
Logical Methods in Computer Science
Vol. 11(4:19)2015, pp. 1–34
www.lmcs-online.org

Submitted Dec. 2, 2014
Published Dec. 29, 2015

A PROGRAM LOGIC FOR VERIFYING

SECURE ROUTING PROTOCOLS

CHEN CHEN a, LIMIN JIA b, HAO XU c, CHENG LUO d, WENCHAO ZHOU e,
AND BOON THAU LOO f

a,c,d University of Pennsylvania
e-mail address: {chenche,haoxu,boonloo}@cis.upenn.edu

b Carnegie Mellon University
e-mail address: liminjia@cmu.edu

e Georgetown University
e-mail address: wzhou@cs.georgetown.edu

Abstract. The Internet, as it stands today, is highly vulnerable to attacks. However,
little has been done to understand and verify the formal security guarantees of proposed
secure inter-domain routing protocols, such as Secure BGP (S-BGP). In this paper, we
develop a sound program logic for SANDLog—a declarative specification language for
secure routing protocols—for verifying properties of these protocols. We prove invariant
properties of SANDLog programs that run in an adversarial environment. As a step
towards automated verification, we implement a verification condition generator (VCGen) to
automatically extract proof obligations. VCGen is integrated into a compiler for SANDLog
that can generate executable protocol implementations; and thus, both verification and
empirical evaluation of secure routing protocols can be carried out in this unified framework.
To validate our framework, we encoded several proposed secure routing mechanisms in
SANDLog, verified variants of path authenticity properties by manually discharging the
generated verification conditions in Coq, and generated executable code based on SANDLog
specification and ran the code in simulation.

1. Introduction

In recent years, we have witnessed an explosion of services provided over the Internet.
These services are increasingly transferring customers’ private information over the network
and used in mission-critical tasks. Central to ensuring the reliability and security of these
services is a secure and efficient Internet routing infrastructure. Unfortunately, the Internet
infrastructure, as it stands today, is highly vulnerable to attacks. The Internet runs the
Border Gateway Protocol (BGP), where routers are grouped into Autonomous Systems
(AS) administrated by Internet Service Providers (ISPs). Individual ASes exchange route
advertisements with neighboring ASes using the path-vector protocol. Each originating AS

2012 ACM CCS: [Theory of computation]: Logic—Logic and verification; [Security and privacy]:
Network security—Security protocols.

Key words and phrases: Declarative networking; Program logic; Routing protocols.

LOGICAL METHODSl IN COMPUTER SCIENCE DOI:10.2168/LMCS-11(4:19)2015
c© C. Chen, L. Jia, H. Xu, C. Luo, W. Zhou, and B. T. Loo
CC© Creative Commons

http://creativecommons.org/about/licenses

2 C. CHEN, L. JIA, H. XU, C. LUO, W. ZHOU, AND B. T. LOO

SANDlog(Program(

Annota/ons(

SANDlog(Compiler(

Code((
genera/on(

Verifica/on(
condi/on(
genera/on(

Executable(
protocol(

Proof(
obliga/ons(

Theorem(
prover(

Simulator(
(Emulator)(

The round objects are

code (proofs), which are

the input or output of the

framework. The rectan-

gular objects are software

components of the frame-

work.

Figure 1: Architecture of a unified framework for implementing and verifying secure routing protocols.

first sends a route advertisement (containing a single AS number) for the IP prefixes it
owns. Whenever an AS receives a route advertisement, it adds itself to the AS path, and
advertises the best route to its neighbors based on its routing policies. Since these route
advertisements are not authenticated, ASes can advertise non-existent routes or claim to
own IP prefixes that they do not.

These faults may lead to long periods of interruption of the Internet; best epitomized
by recent high-profile attacks [10, 25]. In response to these vulnerabilities, several new
Internet routing architectures and protocols for a more secure Internet have been proposed.
These range from security extensions of BGP (Secure-BGP (S-BGP) [19], ps-BGP [31],
so-BGP [32]), to “clean-slate” Internet architectural redesigns such as SCION [33] and
ICING [23]. However, none of the proposals formally analyzed their security properties.
These protocols are implemented from scratch, evaluated primarily experimentally, and their
security properties shown via informal reasoning.

Existing protocol analysis tools [7, 12, 14] are rarely used in analyzing routing protocols
because they are considerably more complicated than cryptographic protocols: they often
compute local states, are recursive, and their security properties need to be shown to hold
on arbitrary network topologies. As the number of models is infinite, model-checking-based
tools, in general, cannot be used to prove the protocol secure.

To overcome the above limitations, we explore a novel proof methodology to verify
these protocols. We augment prior work on declarative networking (NDLog) [21] with
cryptographic libraries to provide compact encoding of secure routing protocols. We call our
language SANDLog (stands for Secure and Authenticated Network DataLog). We develop
a program logic for reasoning about SANDLog programs that execute in an adversarial
environment. The properties proved on a SANDLog program hold even when the program
interact with potentially malicious programs in the network.

Based on the program logic, we implement a verification condition generator (VCGen),
which takes as inputs the SANDLog program and user-provided annotations, and outputs
intermediary proof obligations as a Coq file, where proof can be filled. VCGen is integrated
into the SANDLog compiler, an cryptography-augmented extension to the declarative net-
working engine RapidNet [27]. The compiler is able to translate our SANDLog specification
into executable code, which is amenable to implementation and evaluation.

We choose to use a declarative language as our specification language for two reasons.
First, it has been shown that declarative languages such as NDLog can specify a variety of
network protocols concisely [21]. Second, SANDLog is the specification language for both
verification and generating low-level implementations. As a result, verification and empirical
evaluation of secure routing protocols can be carried out in a unified framework (Figure 1).

We summarize our technical contributions:

A PROGRAM LOGIC FOR VERIFYING SECURE ROUTING PROTOCOLS 3

(1) We define a program logic for verifying SANDLog programs in the presence of adversaries
(Section 3). We prove that our logic is sound.

(2) We implement VCGen for automatically generating proof obligations and integrate
VCGen into a compiler for SANDLog (Section 4).

(3) We encode S-BGP and SCION in SANDLog, verify path authenticity properties of these
protocols, and run them in simulation (Section 5).

Compared to our conference paper [9] in FORTE 2014, we have added the new case study
of SCION, a clean-slate Internet architecture for inter-domain routing. We encode SCION
in SANDLog, simulate the code in RapidNet, and verify variants of route authenticity
properties. We also provide a comparison between S-BGP and SCION. It shows that
SCION’s security guarantee in routing is similar to S-BGP, as they both use layered
signatures to protect advertised path from being tampered with by an attacker. SCION,
however, enforces stronger security properties during data forwarding, enabling an AS to
authenticate an upstream neighbor. On the other hand, S-BGP does not provide any
guarantee regarding data forwarding, which means an AS could forward packets coming
from any neighbor. SANDLog specification and formal verification of both solutions can be
found online (http://netdb.cis.upenn.edu/secure_routing/.)

2. SANDLog

We specify secure routing protocols in a distributed declarative programming language called
SANDLog. SANDLog is an extension to Network Datalog (NDLog) [21], which is proved to
be a compact and clean way of specifying network routing protocols [22]. SANDLog inherits
the expressiveness of NDLog, and is augmented with security primitives (e.g. asymmetric
encryption) necessary for specifying secure routing protocols.

2.1. Syntax. SANDLog’s syntax is summarized in Figure 2. A typical SANDLog program
is composed of a set of rules, each of which consists of a rule head and a rule body. The
rule head is a predicate, or tuple (we use predicate and tuple interchangeably). A rule body
consists of a list of body elements which are either tuples or atoms (i.e. assignments and
inequality constraints). The head tuple supports aggregation functions as its arguments,
whose semantics will be introduced in Section 2.2. SANDLog also defines (and implements)
a number of cryptographic functions, which represent common encryption operations such
as signature generation and verification. Intuitively, a SANDLog rule specifies that the head
tuple is derivable if all the body tuples are derivable and all the constraints represented
by the body atoms are satisfied. SANDLog distinguishes between base tuples and derived
tuples. Base tuples are populated upon system initialization. Rules for populating base
tuples are denoted as b.

To support distributed execution, a SANDLog program prog is parametrized over the
node it runs on. Each tuple in the program is supposed to have a location specifier, written
@ι, which specifies where a tuple resides and serves as the first argument of a tuple. A rule
head can specify a location different from its body tuples. When such a rule is executed, the
derived tuple is sent to the remote node represented by the location specifier of the head
tuple. We discuss the operational semantics of SANDLog in detail in Section 2.2.

To specify security operations in secure routing protocols, our syntax definition also
includes cryptographic functions. Figure 3 gives detailed explanation of these functions.
Users can add additional cryptographic primitives to SANDLog based on their needs.

http://netdb.cis.upenn.edu/secure_routing/

4 C. CHEN, L. JIA, H. XU, C. LUO, W. ZHOU, AND B. T. LOO

Crypt func fc ::“ f sign asym | f verify asym ¨ ¨ ¨
Atom a ::“ x :“ t | t1 bop t2
Terms t ::“ x | c | ι | fp~t q | fcp~t q
Predicate pred ::“ ppagHq | ppagBq
Body Elem B ::“ ppagBq | a
Arg List ags ::“ ¨ | ags, x | ags, c
Rule Body body ::“ ¨ | body, B
Body Args agB ::“ @ι, ags
Rule r ::“ ppagHq :́ body
Head Args agH ::“ agB |@ι, ags, Fagrxxy, ags
Base tp rules b ::“ ppagHq.
Program progpιq ::“ b1, ¨ ¨ ¨ , bn, r1, ¨ ¨ ¨ , rk

Figure 2: Syntax of SANDLog

An example program. In Figure 4, we show an example program for computing the
shortest path between each pair of nodes in a network. s is the location parameter of the
program, representing the ID of the node where the program is executing. Each node stores
three kinds of tuples: linkp@s, d, cq means that there is a direct link from s to d with cost
c; pathp@s, d, c, pq means that p is a path from s to d with cost c; and bestPathp@s, d, c, pq
states that p is the lowest-cost path between s and d. Here, link is a base tuple, whose values
are determined by the concrete network topology. path and bestPath are derived tuples.
Figure 4 only shows the rules common to all network nodes. Rules for initializing the base
tuple link depend on the topology and are omitted from the figure.

In the program, rule sp1 computes all one-hop paths based on direct links. Rule sp2
expresses that if there is a link from s to z of cost c1 and a path from s to d of cost c2, then
there is a path from z to d with cost c1+c2 (for simplicity, we assume links are symmetric,
i.e. if there is a link from s to d with cost c, then a link from d to s with the same cost c also
exists). Finally, rule sp3 aggregates all paths with the same pair of source and destination
(s and d) to compute the shortest path. The arguments that appear before the aggregation
denotes the group-by keys.

We can construct a more secure variant of the shortest path protocol by deploying
signature authentication in the rules involving cross-node communications (e.g. sp2). In
the following rule sp2 1, a signature sig for the path becomes an additional argument to
the path tuple. When node s receives such a tuple, it verifies the signature of the path
f verifypp1, sig , pkq. When s sends out a path to its neighbor, it generates a signature by as-
signing sig :“ f signpp, skq. Here f sign and f verify are user-defined asymmetric cryptographic
functions (e.g. RSA).

Function Description
f sign asym(info, key) Create a signature of info using key
f verify asym(info, sig, key) Verify that sig is the signature of info using key
f mac(info, key) Create a message authentication code of info using key
f verifymac(info, MAC, key) Verify info against MAC using key

Figure 3: Cryptographic functions in SANDLog

A PROGRAM LOGIC FOR VERIFYING SECURE ROUTING PROTOCOLS 5

sp1 pathp@s, d, c, pq :́ linkp@s, d, cq, p :“ rs, ds.
sp2 pathp@z, d, c, pq :́ linkp@s, z, c1q,pathp@s, d, c2, p1q, c :“ c1` c2, p :“ z::p1.
sp3 bestPathp@s, d,minxcy, pq :́ pathp@s, d, c, pq.

Figure 4: A SANDLog program for computing all-pair shortest paths

sp2 1 pathp@z, d, c, p, sigq :́
linkp@s, z, c1q,pathp@s, d, c2, p1, sig1 q, c :“ c1` c2, p :“ z::p1,
pubKp@s, d, pkq, f verifypp1, sig1 , pkq “ 1,privKp@s, skq, sig :“ f signpp, skq.

To execute the program, a user provides rules for initializing base tuples. For example, if
we would like to run the shortest-path program over the topology given in Figure 5, the
following rules will be included in the program. Rules rb1 lives at node A, rules rb2 and rb3
live at node B, and rule rb4 lives at node C.

rb1 linkp@A,B, 1q. rb3 linkp@B,C, 1q.
rb2 linkp@B,A, 1q. rb4 linkp@C,B, 1q.

2.2. Operational Semantics. The operational semantics of SANDLog adopts a distributed
state transition model. Each node runs a designated SANDLog program, and maintains
a database of derived tuples as its local state. Nodes can communicate with each other
by sending tuples over the network, which is represented as a global network queue. The
evaluation of the SANDLog programs follows the PSN algorithm [20], and updates the
database incrementally. The semantics introduced here is similar to that of NDLog, except
that we make explicit which tuples are derived, which are received, and which are sent over
the network. This addition is crucial to specifying and proving protocol properties.

At a high-level, each node computes its local fixed-point by firing the rules on newly-
derived tuples. The fixed-point computation can also be triggered when a node receives
tuples from the network. When a tuple is derived, it is sent to the node specified by its
location specifier. Instead of blindly computing the fixed-point, we make sure that only rules
whose body tuples are updated are fired. The operational semantics also support deletion of
tuples. A deletion is propagated through the rules similar to an insertion.

More formally, the constructs needed for defining the operational semantics of SANDLog
are presented below.

Table Ψ ::“ ¨ |Ψ, pn, P q Network Queue Q ::“ U
Update u ::“ ´P | ` P Local State S ::“ pι,Ψ,U , progpιqq
Update List U ::“ ru1, ¨ ¨ ¨ , uns Configuration C ::“ QB S1, ¨ ¨ ¨ ,Sn
Trace T ::“

τ0
ÝÑ C1

τ1
ÝÑ C2 ¨ ¨ ¨

τn
ÝÑ Cn`1

We write P to denote tuples. The database for storing all derived tuples on a node is denoted
Ψ. Because there could be multiple derivations of the same tuple, we associate each tuple
with a reference count n, recording the number of valid derivations for that tuple. An update
is either an insertion of a tuple, denoted `P , or a deletion of a tuple, denoted ´P . We
write U to denote a list of updates. A node’s local state, denoted S, consists of the node’s
identifier ι, the database Ψ, a list of unprocessed updates U , and the program prog that ι
runs. A configuration of the network, written C, is composed of a network update queue
Q, and the set of the local states of all the nodes in the network. The queue Q models the

6 C. CHEN, L. JIA, H. XU, C. LUO, W. ZHOU, AND B. T. LOO

A B C

SA = {A,
 ψA = {
 (1,link(@A,B,1)),
 (1,path(@A,B,1,[A,B])),
 (1,bestPath(@A,B,1,[A,B]))}
 UA = [],
 progA = sp}

SB = {B,
 ψB = {
 (1,link(@B,A,1)),
 (1,link(@B,C,1)),
 (1,path(@B,A,1,[B,A])),
 (1,path(@B,C,1,[B,C])),
 (1,bestPath(@B,A,1,[B,A])),
 (1,bestPath(@B,C,1,[B,C]))}
 UB = [], progB = sp}

SC = {C,
 ψC = {
 (1,link(@C,B,1)),
 (1,path(@C,B,1)),
 (1,bestPath(@C,B,1,[C,B]))}
 UC = [],
 progC = sp}

Q = [+path(@A,C,2,[A,B,C]), +path(@C,A,2,[C,B,A])]

cost = 1 cost = 1

Figure 5: An Example Scenario.

update messages sent across the network. Finally, a trace T is a sequence of time-stamped
(i.e. τi) configuration transitions.

Figure 5 presents an example scenario of executing the shortest-path program shown in
Section 2.1. The network consists of three nodes, A, B and C, connected by two links with
cost 1. Each node’s local state is displayed right above the node. For example, the local
state of the node A is given by SA above it. The network queue Q is presented at the top
of Figure 5. In the current state, all three nodes are aware of their direct neighbors, i.e.,
link tuples are in their databases ΨA, ΨB and ΨC . They have constructed paths to their
neighbors (i.e., the corresponding path and bestPath tuples are stored). The current network
queue Q stores two tuples: +path(@A,C,2,[A,B,C]) and +path(@C,A,2,[C,B,A]), waiting to be
delivered to their destinations (node A and C respectively). These two tuples are the result
of running sp2 at node B. We will explain further how configurations are updated based on
the updates in the network queue when introducing the transition rules.

Top-level transitions. The small-step operational semantics of a node is denoted S ãÑ

S 1,U . From state S, a node takes a step to a new state S 1 and generates a set of updates U
for other nodes in the network. The small-step operational semantics of the entire system is
denoted C ÝÑ C1, where C and C1 respectively represent the states of all nodes along with the
network queue before and after the transition. Figure 6 defines the rules for system state
transition.
‚ Global state transition (C ÝÑ C1). Rule NodeStep states that the system takes a step

when one node takes a step. As a result, the updates generated by node i are appended
to the end of the network queue. We use ˝ to denote the list append operation. Rule
DeQueue applies when a node receives updates from the network. We write Q1 ‘Q2 to
denote a merge of two lists.

Any node can dequeue updates sent to it and append those updates to the update list
in its local state. Here, we overload the ˝ operator, and write S ˝Q to denote a new state,
which is the same as S, except that the update list is the result of appending Q to the
update list in S.

‚ Local state transition (S ãÑ S 1,U). Rule Init applies when the program starts to run.
Here, only base rules—rules that do not have a rule body—can fire. The auxiliary function
BaseOf (prog) returns all the base rules in prog . In the resulting state, the internal update
list (Uin) contains all the insertion updates located at ι, and the external update list (Uext)
contains only updates meant to be stored at a node different from ι. In this case, it is

A PROGRAM LOGIC FOR VERIFYING SECURE ROUTING PROTOCOLS 7

S ãÑ S 1,U

Uin “ r`p1p@ι,~t1q, ...,`pmp@ι,~tmqs rp1p@ι,~t1q, ¨ ¨ ¨ , pmp@ι,~tmqs “ BaseOfpprogq

pι,H, rs, progq ãÑ pι,H,Uin, progq, rs
Init

pUin,Uextq “ fireRulespι,Ψ, u,∆progq

pι,Ψ, u :: U , progq ãÑ pι,ΨZ u,U ˝ Uin, progq,Uext
RuleFire

C ÝÑ C1

Si ãÑ S 1
i,U @j P r1, ns ^ j ‰ i,S 1

j “ Sj

QB S1, ¨ ¨ ¨Sn ÝÑ Q ˝ U B S 1
1, ¨ ¨ ¨S 1

n

NodeStep

Q “ Q1
‘Q1 ¨ ¨ ¨ ‘Qn @j P r1, ns S 1

j “ Sj ˝Qj

QB S1, ¨ ¨ ¨Sn ÝÑ Q1 B S 1
1, ¨ ¨ ¨S 1

n

DeQueue

fireRulespι,Ψ, u,∆progq “ pUin,Uextq

fireRulespι,Ψ, u, rsq “ prs, rsq
Empty

fireSingleRpι,Ψ, u,∆rq “ pΨ1,Uin1,Uext1q fireRulespι,Ψ1, u,∆progq “ pUin2,Uext2q

fireRulespι,Ψ, u, p∆r,∆progqq “ pUin1 ˝ Uin2,Uext1 ˝ Uext2q
Seq

Figure 6: Operational Semantics

empty. Rule RuleFire (Figure 6) computes new updates based on the program and the
first update in the update list. It uses a relation fireRules, which processes an update u,
and returns a pair of update lists, one for node ι itself, the other for other nodes. The last
argument for fireRules, ∆prog, transforms every rule r in the program prog into a delta
rule, ∆r, for r, which we explain when we discuss incremental maintenance.

After u is processed, the database of ι is updated with the update u (ΨZ u). The Z
operation increases (decreases) the reference count of P in Ψ by 1, when u is an insertion
(deletion) update `P (´P). The update list in the resulting state is augmented with the
new updates generated from processing u.

‚ Fire rules (fireRulespι,Ψ, u,∆progq “ pUin,Uextq). Given one update, we fire rules in the
program prog that are affected by this update. Rule Empty is the base case where all
rules have been fired, so we directly return two empty sets. Given a program with at least
one rule (∆r,∆prog), rule Seq first fires the rule ∆r, then recursively calls itself to process
the rest of the rules in ∆prog. The resulting updates are the union of the updates from
firing ∆r and ∆prog.

Given the example scenario in Figure 5, now nodeA dequeues the update +path(@A,C,2,[A,B,C])
from the network queue Q at the top of Figure 5, and puts it into the unprocessed update
list UA (rule DeQueue). Node A then locally processes the update by firing all rules that
are triggered by the update, and generates new updates Uin and Uext. In the resulting state,
the local state of node A (ΨA) is updated with path(@A,C,2,[A,B,C]), and UA now includes
Uin. The network queue is also updated to include Uext (rule NodeStep).

8 C. CHEN, L. JIA, H. XU, C. LUO, W. ZHOU, AND B. T. LOO

Our operational semantics does not specify the time gaps between two consecutive
reductions and, therefore, does not determine time points as associated with a concrete
trace—such as C τ

ÝÑ C1, where τ represents the time at which a concrete transition takes
place. Instead, a trace (without time points) generated by the operational semantics—e.g.,
C ÝÑ C1—is an abstraction of all its corresponding annotations with time points that satisfy
monotonicity. In our assertions and proofs, we use time points only to specify a relative
order between events on a specific trace, so their concrete values are irrelevant.

Incremental maintenance. Now we explain in more detail how the database of a node is
maintained incrementally by processing updates in its internal update list Uin one at a time.
Following the strategy proposed in declarative networking [20], the rules in a SANDLog
program are rewritten into ∆ rules, which can efficiently generate all the updates triggered
by one update. For any given rule r that contains k body tuples, k ∆ rules of the following
form are generated, one for each i P r1, ks.

∆ppagHq :́ pν1pagB1q, ..., p
ν
i´1pagBi´1q,∆pipagBiq, pi`1pagBi`1q, ..., pkpagBkq, a1, ..., am

∆pi in the body denotes the update currently being considered. ∆p in the head denotes new
updates that are generated as the result of firing this rule. Here pνi denotes a tuple of name
pi in the database Ψ or the internal update list Uin. In comparison, pi (without ν) denotes
a tuple of name pi only in Ψ. For example, the ∆ rules for sp2 are:

sp2a ∆pathp@z, d, c, pq :́ ∆linkp@s, z, c1q,pathp@s, d, c2, p1q, c :“ c1` c2, p :“ z::p1.
sp2b ∆pathp@z, d, c, pq :́ linkνp@s, z, c1q,∆pathp@s, d, c2, p1q, c :“ c1` c2, p :“ z::p1.

Rules sp2a and sp2b are ∆ rules triggered by updates of the link and path relation respectively.
For instance, when node A processes +path(@A,C,2,[A,B,C]), only rule sp2b is fired. In this
step, pathν includes the tuple path(@A,C,2,[A,B,C]), while path does not. On the other hand,
linkν and link denote the same set of tuples, because Uin does not contain any tuple of name
link. The rule evaluation then generates +path(@B,C,3,[B,A,B,C]), which will be communicated
to node B and further triggers rule sp2b at node B. Such update propagates until no further
new tuples are generated.

Rule Firing. We present in Figure 7 the set of rules for firing a single ∆ rule given an
insertion update. We write Ψν to denote the table resulted from updating Ψ with the current
update: Ψν “ ΨZ u. Rule InsExists specifies the case where the tuple to be inserted (i.e.
qip~tq) already exists. We do not need to further propagate the update. Rule InsNew handles
the case where new updates are generated by firing rule r . In order to fire a rule r , we need
to map its bodies to concrete tuples in the database or the update list. We use an auxiliary
function ρpΨν ,Ψ, r, i,~tq to extract the complete list of substitutions for variables in the rule.
Here i and ~t indicate that qip~tq is the current update, where qi is the ith body tuple of rule
r. Every substitution σ in that set is a general unifier of the body tuples and constraints.
Formally:

(1) ~t “ σpagBiq,
(2) @j P r1, i´ 1s, D~s,~s “ σpagBjq and qjp~sq P Ψν

(3) @j P ri` 1, ns, D~s,~s “ σpagBjq and qjp~sq P Ψ
(4) @k P r1,ms, σraks is true

We write ras to denote the constraint that a represents. When a is an assignment (i.e.,
x :“ fp~tq), ras is the equality constraint x “ fp~tq; otherwise, ras is a.

A PROGRAM LOGIC FOR VERIFYING SECURE ROUTING PROTOCOLS 9

fireSingleRpι,Ψ, u,∆rq “ pΨ1,Uin,Uextq

pn, qip~tqq P Ψ

fireSingleRpι,Ψ,`qip~tq,∆rq “ pΨ, rs, rsq
InsExists

∆r “ ∆pp@ι1, agsq :́ ¨ ¨ ¨ ,∆qipagBiq ¨ ¨ ¨

qip~tq R Ψ ags does not contain any aggregate

Σ “ ρpΨν ,Ψ, r, i,~tq Σ1 “ selpΣ,Ψνq U “ genUpdpΣ,Σ1, p,Ψνq

if ι1 “ ι then Ui “ U ,Ue “ rs otherwise Ui “ rs,Ue “ U
fireSingleRpι,Ψ,`qip~tq,∆rq “ pΨ,Ui,Ueq

InsNew

∆r “ ∆pp@ι, agsq :́ ¨ ¨ ¨ ,∆qipagBiq ¨ ¨ ¨ qip~tq R Ψ

ags contains an aggregate Fagr tσ1, ¨ ¨ ¨ , σku “ ρpΨν ,Ψ, r, i,~tq
Ψ1 “ ΨZ tpaggp@ι, σ1pagsqq, ¨ ¨ ¨ , paggp@ι, σkpagsqqu

Aggpp, Fagr,Ψ
1q “ pp@ι, ~sq pp@ι, ~sq P Ψ

fireSingleRpι,Ψ,`qip~tq,∆rq “ pΨ1, rs, rsq
InsAggSame

∆r “ ∆pp@ι, agsq :́ ¨ ¨ ¨ ,∆qipagBiq ¨ ¨ ¨ qip~tq R Ψ

ags contains an aggregate Fagr tσ1, ¨ ¨ ¨ , σku “ ρpΨν ,Ψ, r, i,~tq
Ψ1 “ ΨZ tpaggp@ι, σ1pagsqq, ¨ ¨ ¨ , paggp@ι, σkpagsqqu

Aggpp, Fagr,Ψ
1q “ pp@ι, ~sq

pp@ι, ~s1q P Ψ ~s and ~s1 share the same key but different aggregate value

fireSingleRpι,Ψ,`qip~tq,∆rq “ pΨ1, r´pp@ι, ~s1q,`pp@ι, ~sqs, rsq
InsAggUpd

∆r “ ∆pp@ι, agsq :́ ¨ ¨ ¨ ,∆qipagBiq ¨ ¨ ¨

qip~tq R Ψ ags contains an aggregate Fagr tσ1, ¨ ¨ ¨ , σku “ ρpΨν ,Ψ, r,~tq
Ψ1 “ ΨZ tpaggp@ι, σ1pagsqq, ¨ ¨ ¨ , paggp@ι, σkpagsqqu

Aggpp, Fagr,Ψ
1q “ pp@ι, ~sq Epp@ι, ~s1q P Ψ

such that ~s and ~s1 share the same key but different aggregate value

fireSingleRpι,Ψ,`qip~tq,∆rq “ pΨ1, r`pp@ι, ~sqs, rsq
InsAggNew

Figure 7: Insertion rules for evaluating a single ∆ rule

When multiple tuples with the same key are derived using a rule, a selection function
sel is introduced to decide which substitution to propagate. In SANDLog run time, similar
to a relational database, a key value of a stored tuple pp~tq uniquely identifies that tuple.

When a different tuple pp~t1q with the same key is derived, the old value pp~tq and any tuple
derived using it need to be deleted. For instance, we can demand that each pair of nodes in
the network have a unique path between them. This is equivalent to designating the first
two arguments of path as its key. As a result, path(A,B,1,[A,B]) and path(A,B,2,[A,D,B]) cannot
both exist in the database.

10 C. CHEN, L. JIA, H. XU, C. LUO, W. ZHOU, AND B. T. LOO

We also use a genUpd function to generate appropriate updates based on the selected
substitutions. It may generate deletion updates in addition to an insertion update of
the new value. For example, assume that path(A,B,3,[A,C,D,B]) is in Ψν . If we were to
choose path(A,B,1,[A,B]) because it appears earlier in the update list, then genUpd returns
t`path(A,B,1,[A,B]),´path(A,B,3,[A,C,D,B])u. We leave the definitions of sel and genUpd
abstract here, as there are many possible strategies for implementing these two functions.
Aside from the strategy of picking the first update in the queue (illustrated above), another
possible strategy is to pick the last, as it is the freshest. Once the strategy of sel is fixed,
genUpd is also fixed. However, the only relevant part to the logic we introduce later is
that the substitutions used for an insertion update come from the ρ function, and that the
substitutions satisfy the property we defined above. In other words, our program logic can
be applied to a number of different implementation of sel and genUpd .

The rest of the rules in Figure 7 deal with generating an aggregate tuple. Rule
InsAggNew applies when the aggregate is generated for the first time. We only need
to insert the new aggregate value to the table. Additional rules (i.e. InsAggSame and
InsAggUpd) are required to handle aggregates where the new aggregate is the same as
the old one or replaces the old one. To efficiently implement aggregates, for each tuple p
that has an aggregate function in its arguments, there is an internal tuple pagg that records
all candidate values of p. When there is a change to the candidate set, the aggregate is
re-computed. For example, bestpathagg maintains all candidate path tuples.

We also require that the location specifier of a rule head containing an aggregate function
be the same as that of the rule body. With this restriction, the state of an aggregate is
maintained in one single node. If the result of the aggregate is needed by a remote node, we
can write an additional rule to send the result after the aggregate is computed.

Rule InsAggSame applies when the new aggregates is the same as the old one. In this
case, only the candidate set is updated, and no new update is propagated. Rule InsAggUpd

applies when there is a new aggregate value. In this case, we need to generate a deletion
update of the old tuple before inserting the new one.

Figure 8 summaries the deletion rules. When the tuple to be deleted has multiple copies,
we only reduce its reference count. The rest of the rules are the dual of the corresponding
insertion rules. We revisit the example in Figure 5 to illustrate how incremental maintenance
is performed on the shortest-path program. Upon receiving +path(@A,C,2,[A,B,C]), ∆ rule
sp2b will be triggered and generate a new update +path(@B,C,3,[B,A,B,C]), which will be
included in Uext as it is destined to a remote node B (rule InsNew). The ∆ rule for
sp3 will also be triggered, and generate a new update +bestPath(@A,C,2,[A,B,C]), which
will be included in Uin (rule InsAggNew). After evaluating the ∆ rules triggered by
the update +path(@A,C,2,[A,B,C]), we have Uin “ t+bestPath(@A,C,2,[A,B,C])u and Uext “
t+path(@B,C,3,[B,A,B,C])u. In addition, bestpathagg, the auxiliary relation that maintains all
candidate tuples for bestpath, is also updated to reflect that a new candidate tuple has been
generated. It now includes bestpath(@A,C,2,[A,B,C]).

Discussion. The semantics introduced here will not terminate for programs with a cyclic
derivation of the same tuple, even though set-based semantics will. Most routing protocols
do not have such issue (e.g., cycle detection is well-adopted in routing protocols). Our prior
work [24] has proposed improvements to solve this issue. It is a straightforward extension to
the current semantics and is not crucial for demonstrating the soundness of the program
logic we develop.

A PROGRAM LOGIC FOR VERIFYING SECURE ROUTING PROTOCOLS 11

pn, qip~tqq P Ψ n ą 1

fireSingleRpι,Ψ,´qip~tq,∆rq “ pΨ, rs, rsq
DelExists

∆r “ ∆pp@ι1, agsq :́ ¨ ¨ ¨ ,∆qipagBiq ¨ ¨ ¨ p1, qip~tqq P Ψ

ags does not contain any aggregate tσ1, ¨ ¨ ¨ , σku “ selpρpΨν ,Ψ, r, i,~tq,Ψνq

U “ r´pp@ι1, σ1pagsqq, ¨ ¨ ¨ ,´pp@ι1, σkpagsqqs
if ι1 “ ι then Ui “ U ,Ue “ rs otherwise Ui “ rs,Ue “ U

fireSingleRpι,Ψ,´qip~tq,∆rq “ pΨ,Ui,Ueq
DelNew

∆r “ ∆pp@ι, agsq :́ ¨ ¨ ¨ ,∆qipagBiq ¨ ¨ ¨ p1, qip~tqq P Ψ

ags contains an aggregate Fagr tσ1, ¨ ¨ ¨ , σku “ ρpΨν ,Ψ, r, i,~tq
Ψ1 “ Ψztpaggp@ι, σ1pagsqq, ¨ ¨ ¨ , paggp@ι, σkpagsqqu

Aggpp, Fagr,Ψ
1q “ pp@ι, ~sq pp@ι, ~sq P Ψ

fireSingleRpι,Ψ,´qip~tq,∆rq “ pΨ1, rs, rsq
DelAggSame

∆r “ ∆pp@ι, agsq :́ ¨ ¨ ¨ ,∆qipagBiq ¨ ¨ ¨ p1, qip~tqq P Ψ

ags contains an aggregate Fagr tσ1, ¨ ¨ ¨ , σku “ ρpΨν ,Ψ, r, i,~tq
Ψ1 “ Ψztpaggp@ι, σ1pagsqq, ¨ ¨ ¨ , paggp@ι, σkpagsqqu

Aggpp, Fagr,Ψ
1q “ pp@ι, ~sq

pp@ι, ~s1q P Ψ ~s and ~s1 share the same key but different aggregate value

fireSingleRpι,Ψ,´qip~tq,∆rq “ pΨ1, r´pp@ι, ~s1q,`pp@ι, ~sqs, rsq
DelAggUpd

∆r “ ∆pp@ι, agsq :́ ¨ ¨ ¨ ,∆qipagBiq ¨ ¨ ¨ p1, qip~tqq P Ψ

ags contains an aggregate Fagr tσ1, ¨ ¨ ¨ , σku “ ρpΨν ,Ψ, r, i,~tq
Ψ1 “ Ψztpaggp@ι, σ1pagsqq, ¨ ¨ ¨ , paggp@ι, σkpagsqqu

Aggpp, Fagr,Ψ
1q “ NULL

fireSingleRpι,Ψ,´qip~tq,∆rq “ pΨ1, r´pp@ι, ~s1qs, rsq
DelAggNone

Figure 8: Deletion rules for evaluating a single ∆ rule

The operational semantics is correct if the results are the same as one where all rules
reside in one node and a global fixed point is computed at each round. The proof of
correctness is out of the scope of this paper. We are working on correctness definitions and
proofs for variants of PSN algorithms. Our initial results for a simpler language can be
found in [24]. SANDLog additionally allows aggregates, which are not included in [24]. The
soundness of our logic only depends on the specific evaluation strategy implemented by the
compiler, and is orthogonal to the correctness of the operational semantics. Updates to
the operational semantics is likely to come in some form of additional bookkeeping in the
representation of tuples, which we believe will not affect the overall structure of the program
logic; as these metadata are irrelevant to the logic.

12 C. CHEN, L. JIA, H. XU, C. LUO, W. ZHOU, AND B. T. LOO

Σ; Γ $ ϕ Σ; Γ, ϕ $ ϕ1

Σ; Γ $ ϕ1
Cut

ϕ P Γ

Σ; Γ $ ϕ
Init

Σ; Γ, ϕ $ ¨

Σ; Γ $ ϕ
 I

Σ; Γ $ ϕ

Σ; Γ, ϕ $ ¨
 E

Σ; Γ $ ϕ1 Σ; Γ $ ϕ2

Σ; Γ $ ϕ1 ^ ϕ2
^I

i P r1, 2s,Σ; Γ $ ϕ1 ^ ϕ2

Σ; Γ $ ϕi
^E

i P r1, 2s,Σ; Γ $ ϕi

Σ; Γ $ ϕ1 _ ϕ2
_I

Σ; Γ $ ϕ1 _ ϕ2 Σ; Γ, ϕ1 $ ϕ Σ; Γ, ϕ2 $ ϕ

Σ; Γ $ ϕ
_E

Σ, x; Γ $ ϕ

Σ; Γ $ @x.ϕ
@I

Σ; Γ $ @x.ϕ

Σ; Γ $ ϕrt{xs
@E

Σ; Γ $ ϕrt{xs

Σ; Γ $ Dx.ϕ
DI

Σ; Γ $ Dx.ϕ Σ, a; Γ, ϕra{xs $ ϕ1 a is fresh

Σ; Γ $ ϕ1
DE

Figure 9: Rules in first-order logic.

3. A Program Logic for SANDLog

To verify correctness of secure routing protocols encoded in SANDLog, we introduce a
program logic for SANDLog. The program logic enables us to prove program invariants—
that is, properties holding throughout the execution of SANDLog programs—even if the nodes
running the program interact with potential attackers, whose behaviors are unpredictable.
The properties of secure routing protocols that we are interested in are all safety properties
and can be verified by analyzing programs’ invariant properties.

Attacker model. We assume connectivity-bound network attackers, a variant of the Dolev-
Yao network attacker model. The attacker can perform cryptographic operations with
correct keys, such as encryption, decryption, and signature generation, but is not allowed to
eavesdrop or intercept packets. This attacker model manifests itself in our formal system in
two places: (1) the network is modeled as connected nodes, some of which run the SANDLog
program that encodes the prescribed protocol and others are malicious and run arbitrary
SANDLog programs; (2) safety of cryptography is admitted as axioms in our proofs.

Syntax. We use first-order logic formulas, denoted ϕ, as property specifications. The atoms,
denoted A, include predicates and term inequalities. The syntax of the logic formulas is
shown below.

Atoms A ::“ P p~tq@pι, τq | sendpι, tppP, ι1,~tqq@τ | recvpι, tppP,~tqq@τ
| honestpι, prog, τq | t1 bop t2

Formulas ϕ ::“ J |K |A |ϕ1 ^ ϕ2 |ϕ1 _ ϕ2 |ϕ1 Ą ϕ2 | ϕ | @x.ϕ | Dx.ϕ
Variable Ctx Σ ::“ ¨ |Σ, x Logical Ctx Γ ::“ ¨ |Γ, ϕ

Predicate P p~tq@pι, τq means that tuple P p~tq is derived at time τ by node ι. The first
element in ~t is a location identifier ι1, which may be different from ι. When a tuple
P pι1, ...q is derived at node ι, it is sent to ι1. This send action is captured by predicate
sendpι, tppP, ι1,~tqq@τ . Correspondingly, predicate recvpι, tppP,~tqq@τ denotes that node ι has
received a tuple P p~tq at time τ . A user could determine send and recv tuples by inspecting
rules whose head tuple locates differently from body tuples. For example, the head tuple

A PROGRAM LOGIC FOR VERIFYING SECURE ROUTING PROTOCOLS 13

Σ; Γ $ progpiq : ti, yb, yeu.ϕpi, yb, yeq

@r P rlOfpprogq, pr “ hp~vq :́ p1p~s1q, ..., pmp~smq, q1p~u1q, ..., qnp~unq, a1, ..., akq
Σ; Γ $ @i,@t,@~y, p ~y “ fvprqq

ľ

jPr1,ms

ppjp~sjq@pi, tq^ϕpj pi, t, ~sjqq^

ľ

jPr1,ns

recvpi, tppqj , ~ujqq@t^ Ą ϕhpi, t, ~vq

ľ

jPr1,ks

rajs

@p P hdOfpprogq, ϕp is closed under trace extension

Σ; Γ $ progpiq : ti, yb, yeu.
ľ

pPhdOfpprogq

@t,@~x, yb ď t ă ye ^ pp~xq@pi, tq Ą ϕppi, t, ~xq
Inv

Σ; Γ $ ϕ

Σ; Γ $ progpiq : ti, yb, yeu.ϕpi, yb, yeq Σ; Γ $ honestpι, progpιq, tq

Σ; Γ $ @t1, t1 ą t, ϕpι, t, t1q
Honest

Figure 10: Rules in program logic

pathp@z, d, c, pq in the rule sp2 of the shortest-path program (Figure 4) corresponds to a
tuple sendps, tpppath, z, pz, d, c, pqqq@t in our logic. honestpι, progpιq, τq means that node ι
starts to run program progpιq at time τ . Since predicates take time points as an argument,
we are effectively encoding linear temporal logic (LTL) in first-order logic [18]. The domain
of the time points is the set of natural numbers. Each time point represents the number of
clock ticks from the initialization of the system.

Logical judgments. The logical judgments in our program logic use two contexts: context
Σ, which contains all the free variables; and context Γ, which contains logical assumptions.

(1) Σ; Γ $ ϕ (2) Σ; Γ $ progpiq : ti, yb, yeu.ϕpi, yb, yeq

Judgment (1) states that ϕ is provable given the assumptions in Γ. Judgment (2) is an
assertion about SANDLog programs, i.e., a program invariant. We write ϕp~xq when ~x are
free in ϕ. ϕp~tq denotes the resulting formula of substituting ~t for ~x in ϕp~xq. Recall that prog
is parametrized over the identifier of the node it runs on.

The program invariant is parametrized over not only the node ID i, but also the starting
point of executing the program (yb) and a later time point ye. Judgment (2) states that any
trace T containing the execution of a program prog by a node ι, starting at time τb, satisfies
ϕpι, τb, τeq, for any time point τe later than τb. Note that the trace could also contain threads
that run malicious programs. Since τe is any time after τb (the time prog starts), ϕ is an
invariant property of prog .

Inference rules. The inference rules of our program logic include all standard first-order
logic ones (e.g. Modus ponens), shown in Figure 3. Reasoning about the ordering between
time points are carried out in first-order logic using theory on natural numbers (in Coq, we

14 C. CHEN, L. JIA, H. XU, C. LUO, W. ZHOU, AND B. T. LOO

use Omega). We choose first-order logic because it is better supported by proof assistants
(e.g. Coq).

In addition, we introduce two key rules (Figure 10) into our proof system. Rule Inv

proves an invariant property of a program prog . The program invariant takes on a specific
form as the conjunction of all the invariants of the tuples derived by prog , and means that
if any head tuple is derived by prog , then its associated property should hold; formally:
@t,@~x, yb ď t ă ye ^ pp~xq@pi, tq Ą ϕppi, t, ~xq, where p is the name of the head tuple, and
ϕppi, t, ~xq is an invariant property associated with pp~xq. For example, p can be path, and
ϕppi, t, ~xq be that every link in argument path must have existed in the past. In the INV

rule, the function rlOf pprogq returns rules generating derivation tuples for a given program,
and the function fvprq returns all free variables in a given rule.

Intuitively, the premises of Inv need to establish that each derivation rule’s body tuples
and its associative invariants together imply the invariant of the rule’s head tuple. For each
derivation rule r in prog , we assume that the body of r is arranged so that the first m tuples
(i.e. p1p~s1q, ..., pmp~smq) are derived by prog , the next n tuples (i.e. q1p~u1q, ..., qnp~unq) are
received from the network, and constraints (i.e. a1, ..., ak) constitute the rest of the body.
For tuples derived by prog (i.e. pj ’s), we can assume that their invariants ϕpj hold at time t.
On the other hand, properties of received tuples (i.e. qj) are excluded from the premises, as
in an adversarial environment, messages from the network are not trusted by default.

Each premise of the INV rule provides the strongest assumption that allows us to prove
the conclusion in that premise. In most cases, arithmetic constraints are enough for proving
the invariant. But in some special cases—for example, the invariant explicitly specifies the
existence of a received tuple—the predicate representing the action of a tuple receipt is
needed in the assumption. In other words, ϕpj is the inductive hypothesis in this inductive
proof. In our case study, we frequently need to invoke the inductive hypothesis to complete
the proof.

We make sure that each tuple in an SANDLog program is either derived locally or
received from the network, but not both. For a program that violates this property, the user
can rewrite the program by creating a copy tuple of a different name for the tuple that can
be both derived locally or received from the network. For example, the path tuple in the
shortest-path program in Figure 4 could be both derived locally (rule sp1) and received
from a remote node (rule sp2). The user could rewrite the head tuple path in sp2 to recvPath
to differentiate it from path. In this way, the invariant property associated with the path
tuple can be trusted and used in the proof of the program invariant.

We also require that an invariant ϕp be closed under trace extension. Formally: if
T (ϕpι, t, ~sq and T is a prefix of T 1, then T 1 (ϕpι, t, ~sq. For instance, the property that
node ι has received a tuple p before time t is closed under trace extension, while the property
that node ι never sends p to the network is not closed under trace extension. We do not allow
invariants to be specified over base tuples. The INV rule cannot be used to derive properties
of base rules (e.g., link), because the function rlOf pq only returns rules for derivation tuples.

As an example, we use INV to prove a simple program invariant of the shortest-path
program in Figure 4. The property is specified as

A PROGRAM LOGIC FOR VERIFYING SECURE ROUTING PROTOCOLS 15

Σ; Γ $ @s,@d,@c,@t,
plinkps, d, cq@ps, tq ^ p “ rs, dsq Ą
pDz, c1, linkps, z, c1q@ps, tq _ linkpz, s, c1q@pz, tqq

Σ; Γ $ @s,@d,@c1,@c2,@p1,@z,@t,
plinkps, z, c1q@ps, tq ^ recvps, tpppath, s, d, c2, p1qq@t ^
c “ c1` c2 ^ p “ z::p1q Ą
pDz2, c2, linkpz, z2, c2q@pz, tq _ linkpz2, z, c1q@pz2, tqq

Σ; Γ $ true

Σ; Γ $ ϕsp
Inv

Figure 11: Proof of ϕsp

ϕsp = progpxq : tx, yb, yeu.
p@t,@y,@c,@pt, yb ď t ă ye ^
pathpx, y, c, ptq@px, tq Ą
pDz, c1, linkpx, z, c1q@px, tq _
linkpz, x, c1@pz, tqqq ^
p@t,@y,@c,@pt, yb ď t ă ye ^
bestPathpx, y, c, ptq@px, tq Ą true

Intuitively, ϕsp specifies an invariant property for the path tuple, which says a path tuple
must imply a path tuple to/from the direct neighbor. ϕsp also assigns true as the invariant
property for bestPath tuples. The proof is established using INV (Figure 11). The whole
proof has three premises, each corresponding to a rule in the shortest-path program in
Figure 4. For example, in the second premise corresponding to sp2, we include the local link
tuple and the received path as well as constraints in the assumption, while leaving out the
invariant property of the path tuple, because a received path tuple should not be trusted in
an adversarial environment.

The Honest rule proves properties of the entire system based on the program invariant.
If ϕpi, yb, yeq is the invariant of prog , and a node ι runs the program prog at time tb, then
any trace containing the execution of this program satisfies ϕpι, tb, teq, where te is a time
point after tb. SANDLog programs never terminate: after the last instruction, the program
enters a stuck state. The Honest rule is applied to honest principles (nodes) that execute
the prescribed protocols. The invariant property of an honest node holds even when it
interacts with other malicious nodes in the network, which is required by the soundness of
the inference rules. We explain in more detail next.

Soundness. We prove the soundness of our logic with regard to the trace semantics. First,
we define the trace-based semantics for our logic and judgments in Figure 12. Different from
semantics of first-order logic, in our semantics, formulas are interpreted on a trace T . We
elide the rules for first-order logic connectives. A tuple P p~tq is derivable by node ι at time τ ,
if P p~tq is either an internal update or an external update generated at a time point τ 1 no
later than τ . A node ι sends out a tuple P pι1,~tq if that tuple was derived by node ι. Because

16 C. CHEN, L. JIA, H. XU, C. LUO, W. ZHOU, AND B. T. LOO

T (P p~tq@pι, τq iff Dτ 1 ď τ , C is the configuration on T prior to time τ 1,
pι,Ψ,U , progpιqq P C, at time τ 1, pι,Ψ,U , progpιqq ãÑ pι,Ψ1,U 1 ˝ Uin, progpιqq,Ue,

and either P p~tq P Uin or P p~tq P Ue

T (sendpι, tppP, ι1,~tqq@τ iff C is the configuration on T prior to time τ ,

pι,Ψ,U , progpιqq P C, at time τ , pι,Ψ,U , progpιqq ãÑ S 1,Ue and P p@ι1,~tq P Ue

T (recvpι, tppP,~tqq@τ iff Dτ 1 ď τ , C τ 1

ÝÑ C1 P T ,

Q is the network queue in C, P p~tq P Q, pι,Ψ,U , progpιqq P C1 and P p~tq P U
T (honestpι, progpιq, τq iff at time τ , node ι’s local state is (ι, [], [], prog (ι))

Γ (progpiq : ti, yb, yeu.ϕpi, yb, yeq iff Given any trace T such that T (Γ,
and at time τb, node ι’s local state is (ι, [], [], progpιq)
given any time point τe such that τe ě τb, it is the case that T (ϕpι, τb, τeq

Figure 12: Trace-based semantics

ι1 is different from ι, it is sent over the network. A received tuple is one that comes from the
network (obtained using DeQueue). Finally, an honest node ι runs prog at time τ , if at time
τ and the local state of ι at time τ is the initial state with an empty table and update queue.

The semantics of invariant assertion states that if a trace T contains the execution
of prog by node ι (formally defined as the node running prog is one of the nodes in the
configuration C), then given any time point τe after τb, the trace T satisfies ϕpι, τb, τeq. Here,
the semantic definition requires that the invariant of an honest node holds in the presence of
attackers, because we examine all traces that include the honest node in their configurations.
This means that those traces can contain arbitrary other nodes, some of which are malicious.

Our program logic is proven to be sound with regard to the trace semantics:

Theorem 3.1 (Soundness).
(1) If Σ; Γ $ ϕ, then for all grounding substitution σ for Σ, given any trace T , T (Γσ

implies T (ϕσ;
(2) If Σ; Γ $ progpiq : ti, yb, yeu.ϕpi, yb, yeq, then for all grounding substitution σ for Σ,

Γσ (pprogqσpiq : ti, yb, yeu.pϕpi, yb, yeqqσ.

The detailed proof of Theorem 3.1 can be found in Section A. The intuition behind the
soundness proof is that the invariant properties ϕp specified for the predicate p are local
properties that will not be affected by the attacker. For instance, we can specify basic
arithmetic constraints of arguments derived by the honest node and the existence of base
tuples. These invariants can be checked by examining the program of the honest node and
are not affected by how the honest node interacts with the rest of the network. We never
use any invariant of received tuples, because they could be sent from an attacker, and the
attacker does not need to generate those tuples following protocols. However, we can use
the fact that those received tuples must have arrived at the honest node; otherwise, the rule
will not fire. In other words, we trust the runtime of an honest node.

Discussion. Our program logic enables us to prove invariant properties that hold even
in adversarial environment. The network trace T in Theorem 3.1 could involve attacker
threads who run arbitrary malicious programs. For example, a trace may contain attacker
threads who keep propagating invalid route advertisement for a non-existent destination.
Properties proved with our logic, however, still hold in such traces. The key observation here
is that in the rule inv, the correctness of the program property does not rely on received

A PROGRAM LOGIC FOR VERIFYING SECURE ROUTING PROTOCOLS 17

tuples, which could have been manipulated by malicious attackers. This guarantee is further
validated by our logic semantics and soundness, where we demand that a proved conclusion
should hold in any trace.

Our program logic could possibly prove false program invariants for SANDLog programs
only generating empty network traces. A such example program is as follows:

r1 pp@aq :́ qp@aq.
r2 qp@aq :́ pp@aq.

A user could assign false to both p and q, and prove the program invariant with the rule inv.
However, this program, when executing in bottom-up evaluation, produces an empty set of
tuples. The inv rule is still sound in this case as there is no trace that generates tuples p
and q. Instead, a SANDLog program should have rules of the form “p :-” to generate base
tuples. If a false program invariant is given for such a program, the user is obliged to prove
$ false in the logic, which is impossible.

4. Verification Condition Generator

As a step towards automated verification, we implement a verification condition generator
(VCGen) to automatically extract proof obligations from a SANDLog program. VCGen is
implemented in C++ and fully integrated to RapidNet [27], a declarative networking engine
for compiling SANDLog programs. We target Coq, but other interactive theorem provers
such as Isabelle HOL are possible.

Concretely, VCGen generates lemmas corresponding to the last premise of rule Inv. It
takes as inputs: the abstract syntax tree of a SANDLog program sp, and type annotations
tp. The generated Coq file contains the following: (1) definitions for types, predicates, and
functions; (2) lemmas for rules in the program; and (3) axioms based on Honest rule.

Definition. Predicates and functions are declared before they are used. Each predicate
(tuple) p in the SANDLog program corresponds to a predicate of the same name in the Coq
file, with two additional arguments: a location specifier and a time point.

For example, the generated declaration of the link tuple linkp@node, nodeq is the following

Variable link: node Ñ node Ñ node Ñ time Ñ Prop.

For each user-defined function, a data constructor of the same name is generated, unless it
corresponds to a Coq’s built-in operator (e.g. list operations). The function takes a time
point as an additional argument.

Lemmas. For each rule in a SANDLog program, VCGen generates a lemma in the form
of the last premise in inference rule Inv (Figure 10). Rule sp1 of example program in
Section 2.1, for instance, corresponds to the following lemma:

Lemma r1: forall(s:node)(d:node)(c:nat)(p:list node)(t:time),
link s d c s t Ñ p = cons (s (cons d nil)) Ñ p-path s t s d c p t.

Here, cons is Coq’s built-in list appending operation. and p-path is the invariant
associated with predicate path.

Axioms. For each invariant ϕp of a rule head p, VCGen produces an axiom of the form:
@i, t, ~x,Honestpiq Ą pp~xq@pi, tq Ą ϕppi, ~xq. These axioms are conclusions of the Honest rule
after invariants are verified. Soundness of these axioms is backed by Theorem 3.1. Since we
always assume that the program starts at time ´8, the condition that t ą ´8 is always
true, thus omitted.

18 C. CHEN, L. JIA, H. XU, C. LUO, W. ZHOU, AND B. T. LOO

5. Case Studies

In this section, we investigate two proposed secure routing solutions: S-BGP (Section 5.1)
and SCION (Section 5.2). We encode both solutions in SANDLog and prove that they
preserve route authenticity, a key property stating that route announcements are trustworthy.
Our case studies not only demonstrate the effectiveness of our program logic, but provide a
formal proof supporting the informal guarantees given by the solution designers. Interested
readers can find SANDLog specification and formal verification of both solutions online
(http://netdb.cis.upenn.edu/secure_routing/.)

5.1. S-BGP. Secure Border Gateway Protocol (S-BGP) [30] is a comprehensive solution
that aims to eliminate security vulnerabilities of BGP, while maintaining compatibility with
original BGP specifications. S-BGP requires that each node sign the route information
(route attestation) using asymmetric encryption (e.g. RSA [28]) before advertising the
message to its neighbor. The route information is supposed to include the destination
address (represented by an IP prefix), the known path to the destination, and the identifier
of the neighbor to whom the route information will be sent. The sender also attaches a
signature list to the route information, containing all signatures received from the previous
neighbors. A node receiving the route attestation would not trust the routing information
unless all signatures inside are properly checked.

Encoding. Figure 13 presents our encoding of S-BGP in SANDLog. The meaning of tuples
in the program can be found in Figure 14. In rule r1 of Figure 13, when a node N receives an
advertise tuple from its neighbor Nb, it generates a verifyPath tuple, which serves as an entry
point for recursive signature verification. In rule 2, N recursively verifies all signatures in Osl,
which stands for “original signature list”. Sl in verifyPath is a sub-list of Osl, representing
the signatures that have not been checked. When all signatures have been verified — this
is ensured by “f sizepSlq ““ 0” in rule 3 — N accepts the route and stores the path as a
route tuple in the local database. Rule 4 also allows N to generate a route tuple storing the
path to its self-owned IP prefixes (i.e. prefixp@N,Pfxq). Given a specific destination Pfx, in
rule 5, N aggregates all route tuples storing paths to Pfx, and computes a bestPath tuple for
the shortest path. The bestPath is intended to be propagated to downstream ASes. Before
propagation, however, S-BGP requires N to sign the path information. This is captured
in rule 6, where N uses its private key (i.e. privateKeysp@N,PriKq) to generate a signature
based on the selected bestPath tuple. Finally, in rule 7, N embeds the routing information
(i.e. bestPath) along with its signature (i.e. signature) into a new route advertisement (i.e.
advertise), and propagates the message to its neighbors.

Property specification. Route authenticity of S-BGP ensures that no route announcement
can be tampered with by an attacker. In other words, it requires that any route announcement
accepted by a node is authentic. We encode it as ϕauth1 below.

ϕauth1 =@n,m, t, d, p, sl,
Honestpnq ^ advertisepm,n, d, p, slq@pn, tq Ą goodPathpt, d, pq

ϕauth1 is a general topology-independent security property. It asserts that whenever an
honest node n, denoted as Honestpnq, sends out an advertise tuple to its neighbor m, the
property goodPathpt, d, pq holds. Honestpnq means that n runs S-BGP and n’s private key is
not compromised. Formally:

http://netdb.cis.upenn.edu/secure_routing/

A PROGRAM LOGIC FOR VERIFYING SECURE ROUTING PROTOCOLS 19

r1 verifyPath(@N,Nb,Pfx,Pvf,

Sl,OrigP,Osl) :-

advertise(@N,Nb,Pfx,RcvP,Sl),

link(@N,Nb),

Pvf := f_prepend(N,RcvP),

OrigP := Pvf,

Osl := Sl,

f_member(RcvP,N) == 0,

Nb == f_first(RcvP).

r2 verifyPath(@N,Nb,Pfx,PTemp,

Sl1,OrigP,Osl) :-

verifyPath(@N,Nb,Pfx,Pvf,

Sl,OrigP,Osl),

publicKeys(@N,Nd,PubK),

f_size(Sl) > 0,

f_size(Pvf) > 1,

PTemp := f_removeFirst(Pvf),

Nd := f_first(PTemp),

SigM := f_first(Sl),

MsgV := f_prepend(Pfx,Pvf),

f_verify(MsgV,SigM,PubK) == 1,

Sl1 := f_removeFirst(Sl).

r3 route(@N,Pfx,C,OrigP,Osl) :-

verifyP(@N,Nd,Pfx,Pvf,

Sl,OrigP,Osl),

f_size(Sl) == 0,

f_size(Pvf) == 1,

C:= f_size(OrigP) - 1.

r4 route(@N,Pfx,C,P,Sl) :-

prefixs(@N,Pfx),

List := f_empty(),

C := 0,

P := f_prepend(N,List),

Sl := f_empty().

r5 bestRoute(@N,Pfx,a_MIN<C>,P,Sl) :-

route(@N,Pfx,C,P,Sl).

r6 signature(@N,Msg,Sig) :-

bestRoute(@N,Pfx,C,BestP,Sl),

privateKeys(@N,PriK),

link(@N,Nb),

Pts := f_prepend(Nb,BestP),

Msg := f_prepend(Pfx,Pts),

Sig := f_sign(Msg,PriK).

r7 advertise(@Nb,N,Pfx,BestP,NewSl) :-

bestRoute(@N,Pfx,C,BestP,Sl),

link(@N,Nb),

Pts := f_prepend(Nb,BestP),

Msg == f_prepend(Pfx,Pts),

signature(@N,Msg,Sig),

NewSl := f_prepend(Sig,Sl).

Figure 13: S-BGP encoding

Honestpnq fi honestpn, progsbgppnq,´8q.

20 C. CHEN, L. JIA, H. XU, C. LUO, W. ZHOU, AND B. T. LOO

linkp@n, n1q there is a link between n and n1.
routep@n, d, c, p, slq p is a path to d with cost c.

sl is the signature list associated with p.
prefixp@n, dq n owns prefix (IP addresses) d.
bestRoutep@n, d, c, p, slq p is the best path to d with cost c.

sl is the signature list associated with p.
verifyPathp@n, n1, d, p, sl, a path p to a destination d is verified against signature list sl.
pOrig, sOrigq p is a sub-path of pOrig, and s is a sub-list of sOrig.

signaturep@n,m, sq n creates a signature s of message m with private key.
advertisep@n1, n, d, p, slq n advertises path p to neighbor n1 with signature list sl.

Figure 14: Tuples for progsbgp

Honestpnq Ą Dt1, t1 ď t ^ prefixpn, dq@pn, t1q

goodPathpt, d, n :: nilq

Honestpnq Ą Dt1, t1 ď t ^ linkpn, n1q@pn, t1q goodPathpt, d, n :: nilq

goodPathpt, d, n1 :: n :: nilq

Honestpnq Ą Dt1, t1 ď t ^ linkpn, n1q@pn, t1q ^ Dt2, t2 ď t ^ linkpn, n2q@pn, t2q
goodPathpt, d, n :: n2 :: p2q

goodPathpt, d, n1 :: n :: n2 :: p2q

Figure 15: Definitions of goodPath

Here, the starting time is set to be the earliest possible time point. SANDLog’s semantics
allows a node to begin execution at any time after the specified starting time, so using
´8 gives us the most flexibility. goodPathpt, d, pq is recursively defined in Figure 15, which
asserts that all links in the path p towards the destination d exist no later than t. Each link
(m, n) is represented by two tuples: link(@n, m) and link(@m, n). These two tuples reside on
two endpoints respectively.

To be more specific, the definition of goodPathpt, d, pq involves three cases (Figure 15).
The base case is when p contains only one node. We require that d be one of the prefixes
owned by n (i.e., the prefix tuple is derivable). When p has two nodes n1 and n, we require
that the link from n to n1 exist from n’s perspective, assuming that n is honest, but impose
no constraint on n1’s database, because n1 has not received the advertisement. The last case
is when the length of p is larger than two; we check that both links (from n to n1 and from
n to n2) exist from n’s perspective, assuming n is honest. In the last two rules, we also
recursively check that the subpath also satisfies goodPath.

goodPath can serve as a template for a number of useful properties. For example, by
substituting link (n,n2) with announce link (n, n2), we are able to express whether a node is
willing to let its neighbor know of that link. We can also require each subpath be authorized
by the sender.

Axiom of signature. To use the authenticity property of signatures in the proof of ϕauth1,
we include the following axiom Asig in the logical context Γ. This axiom states that if a

A PROGRAM LOGIC FOR VERIFYING SECURE ROUTING PROTOCOLS 21

Rule Head Tuple Invariant
r1,r2 verifyPath (N,Nb,Pfx,Pvf, Dl,Osl “ l``Pvf ^

Sl,OrigP,Osl)@(N,t) pgoodPathpt,Pfx,Pvfq Ą goodPathpt,Pfx,Oslqq
r3,r4 route (N,Pfx,C,OrigP,Osl)@(N,t) goodPath (t,Pfx,OrigP)

r5 bestRoute (N,Pfx,C,P,Sl)@(N,t) goodPath (t,Pfx,OrigP)
r6 signature (N,Msg,Sig)@(N,t) Dp,m,pfx,Msg “ pfx :: nei :: p
r7 advertise (Nb,N,Pfx,BestP,NewSl) goodPath (t,Pfx,Nb::BestP)

Table 1: Tuple invariants in ϕI for S-BGP route authenticity

signature s is verified by the public key of a node n1, and n1 is honest, then n1 must have
generated a signature tuple. Predicate verifypm, s, kq@pn, tq means that node n verifies, using
key k at time t, that s is a valid signature of message m.

Asig = @m, s, k, n, n1, t, verifypm, s, kq@pn, tq ^ publicKeyspn, n1, kq@pn, tq ^
Honestpn1q Ą Dt1, t1 ă t ^ signaturepn1,m, sq@pn1, t1q

Verification. Our goal is to prove that ϕauth1 is an invariant property that holds on all
possible execution traces. However, directly proving ϕauth1 is hard, as it involves verification
over all the traces. Instead, we take the indirect approach of using our program logic to
prove a program invariant, which is stronger than ϕauth1, and, more importantly, whose
validity implies the validity of ϕauth1. To be concrete, we show that progsbgp has the following
invariant property ϕI :

(a) ¨; ¨ $ progsbgppiq : ti, yb, yeu.ϕIpi, yb, yeq

where ϕI is defined as:

ϕIpi, yb, yeq “
Ź

pPhdOfpprogsbgpq
@t ~x, yb ď t ă ye ^ pp~xq@pi, tq Ą ϕppi, t, ~xq

Every ϕp in ϕI denotes the invariant property associated with each head tuple in progsbgp,
and needs to be specified by the user. Table 1 gives the invariants associated with all head
tuples in the program. Especially, the invariant associated with the advertise tuple (goodPath)
is the same as the conclusion of ϕauth1.

We prove (a) using the inv rule in Section 3, by showing that all the premises hold.
The inv rule has two types of premises: (1) Premises that ensure each rule of the program
maintains the invariant of its rule head; and (2) Premises that ensure all invariants for head
tuples are closed under trace extension. Premises of the second type are guaranteed through
manual inspection of all the invariants, thus omitted in the formal proof. As for premises of
the first type, since progsbgp has seven rules, this corresponds to seven premises to be proved.
For example, the premise corresponding to rule 2 is represented by (a0), shown below.

22 C. CHEN, L. JIA, H. XU, C. LUO, W. ZHOU, AND B. T. LOO

(a0) ¨; ¨ $ @N,@Nb,@Pfx,@Pvf,@Sl,@Sl1,@OrigP,@Osl,@t,@Nd,
@PubK,@m,@p,@SigM,@MsgV,@PTemp,@Osl,
verifyPathpN,Nb,Pfx,Pvf,SL,OrigP,Oslq@pN,tq ^
Dl,Osl “ l``Sl ^
pgoodPathpt,Pfx,Pvfq Ą goodPathpt,Pfx,Oslqq ^
publicKeyspN,Nd,PubKq@pN,tq ^
lengthpSlq ą 0 ^
lengthpPvfq ą 0 ^
Pvf “ m :: Nd :: p ^
PTemp “ Nd :: p ^
Sl “ SigM :: Sl1 ^
MsgV “ Pfx :: Pvf ^
verifypMsgV,SigM,PubKq@pN,tq Ą
pDl,Osl “ l``Sl1 ^
pgoodPathpt,Pfx,PTempq Ą goodPathpt,Pfx,Oslqqq

Here, pDl,Osl “ l``Sl1 ^ pgoodPathpt,Pfx,PTempq Ą goodPathpt,Pfx,Oslqqq is the invariant
of rule 2’s head tuple verifyPath (Figure 1). Other rule-related premises are constructed in a
similar way. We prove all the premises in Coq, thus proving (a).

After (a) is proved, by applying the Honest rule, we can deduce ϕ “ @n t,Honestpnq Ą
ϕIpn, t,´8q. ϕI can then be injected into the assumptions (Γ) by VCGen (as do ϕI1)
and is safe to be used as theorem in proving other properties. Finally, ϕauth1 is proved by
discharging ϕ Ą ϕauth1 in Coq with standard elimination rules.

Proof details. Among the others, the premise corresponding to rule 2 in the program
turns out to be the most challenging one, as it involves recursion and signature verification.
Recursion in rule 2 makes it hard to find the proper invariant specification for the head
tuple verifyPath, as the invariant needs to maintain correctness for both the head tuple and
the body tuple, which have different arguments.

In our specification, we specify the invariant in a way that reversely verify the signature
list by checking the signature for the longest path first. More concretely, we use an implication,
stating that if the path to be verified satisfies the invariant goodPath, then the entire path
satisfies the invariant goodPath (Table 1).

Another challenge in proving the invariant for verifyPath is to reason about the existence
of link tuples at the previous nodes. We solve the problem in two steps: (1) we prove a
stronger auxiliary program invariant (a1), which asserts the existence of the local link tuple
when a node signs the path information. (2) we then use the axiom Asig to allow a node
who verifies a signature to assure the existence of the link tuple at the remote node who
signs the signature.

More concretely, (a1) is defined as:

(a1) ¨; ¨ $ progsbgppiq : ti, yb, yeu.ϕI1

In (a1), all head tuples p other than signature and advertise takes on the same invariant
ϕlink1pp, n, d, tq:

ϕlink1pp, n, d, tq “ Dp
1,

p “ n :: p1 ^ pp1 “ nil Ą prefixpn, dq@pn, tqq ^
@p2,m1, p1 “ m1 :: p2 Ą linkpn,m1q@pn, tq

A PROGRAM LOGIC FOR VERIFYING SECURE ROUTING PROTOCOLS 23

It states that node n is the first element in path p, and the link tuple from n to its neighbor
in p exists in n’s database.

For signature and advertise, we introduce another property:

ϕlink2pp, n, d, n
1, tq= linkpn, n1q@pn, tq ^

Dp1, p “ n :: p1 ^ pp1 “ nil Ą prefixpn, dq@pn, tqq ^
@p2,m1, p1 “ m1 :: p2 Ą linkpn,m1q@pn, tq

ϕlink2pp, n, d, n
1, tq extends ϕlink1pp, n, d, tq by including the receiving node n1 as an argument,

asserting that the link between n and n1 also exists. And the invariants of signature and
advertise are:

ϕsignaturepi, t, n,m, sq “ Dn
1, d,m “ d :: n1 :: p ^ ϕlink2pp, n, d, n

1, tq
ϕadvertisepi, t, n

1, n, d, p, slq “ ϕlink2pp, n, d, n
1, tq

We prove (a1) using the Inv rule.
Then, by applying Honest rule to (a1) and only keeping the clause in ϕI2 related to

signature, we derive the following:

(a2) ¨; ¨ $ @n,@t,@m,
Honestpnq ^ signaturepn,m, sq@pn, tq Ą
Dn1, d, pm “ d :: n1 :: p ^ ϕlink2pp, n, d, n

1, tq

(a2) connects an honest node’s signature to the existence of related link tuples at a previous
node in the path p.

Next, we use (a2) along with Asig to prove (a0). Applying Asig to tuples publicKeys and
verify in (a0), we can get:

(a3) ¨; ¨ $ @Nd,@MsgV,@SigM,@t,
HonestpNdq Ą Dt’, t’ ă t ^ signaturepNd, MsgV,SigMq@pNd,t’q

We further apply (a2) to (a3) to obtain:

(a4) ¨; ¨ $ @Nd,@t,@MsgV,
Dn1, d, p,Nd “ d :: n1 :: p ^ ϕlink2pp,Nd, d, n1, tq

Combining (a4) and the assumptions in (a0), we are able to prove the conclusion of (a0).
Other premises can be proved similarly. For non-recursive rules, the premises for them are
straightforward. The detailed proof can be found online.

Discussion. ϕauth1 is a general template for proving different kinds of route authenticity.
For example, S-BGP satisfies a stronger property that guarantees authentication of each
subpath in a given path p. The property, called goodPath2pt, d, pq, is defined in Figure 16.
The meaning of the variables remains the same as before.

Compared with goodPath, the last two rules of goodPath2 additionally assert the existence
of a route tuple. The predicate routepn, d, c, n :: p1, slq@pn, t1q states that node n generates a
route tuple for path n :: p1 at time t1, and that sl is the signature list that authenticates
the path n :: p1. This property ensures that an attacker cannot use n’s route advertisement
for another path p1, which happens to share the two direct links of n. More specifically,
given p “ n1 :: n :: n2 :: p1 and p1 “ n1 :: n :: n2 :: p2, with p1 ‰ p2 , an attacker could not

24 C. CHEN, L. JIA, H. XU, C. LUO, W. ZHOU, AND B. T. LOO

Honestpnq Ą Dt1, t1 ď t ^ prefixpn, dq@pn, t1q

goodPath2pt, d, n :: nilq

Honestpnq Ą Dt1, c, s, t1 ď t ^ linkpn, n1q@pn, t1q ^ routepn, d, c, n :: nil , slq@pn, t1q
goodPath2pt, d, n :: nilq

goodPath2pt, d, n1 :: n :: nilq

Honestpnq Ą Dt1, t1 ď t ^ linkpn, n1q@pn, t1q ^
Dt2, c, s, t2 ď t ^ linkpn, n2q@pn, t2q ^ routepn, d, c, n :: n2 :: p2, slq@pn, t1q

goodPath2pt, d, n :: n2 :: p2q

goodPath2pt, d, n1 :: n :: n2 :: p2q

Figure 16: Definitions of goodPath2

replace p with p1 without being detected. However, a protocol that only requires a node n
to sign the links to its direct neighbors would be vulnerable to such attack.

5.2. SCION. SCION [33] is a clean-slate design of Internet routing architecture that
offers more flexible route selection and failure isolation along with route authenticity. Our
case study focuses on the routing mechanism proposed by SCION. We only provide high-
level explanation of SCION. Detailed encoding can be found under the following link
(http://netdb.cis.upenn.edu/secure_routing/).

In SCION, Autonomous Domains (AD) — a concept similar to Autonomous Systems
(AS) in BGP — are grouped into different Trust Domains (TD). Inside each Trust Domain,
top-tier ISP’s are selected as the TD core, which provide routing service inside and across
the border of TD. Figure 17 presents an example deployment of SCION with two TD’s.
Each AD can communicate with its neighbors. The direction of direct edges represents
provider-customer relationship in routing; the arrow goes from a provider to its customer.

1

5

4

2

3 7

6
1
0

7

8

TD 1 TD 2

Core Core

Figure 17: An example deployment of SCION

To initiate the routing process, a TD core periodically generates a path construction
announcement, called a beacon, to all its customer ADs. Each non-core AD, upon receiving

http://netdb.cis.upenn.edu/secure_routing/

A PROGRAM LOGIC FOR VERIFYING SECURE ROUTING PROTOCOLS 25

a beacon, (1) verifies the information inside the beacon, (2) attaches itself to the path inside
the received beacon to construct a new beacon, and (3) forwards the new beacon to its
customer ADs. Each beacon represents a path towards the TD core (e.g. path “1-2-3” in
Figure 17). After receiving k beacons , an downstream AD selects m paths out of k and
uploads them to the TD core, thus finishing path construction (k and m can be set by the
administrator). When later an AD n intends to send a packet to another AD n1, it first
queries the TD core for the paths that n1 has uploaded, and then constructs a forwarding
path combining its own path to the TD core with the query result. For example, in Figure 17,
when node 4 wants to communicate with node 3, it would query from the TD core for path
“1-2-3”, and combine it with its own path to the TD core (i.e. “4-5”), to get the desired path
“4-5-1-2-3”.

In Table 2, we summarize the SANDLog encoding of the path construction phase in
SCION. Definitions of important tuples can be found in Figure 18. The path construction
beacon plays an important role in SCION routing mechanism. A beacon is composed of four
fields: an interface field, a time field, an opaque field and a signature. The interface field in
SCION is identical to the announced path in S-BGP. An interface field contains a list of
AD identifiers representing the routing path. As its name suggests, the interface field also
includes each AD’s interfaces to direct neighbors in the path — SCION calls the interface
to an AD’s provider as ingress and the one to a customer as egress. Each AD attaches his
own identifier along with its ingress and egress to the end of the received interface field,
generating the new interface field. For example, in Figure 17, assume the ingress interface of
AD 2 against AD1 is “a”, and the egress interface of AD 2 against AD 4 is “b”. Given an
interface field {c::1} from AD 1 — c represents the egress interface of AD 1 against AD 2 —
the newly generated interface field at AD 2 targeting AD 4 will be {c::1::a::b::2}.

The time field is a list of time stamps which record the arrival time of the beacon at
each AD. The opaque field adds a message authentication code (MAC) on each AD’s ingress
and egress fields using the AD’s private key, for the purpose of path authentication during
data forwarding. The final part is called the signature list. Each AD constructs a signature
by signing the above threes fields (i.e. the interface field, the opaque field and the time field)
along with the signature received from preceding ADs. The newly generated signature is
appended to the end of the signature list.

SCION also satisfies similar route authenticity properties as S-BGP. Each path in SCION
is composed of two parts: a path from the sender to the TD core (called “up path”) and a
path from the TD core to the receiver (called “down path”). We only prove the properties
for the up paths. The proof for down paths can be obtained similarly by switching the role of
provider and customer. Tuples provider and customer in SCION can be seen as counterparts
of the link tuple in S-BGP, and tuple beaconIni and tuple beaconFwd correspond to tuple
advertise. The definition of route authenticity in SCION, denoted ϕauthS, is defined as:

ϕauthS = @n,m, t, td , itf , tl , ol , sl , sg ,
honestpnq ^
pbeaconInip@m,n, td , itf , tl , ol , sl , sgq@pn, tq _
beaconFwdp@m,n, td , itf , tl , ol , sl , sgq@pn, tqq
Ą goodInfopt , td ,n, sl , itf q

Formula ϕauthS asserts a property goodInfopt, td , n, sl , itf q on any beacon tuple generated by
node n, which is either a TD core or an ordinary AD.

26 C. CHEN, L. JIA, H. XU, C. LUO, W. ZHOU, AND B. T. LOO

Rule Summary Head Tuple
b1: TD core generates a signature. signaturep@core, info, sig , timeq
b2: TD core signs beacon global information. signaturep@core, info, sig , timeq
b3: TD core initiates an opaque field. macp@core, info, hashq
b4: TD core initiates global info of beacon. beaconPrepp@core, glb, sigG , timeq
b5: TD core sends a new beacon to neighbor. beaconInip@nei , core, td , itf ,

tl , ol , sl , sigGq
b6: AD receives a beacon from TD core. beaconRevp@ad , td , td , itf ,

tl, ol , ing , sigGq
b7: AD receives a beacon from non-core AD. beaconRevp@ad , td , ing , itf ,

tl, ol , sl , sigGq
b8: AD verifies global information. beaconToVerip@ad , td , itf , l , ol ,

sl , sigG , itfv , posq
b9: AD recursively verifies signatures. beaconToVerip@ad , td , itf , tl , ol ,

sl , sigG , itfv , posq
b10: AD validates a beacon. verifiedBeaconp@ad , td , ing , itf ,

tl , ol , sl , sigGq
b11: AD creates signature for new beacon. signaturep@ad , info, sig , timeq
b12: AD initiates opaque field for new beacon. macp@ad , info, hashq
b13: AD sends the new beacon to neighbor. beaconFwdp@nei , ad , td , itf ,

tl , ol , sl , sigGq

pc1: AD extracts path information. upPathp@ad , td , itf , ol , tlq
pc2: AD initiates path upload. pathUploadp@nei , ad , src, core,

itf , ol , op, posq
pc3: AD sends path to upstream neighbor. pathUploadp@nei , ad , src, core,

itf , ol , op, posq
pc4: TD core stores received path. downPathp@core, src, itf , opq

Table 2: SANDLog encoding of path construction in SCION

The definition of goodInfo is shown in Figure 19. Predicate goodInfopt, td , n, sl , itf q takes
five arguments: t represents the time, td is the identity of the TD that the path lies in, n is
the node that verifies the beacon containing the interface field itf , and sl is the signature
list associated with the path. goodInfopt, td ,n, sl , itf q makes sure that each AD present in
the interface field itf does have the specified links to its provider and customer respectively.
Also, for each non-core AD, there always exists a verified beacon corresponding to the path
from the TD core to it.

More concretely, the definition of goodInfo considers three cases. The base case is when
a TD core c initializes an interface field c :: ceg :: n :: nig :: nil and sends it to AD n.
We require that c be a TD core and n be its customer. The next two cases are similar,
they both require the current AD n have a link to its preceding neighbor, represented by
provider, as well as one to its downstream neighbor, represented by customer. In addition, a
verifiedBeacon tuple should exist, representing an authenticated route stored in the database,
with all inside signatures properly verified. The difference between these two cases is caused
by two possible types of an AD’s provider: TD core and non-TD core.

The proof strategy is exactly the same as that used in proof of goodPath about S-BGP.
To prove ϕauthS, we first prove progscion has a stronger program invariant ϕI :

A PROGRAM LOGIC FOR VERIFYING SECURE ROUTING PROTOCOLS 27

coreTDp@n, c, td , ctf q c is the core of TD td with certificate ctf attesting to that fact
providerp@n,m, igq m is n’s provider, with traffic into n through interface ig
customerp@n,m, egq m is n’s customer, with traffic out of n through interface eg
beaconInip@m,n, td , itf , containing a path, is initialized by n and sent to m.

itf , tl , ol , sl , sgq tl is a list of time stamps,
ol is a list of opaque fields, whose meaning is not relevant here.
sl is list of signatures for route attestation.
sg is a signature for certain global information,
which is not relevant here.

verifiedBeaconp@n, td, itf is the stored interface fields from n to the TD core in td.
itf, tl, ol, sl, sgq Rest of the fields have the same meaning as those in beaconIni

beaconFwdp@m,n, td , itf is forwarded to m with corresponding signature list sl
itf , tl , ol , sl , sgq. Rest of the fields have the same meaning as those

in beaconIni
upPathp@n, td , itf , opqU is a list of opaque fields indicating a path.

opqU , tlq Rest of the fields have the same meaning as those in beaconIni.
pathUploadp@m,n, src is the node (AD) who initiated the path upload process.

src, c, itf , opqD , c is TD core of an implicit TD.
opqU , ptq opqD is the opaque fields uploaded.

pt indicates the next opaque field in opqU to be checked.
itf and opqU have the same meaning as those in upPath.

Figure 18: Tuples for SCION

coreTDpad , c, td, ctf q@pad , tq Honestpcq Ą Dt1, t1 ď t ^ customerpc, n, cegq@pc, t1q

goodInfopt, td , ad ,nil , c :: ceg :: n :: nilq

coreTDpad , c, td, ctf q@pad , tq
Honestpnq Ą Dt1, t1 ď t ^ providerpn, c,nigq@pn, t1q ^ customerpn,m,negq@pn, t1q
^ Dtd1, tl, ol, sg, s, verifiedBeaconpn, td1, c :: ceg :: n :: nig :: nil, tl, ol, s :: nilq@pn, t1q

goodInfopt, td, ad ,nil , pc :: ceg :: n :: nilqq

goodInfopt, td , ad , s :: nil , c :: ceg :: n :: nig :: neg :: m :: nilq

Honestpnq Ą Dt1, t1 ď t ^ providerpn, h,nigq@pn, t1q ^ customerpn,m,megq@pn, t1q
^ Dtd1, tl, ol, sg, s, sl, verifiedBeaconpn, td1, p1``h :: hig :: heg :: n :: nig ,

tl, ol, s :: slq@pn, t1q. goodInfopt, td, ad , sl , p1 ``h :: hig :: heg :: n :: nilq

goodInfopt, td , n, s :: sl , p1``h :: hig :: heg :: n :: nig :: neg :: m :: nilq

Figure 19: Definitions of goodInfo

(b) ¨; ¨ $ progscipnq : ti, yb, yeu.ϕIpi, yb, yeq

where ϕIpi, yb, yeq is defined as:

ϕIpi, yb, yeq “
Ź

pPhdOfpsciq @t,@~x, yb ď t ă ye ^ pp~xq@pi, tq Ą ϕppi, t, ~xq.

Especially, ϕp for beaconIni and beaconFwd are as follows:

28 C. CHEN, L. JIA, H. XU, C. LUO, W. ZHOU, AND B. T. LOO

ϕbeaconInipi, t,m, n, td , itf , tl , ol , sl , sgq “ goodInfopt, td , n, sl , itf q
ϕbeaconFwdpi, t,m, n, td , itf , tl , ol , sl , sgq “ goodInfopt, td , n, sl , itf q

As in S-BGP, (b) can be proved using Inv rule, whose premises are verified in Coq. After
(b) is proved, we can deduce ϕ1 “ @n, t1,Honestpnq Ą ϕIpn, t

1,´8q by applying Honest rule
to (b). Finally, ϕauthS is proved by showing that ϕ1 Ą ϕauthS, which is straightforward.

At the end of the path construction phase, an AD needs to upload its selected paths
to the TD core for future queries (i.e. rules pc1´ pc4 in Table 2). The uploading process
uses the forwarding mechanism in SCION, which provides hop-by-hop authentication. An
AD who wants to send traffic to another AD attaches each data packet with the opaque
field extracted from a beacon received during the path construction phase. The opaque field
contains MACs of the ingress and egress of all ADs on the intended path. When the data
packet is sent along the path, each AD en-route re-computes the MAC of intended ingress
and egress using its own private key. This MAC is compared with the one contained in the
opaque field. If they are the same, the AD knows that it has agreed to receiving/sending
packets from/to its neighbors during path construction phase and forwards the packet further
along the path. Otherwise, it drops the data packet.

The formal definition of data path authenticity in SCION is defined as:

ϕauthD = @m,n, t, src, core, itf , opqD , opqU , pt ,
honestpnq ^
pathUploadp@m,n, src, core, itf , opqD , opqU , ptq@pn, tq Ą
goodFwdPathpt ,n, opqU , ptq

Formula ϕauthD asserts property goodFwdPathpt ,n, opqU , ptq on any tuple pathUpload sent
by a customer AD to its provider. There are four arguments in goodFwdPathpt , n, opqU , ptq:
t is the time. n is the node who sent out pathUpload tuple. opqU is a list of opaque
fields for forwarding. pt is a pointer to opqU , indicating the next opaque field to be
checked. Except time t , all arguments in goodFwdPathpt , n, opqU , ptq are the same as those
in pathUpload, whose arguments are described in Figure 18. goodFwdPathpt ,n, opqU , ptq
states that whenever an AD receives a packet, it has direct links to its provider and customer
as indicated by the opaque field in the packet. In addition, it must have verified a beacon
with a path containing this neighboring relationship.

The definition of goodFwdPathpt ,n, opqU , ptq is given in Figure 20. There are four
cases. The base case is when pt is 0, which means nothing has been verified. In this case
goodFwdPath holds trivially. If pt is equal to the length of opaque field list, meaning all
opaque fields have been verified already, then based on SCION specification, the last opaque
field should be that of the TD core. Being a TD core requires a certificate (coreTD), and a
neighbor customer along the path (customer). When pt does not point to the head or the
tail of the opaque field list, node n should have a neighbor provider(provider), and a neighbor
customer(customer). It must also have received and processed a verifiedBeacon during path
construction. The second and third cases both cover this scenario. The second case applies
when a node n’s provider is TD core, while in the third case, n’s provider and customer are
both ordinary TDs.

SCION uses MAC for integrity check during data forwarding, so we use the following
axiom about MAC. It states that if a node n verifies a MAC, using n 1’s key k , there must
have been a node n2 who created the MAC at an earlier time t 1.

A PROGRAM LOGIC FOR VERIFYING SECURE ROUTING PROTOCOLS 29

pt “ 0

goodFwdPathpt ,n, opqU , ptq

Honestpnq Ą Dt1,m, td, ctf, t1 ď t
^ coreTDpn, n, td, ctf q@pn, t1q
^ customerpn,m, cegq@pn, t1q

goodFwdPathpt ,n, opq1``rceg :: mac :: nils :: nil ,
lengthpopq1``rceg :: mac :: nils :: nilqq

0 ă pt ^ pt ă lengthpopq1``rnig :: neg :: mac1 :: nils :: rceg :: mac :: nils :: nil ^
Honestpnq Ą Dt1, h,m, t1 ď t
^ providerpn, h,nigq@pn, t1q
^ customerpn,m,megq@pn, t1q
^ Dtd1, tl, sg, sl, verifiedBeaconpn, td1, h :: ceg :: n :: nig ,

tl, rceg :: mac :: nils :: nil, sl , sgq@pn, t1q

goodFwdPathpt ,n, opq1``rnig :: neg :: mac1 :: nils :: rceg :: mac :: nils :: nil , ptq

0 ă pt ^
pt ă lengthpopq1``rnig :: neg :: mac1 :: nils :: rhig :: heg :: mac :: nils``opq2q ^
Honestpnq Ą Dt1, h,m, t1 ď t
^ providerpn, h,nigq@pn, t1q
^ customerpn,m,megq@pn, t1q
^ Dtd1, tl, sg, sl, p1, p2, verifiedBeaconpn, td1, p1``h :: hig :: heg :: n :: nig ,

tl, p2``rhig :: heg :: mac :: nils :: nil, sl , sgq@pn, t1q

goodFwdPathpt ,n, opq1``rnig :: neg :: mac1 :: nils :: rhig :: heg :: mac :: nils``opq2, ptq

Figure 20: Definitions of goodFwdPath

Amac = @msg,m, k, n, n1, t,
verifyMacpmsg,m, kq@pn, tq ^ privateKeyspn, n1, kq@pn, tq ^
Dn2,Honestpn2q Ą Dt1, t1 ă t ^ privateKeyspn2, n1, kq@pn2, tq ^
macpn2,msg,mq@pn2, t1q

In SCION, each node should not share its own private key with other nodes. This means,
for each specific MAC, only the node who generated it can verify its validity. This fact
simplifies the axiom:

A1mac = @msg,m, k, n, t,
verifyMacpmsg,m, kq@pn, tq ^ privateKeyspn, kq@pn, tq ^
Honestpnq Ą Dt1, t1 ă t ^ macpn,msg,mq@pn, t1q

The rest of the proof follows the same strategy as that of goodPath and goodInfo. Interested
readers can refer to our proof online for details.

5.3. Comparison between S-BGP and SCION. In this section, we compare the differ-
ence between the security guarantees provided by S-BGP and SCION. In terms of practical
route authenticity, there is little difference between what S-BGP and SCION can offer.
This is not surprising, as the kind of information that S-BGP and SCION sign at path
construction phase is very similar.

30 C. CHEN, L. JIA, H. XU, C. LUO, W. ZHOU, AND B. T. LOO

Though both use layered-signature to protect the routing information, signatures in
S-BGP are not technically layered—ASes in S-BGP only sign the path information, not
including previous signatures. On the other hand, ADs in SCION sign the previous signature
so signatures in SCION are nested.

Consider an AS n in S-BGP that signed the path p twice, generating two signatures:
s and s1. An attacker, upon receiving a sequence of signatures containing s, can replace s
with s1 without being detected. This attack is not possible in SCION, as attackers cannot
extract signatures from a nested signature.

SCION also provides stronger security guarantees than S-BGP in data forwarding.
Though S-BGP does not explicitly state the process of data forwarding, we can still compare
its IP-based forwarding to SCION’s forwarding mechanism. Like BGP, an AS running
S-BGP maintains a routing table on all BGP speaker routers that connect to peers in other
domains. The routing table is an ordered collection of forwarding entries, each represented
as a pair of xIP prefix, next hopy. Upon receiving a packet, the speaker searches its routing
table for IP prefix that matches the destination IP address in the IP header of the packet,
and forwards the packet on the port corresponding to the next hop based on table look-up.
This next hop must have been authenticated, because only after an S-BGP update message
has been properly verified will the AS insert the next hop into the forwarding table.

However, SCION provides stronger security guarantee over S-BGP in terms of the last
hop of the packet. An AS n running S-BGP has no way of detecting whether a received
packet is from legitimate neighbor ASes who are authorized to forward packets to n. Imagine
that n has two neighbor ASes, m and m 1. n knows a route to an IP prefix p and is only
willing to advertise the route to m. Ideally, any packet from m 1 through n to p should
be rejected by n. However, this may not happen in practice for AS’s who run S-BGP for
routing. As long as its IP destination is p, a packet will be forwarded by n, regardless of
whether it is from m or m 1. On the other hand, SCION routers are able to discard such
packets by verifying the MAC in the opaque field, since m cannot forge the MAC information
embedded in the beacon.

5.4. Empirical evaluation. We use RapidNet [27] to generate low-level implementation of
S-BGP and SCION from SANDLog encoding. We validate the low-level implementation in
the ns-3 simulator [1]. Our experiments are performed on a synthetically generated topology
consisting of 40 nodes, where each node runs the generated implementation of the SANDLog
program. The observed execution traces and communication patterns match the expected
protocol behavior.

6. Related Work

Cryptographic Protocol Analysis. The analysis of cryptographic protocols [12, 29, 17,
26, 14, 6, 4, 15] has been an active area of research. Compared with cryptographic protocols,
secure routing protocols have to deal with arbitrary network topologies and the programs of
the protocols are more complicated: they may access local storage and commonly include
recursive computations. Most model-checking techniques are ineffective in the presence of
those complications.
Verification of Trace Properties. A closely related body of work is logic for verifying
trace properties of programs (protocols) that run concurrently with adversaries [12, 15].
We are inspired by their program logic that requires the asserted properties of a program

A PROGRAM LOGIC FOR VERIFYING SECURE ROUTING PROTOCOLS 31

to hold even when that program runs concurrently with adversarial programs. One of
our contributions is a general program logic for a declarative language SANDLog, which
differs significantly from an ordinary imperative language. The program logic and semantics
developed here apply to other declarative languages that use bottom-up evaluation strategy.
Networking Protocol Verification. Recently, several papers have investigated the
verification of route authenticity properties on specific wireless routing protocols for mobile
networks [2, 3, 11]. They have showed that identifying attacks on route authenticity can be
reduced to constraint solving, and that the security analysis of a specific route authenticity
property that depends on the topologies of network instances can be reduced to checking
these properties on several four-node topologies. In our own prior work [8], we have verified
route authenticity properties on variants of S-BGP using a combination of manual proofs
and an automated tool, Proverif [7]. The modeling and analysis in these works are specific
to the protocols and the route authenticity properties. Some of the properties that we verify
in our case study are similar. However, we propose a general framework for leveraging
a declarative programming language for verification and empirical evaluation of routing
protocols. The program logic proposed here can be used to verify generic safety properties
of SANDLog programs.

There has been a large body of work on verifying the correctness of various network
protocol design and implementations using proof-based and model-checking techniques [5,
16, 13]. The program logic presented here is customized to proving safety properties of
SANDLog programs, and may not be expressive enough to verify complex correctness
properties. However, the operational semantics for SANDLog can be used as the semantic
model for verifying protocols encoded in SANDLog using other techniques.

7. Conclusion and Future Work

We have designed a program logic for verifying secure routing protocols specified in the
declarative language SANDLog. We have integrated verification into a unified framework
for formal analysis and empirical evaluation of secure routing protocols. As future work, we
plan to expand our use cases, for example, to investigate mechanisms for securing the data
(packet forwarding) plane [23]. In addition, as an alternative to Coq, we are also exploring
the use of automated first-order logic theorem provers to automate our proofs.

References

[1] ns 3 project: Network Simulator 3, http://www.nsnam.org/
[2] Arnaud, M., Cortier, V., Delaune, S.: Modeling and verifying ad hoc routing protocols. In: Proceedings

of CSF (2010)
[3] Arnaud, M., Cortier, V., Delaune, S.: Deciding security for protocols with recursive tests. In: Proceedings

of CADE (2011)
[4] Bau, J., Mitchell, J.: A security evaluation of DNSSEC with NSEC3. In: Proceedings of NDSS (2010)
[5] Bhargavan, K., Obradovic, D., Gunter, C.A.: Formal verification of standards for distance vector routing

protocols. J. ACM 49(4) (2002)
[6] Blanchet, B.: Automatic verification of correspondences for security protocols. J. Comput. Secur. 17(4)

(Dec 2009)
[7] Blanchet, B., Smyth, B.: Proverif 1.86: Automatic cryptographic protocol verifier, user manual and

tutorial, http://www.proverif.ens.fr/manual.pdf
[8] Chen, C., Jia, L., Loo, B.T., Zhou, W.: Reduction-based security analysis of internet routing protocols.

In: WRiPE (2012)

http://www.nsnam.org/
http://www.proverif.ens.fr/manual.pdf

32 C. CHEN, L. JIA, H. XU, C. LUO, W. ZHOU, AND B. T. LOO

[9] Chen, C., Jia, L., Xu, H., Luo, C., Zhou, W., Loo, B.T.: A program logic for verifying secure routing
protocols (Jun 2014)

[10] CNET: How pakistan knocked youtube offline, http://news.cnet.com/8301-10784_3-9878655-7.html
[11] Cortier, V., Degrieck, J., Delaune, S.: Analysing routing protocols: four nodes topologies are sufficient.

In: Proceedings of POST (2012)
[12] Datta, A., Derek, A., Mitchell, J.C., Roy, A.: Protocol Composition Logic (PCL). Electronic Notes in

Theoretical Computer Science 172, 311–358 (2007)
[13] Engler, D., Musuvathi, M.: Model-checking large network protocol implementations. In: Proceedings of

NSDI (2004)
[14] Escobar, S., Meadows, C., Meseguer, J.: A rewriting-based inference system for the NRL protocol

analyzer: grammar generation. In: Proceedings of FMSE (2005)
[15] Garg, D., Franklin, J., Kaynar, D., Datta, A.: Compositional system security with interface-confined

adversaries. ENTCS 265, 49–71 (September 2010)
[16] Goodloe, A., Gunter, C.A., Stehr, M.O.: Formal prototyping in early stages of protocol design. In:

Proceedings of ACM WITS (2005)
[17] He, C., Sundararajan, M., Datta, A., Derek, A., Mitchell, J.C.: A modular correctness proof of IEEE

802.11i and TLS. In: Proceedings of CCS (2005)
[18] Kamp, H.W.: Tense Logic and the Theory of Linear Order. Phd thesis, Computer Science Department,

University of California at Los Angeles, USA (1968)
[19] Kent, S., Lynn, C., Mikkelson, J., Seo, K.: Secure border gateway protocol (S-BGP). IEEE Journal on

Selected Areas in Communications 18, 103–116 (2000)
[20] Loo, B.T., Condie, T., Garofalakis, M., Gay, D.E., Hellerstein, J.M., Maniatis, P., Ramakrishnan, R.,

Roscoe, T., Stoica, I.: Declarative Networking: Language, Execution and Optimization. In: SIGMOD
(2006)

[21] Loo, B.T., Condie, T., Garofalakis, M., Gay, D.E., Hellerstein, J.M., Maniatis, P., Ramakrishnan, R.,
Roscoe, T., Stoica, I.: Declarative networking. In: Communications of the ACM (2009)

[22] Loo, B.T., Hellerstein, J.M., Stoica, I., Ramakrishnan, R.: Declarative Routing: Extensible Routing
with Declarative Queries. In: SIGCOMM (2005)

[23] Naous, J., Walfish, M., Nicolosi, A., Mazieres, D., Miller, M., Seehra, A.: Verifying and enforcing network
paths with ICING. In: Proceedings of CoNEXT (2011)

[24] Nigam, V., Jia, L., Loo, B.T., Scedrov, A.: Maintaining distributed logic programs incrementally. In:
Proceedings of PPDP (2011)

[25] One Hundred Eleventh Congress: 2010 report to congress of the u.s.-china economic and security review
commission (2010), http://www.uscc.gov/annual_report/2010/annual_report_full_10.pdf

[26] Paulson, L.C.: Mechanized proofs for a recursive authentication protocol. In: Proceedings of CSFW
(1997)

[27] RapidNet: A Declarative Toolkit for Rapid Network Simulation and Experimentation: http://netdb.

cis.upenn.edu/rapidnet/

[28] Rivest, R.L., Shamir, A., Adleman, L.M.: A method for obtaining digital signatures and public-key
cryptosystems (reprint). Commun. ACM 26(1), 96–99 (1983), http://doi.acm.org/10.1145/357980.
358017

[29] Roy, A., Datta, A., Derek, A., Mitchell, J.C., Jean-Pierre, S.: Secrecy analysis in protocol composition
logic. In: Proceedings of ESORICS (2007)

[30] Secure BGP: http://www.ir.bbn.com/sbgp/
[31] Wan, T., Kranakis, E., Oorschot, P.C.: Pretty secure BGP (psBGP). In: Proceedings of 12th NDSS

(2005)
[32] White, R.: Securing bgp through secure origin BGP (soBGP). The Internet Protocol Journal 6(3), 15–22

(2003)
[33] Zhang, X., Hsiao, H.C., Hasker, G., Chan, H., Perrig, A., Andersen, D.G.: Scion: Scalability, control,

and isolation on next-generation networks. In: Proceedings of Oakland S&P (2011)

http://news.cnet.com/8301-10784_3-9878655-7.html
http://www.uscc.gov/annual_report/2010/annual_report_full_10.pdf
http://netdb.cis.upenn.edu/rapidnet/
http://netdb.cis.upenn.edu/rapidnet/
http://doi.acm.org/10.1145/357980.358017
http://doi.acm.org/10.1145/357980.358017

A PROGRAM LOGIC FOR VERIFYING SECURE ROUTING PROTOCOLS 33

Appendix A. Proof of Theorem 3.1

By mutual induction on the derivation E . The rules for standard first-order logic inference rules
Σ; Γ $ ϕ are straightforward. We show the case when E ends in the Honest rule.
Case:: The last step of E is Honest.

E =

E1 :: Σ; Γ $ progpiq : ti, yb, yeu.ϕpi, yb, yeq E2 :: Σ; Γ $ honestpι, progpιq, tq

Σ; Γ $ @t1, t1 ą t, ϕpι, t, t1q
Honest

Given σ, T s.t. T (Γσ, by I.H. on E1 and E2
(1) Γσ (pprogqσpiq : ti, yb, yeu.pϕpi, yb, yeqqσ
(2) T (phonestpι, progpιq, tqqσ

By (2),
(3) at time tσ, ισ starts to run program (pprogqσ)

By (1) and (3), given any T s.t. T ą tσ
(4) T (ϕσpισ, tσ, T q

Therefore,
(5) T (p@t1, t1 ą t, ϕpι, t, t1qqσ

Case:: E ends in Inv rule.
Given T , σ such that T (Γσ, and at time τb, node ι’s local state is (ι, [], [], progpιq), given any
time point τe such that τe ě τb,
let ϕ “ p

Ź

pPhdOfpprogq @t,@~x, τb ď t ă τe ^ pp~xq@pι, tq Ą ϕppι, t, ~xqqσ

we need to show T (ϕ
By induction on the length of T

subcase:: |T | “ 0, T has one state and is of the form
τ
ÝÑ C

By assumption (ι, [], [], rprogsι) P C
Because the update list is empty, Eσ1, s.t. T (ppp~xq@pι, tqqσσ1
Therefore, T (ϕ trivially.

subcase:: T “ T 1 τÝÑ C
We examine all possible steps allowed by the operational semantics.
To show the conjunction holds, we show all clauses in the conjunction are true by construct a
generic proof for one clause.
case:: DeQueue is the last step.

Given a substitution σ1 for t and ~x s.t. T (pτb ď t ă τe ^ pp~xq@pι, tqqσσ1
By the definitions of semantics, and DeQueue merely moves messages around
(1) ppp~xqqσσ1 is on trace T 1
(2) T 1 (pτb ď t ă τe ^ pp~xq@pι, tqqσσ1

By I.H. on T 1,
(3) T 1 (p@t,@~x, τb ď t ă τe ^ pp~xq@pι, tq Ą ϕppι, t, ~xqqσ

By (2) and (3)
(4) T 1 (ϕppι, t, ~xqσσ1

By ϕp is closed under trace extension and (4),
T (ϕppι, t, ~xqσσ1

Therefore, T (ϕ by taking the conjunction of all the results for such p’s.
case:: NodeStep is the last step. Similar to the previous case, we examine every tuple p

generated by prog to show T (ϕ. When p was generated on T 1, the proof proceeds in the
same way as the previous case. We focus on the cases where p is generated in the last step.
We need to show that T (p@t,@~x, τb ď t ă τe ^ pp~xq@pι, tq Ą ϕppι, t, ~xqqσ
Assume the newly generated tuple is ppp~xq@pι, τpqqσσ1, where τp ě τ
We need to show that T (pϕppι, τp, ~xqqσσ1
subcase:: Init is used

In this case, only rules with an empty body are fired (r “ hp~vq :́ .).
By expanding the last premise of the Inv rule, and ~v are all ground terms,

34 C. CHEN, L. JIA, H. XU, C. LUO, W. ZHOU, AND B. T. LOO

(1) E1 :: Σ; Γ $ @i,@t, ϕhpi, t, ~vq
By I.H. on E1 (here E1 is a smaller derivation than E , so we can directly invoke 1)
(2) T (p@i,@t, ϕhpi, t, ~vqqσ

By (2)
T (pϕhpι, τp, ~yqqσσ1

subcase:: RuleFire is used.
We show one case where p is not an aggregate and one where p is.

subsubcase:: InsNew is fired
By examine the ∆r rule,
(1) exists σ0 P ρpΨ

ν ,Ψ, r, k, ~sq such that ppp~xq@pι, tqqσσ1 “ ppp~vq@pι, tqqσ0
(2) for tuples (pj) that are derived by node ι, ppjp~sjqqσ0 P Ψν or ppjp~sjqqσ0 P Ψ

By operational semantics, pj must have been generated on T 1
(3)T 1 (ppjp~sjq@pι, τpqqσ0

By I.H. on T 1 and (3), the invariant for pj holds on T 1
(4) T 1 (pϕpj pι, τp, ~sjqqσ0

By ϕp is closed under trace extension
(5) T (ppjp~xjq@pι, τpq ^ ϕpj pι, τp, ~sjqqσ0

For tuples (qj) that are received by node ι, using similar reasoning as above
(6) T (precvpi, tppqj , ~sjqq@τpqσ0

(7) For constraints (aj), T (ajσ0
By I.H. on the last premise in Inv and (5) (6) (7)
(8) T (pϕppi, τp, ~vqqσ0

By (1) and (8), T (pϕppi, τp, ~yqqσσ1
subsubcase:: InsAggNew is fired.

When p is an aggregated predicate, we additionally prove that
every aggregate candidate predicate pagg has the same invariant as p.
That is (1) T (p@t,@~x, τb ď t ă τe ^ paggp~xq@pι, tq Ą ϕppι, t, ~xqqσ
The reasoning is the same as the previous case.

We additionally show that (1) is true on the newly generated paggp~tq.

This work is licensed under the Creative Commons Attribution-NoDerivs License. To view
a copy of this license, visit http://creativecommons.org/licenses/by-nd/2.0/ or send a
letter to Creative Commons, 171 Second St, Suite 300, San Francisco, CA 94105, USA, or
Eisenacher Strasse 2, 10777 Berlin, Germany

	1. Introduction
	2. SANDLog
	2.1. Syntax
	2.2. Operational Semantics

	3. A Program Logic for SANDLog
	4. Verification Condition Generator
	5. Case Studies
	5.1. S-BGP
	5.2. SCION
	5.3. Comparison between S-BGP and SCION
	5.4. Empirical evaluation

	6. Related Work
	7. Conclusion and Future Work
	References
	Appendix A. Proof of Theorem ??

