
Logical Methods in Computer Science
Vol. 11(4:14)2015, pp. 1–27
www.lmcs-online.org

Submitted Dec. 23, 2014
Published Dec. 22, 2015

DATALOG REWRITINGS OF REGULAR PATH QUERIES

USING VIEWS

NADIME FRANCIS a, LUC SEGOUFIN b, AND CRISTINA SIRANGELO c

a ENS-Cachan, Inria
e-mail address: francis@lsv.ens-cachan.fr

b Inria, ENS-Cachan
e-mail address: luc.segoufin@inria.fr

c LSV at ENS-Cachan, Inria, CNRS
e-mail address: cristina@liafa.univ-paris-diderot.fr

Abstract. We consider query answering using views on graph databases, i.e. databases
structured as edge-labeled graphs. We mainly consider views and queries specified by
Regular Path Queries (RPQ). These are queries selecting pairs of nodes in a graph database
that are connected via a path whose sequence of edge labels belongs to some regular
language. We say that a view V determines a query Q if for all graph databases D, the
view image V(D) always contains enough information to answer Q on D. In other words,
there is a well defined function from V(D) to Q(D).

Our main result shows that when this function is monotone, there exists a rewriting
of Q as a Datalog query over the view instance V(D). In particular the rewriting query
can be evaluated in time polynomial in the size of V(D). Moreover this implies that it is
decidable whether an RPQ query can be rewritten in Datalog using RPQ views.

1. Introduction

We consider the problem of answering queries using views on graph databases. Graph
databases are relational databases where all relation symbols are binary. In other words a
graph database can be viewed as an edge-labeled directed graph.

Graph-structured data can be found in many important scenarios. Typical examples
are the semantic Web via the format RDF and social networks. Graph-structured data
differs conceptually from relational databases in that the topology of the underlying graph
is as important as the data it contains. Usual queries will thus test whether two nodes are
connected and how they are connected [4].

In many contexts it is useful to know whether a given set of queries can be used to
answer another query. A typical example is the data integration setting where data sources
are described by views of a virtual global database. Queries over the global database are

2012 ACM CCS: [Information systems]: Data management systems—Query languages / Database
management system engines—Database query processing.

Key words and phrases: Regular Path Queries, Views, Rewriting, Datalog.

LOGICAL METHODS
l IN COMPUTER SCIENCE DOI:10.2168/LMCS-11(4:14)2015

c© N. Francis, L. Segoufin, and C. Sirangelo
CC© Creative Commons

http://creativecommons.org/about/licenses

2 N. FRANCIS, L. SEGOUFIN, AND C. SIRANGELO

then rewritten as queries over the views. Another example is caching: answers to some set
of queries against a data source are cached, and one wishes to know if a newly arrived query
can be answered using the cached information, without accessing the source. This problem
also finds application in the context of security and privacy. Suppose access to some of the
information in a database is provided by a set of public views, but answers to other queries
are to be kept secret. This requires verifying that the disclosed views do not provide enough
information to answer the secret queries.

All these problems can be phrased in terms of views and query rewriting using views,
which is a typical database problem, not specific to graph databases, that has received
considerable attention (see [12, 13, 3] among others). When graph databases are concerned,
the difference lies only in the kind of queries under consideration [6, 8, 7, 9].

Over graph databases, typical queries have at least the expressive power of Regular Path
Queries (RPQ), defined in [10] (see also the survey [4]). An RPQ selects pairs of nodes
connected by a path whose sequence of edge labels satisfies a given regular expression. A
view, denoted by V, is then specified using a finite set of RPQs. When evaluated over a
graph database D, the view V yields a new graph database V(D) where each Vi ∈ V is a
new edge relation symbol.

We are interested in knowing whether the view V always provides enough information
to answer another RPQ query Q, i.e. whether Q(D) can be computed from V(D) for all
databases D. When this is the case we say that V determines Q, and we look for a rewriting
of Q using V, i.e. a new query, in some query language, that expresses Q in terms of V. We
are then interested in finding an algorithm for evaluating the rewriting, i.e. an algorithm
computing Q(D) from V(D).

These two related questions, determinacy and query rewriting, have been studied for
relational databases and graph databases. Over relational databases, determinacy is unde-
cidable already if the queries and views are defined by union of conjunctive queries, and its
decidability status is open for views and queries specified by conjunctive queries (CQ) [13].
Over graph databases and RPQ queries and views, the decidability status of determinacy is
also open [7]. Determinacy has been shown to be decidable in a scenario where views and
queries can only test whether there is a path of distance k between the two nodes, for some
given k [3]. This scenario lies at the intersection of CQ and RPQ and contains already non
trivial examples. For instance the view Path3 and Path4, giving respectively the pairs of
nodes connected by a path of length 3 and 4, determines the query Path5 asking for the
pairs of nodes connected by a path of length 5 [3] (see also Example 1 in Section 2).

Clearly when Q can be rewritten in terms of V, the rewriting witnesses that V de-
termines Q. On the other hand determinacy does not say that one can find a rewriting
definable in a particular language, nor with particular computational properties.

It is then natural to ask which rewriting language LR is sufficiently powerful so that
determinacy is equivalent to the existence of a rewriting definable in LR. This clearly
depends on the language used for defining the query and the view.

Consider again the case of Path5 that is determined by Path3 and Path4. A rewriting
R(x, y) of Path5 in terms of Path3 and Path4 is defined by:

∃u (Path4(x, u) ∧ ∀v (Path3(v, u) → Path4(v, y)))

and it can be shown that there is no rewriting definable in CQ, nor in RPQ (cf. Example 1).
In the case of views and queries defined by CQs it is still an open problem to know whether
first-order logic is a sufficiently powerful rewriting language. Even worse, it is not even

DATALOG REWRITINGS OF REGULAR PATH QUERIES USING VIEWS 3

known whether there always exists a rewriting that can be evaluated in time polynomial in
the size of the view instance [13], ie. polynomial data complexity. A similar situation arises
over graph-databases and RPQ views and queries [7].

It can be checked that in the example above there exists no monotone rewriting of
Path5 (see again Example 1). In particular, as RPQs define only monotone queries, no
rewriting is definable in RPQ. Monotone query languages such as CQ, Datalog, RPQ and
their extensions are of crucial importance in many database applications. The possibility
of expressing rewritings in these languages is subject to a monotonicity restriction.

This is why in this paper we are considering a stronger notion of determinacy, referred
to as monotone determinacy, by further requiring that the mapping from view instances to
query results is monotone.

In the case when views and queries are defined by CQs, monotone determinacy can be
shown to be equivalent to the existence of a rewriting in CQ [13]. As this latter problem is
decidable [12], monotone determinacy for CQs is decidable.

We consider here monotone determinacy for graph databases and views and queries
defined by RPQs. We first observe that monotone determinacy corresponds to the no-
tion called losslessness under the sound view assumption in [7], where it was shown to be
decidable. We then concentrate on the rewriting problem.

We know that there exist cases of monotone rewritings that are not expressible in
RPQ [7] (see also Example 2 in Section 5). We thus need a more powerful language in order
to express all monotone rewritings.

It is not too hard to show that if V determines Q then there exists a rewriting with NP

data complexity, as well as a rewriting with coNP data complexity. Our main result shows
that if moreover V determines Q in a monotone way, there exists a rewriting definable in
Datalog, which therefore can be evaluated in polynomial time.

Our proofs are constructive, hence the Datalog rewriting can be computed from V and
Q.

As a corollary this implies that it is decidable whether a query Q has a rewriting
definable in Datalog using a view V, where both V and Q are defined using RPQs. This
comes from the fact that our main result implies that the existence of a rewriting in Datalog
is equivalent to monotone determinacy, a decidable property as mentioned above.

Related work. The work which is most closely related to ours is that of the “Four Italians”.
In particular, the notion of losslessness under the exact view assumption introduced in [7]
corresponds to what we call determinacy; similarly the notion of losslessness under the
sound view assumption corresponds to what we call monotone determinacy. Monotone
determinacy is also mentioned in the thesis [14] under the name of “strong determinacy”.
It is shown there that it corresponds to the existence of a monotone rewriting.

A lot of attention has been devoted to the problem of computing the set of certain
answers to a query w.r.t a set of views, under the sound view assumption (see the precise
definition of certain answers in Section 6.1). For RPQ views and queries, the problem is
shown to be equivalent to testing whether the given instance homomorphically embeds into
a structure TQ,V computed from the view V and the query Q [6]. In general this shows
that the data complexity of computing the certain answers is coNP-complete. Building on
results on Constraint Satisfaction Problems [11], it was also shown in [6] that for an RPQ
view V, an RPQ query Q and for each l, k, with l ≤ k, there is a Datalog program Ql,k which
is contained in the certain answers to Q given V and is, in a sense, maximally contained:

4 N. FRANCIS, L. SEGOUFIN, AND C. SIRANGELO

i.e. Ql,k contains all Datalog programs which are contained in the certain answers and use
at most l head variables and at most k variables in each rule.

If we assume that V determines Q in a monotone way, it is easy to see that the query
computing the certain answers under the sound view assumption is a rewriting of Q using
V (i.e the certain answers of a view instance V(D) are precisely the query result Q(D)).

However there are possibly other rewritings (they only need to agree on instances of the
form V(D), but may possibly differ on instances not in the image of V.) While computing
the certain answers is coNP-hard, our main result shows that there exists another rewriting
which is expressible in Datalog, and has therefore polynomial time data complexity.

Nevertheless our proof makes use of the structure TQ,V mentioned above, and our
Datalog rewriting turns out to be the query Ql,k associated with Q and V for some suitable
values of l and k.

2. Preliminaries

Graph databases and paths. A binary schema is a finite set of relation symbols of arity 2.
All the schemas used in this paper are binary. A graph database D is a finite relational
structure over a (binary) schema σ. We will also say a σ-structure. Alternatively D can be
viewed as a directed edge-labeled graph with labels from the alphabet σ. The elements of
the domain of D are referred to as nodes. The number of elements in D is denoted by |D|.
If A is a set of elements of D, we denote by D[A] the substructure of D induced by A.

Given a graph database D, a path π in D from x0 to xm is a finite sequence π =
x0a0x1 . . . xm−1am−1xm, where each xi is a node of D, each ai is in σ, and ai(xi, xi+1) holds
in D for each i. A simple path is a path such that no node occurs twice in the sequence.
The label of π, denoted by λ(π), is the word a0a1 . . . am−1 ∈ σ∗. By abuse of notation, we
sometimes view a path π as a graph database, which contains only the nodes and edges
that occur in the sequence.

Queries and query languages. A query Q over a schema σ is a mapping associating to each
graph database D over σ a finite relation Q(D) over the domain of D. We will only consider
binary queries, that is queries that return binary relations, and work with the following
query languages.

A Regular Path Query (often abbreviated as RPQ) over σ is given by a regular expres-
sion over the alphabet σ. If Q is an RPQ, we denote by L(Q) the language corresponding
to its regular expression. On a graph database, such a query selects all the pairs (x, y) of
nodes such that there exists a path π from x to y with λ(π) ∈ L(Q). For instance the
query Path3 of the introduction is an RPQ corresponding to the regular expression σσσ
(also denoted σ3). Another example is the RPQ (σσ)∗ that select pairs of nodes connected
via a path of even length.

A Context-Free Path Query over σ is defined similarly but using a context-free grammar
instead of a regular expression.

A Conjunctive Regular Path Query (sometimes abbreviated CRPQ) over σ is a con-
junctive query whose atoms are specified using RPQs over σ. For instance the query

∃z Q1(x, z) ∧Q2(z, y) ∧Q3(z, y)

DATALOG REWRITINGS OF REGULAR PATH QUERIES USING VIEWS 5

where Q1 = a+, Q2 = b and Q3 = c selects pairs of nodes (x, y) which are connected via
a path labeled a+b and another path labeled a+c sharing their a+ part. This cannot be
expressed by an RPQ.

A Datalog query over schema σ is defined by a finite set of rules of the form

I(x̄) :− I1(x̄1) ∧ · · · ∧ Im(x̄m)

where each Ii is a relational symbol, either a symbol from σ, or an internal symbol. I(x̄) is
called the head of the rule and I must be an internal symbol. The variables x̄ are among
x̄1 . . . x̄m and the variables of x̄i not occurring in x̄ should be understood as existentially
quantified. One of the internal symbols, referred to as the goal, is binary and is designated
as being the output of the query. The evaluation of a Datalog query computes the internal
relations incrementally starting from the empty ones by applying greedily the rules (see [2]).

It is easy to see that any Regular or Context-Free Path Query, and therefore any
Conjunctive Regular Path Query, can be expressed in Datalog. Hence Datalog is the most
expressive of the query languages presented above. It is also well known that each Datalog
query can be evaluated in polynomial time, data complexity, using the procedure briefly
sketched above.

We will consider restrictions of Datalog limiting the maximal arity of the internal sym-
bols and the number of variables in each rule. This is classical in the context of Constraint
Satisfaction Problems (CSP) [11] that we will use in Section 6. In the context of CSP, Dat-
alog programs are boolean (i.e. the goal has arity 0) and Datalogl,k denotes the fragment
allowing at most k variables in each rule and internal symbols of arity at most l. Here
we are dealing with binary Datalog programs. In order to stay close to the notations and
results coming from CSP, we generalize this definition and let Datalogl,k denote the Datalog
programs having at most k + r variables in each rule and internal symbols of arity at most
l + r, where r is the arity of the goal, in our case r = 2.

Views. If σ and τ are (binary) schemas, a view V from σ to τ is a set consisting of one
binary query over σ for each symbol in τ . If V consists of the queries {V1, . . . , Vn}, with
a little abuse of notation, we let each Vi also denote the corresponding symbol in τ . For a
graph database D over σ, we denote by V(D) the graph database over τ where each binary
symbol Vi is instantiated as Vi(D). We say that a view consisting of the queries {V1, . . . , Vn}
is an RPQ view if each Vi is an RPQ. We define similarly Context-Free Path Query views
and Conjunctive Regular Path Query views.

In what follows whenever we refer to a view V and a query Q, unless otherwise specified,
we always assume that Q is over the schema σ and V is a view from σ to τ . A view instance
E is a τ -structure such that E = V(D) for some database D.

Determinacy and rewriting. The notion of determinacy specifies when a query can be an-
swered completely from the available view. The following definitions are taken from [13].

Definition 2.1 (Determinacy). We say that a view V determines a query Q if :

∀D,D′, V(D) = V(D′) ⇒ Q(D) = Q(D′)

In other words, Q(D) only depends on the view instance V(D) and not on the particular
database D yielding the view. Observe that determinacy says that there exists a function
f defined on view images such that Q(D) = f(V(D)) for each database D. We call f the
function induced by Q using V.

6 N. FRANCIS, L. SEGOUFIN, AND C. SIRANGELO

A rewriting of Q using V is a query R over the schema τ such that R(V(D)) = Q(D)
for all D.

Notice that there can be possibly many rewritings, while the function induced by Q
using V is unique. In fact the domain of f is defined to be the set of view images, that
is, all the τ -structures E such that there exists a database D with V(D) = E. Thus, f is
fully defined by the identity Q(D) = f(V(D)), and is therefore unique. On the contrary,
rewritings are defined as queries over τ , which means that they are mappings defined over
all τ -structures E, even those which are not of the form E = V(D). In particular, this
means that the condition Q(D) = R(V(D)) is not sufficient to fully define R, as it can take
arbitrary values on τ -structures that are not of the form V(D). Of course any rewriting
coincides with the function f when restricted to view images.

Example 1. Consider again the view V defined by the two RPQs V1 = σ3 and V2 = σ4

testing for the existence of a path of length 3 and 4, respectively. Let Q = σ5 be the RPQ
testing for the existence of a path of length 5.

It turns out that V determines Q [3]. This is not immediate to see but, as mentioned
in Section 1, one can verify that a rewriting of Q using V can be expressed in first-order by
the following query:

∃u (V2(x, u) ∧ ∀v (V1(v, u) ⇒ V2(v, y)))

As shown in Figure 1, the function induced by Q using V is not monotone. This implies
that no monotone query can be a rewriting, in particular there exists no CQ nor RPQ
rewriting.

Consider now the RPQ Q′ = σ2. One can verify that V does not determine Q′. Indeed
the database consisting of a single node with no edge, and the database consisting of a
single path of length 2, have the same empty view but disagree on Q′.

x0 x1 x2 x3 x4 x5
D :

x0

x1

x2

x3 x4

x5

D′ :

Figure 1: Illustration for Example 1: D and D′ are such that V(D) ⊆ V(D′), but (x0, x5) ∈
Q(D), whereas (x0, x5) /∈ Q(D′). Hence the function induced by Q using V is not
monotone.

It is important at this point to understand the difference between determinacy and
rewriting. If V determines Q then there exists a rewriting of Q using V. However there
are possibly many rewritings of Q using V. Each of them agrees on the function induced
by Q using V when restricted to view images, but can take arbitrary values on structures

DATALOG REWRITINGS OF REGULAR PATH QUERIES USING VIEWS 7

that are not in the image of the view. Consider for instance the view V and the query Q
of Example 1. The query:

∃u, u′ V2(x, u) ∧ V1(x, u
′) ∧ ∀v (V1(v, u) ⇒ V2(v, y))

is also a rewriting of Q using V. It is equivalent to the rewriting of Example 1 on τ -instances
E such that E = V(D) for some D. Indeed whenever V2(x, u) holds in V(D), the database
D contains a path of length 4 from x to u, hence if u′ is the node at distance 3 from x in
this path, V1(x, u

′) also holds in V(D). However the two rewritings may differ on instances
which are not in the view image, such as an instance consisting of a single V2-labeled edge.

The determinacy problem for a query language L is the problem of deciding, given an
input view V defined in L and a query Q of L, whether V determines Q.

Determinacy does not say whether there exists a rewriting definable in a particular
query language, or computable with a particular data complexity. This clearly depends on
the language used for specifying the views and queries.

The rewriting problem for a query language L is the problem of finding a rewriting for
a query Q of L using a view V defined in L whenever V determines Q.

These two problems have been thoroughly investigated in the case that L is RPQ [7, 6,
8, 9]. However the determinacy problem for RPQ remains wide open and it is not clear what
would be a good (low data complexity) rewriting language for RPQ. Note that a similar
situation arises in the case that L is CQ [13, 3].

3. Determinacy problem

We have already mentioned above that the determinacy problem for RPQs is open. For
Context-Free Path Queries and for Conjunctive Regular Path Queries, determinacy is unde-
cidable. Actually the problem is already undecidable when the query Q is an RPQ. These
undecidability results are formalized in the two following propositions.

Proposition 3.1. Given a Context-Free Path Query view V and a Regular Path Query Q,
it is undecidable whether V determines Q.

Proof. We prove this by reduction from the universality problem for context-free languages.
Let L be a context-free language over some alphabet σ. Let $ be a fresh symbol that does
not appear in σ. Let V = {V } where V is defined by L(V) = $ · L · $. Let Q be defined by
L(Q) = $ · σ∗ · $. Then V determines Q if and only if L is universal over σ.

• Assume that L is universal. Then Q = V and it is easy to check that R = V is a rewriting
of Q using V.

• Conversely, assume that L is not universal. Then there exists w ∈ σ∗ such that w /∈ L.
Consider the database D consisting of a simple path labeled by $ · w · $, and the empty
database D′. Then V(D) = ∅ = V(D′), but Q(D) contains the first and last node of the
path, whereas Q(D′) is empty. Hence, V does not determine Q.

Proposition 3.2. Given a Conjunctive Regular Path Query view V and a Regular Path
Query Q, it is undecidable whether V determines Q.

Proof. We prove this by reduction from the word problem for graph databases.

8 N. FRANCIS, L. SEGOUFIN, AND C. SIRANGELO

Problem : Word problem for graph databases

Input : A list of pairs (ui, vi)0<i≤n, a pair (u, v), where u, v, ui, vi, for every i
are words over σ, viewed as RPQs

Question : Is the following statement true?
For every graph database D over σ, if ∀i, ui(D) = vi(D), then u(D) = v(D)

A straightforward reduction from the word problem for finite semigroups shows:

Lemma 3.3. The word problem for graph databases is undecidable.

Proof. We prove this by reduction from the word problem for finite semigroups. This
problem has the same input as the word problem for graph databases but asks whether for
all semigroup S and all homomorphism h from σ∗ to S such that h(ui) = h(vi) for all i, it
is the case that h(u) = h(v).

We now prove that any input is accepting for the word problem for finite semigroups if
and only if it is accepting for the word problem for graph databases.

(1) Assume that the input is accepting for the word problem for finite semigroups. Let
D be a graph database such that for all i, ui(D) = vi(D). From D, we compute the
semigroup SD and the homomorphism h : σ∗ → SD as follows:
• The elements of SD are the set of pairs w(D) for all w ∈ σ∗. As D is finite SD is finite.
• Let x and y be two elements of SD. Let u, v ∈ σ∗ such that x = u(D) and y = v(D).
Then x · y is defined as u · v(D). It is easy to check that this operation is associative
and well defined (i.e. does not depend on the specific choice of u and v).

• For all α ∈ σ we set h(α) = α(D). Hence for all u ∈ σ∗ we have h(u) = u(D).
By construction we therefore have for all i, h(ui) = h(vi). Hence, h(u) = h(v), which
implies that u(D) = v(D).

(2) Assume that the input is accepting for the word problem for graph databases. Let
S be a finite semigroup, and h an homomorphism from σ∗ to S, such that, for all i,
h(ui) = h(vi). From S and h, we define the graph database Dh as follows:
• The sets of nodes of Dh is h(σ+)∪ {ε}. This set is finite since h(σ+) is a subset of S.
• Let x and y be two nodes of Dh. Then there is an edge α from x to y if either x = ε
and y = h(α) or x 6= ε and x · h(α) = y.

Assume that (x, y) ∈ ui(Dh). Then either x = ε, hence y = h(ui) = h(vi) and (x, y) ∈
vi(Dh), or x · h(ui) = y, which implies that x · h(vi) = y and (x, y) ∈ vi(Dh). Hence,
ui(Dh) = vi(Dh) for all i and therefore u(Dh) = v(Dh). Hence, (ε, h(u)) ∈ v(Dh), which
implies that there is a path v from ε to h(u) and thus that h(u) = h(v).

Let (ui, vi)0<i≤n and (u, v) be an input for the word problem. Let σ′ be a copy of σ using
only fresh symbols. For each α ∈ σ, we use α′ to denote the corresponding symbol in σ′.
We define the following query and view:

• Q is the RPQ defined by L(Q) = {u, v′} where v′ is a copy of v using symbols of σ′.
• For all α ∈ σ, Vα is a query of the view defined by the RPQ Lα = {α,α′}.
• For all i, Vi is also a query of the view defined by the RPQ Li = {ui, v

′
i}, where v′i is a

copy of vi using symbols of σ′.
• For all α, β ∈ σ, Tα,β is a query of the view defined by the CRPQ: α(x, y) ∧ ∃z, t β′(z, t).
• For all α, β ∈ σ, T ′

α,β is a query of the view defined by the CRPQ: α′(x, y) ∧ ∃z, t β(z, t).

We now prove that V = {Vα, Vi, Tα,β, T
′
α,β | α, β ∈ σ, 0 < i ≤ n} determines Q if and

only if the input is accepting for the word problem for graph databases.

DATALOG REWRITINGS OF REGULAR PATH QUERIES USING VIEWS 9

(1) Assume that the input is accepting for the word problem for graph databases. Let D
and D′ be two graph databases such that V(D) = V(D′). Consider first the case where
D uses symbols from both σ and σ′, then Tα,β and T ′

α,β reveal D entirely, which implies

that D = D′, and thus Q(D) = Q(D′). Similarly, if both D and D′ use only symbols
from σ, then Vα reveals D entirely ensuring that D = D′. It remains to consider the
case where D only uses symbols from σ and D′ only uses symbols from σ′. Notice that,
since Vα(D) = Vα(D

′), then D and D′ are isomorphic (by renaming each α to α′).
Let (x, y) ∈ ui(D). Hence, (x, y) ∈ Vi(D), which implies that (x, y) ∈ Vi(D

′), and
finally that (x, y) ∈ v′i(D

′). By isomorphism (x, y) ∈ vi(D). Similarly, we can show that
(x, y) ∈ vi(D) implies (x, y) ∈ ui(D). Hence, u(D) = v(D). Let (x, y) ∈ Q(D). Then,
(x, y) ∈ u(D), which implies that (x, y) ∈ v′(D′), and thus that (x, y) ∈ Q(D′). A similar
reasoning also gives the converse, and we can conclude that V determines Q.

(2) Assume that V determines Q. Let D be a graph database over σ that satisfies the
condition for the word problem. Let D′ be the copy of D given by renaming the symbols
in σ by the corresponding symbols in σ′. Remark now that V(D) = V(D′). Indeed,
Vα(D) = Vα(D

′) is given by the fact that D′ is a copy of D over σ′. Vi(D) = Vi(D
′) is

given by the fact that D satisfies the condition for the word problem. Finally, Tα,β(D) =
Tα,β(D

′) = T ′
α,β(D) = T ′

α,β(D
′) = ∅ comes from the fact that D (resp. D′) uses only

symbols from σ (resp. σ′).
Since V determines Q, this implies that Q(D) = Q(D′). Let (x, y) ∈ u(D). Then

(x, y) ∈ Q(D), which implies that (x, y) ∈ Q(D′). Hence, (x, y) ∈ v′(D′), and since D′ is
a copy of D, this yields (x, y) ∈ v(D). A similar reasoning also gives the converse, and
we can conclude that the input is accepting for the word problem for graph databases.

4. Views and Rewriting

We have seen in the previous section that knowing whether a given view V determines a
given query Q is often computationally a difficult task. In this section we assume that V
determines Q and we investigate how Q can be computed from the given view instance.

A possibility is to use the following generic algorithm :

Given a τ -structure E, compute a σ-structure D such that V(D) = E (reject if no such D
exists) and return Q(D).

As we know that V determines Q this procedure always returns the correct answers on
view images. Therefore the query over τ defined by this algorithm is a rewriting of Q using
V.

For all the query languages considered in this paper, computing V(D) and Q(D) can
be done in time polynomial in |D|. Hence it remains to be able to test whether there exists
a D such that V(D) = E and, if yes, compute such a D.

The first issue, testing whether a τ -instance is in the image of the view, is already a
challenging task and will be investigated in the next section. We start with the second
problem, i.e. computing a D such that V(D) = E, if it exists.

10 N. FRANCIS, L. SEGOUFIN, AND C. SIRANGELO

4.1. Looking for a view preimage. We assume in this section that V is a view from σ
to τ and that we are given a τ -structure E that is in the image of V. We are now looking
for a D such that V(D) = E, knowing that one such D exists. Our first result below shows
that for RPQ views, if such a D exists then there is one whose size is polynomial in |E|. It
is essentially a pumping argument.

Lemma 4.1. Let V be an RPQ view from σ to τ . Let E be a τ -structure. If E = V(D) for
some D then E = V(D′), for some D′ of size quadratic in |E|.

Proof. LetV and E be as in the statement of the lemma. We show that if there exists D such
that E = V(D) then there exists a new database D′ of size O(|E|2) such that V(D′) = V(D).
D′ is obtained from D in several steps. First D is “normalized”, without altering its view,
so that nodes not occurring in E appear in only one path linking two nodes of E. The
normalized D turns out to consist of a constant number of disjoint paths between each pair
of nodes of E (where the constant only depends on the size of the view automaton). Then a
Ramsey argument is used to show that these paths can be “cut” without changing the view.
The resulting database D′ thus consists of a constant number of paths of constant length
between each pair of nodes of E. The size of D′ is therefore O(|E|2). We now formalize this
argument.

Assume that there exists a database D such that E = V(D). We prove the lemma by
constructing a new database D′ such that V(D′) = V(D), with |D′| = O(|E|2).

Let A = 〈SV, δV, q0
V
, FV〉 be the product automaton of all the deterministic minimal

automata of all the regular expressions of the RPQs in V. Let N(V) be the number of
states of A, i.e |SV|.

In what follows, for w ∈ σ∗, δV(·, w) denotes the function from SV to SV sending q to
p such that there is a run of A on w starting in state q and arriving in state p.

We say that a path π from u to v in a database D′ is V-minimal if u, v are elements of
V(D′) and no other nodes of π are in the domain of V(D′).

We first build a database D1 such that :

• V(D1) = V(D);
• each node of D1 is in a V-minimal path and no two V-minimal paths in D1 intersect;
• the number of V-minimal paths in D1 is bounded by |V(D)|2 ·N(V)N(V).

D1 is constructed as follows: All elements of V(D) are elements of D1. Moreover, for
each function f : SV → SV and each pair (x, y) of elements of V(D), if there exists a
V-minimal path π from x to y in D and such that f = δV(·, λ(π)), then we add to D1 a
copy of π that uses only fresh, non-repeating nodes, except for x and y. Figure 2 illustrates
the main idea of this construction.

It is now easy to check that D1 has the desired properties. The second bullet holds
by construction. Clearly the number of f : SV → SV is bounded by N(V)N(V) hence
the third bullet holds. It remains to check that V(D1) = V(D). There is an obvious
canonical homomorphism sending D1 to D. Hence V(D1) ⊆ V(D). For the converse
direction, consider a path π witnessing the fact that (u, v) ∈ V(D). Decompose π into
V-minimal paths. By construction, each of these V-minimal paths can be simulated in D1.
Hence (u, v) ∈ V(D1).

From D1 we construct the desired D′ by replacing each V-minimal path of D1 by
another one whose length is bounded by a constant r and without affecting the view image.
Altogether D′ will have a size bounded by r · |V(D)|2 · N(V)N(V), hence polynomial in
|V(D)| as desired.

DATALOG REWRITINGS OF REGULAR PATH QUERIES USING VIEWS 11

Let r be the Ramsey’s number that guarantees the existence of a monochromatic 3-

clique in an r-clique using N(V)N(V) · 2N(V)N(V)
colors.

Consider a V-minimal path π = xa0x1a1 . . . xmamy in D1 such that m > r. For
1 ≤ s < t ≤ m we denote by πs→t the subpath of π that starts at position s and ends at
position t, that is πs→t = xsasxs+1as+1 . . . at−1xt.

To each pair of nodes (xi, xj) in π with i < j, we attribute the color (fij,∆ij) where:

fij = δV(·, λ(πi→j))

∆ij = {f : SV → SV | ∃α, i < α < j and

f = δV(·, λ(πi→α))}.

Then, by our choice of r, we know that there exist i < j < k such that fij = fjk = fik and
∆ij = ∆jk = ∆ik. Let π

′ be the path constructed from π by replacing the subpath πi→k by
πj→k.

Let D2 be the database constructed from D1 by replacing π by π′. We now prove that
V(D2) = V(D1). As D2 still has all the properties of D1 listed above, by repeating this
operation until all V-minimal paths have length less than r we eventually get the desired
database D′.

Let (u, v) ∈ V(D1) as witnessed by a path µ in D1. Then µ neither starts nor ends in an
internal node of π as internal nodes do not appear in V(D1). Hence either µ does not use π
or it uses all of it. In the former case, µ witnesses the fact that (u, v) ∈ V(D2). In the latter,
notice that fik = fjk implies that λV(·, λ(π)) = λV(·, λ(π

′)), hence replacing π by π′ in µ
witnesses the fact that (u, v) ∈ V(D2). Altogether we have shown that V(D1) ⊆ V(D2).

Suppose now that (u, v) ∈ V(D2) as witnessed by a path µ in D2. If µ does not go
through xj (i.e. xj is not an internal node of µ), it is also a path in D1 and (u, v) ∈
V(D1). If µ goes through xj but does not end between xj and xk we can also conclude
that (u, v) ∈ V(D1) using the fact that fik = fjk. It remains to consider the case when µ
ends with xjaj . . . aβ−1xβ for some β with j < β < k (in particular v = xβ). As ∆ij = ∆jk

there exists α with i < α < j such that δV(·, λ(πi→α)) = δV(·, λ(πj→β)). From this we
can construct a path µ′ in D1 replacing in µ the segment xjaj . . . aβ−1xβ by xiai . . . aα−1xα,
witnessing the fact that (u, xα) ∈ V(D1), a contradiction as xα is not an element of V(D1).
Altogether we have proved that V(D2) ⊆ V(D1). Hence, V(D2) = V(D1) = V(D).

In view of Lemma 4.1, we know that if V determines Q then there exists a rewrit-
ing R with NP data complexity. Indeed R is the query computed by the following non-
deterministic polynomial time algorithm: on an input τ -structure E, guess from E a data-
base D of polynomial size, check that V(D) = E and then evaluate Q on D. There also
exists a rewriting with coNP data complexity, by considering all databases D of polynomial
size such that V(D) = E. Altogether we get:

Corollary 4.2. Let V and Q be RPQs such that V determines Q. Then there exists
a rewriting of Q using V with NP data complexity, and another one with coNP data
complexity.

It is not known whether, for RPQ views and queries, determinacy implies the existence
of a rewriting with polynomial time data complexity. The complexity bounds of Corol-
lary 4.2 are the current best known bounds. We will see in the next sections that if we
further assume that the function induced by Q using V is monotone then there exists a
rewriting of Q using V definable in Datalog and therefore computable in polynomial time.

12 N. FRANCIS, L. SEGOUFIN, AND C. SIRANGELO

π1

π2

π3 π4

π5 π6

x1

x2

x3

x4

D :

π1

π2

π3

π3 π4

π4

π5

π5 π6
π6

x1

x2

x3

x4

D1 :

Figure 2: Illustration of the transformation from D to D1 in Lemma 4.1. Nodes are colored
white or black depending on whether they appear in V(D) or not.

Using a more intricate pumping argument it is possible to show that for any Conjunctive
Regular Path Query view V, the fact that a view instance is in the image of V can also
be witnessed by a database of polynomial size. Hence Corollary 4.2 extends to Conjunctive
Regular Path Queries.

However we will see that for Context-Free Path Query views there is no recursive bound
on the size of a database yielding a given view instance. This will follow from Lemma 4.5
showing that, for Context-Free Path Query views, checking whether a view instance is in
the image of the view is undecidable.

4.2. Testing for view images. We now consider the following problem. We are given a
view V from σ to τ and a τ -structure E and we are asking whether there exists a σ-structure
D such that V(D) = E.

Note that this problem is related to the previous one. In view of Lemma 4.1 we im-
mediately get an NP algorithm for testing membership in the image of an RPQ view V:
on input E guess a database D of size polynomial in E and check V(D) = E. We will see
that testing for view images is NP-hard for Regular Path Query views and undecidable for
Context-Free Path Query views.

Moreover one can show that if testing for view images can be done in PTime then,
for Q and V such that V determines Q, then there exists a rewriting of Q using V with
polynomial time data complexity. The polynomial time algorithm works as follows. On a
view instance E, it first tests whether there exists a database D such that E = V(D). If
not it rejects. If yes, consider the schema adding two new letters a and b and consider the
query Qa,b asking for a path in the language a · L(Q) · b. Define V′ as V ∪ {Qa,b, Va, Vb}
where Va and Vb return all pairs of nodes linked by a and b respectively. For each pair (x, y)
of nodes of E, let E′ be E expanded with the empty relation for Qa,b, a single pair (u, x) for

DATALOG REWRITINGS OF REGULAR PATH QUERIES USING VIEWS 13

Va and a single pair (y, v) for Vb where u and v are two new nodes. We then test whether
E′ is a view image. A simple argument shows that the test says yes iff (x, y) 6∈ Q(D) and
the algorithm works in time polynomial in the size of E.

Unfortunately, as already mentioned, the test for view images is NP-hard already for
RPQ views.

Lemma 4.3. There is an RPQ view V from σ to τ such that given a τ -structure E it is
NP-hard to test whether there exists a σ-structure D such that V(D) = E.

Proof. We reduce 3-Colorability to our problem. The proof is a simple variation of
the reduction found in [5] to prove that computing certain answers under the sound view
assumption is coNP-hard in data complexity.

Let σ = {rg, gr, bg, gb, rb, br} and τ = {V1, V2}. By abuse of notation, we will refer to
an element of σ as αβ, with α and β two symbols in {r, g, b}, and α 6= β. Let V be the
following view from σ to τ :

• V = {V1, V2}
• L(V1) = {rg, gr, bg, gb, rb, br}
• L(V2) = {α1β1 · α2β2 | β1 6= α2}.

Let G = (U,W) be a connected graph. From G we define a τ -structure EG, in which
the interpretation of V1 is:

{(x, y) | (x, y) ∈ W or (y, x) ∈ W}

and the interpretation of V2 is the empty relation.
We show that G is 3-colorable iff there exists D such that V(D) = EG. Intuitively, the

idea is that σ describes the colors of the edges of G, that is the color of the two end points
of each edge. For instance, if x and y are linked by rg, then it should be understood that x
is red and y is green. V1 checks that each pair of nodes that are connected in G are colored
with (at least) two different colors, and V2 checks if there is any error, that is, if a node is
required to have more than one color. Since V2 is empty, any graph database D such that
V(D) = E cannot have any such error, and would thus be 3-colorable.

More precisely, assume that G is 3-colorable. Then there exists a coloring function
c : U → {r, g, b} such that c(x) 6= c(y) for all (x, y) ∈ W . We define D as the σ-structure
such that, for each αβ ∈ σ, the interpretation of αβ in D is:

{(x, y) | (x, y) ∈ W or (y, x) ∈ W,

and c(x) = α, c(y) = β}.

It is then easy to check that V(D) = EG. Indeed, for all x, y, z ∈ D, if α1β1(x, y) and
α2β2(y, z) hold in D, then β1 = c(y) = α2, hence (x, z) /∈ V2(D), so V2(D) is empty.

Conversely, assume that there exists a graph database D such that V(D) = EG. Con-
sider the coloring function c : U → {r, g, b} defined as: c(x) = α if there exists y such that
αβ(x, y) holds in D. Since V2(D) is empty, it is immediate to check that c(x) is uniquely
defined and that c is a proper 3-coloring of G.

If we go from regular languages to context-free ones, then the problem becomes unde-
cidable.

Lemma 4.4. Let V be a Context-Free Path Query view from σ to τ . Let E be a τ -instance.
Then it is undecidable whether there exists a σ-structure D such that V(D) = E.

14 N. FRANCIS, L. SEGOUFIN, AND C. SIRANGELO

Proof. We prove this by reduction from the universality problem for context-free languages.
Let L be a context-free language over some alphabet σ. Let $ be a fresh symbol that does
not appear in σ. Let V = {V1, V2}, where V1 is defined by L(V1) = $ ·L ·$ and V2 is defined
by L(V2) = $ · σ∗ · $. Finally, let E be the view instance that contains a single pair (x, y)
in V2 and no pair in V1. Then there exists D such that V(D) = E if and only if L is not
universal over σ.

• Assume that there exists a database D such that V(D) = E. Then there exists a path π
from x to y such that λ(π) ∈ L(V2). Hence there exists w ∈ σ∗ such that λ(π) = $ ·w · $.
However, λ(π) /∈ L(V1). Hence w /∈ L and L is not universal.

• Conversely, assume that L is not universal. Then there exists w ∈ σ∗ such that w /∈ L.
Then it is easy to check that the database D consisting of a simple path labeled by $ ·w ·$
satisfies V(D) = E.

A more intricate argument shows that undecidability already holds for a fixed view defini-
tion V.

Lemma 4.5. There exists a fixed Context-Free Path Query view V from σ to τ such that,
given a τ -structure E, it is undecidable whether there exists a σ-structure D such that
V(D) = E.

Proof. Let σ = {(, ; ,), a, b, $, 1}. Let σ be a copy of σ with fresh symbols. For α ∈ σ, we
denote by α the corresponding symbol in σ. For w a word, w̃ denote the word corresponding
to w read from right to left. V consists of views that reveal each symbol in σ, that is, for all
α ∈ σ, V contains a view Vα defined by L(Vα) = {α}. Additionally, V contains the queries
Vu, Vv, V

′
u, V

′
v , Vg and Vc defined by the following equations:

L(Vu) =

{

$ · w · $ · (i1;v1;u1) . . . (in;vn;un) · $ |
w, uk, vk ∈ {a, b}∗, ik ∈ 1∗, u1 · . . . · un = w̃

}

L(Vv) =

{

$ · w · $ · (i1;v1;u1) . . . (in;vn;un) · $ |
w, uk, vk ∈ {a, b}∗, ik ∈ 1∗, v1 · . . . · vn = w̃

}

L(V ′
u) =

{

$ · w · $ · (i1;v1;u1) . . . (in;vn;un) · $ |
w, uk, vk ∈ {a, b}∗, ik ∈ 1∗, u1 · . . . · un 6= w̃

}

L(V ′
u) =

{

$ · w · $ · (i1;v1;u1) . . . (in;vn;un) · $ |
w, uk, vk ∈ {a, b}∗, ik ∈ 1∗, v1 · . . . · vn 6= w̃

}

L(Vg) =

{

$ · (u1; v1; i1) · . . . · (un; vn; in) · $ · σ∗ · $ · σ∗ · (i′;v′;u′) |
uk, vk ∈ {a, b}∗, ik ∈ 1∗, u′, v′ ∈ {a, b}∗, i′ ∈ 1∗, i′ > in

}

L(Vc) =







$ · (u1; v1; i1) · . . . · (un; vn; in) · $ · σ∗ · $ · σ∗ · (i′;v′;u′) |
uk, vk ∈ {a, b}∗, ik ∈ 1∗, u′, v′ ∈ {a, b}∗, i′ ∈ 1∗,

∃k, ik = ϕ(i′), uk 6= ϕ(ũ′) or vk 6= ϕ(ṽ′)







where ϕ is the function that maps each symbol in σ to the corresponding symbol in σ.
One can check that all these languages are actually context-free languages.
We now prove that, given a view instance E for this specific view V, it is undecidable

whether there exists a database D such that V(D) = E. We prove this by reduction from the
Post Correspondence Problem (PCP). Let (ui, vi, i)0<i≤n be an instance of PCP over {a, b},
where the third argument explicitly gives the index of each pair. We build the following
view instance E:

DATALOG REWRITINGS OF REGULAR PATH QUERIES USING VIEWS 15

x0 x1

V$ V(“Vu1” V; “Vv1” V; V1

x2

V)

xn

V(“Vun” V; “Vvn” V; V n
1

xn+1

V)

xend

Vu, Vv

PCP encoding

solution encoding

We now show that there exists D such that V(D) = E if and only if the PCP instance
is satisfiable. Intuitively, E consists of two parts. The first part, from x0 to xn+1 is the
encoding of the PCP instance. It uses letters from σ that are all revealed by the view. All
tuples are simply enumerated in the natural order, where the ith tuple is encoded between
xi and xi+1. The dashed arrows Vui

and Vvi represent the correct succession of Va and Vb

that naturally encode ui and vi, whereas the V i
1 part is the unary encoding of i, the index

of the tuple. The second part of the instance states the existence of a solution for this
instance, and uses “hidden” letters from σ. Vu and Vv states that there exists a solution,
and the fact that all other views are empty checks that this solution is correct.

• Assume that there exists a database D such that V(D) = E. Then there exists a path
π from xn+1 to xend such that λ(π) ∈ L(Vu). Hence, this path is of the form $ · w ·
$ · (i1;v

′
1;u

′
1) . . . (im;v′m;u′m) · $, where w is a word in σ

∗ and u′1 . . . u
′
m = w̃. Remark

that is also holds that v′1 . . . v
′
m = w̃, otherwise λ(π) ∈ V ′

v , which would imply that
(xn+1, xend) ∈ V ′

v(D), and lead to a contradiction.
Hence, u′1 . . . u

′
m = v′1 . . . v

′
m. It remains to show that each (ii;v

′
i;u

′
i) is an encoding of

the mirror of some tuple in the PCP instance, which would imply a solution as ũ′m . . . ũ′1 =
ṽ′m . . . ṽ′1. In other words, u|im| . . . u|i1| = v|im| . . . v|i1|.

Assume that one of the (ii;v
′
i;u

′
i) is not the mirror of some tuple encoded in the first

half of the instance. Remark that |ii| ≤ n. Otherwise, there exists a path whose label is
in L(Vg), which leads to a contradiction. Hence, either u′i 6= ũ|ii| or v

′
i 6= ṽ|ii|. Both cases

lead to the existence of a path whose label is in L(Vc), and thus to a contradiction.
• Assume that there exists a solution i1 . . . im to the PCP instance. Then the database D
that consists of the following simple path is such that V(D) = E:

$(u1; v1; 1) . . . (un; vn; 1
n)$ui1

. . .uim$(1im;ṽim;ũim) . . . (1i1;ṽi1
;ũi1

)$

where ui and vi simply represent the corresponding ui and vi written using a and b

instead of a and b.

Note that in the proof of Lemma 4.5 the view instance is a coding of a PCP instance and the
corresponding database a coding of a solution. As there is no recursive bound on the size
of a solution of a PCP instance, for Context-Free Path Query views, there are no recursive
bound on the size of a database that yields a given view instance. This is to be compared
with the polynomial bound for RPQ views shown in Lemma 4.1.

16 N. FRANCIS, L. SEGOUFIN, AND C. SIRANGELO

5. Monotone determinacy and rewriting

As Example 1 shows, there is an RPQ view V and an RPQ query Q such that V determines
Q but the function induced by Q using V is not monotone, therefore having no RPQ
rewriting. It is natural to wonder whether the monotonicity of the function induced by the
query is the only limit for the existence of an RPQ rewriting. Recall from the introduction
that if V and Q are defined using CQs and V determines Q, then the function induced
by Q using V is monotone iff there exists a CQ rewriting. In the case of RPQ views and
queries the analog does not hold. We will see that, even if we assume monotonicity, an RPQ
rewriting need not exist; however in the next section we will show that a rewriting definable
in Datalog always exists. We start by formalizing the notion of monotone determinacy.

Definition 5.1 (Monotone determinacy). We say that a view V determines a query Q in
a monotone way if V determines Q and the function induced by Q using V is monotone.

It is rather immediate to see that monotone determinacy is equivalent to the following
property for V and Q:

∀D,D′, V(D) ⊆ V(D′) ⇒ Q(D) ⊆ Q(D′)

This turns out to coincide with the notion of losslessness under the sound view assumption
defined in [7], that was shown to be decidable, actually ExpSpace-complete, for RPQs.

Corollary 5.2. The monotone determinacy problem for RPQs is ExpSpace-complete.

Note that in the proof of Proposition 3.1, the rewriting is always monotone when the
view determines the query. Therefore, for Context-Free Path Query views and RPQ queries,
monotone determinacy is undecidable.

Recall from Example 1 that there exist a view and a query such that the view determines
the query but not in a monotone way. We now assume given an RPQ view V and an RPQ
query Q such that V determines Q in a monotone way. It was observed in [7] that even in
this case there might be no rewriting definable in RPQ.

In fact, given V and Q defined using RPQs, it is decidable whether an RPQ rewriting
exists and the problem is 2ExpSpace-complete [8]. As testing monotone determinacy is
ExpSpace-complete, a simple complexity argument shows that an RPQ rewriting is not
guaranteed to exist under monotone determinacy.

Here is a concrete example witnessing this fact.1

Example 2. Let σ = {a, b, c}. Let Q and V be defined as follows:

• Q = ab∗a | ac∗a
• V = {V1, V2, V3} with
– V1 = ab∗

– V2 = ac∗

– V3 = b∗a | c∗a

One can verify that V determines Q as witnessed by the following rewriting R(x, y):

∃z V1(x, z) ∧ V2(x, z) ∧ V3(z, y)

That R is a rewriting is illustrated in Figure 3. Consider the database D of Figure 3 which
is a typical database such that (x, y) ∈ Q(D). The choice of z witnessing (x, y) ∈ R(V(D))

1A similar example was claimed in [7, Example 4] but it seems that in this example V and Q are such
that V does not determine Q.

DATALOG REWRITINGS OF REGULAR PATH QUERIES USING VIEWS 17

is then immediate. Conversely, consider the database D′ of Figure 3. It is a typical database
such that (x, y) ∈ R(V(D)). The top path shows that (x, y) ∈ Q(D).

a ab b b b
x z yD :

a

a

b b

c

b

c

b a
x z y

D′ :

Figure 3: Databases D and D′ for Example 2.

Since R is monotone, V determines Q in a monotone way. It can also be shown (for instance
using the decision procedure provided in [8]) that no RPQ rewriting exists.

In the previous example we have exhibited a Conjunctive Regular Path Query rewrit-
ing. However the following example suggests that Conjunctive Regular Path Query is not
expressive enough as a rewriting language.

Example 3. Let σ = {a}. Let V and Q be defined as follows:

• Q = a(a6)∗ | aa(a6)∗ (words of length 1 or 2 modulo 6)
• V = {V1, V2} with
– V1 = a | aa (words of length 1 or 2)
– V2 = aa | aaa (words of length 2 or 3)

It can be verified that V determines Q in a monotone way as witnessed by the following
rewriting R(x, y):

∃z V1(x, z) ∧ T ∗(z, y)

where T (x, y) is defined as:

∃z1, z2 V1(x, z1) ∧ V2(x, z1) ∧ V1(z1, z2)∧

V2(z1, z2) ∧ V1(z2, y) ∧ V2(z2, y)

The query T is such that if T (x, y) holds in V(D), then in D the nodes x and y are either
linked by a path of length 6 or by both a path of length 5 and a path of length 7. This fact
can be checked by a simple case analysis. One such case is illustrated in Figure 4. In this
case there is no path of length 6 in D, but the top path has length 5, and the path starting
with the bottom segment and then the last two top segments has length 7.

From this, a simple induction shows that if T ∗(x, y) holds in V(D), then in D the nodes
x and y are either linked by a path of length 0 modulo 6, or by both a path of length 1
modulo 6 and a path of length 5 modulo 6.

Assume now that R(x, y) holds in V(D). Then in D there exists a z such that x is at
distance 1 or 2 from z, and such that T ∗(z, y) holds in V(D). Assume first that z and y
are at distance 0 modulo 6 in D. In this case, regardless of the distance between x and z,
Q(x, y) holds in D. Otherwise, in D there exist both a path of length 1 modulo 6 and a
path of length 5 modulo 6 from z to y. Therefore, if x and z are at distance 1, the first

18 N. FRANCIS, L. SEGOUFIN, AND C. SIRANGELO

path from z to y yields a path of length 2 modulo 6 and, if x and z are at distance 2, the
second path from z to y yields a path of length 1 modulo 6, see Figure 5.

Conversely, it is easy to check that R(x, y) holds in V(D) whenever Q(x, y) holds in D.
This follows from the fact that T (x, y) holds in V(D) for all x and y that are at distance 6
in D.

Notice that R is monotone. A tedious combinatorial argument can show that R cannot
be expressed as a Conjunctive Regular Path Query.

x y
z1 z2

V1 : a V1 : aa V1 : aa

V2 : aaa V2 : aa V2 : aa

Figure 4: Example 3: An arbitrary database D whose view satisfies T (x, y). Each arrow of
the form Vi : w from a node u to a node v should be understood as a path from
u to v whose label is w which witnesses (u, v) ∈ Vi(D).

x yz
V1 : a or a2 T ∗ : (a6)∗

x yz
V1 : a

T ∗ : a(a6)∗

T ∗ : a5(a6)∗

x yz
V1 : aa

T ∗ : a(a6)∗

T ∗ : a5(a6)∗

Figure 5: The three cases of Example 3. The parts that are not used for Q are shaded out.

Remark 5.3. The careful reader has probably noticed that in both examples above a
rewriting can be expressed in MSO. As we will see later, it easily follows from the results
of [6] that this is always true in general: if V and Q are defined by RPQs and V determines
Q in a monotone way, then there exists a rewriting of Q using V definable in MSO (actually
universal MSO).

DATALOG REWRITINGS OF REGULAR PATH QUERIES USING VIEWS 19

6. Datalog rewriting

In this section we prove our main result, namely:

Theorem 6.1. If V and Q are RPQs and V determines Q in a monotone way then there
exists a Datalog rewriting of Q using V.

Theorem 6.1 also implies that the monotone determinacy problem for RPQs coincides
with the problem of the existence of a Datalog rewriting. The latter is therefore decidable
by Corollary 5.2:

Corollary 6.2. Let V and Q be RPQs. It is decidable, ExpSpace-complete, whether there
exists a Datalog rewriting of Q using V.

Our proof being constructive, the Datalog rewriting can be computed from V and Q.

Main idea and sketch of the proof. The starting point is the relationship between rewrit-
ing and certain answers under monotone determinacy. One can easily show that if the
view determines the query in a monotone way then the certain answers query is a rewrit-
ing. However certain answers for RPQ views and queries are coNP-hard to compute [5].
Here we show that there exists another rewriting (which of course coincides with certain
answers on view images) that is expressible in Datalog. This other rewriting is suggested
by the relationship between certain answers and Constraint Satisfaction Problems (CSP).
Following [6] we adopt here the homomorphism point of view for CSPs: Each CSP is de-
fined by a structure, called the template, and its solutions are all the structures mapping
homomorphically into the template.

Indeed [6] showed that, for RPQs V and Q, certain answers can be expressed as a CSP
whose template depends only on V and Q. It is known from [11] that for every l and k with
l ≤ k, and every template, there exists a Datalogl,k query approximating the CSP defined by
this template. Even if its Datalogl,k “approximation” does not compute precisely the CSP
associated to V and Q, if it is exact on view images, then it is a rewriting. We show that
if the view determines the query in a monotone way then there is an l and a k, depending
only on V and Q, such that the Datalogl,k approximation is exact on view images. This
proves the existence of a Datalog rewriting.

This is done in two steps. We first show that there exists a Datalog approximation
which is exact on view images of simple path databases. Then we show how to lift this
result on all view images. The first step is proved by a careful analysis of the properties of
view images of simple path databases. The second steps exploits monotonicity.

We now provide more details.

6.1. Monotone rewritings, certain answers and CSP. Let V be a view from σ to τ
and Q be a query on σ-structures. The certain answers of Q on a τ -structure E w.r.t. V
are defined as

certQ,V(E) =
⋂

D | E⊆V(D)

Q(D)

This notion is usually referred to as certain answers under the sound view assumption
or open world assumption in the literature [1, 9]. It is straightforward to check that if
V determines Q in a monotone way, the query certQ,V is a rewriting of Q using V, i.e.
certQ,V(V(D)) = Q(D) for each σ-structure D.

20 N. FRANCIS, L. SEGOUFIN, AND C. SIRANGELO

Therefore any language known to express certain answers is a suitable rewriting lan-
guage under monotone determinacy.

The following proposition, proved in [6], shows that, for RPQ views and queries, certain
answers (and therefore rewritings) can be expressed as (the negation of) a CSP.

Proposition 6.3 ([6]). Let V be an RPQ view from σ to τ and Q be an RPQ query over
σ. There exists a τ -structure TQ,V having a set of distinguished source nodes and a set of
distinguished target nodes such that, if V determines Q in a monotone way, the following
are equivalent, for each σ-structure D and each pair of nodes u, v of D:

(1) (u, v) ∈ Q(D)
(2) (u, v) ∈ certQ,V(V(D))
(3) V(D) has no homomorphism to TQ,V sending u to a source node and v to a target node.2

In the sequel, by ¬CSP(TQ,V) (resp. CSP(TQ,V)) we refer to the set of all triplets
(E, u, v) such that E is a τ -structure, u, v are nodes of E and, there is no homomorphism (resp.
there is a homomorphism) from E to TQ,V sending u to a source node and v to a target node3.
In view of Proposition 6.3, if V determines Q in a monotone way, (V(D), u, v) ∈ ¬CSP(TQ,V)
iff (u, v) ∈ Q(D).

Observe that ¬CSP(TQ,V) naturally defines a binary query associating with each τ -
structure E the set of all pairs (u, v) of nodes of E such that (E, u, v) ∈ ¬CSP(TQ,V). By
abuse of notation, when clear from the context, we will let ¬CSP(TQ,V) also denote this
binary query.

Remark 6.4. The structure TQ,V of Proposition 6.3 can be effectively computed from
Q and V. Moreover observe that CSP(TQ,V) can be expressed in existential MSO. This
shows, as mentioned in Remark 5.3, that if V and Q are RPQs and V determines Q in
monotone way, then there always exists a rewriting of Q using V definable in (universal)
MSO; moreover this rewriting can be effectively computed from Q and V.

It is well known that the certain answers query is a rewriting that can be computed
in coNP (this follows for instance from Proposition 6.3). Assuming coNP is not PTime,
certQ,V cannot always be computed in polynomial time, not even under the assumption
that V determines Q in a monotone way. Indeed it has been shown [5] that there exists
Q and V defined by RPQs such that certQ,V has coNP-hard data complexity. An easy
reduction from this problem shows that the lower bound remains valid if we further assume
that V determines Q in a monotone way:

Proposition 6.5. There exist an RPQ viewV and an RPQ query Q such that V determines
Q in a monotone way and it is coNP-hard to decide – given a τ -structure E and nodes (u, v)
of E– whether (u, v) ∈ certQ,V(E).

We show in the next section that when V determines Q in a monotone way there is
another rewriting expressible in Datalog, hence computable in polynomial time. Before we
do this we remark that the coNP complexity of certQ,V can be extended to Context-Free
Path Query views and RPQ queries.

2More precisely [6] further proved that 2. and 3. are equivalent not only for V(D) but for all τ -structures,
and even without the assumption that V determines Q in a monotone way.

3CSP are usually defined as boolean problems, i.e. without the nodes u, v. As RPQ queries are binary,
these parameters are necessary for our presentation. The problem CSP(TQ,V), as defined here, can be viewed
as a classical CSP problem by extending the signature with two unary predicates, interpreted as the source
and the target nodes, as done in [6].

DATALOG REWRITINGS OF REGULAR PATH QUERIES USING VIEWS 21

Proposition 6.6. Let V be a Context-Free Path Query view and Q be a RPQ. Then certQ,V

can be evaluated with coNP data complexity.

Proof. Let V be a Context-Free Path Query view, and Q be a RPQ over some schema σ.
We prove that certQ,V can be evaluated with coNP data complexity by reducing it to the
case of regular path views. Let A = 〈S, δ, q0, F 〉 be a deterministic minimal automaton for
L(Q). In what follows, δ(., w) denotes the function from S to S associating to a state p the
state reached by A when reading w starting from p. For all V ∈ V, we define the language
LV as:

LV = {w ∈ σ∗ | ∃w′ ∈ L(V) δ(·, w) = δ(·, w′)}.

We claim that LV is a regular language. To see this recall that for each function f from
S to S the language Lf defined as Lf = {w ∈ σ∗ | δ(·, w) = f} is regular and notice that
LV is a union of such languages. We remark here for later that LV is constructible as soon
that it is decidable whether L(V) ∩ Lf is non empty. This is in particular the case when
L(V) is context-free.

We now define a new view Ṽ defined as the RPQ view:

Ṽ = {Ṽ | V ∈ V and L(Ṽ) = LV }

Let E be a view instance for V. We define Ẽ as a copy of E where each V relation is replaced
by Ṽ . Hence, Ẽ is a view instance for Ṽ. We now show that:

certQ,V(E) = certQ,Ṽ(Ẽ)

and thus certQ,V(E) can be evaluated in coNP in the size of Ẽ, which is also the size of E.

• Assume that (u, v) ∈ certQ,Ṽ(Ẽ). Hence, for all D such that Ṽ(D) ⊇ Ẽ, there exists a

path π from u to v such that λ(π) ∈ L(Q). Let D be a database such that V(D) ⊇ E.

Remark that, for all V ∈ V, L(V) ⊆ L(Ṽ). Hence, Ṽ(D) ⊇ Ẽ. Hence, there exists a path
π in D from u to v such that λ(π) ∈ L(Q), which means that (u, v) ∈ certQ,V(E).

• Conversely, assume that (u, v) /∈ certQ,Ṽ(Ẽ). Hence, there exists a database D such that

Ṽ(D) ⊇ Ẽ, but no path from u to v in D satisfies Q. From D, we build a database D′ as
follows:
– Start with D′ as a copy of D.
– For all V ∈ V, for all (x, y) ∈ E, if (x, y) ∈ V , then (x, y) ∈ Ṽ in Ẽ. We pick a path π

in D′ from x to y of label w′ such that w′ ∈ L(Ṽ). Hence, there exists w ∈ L(V) such
that δ(·, w′) = δ(·, w). Then, we add in D′ a simple path from x to y using only fresh
nodes of label w. Hence (x, y) ∈ V (D′).

Remark then that V(D′) ⊇ E. Let π′ be a path from u to v in D′. Then π′ is of the form
π′ = π1µ1π2 . . . πn−1µn−1πn, where each πi is a path that was originally in D and each µi

is a new path using only fresh nodes. Then, for each µi, there exists a path ρi in D with
the same starting and ending nodes and such that δ(·, λ(µi)) = δ(·, λ(ρi)). Hence, we can
define a path π of D as π = π1ρ1π2 . . . πn−1ρn−1πn. Hence, δ(·, λ(π

′)) = δ(·, λ(π)).
Since (u, v) /∈ certQ,Ṽ

(Ẽ), then δ(q0, λ(π)) /∈ F . Hence, δ(q0, λ(π
′)) /∈ F , which proves

that (u, v) /∈ certQ,V(E).

The proposition has the following consequence:

Corollary 6.7. Let Q be a RPQ and V be a Context-Free Path Query view such that V
determines Q in a monotone way. Then there exists a rewriting of Q using V that can be
evaluated with coNP data complexity.

22 N. FRANCIS, L. SEGOUFIN, AND C. SIRANGELO

Notice that the proof of Proposition 6.6 and therefore also Corollary 6.7 do not assume
that the language defining the views are context-free and work with any language. However,
in order to effectively construct the rewriting, it is necessary that the formalism used to
define the views has a decidable emptiness test for the intersection with a regular language.

6.2. Existence of a Datalog rewriting. We now show that for each RPQ query Q and
each RPQ view V such that V determines Q in a monotone way, there exists a Datalog
rewriting.

The existence of such a rewriting stems from links between CSPs and Datalog. Recall
from Proposition 6.3 that if V determines Q in a monotone way, ¬CSP(TQ,V), viewed as
a binary query, is a rewriting of Q using V. It is known that to each CSP problem (i.e.
arbitrary template), one can associate a canonical Datalogl,k program, for each l, k, with
l ≤ k. This program can equivalently be described in terms of a two-player game, and
can be thought of as a maximal “approximation” of the complement of a CSP problem,
in a precise sense (the interested reader is referred to [11] for more details). Our main
contribution consists in proving that, for some explicit values of l and k (depending on
Q and V), this Datalogl,k approximation is “exact” when restricted to view images (i.e.
computes precisely ¬CSP(TQ,V)), and is therefore a rewriting over such instances.

We now present the (l, k)-two-player game of [11], and its correspondence with Datalog.

Definition 6.8 ((l, k)-two-player game). Let l, k be two integers, with l ≤ k, let E be a
τ -structure and u, v be two nodes of E. The (l, k)-game on (E, TQ,V, u, v) is played by two
players as follows:

• The game begins with A0 = ∅ and h0 being the empty function over A0.
For i ≥ 0, round i+ 1 is defined as follows:

• Player 1 selects a set Ai+1 of nodes of E, with |Ai+1| ≤ k and |Ai ∩Ai+1| ≤ l.
• Player 2 responds by giving a homomorphism hi+1 : E[Ai+1] → TQ,V that coincides with
hi on Ai ∩ Ai+1 and such that hi+1(u) is a source node and hi+1(v) is a target node
whenever u or v are in Ai+1.

Player 1 wins if at any point Player 2 has no possible move. Player 2 wins if she can play
forever.

The existence of a winning strategy for Player 1 is expressible in Datalog:

Lemma 6.9 ([11, 6]). Let l, k be two integers, with l ≤ k, and Q and V be an RPQ query
and an RPQ view. Then there exists a program Ql,k(x, y) in Datalogl,k such that for every
graph database E, Ql,k(E) is the set of pairs (u, v) such that Player 1 has a winning strategy
for the (l, k)-two-player game on (E, TQ,V, u, v).

Moreover the program in the above lemma can be effectively constructed from TQ,V,
and therefore from Q and V. It will be simply denoted by Ql,k when Q and V are clear
from the context.

We are now ready to state the main technical result of our paper.

Proposition 6.10. Let V and Q be an RPQ view and an RPQ query such that V de-
termines Q in a monotone way. There exists l such that Ql,l+1 is a rewriting of Q using
V.

Theorem 6.1 is an immediate consequence of this proposition. The rest of this section
is devoted to proving Proposition 6.10. This is done in two steps. We first prove that there

DATALOG REWRITINGS OF REGULAR PATH QUERIES USING VIEWS 23

exists l such that Ql,l+1 is a rewriting of Q using V, when restricted to view images of
simple path graph databases. We then show that this suffices for Ql,l+1 to be a rewriting
of Q using V.

Observe that if there is a homomorphism from a τ -structure E to TQ,V sending u to
a source node and v to a target node, then Player 2 has a winning strategy for the (l, k)-
two-player game on (E, TQ,V, u, v). This strategy consists in always playing the restriction
of the homomorphism on the set selected by Player 1. In this sense the program Ql,k is
a Datalogl,k under-approximation of the ¬CSP(TQ,V) problem: if (u, v) ∈ Ql,k(E) then
(E, u, v) ∈ ¬CSP(TQ,V). If moreover E = V(D) for some σ-structure D then, by Proposi-
tion 6.3, (u, v) ∈ Ql,k(V(D)) implies (u, v) ∈ Q(D). We will refer to this property by saying
that Ql,k is always sound.

The converse inclusion does not necessarily hold. If (u, v) /∈ Ql,k(E) then Player 2 has a
winning strategy, but this only means that she can always exhibit partial homomorphisms
from E to TQ,V (sometimes called local consistency checking); this is in general not sufficient
to guarantee the existence of a suitable global homomorphism.

However here we are not interested in arbitrary τ -structures, but only structures of
the form V(D) for some simple path graph database D. We now show that, thanks to the
particular properties of these structures, local consistency checking is sufficient to obtain
a global homomorphism, for some suitable l and k = l + 1. In other words, the program
Ql,l+1 computes precisely ¬CSP(TQ,V) on views of simple path graph databases.

The case of simple path graph databases.

Proposition 6.11. Let V and Q be an RPQ view and an RPQ query. There exists l such
that for every simple path database D from u to v,

(u, v) ∈ Ql,l+1(V(D)) iff (V(D), u, v) ∈ ¬CSP(TQ,V).

In particular if V determines Q in a monotone way,

(u, v) ∈ Ql,l+1(V(D)) iff (u, v) ∈ Q(D).

Proof. Let V and Q be an RPQ view and an RPQ query, and let D be a graph database
consisting of a simple path from node u to node v. Assume u, v ∈ V(D).

We will show, in Lemma 6.12 below, that for large enough l, if Player 2 has a winning
strategy on the game on (V(D), TQ,V, u, v) then we can exhibit a homomorphism witnessing
the fact that (V(D), u, v) ∈ CSP(TQ,V). Before that we prove crucial properties of V(D)
which will be exploited in the sequel. For that we need the following simple definitions and
claims.

Let D consist of the simple path π = x0a1x1 . . . xm−1amxm, with x0 = u and xm = v.
Moreover let E = V(D) and let A = 〈SV, δV, q0

V
, FV〉 be the product automaton of all the

deterministic minimal automata of all the regular expressions of the RPQs in V. Let N(V)
be the number of states of A, i.e. |SV|.

In what follows, for q ∈ SV and w ∈ σ∗, δV(q, w) denotes the state p ∈ SV such that
there is a run of A on w starting in state q and arriving in state p.

For every k ≤ m+1, and every i, j ≤ k, we say that xi ∼k xj in V(D) if, for all V ∈ V,
for all r ≥ k,

(xi, xr) ∈ V (D) ⇔ (xj , xr) ∈ V (D)

For all k, the relation ∼k is an equivalence relation over {xi | i ≤ k}. We now prove
the main property of V(D), namely that the index of all ∼k is bounded by the size of V.

24 N. FRANCIS, L. SEGOUFIN, AND C. SIRANGELO

Claim 4. For all k ≤ m+ 1:
∣

∣

∣
{xi | i ≤ k}/ ∼k

∣

∣

∣
≤ N(V)

Proof. To each node xi in π with i ≤ k, we associate a state ϕ(xi) ∈ SV defined as :

ϕ(xi) = δV(q0V, λ(πi→k))

where πs→t is defined as the subpath of π that starts at position s and ends at position t,
that is πs→t = xsasxs+1as+1 . . . at−1xt.

Assume that there exist two nodes xi and xj, with i, j ≤ k, that have the same image
in ϕ. It follows that:

δV(q
0
V, λ(πi→k)) = δV(q0V, λ(πj→k))

Let us prove that xi ∼k xj . Assume that there exist r ≥ k and V ∈ V such that (xi, xr) ∈
V (D). Then δV(q0

V
, λ(πi→r)) is final for V . Remark that λ(πi→r) = λ(πi→k)λ(πk→r), from

which we can deduce that :

δV(q0V, λ(πi→r)) = δV(ϕ(xi), λ(πk→r))

Hence,
δV(q0V, λ(πi→r)) = δV(ϕ(xj), λ(πk→r))

We can now conclude that δV(q
0
V
, λ(πj→r)) is final for V , which means that (xj , xr) ∈ V (D).

A symmetric argument easily proves the other direction of the equivalence. Hence, xi ∼k xj,
and we can finally conclude that there cannot be more thatN(V) distinct equivalence classes
of ∼k over the nodes {xi | i ≤ k} of π.

The following easily verified property of the equivalence relations ∼k will also be useful:

Claim 5. Let k1, k2 ≤ m+ 1, with k1 ≤ k2. Let x and y be two elements of π that occur
before xk1 . Then x ∼k1 y implies x ∼k2 y.

We are now ready to prove the statement of the Proposition. Let l = |TQ,V| · N(V).
We prove that (u, v) ∈ Ql,l+1(E) iff (E, u, v) ∈ ¬CSP(TQ,V). In view of the fact that Ql,l+1

encodes the (l, l + 1)-two-player game in the sense of Lemma 6.9, it is enough to prove the
following:

Lemma 6.12. Player 2 has a winning strategy for the (l, l + 1) - two-player game on
(E, TQ,V, u, v) iff there is an homomorphism from E to TQ,V sending u to a source node
and v to a target node.

Proof. The right-left direction is obvious. If there is a suitable homomorphism h : E → TQ,V,
then Player 2 has a winning strategy which consists in playing according to h.

Conversely, assume that Player 2 has a winning strategy for the (l, l + 1)-two-player
game on (E, TQ,V, u, v). Let {s1, s2, . . . , sr} be an ordering of the elements of E, according
to the order on π, that is, in such a way that ∀j ≤ k, sj occurs before sk in π. Clearly
s1 = u and sr = v. If r ≤ l+ 1, Player 1 can select all elements of E in a single round, and
then Player 2 has to provide a full homomorphism from E to TQ,V, which concludes the
proof.

Assume r > l + 1. For ease of notations, we will number rounds starting from l + 1.
This can be seen just as a technicality, or equivalently as Player 1 selecting the empty set for
the first l rounds. Since Player 2 has a winning strategy, she has, in particular, a winning
response against the following play of Player 1 :

DATALOG REWRITINGS OF REGULAR PATH QUERIES USING VIEWS 25

• On round l + 1, Player 1 plays Al+1 = {s1, . . . , sl+1}. Player 2 has to respond with a
partial homomorphism hl+1, which she can do, since she has a winning strategy.

• Assume that, on round i, Ai is of size l+ 1 and its element of biggest index is si (as it is
the case on round l+ 1). Given the choice of l, the set Ai is sufficiently “big”, that is by
Claim 4, there exist two elements sj, sk ∈ Ai such that sj ∼i sk, and hi(sj) = hi(sk). On
round i+1, Player 1 picks Ai+1 = (Ai −{sj}) ∪ {si+1}. This choice maintains that Ai+1

is of size l + 1 and that its element of biggest index is si+1. Once again, Player 2 has to
respond with a partial homomorphism hi+1, which she can do.

• Following this play, on round r, Ar contains sr, the element of biggest index in E. From
now on, we no longer care about Player 1’s move, that is, we arbitrarily set Ai = ∅ for all
i > r.

We can now define h as follows :

h(si) =

{

hl+1(si) if i ≤ l + 1
hi(si) if l + 1 < i ≤ r

Observe that, by definition, the mapping h sends u to a source node and v to a target node
(since so do all the hi’s used in the game). It remains to prove that h is an homomorphism
from E to TQ,V. We prove by induction on i ≥ l + 1 that :

(H1) h is a homomorphism from E[{s1, . . . , si}] to TQ,V.
(H2) h coincides with hi on Ai.
(H3) for all j ≤ i, there exists s ∈ Ai such that sj ∼i s and h(sj) = h(s).

Base case : For i = l + 1, the mapping h coincides by definition with hl+1 on
{s1, . . . , sl+1}. Hence, (H1) and (H3) follow easily.

Inductive case : Assume that there exists i with l + 1 ≤ i < r such that (H1),(H2)
and (H3) holds for i; we prove them for i+ 1.

(H2) Let s ∈ Ai+1. If s = si+1, then, by definition, h(si+1) = hi+1(si+1). Otherwise,
s ∈ Ai ∩ Ai+1. (H2) for i implies that h(s) = hi(s), and the definition of hi+1 thus
yields hi+1(s) = hi(s) = h(s). Hence, (H2) holds for i+ 1.

(H3) Let j ≤ i + 1. If j = i + 1, then sj ∈ Ai+1, and the result is obvious. Otherwise,
(H3) for i implies that there exists s ∈ Ai such that sj ∼i s and h(sj) = h(s). From
Claim 5, we deduce that sj ∼i+1 s. If s ∈ Ai+1, there is nothing more to prove.
Otherwise, it means that s is exactly the element that was removed from Ai on round
i+ 1, which means that there exists another element s′ ∈ Ai ∩Ai+1 such that s ∼i s

′

and hi(s) = hi(s
′). Then Claim 5 and (H2) imply that sj ∼i+1 s′ and h(sj) = h(s′).

Hence (H3) holds for i+ 1.
(H1) By definition, h already preserves any self-loop. Moreover, (H1) for i implies that

h is a homomorphism from E[{s1, . . . , si}] to TQ,V. Hence, any edge between two
elements of {s1, . . . , si} in E is already preserved by h. Let sj ∈ {s1, . . . , si}. Remark
that, since π is a simple path, there are no edges from si+1 to sj in E. Thus, we just
have to prove that all edges from sj to si+1 are preserved by h.

(H3) for i + 1 implies that there exists an element s ∈ Ai+1 such that sj ∼i+1 s
and h(sj) = h(s). Since hi+1 is a homomorphism on E[Ai+1], it preserves all edges
from s to si+1. Moreover, (H2) for i + 1 implies that h and hi+1 coincide on Ai+1,
which means that h preserves all edges from s to si+1. Finally, the definition of ∼i+1

implies that sj and s have the same edges to si+1. Hence, h preserves all edges from
sj to si+1.

26 N. FRANCIS, L. SEGOUFIN, AND C. SIRANGELO

Finally, (H1) applied for r proves that h is indeed a homomorphism from E to TQ,V. This
completes the proof of Lemma 6.12.

Now assume V determines Q in a monotone way, then from Proposition 6.3 it imme-
diately follows that (u, v) ∈ Ql,l+1(V(D)) iff (u, v) ∈ Q(D). This completes the proof of
Proposition 6.11.

From simple paths to arbitrary graph databases. Proposition 6.11 shows that if Q determines
V in a monotone way then Ql,l+1 is a rewriting of Q using V, when restricted to simple
path databases. It remains to lift this result to arbitrary graph databases. In a sense, the
following result shows that the general case can always be reduced to the simple path case.

Proposition 6.13. Let V and Q be an RPQ view and an RPQ query such that V deter-
mines Q in a monotone way. Assume P is a query of schema τ such that:

(1) P is closed under homomorphisms: for all databases E,E′, and all pair of elements (u, v)
of E, if (u, v) ∈ P(E) and there exists a homomorphism h : E → E′ then (h(u), h(v)) ∈
P(E′).

(2) P is sound and complete for all simple path databases: for all simple path databases D
from u to v such that u and v are in the domain of V(D), we have (u, v) ∈ P(V(D))
iff (u, v) ∈ Q(D).

(3) P is always sound: for all graph databases D and elements u and v of V(D), if (u, v) ∈
P(V(D)) then (u, v) ∈ Q(D).

Then P is a rewriting of Q using V.

Proof. Let D be a database, and (u, v) be a pair of elements ofV(D), such that (u, v) ∈ Q(D).
Then there exists in D a path π0 from u to v, such that λ(π0) ∈ L(Q).

Consider the simple path π = x0a0x1 . . . xmamxm+1 defined such that λ(π) = λ(π0).
Since V determines Q in a monotone way and λ(π) ∈ L(Q), then x0 and xm+1 are in the
domain of V(π), and (x0, xm+1) ∈ Q(π). Hence, (2) implies that (x0, xm+1) ∈ P(V(π)).

Additionally, it is clear that there exists a homomorphism h from π to D with h(x0) = u
and h(xm+1) = v. Observe that h extends to the views of π and D, that is h is an
homomorphism from V(π) to V(D), and (1) thus implies that (u, v) ∈ P(V(D)).

The other direction is immediately given by (3).

We now have all the elements to prove Proposition 6.10. Let V and Q be an RPQ view and
an RPQ query such that V determines Q in a monotone way. By Proposition 6.11 there
exists l such that Ql,l+1 is sound and complete over simple path databases. Moreover each
Datalog query is preserved under homomorphisms, and we have already observed that all
Ql,k are always sound. It then follows from Proposition 6.13 that there exists l such that
Ql,l+1 is a rewriting of Q using V. This proves Proposition 6.10 and therefore Theorem 6.1.

7. Conclusions

We have seen that if an RPQ view V determines an RPQ query Q in a monotone way then
a Datalog rewriting can be computed from V and Q. As a corollary it is decidable whether
there exists a Datalog rewriting to an RPQ query using RPQ views.

These results extends to 2-way-RPQ. A 2-way-RPQ is defined using a regular expression
over the alphabet σ∪ σ̄. It asks for pairs of nodes linked by a 2-way-path using the symbol a
for traversing an edge of label a in the direction of the arrow, and the symbol ā for backward

DATALOG REWRITINGS OF REGULAR PATH QUERIES USING VIEWS 27

traversing an edge of label a. This query language has been studied in [9]. In particular [9]
gives an extension of Corollary 5.2 and of Proposition 6.3 for 2-way-RPQ. Building from
these two results it is possible to extend the results of Section 6 to 2-way-RPQs. The details
are more complicated and omitted here, but the general idea is the same.

We may wonder whether a simpler query language than Datalog could suffice to express
monotone rewritings of RPQ queries using RPQ views. For instance all examples we are
aware of use only the transitive closure of binary Conjunctive Regular Path Queries. It
is then natural to ask whether linear Datalog (where at most one internal predicate may
occur in the body of each rule), using internal predicates of arity at most 2, can express all
monotone rewritings. We leave this interesting question for future work.

Finally we conclude by mentioning that we don’t know yet whether the monotone
determinacy problem for Conjunctive Regular Path Query is decidable. Likewise, deciding
whether an RPQ view determines an RPQ query, without the monotonicity assumption, is
still an open problem.

References

[1] Serge Abiteboul and Oliver M. Duschka. Complexity of answering queries using materialized views. In
ACM Symp. on Principles of Database Systems (PODS), pages 254–263, 1998.

[2] Serge Abiteboul, Richard Hull, and Victor Vianu. Foundations of Databases. Addison-Wesley, 1995.
[3] Foto N. Afrati. Determinacy and query rewriting for conjunctive queries and views. Theoretical Com-

puter Science, 412(11):1005–1021, 2011.
[4] Pablo Barceló Baeza. Querying graph databases. In ACM Symp. on Principles of Database Systems

(PODS), pages 175–188, 2013.
[5] Diego Calvanese, Giuseppe De Giacomo, Maurizio Lenzerini, and Moshe Y. Vardi. Answering regular

path queries using views. In Intl. Conf. on Data Engineering (ICDE), pages 389–398. IEEE, 2000.
[6] Diego Calvanese, Giuseppe De Giacomo, Maurizio Lenzerini, and Moshe Y. Vardi. View-based query

processing and constraint satisfaction. In IEEE Symp. on Logic in Computer Science (LICS), pages
361–371. IEEE, 2000.

[7] Diego Calvanese, Giuseppe De Giacomo, Maurizio Lenzerini, and Moshe Y. Vardi. Lossless regular
views. In ACM Symp. on Principles of Database Systems (PODS), pages 247–258. ACM, 2002.

[8] Diego Calvanese, Giuseppe De Giacomo, Maurizio Lenzerini, and Moshe Y. Vardi. Rewriting of regular
expressions and regular path queries. Journal of Computer and System Sciences, 64(3):443–465, 2002.

[9] Diego Calvanese, Giuseppe De Giacomo, Maurizio Lenzerini, and Moshe Y. Vardi. View-based query
processing: On the relationship between rewriting, answering and losslessness. Theoretical Computer
Science, 371(3):169–182, 2007.

[10] Isabel F. Cruz, Alberto O. Mendelzon, and Peter T. Wood. A graphical query language supporting
recursion. SIGMOD Rec., 16(3):323–330, December 1987.

[11] Tomás Feder and Moshe Y. Vardi. The computational structure of monotone monadic snp and constraint
satisfaction: A study through datalog and group theory. SIAM Journal on Computing, 28(1):57–104,
1998.

[12] Alon Y. Levy, Alberto O. Mendelzon, Yehoshua Sagiv, and Divesh Srivastava. Answering queries using
views. In ACM Symp. on Principles of Database Systems (PODS), pages 95–104, 1995.

[13] Alan Nash, Luc Segoufin, and Victor Vianu. Views and queries: Determinacy and rewriting. ACM
Transactions on Database Systems, 35(3), 2010.

[14] Jorge Pérez. Schema Mapping Management in Data Exchange Systems. PhD thesis, Escuela de Inge-
nieŕıa, Pontificia Universidad Católica de Chile, 2011.

This work is licensed under the Creative Commons Attribution-NoDerivs License. To view
a copy of this license, visit http://creativecommons.org/licenses/by-nd/2.0/ or send a
letter to Creative Commons, 171 Second St, Suite 300, San Francisco, CA 94105, USA, or
Eisenacher Strasse 2, 10777 Berlin, Germany

	1. Introduction
	2. Preliminaries
	3. Determinacy problem
	4. Views and Rewriting
	4.1. Looking for a view preimage
	4.2. Testing for view images

	5. Monotone determinacy and rewriting
	6. Datalog rewriting
	6.1. Monotone rewritings, certain answers and CSP
	6.2. Existence of a Datalog rewriting

	7. Conclusions
	References

