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Abstract. We provide elementary algorithms for two preservation theorems for first-
order sentences (FO) on the class Cd of all finite structures of degree at most d: For each
FO-sentence that is preserved under extensions (homomorphisms) on Cd, a Cd-equivalent
existential (existential-positive) FO-sentence can be constructed in 5-fold (4-fold) exponen-
tial time. This is complemented by lower bounds showing that a 3-fold exponential blow-up
of the computed existential (existential-positive) sentence is unavoidable. Both algorithms
can be extended (while maintaining the upper and lower bounds on their time complexity)
to input first-order sentences with modulo m counting quantifiers (FO+MODm).

Furthermore, we show that for an input FO-formula, a Cd-equivalent Feferman-Vaught
decomposition can be computed in 3-fold exponential time. We also provide a matching
lower bound.

1. Introduction

Classical preservation theorems studied in model theory relate syntactic restrictions of for-
mulas with structural properties of the classes of structures defined. For example, the
 Loś-Tarski theorem states that a first-order sentence is preserved under extensions on the
class of all structures if, and only if, it is equivalent, on this class, to an existential first-order
sentence. The homomorphism preservation theorem states that a first-order sentence is pre-
served under homomorphisms on the class of all structures if, and only if, it is equivalent,
on this class, to an existential-positive first-order sentence.

In the last decade, variants of both theorems have been obtained, where the class of
all structures is replaced by restricted classes that meet certain requirements. For example,
[Ros08, ADK06, Daw10] obtained that the homomorphism preservation theorem holds for
the class of all finite structures, as well as for the classes of all finite structures of degree at
most d or of treewidth at most k, and, in general, for quasi-wide classes of structures that
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are closed under taking substructures and disjoint unions (this includes classes of bounded
expansion and classes that locally exclude minors). While the  Loś-Tarski theorem is known
to fail on the class of all finite structures, in [ADG08] it was shown to hold for various
classes of structures, including the class of all finite structures of degree at most d, the class
of all finite structures of treewidth at most k, and all wide classes of structures that are
closed under taking substructures and disjoint unions.

For most of these results, it is known that the equivalent existential or existential-
positive sentence may be non-elementarily larger than the corresponding first-order sentence
[DGKS07]. A notable exception affects the  Loś-Tarski theorem for the class of acyclic finite
structures of degree at most d, for which [DGKS07] obtained a 5-fold exponential upper
bound on the size of the equivalent existential first-order sentence.

The present paper’s first main result (Theorem 3.1) generalises the latter in three ways:
(1) We show that the 5-fold exponential upper bound for the  Loś-Tarski theorem holds
for every class C of structures of degree at most d that is closed under taking induced
substructures and disjoint unions (this includes, e.g., the class of all finite structures of
degree at most d). (2) We provide an algorithmic version of the theorem, showing that for a
given first-order sentence, the existential sentence can be constructed in 5-fold exponential
time. (3) Our algorithm also works for input sentences of the extension FO+MODm of
first-order logic with modulo m counting quantifiers. The main ingredient of our proof is a
new, technically challenging upper bound on the size of minimal models of sentences that
are preserved under extensions on C (Theorem 3.5).

Our second main result (Theorem 3.2) provides an algorithmic version of the homomor-
phism preservation theorem over any class C of structures of bounded degree that is closed
under taking induced substructures and disjoint unions, and that is decidable in 1-fold ex-
ponential time (e.g., the class of all finite structures of degree at most d). Specifically, we
show that for a given FO+MODm-sentence that is preserved under homomorphisms on C,
an equivalent existential-positive first-order sentence can be constructed in 4-fold exponen-
tial time. The proof, again, relies on a new upper bound on the size of minimal models
(Theorem 3.12).

Two counterexamples (Theorem 3.14 and Theorem 3.15) show that the closure prop-
erties of the classes of structures considered, required by our preservation theorems, are
indeed necessary.

We complement our preservation theorems by lower bounds (Theorem 5.4 and Theo-
rem 5.3), providing a sequence of first-order sentences that are preserved under extensions
(homomorphisms) for which the smallest equivalent existential (respectively, existential-
positive) sentences are 3-fold exponentially larger. Both lower bound proofs use particular
encodings of numbers by binary trees introduced in [HKS13].

Our third main result deals with Feferman-Vaught decompositions of first-order formu-
las. The classical Feferman-Vaught theorem states that for certain forms of compositions
of structures, the theory of a structure composed from simpler structures is determined
by the theories of the simpler structures. This applies, for example, to disjoint sums and
direct products (also known as cartesian products or as tensor products) of structures (cf.,
e.g., [Hod93]). Feferman-Vaught-like theorems find application in results about the decid-
ability of theories, as well as in results about model checking and satisfiability checking
[Mak04, GJL15]. Another use of Feferman-Vaught decompositions is within the proof of
Gaifman’s theorem [Gai82], which is an important tool for inexpressibility results as well as
for so-called algorithmic meta-theorems [Kre11].
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Algorithmic versions of decomposition theorems à la Feferman-Vaught are typically
of the following form (cf., [Mak04, GJL15]): A given first-order sentence ϕ that shall be
evaluated in the disjoint sum or the direct product A of s structures A1, . . . ,As, can be
transformed into a finite set ∆ of formulas and a propositional formula β whose propositions
are tests of the form “the i-th structure Ai satisfies the j-th formula in ∆”, such that A
is a model of ϕ iff β is true. It is known that the Feferman-Vaught decomposition (∆, β)
may be non-elementarily larger than ϕ [DGKS07]. Our third main result (Theorem 4.2 and
Corollary 4.9) shows that for any class C of structures of degree at most d, such Feferman-
Vaught decompositions for disjoint sums and direct products can be computed in 3-fold
exponential time. This is complemented by a matching lower bound (Theorem 5.8). Our
lower bound proof, again, relies on encodings of numbers by binary trees, now along with a
method of [GJL15]. Our algorithm produces a set ∆ of so-called Hanf-formulas and relies
on a result of [BK12] that transforms the given sentence ϕ into Hanf normal form.

The rest of this paper is structured as follows: Section 2 fixes the basic notations.
Section 3 presents our algorithms concerning preservation theorems. Section 4 presents our
results concerning Feferman-Vaught decompositions. Section 5 contains lower bounds that
complement our results of Section 3 and Section 4. Section 6 gives a short conclusion and
provides directions for future work.

2. Preliminaries

We write Z for the set of integers and N for the set of non-negative integers. For all m,n ∈ N

with m 6 n, we denote the set {i ∈ N : m 6 i 6 n} by [m,n]. The set of non-negative
real numbers is denoted by R>0. For r > 0, by log(r) (respectively, logb(r)) we denote the
logarithm of r with respect to base 2 (respectively, base b, for b > 2).

If f is a function from N to R>0, then poly(f(n)) denotes the class of all functions g : N →
R>0 for which there is a number c > 0 such that g(n) 6 (f(n))c is true for all sufficiently
large n ∈ N.

We say that a function f from N to R>0 is at most k-fold exponential, for some k > 1, if
there exists a number c > 0 such that for all sufficiently large n ∈ N we have f(n) 6 T(k, nc),
where T (k,m) is a tower of 2s of height k with an m on top (i.e., T(1,m) = 2m and
T(k+1,m) = 2T(k,m) for all k > 1 and m > 0).

For a function f : A→ B and a subset A′ ⊆ A, we denote by f(A′) the set {f(a) : a ∈
A′}. For n ∈ N, we write x to denote the tuple (x1, . . . , xn). For a tuple x ∈ An we write
f(x) to denote the tuple (f(x1), . . . , f(xn)). Sometimes we treat tuples as if they were sets;
e.g., a ∈ x means a ∈ {x1, . . . , xn}.

2.1. Structures and formulas. A signature σ is a finite set of relation and constant
symbols. Associated with every relation symbol R is a positive integer ar(R) called the
arity of R. The size ||σ|| of σ is the number of its constant symbols plus the sum of the
arities of its relation symbols. A signature σ is called relational if it does not contain any
constant symbol.

A σ-structure A consists of a non-empty set A called the universe of A, a relation
RA ⊆ Aar(R) for each relation symbol R ∈ σ, and an element cA ∈ A for each constant
symbol c ∈ σ. The size ||A|| of A is the size of a reasonable representation of A as a binary

string (cf., e.g., [EF99,Lib04]); in particular, ||A|| ∈ O(|A|||σ||).
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For a relational signature σ and σ-structures A and B, we say that B is a substructure
of A if B ⊆ A and RB ⊆ RA for each R ∈ σ. The structure B is an induced substructure of
A if B is a substructure of A and RB = RA ∩Bar(R) for each R ∈ σ. We then say that B is
the substructure of A induced by the set B.

For every non-empty set B such that A ∩ B 6= ∅, we write A[B] to denote the sub-
structure of A induced by A ∩ B. Furthermore, if A \ B 6= ∅ then A − B is the induced
substructure A[A \B] of A obtained by deleting all elements from B.

We use the standard notation concerning first-order logic and extensions thereof, cf.
[EF99, Lib04]. By qr(ϕ) we denote the quantifier rank of ϕ, i.e., the maximum nesting
depth of quantifiers occurring in a formula ϕ. By free(ϕ) we denote the set of all free
variables of ϕ. A sentence is a formula ϕ with free(ϕ) = ∅. A σ-structure A is called a
model of a sentence ϕ if ϕ is satisfied in A.

We write ϕ(x), for x = (x1, . . . , xn) with n > 0, to indicate that free(ϕ) ⊆ {x1, . . . , xn}.
If A is a σ-structure and a = (a1, . . . , an) ∈ An, we write A |= ϕ[a] to indicate that
the formula ϕ(x) is satisfied in A when interpreting the free occurrences of the variables
x1, . . . , xn with the elements a1, . . . , an. We write ϕ(A) to denote the set of all tuples a ∈ An

such that A |= ϕ[a]. For a class C of structures, two formulas ϕ(x) and ψ(x) of signature
σ are called equivalent on C (for short: C-equivalent) if for all σ-structures A ∈ C we have
ϕ(A) = ψ(A).

By FO(σ) we denote the class of all first-order formulas of signature σ. The extension
of FO(σ) by modulo counting quantifiers is defined as follows: Let m be an integer such
that m > 2. We write ∃0modm to denote the modulo m counting quantifier. A formula
of the form ∃0modmy ψ(x, y) is satisfied by a σ-structure A and an interpretation a of the
variables x if, and only if, the number of elements b ∈ A such that A |= ψ[a, b] is a multiple
of m. For a fixed number m we write FO+MODm(σ) to denote the extension of FO(σ)
with modulo m counting quantifiers. The quantifier rank qr(ϕ) of an FO+MODm-formula
ϕ is defined as the maximum nesting depth of all quantifiers (i.e., first-order quantifiers and
modulo counting quantifiers).

The size ||ϕ|| of an FO+MODm(σ)-formula ϕ is its length when viewed as a word over
the alphabet σ∪{=}∪{∃0modm,∃,∀,¬,∧,∨,→,↔, (, )}∪{, }∪Var, where Var is a countable
set of variable symbols.

2.2. Gaifman graph. For a σ-structure A, we write GA to denote the Gaifman graph of
A, i.e., the undirected, loop-free graph with vertex set A and an edge between two distinct
vertices a, b ∈ A iff there exists an R ∈ σ and a tuple (a1, . . . , aar(R)) ∈ RA such that
a, b ∈ {a1, . . . , aar(R)}.

Given a σ-structure A and two elements a, b ∈ A that are connected in the Gaifman
graph GA, the distance distA(a, b) between a and b is the minimal length (i.e., the number
of edges) of a path from a to b in GA. For a, b ∈ A that are not connected in GA we let
distA(a, b) := ∞.

For r > 0 and a ∈ A, the r-neighbourhood of a in A is the set

NA
r (a) := {b ∈ A : distA(a, b) 6 r}.

The r-neighbourhood NA
r (W ) of a set W ⊆ A is the union of the r-neighbourhoods NA

r (a)
for all a ∈W . For a tuple a = (a1, . . . , an), we write NA

r (a) instead of NA
r ({a1, . . . , an}).
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2.3. Bounded structures. The degree of a σ-structure A is the degree of its Gaifman
graph GA. Let ν : N → N be a function. A σ-structure A is ν-bounded if |NA

r (a)| ≤ ν(r)
for all r > 0 and all a ∈ A. Clearly, if A is ν-bounded, then it has degree at most ν(1)−1.
On the other hand, if A has degree at most d, then A is νd-bounded for νd : N → N with
νd(r) = 1 + d ·

∑r−1
i=0 (d− 1)i. Thus, A has degree at most d iff it is νd-bounded. Note that

νd is at most 1-fold exponential.
We will restrict attention to at most 1-fold exponential functions ν : N → N that are

strictly increasing. This is reasonable, since then (r+1)-neighbourhoods may contain more
elements than r-neighbourhoods, and it excludes pathological cases where ν-boundedness
of a structure implies that the structure is a disjoint union of finite structures whose size is
bounded by a constant depending on ν.

Let σ be a finite relational signature, let A be a σ-structure, let n > 1, and let a ∈ An.
Let c1, . . . , cn be distinct constant symbols.

For r > 0, the r-sphere around a is defined as the σ ∪ {c1, . . . , cn}-structure NA
r (a) :=

(

A[NA
r (a)] , a

)

, where the constant symbols c1, . . . , cn are interpreted by the elements
a1, . . . , an.

An r-sphere with n centres is a σ ∪ {c1, . . . , cn}-structure τ = (B, b) with b ∈ Bn and
universe B = NB

r (b). We say that τ is realised by a in A iff NA
r (a) is isomorphic to τ . By

τ(A) we denote the set of all a ∈ An that realise τ in A.
Note that a ν-bounded r-sphere τ with n centres contains at most n·ν(r) elements. Thus,

there is an FO(σ)-formula sphτ (x) of size (n·ν(r))O(||σ||) such that for all σ-structures A
we have sphτ (A) = τ(A).

Unless otherwise indicated, we assume an r-sphere to have only one centre. Up to
isomorphism, the number of σ-structures with exactly n elements is1 at most 2n

a
·nc, where

a is the sum of the arities of the relation symbols in σ and c is the number of constant symbols
in σ. Hence we can bound the number of non-isomorphic r-spheres that can be realised in
ν-bounded σ-structures from above by

2ν(r)
||σ||+1

.

2.4. Disjoint unions. For a relational signature σ and each s > 1, the disjoint union
A1 ∪̇ · · · ∪̇ As of σ-structures A1, . . . ,As is a structure A that is defined (up to isomorphism)
as follows: Let A be a set of size |A1| + · · · + |As| and let, for each i ∈ [1, s], fi : Ai → A
be an injective function such that f1(A1), . . . , fs(As) is a partition of A. Now, A is the
σ-structure with universe A where, for each R ∈ σ, the relation RA is the union of the sets
{fi(a) : a ∈ RAi} for all i ∈ [1, s]. The mapping of A is the function π : A→ (A1∪ · · · ∪As)
with π(a) = b where b is chosen such that b ∈ Ai for some i ∈ [1, s] and fi(b) = a.

If the universes of A1, . . . ,As are pairwise disjoint, we let A := A1 ∪ · · · ∪As and we let
fi be the identity on Ai for each i ∈ [1, s], and π the identity on A.

3. Preservation theorems

Throughout this section, σ will always denote a finite relational signature and C will always
denote a class of σ-structures. A σ-structure B is an extension of a σ-structure A if A is
an induced substructure of B. A sentence ϕ is preserved under extensions on C if for each

1We will usually omit brackets and shortly write 2na

for 2(na).



6 F. HARWATH, L. HEIMBERG, AND N. SCHWEIKARDT

model A ∈ C of ϕ and every extension B ∈ C of A, B is also a model of ϕ. An existential
FO(σ)-formula has the form ∃x1 · · · ∃xn ϕ, where ϕ is quantifier-free. It is straightforward to
see that every existential FO(σ)-sentence is preserved under extensions on arbitrary classes
of σ-structures.

A homomorphism of σ-structures A and B is a mapping h : A → B such that for each
relation symbol R ∈ σ with r := ar(R) and all tuples (a1, . . . , ar) ∈ Ar, if (a1, . . . , ar) ∈ RA

then (h(a1), . . . , h(ar)) ∈ RB. A sentence ϕ is preserved under homomorphisms on C if for
each model A ∈ C of ϕ and each structure B ∈ C for which a homomorphism h from A
to B exists, B is also a model of ϕ. An existential-positive FO(σ)-formula is an existential
FO(σ)-formula that does not contain any of the symbols ¬, →, ↔. For convenience, we
will say that also false is an existential-positive FO(σ)-sentence (that is not satisfied by any
σ-structure). It is straightforward to see that every existential-positive FO(σ)-sentence is
preserved under homomorphisms on arbitrary classes of σ-structures.

For the remainder of this section, let ν : N → N be a fixed time-constructible strictly
increasing function that is at most 1-fold exponential. Recall that the number of non-
isomorphic r-spheres (with one centre) that can be realised in ν-bounded σ-structures

is bounded from above by 2ν(r)
O(||σ||)

. Henceforth, we will abbreviate this expression by
Sν(r, ||σ||), i.e.,

Sν(r, ||σ||) := 2ν(r)
O(||σ||)

.

Thus, Sν(·, ·) is the class of all functions f : N × N → N for which there exists a c > 0 such
that f(r, s) 6 2ν(r)

c·s
for all sufficiently large r, s > 1.

In this section, we explore the complexity of constructing existential (respectively,
existential-positive) FO(σ)-sentences for FO+MODm(σ)-sentences that are preserved un-
der extensions (respectively, homomorphisms) on classes of ν-bounded σ-structures that are
closed under disjoint unions and closed under induced substructures (respectively, closed
under disjoint unions, closed under induced substructures, and decidable in 1-fold exponen-
tial time). It is straightforward to see that the class Cd of all finite σ-structures of degree at
most d, for any fixed d > 0, meets all these requirements. Similarly, as we assume that ν is
time-constructible and at most 1-fold exponential, also the class of all ν-bounded structures
is easily seen to be decidable in 1-fold exponential time, as well as closed under taking
induced substructures and disjoint unions.

In Subsection 3.5 we present two examples of classes of structures, which show that the
closure properties required by our constructions are indeed necessary.

3.1. Summary of this section’s main results. Table 1 summarises the time complexity
of our algorithms (depending on the size of an input sentence) on the class of all ν-bounded
structures. The summary differentiates between functions ν with either exponential or
polynomial growth.

The precise statement of this section’s first main result reads as follows; a proof is given
in Subsection 3.3 below.

Theorem 3.1. Let Cν be a class of ν-bounded σ-structures that is closed under disjoint
unions and induced substructures. There is an algorithm that, given an FO+MODm(σ)-
sentence ϕ of quantifier rank q > 0 as input, constructs in time

||ϕ|| · Sν(Sν(3q, ||σ||), ||σ||)(log m)2
(

= ||ϕ|| · 2(logm)2·ν(2ν(3
q )O(||σ||)

)O(||σ||)
)

(3.1)
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extensions homomorphisms

exponential ν 5-exp 4-exp
polynomial ν 3-exp 3-exp

Table 1: The time complexity of our algorithms. For each fixed d > 3, the class Cd of all
finite structures of degree 6 d is a case of “exponential ν”. The class C2 of all
finite structures of degree 6 2 is a case of “polynomial ν”.

an existential FO(σ)-sentence ψ such that the following holds:
If ϕ is preserved under extensions on Cν, then ϕ and ψ are equivalent on Cν.

Consequently, if the function ν is exponential, ϕ is an FO+MODm(σ)-sentence, and σ
consists of exactly the relation symbols that occur in ϕ, then the algorithm uses time 5-fold
exponential in the size of ϕ. In particular, if ν = νd for a fixed d > 3, and Cν is the class of
all finite structures of degree 6 d, then our algorithm uses time at most

||ϕ|| · 2(logm)2·d2
d2

O(q+log ||σ||)

6 2(logm)2·d2
d2

O(||ϕ||)

(3.2)

when given a first-order sentence ϕ with modulo m counting quantifiers, quantifier rank q,
and signature σ. Note that the constant suppressed by the O-notation does not depend
on the particular signature σ. Furthermore, if ϕ does not contain any modulo counting
quantifier, we can assume m to be 2, and hence (logm)2 = 1.

On the other hand, if ν is polynomial (e.g., ν = ν2 and Cν is the class of all finite struc-
tures of degree 6 2), then expression (3.1) simplifies to the 3-fold exponential expression

||ϕ|| · 2(logm)2·22
O(q·||σ||)

6 2(logm)2·22
O(||ϕ||2)

. (3.3)

This section’s second main result reads as follows; a proof is given in Subsection 3.4
below.

Theorem 3.2. Let Cν be a class of ν-bounded σ-structures that is closed under disjoint
unions and induced substructures and decidable in time t(n) for some function t : N → N.
There is an algorithm which, given an input FO+MODm(σ)-sentence ϕ of quantifier rank
q > 0, constructs in time

2||ϕ||·Sν(2·3q ,||σ||) · t(Sν(2·3q, ||σ||))
(

= 2||ϕ||·2
ν(2·3q)O(||σ||)

· t(2ν(2·3
q)O(||σ||)

)
)

(3.4)

an existential-positive FO(σ)-sentence ψ of size 2Sν(2·3q ,||σ||) such that the following holds:
If ϕ is preserved under homomorphisms on Cν, then ϕ and ψ are Cν-equivalent.

Consequently, if the functions ν and t are 1-fold exponential, then the algorithm uses
time 4-fold exponential in the size of the input sentence ϕ. In particular, if ν = νd for a
fixed d > 3 and Cν is the class of all finite structures of degree 6 d, the algorithm uses time

2||ϕ||·2
d2

O(q+log ||σ||)

6 22
d2

O(||ϕ||)

.
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If ν is polynomial and t is at most 1-fold exponential (this is, in particular, true if Cν is the
class of all finite structures of degree 6 2), the algorithm’s running time is

2||ϕ||·2
2O(q·||σ||)

6 22
2O(||ϕ||2)

,

which is 3-fold exponential in the size of the input sentence ϕ.

3.2. Introductory notes on the proofs of Theorem 3.1 and Theorem 3.2. Consider
a class C of σ-structures and an FO+MODm(σ)-sentence ϕ. A σ-structure A is a C-minimal
model of ϕ if A ∈ C, A is a model of ϕ, and there is no proper induced substructure B ∈ C

of A that is a model of ϕ.
Let Cν be a class of ν-bounded σ-structures that is closed under disjoint unions and

closed under induced substructures. The main combinatorial parts (Theorem 3.5 and The-
orem 3.12) of the proofs of Theorem 3.1 and Theorem 3.2 provide upper bounds on the size
of Cν-minimal models for FO+MODm(σ)-sentences that are preserved under extensions
(respectively, homomorphisms) on Cν .

The proofs of both upper bounds on the size of the Cν-minimal models proceed as
follows: Assume that ϕ is an FO+MODm(σ)-sentence that is preserved under extensions
(homomorphisms) on Cν . We show that for every Cν-minimal model whose size exceeds the
upper bound, a proper induced subtructure A′ ∈ Cν of A can be constructed that is also a
model of ϕ, which is a contradiction to the minimality of A.

In both cases, we use the following generalisation of Hanf’s theorem (see e.g. [EF99,
Lib04]) by Nurmonen [Nur00] to sentences with modulo counting quantifiers. Two σ-
structures A and B are (m, q)-equivalent (A ≡q

m B, for short) if they satisfy the same
FO+MODm(σ)-sentences of quantifier rank at most q.

Theorem 3.3 (Theorem 3.4 in [Nur00]). Let A,B be σ-structures. Let m > 2 and q > 0.
Suppose that for some e > 0 each 3q-neighbourhood of an element in A or B has less than
e elements and that for each 3q-sphere τ (with one centre), |τ(A)| and |τ(B)| are congruent
modulo m and either

|τ(A)| = |τ(B)| or
(

|τ(A)| > t and |τ(B)| > t
)

,

where t := q·e+ 1. Then A ≡q
m B.

The proof of Theorem 3.5 employs a novel inductive construction that constructs a
sequence of structures from Cν that alternates between proper induced substructures and
disjoint extensions of A and finally stops with two consecutive (m, q)-equivalent structures,
where q > 0 is the quantifier rank of ϕ.

Our proof of Theorem 3.12 is an adaptation of a result by Ajtai and Gurevich (Lemma 7.1
in [AG94]) where we use Nurmonen’s theorem (Theorem 3.3) instead of Gaifman’s theorem.

Finally, the upper bounds on the size of Cν-minimal models are used as an input to
algorithms that compute a Cν-equivalent existential (existential-positive) FO(σ)-sentence
for an input FO+MODm(σ)-sentence ϕ that is preserved under extensions (homomorphisms)
on Cν (see Lemma 3.8 and Lemma 3.13).

The construction for existential sentences generalises Lemma 8.4 in [DGKS07] to first-
order sentences with modulo m counting quantifiers. Here, the handling of the modulo
m counting quantifier requires an inductive construction (rather than a straightforward
brute-force approach) to ensure the desired time complexity.
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The construction for existential-positive sentences uses an algorithmic version of the
Chandra-Merlin Theorem [CM77], which requires an additional assumption on the decid-
ability of Cν .

3.3. Preservation under extensions: Proof of Theorem 3.1. This subsection is de-
voted to the proof of Theorem 3.1.

A set of elements B in a σ-structure A is r-scattered, for an r > 0, if for all distinct
elements a, b ∈ B we have NA

r (a)∩NA
r (b) = ∅. We will make use of the following easy fact.

Lemma 3.4. Let A be a ν-bounded σ-structure and let m, r > 0. If |A| > (m−1) · ν(2r),
then there exists an r-scattered subset of A of cardinality m.

Proof. We show that |A| 6 (m−1) · ν(2r), if there is no r-scattered subset of cardinality m
in A.

Choose a number n < m such that there is an r-scattered subset B of cardinality n in
A, but no r-scattered subset of cardinality greater than n. Every element a of A has to be
contained in the 2r-neighbourhood of B (for otherwise, B ∪ {a} would be an r-scattered
subset of A of cardinality n+1). Therefore, |A| = |NA

2r(B)| 6 (m−1) · ν(2r).

The main combinatorial contribution of this subsection is an upper bound on the size
of Cν-minimal models for FO+MODm(σ)-sentences, which is provided by the following
theorem:

Theorem 3.5. Let Cν be a class of ν-bounded σ-structures that is closed under disjoint
unions and induced substructures. Let m > 1 and let ϕ be an FO+MODm(σ)-sentence of
quantifier rank q > 0 that is preserved under extensions on Cν. There is a number

Nν(m, q, ||σ||) ∈ m · Sν(Sν(3q, ||σ||), ||σ||)
(

= m · 2ν(2
ν(3q )O(||σ||)

)O(||σ||)
)

such that every Cν-minimal model of ϕ has size at most Nν(m, q, ||σ||).

Proof. Let r := 3q and let s ∈ Sν(r, ||σ||) be the number of isomorphism types of r-spheres
(with one centre) that are realised in σ-structures in Cν . Let R := 2sr and let S ∈ Sν(R, ||σ||)
be the number of isomorphism types of R-spheres (with one centre) that are realised in σ-
structures in Cν . Finally, let t := q · (ν(r)+1) + 1 be the threshold from Theorem 3.3 for
ν-bounded σ-structures and for quantifier rank q.

Let A be a Cν-minimal model of ϕ. Towards a contradiction, assume that the universe
A of A has cardinality greater than (2Stm−1) · ν(2R). Then, by Lemma 3.4, there exists
an R-scattered subset of A of cardinality 2Stm. Because there are at most S different
R-spheres realised in A, there is an R-scattered set X ′ of 2tm elements in A that realise
the same R-sphere.

An r-sphere τ is frequent in a structure A if |τ(A)| > t. Otherwise, it is rare in A. Note
that each r-sphere realised by an element from the (R−r)-neighbourhood of X ′ is frequent
in A, because it occurs at least 2tm > t times in A.

Let X be a subset of X ′ of cardinality tm. Since

NA
R (a) ∼= NA

R (b) for each a ∈ X and each b ∈ X ′ \X, (3.5)

the following holds for each r-sphere τ :

If |τ(A) ∩NA
R−r(X)| > t, also |τ(A−NA

R−r(X))| > t.
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C0 C1 C2

C3 C4 C5

Figure 1: The first six elements of the sequence (Ci)i>0. Note that for all even i, Ci is a
disjoint extension of A while for each odd i, Ci is a proper induced substructure
of A.

I.e., every r-sphere τ that is realised by at least t elements of the (R−r)-neighbourhood of
X is still frequent in the substructure of A induced by deleting the (R−r)-neighbourhood
of X.

Consider the following sequences (Ci)i>0 and (D2i)i>0 of σ-structures in Cν . Let C0 := A
and C1 := A−X. For each even i > 1, let Di := Ci−1[N

A
2(i−1)r(X)]. Note that for odd i, Di

is neither defined nor required. For each i > 2, let

Ci :=

{

A ∪̇D′
i if i is even,

(

A−NA
2(i−1)r(X)

)

∪̇ Di−1 if i is odd,

where D′
i is a structure isomorphic to Di whose universe is disjoint to A. For all even i, Ci

is a disjoint extension of A, and for all odd i, Ci is a proper induced substructure of A.
Let τ be an r-sphere. Recall that |X| = tm and that the R-spheres around the elements

of X are disjoint and isomorphic. This implies that, for each i ∈ [1, s−1], there is a number
k ∈ Z such that |τ(A−NA

2(i−1)r(X))| = |τ(A)| + ktm and therefore |τ(A−NA
2(i−1)r(X))| ≡

|τ(A)| mod m. Furthermore, since |X| ≡ 0 mod m, it is straightforward to see that
|τ(D′

i)| = |τ(Di)| ≡ 0 mod m for all even i 6 s.
This immediately proves the following Claim 1.

Claim 3.6. For all i < s and every r-sphere τ , |τ(Ci)| and |τ(Ci+1)| are congruent modulo
m.

A proof of the following Claim 2 is deferred to the end of the proof of Theorem 3.5.

Claim 3.7. The following holds for all i < s and every r-sphere τ :

(a) If τ is frequent in Ci, it is also frequent in Ci+1.

(b) If τ is rare in Ci and rare in Ci+1, then |τ(Ci)| = |τ(Ci+1)|.

While every r-sphere that is frequent in Ci is also frequent in Ci+1, the opposite is not
necessarily true: There may be r-spheres that are rare in Ci but that occur frequently in
Ci+1. However, since there are only s pairwise non-isomorphic r-spheres in σ-structures in
Cν , and C0 already contains frequent r-spheres, Claim 3.7 (a) implies that there has to be
an i < s such that all frequent r-spheres of Ci+1 are frequent already in Ci. Thus, for this
particular i we know that any r-sphere is either frequent in Ci+1 and in Ci or it is rare
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in Ci+1 and in Ci. Hence, with Claim 3.7 (b) it follows that for every r-sphere τ , either
|τ(Ci)| = |τ(Ci+1)| or τ is frequent in Ci and Ci+1.

Together with Claim 1, we can conclude from Theorem 3.3 that Ci ≡
q
m Ci+1. Therefore,

by using Claim 2, the proof of Theorem 3.5 can be completed as follows: In case that i is
even, we let B := Ci and A′ := Ci+1; and in case that i is odd, we let B := Ci+1 and A′ := Ci.
Since B is a disjoint extension of A with an induced substructure of A (and hence belongs
to Cν , since Cν is closed under disjoint unions and induced substructures), A |= ϕ, and ϕ
is preserved under extensions on Cν , we obtain that B |= ϕ. Because A′ ≡q

m B and ϕ has
quantifier rank q, we know that A′ |= ϕ. Since A′ is a proper induced substructure of A and
Cν is closed under induced substructures, we have A′ ∈ Cν. However, this is a contradiction
to the assumption that A is a Cν-minimal model of ϕ.

Therefore, the size |A| of the universe of A is at most (2Stm−1) · ν(2R).
We let Nν(m, q, ||σ||) := (2Stm−1)·ν(2R). To obtain an upper bound on Nν(m, q, ||σ||), recall
that S ∈ Sν(R, ||σ||) and R ∈ 2r · Sν(r, ||σ||). Therefore, since Sν(R, ||σ||) is an abbreviation

for the expression 2ν(R)O(||σ||)
, we know that

S ∈ Sν(2r · 2ν(r)
O(||σ||)

, ||σ||) ⊆ Sν(Sν(r, ||σ||), ||σ||). (3.6)

The latter inclusion is correct since ν is strictly increasing. Similarly, we have that

ν(2R) = ν(2 · 2r · 2ν(r)
O(||σ||)

) ⊆ ν(Sν(r, ||σ||)). (3.7)

Using (3.6) and considering that t ∈ O(q · ν(r)), we conclude that

2Stm = O(2ν(Sν (r,||σ||))O(||σ||)
· q · ν(r) ·m) ⊆ Sν(Sν(r, ||σ||), ||σ||) · q ·m. (3.8)

Putting (3.8) and (3.7) together, we obtain that

(2Stm−1) · ν(2R) ⊆ Sν(Sν(r, ||σ||), ||σ||) · ν(Sν(r, ||σ||)) · q ·m

⊆ Sν(Sν(r, ||σ||), ||σ||) · q ·m.

Therefore, recalling that r := 3q, we know that

Nν(m, q, ||σ||) ∈ Sν(Sν(3q, ||σ||), ||σ||) · q ·m ⊆ m · Sν(Sν(3q, ||σ||), ||σ||).

All that remains to be done to finish the proof of Theorem 3.5 is to prove Claim 2.

Proof of Claim 2. Observe that, for all i, j 6 s,

Ci[A \NA
R−2r(X)] ∼= Cj[A \NA

R−2r(X)]. (3.9)

Let i < s. For the proof of Claim 2 (b) let τ be an r-sphere that is rare in Ci and Ci+1.
Since X is an R-scattered set of size > t, the rareness of τ implies that τ(Ci) and τ(Ci+1)
are subsets of A \ NA

R−r(X). Hence, (3.9) implies that |τ(Ci)| = |τ(Ci+1)|. This proves
Claim 2 (b).
For the proof of Claim 2 (a), we distinguish between even and odd i.

Even i: Recall that C0 = A and that for each even i > 2, Ci = A ∪̇D′
i. Let τ be an

r-sphere that is frequent in Ci.
If τ is realised in Ci by an element in NA

R−r(X) then, since X is R-scattered and of cardinality

at least t, we know that τ(A) ∩ NA
R−r(X) contains at least t elements. Furthermore, we

obtain by Observation (3.5) that also τ(A) ∩NA
R−r(X

′ \X) contains at least t elements.

Since X ⊆ X ′, the set X ′ is R-scattered, and 2ir < R, we obtain that |τ(A−NA
2ir(X))| > t.

Thus, τ is also frequent in Ci+1.
If τ is realised in Ci by an element in D′

i, for i > 2, then, since D′
i
∼= Di, τ is realised in Ci+1
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also by an element in Di ⊆ NA
R−r(X). Thus, τ is also frequent in Ci+1.

Otherwise, we know that |τ(A) \ NA
R−r(X)| > t. Then it follows from Observation (3.9)

that τ is also frequent in Ci+1.

Odd i: Recall that C1 = A−X and that, for each odd i > 3, Ci = (A−NA
2(i−1)r(X)) ∪̇ Di−1.

Let τ be an r-sphere that is frequent in Ci.
If τ is realised in Ci by an element in NA

2(i−1)r+r
(X) then, since X is R-scattered and of

cardinality > t, the set τ(Ci) ∩ N
A
2(i−1)r+r

(X) contains at least t elements. Since Di+1 is

defined as Ci[N
A
2(i−1)r+2r(X)], we obtain |τ(Di+1)| > t. Furthermore, since D′

i+1
∼= Di+1,

we have |τ(D′
i+1)| > t. Consequently, since Ci+1 = A ∪̇D′

i+1, also |τ(Ci+1)| > t. Thus, τ is
frequent in Ci+1.
Otherwise, we know that τ(Ci)∩ (A\NA

2(i−1)r+r
(X)) has cardinality > t. Since the r-sphere

of each a ∈ A \ NA
2(i−1)r+r

(X) in A − NA
2(i−1)r(X) is isomorphic to its r-sphere in A, τ is

also frequent in Ci+1 = A ∪̇D′
i+1.

This concludes the proof Claim 2 and Theorem 3.5.

For proving Theorem 3.1, it remains to do the following: for a given FO+MODm(σ)-
sentence ψ that is preserved under extensions on Cν and for an upper bound on the size of its
Cν-minimal models (obtained from Theorem 3.5), construct an existential FO(σ)-sentence
that is Cν-equivalent to ψ. This is achieved by the following lemma which is a generalisation
of Lemma 8.4 in [DGKS07] to sentences with modulo counting quantifiers.

Lemma 3.8. Let C be a class of σ-structures that is closed under induced substructures.
There is an algorithm which, given a number N > 0 and an FO+MODm(σ)-sentence ψ of
quantifier rank q > 0, constructs in time

||ψ|| ·NO(q·logm)

an existential FO(σ)-sentence ψN such that the following holds: If ψ is preserved under
extensions on C and every C-minimal model of ψ has at most N elements, then ψN is
C-equivalent to ψ.

Furthermore, the constant suppressed by the O-notation does not depend on the signa-
ture σ. If ψ does not contain any modulo counting quantifier, the construction only takes
time O(||ψ|| ·N q).

The key ingredient for the proof of Lemma 3.8 is contained in the following lemma.
Here, an enumeration of a set A is a tuple (a1, . . . , aM ) ∈ AM of length M = |A| that
contains each element of A exactly once (i.e., A = {a1, . . . , aM}).

Lemma 3.9. Let k > 0 and let ψ be an FO+MODm(σ)-formula with variables among
x1, . . . , xk. Let M > 1 and let s : [1, k] → [1,M ]. There is a quantifier-free FO(σ)-formula
(ψ)M,s with variables among y1, . . . , yM such that for each σ-structure A with exactly M
elements and each enumeration (a1, . . . , aM ) of A, the following equivalence holds:

(A, as(1), . . . , as(k)) |= ψ(x1, . . . , xk)

iff (A, a1, . . . , aM ) |= (ψ)M,s(y1, . . . , yM ).

Furthermore, if ψ does not contain any modulo counting quantifier, the above equivalence
holds more generally for each σ-structure A with at most M elements and each tuple
(a1, . . . , aM ) ∈ AM that contains each element of A at least once.
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The formula, (ψ)M,s can be constructed in time

||ψ|| ·MO(q·logm),

and the constant suppressed by the O-notation does not depend on the signature σ.
If ψ does not contain any modulo counting quantifier, the construction of (ψ)M,s only takes
time in

O(||ψ|| ·M q).

Before presenting the proof of Lemma 3.9, we first show how to use Lemma 3.9 for proving
Lemma 3.8.

Proof of Lemma 3.8 using Lemma 3.9.
Choose k such that the variables occurring in ψ are among x1, . . . , xk. For applying
Lemma 3.9 for any M > 1, we let s be an arbitrary function from [1, k] to [1,M ]. For
every M ∈ [1, N ] we apply Lemma 3.9 and let

ϕM (y1, . . . , yM ) :=
∧

16i<j6M

¬ yi=yj ∧ (ψ)M,s(y1, . . . , yM ).

Furthermore, we let

ψN :=

N
∨

M=1

∃y1 · · · ∃yM ϕM (y1, . . . , yM ).

Suppose that A′ ∈ C is a model of ψ. Since ψ is preserved under extensions on C and every
C-minimal model of ψ has at most N elements, there is an induced substructure A ∈ C

of A′ with a universe of exactly M 6 N pairwise distinct elements a1, . . . , aM , such that
A |= ψ. Therefore, by Lemma 3.9, (A, a1, . . . , aM ) is a model of ϕM (y1, . . . , yM ). Hence,
A |= ψN , and since ψN is existential, also A′ |= ψN .

On the other hand, suppose that A′ ∈ C is a model of ψN . Then, there is an M ∈ [1, N ]
and a substructure A ∈ C of A′, induced by pairwise distinct elements a1, . . . , aM from A′,
such that (A, a1, . . . , aM ) is a model of (ψ)M,s(y1, . . . , yM ). Hence, A |= ψ and, since A′ is
an extension of A, also A′ |= ψ.

Thus, ψN is C-equivalent to ψ.
By Lemma 3.9, (ψ)M,s can be constructed in time ||ψ|| ·NO(q·logm). Hence, ψN can be

constructed in time

N · (N2 + ||ψ|| ·NO(q·logm)) ⊆ ||ψ|| ·NO(q·logm).

Furthermore, if ψ does not contain any modulo counting quantifier, it suffices to let

ψN := ∃y1 · · · ∃yN (ψ)N,s(y1, . . . , yN ).

Here, the construction of (ψ)N,s and ψN takes time only O(||ψ|| ·N q).
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Proof of Lemma 3.9.
The proof proceeds by induction on the shape of ψ.

• For the induction start, let ψ be an atomic formula with variables among x1, . . . , xk. In
this case, (ψ)M,s is the formula obtained by replacing all occurrences of variables xi in ψ
by ys(i). It is easy to check that (ψ)M,s satisfies the condition of Lemma 3.9. Assume that
ψ = R(xi1 , . . . , xiℓ) for a relation symbol R ∈ σ of arity ℓ > 1 and for i1, . . . , iℓ ∈ [1, k].
For each σ-structure A with at most M elements and each tuple (a1, . . . , aM ) ∈ AM that
contains each element of A at least once, the following equivalence holds:

(A, as(1), . . . , as(k)) |= R(xi1 , . . . , xiℓ)

iff (as(i1), . . . , as(iℓ)) ∈ RA

iff (A, a1, . . . , aN ) |= R(ys(i1), . . . , ys(iℓ)).

For ψ = (xi = xj) the argumentation is analogous.

• If ψ = ¬ψ′ then (ψ)M,s := ¬(ψ′)M,s.
Similarly, for each Boolean connective ⋆ ∈ {∧,∨,→,↔}, we let

(ψ′ ⋆ ψ′′)M,s := (ψ′)M,s ⋆ (ψ′′)M,s.

In each of these cases it is easy to check that the constructed formula satisfies the lemma’s
condition.

• If ψ = ∃xi ψ
′ then

(ψ)M,s :=

M
∨

j=1

(ψ′)M,s[i→j],

where s[i→j] is the function s′ that agrees with s on all values except i, and s′(i) = j.
Note that ||(ψ)M,s|| ∈ O(M · ||(ψ′)M,s′ ||). For each σ-structure A with at most M elements

and each tuple (a1, . . . , aM ) ∈ AM that contains each element of A at least once, the
following equivalence holds:

(A, as(1), . . . , as(k)) |= ∃xi ψ
′(x1, . . . , xk)

iff there is a j ∈ [1,M ] such that for s′ := s[i→ j],
(A, as′(1), . . . , as′(k)) |= ψ′(x1, . . . , xk)

iff there is a j ∈ [1,M ] such that (A, a1, . . . , aM ) |= (ψ′)M,s[i→j](y1, . . . , yM )

iff (A, a1, . . . , aM ) |= (ψ)M,s(y1, . . . , yM ).

• Accordingly, if ψ = ∀xi ψ
′ then

(ψ)M,s :=

M
∧

j=1

(ψ′)M,s[i→j].

• Finally, assume that ψ = ∃0modmxi ψ
′. While it is straightforward to write, in an

analogous manner to the two latter cases, a formula with the desired semantics but with
size exponential in M , we employ an inductive construction whose size is linear in M .

More precisely, we let (ψ)M,s := γ1,M0 , where γ1,M0 is the formula provided by the
following claim:
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Claim 3.10. For all j, j′ ∈ [1,M ] with j 6 j′ and each p ∈ [0,m−1], there is a quantifier-

free formula γj,j
′

p (y1, . . . , yM ) such that for each σ-structure A with exactly M elements and
each enumeration (a1, . . . , aM ) of A, the following equivalence holds:

(A, a1, . . . , aM ) |= γj,j
′

p (y1, . . . , yM )

if, and only if, the number of indices ℓ ∈ [j, j′] such that

(A, a1, . . . , aM ) |= (ψ′)M,s[i→ℓ](y1, . . . , yM )

is congruent to p modulo m.

Furthermore, the formula γj,j
′

p is of size

||(ψ′)M,s|| · (j′−j+1)O(logm),

where the constant suppressed by the O-notation does not depend on the signature σ.

To show that γ1,M0 satisfies the requirements of Lemma 3.9, let A be a σ-structure with
exactly M elements and let (a1, . . . , aM ) be an enumeration of A. Then, due to Claim 3.10,
the following equivalence holds:

(A, as(1), . . . , as(k)) |= ∃0modmxi ψ
′(x1, . . . , xk)

iff the number of indices ℓ ∈ [1,M ], such that for s′ := s[i→ ℓ],
(A, as′(1), . . . , as′(k)) |= ψ′(x1, . . . , xk), is congruent to 0 modulo m

iff the number of indices ℓ ∈ [1,M ], such that (A, a1, . . . , aM ) |= (ψ′)M,s[i→ℓ](y1, . . . , yM ),
is congruent to 0 modulo m
(recall that ψ′ and (ψ′)M,s[i→ℓ] satisfy the assumptions of Lemma 3.9)

iff (A, a1, . . . , aM ) |= γ1,M0 (y1, . . . , yM).

By Claim 3, the size of γ1,M0 is in ||(ψ′)M,s|| ·M
O(logm). It remains to prove Claim 3.10.

Proof of Claim 3.10. We start by defining, for each j ∈ [1,M ] and each p ∈ [0,m−1], the

formula γj,jp : We let γj,j0 := ¬(ψ′)M,s[i→j] and γj,j1 := (ψ′)M,s[i→j]. For each p > 1,

we let γj,jp be an unsatisfiable formula, e.g., ¬y1=y1. By definition, these formulas satisfy
Claim 3.10.

For all j, j′ ∈ [1,M ] with j < j′ and each p ∈ [0,m−1], we let

γj,j
′

p :=
∨

(p1,p2)∈P

(

γj,hp1
∧ γh+1,j′

p2

)

,

where h :=
⌊

j+j′

2

⌋

and P is the set of all tuples (p1, p2) ∈ [0,m−1] × [0,m−1] such that
p1 + p2 is congruent to p modulo m. Note that |P | = m.

For each σ-structure A with exactly M elements and each enumeration (a1, . . . , aM ) of
A, the following equivalence holds:

(A, a1, . . . , aM ) |= γj,j
′

p (y1, . . . , yM )

iff there are p1, p2 ∈ [0,m−1] with p1 + p2 ≡ p mod m such that

(A, a1, . . . , aM ) |= γj,hp1 (y1, . . . , yM ) and (A, a1, . . . , aM ) |= γh+1,j′
p2 (y1, . . . , yM )
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iff there are p1, p2 ∈ [0,m−1] such that p1+p2 ≡ p mod m and the number of indices ℓ in
the intervals [j, h] and [h+ 1, j′], such that (A, a1, . . . , aM ) |= (ψ′)M,s[i→ℓ](y1, . . . , yM ),
is congruent to p1 modulo m and congruent to p2 modulo m, respectively,

iff the number of indices ℓ ∈ [j, j′], such that (A, a1, . . . , aM ) |= (ψ′)M,s[i→ℓ](y1, . . . , yM ),
is congruent to p modulo m.

It remains to show that for all j, j′ ∈ [1,M ] and p ∈ [0,m−1],

||γj,j
′

p || ∈ ||(ψ′)M,s|| · (j′−j+1)O(logm).

Note that the number of occurrences of (ψ′)M,s in γj,j
′

p in the “leaves” of the inductive

definition of γj,j
′

p is in mO(log(j′−j+1)). Moreover, taking into account the “inner nodes” and

the “leaves” of the inductive definition of γj,j
′

p separately, we can bound the size of γj,j
′

p

from above by

||γj,j
′

p || ∈ T (j′−j+1) + ||(ψ′)M,s|| ·m
O(log(j′−j+1)), (3.10)

where the function T : N>1 → N>1 is defined inductively by T (1) := 1 and, for all n > 1,

T (n) := a · T (⌈n/2⌉) (3.11)

for a number a > 1 of size O(m). For an upper bound on the growth of T (n) we apply a
variation of the well-known Master Theorem, which reads as follows:

Theorem 3.11 (adapted from Theorem 4.1 of [CLRS09]). Let a > 1 and let b > 1. Let
T : N>1 → N be defined by T (1) := 1 and, for all n > 1, T (n) := a · T (⌈n/b⌉). Then,
T (n) ∈ Θ(nlogb a).

By choosing the number a as in (3.11) and with b := 2, we can conclude that

T (n) ∈ Θ(nlog a) ⊆ nO(logm).

Replacing T (j′−j+1) by (j′−j+1)O(logm) in (3.10) we obtain that

||γj,j
′

p || ∈ (j′−j+1)O(logm) + ||(ψ′)M,s|| ·m
O(log(j′−j+1))

⊆ ||(ψ′)M,s|| ·
(

(j′−j+1)O(logm) + mO(log(j′−j+1))
)

⊆ ||(ψ′)M,s|| · (j′−j+1)O(logm)

This completes the proof of Claim 3.10.

For a bound on the size of (ψ)M,s, note that the only size increasing steps in the
inductive translation are the ones for the quantifiers, which increase the size of the formula
by a factor of M , for first-order quantifiers, and by a factor in MO(logm), for modulo counting
quantifiers. It follows that ||(ψ)M,s|| ∈ ||ψ|| ·MO(q·logm), where q is the quantifier rank of
ψ. If ψ does not contain any modulo counting quantifier, ||(ψ)M,s|| ∈ O(||ψ|| · N q). It is
easy to see that the inductive translation can be also carried out in time O(||(ψ)M,s||). This
completes the proof of Lemma 3.9.
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Theorem 3.1 is now obtained by a straightforward combination of Lemma 3.8 and
Theorem 3.5.

Proof of Theorem 3.1. Let m > 2 and let ϕ be an FO+MODm(σ)-sentence of quantifier
rank q > 0 that is preserved under extensions on Cν . Let

N := Nν(m, q, ||σ||) ∈ m · Sν(Sν(3q, ||σ||), ||σ||) = m · 2ν(Sν(3q ,||σ||))O(||σ||)

be the upper bound on the size of Cν-minimal models of ϕ, obtained from Theorem 3.5.
By Lemma 3.8 there is an algorithm that constructs an existential FO(σ)-sentence that

is Cν-equivalent to ϕ in time

||ϕ|| ·NO(q·logm) = ||ϕ|| ·
(

m · 2ν(Sν(3q ,||σ||))O(||σ||)
)O(q·logm)

⊆ ||ϕ|| · 2O((logm)2·q·ν(Sν(3q ,||σ||))O(||σ||))

⊆ ||ϕ|| ·
(

2ν(Sν(3q ,||σ||))O(||σ||)
)(logm)2

= ||ϕ|| · Sν(Sν(3q, ||σ||), ||σ||)(log m)2 .

Here we make again use of the assumption that ν is strictly increasing. This concludes the
proof of Theorem 3.1.

3.4. Preservation under homomorphisms: Proof of Theorem 3.2. The combinato-
rial essence of the proof of Theorem 3.2 is contained in the following theorem.

Theorem 3.12. Let Cν be a class of ν-bounded σ-structures that is closed under disjoint
unions and induced substructures. Let ϕ be an FO+MODm(σ)-sentence of quantifier rank
q > 0 that is preserved under homomorphisms on Cν. There is a number

Nν(q, ||σ||) ∈ Sν(2·3q, ||σ||)
(

= 2ν(2·3
q)O(||σ||)

)

such that every Cν-minimal model of ϕ has size at most Nν(q, ||σ||).

Proof. The proof is similar to the proof of Lemma 7.1 in [AG94]. However, it does not
rely on Gaifman’s theorem but uses Nurmonen’s generalisation of Hanf’s theorem, stated
in Theorem 3.3. Towards applying Theorem 3.3, we let r := 3q, let t := q · (ν(r)+1)+1, and
let s ∈ Sν(2r, ||σ||) be the number of non-isomorphic 2r-spheres (with one centre) realised
in σ-structures in Cν .

Let A be a Cν-minimal model of ϕ. Towards a contradiction, assume that |A| > s·ν(4r).
By Lemma 3.4, A contains a 2r-scattered set of size s+1. Thus, since there are at most
s non-isomorphic 2r-spheres realised in A, there must be two elements a1, a2 ∈ A with
disjoint and isomorphic 2r-neighbourhoods.

Let A′ := A − {a1}. Clearly, the r-spheres of elements in A \NA
r (a1) are the same in

A and in A′. But the r-sphere of an element in NA
r (a1) might change when moving from A

to A′. However, by our choice of a1 and a2 we know that every r-sphere that is realised in
A is also realised in A′ (for elements outside the r-neighbourhood of a1 this is obvious; and
for elements a′1 ∈ NA

r (a1), the r-sphere of a′1 in A is realised in A′ by the corresponding
element a′2 in the r-neighbourhood of a2).

Now let B′ be the disjoint union of t·m copies of A′, and let B be the disjoint union of
B′ and of t·m copies of A.
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By construction, every r-sphere that is realised in B is also realised in B′, and vice versa.
Furthermore, the number of realisations of any r-sphere in B or B′ is a multiple of t·m. In
particular, B and B′ satisfy the assumption of Theorem 3.3, and therefore we have B ≡q

m B′.
Thus, B |= ϕ iff B′ |= ϕ.

Furthermore, since Cν is closed under taking induced substructures and disjoint unions,
we know that B′ and B belong to Cν . Obviously, there is a homomorphism that maps A to
one of the copies of A in B. Since ϕ is preserved under homomorphisms on Cν and A |= ϕ,
we thus have B |= ϕ, and hence also B′ |= ϕ.

Recall that B′ is a disjoint union of copies of A′. By mapping each element of each
copy of A′ to the corresponding element in A′, we obtain a homomorphism from B′ to A′.
Hence, since ϕ is preserved under homomorphisms and B′ |= ϕ, we obtain that also A′ |= ϕ.
This, however, contradicts our assumption that A is a Cν-minimal model of ϕ. Therefore,
|A| 6 s · ν(4r). We obtain that

Nν(q, ||σ||) := s · ν(4r) ∈ Sν(2·3q, ||σ||).

This concludes the proof of Theorem 3.12.

In the following lemma, we construct existential-positive FO(σ)-sentences for FO+MODm(σ)-
sentences that are preserved under homomorphisms. The proof is an algorithmic version of
the proof of Theorem 3.1 in [ADK06].

Lemma 3.13. Let C be a class of σ-structures that is decidable in time t(n) for an arbitrary
function t : N → N. There is an algorithm that, on input of a number N > 0 and an
FO+MODm(σ)-sentence ϕ of quantifier rank q > 0 constructs in time

2N
O(||σ||)

·
(

NO(||σ||·||ϕ||) + t(O(N ||σ||))
)

an existential-positive FO(σ)-sentence ψ of size 2N
O(||σ||)

, such that the following holds: If
ϕ is preserved under homomorphisms on C and every C-minimal model of ϕ has at most N
elements, then ψ is C-equivalent to ϕ.

Proof. For each finite σ-structure A let γA be the canonical conjunctive query associated
with A. I.e., γA = ∃x1 · · · ∃x|A| θA where x1, . . . , x|A| are variables representing the ele-
ments a1, . . . , a|A| of A’s universe A, and θA is the conjunction of all atoms of the form

R(xi1 , . . . , xir ) where R ∈ σ, r = ar(R), i1, . . . , ir ∈ {1, . . . , |A|}, and (ai1 , . . . , air) ∈ RA.
The well-known Chandra-Merlin Theorem [CM77] states that for any σ-structure B, there
is a homomorphism from A to B if, and only if, B |= γA. Clearly, given A, the sentence γA
can be constructed in time O(||A||) = O(|A|||σ||).

On input of ϕ and N , the lemma’s algorithm

(1) computes the set M that consists all models of ϕ
with universe {1, . . . , n}, for n 6 N , that belong to C,

(2) if M = ∅, it outputs the formula ψ := false,

(3) if M 6= ∅, it outputs the formula ψ :=
∨

A∈M γA.

Clearly, |M | is bounded by the number of all σ-structures with universe {1, . . . , n} and
n 6 N . Hence, the size of ψ is in

O(|M | ·N ||σ||) ⊆ 2N
O(||σ||)

Obviously, ψ is an existential-positive FO(σ)-sentence.
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Before giving details on the algorithm’s step 1 and its running time, let us first show
that ψ is C-equivalent to ϕ, provided that ϕ is preserved under homomorphisms on C and
that every C-minimal model of ϕ has at most N elements. To this end, let B be an arbitrary
σ-structure in C.

If B |= ψ, then there is an A ∈ M such that B |= γA. Due to the Chandra-Merlin
Theorem, there is a homomorphism from A to B. As A ∈ C and A |= ϕ, and since ϕ is
preserved under homomorphisms on C, we obtain that B |= ϕ.

On the other hand, if B |= ϕ, then let A be a minimal induced substructure of B such
that A ∈ C and A |= ϕ. I.e., A is a C-minimal model of ϕ. By assumption, N is an upper
bound on the size of the universe of A. Thus, by our choice of M , the set M contains a
structure A′ that is isomorphic to A. Since A is a substructure of B, the particular choice
of the formula γA′ implies that B |= γA′ . Since A′ ∈ M , we obtain that also B |= ψ. In
summary, this shows that ψ is C-equivalent to ϕ.

Let us now turn to the algorithm’s step 1 and the analysis of its time complexity. To
compute M , the algorithm enumerates all σ-structures A with A = {1, . . . , n} and n 6 N ,
and checks for each such A whether A |= ϕ and A ∈ C.

By assumption, the question whether A ∈ C can be answered within time t(||A||) ∈
t(O(N ||σ||)). Using the naive model checking algorithm for FO+MODm, the question

whether A |= ϕ can be answered within time ||A||O(||ϕ||) ⊆ NO(||σ||·||ϕ||). Since 2N
O(||σ||)

is
an upper bound on the number of σ-structures with universe {1, . . . , n} and n 6 N , the
entire computation of M takes time at most

2N
O(||σ||)

·
(

NO(||σ||·||ϕ||) + t(O(N ||σ||))
)

.

This completes the proof of Lemma 3.13.

Theorem 3.2 is now obtained by a straightforward combination of Lemma 3.13 and Theo-
rem 3.12 (in the analogous way as Theorem 3.1 was obtained by combining Lemma 3.8 with
Theorem 3.5).

3.5. Closure properties. Our Theorems 3.1 and 3.2 require that the considered classes be
closed under disjoint unions and induced substructures. In this section we provide simple
examples which show that these closure properties are indeed necessary. Both examples
use graphs that are directed paths where some endpoints are colored green. These are
represented as structures over the signature σ := {E,G} as usual. That is, the binary
relation symbol E is interpreted by the edge relation and the unary relation symbol G is
interpreted by the set of green vertices. In the following, a vertex is a left endpoint or a
right endpoint if it is has, respectively, no ingoing edge or no outgoing edge. An endpoint is
either a left or a right endpoint. For n > 1, a directed path on n vertices where exactly the
endpoints are colored green will be denoted by Pn and a directed path on 2n + 1 vertices
where just the central vertex is colored green will be denoted by PC

n .

Theorem 3.14. There is a class C1 of σ-structures of degree at most 2 that is closed
under substructures but not under disjoint unions, and there is an FO(σ)-sentence ϕ that
is preserved under extensions and homomorphisms on C1, but that has no C1-equivalent
existential FO(σ)-sentence.
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Proof. Let C1 be the class that contains a σ-structure if there is an n > 1 such that
the structure is isomorphic to a substructure of Pn. By construction, C1 is closed under
substructures. It is not closed under disjoint unions, since e.g. the disjoint union of two
copies of Pn is not a substructure of any Pm.

There is an obvious FO(σ)-sentence ϕ that is satisfied by a σ-structure A iff |A| > 3 and
all endpoints of A are green. The models of ϕ that belong to C1 are exactly the structures
that are isomorphic to Pn for some n > 3, because each proper substructure A of Pn

contains an endpoint that is not green. The sentence ϕ is preserved under homomorphisms
(and hence also under extensions) on C1 for the trivial reason that the only structure in C1

to which there is an homomorphism from Pn is Pn itself.
It remains to show that on C1 the formula ϕ is not equivalent to an existential sentence.

Assume towards a contradiction that ϕ is C1-equivalent to an existential sentence ψ :=
∃x1 · · · ∃xk ξ, where k > 1 and where ξ is quantifier-free. In particular, Pk+3 |= ψ so that
there are a1, . . . , ak ∈ Pk+3 for which (Pk+3, a1, . . . , ak) |= ξ. Let P be the substructure of
Pk+3 induced by {a1, . . . , ak}. Clearly, P ∼= Pk+3[{a1, . . . , ak}]. Thus (P, a1, . . . , ak) |= ξ
and so P |= ψ. On the other hand, P contains at least one endpoint that is not colored
green. Therefore, P 6|= ϕ. This contradicts our assumption that ϕ and ψ are equivalent.

Theorem 3.15. There is a class C2 of σ-structures of degree at most 2 that is closed under
disjoint unions but not under induced substructures, and there is an FO(σ)-sentence that
is preserved under extensions and homomorphisms on C2, but that has no C2-equivalent
existential FO(σ)-sentence.

Proof. Let C2 be the class of all σ-structures that are disjoint unions of structures that are
isomorphic to Pn or PC

n , for possibly different lengths n > 1. By construction, C2 is closed
under disjoint unions. It is not closed under induced substructures, since e.g. P3 has an
isolated vertex that is not colored green as an induced substructure, but such graphs do not
belong to C2.

There is an obvious FO(σ)-sentence ϕ that is satisfied by a σ-structure A iff it contains
a green endpoint. A structure belonging to C2 satisfies ϕ iff it contains a copy of Pn for some
n > 1, since the PC

n do not contain green endpoints. The sentence ϕ is preserved under
homomorphisms (and hence also under extensions) on C2 because Pn cannot be mapped
homomorphically to a PC

m for any m whatsoever, due to the two green endpoints.
It remains to show that ϕ is not C2-equivalent to an existential sentence. Assume to

the contrary that ϕ is C2-equivalent to a sentence ψ := ∃x1 · · · ∃xk ξ, where k > 1 and
where ξ is quantifier-free. Then Pk+1 |= ψ, i.e. there are a1, . . . , ak ∈ Pk+1 for which
(Pk+1, a1, . . . , ak) |= ξ. Let M := {a1, . . . , ak}. We partition M into sets L,R, where L is
the (possibly empty) set of all vertices from M that belong to the connected component, in
Pk+1[M ], of the left endpoint of Pk+1, and R := M \ L. Clearly, L and R are disconnected
in Pk+1[M ]. In particular, the set L cannot contain the right endpoint of Pk+1.

Suppose that L is empty and thus, R = M . There is a set M ′ ⊆ PC
k of vertices (“left

of” the central green vertex) in PC
k such that PC

k [M ′] ∼= Pk+1[M ]. Hence, PC
k |= ψ. But

clearly PC
k [M ′] 6|= ϕ. This is a contradiction.

In the case that L is not empty, the path PC
k contains induced substructures that are

isomorphic to Pk+1[L] and Pk+1[R], respectively (“right of” and “left of” the central green
vertex). Let A be the disjoint union of two copies A1 and A2 of PC

k . We map the elements
of L and R to corresponding elements of A1 and A2, respectively. Now let M ′ be the image
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of M under this mapping. It is easy to verify that A[M ′] ∼= Pk+1[M ]. Hence A |= ψ. But
clearly A 6|= ϕ. This is a contradiction.

4. Feferman-Vaught decompositions

Throughout this section, let ν : N → N be a fixed time-constructible strictly increasing
function and let Cν be an arbitrary class of ν-bounded σ-structures for a finite relational
signature σ.

Let (Pi)i>1 be a sequence of unary relation symbols that are not already contained in
σ. For every s > 1, by σs we denote the signature σ ∪ {P1, . . . , Ps}.

Recall that a disjoint union B = A1 ∪̇ · · · ∪̇ As of σ-structures A1, . . . ,As involves in-
jective functions fi : Ai → B for each i ∈ [1, s] such that f1(A1), . . . , fs(As) is a partition
of B. The disjoint sum A1 ⊕ · · · ⊕ As of A1, . . . ,As is a σs-structure A that expands the
disjoint union of A1, . . . ,As by the unary relations PA

i := fi(Ai), for all i ∈ [1, s]. Clearly,
PA
1 , . . . , P

A
s is a partition of A, and for all a ∈ PA

i and b ∈ PA
j with i, j ∈ [1, s] and i 6= j,

there is no edge between a and b in the Gaifman graph of A.
In Subsection 4.2 we provide an algorithm that computes, for every s > 1 and each

FO(σs)-formula ϕ, a Feferman-Vaught decomposition of ϕ, that is, a decomposition into a
Boolean combination of FO(σ)-formulas which is equivalent to ϕ on each disjoint sum of s
structures in Cν (for a precise definition, see Subsection 4.1). For functions ν of exponential
growth, this algorithm has 3-fold exponential time complexity in terms of the input formula;
for polynomial ν, the time complexity is 2-fold exponential. In Subsection 4.3 we show how
to extend the algorithm to products of structures obtained by applying transductions to
disjoint sums, e.g., to direct products of structures as well as to cartesian products and
strong products of graphs.

In Section 5.3 we show that the algorithm’s time complexity is basically optimal: For
structures of degree 3, a 3-fold exponential blow-up of the decomposition in terms of the
size of the input formula is unavoidable, and for structures of degree 2 there is still a 2-fold
exponential blow-up.

4.1. Disjoint decompositions. Before presenting this section’s main results, we give a
precise definition of the decompositions constructed by our algorithm. These decomposi-
tions are a special case of so-called reduction sequences [Mak04]. They give conditions for
the validity of an FO(σs)-formula in a disjoint sum of structures in terms of a Boolean
combination of FO(σ)-formulas that speak about the component structures of the disjoint
sum.

Let s > 1 and let x be a tuple of n > 0 variables. For each i ∈ [1, s], let ∆i be a
finite set of FO(σ)-formulas δ with free(δ) ⊆ x and let β be a propositional formula with
variables from the set XD := {Xi,δ : i ∈ [1, s], δ ∈ ∆i}. The tuple D = (∆1, . . . ,∆s, β) is an
s-reduction sequence over x (for short: reduction sequence). The size ||D|| of D is defined
as ||β|| +

∑s
i=1

∑

δ∈∆i
||δ||, where ||β|| is the size of the propositional formula β when viewed

as a word over the alphabet {¬,∧,∨,→,↔, (, )} ∪XD.
Let A1, . . . ,As be σ-structures and let a be a tuple (a1, . . . , an) from (A1 ∪ · · · ∪

As)
n. We say that (A1, . . . ,As, a) is a model of the reduction sequence D, in symbols:
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(A1, . . . ,As, a) |= D, iff µ |= β, where µ : XD → {0, 1} is the truth assignment such that for
each i ∈ [1, s] and δ ∈ ∆i,

µ(Xi,δ) :=

{

1, if free(δ) ⊆ xi and (Ai, ai) |= δ(xi),

0, otherwise.

Here, ai is the subsequence of a induced by all aj ∈ a ∩ Ai and xi is the subsequence of x
induced by all xj such that aj ∈ a ∩Ai.

Let C be a class of σ-structures and let ϕ(x) be an FO(σs)-formula. An s-reduction
sequence D over x is an s-disjoint decomposition for ϕ(x) on C (for short: disjoint decom-
position for ϕ(x)) if for every s-disjoint sum A = A1⊕· · ·⊕As of structures A1, . . . ,As ∈ C

and all tuples a ∈ An,

(A, a) |= ϕ(x) iff (A1, . . . ,As, π(a)) |= D.

Here, π is the mapping of the disjoint sum A, i.e., the mapping of the underlying disjoint
union of A’s component structures.

Intuitively, an s-disjoint decomposition for an FO(σs)-formula ϕ(x) is a Boolean com-
bination of FO(σ)-formulas from sets ∆i, i ∈ [1, s]. This Boolean combination is equivalent
to ϕ on every s-disjoint sum A1 ⊕ · · · ⊕ As and, for each i ∈ [1, s], every FO(σ)-formula
from ∆i is only interpreted over the component Ai and with its free variables assigned to
elements from Ai.

4.2. An upper bound. This section’s main result (Theorem 4.2) provides a 3-fold expo-
nential algorithm that computes a disjoint decomposition for an input FO(σs)-formula ϕ(x)
on Cν . The algorithm proceeds as follows: First, ϕ(x) is turned in 3-fold exponential time
into a Boolean combination ϕH(x) of so-called Hanf-formulas (which will be defined below)
such that the formula ϕH(x) is equivalent to ϕ(x) on disjoint sums of structures from Cν . To
achieve this, we apply an algorithm by Bollig and Kuske [BK12]. In a second step, for each
of the Hanf-formulas occurring in ϕH(x), a disjoint decomposition is computed in linear
time (see Lemma 4.3). Finally, these disjoint decompositions are combined into a disjoint
decomposition D = (∆1, . . . ,∆s, β) for ϕ(x) on Cν . In particular, also the formulas in ∆i

are Hanf-formulas.
A Hanf-formula with n > 0 free variables x is a formula of the form ∃>ky sphτ (x, y)

where τ is the isomorphism type of a finite r-sphere (for an r > 0) with n+1 centres.
Here, for a number k > 1 and a formula ϕ(x, y) we write

∃>ky ϕ(x, y)

as a shorthand for the formula

∃y1 · · · ∃yk
(

∧

16i<j6k

¬yi=yj ∧ ∀y
(

∨

16i6k

y=yi → ϕ(x, y)
)

)

.

Note that, given k, y and ϕ, this formula can be constructed in time O(k2 + ||ϕ||).

In [BK12], Bollig and Kuske provided a 3-fold exponential algorithm that transforms a
given FO(σ′)-formula ψ, for a finite relational signature σ′, into a formula in Hanf normal
form that is equivalent to ψ on all σ′-structures of degree at most d (for d > 1). Here,
we apply their result in the slightly more general setting of ν-bounded structures. In this
setting, their proof yields the following (a proof can be found in the full version of [HKS13]).
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Theorem 4.1 ([BK12, HKS13]). Let σ′ be a finite relational signature, let ν : N → N be a
time-constructible and strictly increasing function, and let C′

ν be the class of all ν-bounded σ′-
structures. There is an algorithm which transforms an input FO(σ′)-formula ϕ of quantifier
rank q > 0 in time

2(||ϕ||·ν(4
q))O(||σ′||)

(4.1)

into a C
′
ν-equivalent formula ϕH in Hanf normal form.

Moreover, each Hanf-formula occurring in ϕH is of the form ∃>ky sphτ (x, y), where k is
at most ||ϕ|| · (q+1) · ν(4q), τ is a ν-bounded r-sphere of radius r 6 4q, and |x| 6 |free(ϕ)|.

In the rest of this section we abbreviate the upper bound 2(||ϕ||·ν(4
q))O(||σ′||)

on the time
complexity for the construction of Hanf normal forms from Theorem 4.1 by the expression
Hν(||ϕ||, 4q , ||σ′||).

With these preparations, this section’s main result can now be stated as follows:

Theorem 4.2. Let s > 1. There is an algorithm which, given an input FO(σs)-formula
ϕ(x) of quantifier rank q > 0, constructs in time

Hν(||ϕ||, 4q , ||σ|| + s)
(

= 2(||ϕ||·ν(4
q))O(||σ||+s)

)

(4.2)

a disjoint decomposition (∆1, . . . ,∆s, β) for ϕ(x) on Cν. Furthermore, the sets ∆1, . . . ,∆s

contain only Hanf-formulas over the signature σ.

Thus, if the function ν is exponential and ϕ is an FO(σs)-formula, where σs consists of
exactly the relation symbols that occur in ϕ, then ϕ can be decomposed in 3-fold exponential
time — e.g., if ν = νd for d > 3, then ϕ can be decomposed in time

2d
2O(||ϕ||)

.

If ν is polynomial, then the transformation requires only 2-fold exponential time, i.e. time

22
O(||ϕ||2)

.

The remainder of this subsection is devoted to the proof of Theorem 4.2. The first step
of the algorithm employs the algorithm of Theorem 4.1 to transform an FO(σ)-formula ϕ
into a Cν-equivalent formula ϕH in Hanf normal form.

For the second step of our algorithm, the following lemma provides an algorithm which
constructs, given a Hanf-formula, a disjoint decomposition for it; not only on ν-bounded
σ-structures but on all σ-structures.

Lemma 4.3. Let s > 1. There is an algorithm which, given an input Hanf-formula ψ(x)
of the form ∃>kxn+1 sphτ (x, xn+1) with n > 0 free variables, where k > 1 and, for an r > 0,
τ is an r-sphere with n+1 centres over the signature σs, constructs in time

O(s+ ||ψ||)

a disjoint decomposition (∆1, . . . ,∆s, β) for ψ(x) on the class of all σ-structures.
Furthermore, the sets ∆1, . . . ,∆s contain only Hanf-formulas over σ, and each ∆i con-

sists of at most one formula.
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Proof. Let n, r > 0, k > 1, let x = (x1, . . . , xn), and let τ = (T , c) be an r-sphere with n+1
centres c = (c1, . . . , cn+1), i.e., T is a σs-structure whose elements have distance at most r
to c.

Recall that T is an induced substructure of an s-disjoint sum iff

(1) every element in the universe of T is contained in exactly one of the sets P T
1 , . . . , P

T
s ,

and

(2) if there is an edge between two nodes a, b in the Gaifman graph of T , then there is an
i ∈ [1, s] such that a, b ∈ P T

i .

We distinguish whether or not T is an induced substructure of an s-disjoint sum.

Case 1: T is not an induced substructure of an s-disjoint sum. Then, there is no
s-disjoint sum A with a tuple a ∈ An+1 such that NA

r (a) ∼= τ . Therefore, the algorithm
can output an arbitrary unsatisfiable s-disjoint decomposition.

Case 2: T is an induced substructure of an s-disjoint sum. In the following, we first
describe the construction of an s-disjoint decomposition for ψ(x). Afterwards we show the
correctness of this construction and give an analysis of its running time.

Since T is an induced substructure of an s-disjoint sum, for each i ∈ [1, n+1], there is
a j ∈ [1, s] such that ci as well as all elements in NT

r (ci) belong to P T
j . For each i ∈ [1, s],

let ci be the subsequence of c induced by all cj ∈ c ∩ P T
i , and let xi be the subsequence of

x induced by all xj such that cj ∈ c ∩ P T
i . W.l.o.g., cn+1 ∈ P T

s .
The algorithm decomposes ψ(x) into a disjoint decomposition D := (∆1, . . . ,∆s, β),

which is defined as follows:

• For each i ∈ [1, s] where c ∩ P T
i = ∅, let ∆i := ∅.

• For each i ∈ [1, s] where c ∩ P T
i 6= ∅, let ∆i := {δi(xi)},

where the FO(σ)-formula δi will be defined later on.

• β is the propositional formula
∧

{ Xi,δi : i ∈ [1, s] such that c ∩ P T
i 6= ∅ }

It remains to define the formulas δi(xi). Let Ti := N T
r (ci) and let τi be the r-sphere (Ti, ci).

Let T ′
i :=

(

Ti
)

|σ
be the σ-reduct of Ti, and let τ ′i be the r-sphere

(

T ′
i , ci

)

. Recall that we

assume that cn+1 ∈ P T
s . For i=s we let

δs(xs) := ∃>kxn+1 sphτ ′s(xs, xn+1).

For each i ∈ [1, s−1], i.e., for each i where cn+1 6∈ P T
i , we define the formula δi(xi) by

δi(xi) := ∃>1xn+1 sph(T ′
i ,cic)

(xi, xn+1),

where c is an arbitrary element from the tuple ci. Note that δi(xi) is a Hanf-formula of
signature σ and equivalent to the formula sphτ ′i (xi).

Claim 4.4. (∆1, . . . ,∆s, β) is a disjoint decomposition for ψ(x) on the class of all σ-
structures.

Proof of Claim 4.4. Let A = A1 ⊕ · · · ⊕As be the disjoint sum of σ-structures A1, . . . ,As,
let π be the mapping of A, and let a = (a1, . . . , an) ∈ An. For every i ∈ [1, s], let ai be the
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subsequence of a induced by all aj ∈ a ∩ PA
i . By definition of a disjoint decomposition, we

have to show that

(A, a) |= ∃>kxn+1 sph(T ,c)(x, xn+1) (= ψ(x))

iff (A, a) is a model of (∆1, . . . ,∆s, β). That is, iff for all i ∈ [1, s] with c ∩ P T
i 6= ∅, the

conditions (a) and (b) hold, where

(a) Each free variable of δi is interpreted by an element from P T
i , i.e., by definition of δi,

for each j ∈ [1, n], NA
r (aj) ⊆ PA

i iff cj ∈ P T
i .

(b) Ai |= δi[π(ai)].

Suppose that (A, a) satisfies ψ(x) and let i ∈ [1, s] such that c ∩ P T
i 6= ∅. Thus, for

every j ∈ [1, n], NA
r (aj) ∼= N T

r (cj). Since T is an induced substructure of a disjoint sum,
this implies Condition (a). Furthermore, there are at least k elements a ∈ A such that
NA

r (a) ∼= N T
r (cn+1). Since cn+1 ∈ P T

s it follows that NA
r (a) is a subset of PA

s .

Recall that T ′
i is the σ-reduct of Ti and that N

A|σ
r (ai) is isomorphic to NAi

r (π(ai)).
Hence, also Condition (b) holds as Ai satisfies δi[π(ai)] by definition of the corresponding
formula δi(xi).

For the other direction, suppose that the conditions (a) and (b) hold for all i ∈ [1, s]
with c ∩ P T

i 6= ∅. Then, for each i ∈ [1, s−1], Condition (b) and the definition of δi imply
that NAi

r (π(ai)) ∼= τ ′i . Furthermore, by Condition (b) and the definition of δs, there are at
least k elements a ∈ As such that NAs

r (π(asa)) ∼= τ ′s.
Recall that A is the disjoint sum of A1, . . . ,As. Therefore, the r-neighbourhoods of all

tuples ai and aj, for distinct i, j ∈ [1, s], are disjoint and there are no edges in the Gaifman
graph of A between them. Hence, for each tuple a and each element a as chosen above,
A |= sphτ [a, a]. Consequently, (A, a) satisfies ψ(x). This completes the proof of Claim 4.4.

Claim 4.5. The disjoint decomposition (∆1, . . . ,∆s, β) can be computed in time O(s+||ψ||).

Proof of Claim 4.5. Let ψ(x) := ∃>kxn+1 sphτ (x, xn+1) be a Hanf-formula of signature σs,
where k > 1, n, r > 0, and τ = (T , c) is an r-sphere with n+1 centres. On input of ψ(x)
our algorithm proceeds as follows:

(1) Decide if T is an induced substructure of an s-disjoint sum. If yes, continue to Step (2).
Otherwise, return an unsatisfiable s-disjoint decomposition.

(2) Construct the propositional formula β.

(3) For each i ∈ [1, s], construct δi(xi).

For Step (1), note that the structure T can easily be reconstructed from the formula
sphτ in time O(||sphτ ||). The algorithm performs two passes over the structure T . In the first
pass, it remembers occurrences of the elements of the universe of T in the sets P T

1 , . . . , P
T
s .

This way it verifies that every element of T is in exactly one of these sets. If this is the
case, the algorithm continues with a pass over the other relations of T and checks that no
two elements from different sets P T

1 , . . . , P
T
s occur in a tuple of these relations. Both passes

take time O(||T ||) ⊆ O(||sphτ ||).
Step (2) takes time O(s), since the mapping of the constants c to the sets P T

1 , . . . , P
T
s

is already known as a byproduct of Step (1).
In Step (3), the mapping of the elements of T to the sets P T

1 , . . . , P T
s , gathered in Step

(1), helps with constructing the formulas sphτ ′i , for each i ∈ [1, s], within a single pass over

the formula sphτ . Therefore, the construction of all the formulas δi(xi) takes time O(||ψ||).
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Altogether, the algorithm takes time O(s+ ||ψ||). This completes the proof of Claim 4.5
and Lemma 4.3.

By using the algorithm for the construction of Hanf normal forms by Bollig and Kuske
(Theorem 4.1) and Lemma 4.3, we can now prove Theorem 4.2.

Proof of Theorem 4.2. Given an input FO(σs)-formula ϕ(x) of quantifier rank q > 0 and
with n > 0 free variables, our algorithm proceeds as follows:

(1) We employ Theorem 4.1 to transform ϕ(x) into a formula ϕH(x) in Hanf normal form
that is equivalent to ϕ(x) on the class of all ν-bounded σs-structures. This takes time
Hν(||ϕ||, 4q , ||σ||+s). Furthermore, the Hanf-formulas occurring in this formula are of the
form ∃>kxn+1 sphτ (x, xn+1), where k is at most ||ϕ|| · (q+1) ·ν(4q), and τ is a ν-bounded
r-sphere of radius r 6 4q with at most n+1 centres. Since q+2 6 ||ϕ||, we have that

k+1 6 ||ϕ|| · (q+1) · ν(4q) + 1 6 ||ϕ||2 · ν(4q).

(2) For a suitable L > 1, let ψ1(x), . . . , ψL(x) be the Hanf-formulas occurring in ϕH(x).
For each ℓ ∈ [1, L], we use the construction described in the proof of Lemma 4.3 to
compute a disjoint decomposition (∆1,ℓ, . . . ,∆s,ℓ, βℓ) for the Hanf-formula ψℓ(x). Note
that, for each ℓ ∈ [1, L] and each i ∈ [1, s], ∆i,ℓ is either empty or consists of just a
single Hanf-formula δi,ℓ.

For each Hanf-formula ∃>kxn+1 sphτ (x, xn+1) occurring in ϕH(x), this takes time

O(s+ k2 + ||sphτ ||) ⊆ (||ϕ|| · ν(4q))O(||σ||+s).

Since L < ||ϕH || and ||ϕH || ∈ Hν(||ϕ||, 4q , ||σ||+s), Step (2) takes time

L · (||ϕ|| · ν(4q))O(||σ||+s) ⊆ Hν(||ϕ||, 4q , ||σ|| + s).

(3) We output the disjoint decomposition D := (∆1, . . . ,∆s, β), where ∆i := ∆i,1∪· · ·∪∆i,L

for each i ∈ [1, s], and the propositional formula β is obtained from ϕH(x) by replacing
each Hanf-formula ψℓ(x), for every ℓ ∈ [1, L], by the propositional formula βℓ. Again,
this takes time Hν(||ϕ||, 4q , ||σ|| + s).

A ltogether, the running time of the algorithm is bounded by Hν(||ϕ||, 4q , ||σ|| + s). It is
straightforward to verify that D is indeed a disjoint decomposition for ϕ(x) on Cν , that is,
for all structures A1, . . . ,As ∈ Cν , their disjoint sum A = A1 ⊕ · · · ⊕ As with mapping π,
and all a ∈ An, we have (A, a) |= ϕ(x) iff (A1, . . . ,As, π(a)) |= D. This completes the proof
of Theorem 4.2.

4.3. Generalised decompositions. In this section, we turn our attention from decomposi-
tions on disjoint sums of structures to decompositions speaking about more general products
of structures. We show how to transfer the algorithm of Theorem 4.2 to an algorithm that
produces decompositions on composite structures obtained by applying transductions2 to
disjoint sums.

Subsection 4.3.1 provides the necessary background on transductions. Subsection 4.3.2
presents this section’s main result, Corollary 4.8, which lifts Theorem 4.2 from disjoint
sums to more general decompositions defined via transductions. Subsection 4.3.3 presents

2also knows as first-order interpretations, cf. [EF99]
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an application of the result to the particular case of direct products (also called tensor
products or cartesian products).

4.3.1. Transductions. We consider two fixed finite relational signatures σ and τ .
Let t > 1 and let θ(x1, . . . , xt) be an FO(σ)-formula with t free variables. Furthermore,

assume that, for each R ∈ τ of arity r := ar(R), θR(y1 . . . yr) is an FO(σ)-formula with r · t
free variables from tuples yi := (yi,1, . . . , yi,t), for each i ∈ [1, r]. Then, the tuple (θ, (θR)R∈τ )
is called a t-transduction from τ to σ (or transduction, if the parameters are given by the
context).

Assume now that Θ = (θ, (θR)R∈τ ) is a t-transduction from τ to σ as described above.
For every σ-structure A = (A, (RA)R∈σ), the application Θ(A) of the transduction Θ to A is
a τ -structure B = (B, (RB)R∈τ ) whose universeB consists of exactly the tuples (a1, . . . , at) ∈
At such that A |= θ[a1, . . . , at], and where each relation symbol R ∈ τ with arity r is
interpreted by the set of all tuples (a1, . . . , ar) in Br, such that A |= θR[a1 . . . ar].

On the other hand, a t-transduction Θ from τ to σ can be applied to FO(τ)-formulas.
For every FO(τ)-formula ϕ(x) with n > 0 free variables x = (x1, . . . , xn), the application
Θ(ϕ) of the transduction Θ to ϕ(x) is an FO(σ)-formula ψ(x1 . . . xn) with n·t new free
variables from variable tuples xi := (xi,1, . . . , xi,t), i ∈ [1, n], that is defined inductively as
follows:

• If ϕ(x) = R(x1, . . . , xr), for a relation symbol R ∈ τ with arity r, then

Θ(ϕ)(x1 . . . xr) :=

r
∧

i=1

θ(xi) ∧ θR(x1 . . . xr).

• If ϕ is of the form x1=x2 then

Θ(ϕ)(x1x2) := θ(x1) ∧
t
∧

j=1

x1,j=x2,j.

• For the Boolean connectives the translation distributes, i.e. Θ(¬ϕ) := ¬Θ(ϕ) and, for
each ⋆ ∈ {∧,∨,→,↔}, we have Θ(ϕ ⋆ ψ) := Θ(ϕ) ⋆Θ(ψ).

• If ϕ(x) = ∃y ψ(x, y) then let y = (y1, . . . , yt) be a tuple of new variables and let

Θ(ϕ)(x1 . . . xn) := ∃y
(

θ(y) ∧ Θ(ψ)(x1 . . . xny)
)

.

• Finally, for ϕ(x) = ∀y ψ(x, y), let Θ(ϕ) := Θ(¬∃y ¬ψ).

Obviously, the application of a fixed transduction to an input FO-formula can be carried
out in time linear in the size of the input formula. The following lemma makes this precise
and gives a bound on the quantifier rank of the resulting formula.

Lemma 4.6. Let t > 1 and let Θ = (θ, (θR)R∈τ ) be a t-transduction from τ to σ. Let k
and p be the maximum size and the maximum quantifier rank of the formulas θ and θR, for
each R ∈ τ . For every FO(τ)-formula ϕ, the FO(σ)-formula Θ(ϕ) can be constructed in
time O((t+k) · ||ϕ||). Furthermore, if q is the quantifier rank of ϕ then Θ(ϕ) has quantifier
rank at most t·q + p.

Proof. Let ϕ be an FO(τ)-formula of quantifier rank q > 0. By induction on the shape
of ϕ, we show that there is a suitable number c > 1, that has to be greater than some
values obtained during the course of the induction, such that ||Θ(ϕ)|| 6 c · (t+k) · ||ϕ|| and
qr(Θ(ϕ)) 6 t · q + p.
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• If ϕ = R(x1, . . . , xr), for a relation symbol R ∈ τ with arity r, then ||Θ(ϕ)|| 6 c · k · (r+1).
Of course, r+1 6 ||ϕ||. Therefore, ||Θ(ϕ)|| 6 c · (t+k) · ||ϕ||. Furthermore, the quantifier
rank of Θ(ϕ) is at most p.

• For a Boolean combination ϕ, the induction step is obvious.

• Assume that ϕ = Qy ψ(x, y) for a quantifier Q ∈ {∃,∀}. In this case, we have that
||Θ(ϕ)|| 6 c ·(t+k)+ ||Θ(ψ)||. Since ||Θ(ψ)|| 6 c ·(t+k) ·(||ϕ||−1), it follows that ||Θ(ϕ)|| is at
most c·(t+k)·||ϕ||. Furthermore, by construction of Θ(ϕ), we have that qr(Θ(ϕ)) is at most
t+max{p, qr(Θ(ψ))}. Because qr(Θ(ψ)) 6 t · (q−1)+p it follows that qr(Θ(ϕ)) 6 t ·q+p.

Clearly, the formula Θ(ϕ) can be constructed in time O((t+k) · ||ϕ||), that is linear in the
size of ϕ.

The following proposition relates the application of transductions to structures and formulas
to each other. The proof is an immediate consequence of the definition of Θ(A) and Θ(ϕ)
(see, e.g., [EF99]).

Proposition 4.7. Let t > 1 and let Θ = (θ, (θR)R∈σ) be a t-transduction from τ to σ. For
every FO(τ)-formula ϕ(x) with n > 0 free variables x = (x1, . . . , xn), each σ-structure A
and each tuple (a1, . . . , an) ∈ (θ(A))n, the following is true:

(

Θ(A), a1, . . . , an
)

|= ϕ(x1, . . . , xn)

iff
(

A, a1 . . . an
)

|= Θ(ϕ)(x1 . . . xn),

where, for each i ∈ [1, n], xi := (xi,1, . . . , xi,t).

Note here the difference between the expressions (a1, . . . , an) and a1 . . . an, where ai denotes
an arbitrary tuple (for every i ∈ [1, n]): While (a1, . . . , an) denotes the tuple of length n
whose elements are exactly the tuples ai for i ∈ [1, n], the expression a1 . . . an represents
the concatenation of these tuples, i.e., a tuple of length |a1| + · · · + |an|.

4.3.2. Decompositions obtained by transductions. This section’s main result is a corollary
to Theorem 4.2 and reads as follows:

Corollary 4.8. Let σ and τ be finite relational signatures and let Dν be the class of all
ν-bounded τ -structures. Let s, t > 1 and let Θ = (θ, (θR)R∈τ ) be a t-transduction from τ
to σs. There is an algorithm which, given an input FO(τ)-formula ϕ(x) of quantifier rank
q > 0 and with n > 0 free variables, constructs in time

Hν(||ϕ|| · (t+k), 4t·q+p, ||σ|| + s)
(

= 2(||ϕ||·(t+k)·ν(4t·q+p))O(||σ||+s)
)

a reduction sequence D = (∆1, . . . ,∆s, β) over x, such that for all structures A1, . . . ,As ∈
Dν and every tuple (a1, . . . , an) in (θ(A1 ⊕ · · · ⊕ As))

n, the following is true:
(

Θ(A1 ⊕ · · · ⊕ As), (a1, . . . , an)
)

|= ϕ(x)

iff
(

A1, . . . ,As, π(a1 . . . an)
)

|= D,

where π is the mapping of the disjoint sum A1 ⊕ · · · ⊕ As.
Here, k and p are the maximum size and maximum quantifier rank of the formulas θ

and θR, for every R ∈ σ. Furthermore, the sets ∆1, . . . ,∆s consist of Hanf-formulas over
σ.
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Proof. Let ϕ(x) be an FO(τ)-formula of quantifier rank q > 0 and with n > 0 free variables
x = (x1, . . . , xn). The algorithm proceeds in two steps:

(1) In a first step, the algorithm applies the transduction Θ to the input formula ϕ(x)
to obtain an FO(σs)-formula Θ(ϕ)(x1 . . . xn) where, for each i ∈ [1, n], xi is a tu-
ple (xi,1, . . . , xi,t) of free variables. From Proposition 4.7 it follows that for all σs-
structures A and all (a1, . . . , an) in (θ(A))n, we have that

(

Θ(A), (a1, . . . , an)
)

|= ϕ(x1, . . . , xn)

iff
(

A, a1 . . . an
)

|= Θ(ϕ)(x1 . . . xn).

By Lemma 4.6, this step requires time O((t+k) · ||ϕ||), where k is the maximum size
of the FO(σs)-formulas θ and θR, for every R ∈ τ . Also, ||Θ(ϕ)|| ∈ O((t+k) · ||ϕ||) and
qr(Θ(ϕ)) 6 t·q + p, where p is the maximum quantifier rank of the FO(σs)-formulas θ
and θR, for every R ∈ τ .

(2) In the second step, the algorithm constructs a disjoint decomposition D = (∆1, . . . ,∆s, β)
for Θ(ϕ)(x1 . . . xn) on Dν. I.e., for all A1, . . . ,As ∈ Dν and the disjoint sum A of
A1, . . . ,As with its mapping π and for each tuple a ∈ An·t, we have

(A, a) |= Θ(ϕ)(x1 . . . xn) iff (A1, . . . ,As, π(a)) |= D.

By Theorem 4.2, the construction of D from Θ(ϕ) takes time

Hν(||Θ(ϕ)||, 4qr(Θ(ϕ)), ||σ|| + s) ⊆ Hν(||ϕ|| · (t+k), 4t·q+p, ||σ|| + s)

It follows from Step (1) and Step (2) that, for every disjoint sum A of structures A1, . . . ,As ∈
Dν and all (a1, . . . , an) in (θ(A))n, it holds that

(Θ(A), (a1, . . . , an)) |= ϕ(x)

iff (A1, . . . ,As, π(a1 . . . an)) |= D

and that construction of D from ϕ(x) altogether takes time

Hν(||ϕ|| · (t+k), 4t·q+p, ||σ|| + s).

This concludes the proof of Corollary 4.8.

4.3.3. Decompositions on direct products. We exemplify the application of Corollary 4.8
with the following result on direct products of structures. Let s > 1. For σ-structures
A1, . . . ,As, the direct product A1 ⊗ · · · ⊗ As is the σ-structure A = (A, (RA)R∈σ), where
the universe A is the set A1 × · · · × As, and for each relation symbol R ∈ σ of arity r > 1,
the relation RA is the set of all tuples ((a1,1, . . . , a1,s), . . . , (an,1, . . . , ar,s)) in Ar such that,
for each i ∈ [1, s], the tuple (a1,i, . . . , ar,i) belongs to the relation RAi .

Corollary 4.9. Let s > 1. There is an algorithm which, given an input FO(σ)-formula
ϕ(x) of quantifier rank q > 0 and with n > 0 free variables, constructs in time

Hν(s · ||ϕ||, 4s·q , ||σ|| + s)
(

= 2(s·||ϕ||·ν(4
s·q))O(||σ||+s)

)

a reduction sequence D = (∆1, . . . ,∆s, β) over x, such that for all A1, . . . ,As ∈ Cν and all
(a1, . . . , an) in (A1 × · · · ×As)

n,
(

A1 ⊗ · · · ⊗ As, (a1, . . . , an)
)

|= ϕ(x)

iff
(

A1, . . . ,As, a1 . . . an
)

|= D.
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Furthermore, the sets ∆1, . . . ,∆s consist of Hanf-formulas over σ.

Proof. Consider the following s-transduction Θ := (θ, (θR)R∈σ) from σ to σs with

θ(x1, . . . , xs) :=

s
∧

i=1

Pi(xi)

and, for each R ∈ σ of arity r := ar(R),

θR(x1 . . . xr) :=

s
∧

i=1

R(x1,i, . . . , xr,i),

where xj = (xj,1, . . . , xj,s) for each j ∈ [1, r]. The formulas of Θ correspond to the definition
of the (tensor) product of σ-structures. I.e., for all σ-structures A1, . . . ,As and the disjoint
sum A of A1, . . . ,As with mapping π,

Θ(A) ∼= A1 ⊗ · · · ⊗ As

via the isomorphism f : θ(A) → (A1 × · · · ×As) defined by f(a) := π(a), for all a ∈ θ(A).
Therefore, by Proposition 4.7, for every FO(σ)-formula ϕ(x) with a tuple x of n > 0

free variables (x1, . . . , xn), the following holds: Let A1, . . . ,As be σ-structures and let A be
the disjoint sum of A1, . . . ,As with mapping π. Let (a1, . . . , an) ∈ (θ(A))n. Then,

(

A1 ⊗ · · · ⊗ As, (π(a1), . . . , π(an))
)

|= ϕ(x)

iff
(

Θ(A), (a1, . . . , an)
)

|= ϕ(x)

iff
(

A, a1 . . . an
)

|= Θ(ϕ)(x1 . . . xn),

where xi := (xi,1, . . . , xi,s) for each i ∈ [1, n].
The proof concludes with an application of Corollary 4.8 to this transduction. Note

that the formulas θ and θR, for each R ∈ σ, are quantifier-free. Hence, by Corollary 4.8, it
takes time

Hν(s · ||ϕ||, 4s·q , ||σ|| + s)

to compute a reduction sequence D = (∆1, . . . ,∆s, β) over x, such that for each disjoint
sum A of structures A1, . . . ,As ∈ Cν and all (a1, . . . , an) ∈ (θ(A))n,

(

Θ(A), (a1, . . . , an)
)

|= ϕ(x)

iff
(

A1, . . . ,As, π(a1 . . . an)
)

|= D,

where π is the mapping of the disjoint sum A. Observe that a tuple a is in θ(A1⊕· · ·⊕As) iff
π(a) is in A1×· · ·×As. Hence, for all A1, . . . ,As ∈ Cν and all (a1, . . . , an) ∈ (A1×· · ·×As)

n,
(

A1 ⊗ · · · ⊗ As, (a1, . . . , an)
)

|= ϕ(x)

iff
(

A1, . . . ,As, a1 . . . an
)

|= D.

This concludes the proof of Corollary 4.9.
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Note that Corollary 4.9 also holds when the direct product of structures is replaced
by other graph theoretical products, e.g., the cartesian product and the strong product of
graphs (cf. [HN04]).

5. Lower Bounds.

In this section, we prove lower bounds corresponding to the upper bounds of the main results
of sections 3 and 4 concerning preservation theorems and Feferman-Vaught decompositions.
A key ingredient to all our lower bounds is an encoding of large numbers by bounded degree
trees that allows to compare numbers by using small FO-formulas In Subsection 5.1, we
introduce this encoding. The remaining subsections 5.2 and 5.3 contain our lower bounds
for preservation theorems and Feferman-Vaught decompositions, respectively.

5.1. Binary tree encodings. We recall an encoding of numbers by binary trees, i.e., trees
where every node has at most two children, which was already used in [HKS13]. This binary
tree encoding is an adaptation of an encoding of numbers by trees of unbounded degree from
Chapter 10 in [FG06].

Consider the signature {E} that consists of just a single binary relation symbol E. A
forest is a disjoint union of finite directed rooted trees. The height of a forest F is the
length of a longest directed path in F . For each node a of a forest F , Fa is the subtree of F
induced by all nodes reachable by a directed path from a. For a tree T and a number d > 0,
we write T [6 d] to denote the subtree of T induced by all nodes of T that are reachable
from the root of T by a directed path of length at most d. A tree B is a complete binary tree
if all leaves of B have the same height and every non-leaf node has exactly two children.

For numbers i, n ∈ N, we write bit(i, n) to denote the i-th bit in the binary representa-
tion of n. I. e., bit(i, n) = 1 iff ⌊ n

2i
⌋ is odd.

We define the (non-elementary) function Tower : N → N by Tower(0) := 1 and

Tower(h) := 2Tower(h−1) for all h > 1.

I. e., Tower(h) is a tower of 2s of height h.

For each h > −1 and i ∈ [0,Tower(h+3)−1], we define inductively a set Bh(i) of binary
trees that (each) encode the (binary expansion of the) number i.

h = −1: For i ∈ [0,Tower(2)−1] = {0, 1, 2, 3}, the set B−1(i) contains exactly the binary
trees that are isomorphic to the binary tree B−1(i) depicted in Figure 2.

h > 0: For i ∈ [0,Tower(h+3)−1], the set Bh(i) consists of all binary trees B that satisfy
each of the following properties:

• B[6 Tower(h+1)−1] is a complete binary tree of height Tower(h+1)−1.

• For every j ∈ [0,Tower(h+2)−1] with bit(j, i) = 1, there is a node b of height
Tower(h+1) in B such that Bb ∈ Bh−1(j).

• For every node b of height Tower(h+1) in B, there is a j ∈ [0,Tower(h+2)−1] such
that Bb ∈ Bh−1(j) and bit(j, i) = 1.
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B−1(0)

0

B−1(1)

1

0

B−1(2)

2

1

0

B−1(3)

3

1

0

0

Figure 2: The binary trees B−1(0), B−1(1), B−1(2), and B−1(3) are tree encodings for the
numbers 0, 1, 2, and 3, respectively, as defined in [FG06]. Note that the numbers
depicted within the nodes are not part of the tree encoding; they are just indicated
here to illustrate which number is encoded by the subtree starting at the respective
node.

42

5

0 2

1

0

1

0

3

1

0

0

Figure 3: A binary tree from the set B1(42), i.e., a binary tree encoding of the number 42
with parameter 1. The numbers depicted within some of the nodes are not part
of the tree encoding; they are just indicated here to illustrate which number is
encoded by the subtree starting at the respective node.

Each tree in Bh(i) is called a binary tree encoding of i with parameter h. An example of a
binary tree encoding of i = 42 with parameter h = 1 is depicted in Figure 3.

An induction on the parameter h shows that every number i ∈ [0,Tower(h+3)−1] has
at least one binary tree encoding with parameter h. The following easy observation gives
an upper bound on the height of binary tree encodings.
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Lemma 5.1. For each h > 1 and every i ∈ [0,Tower(h+3) − 1], each binary tree in Bh(i)
has height less than 2 · Tower(h+1).

Proof. Let h > 1 and i ∈ [0,Tower(h+3) − 1]. By definition of Bh(i) (see also Figure 3) it
is easy to convince oneself that each binary tree in Bh(i) has height less than

2 +

h
∑

k=0

Tower(k+1) < 2 · Tower(h+1).

The latter inequality can be shown by a straightforward induction.

An adaptation of Lemma 3.2 (see also Chapter 10 in [FG06]), Lemma 3.3, and Lemma 3.4 of
[DGKS07] allows to express arithmetic relations between binary tree encodings of numbers
by “small” FO(E)-formulas:

Lemma 5.2. For h > −1, there are FO(E)-formulas ench(x), minh(x), eqh(x, y), lessh(x, y),
succh(x, y) and maxh(x) of size O(Tower(h)) (for h > 0) such that for each binary forest
F and all nodes a, b ∈ F ,

F |= ench[a] iff Fa ∈ Bh(i)

for an i ∈ [0,Tower(h+3)−1],

and if there are i, j ∈ [0,Tower(h+3)−1] such that Fa ∈ Bh(i) and Fb ∈ Bh(j), then

F |= minh[a] iff i = 0,

F |= eqh[a, b] iff i = j,

F |= lessh[a, b] iff i < j,

F |= succh[a, b] iff i+1 = j, and

F |= maxh[a] iff i = Tower(h+3) − 1.

Proof. For each d > 0, there is an FO(E)-formula δ6d(x, y) of size O(log d) expressing in
a binary forest that there is a directed path of length at most d from node x to node
y. For d = 0 and d = 1, the formulas δ60(x, y) and δ61(x, y) can be chosen as x=y and
x=y ∨ E(x, y), respectively. For d > 1, define

δ62d(x, y) := ∃z∀x′∀y′
(

(

(x′=x ∧ y′=z) ∨ (x′=z ∧ y′=y)
)

→ δ6d(x′, y′)
)

δ62d+1(x, y) := ∃z
(

δ61(x, z) ∧ δ62d(z, y)
)

.

It is easy to check that δ6d has size in O(log d).
Furthermore, let δ=d(x, y) := δ6d(x, y)∧¬δ6d−1(x, y) be the FO(E)-formula expressing

that there is a directed path of length exactly d from node x to node y. Of course, the size
of δ=d(x, y) is linear in δ6d and therefore also in O(log d).

Consider for each d > 0 the following FO(E)-formula:

γd(x) := ∃y δ=d(x, y) ∧

∀y
(

δ6d−1(x, y) →

∃z0 ∃z1 (E(y, z0) ∧ E(y, z1) ∧ ¬z0=z1)
)

.

For each d > 0, the formula γd(x) states that there is a node y that is reachable from x by a
path of length exactly d and that every node y that is reachable from x by a path of length
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less than d has exactly two children. Hence, for every binary forest F and each a ∈ F , we
have that F |= γd[a] iff Fa[6 d] is a complete binary tree of depth d. Since δ=d and δ6d−1

have size in O(log d), also γd has size in O(log d).
Furthermore, for each i ∈ {0, 1, 2, 3}, it is straightforward to define a formula enc−1,i(x)

that is satisfied if x is the root node of a binary tree that is isomorphic to the binary tree
B−1(i) depicted in Figure 2.

With this preparation, the FO(E)-formula ench(x) can be defined corresponding to the
definition of binary tree encodings with parameter h. Let

enc−1(x) := enc−1,0(x) ∨ enc−1,1(x) ∨ enc−1,2(x) ∨ enc−1,3(x).

Clearly, the formula enc−1(x) is satisfied if x is the root node of a binary tree that is
isomorphic to the binary tree B−1(i), for one of the numbers i ∈ {0, 1, 2, 3}.

For h > 0, we let

ench(x) := γTower(h+1)−1(x) ∧ ∀y
(

δ=Tower(h+1)(x, y) → ench−1(y)
)

.

For each h > 0, the size of the formulas γTower(h+1)−1 and δ=Tower(h+1) is linear in Tower(h).
An easy induction shows that, for each h > 0,

h
∑

i=0

Tower(i) < 2 · Tower(h).

Hence, for h > 0, the formula ench has size in O(Tower(h)).
We let min−1(x) := enc−1,0(x). For h > 0, we let minh(x) := ¬∃y δ=Tower(h+1)(x, y).

Clearly, minh is of size O(Tower(h)).
The construction of the formulas eqh, lessh, succh and maxh are easy adaptations of

Lemma 3.2 in [DGKS07] (Lemma 10.21 in [FG06]) and Lemma 3.4 in [DGKS07]. Their
construction is best understood by keeping in mind the binary expansions of the numbers,
encoded by binary trees.

Consider the formula

eq−1(x, y) :=

3
∨

i=0

(

enc−1,i(x) ∧ enc−1,i(y)
)

.

Note that the formula eq−1(x, y) is satisfied if there is an i ∈ {0, 1, 2, 3} such that x and y
are root nodes of two binary trees isomorphic to the binary tree B−1(i) depicted in Figure 2.

For each h > 0, we let

eqh(x, y) :=
(

∃x′ δ=Tower(h+1)(x, x
′) ↔ ∃y′ δ=Tower(h+1)(y, y

′)
)

∧

∀x′
(

δ=Tower(h+1)(x, x
′) →

∃y′
(

δ=Tower(h+1)(y, y
′) ∧

∀y′′
(

δ=Tower(h+1)(y, y
′′) →

∃x′′
(

δ=Tower(h+1)(x, x
′′) ∧

∀u∀v
(

((u=x′ ∧ v=y′) ∨

(u=x′′ ∧ v=y′′))

→ eqh−1(u, v)
)))

))

As for ench, it can easily be seen that for each h > 0, the size of eqh is in O(Tower(h)).
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The following formula less−1(x, y) is satisfied if there are numbers i, j ∈ {0, . . . , 3}
with i < j such that x and y are root nodes of binary trees that are isomorphic to the
binary trees B−1(i) and B−1(j), respectively:

less−1(x, y) :=
∨

06i<j63

(

enc−1,i(x) ∧ enc−1,j(y)
)

.

For every h > 0, let

lessh(x, y) := ∃y′
(

δ=Tower(h+1)(y, y
′) ∧

∀x′
(

δ=Tower(h+1)(x, x
′) → ¬eqh−1(x

′, y′)
)

∧

∀x′′
(

(δ=Tower(h+1)(x, x
′′) ∧ lessh−1(y

′, x′′))

→ ∃y′′ (δ=Tower(h+1)(y, y
′′) ∧ eqh−1(y

′′, x′′))
)

)

There is a number c > 0 such that, for all h > 0,

||lessh|| 6 c +
h
∑

i=0

(c + 4 · ||δ=Tower(i+1)|| + 2 · ||eqi−1||).

Since, for i > 0, the formulas δ=Tower(i+1) and eqi−1 have size in O(Tower(h)), the formula
lessh has size in O(Tower(h)).

Similarly to the formula less−1, a formula succ−1 can be chosen as

succ−1(x, y) :=
∨

06i62

(

enc−1,i(x) ∧ enc−1,i+1(y)
)

.

For each h > 0, we let

succh(x, y) := ∃y′
(

δ=Tower(h+1)(y, y
′)

∧ ∀y′′
(

(δ=Tower(h+1)(y, y
′′) ∧ ¬eqh−1(y

′′, y′)) → lessh−1(y
′, y′′)

)

∧ ∀x′
(

δ=Tower(h+1)(x, x
′) → ¬eqh−1(x

′, y′)
)

∧ ∀y′′
(

(δ=Tower(h+1)(y, y
′′) ∧ lessh−1(y

′, y′′))

→ ∃x′′(δ=Tower(h+1)(x, x
′′) ∧ eqh−1(x

′′, y′′))
)

∧ ∀x′′
(

(δ=Tower(h+1)(x, x
′′) ∧ lessh−1(y

′, x′′))

→ ∃y′′(δ=Tower(h+1)(y, y
′′) ∧ eqh−1(y

′′, x′′))
)

∧
(

¬minh−1(y
′)

→
(

∃x′ (δ=Tower(h+1)(x, x
′) ∧ minh−1(x

′))

∧ ∀x′
(

(δ=Tower(h+1)(x, x
′) ∧ lessh−1(x

′, y′))

→ ∃z (succh−1(x
′, z)

∧ (z=y′ ∨ δ=Tower(h+1)(x, z)))
))

))

Recall that the formulas δ=Tower(h+1), eqh, and lessh have size in O(Tower(h)). Hence, a
simple induction shows that for h > 0, also succh has size in O(Tower(h)).
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Finally, let max−1(x) := enc−1,3(x); and for each h > 0, let

maxh(x) := ∃y
(

δ=Tower(h+1)(x, y) ∧ minh−1(y)
)

∧

∀y
(

δ=Tower(h+1)(x, y)

→ (maxh−1(y) ∨ ∃z (δ=Tower(h+1)(x, z) ∧ succh−1(y, z)))
)

.

Again, a simple induction shows that, for each h > 0, the size of maxh is in O(Tower(h)).
This concludes the proof of Lemma 5.2.

5.2. Lower bounds for preservation theorems. The upper bounds of Section 3 are
complemented by the following two lower bounds for certain classes of finite acyclic struc-
tures of degree 3 and first-order sentences that are preserved under extensions (homomor-
phisms): We show that even under these restrictions, a 3-fold exponential blow-up in terms
of the size of the input sentence is unavoidable when constructing the equivalent existential
(existential-positive) first-order sentence.

Theorem 5.3. Let σ := {S0, S1, V0, V1}, where S0, S1 are binary and V0, V1 are unary
relation symbols, and let C be the class of all finite ordered binary forests F of signature σ,
where V F

0 and V F
1 may be arbitrary subsets of the universe. There is a real number ǫ > 0

and a sequence (ϕh)h>1 of FO(σ)-sentences of increasing size such that for each h > 1 the
following holds:

(1) ϕh is preserved under extensions on C, and

(2) every existential FO(σ)-sentence that is equivalent to ϕh on C has size at least

22
2ǫ·||ϕh ||

.

Theorem 5.4. Let σ′ := {S0, S1} ∪ {VM : M ⊆ {0, 1}}, where S0, S1 are binary relation
symbols and, for each M ⊆ {0, 1}, VM is a unary relation symbol. Let C

′ be the class of
all finite ordered binary forests F over σ′, where (V F

M )M⊆{0,1} is a partition of the universe.
There is a real number ǫ > 0 and a sequence (ϕ′

h)h>1 of FO(σ′)-sentences of increasing size
such that for each h > 1 the following holds:

(1) ϕ′
h is preserved under homomorphisms on C

′, and

(2) every existential-positive FO(σ′)-sentence that is equivalent to ϕ′
h on C

′ has size at least

22
2
ǫ·||ϕ′

h
||

.

In Theorem 5.3 and Theorem 5.4, an ordered binary forest of signature σ or σ′ is a structure
whose Gaifman graph is a forest and where the binary relation symbols S0 and S1 are
interpreted as the left and right successor relation and every node is allowed to have at
most one left successor and at most one right successor. An ordered binary tree is an
ordered binary forest with only one connected component.

The proofs of Theorem 5.3 and Theorem 5.4, which can be found below, use the encod-
ing of numbers by binary trees. The main challenge here is to find sequences of sentences
that not only have large minimal models but are also preserved under extensions and homo-
morphisms, respectively. Towards this end, the auxiliary unary relation symbols in σ and
σ′ are introduced to interpret binary tree encodings in ordered binary forests. Both proofs
rely on the following observation:
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Lemma 5.5. Let σ be a relational signature and let C be a class of σ-structures that is closed
under induced substructures. For each FO(σ)-sentence ϕ and each N > 1 the following
holds: If ϕ has a C-minimal model of size at least N , then every existential FO(σ)-sentence
that is C-equivalent to ϕ has size greater than N .

Proof. Let ϕ be an FO(σ)-sentence and let A be a C-minimal model of ϕ with at least N
elements. For contradiction, assume that ψ is an existential FO(σ)-sentence of size at most
N that is C-equivalent to ϕ. In particular, ψ has less than N quantifiers.

Since ϕ and ψ are C-equivalent, A is also a model of ψ. But since ψ is an existential
sentence with less than N quantifiers, there is an induced substructure B of A of size less
than N , such that B is a model of ψ. Since C is closed under induced substructures, B
belongs to C. And since ϕ and ψ are C-equivalent, B also is a model of ϕ. However, this
contradicts the assumption that A is a C-minimal model of ϕ.

Recall the FO(E)-formulas provided by Lemma 5.2, which define arithmetic relations
between binary tree encodings of numbers. It is straightforward to use these formulas to
construct, for each h > 1, an FO(E)-sentence of size O(Tower(h)) that has a minimal model
of size at least Tower(h+3). However, it is far less obvious to construct sentences that, at
the same time, are preserved under extensions (on finite binary forests). To achieve this,
we interpret binary tree encodings in complete ordered binary forests of suitable height.
This way, we make sure that no extension of such binary forests can modify the binary tree
encodings.

Consider the signature σ := {S0, S1, V0, V1} where S0 and S1 are binary relation symbols
and V0 and V1 are unary relation symbols. Recall that in each ordered binary forest F over
the signature σ, the unary relations V F

0 and V F
1 may be interpreted by arbitrary sets of

nodes of F . In the following, we denote the class of all finite ordered binary forests over σ
by C. Note that every structure in C has degree at most 3.

Complete ordered binary trees are defined in the obvious way. Also, we adapt the
notions T [6d] and Fa from Section 5.1 from unordered binary trees T and forests F to
ordered binary trees B and forests F (with d > 0 and a ∈ F ) in the obvious way. Thus,
B[6d] is the subtree of B induced by all nodes of B that are reachable from the root of B
by a directed path of length at most d. And Fa is the subtree of F induced by all nodes
reachable by a directed path from a.

Recall the definition of transductions from Section 4.3.1 and consider the following
transduction Θ := (θ, θE) from {E} to σ, defined by θ(x) := x=x and

θE(x, y) :=
∨

i∈{0,1}

(

Si(x, y) ∧ Vi(x)
)

.

The transduction Θ makes use of the unary relations V0 and V1 to interpret binary forests in
ordered binary forests. More specifically, for an ordered binary forest F , the structure Θ(F)
is the (unordered) binary forest consisting of all nodes from F and, for all nodes a, b ∈ F ,
there is an edge from a to b iff b is the left successor of a in F and a ∈ V F

0 , or b is the right
successor of a in F and a ∈ V F

1 .

Proof of Theorem 5.3. Recall that each extension of a structure A contains A as an induced
substructure. Consider a complete ordered binary tree A ∈ C of height d > 1 and let a be
its root node. Assume that Θ(A)a is a binary tree of height at most d−1. Note that every
leaf b of Θ(A)a has a left and a right successor in A but is neither contained in V A

0 nor in
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V A
1 . Therefore, by construction of the transduction Θ, for each extension B of A in C we

have that Θ(A)a and Θ(B)a are isomorphic.
We will use this observation to protect binary tree encodings, interpreted in complete

ordered binary trees, against modifications by extensions of the underlying structure. Recall
that we know by Lemma 5.1 that for each h > 1 and every i ∈ [0,Tower(h+3)−1], each
binary tree from Bh(i) has height less than 2 · Tower(h+1).

Similarly to the FO(E)-formula γd(x), defined in the proof of Lemma 5.2, for each
d > 0, there is an FO(σ)-formula γ<d (x) of size O(log d) that is satisfied by a node a of an
ordered binary forest A iff Aa[6d] is a complete ordered binary tree of height d.

In the following, the transduction Θ is applied to the FO(E)-formulas provided by
Lemma 5.2. Let (ϕh)h>1 be the sequence of FO(σ)-sentences that is defined, for each h > 1,
by

ϕh := ∃x
(

enc<h (x) ∧ Θ(minh)(x)
)

∧

∀x
(

enc<h (x) →
(

Θ(maxh)(x) ∨ ∃y (enc<h (y) ∧ Θ(succh)(x, y))
))

,

where

enc<h (x) := Θ(ench)(x) ∧ γ<2·Tower(h+1)(x).

The formula ϕh expresses that there is a node x that encodes the number 0 as a binary tree
encoding with parameter h, and for each number i < Tower(h+3) − 1 that is encoded by a
node x, there also exists a node y that encodes the number i+ 1.

For the fixed transduction Θ it follows from Lemma 4.6 that, for each FO(E)-formula
ϕ, the size of Θ(ϕ) is linear in the size of ϕ. Therefore, by Lemma 5.2 and since γ<2·Tower(h+1)

has size in O(Tower(h)), the formula ϕh also has size in O(Tower(h)).
For the remainder of the proof, we fix an arbitrary h > 1. The following claim follows

from the choice of the sentence ϕh and from Lemma 5.5.

Claim 5.6. Every existential FO(σ)-sentence that is equivalent to ϕh on C has size at least
Tower(h+3).

Proof of Claim 5.6. It is easy to see that there are structures in C that satisfy ϕh. Fur-
thermore, by definition of the subformulas of ϕh (see Lemma 5.2), each model A ∈ C of
ϕh has to contain at least Tower(h+3) pairwise distinct nodes a0, . . . , aTower(h+3)−1 such
that, for each i ∈ [0,Tower(h+3)−1], the binary tree Θ(A)ai is a binary tree encoding with
parameter h of the number i, i.e., the binary tree Θ(A)ai belongs to the set Bh(i).

Together with Lemma 5.5, this observation completes the proof of Claim 5.6.

Claim 5.7. ϕh is preserved under extensions on C.

Proof of Claim 5.7. Let A ∈ C be a model of ϕh. By definition of ϕh, there are pairwise
distinct nodes a0, . . . , aTower(h+3)−1 in A such that, for each i ∈ [0,Tower(h+3)−1], the
binary tree Θ(A)ai belongs to the set Bh(i).

Let B ∈ C be an extension of A. By construction of ϕh, for each i ∈ [0,Tower(h+3)−1],
the substructure Aai [6 2·Tower(h+1)] is a complete ordered binary tree. Therefore, Θ(A)ai
and Θ(B)ai are isomorphic and thus, also Θ(B)ai belongs to the set Bh(i). On the other
hand, let b be a node from B such that B |= enc<h [b]. Then, there is an i ∈ [0,Tower(h+3)−1]
such that Θ(B)b belongs to Bh(i) and hence, either B |= Θ(maxh)[b] or B |= Θ(succh)[b, ai+1].
Altogether, it follows that B |= ϕh. This completes the proof of Claim 5.7.
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Since (ϕh)h>1 is a sequence of FO(σ)-sentences of increasing size O(Tower(h)), there is
a real number ǫ > 0 such that ǫ · ||ϕh|| 6 Tower(h), for every h > 1. By Claim 5.6, every
existential FO(σ)-sentence that is equivalent to ϕh on C has size at least

Tower(h+3) = 22
2Tower(h)

> 22
2ǫ·||ϕh ||

.

This concludes the proof of Theorem 5.3.

For the proof of Theorem 5.4 we need to construct FO-sentences with large minimal
models that are preserved under homomorphism. Let σ′ := {S0, S1} ∪ {VM : M ⊆ {0, 1}}
be a signature, where S0 and S1 are binary relation symbols and, for each M ⊆ {0, 1}, VM
is a unary relation symbol. Consider the class C

′ of all finite ordered and colored binary
forests over σ′, i.e., finite σ′-structures A where the binary relations SA

0 and SA
1 correspond

to the left and right successor relation of a forest, every node is allowed to have at most
one left and at most one right successor, and the unary relations V A

M , for M ⊆ {0, 1}, are
a partition of the universe of A. Note that, for each A ∈ C

′ and each B ∈ C
′, if there is

a homomorphism h from A to B then for every a ∈ A and each M ⊆ {0, 1}, it holds that
a ∈ V A

M iff h(a) ∈ V B
M .

We only sketch a proof of Theorem 5.4, which is very similar to the one of Theorem 5.3.
Let Θ′ be the transduction (θ′, θ′E) from {E} to σ′ that is defined by θ′(x) := x=x and

θ′E(x, y) :=
∨

i∈{0,1}

(

Si(x, y) ∧
∨

M⊆{0,1},i∈M

VM (x)
)

.

Proof of Theorem 5.4. For colored and ordered binary trees and forests from C
′, we make

use of the same notation already introduced for ordered binary forests. Consider a complete
colored and ordered binary tree A ∈ C

′ of height d > 1 and let a be its root node. Assume
that Θ(A)a is a binary tree of height at most d−1. Observe that every homomorphism h
from A to a colored and ordered binary forest B ∈ C

′ is injective. Furthermore, for each
B ∈ C

′ for which there is a homomorphism h from A to B, the binary trees Θ(A)a and
Θ(B)h(a) are isomorphic.

Define a sequence (ϕ′
h)h>1 of FO(σ′)-formulas similar to the sequence (ϕh)h>1 in the

proof of Theorem 5.3, with the only modification being the application of the transduction
Θ′ instead of Θ. Of course, for each h > 1, also ϕ′

h has size O(Tower(h)).
Let h > 1. Since every existential-positive sentence is an existential sentence and

the class C
′ is closed under induced substructures we can follow the lines of the proof of

Theorem 5.3 to show that every existential-positive FO(σ)-sentence that is equivalent to ϕ′
h

on C
′ has size at least Tower(h+3).
Similarly, using the observation above, some small adaptations to the proof of Theo-

rem 5.3 suffice to show that ϕ′
h is preserved under homomorphisms on C

′. This concludes
the proof of Theorem 5.4.

5.3. Lower bounds for Feferman-Vaught decompositions. The following two lower
bounds show that for structures of degree 3 or 2 the algorithm of Theorem 4.2 for the con-
struction of reduction sequences for Feferman-Vaught decompositions is basically optimal.
Recall that a binary forest is a disjoint union of directed trees of signature {E}, where every
node has at most 2 children.



40 F. HARWATH, L. HEIMBERG, AND N. SCHWEIKARDT

Theorem 5.8. There is a real number ǫ > 0 and a sequence of FO(E)-sentences (ϕh)h>1

of increasing size such that, for every h > 1, every 2-disjoint decomposition for ϕh on finite
binary forests has size at least

22
2ǫ·||ϕh ||

.

Let σ′ := {S,L0, L1} be the signature consisting of a binary relation symbol S and two
unary relation symbols L0 and L1. A labeled chain is a finite σ′-structure C whose {S}-
reduct is a chain of finite length, i.e., a finite directed path, and where the sets LC

0 and
LC
1 are disjoint subsets of the universe of C. The class of all σ′-structures that are disjoint

unions of finitely many labeled chains is denoted by UC. Note that all structures in UC have
degree at most two.

Theorem 5.9. There is a real number ǫ > 0 and a sequence of FO(σ′)-sentences (ϕ′
h)h>1

of increasing size such that, for every h > 1, every 2-disjoint decomposition for ϕ′
h on UC

has size at least

22
ǫ·||ϕ′

h
||

.

Both theorems are corollaries to a generalisation of Proposition 6.7 in [GJL15]. For proving
our lower bounds, we use the following Lemma 5.10, along with suitable encodings of num-
bers by binary trees (for Theorem 5.8) and labeled paths (for Theorem 5.9). The lemma is
proved by a simple counting argument and distills the combinatorial essence of the proof of
Proposition 6.7 in [GJL15].

Lemma 5.10. Let σ be a relational signature and let σ2 := σ ∪ {P1, P2}, where P1 and P2

are unary relation symbols that are not contained in σ. Let C be a class of σ-structures, and
let ϕ be an FO(σ2)-sentence. Let H > 1. If there are σ-structures A0, . . . ,A2H−1 ∈ C such

that for all i, j ∈ [0, 2H−1] it holds that

Ai ⊕Aj |= ϕ iff i = j,

then every 2-disjoint decomposition for ϕ on C has size at least H.

Proof. Assume that A0, . . . ,A2H−1 are structures from C such that for all i, j ∈ [0, 2H−1],

Ai ⊕Aj |= ϕ iff i = j. (5.1)

For contradiction, assume that there is a 2-disjoint decomposition D := (∆1,∆2, β) for ϕ
on C of size less than H. Thus, ∆1 and ∆2 are finite sets of FO(σ)-sentences and β is a
propositional formula with variables from the set XD := {Xk,δ : k ∈ [1, 2], δ ∈ ∆k}, and for

all i, j ∈ [0, 2H−1] we have

Ai ⊕Aj |= ϕ iff µi,j |= β, (5.2)

where µi,j : XD → {0, 1} assigns variables of β such that for all δ1 ∈ ∆1,

µi,j(X1,δ1) = 1 iff Ai |= δ1,

and for all δ2 ∈ ∆2,

µi,j(X2,δ2) = 1 iff Aj |= δ2.

From (5.2) and (5.1) as just mentioned above, we know that for all i, j ∈ [0, 2H−1],

µi,j |= β iff i = j. (5.3)
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Note that the number of variables of β is less than H, and hence the number of distinct
variable assignments is less than 2H . Thus, there exist i, j ∈ [0, 2H−1] with i 6= j such that
µi,i = µj,j. We let µ := µi,i. Clearly, due to (5.3), we have

µ |= β. (5.4)

Along the definition of µi,j, and using the fact that µ = µi,i = µj,j, it is straightforward to
see that µi,j = µ. Thus, from (5.4) and (5.2) we obtain that Ai ⊕Aj |= ϕ. This, however,
contradicts (5.1).

Using the above lemma, along with the binary tree encodings introduced in Subsec-
tion 5.1 we obtain a proof of Theorem 5.8. Let us remark that the FO-formulas we use
within the proof do not even make use of the unary relation symbols P1 and P2.

Proof of Theorem 5.8. We use the FO(E)-formula eqh(x, y) from Lemma 5.2. For every
h > 1, let

ϕh := ∀x
(

root(x) → ∃y
(

root(y) ∧ eqh(x, y) ∧ ¬x=y
)

)

.

The formula root(x) is satisfied by exactly the root nodes of the trees in a forest; it can
easily defined by root(x) := ¬∃y E(y, x). Because eqh has size in O(Tower(h)), also ϕh has
size in O(Tower(h)).

Let h > 1 and let H := Tower(h+3). For every i ∈ [0,H−1], let Bh,i be a binary tree
encoding of i with parameter h, i.e., let Bh,i ∈ Bh(i) (see Section 5.1 above for the definition

of Bh(i)). Furthermore, for each i ∈ [0, 2H−1], let Ah,i be the disjoint union of all binary
tree encodings Bh,i′ for i′ ∈ [0,H−1] such that Bit(i′, i) = 1.

It is easy to verify that for numbers i, j ∈ [0, 2H−1]

Ah,i ⊕Ah,j |= ϕh iff i = j.

By Lemma 5.10, every 2-disjoint decomposition for ϕh on the class of binary forests has
size at least H = Tower(h+3). Analogously to the final step of the proof of Theorem 5.3,
and since ϕh has size in O(Tower(h)), we can conclude that

H > 22
2ǫ·||ϕh ||

,

for a suitable real number ǫ > 0. This completes the proof of Theorem 5.8.

For the proof of Theorem 5.9 we employ the obvious encodings of numbers by strings

(cf., e.g., [FG04, HKS13]): Let Σ = {0, 1}. For h > 1 and i ∈ [0, 22
h
−1] let bin2h(i) denote

the binary expansion of i of length 2h. Strings w ∈ Σ+ are represented by structures
Bw ∈ UC in the usual way: the universe of Bw is the set of positions of the string w, the
relation SBw is the successor relation on the positions of w, and LBw

a consists, for each a ∈ Σ,
of all positions of w that carry the letter a.

We will use structures Bw for strings w = bin2h(i) with i ∈ [0, 22
h
−1], and we will rely

on the following result of [FG04].

Lemma 5.11 (Lemma 20 in [FG04]). There is a sequence of FO(σ′)-formulas (eq′h(x, y))h>1

of size ||eq′h(x, y)|| ∈ O(h) such that for all structures B ∈ UC and all nodes a, b of B the
following holds: If a and b are the starting positions of labeled chains isomorphic to Bbin

2h
(i)

and Bbin
2h

(j), respectively, for i, j ∈ [0, 22
h
−1], then

(B, a, b) |= eq′h(x, y) iff i = j.
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We are now ready to prove Theorem 5.9.

Proof of Theorem 5.9. For every h > 1, let

ϕ′
h := ∀x

(

root′(x) → ∃y
(

root′(y) ∧ eq′h(x, y) ∧ ¬x=y
)

)

,

where root′(x) := ¬∃y S(y, x). Because eq′h has size in O(h), also ϕ′
h has size in O(h).

Let h > 1 and let H := 22
h
. For each i ∈ [0, 2H−1], let Ah,i be the disjoint union of all

labeled chains Bbin
2h

(i′) for i′ ∈ [0,H−1] such that Bit(i′, i) = 1. It is easy to verify that

for all numbers i, j ∈ [0, 2H−1] it holds that

Ah,i ⊕Ah,j |= ϕ′
h iff i = j.

Therefore, by Lemma 5.10, every 2-disjoint decomposition for ϕ′
h on UC has size at least

H = 22
h

> 22
ǫ·||ϕh ||

,

for a suitable real number ǫ > 0. This completes the proof of Theorem 5.9.

6. Concluding remarks

In this section, we give a short summary of our main results and some directions for further
research. For this, we fix a relational signature σ and a class Cd of σ-structures of degree
6 d, for a d > 3.

Our first two main results, to which we will refer in the following with (PE) and (PH),
are algorithmic versions of two preservations theorems that are restricted to the class Cd.
Both require the class Cd to be closed under induced substructures and disjoint unions.

(PE) For each sentence ϕ of FO+MODm(σ) that is preserved under extensions on Cd, a Cd-
equivalent existential FO(σ)-sentence can be constructed in 5-fold exponential time.

(PH) For each sentence ϕ of FO+MODm(σ) that is preserved under homomorphisms on
Cd, a Cd-equivalent existential-positive FO-sentence can be constructed in 4-fold ex-
ponential time, provided that Cd is decidable in 1-fold exponential time.

For (PE) and (PH) we have shown that a 3-fold exponential blow-up of the computed
existential or existential-positive sentence is unavoidable.

Our third main result is an algorithmic version of the Feferman-Vaught theorem for
disjoint sums (and, using transductions, other products of structures) of σ-structures of
bounded degree.

(FV) For each formula ϕ(x) of FO(σs), where s > 1, a disjoint decomposition with re-
spect to disjoint sums and direct products of Cd-structures can be computed in 3-fold
exponential time.

Furthermore, a matching lower bound shows that our algorithm for (FV) is basically opti-
mal.

For most of our results it is known that there is no hope to considerably extend the
class of structures to which they apply. Notably, concerning (PE) and (FV), non-elementary
lower bounds on trees of unbounded degree are known from [DGKS07].

An obvious task for future research is to close the gap between the upper and lower
bounds concerning (PE) and (PH). Another direction for future work is to consider other
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generalised quantifiers (instead of modulo counting quantifiers) and study to what extent
corresponding generalisations of our results (PE), (PH) and (FV) can be achieved.
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