Berlin Heidelberg, 1985.

[Pnu77] A. Pnueli. The temporal logic of programs. In 18th Annual Symposium on Foundations of Com-
puter Science, Providence, Rhode Island, USA, 31 October - 1 November 1977, pages 46–57.
IEEE Computer Society, 1977.

[Sch04] A. Schumann. Diagnosis of discrete-event systems using binary decision diagrams. Workshop on
Principles of Diagnosis (DX’04), pages 197–202, 2004.

[SSL+95] M. Sampath, R. Sengupta, S. Lafortune, K. Sinnamohideen, and D. C. Teneketzis. Diagnosabil-
ity of discrete-event systems. IEEE Transactions on Automatic Control, 40(9), 1995.

[SSL+96] M. Sampath, R. Sengupta, S. Lafortune, K. Sinnamohideen, and D. C. Teneketzis. Failure diag-
nosis using discrete-event models. IEEE Transactions on Control Systems Technology, 4(2):105–
124, 1996.

[vdM07] R. van der Meyden. What, Indeed, Is Intransitive Noninterference? In Computer Security - ES-
ORICS 2007, 12th European Symposium On Research In Computer Security, Dresden, Germany,
September 24-26, 2007, Proceedings, pages 235–250, 2007.

This work is licensed under the Creative Commons Attribution-NoDerivs License. To view
a copy of this license, visit http://creativecommons.org/licenses/by-nd/2.0/ or send a
letter to Creative Commons, 171 Second St, Suite 300, San Francisco, CA 94105, USA, or
Eisenacher Strasse 2, 10777 Berlin, Germany

	1. Introduction
	2. Background
	2.1. Labeled Transition Systems
	2.2. Linear Temporal Logic
	2.3. Partial Observability
	2.4. Temporal Epistemic Logic
	2.5. Running Example

	3. Formal Characterization
	3.1. Diagnoser
	3.2. Detection, Identification, and Diagnosis Conditions
	3.3. Alarm Conditions
	3.4. Diagnosability
	3.5. Maximality

	4. Formal Specification
	4.1. Diagnosis and Alarm Conditions as LTL Properties
	4.2. Diagnosability as Epistemic Property
	4.3. Maximality as Epistemic Property
	4.4. ASLk Specifications

	5. Validation and Verification of ASLk Specifications
	5.1. Validation
	5.2. Verification

	6. Synthesis of a Diagnoser from an ASLk Specification
	6.1. Synthesis algorithm
	6.2. Running Example
	6.3. Formal Properties of the Synthesized diagnoser

	7. Industrial Experience
	8. Related Work
	8.1. From Synchronous to Asynchronous FDI
	8.2. FDI Specification
	8.3. Diagnosability
	8.4. Runtime Verification

	9. Conclusions and Future Work
	References

