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on interval graphs, i.e., intersection graphs of intervals on the real line. The main positive
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1. INTRODUCTION

Results on the existence of an efficient algorithm for classes of problems have recently
attracted a significant amount of attention. Such results are now referred to as algorithmic
meta-theorems, also see a recent survey [Kre09]. The most prominent example is a theorem
of Courcelle [Cou90] asserting that every MSO (monadic second order) property can be
model checked in linear time on the class of graphs with bounded tree-width. Another
example is a theorem of Courcelle, Makowski and Rotics [CMRO0] asserting that the same
conclusion holds for graphs with bounded clique-width when quantification is restricted to
vertices and their subsets.

In this paper, we focus on a more restricted class of graph properties, specifically the
properties expressible in first order logic. Clearly, every such property can be tested in
polynomial time if we allow the degree of the polynomial to depend on the property of
interest. But is testing these properties fized parameter tractable (FPT [DE13]), i.e. are
they testable in polynomial time where the degree of the polynomial does not depend on
the considered property? The first result in this direction could be that of Seese [See96]:
every FO property can be tested in linear time on graphs with bounded maximum degree.
A breakthrough result of Frick and Grohe [FGOI] asserts that every FO property can be
tested in almost linear time on classes of graphs with locally bounded tree-width. Here, an
almost linear algorithm stands for an algorithm running in time O(n!*¢) for every ¢ > 0.
A generalization to graph classes locally excluding a minor (with worse running time) was
later obtained by Dawar, Grohe and Kreutzer [DGKO07].

These results have been subsequently extended to (more general) sparse graph classes
introduced by Nesettil and Ossona de Mendéz [NdMO08al, NdMO8b, INdMO08c]. First Dawar
and Kreutzer [DK09] (also see [GK11] for the complete proof) and, independently, Dvordk,
Kral’ and Thomas [DKT10], showed that every FO property can be tested in almost linear
time on classes of graphs with locally bounded expansion; examples of such graph classes
include classes of graphs with bounded maximum degree or proper minor-closed classes
of graphs. This series of results ultimately culminated with the recent result of Grohe,
Kreutzer and Siebertz |[GKS14], who established the fixed parameter tractability of testing
FO properties on nowhere-dense classes of graphs (nowhere-dense being the most general
class of sparse graphs).

In this work, we investigate whether structural properties of graphs that are not
necessarily sparse could lead to similar results. Specifically, we study the intersection graphs
of intervals on the real line, which are also called interval graphs. When restricted to unit
interval graphs, i.e. intersection graphs of intervals with unit lengths, one can easily deduce
the existence of a linear time algorithm for testing FO properties from Gaifman’s theorem,
using the result of Courcelle et al. [CMR00] and that of Lozin [Loz0§| asserting that every
proper hereditary subclass of unit interval graphs, in particular, the class of unit interval
graphs with bounded radius, has bounded clique-width. This observation is a starting point
for our research presented in this paper.

Let us now give a definition. For a set L of reals, an interval graph is called an L-interval
graph if it is an intersection graph of intervals with lengths from L. For example, unit
interval graphs are {1}-interval graphs. If L is a finite set of rationals, then any L-interval
graph with bounded radius has bounded clique-width (see Section [5| for further details). So,
testing FO properties of such graphs is fixed parameter tractable. However, if L is not a set
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of rationals, there exist L-interval graphs with bounded radius and unbounded clique-width,
and so the easy argument above does not apply.

Our main algorithmic result (Theorem says that every fixed FO property can be
tested in time O(nlogn) for n-vertex L-interval graphs when L is any fixed finite set of reals
and an L-interval representation is given on the input. To prove this result, we employ a well-
known characterization of FO properties by Ehrenfeucht-Fraissé games. Specifically, we show,
using the notion of game trees introduced later, that there exists an algorithm transforming
an input L-interval graph to another L-interval graph that has bounded maximum degree
and that satisfies the same properties expressible by FO sentences with bounded quantifier
rank. Inspired by Engelmann, Kreutzer and Siebertz [EKS12] (also see [EKK13]), we then
extend our main algorithmic result to successor-invariant FO properties. We should also
mention that a recent result of Gajarsky et al. [GHL™15] (proven subsequently after this
work), giving a fixed parameter algorithm for testing FO properties of partial orders with
bounded width, implies Theorem with a running time quadratic in n.

On the negative side, we show that if L is an (infinite) set that is dense in some open
set, then L-interval graphs can be used to model arbitrary graphs. Specifically, we show that
L-interval graphs for these sets L allow efficient polynomially bounded FO interpretations
of all graphs. Consequently, testing FO properties for L-intervals graphs for such sets L
is WJ[2]-hard (see Corollary and hence unlikely to be fixed parameter tractable. In
addition, we show that unit interval graphs allow an efficient polynomially bounded MSO
interpretation of all graphs and a successor FO interpretation of all graphs. So, our main
algorithmic result cannot be extended to any of these two stronger logics.

The paper is organized as follows. In Section 2, we introduce the notation and the
computational model used in the paper. In the next section, we present an O(nlogn)
algorithm for deciding FO properties of L-interval graphs for finite sets L, and we extend
this result to successor-invariant FO properties in Section [dl Then, we present proofs of
the facts mentioned above on the clique-width of L-interval graphs with bounded radius in
Section o} We finish with the several results on the interpretability of all graphs in interval
graphs in Section [6]

2. PRELIMINARIES

An interval graph is a graph G such that every vertex v of G can be associated with an
interval J(v) = [¢(v),r(v)) such that two vertices v and v’ of G are adjacent if and only if J(v)
and J(v) intersect (it can be easily shown that the considered class of graphs remains the
same regardless of whether we consider open, half-open or closed intervals in the definition).
We refer to such an assignment of intervals to the vertices of G as a representation of G.
The point £(v) is the left end point of the interval J(v) and r(v) is its right end point.

If L is a set of reals and r(v) —£(v) € L for every vertex v, we say that G is an L-interval
graph and we say that the representation is an L-representation of G. For example, if L = {1},
we speak about unit interval graphs. Finally, if r(v) — ¢(v) € L and 0 < 4(v) < r(v) < d for
some real d, i.e. all intervals are subintervals of [0, d), we speak about (L, d)-interval graphs.
Note that if G is an interval graph of radius k, then G is also an (L, (2k + 1) max L)-interval
graph (we use max L to denote the maximum element of the set L).

While an (unrestricted) interval representation of a given interval graph G can be found
in linear time [BL76] and the same applies to unit interval graphs [CKNT95], there seem
to be no results in the literature about the complexity of finding an L-representation of
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a given L-interval graph when L is a finite set of positive reals and |L| > 1. Although,
Pe’er et al. [PS97] prove that a related interval graph recognition problem in that every
vertex of the input graph comes together with its prescribed interval length is NP-hard.
We thus suspect that the recognition problem of L-interval graphs might be hard in the
computational complexity sense as well and, consequently, we always assume in this paper
that an input graph comes alongside with its L-representation.

We now introduce two technical definitions related to manipulating intervals and their
lengths. These definitions are needed in the next section. If L is a set of reals, then L) is
the set of all integer linear combinations of numbers from L with the sum of the absolute
values of their coefficients bounded by k. For instance, L(®) = {0} and L() = LU(—~L)U{0}.
An L-distance of two intervals [a, b) and [¢,d) is the smallest k such that ¢ — a € L), If no
such k exists, then the L-distance of two intervals is defined to be co.

Since we do not restrict our attention to L-interval graphs where L is a set of rationals,
we should specify the computational model considered. We use the standard RAM model
with infinite arithmetic precision and unit cost of all arithmetic operations. However, we
refrain from trying to exploit the power of this computational model by encoding other
data in the infinite precision variables to manipulate the time complexity of the presented
algorithms. In particular, we only store the end points of the intervals of the representations
of input graphs and their differences in numerical variables with infinite precision and
compare these values, e.g. to decide the vertex adjacencies.

2.1. Parameterized Complexity. Next we give a very brief review of the most important
concepts of parameterized complexity. For an in-depth treatment of the subject we refer the
reader to other sources, e.g. [DF13].

The instances of a parameterized problem can be considered as pairs (I, k) where I is
the main part of the instance and k is the parameter of the instance; the latter is usually
a non-negative integer. A parameterized problem is fized parameter tractable (FPT) if
instances (I, k) of size n (with respect to some reasonable encoding) can be solved in time
O(f(k) - n¢) where f is a computable function and ¢ is a constant independent of k. In
the area of parameterized model checking, instances are considered in the form ((G, ¢), |¢|)
where G is a structure, ¢ a formula, the question is whether G' |= ¢ and the parameter is the
size of ¢. Therefore, when speaking about parameterized complexity of FO model checking
we implicitly consider the formula size as a parameter.

The framework of parameterized complexity offers a completeness theory, similar to the
theory of NP-completeness, that allows the accumulation of strong theoretical evidence that
a parameterized problem is not fixed parameter tractable. This completeness theory is based
on the weft hierarchy of equivalence classes W[1],W[2],..., W[P] of certain parameterized
decision problems under parameterized reductions. A parameterized reduction is an extension
of a polynomial-time many-one reduction to parameterized problems that ensures that the
parameter of the new instance is bounded by a function of the parameter of the original
instance. It is known that, unless the Exponential Time Hypothesis fails [[PZ01], W[1]-hard
problems are not fixed parameter tractable.

The class AW[*] extends the weft hierarchy by adding the notion of alternations, and is
formally based on the problem of deciding the satisfiability of quantified boolean formulas. In
particular, AW[*]-hard problems are also W[1]- and W[2]-hard. Showing that a parameterized
problem is AW[*]-hard hence provides a very solid evidence that the problem is not fixed
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parameter tractable. The parameterized FO model checking problem on general structures
as well as on all graphs is AW[*]-complete [DET96].

There exists an even stronger notion of hardness for parameterized problems: a pa-
rameterized problem is para-NP-hard if there exists a parameter kg such that the problem
restricted to the instances (I, ko) of parameter value equal to kg is NP-hard.

2.2. Clique-width. We now briefly present the notion of clique-width, introduced in [CO00].
A k-labeled graph is a graph whose vertices are assigned integers (called labels) from 1 to k
(each vertex has precisely one label). The clique-width of a graph G equals the minimum k
such that G can be obtained using the following four operations: creating a vertex labeled 1,
relabeling all vertices with label i to label j, adding all edges between the vertices with label
i and the vertices with label j, and taking a disjoint union of graphs obtained using these
operations.

2.3. First Order Properties. In this subsection, we introduce concepts from logic and
model theory which we use. A first order (FO) sentence is a formula with no free variables
with the usual logical connectives and quantification allowed only over variables for elements
(vertices in the case of graphs). A monadic second order (MSO) sentence is a formula with no
free variables with the usual logical connectives where, unlike in FO sentences, quantification
over subsets of elements is allowed. An FO property is a property expressible by an FO
sentence; similarly, an MSO property is a property expressible by an MSO sentence. Finally,
the quantifier rank of a formula is the maximum number of nested quantifiers.

FO sentences are closely related to the so-called Ehrenfeucht-Fraissé games. The d-round
FEhrenfeucht-Fraissé game is played on two relational structures R and R’ (of the same type)
by two players, referred to as the spoiler and the duplicator. In each round ¢ = 1,2,...d, the
spoiler chooses an element in one of the structures and the duplicator chooses an element
in the other. Let z; and y; be the elements of R and R’ chosen in the i-th round. We say
that the duplicator wins the game if there is a strategy for the duplicator such that, for
any strategy of the spoiler, the substructure of R induced by the elements x1,...,xq is
always isomorphic to the substructure of R’ induced by the elements 1, ..., yq, with the
isomorphism mapping each z; to y;.

The following theorem [Ehr61, [Fra54] relates Ehrenfeucht-Fraissé games to FO sentences
of quantifier rank at most d.

Theorem 2.1. Let d be an integer. The following statements are equivalent for any two
structures R and R':

o The structures R and R’ satisfy the same FO sentences of quantifier rank at most d.
e The duplicator wins the d-round Ehrenfeucht-Fraissé game for R and R'.

We describe possible courses of the d-round Ehrenfeucht-Fraissé games by rooted trees.

A d-EF-tree T is a rooted tree with the following properties:

(1) each leaf v of T is associated with a relational structure S(v) with elements labelled
with 1,...,d such that each element of S(v) has at least one label (but possibly more
labels) and each label is used exactly once, and

(2) all the leaves of T are at depth d.

The full d-EF-tree Tr of a relational structure R is a d-EF-tree T such that
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(1) the edges from each internal node u to its descendants are in one-to-one correspondence
with the elements of R, and

(2) the structure S(v) associated with a leaf v of Tg is the substructure of R induced by
the elements corresponding to the edges on the unique path from the root to v and the
element corresponding to the i-th edge of this path is labelled by 1.

A mapping f from a d-EF-tree T to another d-EF-tree 7" is an EF-homomorphism if the
following three conditions hold:

(1) if u is the parent of a vertex v of T, then f(u) is the parent of f(v) in 77,
(2) if u is a leaf of T, then f(u) is a leaf of 77, and
(3) the relational structures associated with u and f(u) are the same.

Two d-EF-trees T and 7' are EF-equivalent if there exist an EF-homomorphism from 7 to
7’ and an EF-homomorphism from 77 to 7. An EF-homomorpishm that is bijective is an
EF-isomorphism.

We now formalize the connection between d-EF-trees and Ehrenfeucht-Fraissé games.

Theorem 2.2. Let d be an integer and let R and R’ be two relational structures. If
the full d-EF-trees of R and R' are EF-equivalent, then the duplicator wins the d-round
Ehrenfeucht-Fraissé game for R and R'.

Proof. Let T and T’ be the d-EF-trees for R and R', respectively, and let f: 7 — 7' and
f':T" — T be the EF-homomorphisms witnessing their EF-equivalence. We claim that the
duplicator wins the d-round Ehrenfeucht-Fraissé game, using the following strategy: In the
first round, if the spoiler chooses x; in R, then the duplicator responds with y; = f(x). If
the spoiler chooses y; in R, the duplicator responds with 21 = f/(y1). Assume that the
i — 1 rounds of the game have been played, the elements chosen in the structures R and
R are z1,...,x;_1 and y1,...,y;_1, respectively, and the spoiler chooses an element z; in
R. Let ug,...,u; be the path in 7 formed by the edges corresponding to x1,...,x;. The
duplicator chooses the element y; of R’ that corresponds to the edge f(u;—1)f(u;) in 7.
The definitions of full d-EF-trees and an EF-homomorphism yield that the substructures

of R and R’ induced by z1,...,2z; and y1,...,y; are isomorphic through the isomorphism
mapping z; to y;, 1 < j <. In particular, they are isomorphic after the d rounds of the
game and the duplicator wins. OJ

The converse implication, i.e. that if the duplicator wins the d-round Ehrenfeucht-Fraissé
game for R and R’, then the d-EF-trees for the game played on relational structures R
and R’ are EF-equivalent, is also true. However, we omit the proof since we only need
the implication given by Theorem We show that full d-EF-trees can pruned to be of
bounded size.

Lemma 2.3. Consider a fized type of relational structures. Every class of EF-equivalent
d-EF-trees contains a unique tree (up to an EF-isomorphism) with the minimum number of
leaves and the number of non-EF-equivalent d-EF-trees is finite.

Proof. Let T and T’ be EF-equivalent d-EF-trees with the minimum number of leaves.
Suppose that there exists a non-bijective EF-homomorphism f from 7 to 7’. Let f’ be
an EF-homomorphism from 7’ to 7. Let 7" be the d-EF-tree that is the subtree of T’
induced by the image of f. Since f is an EF-homomorphism from 7 to 7’ and f’ restricted
to the image of f is an EF-homomorphism from 7” to 7T, the d-EF-tree 7" is a d-EF-tree
EF-equivalent to 7 with the smaller number of leaves.
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To show that the number of non-EF-equivalent d-EF-trees is finite, we describe the
minimal elements of EF-equivalence classes in a constructive way. Let 7 be a d-EF-tree.
If a vertex of T at depth d — 1 is adjacent to two leaves associated with the same labelled
structure, delete one of them. The original d-EF-tree has a d-EF-homomorphism to the new
one: map all the vertices except the deleted one to themselves and map the deleted leaf to
the other leaf associated with the same labelled structure. After this operation, the number
of children of any vertex at depth d — 1 does not exceed the number of non-isomorphic
structures with their vertices labelled by 1,...,d; let K be this number. Now, if any vertex
has two children such that their subtrees are isomorphic (preserving the labelled structures
associated with their leaves), deleting one of them with its subtree results in a d-EF-tree EF-
equivalent to 7. When the pruning process stops, we have obtained the minimal d-EF-tree
EF-equivalent to 7 (a non-injective EF-homomorphism from a d-EF-tree always exhibits a
vertex that can be pruned in the described way).

After pruning 7 in the way we described, every vertex at depth d — 2 has at most 2%
children, every vertex at depth d — 3 has at most 22" children, etc. So, every EF-equivalence
class contains a d-EF-tree of size bounded by a function of K and d. Clearly, there can be
only finitely many such such d-EF-trees. L]

In what follows, we will refer to the minimal d-EF-tree EF-equivalent to the full d-
EF-tree of a relational structure R as the d-EF-tree of a relational structure R. Note that
the d-EF-tree of a relational structure R can be constructed from the full d-EF-tree in an
efficient way through the pruning process described in the proof of Lemma [2.3

3. FO MoDEL CHECKING
Using Theorems [2.1] and we prove the following result for L-interval graphs.

Theorem 3.1. For every finite subset L of reals and every integer d > 0, there exist
an integer Ko and an algorithm A with the following properties. The input of A is an
L-representation of an n-vertex L-interval graph G and A outputs in time O(nlogn) an
L-representation of an induced subgraph G’ of G such that

e cvery unit interval contains at most Ky left end points of the intervals corresponding to
vertices of G', and
e G and G’ satisfy the same FO sentences with quantifier rank at most d.

Proof. We are going to use Ehrenfeucht-Fraissé games to (possibly) identify an interval
representing a vertex of GG that can be deleted without changing the set of FO sentences
of quantifier rank at most d satisfied by the input graph. Hence, we first focus on proving
the existence of the number K and the subgraph G’ and we postpone the algorithmic
considerations to the end of the proof.

We start with perturbing the intervals to guarantee that all the left end points of the
intervals representing the vertices of G are distinct. Choose § to be the minimum distance
between distinct end points of the intervals in the representation. Sort the intervals by their
left end points (resolving ties arbitrarily) and shift the i-th interval by id/2n, fori = 1,...,n,
to the right. This does not change the graph represented by the intervals and all the end
points become distinct. Note that this pertubration can be simulated by storing each end
point in the form (z, ) where x is its original coordinate; the pair (z,7) represents the point
x +1i0/2n and the lexicographic ordering of the pairs is to the ordering of the modified
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end-points. In this way, we can perform the perturbation in a way consistent with our
computational model, i.e., without actually modifying the positions of the end points.
Choose € to be the minimum positive element of L™ We now establish the following.

Claim 3.2. There exists a number K depending only on L and d such that if any interval
[a,a + §), 0 < e, contains more than K left end points of the intervals representing the
vertices of G, then G has a vertex w such that G and G\ {w} satisfy the same FO sentences
with quantifier rank at most d.

Fix [a,a + 6). Let Z be the set of all intervals [z, z 4 ) such that z —a € L&), By

the choice of ¢, the intervals of Z are disjoint. In addition, the set Z is finite (recall that
L is finite). Let W be the set of vertices w of G such that the left end point ¢(w) of the
interval corresponding to w is in an interval from Z. For w € W, let i(w) be the left end
point of the interval from Z containing ¢(w). Define a linear order on W such that w < v’
for w # w' from W if
o ((w) —i(w) < L(w') —i(w'), or
o ((w) —i(w) =L(w') —i(w') and £(w) < L(w').
We view W as a linearly ordered set with each of its elements colored (associated) with the
pair formed by i(w) and the length of the interval of w, i.e. with elements of Z x L. Observe
that the colors of the elements of W (together with the linear order) determine the subgraph
of GG induced by W.

Let K be the sum of the number of edges of all non-EF-isomorphic minimal d-EF-trees
for Ehrenfeucht-Fraissé games played on linearly ordered sets with elements colored with
Z x L. The number K is well defined (finite) by Lemma If W contains more than K
elements, then there is an element w € W such that the d-EF-trees of W and W \ {w} are
the same, i.e. the duplicator wins the d-round Ehrenfeucht-Fraissé game by Theorem
Fix such w for the rest of the proof.

We now describe a strategy for the duplicator to win the d-round Ehrenfeucht-Fraissé
game for the graphs G and G \ w. During the game, some intervals from Z will be marked
as altered. At the beginning, the only altered interval is the interval [a,a + J).

The duplicator strategy in the i-th round of the game is the following.

e If the spoiler chooses a vertex u with £(u) in an interval of Z at L-distance at most 241~
from an altered interval, then the duplicator follows the winning strategy for the d-round
Ehrenfeucht-Fraissé game for the linearly ordered colored sets W and W \ {w}. This gives
a vertex v to choose in the other graph. In addition, the duplicator marks the interval of
7 that contains ¢(u) as altered (note that ¢(u) and ¢(v) necessarily belong to the same
interval of 7).

e Otherwise, the duplicator chooses the same vertex in the other graph and no new intervals
are marked as altered.

We now argue that the subgraphs of G and G \ w obtained in this way are isomorphic. Let
U = {u1,...,uq} be the chosen vertices of G and U’ = {u},...,u);} those chosen in G\ w.
Let us refer to the vertices corresponding to the intervals with left end points in the altered
intervals as altered vertices. If u; is not altered, then u; = u; If u; is altered, then #(u;)
and £(u}) belong to the same interval J € Z. Suppose two vertices u; and u; are adjacent
differently to u; than to u;. Then /(u;) and £(u’;) belong to an interval J' € Z at L-distance
at most one from J. Observe that the L-distance of J’ from an altered interval in the i'-th
round, i’ < 4, is at most 291" Hence, if j < i, then uj and ug are altered because J' was
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at L-distance at most 29177 in the j-th round. If j > 4, then u; and u; are altered because
the interval J turned to be altered in the i-th round and the L-distance of J and J' is at
most one.

Since we have followed a winning strategy for the duplicator for the sets W and W\ {w},
the colors of u; and u; are the same and they are comparable to u; and u] in the same
way. In particular, they are adjacent to u; and w in the same way. We conclude that the
duplicator wins the game, which finishes the proof of the claim.

We now show that the statement of the theorem is true with Ky = K[e7!]. The
algorithm sorts the left end points of all the intervals (this requires O(nlogn) time) and for
each of these points computes the distance to the left end of the interval that is K positions
to the right in the obtained order. If all these distances are at least €, then every interval of
length at most € contains at most K left end points of the intervals and the representation
is of the desired form.

Otherwise, we choose a and b with the smallest b— a such that the interval [a, b) contains
K + 1 points and b — a < €. By the choice of this interval, any interval of length b — a
contains at most K + 1 left end points of the intervals from the representation. So, the
size of the d-EF-tree for the game played on the vertices v with ¢(v) in the intervals at
L-distance at most 2¢%! from [a, b) is bounded by a function of K, d and |L|. Since this
quantity is independent of the input graph, we can identify (in constant time) a vertex w
with ¢(w) € [a,b) with the properties from the claim. We delete this vertex from the graph
G. We then update the order of the left end points and the at most K computed distances
affected by removing w, and iterate the whole process. Storing the distances in a heap
results in an algorithm that needs O(logn) per vertex removal. Hence, the running time of
the algorithm is bounded by O(nlogn). []

It is possible to think of several strategies to efficiently decide FO properties of L-
interval graphs given Theorem [3.1] We present one of them. Fix an FO sentence ® with
quantifier rank d and apply the algorithm from Theorem to get an L-interval graph and
a representation of this graph such that every unit interval contains at most K left end
points of the intervals of the representation. After this preprocessing step, every vertex of
the new graph has at most Ky - [max L| neighbors. In particular, the maximum degree of
the new graph is bounded. The result of Seese [See96] asserts that every FO property can
be decided in linear time for graphs with bounded maximum degree, and so we conclude:

Theorem 3.3. For every finite subset L of reals and every FO sentence ®, there exists
an algorithm running in time O(nlogn) that decides whether an input n-vertexr L-interval
graph G given by its L-representation satisfies ®.

4. SUCCESSOR-INVARIANT FO

A successor relation on X is simply a directed path on the vertex set X. An FO sentence
over a successor-equipped relational structure is successor-invariant if its truth does not
change when the same structure is equipped with a different successor relation. Successor-
invariant FO sentences are generally more expressive than FO sentences [Ros07]. However,
our previous result can be extended to this more expressive setting.

A useful tool when solving the model checking problem on a class of structures is the
ability to “efficiently translate” an instance of the problem to a different class of structures.
This tool is formalized through the concept of interpretability of logic theories [Rab64]. An
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FO graph interpretation is a pair Z = (v, ) of FO formulas v and p with 1 and 2 free
variables, respectively. If G is a graph, then Z(G) is the graph such that

e its vertex set is the set of all v € V(G) such that G |= v(v), and

e its edge set is the set of all the pairs u and v such that G = v(u) Av(v) A p(u,v).

We require that the edge set relation as defined must be symmetric, i.e. G = (v(u) Av(v)) =
(u(z,y) < p(y,x)) for every graph G.

Similarly, an FO successor-graph interpretation is a triple Z = (v, u, o) of FO formulas
where v, u and o have one, two and two free variables, respectively. The meaning of v
and p is the same and o should represent the successor relation: v is the successor of u iff
G = v(u) Av(v) Ao(u,v). Analogously, one may also define an MSO graph interpretation
where v and p are allowed to be MSO formulas.

A class C; of (successor-equipped) graphs has an FO interpretation in a class Cy of graphs
if there exists an FO (successor-)graph interpretation Z such that every (successor-equipped)
graph G from Cj is isomorphic to Z(G2) for some Go € Cy. An interpretation is efficient if
it can be computed in polynomial time. If h is an integer function, then Z is h-bounded if
there exists such Ga for every G with |V(G2)| < h(]V(G1)|). In particular, if h is a linear
function, then we say that Z is linearly bounded and if h is a polynomial function, then we
say that Z is polynomially bounded.

Theorem 4.1. For every finite subset L of reals and every successor-invariant FO sentence
O, there exists an algorithm running in time O(nlogn) that decides whether an input n-vertex
L-interval graph G given by its L-representation satisfies ®.

Proof. The straightforward criterion [EKS12, Lemma 5.3] implies that it is enough to
construct an efficient linearly bounded FO successor-graph interpretation of the class of
L-interval graphs equipped with a suitable successor relation in the class of L-interval graphs
and apply Theorem [3.3]

Before proceeding further with the proof, we need two definitions. Two vertices in a
graph are twins if their neighborhoods are the same. An interval representation is nice if
each interval except the last interval contains the left end point of another interval. Note
that not all interval graphs have nice representations (e.g. disconnected graphs do not).

As in the proof of Theorem we first perturb the intervals so that all their end points
are distinct. First suppose that the L-interval representation of G is nice and let G* be the
graph G equipped the the successor relation given by the ordering of the left end points
of the intervals. Notice that if a vertex y is the successor of a vertex z in G, then z,y
are adjacent in G. We now construct an FO successor-graph interpretation Z; in L-interval
graphs with intervals colored black, red, green and blue.

Fix G and let us start with constructing the colored L-interval graph, which we call
H. Let € > 0 be such that any two end points of the intervals in the representation of G are
at distance larger than 3. For each interval [a, b), the interval representation of H contains
the following four intervals (see Figure [1)):

e the black interval [a,b),

e the green interval [2a — b+ ¢,a + ¢€),

e the red interval [a +¢,b+ ), and

e the blue interval [b+¢£,2b —a + ¢€).

If v is the vertex of G corresponding to [a, b), the four vertices corresponding to the intervals
above are denoted by vk, vg, vg and vp, respectively. Observe that H has no twins.



FO MODEL CHECKING OF INTERVAL GRAPHS 11

| GREEN | RED | BLUE |
I I I I
a+e—(b—a) a+e b+e b+e+ (b—a)

Figure 1: The intervals representing the four vertices of (G1 corresponding to a vertex.

We now define the interpretation Z; = (v, pu1,01). The relations v; and py are defined
as

vi(x) = black(z) and pi(x,y) = edge(z,y). (4.1)

The definition of o7 is more involved. For a vertex vk € V(H), the red vertex vg has the
same neighborhood as vk except for the green vertex vg. Note that vy is the only red
vertex adjacent to vx with this property: indeed, any other red vertex up adjacent to vg is
distinguished from vg by the adjacency to vp or ug. Hence, every black vertex vg can be
uniquely associated with the green vertex vg by an FO formula assoc(x,y). In particular,
assoc(z,y) holds only if x = vi and y = vg.

If the intervals of the black vertices ug and vy intersect, then the inequality ¢(ug) <
{(vk) can be captured by an FO formula less(ug, vg). Specifically, this inequality can be
expressed as

less(z,y) = © # y Aedge(z, y) A Iz assoc(z, z) A ~edge(z,y)]. (4.2)
The successor relation can now be interpreted using (4.2)) as follows.
o1(z,y) = less(x,y) AVz[-black(z) V = less(z, 2) V —less(z,y)] (4.3)

We now adapt the construction to the case when the L-representation of G is not nice.
To do so, we introduce a fifth color, which we will refer to as gray. If there is an interval J
that is not the last interval and that does not contain the left end point of another interval,
we insert a gray interval J' of length max L that has its left end point inside J. If J’ does
not contain the end point of another interval, we can shift all the intervals to the right from
J' by the same distance in such a way that the left end point of one of them, say .J”, moves
inside J’ and the only new intersection we have introduced is the one between J’ and J”.

After this modification, we perform the construction described earlier, replacing each
original interval with black, green, red and blue intervals and each gray interval with gray (in
the role of the black interval), green, red and blue intervals. Let H be the graph obtained in
this way. The number of black intervals in the representation of H is the number of vertices
of G. Since there is the left end point of a black interval between the left end points of any
two gray intervals, the number of gray intervals is at most the number of black intervals.
Finally, the numbers of green, red and blue intervals are the same and they are equal to the
total number of black and gray intervals. We conclude that H has at most 8|V (G)| vertices.

It remains to adapt the FO successor-graph interpretation Z;, in particular, the FO
formula 1. The successor relation between the black intervals is again given by the order of
their left end points. Since there is the left end point of at most a single gray interval between
any two consecutive left end points of black intervals, we can define the interpretation of the
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successor relation as follows:

o (x,y) = o1(z,y) V Elz[gray(z) Noi(z,z) N oy(z, y)]
Observe that H has no twins.

We now construct a FO graph interpretation Zs of five-colored L-interval graphs with
no twins in L-interval graphs. Every gray, green, red and blue interval is replaced with two,
three, four or five identical uncolored copies; black intervals only lose their color. Let H’
be the constructed L-interval graph. Observe that the number of vertices of H' is at most
27|V (G).

Since H has no twins, the vertices of H' corresponding to the black intervals can be
identified by black(z) = Vy[z =y V Iz edge(z, z) # edge(y, z)]. In a similar way, one may
define FO formulas gray(x), green(z), red(x) and blue(z) to express that the vertex z is
one of the twins (of multiplicity two, three, four and five) corresponding to a gray, green,
red and blue interval, respectively. Combining 7; and Zs, we obtain an FO successor-graph
interpretation in L-interval graphs. ]

5. CLIQUE-WIDTH OF INTERVAL GRAPHS

Every proper hereditary subclass of unit interval graphs has bounded clique-width [Loz08]
though the class of all unit interval graphs has unbounded clique-width [GR00]. In particular,
the class of ({1}, d)-interval graphs has bounded clique-width for every d > 0. Using
Gaifman’s theorem, it follows that testing FO properties of unit interval graphs can be
performed in linear time if the input graph is given by its {1}-representation with the left
end points of the intervals sorted. We generalize the result on the clique-width of unit
interval graphs for finite sets L of rational numbers, which proves a special case of our main
result for FO model checking.

Proposition 5.1. Let L be a finite set of positive rational numbers. For any d > 0, the
class of (L, d)-interval graphs has bounded clique-width.

Proof. Let a be the largest rational number such that every element of L is an integer
multiple of a. Without loss of generality, we can assume that d is not a multiple of a
(otherwise, we slightly increase d). We show that the clique-width of any (L, d)-interval
graph is at most K := [d/a] + 1.

Let G be an (L, d)-interval graph with vertices vy, ..., v, and fix an (L, d)-representation
of G. Let b; be the smallest non-negative real such that ¢(v;) — b; is a multiple of a. We may
assume that all the numbers b; are distinct (by perturbing the intervals if needed). Without
loss of generality, we can also assume that 0 < by < --- < b, < a.

We will now proceed in several steps. After the i-th step, we will have constructed
the subgraph of G induced by the vertices vy, ..., v; such that the label of the vertex v; is
[£(v;)/a]. In the first step, we insert the vertex v; with label [£(v1)/a]. In the i-th step,
we insert the vertex v; with label K, join it by edges to all vertices with labels between
[£(v;)/a] and [r(v;)/a], and relabel it to [¢(v;)/a]. By the choice of a and the assumption
that b < --- < by, the vertex v; is adjacent exactly to its neighbors among v1,...,v;—1. [
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From Proposition 5.1} and Gaifman’s theorem, one can approach the FO model checking
problem on L-interval graphs for finite sets L of rationals. By Gaifman’s theorem, every
FO model checking instance can be reduced to model checking of basic local FO sentences,
i.e. to FO model checking on L-interval graphs with bounded radius. Since L-interval graphs
with radius d are (L, (2d 4+ 1) max L)-interval graphs and so have bounded clique-width, the
latter can be solved in linear time by [CMRO00]. Combining this with the neighborhood
covering technique from [FGO1], which can be adapted to run in linear time in the case of
L-interval graphs given with their interval representation, we obtain the following.

Corollary 5.2. Let L be a finite set of positive rational numbers and ® an FO sentence.
There exists a linear time algorithm that decides whether an L-interval graph G satisfies ®
if the input graph G is given by its L-representation with the left end points of the intervals
sorted.

However, Proposition [5.1]is just a fortunate special case, since aside of rational lengths
one can prove the following.

Proposition 5.3. For any irrational ¢ > 0 there is d such that the class of ({1, q}, d) -interval
graphs has unbounded clique-width.

Proof. We may assume ¢ > 1 (otherwise, we rescale and consider the set {1,1/q}). We
construct a ({1, q},d)-interval graph G with arbitrary large clique-width k where d = ¢ + 2.
Consider a large enough integer n; the choice of n depends on k and follows from the
construction given.

We construct a sequence a1, as, . . ., a, of n points from L™ N [0,d—1) as follows: a; =0,
az = 1, and for i > 2 set

a = a;i_1+1 ifa;,_1<d-—2,
"] ai—1 —q otherwise.

The elements of the sequence defined through the latter case are called g-elements. Informally,
we are folding a sequence of intervals of lengths one and ¢ inside [0,q + 1).

Choose § > 0 such that nd is smaller than the smallest number in L™ N [0,d — 1).
Let us introduce the following shorthand notation: if J is an interval and r a real, then
J + r is the interval J shifted by r to the right. Similarly, if Z is a set of intervals, then
Z + r is the set of the intervals from Z shifted by r to the right. We define sets of intervals
Uy :={[i0,14+i6): i=0,...,n—1} and Uy := {[id,¢+i0) : i =0,...,n —1}. We say that
intervals [id, 1 + id) and [id, ¢ + i0) are at level i.

Fori=1,...,n,set W; = U, + a; if a; is a g-element of P, and W; = U; + a; otherwise.
Observe that every interval of W; is a subinterval of [0,d). Let G be the L-interval graph
with n? vertices that is the intersection graph of the intervals in Wy UW, U --- U W, and
let W;, i = 1,...,n, be the vertices represented by the intervals from W;. Finally, two
vertices x € W;_1 and y € W;, 2 < i < n, are mates if they are represented by the same-level
intervals.

We claim that the clique-width of G exceeds k if n is sufficiently large. Suppose that the
clique-width of G is at most k. In the construction of G using k labels from the definition of
clique-width, a k-labeled subgraph G; of G with %nQ < |V(Gy)| < %nQ must have appeared.
However, this implies that vertices of G have at most & different neighborhoods in G\ V(G1).
We will show that this is not possible.

Suppose that there exists i such that |W;—1 NV (G1)| — |[W; N V(G1)| > k. Then there
exist k + 1 vertices in W;_; NV(G1) whose mates are in W; \ V(G1) and these k + 1 vertices
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have pairwise distinct neighborhoods in G'\ V' (G1), which is impossible. Similarly, it cannot
hold that |VVZ N V(Gl)‘ — ’Wi—l N V(G1)| > k.

In the rest of the proof, we assume that ||[W;—; NV (G1)| — |[W; NV (G1)|| < k for every
i =2,...,n. We say that a set W; is crossing if ) # W; N V(G1) # W;. Since we have
in? < |V(Gy)| < 2n?, there exist crossing sets Wiy, Wig41, . . ., Wig4m where m = |n/k| —1.
If n is large enough, we can select a (2k + 1)-element subset I C {ig,...,i0 +m — 1} such
that neither a; nor a;;1 is a g-element for every ¢ € I (which implies that a;+1 = a; + 1) and
such that all intervals in J;c; W; share a common point. Let 4y,. .., 92,41 be the elements
of I ordered according to the (strictly) increasing values of a;, i.e. a;; < --- < a4, ;-

Ifj,j" € {1,...,2k+1} and j' > j+1, then the neighborhoods of a vertex of W;, NV (G1)
and a vertex of W; ,NV(G1) in V(G)\V (G1) differ. Indeed, none of the vertices of W;; NV (G1)
is adjacent to any of the vertices in W;, 41\ V(G1) while each of the vertices of W; , NV (G1)
is adjacent to all the vertices in Wy, ,y1\ V(G1). Therefore, the vertices of 1 have at least
k + 1 distinct neighborhoods in G'\ V(G1), which yields that the clique-width of G is larger
than k. ]

6. GRAPH INTERPRETATION IN INTERVAL GRAPHS

This section is devoted to our hardness results concerning model checking for interval graphs.
We first show that Theorem [3.3] cannot be generalized to significantly wider classes of
interval graphs. To formulate our results, we need the following definition: a set L of reals
is efficiently dense in an open set X, if there exists an algorithm that for every non-empty
open interval J C X returns an element of J N L in time polynomial in |J| 7.

Lemma 6.1. If L is a subset of non-negative reals that is efficiently dense in some non-
empty open set, then there exists an efficient polynomially bounded FO interpretation of the
class of all graphs in the class of L-interval graphs.

Proof. By scaling, we can assume that L is dense in [1,1 + ] for some € > 0. Let G be a
graph with n > 2 vertices (the case n = 1 is easy to handle separately) and let vy,..., v,
be its vertices. We construct an FO interpretation Z = (v, u), which is independent of the
choice of G, and an L-interval graph H with 3n + 5+ |E(G)| vertices such that G = Z(H).
We will describe H by giving its L-representation. To simplify our exposition, we assume
that L = [1,1 4 ¢]; it can be routinely verified that the lengths of intervals appearing in the
representation of H can be perturbed that all the length belong to a given dense subset of
[1,1+¢]. Finally, let § = 5.

The vertex set of H will be formed by sets V7, Vo and V3, each containing n + 1 vertices,
a set W containing |E(G)| vertices, and two special vertices a and b. Let the vertices of V;,
i =1,2,3, be denoted ¢; ;, j = 0,...,n, and the vertices of W be denoted e; ; for all pairs
1 <j < j < nsuch that vjuy € E(G).

The vertices of H are represented by the following intervals (also see Figure .
e The vertex t;;,7=1,2,3 and j = 0,1,...,n, is represented by the unit interval [z -1+

(1+4)0, i+ (1 + 5)0).

e The vertex a is represented by the unit interval [0, 1).
e The vertex b is represented by the unit interval [(n + 2)§, 1+ (n + 2)4).

e The e; ;7 € W is represented by the (non-unit) interval [1 +70,2+(2+ j/)é).
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Figure 2: The construction of the interval representation of the graph H in the proof of
Lemma

Observe that the vertices a and t1 o € Vi are twins, i.e. they have the same neighbors in H,
and that the vertex b is adjacent to every vertex in V3 U Vo U {a} UW.

Note that the vertices a and t1 o are the only twins in the graph H. In particular, they
are the only two vertices that satisfy the following formula:

anchor(z) = Jy (z # y Aedge(z,y) AVz # z,y edge(z, z) < edge(y, 2)) .

We will refer to these two vertices as to the anchors. Note that the vertices of V7 are at
distance one from the anchors, those of V5 at distance two and those of V3 at distance three
or four.

Let dist(x,y) = ¢ for an integer ¢ be the shorthand for an FO formula expressing that
the distance of two vertices z and y is ¢, and adist(xz) = ¢ for an FO formula expressing
that the distance of x from an anchor is c. The vertices of G are represented by the vertices
of V{ = {t11,...,t1n}. Using this notation, the following formula is true for exactly the
vertices of V7.

v(z) = —anchor(z) A adist(z) = 1 A Jy (adist(y) = 2 A ~edge(z,y)) .

Note that the last part of the formula makes v(z) false for x = b.
In what follows, we refer to the pairs of vertices t1 ; and t3; as mates. The following
formula is true if and only if 2’ € V3 is the mate of z € V7

mates(z,z’) = v(z) A (adist(z') = 3 V adist(z) = 4)A
dly (adist(y) =2 A —edge(z,y) A ~edge(z, y))

Suppose that =t ; and 2’ = t3 . If j' < j, then there exists no vertex y as in the formula
and, if j/ > j, there exists at least two such y’s, in particular, t;,...,t2 ;.

The vertices of V{ can be linearly ordered according to their left end points. This
linear order is actually reflected by dominating one vertex of another. Formally, a vertex x
dominates a vertex y if y and all its neighbors are also neighbors of x. Observe that 2 € V/
dominates y € V] if and only if the left end point of y precedes the left end points of x. The
following FO formula expresses that a vertex x dominates a vertex y.

domin(z,y) = x # y A edge(z,y) A Vz (edge(y, z) — edge(z, 2)) .
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Using this formula, we can define the formula .
p(a,y) = p'(x,y) vV ' (y, x), where
!/ — : / /
/' (z,y) = domin(y,z) A3y, z [ mates(y,y")A
edge(x, z) AVt (domin(z,t) — —edge(t, z))A
edge(y/, z) AVt (domin(y', t) — —edge(t, 2)) |

Note that p/(z,y) for x = t1; and y = t; y is true if and only if j < j' and the set W
contains the vertex e; j. Indeed, z = ¢; j» is the only possible choice of a vertex satisfying
the existential quantification. L]

Since the parameterized FO model checking problem is AW[*]-complete for general
graphs, we can immediately conclude the following.

Corollary 6.2. If L is a subset of non-negative reals that is efficiently dense in some
non-empty open set, then FO model checking is AW[*]-complete on L-interval graphs when
parameterized by the formula size.

We now turn our attention to interpretations in stronger logics. We start by showing
that the class of all graphs has an FO interpretation in the class of unit interval graphs
with a successor relation. We actually prove a stronger statement that there exists an
interpretation of the class of all directed graphs.

Lemma 6.3. There exists a polynomially bounded FO interpretation of the class of all
directed graphs in the class of unit interval graphs with a successor relation.

Proof. Fix a directed graph G. Let n and m be the number of vertices and edges of G,
respectively. Further, let vq, ..., v, be the vertices of G, let dj and d; be the out-degree and
in-degree of a vertex v; and let e;1,...,e, ;+ be the edges leaving v;. We will simultaneously

describe the FO interpretation Z = (v, ;1) and an unit interval graph H such that G = Z(H).

For each vertex v; of G, the graph H contains the following 2 + d;“ +d; vertices: u;,
w, and u; . for each edge e leaving or entering v; in G. The graph H consists of n cliques,
the i-th clique formed by the 2 + dj +d; vertices corresponding to v;. Clearly, H is a unit
interval graph.

We now define a successor relation on the vertices of H. To make the definition of the
successor relation less technical, we abuse the notation by writing w;, , for u, (note that
there is no edge denoted by e; o in G). The successor relation will contain the following pairs
of vertices of H:

IN — (). 2 o
o (uj,uj) = (Ui, Uje,,) for everyi=1,...,n,
s . +
° (u@ei’j_l,ui/,ei,].) and (Ui, ;, Uie, ;) for every edge e;;, i = 1,...,n and j = 1,...,d],
where u; is the head of e; j, and
° (’U,Z"eVL{F,'LLi_A'_l) foreveryi=1,...,n— 1.
i,d;

Note that the only pairs of adjacent vertices included in the successor relation are those
described in the first item. The following two FO formulas can be used to form the
interpretation.

v(xz) =3t succ(zx,t) Aedge(x,t)
w(z,y) =3ttt suce(t,t') Asuce(t', t")A
edge(z,t) A edge(y,t') A edge(z,t").
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Figure 3: The interval representation of the graph H with a part representing an edge v;v;
of the graph G.

It is straightforward to check that G = Z(H). L]
Lemma [6.3] yields the following.

Corollary 6.4. FO model checking is AW[*]-complete on unit interval graphs with a
successor relation when parameterized by the formula size.

We now turn our attention to more general MSO properties. There exist two commonly
used MSO frameworks for graphs: the MSO; language where quantifying over vertices and
vertex sets only is allowed, and MSOy where it is allowed to quantify over edges and edge
sets in addition. Our negative result holds for the weaker variant MSO; (and so also holds
for MSOa).

Lemma 6.5. There is a polynomially bounded MSOy interpretation of the class of all graphs
in the class of unit interval graphs.

Proof. We describe the MSO; interpretation Z = (v, ). Fix an n-vertex G with n > 4 (the
cases with n = 1,2, 3 can be handled separately in a straightforward way). Let vq,...,v, be
the vertices of G and ey, ..., ey, its edges. We will construct a unit interval graph H such
that G = Z(H). The graph H will be described by giving its interval representation and its
construction is illustrated in Figure

Choose § > 0 such that dn < % and U = { [i6,1+1i):i=0,1,...,n— 1}. Recall that
J + x where J is an interval and « is a real is the interval J shifted by = to the right. The
graph H contains n(3m + 1) vertices corresponding to the intervals from the sets U + k for
k=1,...,3m + 1; the vertices corresponding to the intervals [id,1 + i0) and [id, 1 +id) + k
are said to be at the level i. Let Wy, £ =0, ..., m, be the set of the n vertices represented
by the intervals from U + (3¢ + 1).

The graph H further contains three vertices represented by the interval [0,1) each and
m triples of vertices represented by the intervals [0,1) 4 (3i —1/2), i =1,...,m. The vertices
in these m + 1 triples will be referred to as anchors and they will be the only vertices of H
that have two twins. Also insert a vertex represented by the interval [1/2,3/2). The three
vertices represented by the interval [0, 1) are the only anchors of degree four.

If the edge e, joins vertices v; and v;, H contains a pair of vertices represented by the
intervals [i0, 1 +i0) + (3k + 1) and [jd,1 + jd) + (3k + 1). The vertices included in this step
are the only vertices of H that have unique twins. This finishes the construction of H.

We now give the MSO; formulas v and p. Let twin(z,y) be the FO formula expressing
that x and y are twins. Using this formula, we can identify the anchors and vertices not
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adjacent to any of the anchors.
anchor(z) = Jy, z (2 # y A edge(z,y) A twin(z, y) A twin(z, 2)) ,
noanch(z) = Vz (anchor(z) = —edge(z, 2)).

Note that the only vertices x that satisfy noanch(z) are the vertices in the sets W1,..., W,
and the 2m twins corresponding to the edges of G. The vertices of G will be modeled by
the vertices of Wy, which are precisely the vertices that are not adjacent to any anchor and
that are at distance two from the three anchors of degree four. In particular, the formula v
can be chosen to be the following FO formula.

v(z) = noanch(z) A 3t(anchor(t) A deg(t) =4 A dist(t,z) = 2) .

Two vertices = and 2’ are mates if there exists integers p, 1 < p < m, andi,0 <i <n-—1,
such that one of them is represented by the interval [id, 1 + id) + (3p — 2) and the other is
represented by the interval [id,1 + ) + (3p + 1). In particular, if x € W,_; and 2’ € W),
and the vertices x and x’ are represented by intervals at the same level, then x and z’ are
mates. It is easy to verify that two vertices z and 2’ are mates iff they satisfy the following
FO formula.

mates(z, z') = noanch(z) A noanch(z’) A dist(x, 2) = 4 A 3¢ [ anchor(£)A
Jly 31z (—edge(y, 2) A edge(y, t) A edge(z,t) A dist(z, y) = 2A
dist(z',y) > 2 Adist(a, 2) = 2 Adist(z, 2) > 2)] .

The transitive closure of the binary relation given by mates can be described by the following
MSO formula mates*(x,y).

mates*(z,2') =2 =2'VIU [z € U2’ € UATteU mates(z,t)A
it € U mates(2',t) AVy e U(x £y A’ #£y) =
(3t € U AN € U t # ¢’ Amates(y, t) A mates(y,t'))] .

Note that this is the only place in the proof where we need the expressive power of MSO.
The formula g can now be chosen as follows.

wzy) = x#Fyn3ra"y " (edge(a’, y)A
mates *(z, z') A mates *(y, y') A twin(z’, 2”) A twin(y', y")) .

Indeed, if = and y belong to Wy, then pu(z,y) is true only if there exist adjacent vertices x’
and 1/ at the same level as x and vy, respectively, and both z’/ and 3’ have twins. However,
this happens only if the counterparts of x and y in G are joined by an edge. []

Hence we obtain the following.
Corollary 6.6. MSO; model checking is para-NP-hard on unit interval graphs.

Note that the aforementioned result of Lozin [Loz08] states that every proper hereditary
subclass of unit interval graphs has bounded clique-width, and hence MSO; model checking
on this class can be carried out in linear time [CMRO00].
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