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Abstract. The International Obfuscated C Code Contest was a programming contest for
the most creatively obfuscated yet succinct C code. By contrast, an interest herein is in
programs which are, in a sense, easily seen to be correct, but which cannot be proved
correct in pre-assigned, computably axiomatized, powerful, true theories T. A point made
by our first theorem, then, is that, then, unverifiable programs need not be obfuscated!

The first theorem and its proof is followed by a motivated, concrete example based on
a remark of Hilary Putnam.

The first theorem has some non-constructivity in its statement and proof, and the second
theorem implies some of the non-constructivity is inherent. That result, then, brings up
the question of whether there is an acceptable programming system (numbering) for which
some non-constructivity of the first theorem disappears. The third theorem shows this is
the case, but for a subtle reason explained in the text. This latter theorem has a number of
corollaries, regarding its acceptable programming system, and providing some surprises and
subtleties about proving its program properties (including universality, and the presence
of the composition control structure). The next two theorems provide acceptable systems
with contrasting surprises regarding proving universality in them. Finally the next and
last theorem (the most difficult to prove in the paper) provides an acceptable system with
some positive and negative surprises regarding verification of its true program properties:
the existence of the control structure composition is provable for it, but anything about
true I/O-program equivalence for syntactically unequal programs is not provable.

Introduction

The International Obfuscated C Code Contest (see the Wikipedia entry) was a programming
contest for the most creatively obfuscated C code, held annually between 1984 and 1996,
and thereafter in 1998, 2000, 2001, 2004, and 2006.

2012 ACM CCS: [Theory of computation]: Models of computation—Computability—Turing
machines—Abstract machines; Computational complexity and cryptography; Logic—Logic and
verification==-Constructive mathematics.
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In many cases, the winning programmer did something simple in such an obscure but
succinct way that it was hard for other (human) programmers to see how his/her code
actually worked.

By contrast, our first interest herein is in programs which are, in a sense, easily seen
to be correct, but which cannot be proved correct in pre-assigned, computably axioma-
tized, powerful, true theories T. A point is that, then, unverifiable programs need not be
obfuscated!

Our first theorem (Theorem 2.1 in Section 2.1 below) entails: for any deterministic,
multi-tape Turing Machine (TM) program p, there will be an easily seen equivalent such
TM program q almost (i.e., within small, linear factors) as fast and succinct as p, but this
equivalence will not be provable in T.

A point of the just mentioned, small, linear factors is that the unprovability is not based
on some huge (or at least non-linear) growth in run-time and/or program size in passing
from p to q. In fact we’ll see in the proof of the first theorem that q will be like p except
that q, in effect, encapsulates p in a top-level if-then-else with: 1. p being the else-part and
2. the succinct, linear-time testable if-condition being easily seen never to come true (but
with this never coming true being unprovable in T).

A motivated, concrete, special case, based on a remark in Putnam [21], will be presented
(also in Section 2.1 below).

As will be seen, the first theorem and its proof have some non-constructivity, and, with
Theorem 2.3 in Section 2.2 below, some of this non-constructivity is seen to be inherent.

Considered next, in Section 2.3, is whether the just mentioned non-constructivity goes
away for some acceptable programmming systems (numberings). The answer (Theorem 2.4)
is affirmative, but for pleasantly subtle reasons spelled out in the section. This latter
theorem has a number of corollaries (Corollaries 2.9, 2.10, and 2.11) regarding its acceptable
programming system, and they provide some surprises and subtleties about proving its
program properties, including in Corollary 2.10, about universality and the presence of the
composition control structure.

Section 2.3 makes up most of the paper. Also within it (in Sections 2.3.1 and 2.3.2) are
presented a number of positive and negative surprises regarding verification of true program
properties.

In Section 2.3.1 Theorems 2.12 and 2.18 provide respective acceptable systems with con-
trasting surprises regarding proving universality in them. Of course any acceptable system
has infinitely many universal programs, but Theorem 2.12 provides an acceptable system
in which exactly one of these universal programs is provably so. By contrast, Theorem 2.18
provides a different acceptable system with no program which is provably universal.

Finally, in Section 2.3.2, the next and last theorem (Theorem 2.21), which is the most
difficult to prove in the paper, also provides an acceptable system with some positive and
negative surprises regarding verification of its true program properties: for this acceptable
system, the existence of the control structure composition is provable for it, but anything
about true I/O-program equivalence for syntactically unequal programs is not provable.

1. Mathematical Preliminaries
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1.1. Complexity-Bounded Computability. Let ϕTM be the efficiently laid out and
Gödel-numbered acceptable programming system (numbering) from [28, Chapter 3 & Er-
rata] and which is based on deterministic multi-tape Turing Machines (with base two I/O).1

Its programs are named by all the numbers in N = {0, 1, 2, . . .}. ϕTM
p is the partial com-

putable function N → N computed by ϕTM-program (number) p. The numerical naming
just mentioned does not feature prime powers and factorization, but, instead, is a linear-
time computable and invertible coding. Let ΦTM be the corresponding step-counting Blum
Complexity Measure [1]. (ϕTM,ΦTM) is a base model for deterministic run time costs.
ϕTM’s superscript is awkward when ϕTM is employed in subscripts, so, from this point on,
we will write ϕTM as simply ϕ.

Herein, we will use the linear-time computable and invertible pairing function 〈·, ·〉
from [28]: the binary representation of 〈x, y〉 is (by definition) an interleaving of the binary
representations of x and y where we alternate x’s and y’s digits and start on the right with
the least most significant y digit. For example, 〈15, 2〉 = 94 — since 15 = 1111 (binary),
2 = 0010 (binary), and 94 = 10101110 (binary). This function, clearly then, maps all the
pairs of elements of N 1-1, onto N. We also employ this notation, based on iterating, 〈·, ·〉,
as in [28], to code also triples, quadruples, . . . of elements of N 1-1, onto N: for all n > 2,
and all x1, . . . , xn + 1, 〈x1, . . . , xn + 1〉 = 〈x1, 〈x2, . . . , xn + 1〉〉. These functions also clearly
satisfy the following

Lemma 1.1.

(1) 〈x1, . . . , xn〉 is odd implies xn is odd;
(2) λx1, . . . , xn 〈x1, . . . , xn〉 is monotonically increasing in each of its arguments; and,
(3) for all x1, . . . , xn,max(x1, . . . , xn) ≤ 〈x1, . . . , xn〉.

For example, in the proof of Theorem 2.21 below, the just above lemma will see explicit
and implicit application.

LinearTime is the class of functions: N → N each computable by some ϕ-program
running within a ΦTM-time bound linear in the length of its base-two expressed argument.
Of course by means of the iterated 〈·, ·〉 function defined just above, we can and sometimes
will speak of multi-argument functions as being (or not being) in LinearTime.

For k ∈ N, k could be a numerically named program of ϕ or just a datum. We let |k| =
the length of k, where k is written in binary. We can write this length as (⌈log2(k + 1)⌉)+,
where (·)+ turns 0 into 1; else, leaves unchanged.2

1In general, the acceptable programming systems [24, 25, 18, 22, 23, 27] can be characterized as those
programming systems for all the 1-argument partial computable functions: N → N which are inter-compilable
with the natural system ϕTM. Rogers [24, 25] characterized the acceptable systems as those with universality
and for which Kleene’s S-m-n holds. This latter is more than enough to get (not necessarily efficient) recursion
theorems in acceptable systems.

2This formula can be derived as the minimum number of whole bits needed to store any one of the k+ 1
things 0 through k, except that the case of k = 0 needs only 0 bits; however, a single 0 has length 1.

This and more general use of (·)+ also helps to deal with the fact that zero values can cause trouble for
O-notation (O-notation is explained in [8]). A problem comes with complexity bounds of more than one
argument. Jim Royer gave the following example of two functions mapping pairs from N, f(m,n) = (m · n)
& g(m,n) = (m+ 1) · (n+ 1). Suppose, as might be expected, g is O(f). Then there are positive a, b such
that, for each m,n ∈ N, g(m,n) ≤ a · f(m,n) + b. Then we have, for each n, n+ 1 ≤ a · f(0, n) + b = b, a
contradiction. However, g is O((f)+).
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Rogers [25] uses the terms ‘converges’ for computations which halt and provide output
and ‘diverges’ for those that do not. Herein we use the respective notations (due to Albert
Meyer) ↓ and ↑ in place of those terms of Rogers.

From [28, Lemma 3.14], there are small positive a ∈ N and function if-then-else ∈
LinearTime such that, for all p0, p1, p2, x ∈ N,

ϕif-then-else(p0,p1,p2)(x) =











ϕp1(x), if ϕp0(x)↓ 6= 0;

ϕp2(x), if ϕp0(x)↓ = 0;

↑, otherwise;

(1.1)

and

ΦTM
if-then-else(p0,p1,p2)

(x) ≤











a · (ΦTM
p0

(x) + ΦTM
p1

(x))+, if ϕp0(x)↓ 6= 0;

a · (ΦTM
p0

(x) + ΦTM
p2

(x))+, if ϕp0(x)↓ = 0;

↑, otherwise.

(1.2)

Essentially from (the k,m = 1 case of) [28, Theorem 4.8], we have the following constructive,
efficient, and parametrized version of Kleene’s 2nd (not Rogers’) Recursion Theorem [25,
Page 214].
There are small positive b ∈ N and function krt ∈ LinearTime such that, for all parameter
values p, tasks r, inputs x ∈ N:

ϕkrt(p,r)(x) = ϕr(〈krt(p, r), p, x〉); (1.3)

and
ΦTM
krt(p,r)(x) ≤ b · (|p|+ |r|+ |x|+ΦTM

r (〈krt(p, r), p, x〉)). (1.4)

Intuitively, above in (1.3), on the left-hand side, the ϕ-program krt(p, r) has p, r stored
inside, and, on x, it: makes a self-copy (in linear-time), forms y = 〈self-copy, p, x〉 (in
linear-time), and runs task r on this y. From (1.4) just above, for each p, r, any super-
linear cost of running ϕ-program krt(p, r) on its input is from the running of ϕ-task r on
its linear-time producible input.

1.2. Computably Axiomatized, Powerful, True Theories. Let T be a computably
axiomatized first order (fo) theory extending fo Peano arithmetic (PA) [20, 25] — but with
numerals represented in base two to avoid size blow up from unary representation (see [3,
Page 29])3 — and which does not prove (standard model for PA [20]) falsehoods expressible
in f.o. arithmetic.

3Lets suppose 0 is PA’s numeral for zero and that S is PA’s symbol for the successor function on N.
In effect, in, e.g., [20], the numeral n for natural number n is S(n)(0), where S(0)(0) = 0 and S(n+1)(0) =

S(S(n)(0)) — featuring iterated composition of Ss. This is a base one representation. Note that the length

of this n is O(n) which is O of 2the symbol length of n — too high for feasible complexity. However, the
symbol length for the binary representation of n grows only linearly with n — feasibly.

Based on [3, Page 29], herein, by constrast with the just above, we can define our numeral n for n ∈ N

thus. We suppose · is the symbol for PA’s multiplication over N. We let: 2 = S◦S(0); for (n > 1), n ∈ N,

2n = (2 · n); (1.5)

and, for n ∈ N,

(2n) + 1 = S(2n). (1.6)

Then, the length of n is in O of the symbol length of n — feasible.
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T could be, for example: fo Peano arithmetic (PA) itself, the two-sorted fo Peano
arithmetic permitting quantifiers over numbers and sets of numbers [25, 29] (a second order
arithmetic), Zermelo Frankel Set Theory with Choice (ZFC) [13], ZFC + ones favorite
large cardinal axiom [26, 14, 9, 15], etc.

If E is an expression such as ‘the partial function computed by ϕ-program number p
is total’ and which is expressible in PA and where p is a particular element of N, we shall
write ≪ E ≫ to denote a typically naturally corresponding, fixed standard cwff (closed well-
formed formula) of T which (semantically) expresses E — and where p is expressed as the
corresponding numeral in base two (as indicated above). We have that

if E′ is obtained from E by substituting a numerical value k, then ≪ E
′ ≫ can

be algorithmically obtained from ≪ E ≫ in linear-time in (|≪ E ≫|+ |k|).

By [28, Theorem 3.6 & Corollary 3.7] and their proofs, the running of a carefully crafted,
time-bounded, ϕ-universal simulation up through time t takes time a little worse than
exponential in |t|. Early complexity theory, e.g., [2, 17, 16], provided delaying tricks to
achieve polynomial time. From [28, Theorem 3.20] and its proof, the above mentioned
carefully crafted, time-bounded universal simulation of any ϕ-program can be uniformly
delayed by a log log factor on the time-bound to run in LinearTime.

The theorems of T form a computably enumerable set, so we can/do fix a predicate logic
complete automatic theorem prover (such as resolution) for T. This theorem prover can be
time-bounded universally simulated — but, as in the just prior paragraph, that simulation
can be delayed by a log log factor on the time-bound to, then, run in LinearTime. Let

T ⊢x ≪ E ≫ (1.7)

mean that a delayed by such a log log factor, linear-time computable, time-bounded universal
simulation of the fixed automatic theorem prover proves ≪ E ≫ from T within x steps —
that’s linear-time in (|≪ E ≫|+ |x|).

Let Dx be the finite set (⊆ N) with canonical index x (see, e.g., [25]). x codes, for
example, both how to list Dx and how to know when the listing is done. Herein, we can
and do restrict our canonical indexing of finite sets to those of sets cardinality ≤ 2. We do
that in linear-time thus. Let 0 be the code of ∅, and, for set {u, u + v}, let the code be
〈u, v〉 + 1. This coding (suggested by a referee to replace our original one) is linear-time
codable/decodable (and is 1-1, and, unlike our original, is onto).4

2. Results

2.1. Non-Obfuscated Unprovable Programs.

Theorem 2.1. There exists g ∈ LinearTime and small positive c, d ∈ N such that, for
any p, |Dg(p)| = 2 and there is a q ∈ Dg(p) for which:

ϕq = ϕp; (2.1)

for all x ∈ N,
ΦTM
q (x) ≤ c · (|p|+ |x|+ΦTM

p (x)); (2.2)

|q| ≤ d· |p|; (2.3)

4 As an aside: [7] canonically codes any size finite sets in cubic time & decodes them in linear-time.
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yet
T 6⊢ ≪ ϕq = ϕp ≫. (2.4)

Our proof below of Theorem 2.1, as will be seen, makes it easily transparent that
ϕq = ϕp. Hence, q is not obfuscated, yet its correctness (at computing ϕp), as will also
be seen, is unprovable in T. From the time and program size complexity content of the
theorem, q is nicely only slightly, linearly more complex than p. Furthermore, our proof is
what is called in [28, Page 131] a rubber wall argument : we set up a rubber wall, i.e., a
potential contradiction off of which to bounce, so that, were the resultant construction to
veer into satisfaction of an undesired condition (undesired here is the failure of (2.4) above),
it bounces off the rubber wall (i.e., contradiction) toward our goal, here (2.4), instead.5

Proof of Theorem 2.1.

By two applications of linear-time: krt, if-then-else (these from Section 1.1 above), and
λE, x (T ⊢x E) (this from Section 1.2 above), from any ϕ-program p, one can algorithmically
find in linear-time (in |p|), programs e1,p and e2,p behaving as follows.

For each x,

ϕe1,p(x) =

{

ϕp(x) + 1, if T ⊢x≪ ϕe1,p = ϕp ≫;

ϕp(x), otherwise;
(2.5)

and

ϕe2,p(x) =

{

0, if T ⊢x ≪ ϕe2,p = ϕp ≫;

ϕp(x), otherwise.
(2.6)

Let g ∈ LinearTime be such that, for each p, Dg(p) = {e1,p, e2,p}. We consider cases
regarding p for the choice of the associated q ∈ Dg(p).

Case (1). domain(ϕp) is infinite. Suppose for contradiction, for some x, T ⊢x ≪ ϕe1,p =
ϕp ≫. Since, by assumption, T does not prove false such sentences, ϕe1,p = ϕp, and by (2.5)
above, for all x′ ≥ x, ϕe1,p(x

′) also = ϕp(x
′) + 1, but, since domain(ϕp) is infinite, we have

a contradiction. Choose q = e1,p. Then, trivially, again by (2.5), ϕq = ϕp, but T does not
prove it.

Case (2). domain(ϕp) is finite. Suppose for contradiction, for some x, T ⊢x ≪ ϕe2,p =
ϕp ≫. Since, by assumption, T does not prove false such sentences, ϕe2,p = ϕp, and
by (2.6) above, for all x′ ≥ x, ϕe2,p(x

′) also = 0, making domain(ϕe2,p) infinite, and, hence,
domain(ϕp) is infinite, a contradiction. Choose q = e2,p. Then, trivially, again by (2.6),
ϕq = ϕp, but T does not prove it.

In each case, by if-then-else and krt being linear-time (hence, at most linear growth)
functions, λE, x (T ⊢x E) ∈ LinearTime, and by the complexity upper bounds (1.2)
and (1.4) (in Section 1.1 above) as well as the assertion (in Section 1.2 above) of the linear-
time (and, hence, linear size) cost of substituting numerals into formulas of PA, we have
small positive c, d such that the theorem’s time complexity bound (2.2) and it’s program
size bound (2.3) above each hold. Theorem 2.1

Next is the promised, motivated, concrete example.
Putnam [21] notes that the typical inductive definitions of grammaticality (i.e., well-

formedness) for propositional logic formulas parallel the typical definitions of truth (under

5More discussion on identifying contradictions with walls, a.k.a. boundaries, can be found on [28,
Page 131].
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any truth-value assignment to the propositional variables) for such formulas, and that the
first kind of inductive definition provides a short and feasible decision program for gram-
maticality.6 He goes on to say, though, that the other ways of providing short and feasible
inductive definitions of such grammaticality which also parallel an inductive definition of
truth are so similar as to constitute intrinsic grammars (and semantics). Let p be one of
these typical short and fast decision procedures for propositional calculus grammaticality
expressed naturally and directly as a ϕ-program. Then by Theorem 2.1 above and its proof
also above, there is an obviously semantically equivalent ϕ-program q only slightly linearly
more complex than p in size and run time (so it too is short and feasible); q also provides
the same inductive definition of grammaticality as p which, then, parallels the truth defi-
nition like p does (after all the else part of q is p and the if-part of q never comes true);
but the unprovability (in pre-assigned T) of the semantic equivalence of q with p makes q
a bit peculiar as an intrinsic grammar for propositional logic, providing a basis to doubt
Putnam’s assertion. However, we do note that intensionally [25] q is a bit unlike p — since
it performs an always false (quick) test p doesn’t.

2.2. A Constructivity Concern. It’s interesting to ask: can the condition |Dg(p)| = 2 in
Theorem 2.1 be improved to |Dg(p)| = 1? If so, it makes sense to replace a singleton set,
{q}, by just q and use g(p) = q (not the code of {q}). Anyhow, the answer to the question
is, No (see Theorem 2.3 below). Before we present and prove this theorem, it is useful to
have for its proof the unsurprising lemma (Lemma 2.2) just below.7

Lemma 2.2. If ϕp(x)↓ = y, then

PA ⊢ ≪ ϕp(x)↓ = y ≫ . (2.7)

Proof of Lemma 2.2. The relation, in p, x, y, t, that holds iff ϕp(x)↓ = y within t steps,
where the steps are measured by the natural ΦTM, is trivially computable (a.k.a. recursive)
[1].

Suppose ϕp(x)↓ = y. Then there is some t such that ϕp(x)↓ = y within t steps. By
Gödel’s Lemma [12, 20] that recursive relations are numeralwise provably-representable in,
e.g., PA, PA ⊢ ≪ ϕp(x)↓ = y within t steps ≫. By existential generalization inside PA,
we have PA ⊢ ≪ (∃t)[ϕp(x)↓ = y within t steps] ≫. Hence, PA ⊢ ≪ ϕp(x)↓ = y ≫.

Lemma 2.2

The next theorem implies that, in Theorem 2.1 above, the condition |Dg(p)| = 2 cannot
be improved to |Dg(p)| = 1 (or equivalent as discussed above). The proof of this next
theorem (Theorem 2.3) provides positive cases regarding proving true program properties
in PA.

Theorem 2.3. It is not the case that there exists computable g such that, for any p, for
q = g(p),

T 6⊢≪ ϕq = ϕp ≫ . (2.8)

6In computer science these inductive definitions would be called recursive and, as program code, can
easily be run iteratively — for efficiency.

7We bother to prove it since we do not know a citation for its proof.
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Proof of Theorem 2.3. Suppose for contradiction otherwise.
Suppose d is a ϕ-program for g, i.e., suppose ϕd = g.
Of course λp, x [ϕϕd(p)(x)] is partially computable, and, importantly, this is provable

in PA. We sketch how we know the provability in PA.
For example, one step in showing the provability is to explicitly construct a ϕ universal

program u so that its detailed correctness is (trivially, albeit tediously) provable in PA. In
particular,

PA ⊢ ≪ (∀p, x)[ϕu(p, x) = ϕp(x)] ≫. (2.9)

For ϕ, the construction of a relatively efficient, but time-bounded variant of such a u is
outlined in the proof of [28, Theorem 3.6]. This construction can be altered to remove the
time-boundedness and just get a suitable u.

Another step would be to spell out a ϕ-program c for a computable function comp2
for computing a ϕ-program for the composition of the partial functions computed by its
ϕ-program arguments as in the m = 2 case of [28, Lemma 3.10] 8 and its proof — where,
again, PA proves correctness (including comp2 = ϕc is total).

Relevance of u and c: clearly we have,

ϕϕd(p)(x) = ϕu(ϕd(p), x), (2.11)

and the right-hand side of (2.11) just above is a relevant composition and, then, can be
further expanded employing c.9 With u and c, then, we can explicitly compute a ϕ-program
for λp, x [ϕϕd(p)(x)] and prove it correct in PA.

So, then, by the Constructive Kleene’s Second Recursion Theorem but without the
parameter p as above in Section 1.1 above, we have a (self-referential) p0 such that, for any
x,

ϕp0(x) = ϕϕd(p0)(x). (2.12)

Below we’ll refer to this parameter-free version of the above Constructive Kleene Theorem
as KRT. Then we have a ϕ-program k for the above function krt again with parameter
p completely omitted, and, with this k representing in the language of PA this modified
version of the function krt, KRT is completely provable in PA.

Hence, by our remarks above about computing and proving correct a program for
λp, x [ϕϕd(p)(x)], we can explicitly compute a p0 as in (2.12) and prove it correct in PA; we
have in particular,

PA ⊢ ≪ ϕp0 = ϕϕd(p0) ≫. (2.13)

However, we don’t know enough about g (and d) to know whether we can prove g’s
totality in PA — including by representing g as ϕd; fortunately, we won’t need that.

We do know (at least outside PA) that g is total (since it’s a consequence of g’s assumed
computability). Hence, we know (at least outside PA) that g(p0)↓. Since, from above, d is
a ϕ-program for g, we have that ϕd(p0)↓ = to some explicit numerical value q0. Therefore,
from Lemma 2.2 above,

PA ⊢ ≪ ϕd(p0)↓ = q0 ≫ . (2.14)

8 In that Lemma 3.10, we have, in effect, for the arbitrary m case, for all p0, . . . , pm,

ϕcompm(p0,...,pm)(x) = ϕp0(ϕp1(x), . . . , ϕpm(x)) : (2.10)

9 Further below in Section 2.3, we’ll consider, among other things, some programming systems with
provability subtleties regarding universality and/or composition. This composition, though, we be as in the
m = 1 case of [28, Lemma 3.10] (see Footnote 8 just above).
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Hence, by substitution of equals for equals and reflexivity of equals inside PA, (2.13),
and (2.14),

PA ⊢ ≪ ϕq0 = ϕp0 ≫, (2.15)

a contradiction to our beginning assumption — since T extends PA. Theorem 2.3

2.3. Subtleties. So far we have considered the natural, deterministic complexity theory
relevant, acceptable system, ϕ. After we obtained Theorem 2.3 just above — which shows
a condition in Theorem 2.1 further above (in Section 2.1) couldn’t be improved, we wondered
if there were some (possibly not quite so natural but, perhaps, still acceptable) systems ψ for
which we don’t have the just above Theorem 2.3. We initially obtained the first part of the
next theorem (Theorem 2.4) which provides such a ψ, but we didn’t, then, know whether our
ψ was acceptable. We subsequently obtained Theorem 2.4’s furthermore clause providing
our ψ’s acceptability together with a surprise we didn’t expect. We explain the surprise after
the statement of Theorem 2.4 and before its proof.

Theorem 2.4. There is a programming system ψ and a computable g such that, for all p,
ψg(p) = ψp, yet, for q = g(p), T 6⊢ ≪ ψq = ψp ≫.

Furthermore, ψ is acceptable, and, surprisingly,

(∀p)[ψp = ϕp]. (2.16)

How can (2.16) be true — in the light of the rest of the just above theorem (Theorem 2.4)?
It seems to contradict Theorem 2.3 further above. The answer is that, in the proof just
below of the just above theorem (Theorem 2.4), the needed ψ is, in effect, defined by an
unusual ϕ-program e in (2.19, 2.20) below, and, in the language of PA, for formulating
(un)provability about ψ in T, ψ is, of course, represented by its defining e.10 ϕ itself, on the
other hand, can be and is understood to be naturally (not unusually) represented in the
language of PA.11

To aid us in some proofs below, including that of the above Theorem 2.4, we present
the following lemma (Lemma 2.5), where the recursion theorem part of its proof is from
H. Friedman [11].

Lemma 2.5 (T-Provable Padding-Once). Suppose α is any acceptable programming system
such that T proves α’s acceptability.

Then, there is a total computable function g such that for any p, g(p) 6= p, but αg(p) =

αp.
12

Furthermore, this padding-once result is, then, expressible and provable in T.

Proof of Lemma 2.5. Assume the hypothesis, i.e., that T proves α’s acceptability.
Then T proves Kleene’s S-m-n Theorem, so we obtain that T proves the Parameterized

Second Kleene Recursion Theorem (as above in Section 1.1, but with witnessing functions
not necessarily in LinearTime).

10 An original source for unusual representations in arithmetic (as is our e) is [10].
11See the informal discussion about the notation ≪ E ≫ in Section 1.2 above, where, in effect, the

particular example ≪ ϕp is total ≫ is employed.
12 Of course, a more general, constructive infinite padding holds [18], and we need a version of that

further below.
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Then, from this Kleene Theorem, we have a computable function f such that, for each
p, x,

αf(p)(x) =

{

αp(x), if f(p) 6= p;

αp+1(x), if f(p) = p.
(2.17)

Then, let g be defined as follows.

g(p) =

{

f(p), if f(p) 6= p;

p+ 1, if f(p) = p.
(2.18)

We consider two cases.

Case one: f(p) 6= p. Then, from (2.17), αf(p) = αp, and, from (2.18), g(p) = f(p) 6= p.
Case two: f(p) = p. Then, from (2.17), αf(p) = αp+1, which, by Case two, = αp.

From (2.18), g(p) = p+ 1 6= p.

By this case-analysis, g satisfies Padding-Once. The above is so simple as to be provable in
T — as needed. Lemma 2.5

Proof of Theorem 2.4. By Kleene’s second recursion theorem (again without parameter),
there is a (self-referential) ϕ-program e and an associated ψ both such that, for each p, x,

ψp(x)
def
= ϕe(〈p, x〉), which = (2.19)

{

p, if T ⊢x≪ (∃q, r | q 6= r)[ψq = ψr] ≫;

ϕp(x), otherwise.
(2.20)

N.B. The mentions of ψ in (2.20) just above with variable subscripts q, r should be under-
stood, employing ψ’s definition (2.19) above, to be ϕe(〈q, ·〉), ϕe(〈r, ·〉), respectively.

Claim 2.6. T 6⊢ ≪ (∃q, r | q 6= r)[ψq = ψr] ≫.

Proof of Claim 2.6. Suppose for contradiction otherwise.
Then there exists an x0 such that T ⊢x0 ≪ (∃q, r | q 6= r)[ψq = ψr] ≫. However, then,

by (2.19, 2.20) above, we have (∀p)[ψp(x0)↓ = p], and thus (∀p, q | p 6= q)[ψp(x0) 6= ψq(x0)];
therefore, T has proven a sentence of first order arithmetic which is false in the standard
model, a contradiction. Claim 2.6

Claim 2.7. (∀p)[ψp = ϕp]; hence, ψ is acceptable.

Proof of Claim 2.7. By Claim 2.6, the first clause in (2.20) above is false for each p, x.
Therefore, by (2.19, 2.20) above, (∀p, x)[ϕe(〈p, x〉) = ϕp(x)]; hence, (∀p)[ψp = ϕp] — making
ψ acceptable too. Claim 2.7

Claim 2.8. There is a computable g such that, for all p, g(p) 6= p, ψg(p) = ψp, and, for
q = g(p), T 6⊢ ≪ ψq = ψp ≫ .
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Proof of Claim 2.8. The acceptability of ϕ is provable in PA, hence, in T. By Lemma 2.5,
there exists a computable g such that (∀p)[g(p) 6= p ∧ ϕg(p) = ϕp]. By Claim 2.7, ψ = ϕ;
thus, for this same g, (∀p)[ψg(p) = ψp].

Suppose arbitrary p is given. Let q = g(p). Suppose for contradiction T ⊢≪ ψq = ψp ≫.
Clearly by Gödel’s Lemma (employed in the proof of Lemma 2.2 above), PA ⊢ ≪ q 6= p≫.
Then, by this and existential generalization in T, T ⊢ ≪ (∃q, r | q 6= r)[ψq = ψr] ≫, a
contradiction to Claim 2.6 above. Claim 2.8

Theorem 2.4

For the next three corollaries (Corollaries 2.9, 2.10, and 2.11), the mentioned ψ is that
from Theorem 2.4 and its proof, including (2.19, 2.20) above.

Corollary 2.9. ψ = ϕ, but T 6⊢ ≪ ψ = ϕ≫.

Proof of Corollary 2.9. ψ = ϕ is from Theorem 2.4 above. Suppose for contradiction
T ⊢ ≪ ψ = ϕ≫.

Then, from this and the proof of Theorem 2.3 above, one obtains a Theorem 2.3 but
with ψ replacing ϕ. This contradicts Theorem 2.4 above (which is also about ψ).

Corollary 2.9

To understand the corollary (Corollary 2.10) and its proof just below, it may be useful
to review the roles of ϕ-programs u, c, k in the proof of Theorem 2.3 above. This corollary
says there can be no analog of all three of these programs for ψ (in place of ϕ).

Corollary 2.10. There are no u, c, k such that simultaneously:

T ⊢ ≪ u is a witness to universality in ψ ≫, (2.21)

T ⊢ ≪ c is a witness to composition in ψ ≫ 13,& (2.22)

T ⊢ ≪ k is a witness to KRT in ψ ≫ . (2.23)

Proof of Corollary 2.10. Suppose for contradiction otherwise. Then, enough is provable in
T about ψ to make Theorem 2.3 above also provable for ψ — in place of ϕ. This contradicts
Theorem 2.4 about ψ. Corollary 2.10

Regarding Corollary 2.10 just above, it is well known that, from [18, 19], Kleene’s S-m-n
can be constructed out of a program c for composition and, then, Kleene’s proof of KRT

can be done from S-m-n; so, it might appear that (2.23) just above could be eliminated.
This is actually open. The reason is that, while each of these just mentioned constructions
requires some easily existing auxiliary ψ-programs, for Corollary 2.10 we’d ostensibly also
need these auxiliary ψ-programs to be T-provably correct.14 The T-provable correctness is
the hard part.

Corollary 2.11. T 6⊢ ≪ ψ is acceptable≫.

13 This composition is the m = 2 case of [28, Lemma 3.10] (see Footnote 8 further above).
14Machtey and Young’s construction [18, 19] of an S-m-n function out of a composition function, for

example, employs auxiliary ψ-programs q0, q1 such that

ψq0 = λz 〈0, z〉; and ψq1 = λ〈y, z〉 〈y + 1, z〉. (2.24)

Marcoux’s more efficient solution [19] employs three such auxiliary ψ-programs.
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Proof of Corollary 2.11. Assume for contradiction otherwise. Then, by Lemma 2.5 above,
T ⊢ ≪ (∃p)[ψp is total ∧ (∀q)(∃r = ψp(q) | r 6= q)[ψq = ψr] ≫.

From this we have, T ⊢ ≪ (∃q, r | q 6= r)[ψq = ψr] ≫, a contradiction to Claim 2.6
above. Corollary 2.11

2.3.1. Subtleties About Proving Universality. The next two theorems herein (Theorems 2.12
and 2.18) provide two more acceptable programming systems, η, θ, respectively, each defined
(as was ψ above) by respective, unusual ϕ-programs. The first of these theorems (Theo-
rem 2.12) provides a surprise, part positive, part negative, regarding proving in T that
universality holds for η. The contrast between these last two theorems is also interesting.
Of course, since each of η, θ is acceptable, universality holds for each of them (at least
outside T).

Below, for partial functions ξ, ρ(ξ) denotes the range of ξ.

Theorem 2.12. There exists an acceptable programming system η and an e such that
PA ⊢ ≪ e is universal for η ≫, yet, surprisingly, for each p,

If T ⊢ ≪ p is universal for η ≫, then p = e. (2.25)

Of course, in η, there are infinitely many universal programs, but exactly one provably so
in T. Furthermore, η turns out to be ϕ.

Proof of Theorem 2.12. The Kleene Second Recursion Theorem provides a ϕ-program e
and an associated η both such that, for each p, x,

ηp(x)
def
= ϕe(〈p, x〉), which = (2.26)

{

p, if [p 6= e ∧ T ⊢x≪ (∃q, r | r 6= q)[ηq = ηr] ≫];

ϕp(x), otherwise.
(2.27)

Of course, since KRT for ϕ is constructively provable in PA, we can get the numeral for e
inside PA as well as the universally quantified equation just above for the value of ϕe(〈p, x〉)
by cases.

Claim 2.13. T 6⊢ ≪ (∃q, r | q 6= r)[ηq = ηr] ≫.

Proof of Claim 2.13. Assume for contradiction that

T ⊢ ≪ (∃q, r | q 6= r)[ηq = ηr] ≫. (2.28)

Let x0 be the minimum number of steps in any such proof. Since T does not prove false
sentences of PA and (2.28), we have

(∃q, r | q 6= r)[ηq = ηr]. (2.29)

Then, for f(p) = ϕe(〈p, x0〉), ρ(f) ⊇ (N − {e}). Clearly, ηe = ϕe, and ηe has infinite range.
Furthermore, (∀p 6= e)(∀x ≥ x0)[ηp(x) = p]; therefore, (∀p 6= e)[ηp has finite range], and,
thus, there is no η-program whose code number is not e whose computed partial function is
equal to ηe. Furthermore, (∀p, q | p 6= e ∧ p 6= q ∧ q 6= e)[ηp(x0) = p ∧ ηq(x0) = q], thus
there are no two distinct programs that compute the same partial function, a contradiction
to (2.29). Claim 2.13
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Claim 2.14. (∀p, x)[ηp(x) = ϕp(x)]; hence, η is acceptable.

Proof of Claim 2.14. By Claim 2.13, the if clause of (2.27) is always false, hence, by (2.26,
2.27), (∀p, x)[ηp(x) = ϕe(〈p, x〉) = ϕp(x)]. Claim 2.14

Claim 2.15. There does not exist p, q such that p 6= q, and T ⊢ ≪ ηp = ηq ≫.

Proof of Claim 2.15. Suppose for contradiction otherwise. Then, by Gödel’s Lemma fol-
lowed by existential generalization, the latter in T, we obtain a contradiction to Claim 2.13.

Claim 2.15

Claim 2.16. PA ⊢ ≪ e is universal for η ≫.

Proof of Claim 2.16. We need not prove in PA that η is a programming system for the
1-argument partial computable functions. Instead, it suffices for us to argue only that

PA ⊢ ≪ (∀p, x)[ηe(〈p, x〉) = ηp(x)] ≫. (2.30)

Then, from (2.26) above, the definition of η by e in the ϕ-system, applied to each side
of (2.30), it, then, suffices to show that

PA ⊢ ≪ (∀p, x)[ϕe(〈e, 〈p, x〉〉) = ϕe(〈p, x〉)] ≫. (2.31)

By the otherwise clause of (2.26, 2.27) above, applied to ≪ ϕe(〈e, 〈p, x〉〉) ≫, where p, x are
variables (not numerals), we get its provable in PA value to be ≪ ϕe(〈p, x〉) ≫ — again
with p, x variables. This together with universal generalization inside PA on the variables
p, x, verifies in PA the sufficient (2.31) just above. Claim 2.16

Claim 2.17. For all p 6= e, T 6⊢ ≪ p is universal in η ≫.

Proof of Claim 2.17. Immediate from Claims 2.15 and 2.16. Claim 2.17

Theorem 2.12

Theorem 2.18. There exists an acceptable programming system θ such that, for each u,

T 6⊢ ≪ u is universal in θ ≫ . (2.32)

Of course, in θ, there are infinitely many universal programs, but none are provably so in
T. Furthermore, θ turns out to be ϕ.

Proof of Theorem 2.18. Kleene’s Recursion Theorem provides a ϕ-program e and an
associated θ both such that, for each p, x,

θp(x)
def
= ϕe(〈p, x〉) which = (2.33)

{

p, if T ⊢x≪ (∃u)[u is universal in θ] ≫;

ϕp(x), otherwise.
(2.34)

Assume for contradiction that T ⊢ ≪ (∃u)[u is universal in θ] ≫. Then, since T does not
prove false things of this sort, universality holds in θ.

Let x0 be the smallest number of steps in any proof as is assumed just above to exist.
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Then, since (∀p, x | x ≥ x0)[θp(x) = p], we have, (∀p)[|ρ(θp)| ≤ 1 + x0]. By contrast,
ρ(θ) = N. Then there is no p such that ρ(θp) = ρ(θ); therefore, there cannot be any
universal programs for θ, a contradiction.

Therefore, T 6⊢ ≪ (∃u)[u is universal in θ] ≫, and, thus, (∀p, x)[θp(x) = ϕp(x)]. This
makes θ acceptable.

Furthermore, it is not the case that (∃u)[T ⊢ ≪ u is universal in θ ≫], since, if T
proved such a thing, it would immediately follow from Existential Generalization in T that
≪ (∃u)[u is universal in θ] ≫ is provable in T, which has already been shown not to be
provable by T. Theorem 2.18

We expect that analogs of Theorems 2.12 and 2.18 just above can be obtained for other
properties besides universality. In the next section we have an analog for composition.

2.3.2. Provable Composition with Unprovable Program Equivalence. The main result of this
section (Theorem 2.21 below): there is an acceptable programming system (equivalent to ϕ)
such that T can prove there exists a specific program which witnesses composition in that
system, but T is still unable to prove that there exist two distinct, equivalent programs in
that system. It is the last and hardest to prove result in the present paper.

In the proof of this theorem, we require provable in PA infinite padding for just the
ϕ-system — a stronger form of padding than provided by Lemma 2.5, though this infinite
padding function is only valid for ϕ, and thus would not have been usable for Corollary 2.11.
As such, we introduce the following function pad, which uses the concepts from [28, Chap-
ter 3 but as modified in the associated Errata] of normal and abnormal code numbers of
ϕ-programs. Herein we briefly discuss these concepts. A program in the ϕ-system is defined
as a non-empty sequence of instructions for a k-tape Turing machine, where all these in-
structions have the same k. If a given number is not directly the code for such a sequence, it
is defined to be an abnormal code; otherwise, it is a normal code. The process of checking a
given number to see if it is normal or abnormal is computable.15 By convention, abnormal
codes are treated as each encoding the same Turing machine, and thus all compute the same
function. It is a consequence of the encoding used for the ϕ-system that all normal codes
are divisible by eight; thus, there are infinitely many even abnormal codes — for instance,
anything divisible by two but not eight is an even abnormal code.

pad(p)
def
=

{

the next even abnormal code, if p is an abnormal code;

p with the last instruction repeated, if p is a normal code.
(2.35)

Claim 2.19. For any input p, the output of pad(p) is the code number of an even program
q such that q > p, ϕq = ϕp, and PA proves this.

Proof of Claim 2.19. As above, determining whether a given number is a normal code is
algorithmic. Furthermore, as there are infinitely many even abnormal codes, finding the
next such is straightforward. Thus, the first clause in the definition of pad is computably
checkable and, if true, pad outputs an even number greater than the input, such that both
are abnormal codes. As noted above, each abnormal code is defined (for the ϕ-system) to
compute the same function as each other abnormal code, and, hence, the part of the claim
not about PA holds for such p.

15In fact, it is linear-time checkable although nothing in the proofs herein makes use of that fact.
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If the second clause holds, then converting p into a coded sequence of instructions is
simple, repeating the last instruction is also simple, and converting that sequence back into
a code number is once again simple. By [28], when there are multiple instructions that apply
in a given state, the first one is the one that applies, thus repeating an instruction can have
no impact on the (possibly partial) function computed by a ϕ program; thus, ϕpad(p) = ϕp

in this case. Furthermore, as noted above, all normal instruction codes must be even; thus,
pad(p) is even in this case as well.

Therefore, the part of the claim not about PA holds. The proof so far is so simple that
it can be carried out in PA straightforwardly albeit tediously. Claim 2.19

In our proof of the next theorem (Theorem 2.21) it is convenient to employ the following
lemma (Lemma 2.20), a new recursion theorem which mixes an n-ary (non-parameter)
version of the original Kleene Recursion Theorem [25, Page 214] with the Delayed Recursion
Theorem [4, Theorem 1].16

Lemma 2.20 (A Mixed Recursion Theorem). Suppose n > 0. Suppose ξ1, . . . , ξn, ξ are
partial computable.

Then there are e1, . . . , en, c such that ϕc is total, and, for each i with 1 ≤ i ≤ n, for all
x, y,

ϕei(y) = ξi(e1, . . . , en, c, y), (2.36)

and
ϕϕc(x)(y) = ξ(e1, . . . , en, c, x, y). (2.37)

In Lemma 2.20 just above, (2.36) expresses the n-ary Kleene Recursion Theorem part, and
(2.37) expresses the Delayed Recursion Theorem part.

Theorem 2.21. There is an acceptable programming system ζ and a w such that PA ⊢ ≪ w
is a witness to composition in ζ ≫, yet T 6⊢ ≪ (∃r, t 6= r)[ζr = ζt] ≫. Furthermore, ζ turns
out to be ϕ.

Proof of Theorem 2.21. We apply the n = 3 case of Lemma 2.20 just above to obtain
programs e, c, w′, w behaving as below in (2.39, 2.40, 2.41, 2.42), respectively.17 The ζ we
need for the theorem is defined in terms of this e thus. For each p, x,

ζp(x)
def
= ϕe(p, x). (2.38)

For convenience below, in describing the behavior of e, c, w′, w, in many places we’ll write
this ζ instead of ϕe.

In the following formula we let prime(n) be the nth prime, where prime(0) = 2,
prime(1) = 3, . . . . Importantly to the combinatorics of the diagonalization below in this
proof, any odd prime raised to a power is odd, and we noted before the statement of the
present theorem being proved (Theorem 2.21) that our particular infinite padding function
pad always outputs even numbers.

16In [4] the Delayed Recursion Theorem is used to prove the Operator Recursion Theorem [4, 6]. In [5]
the proof of its Remark 1 employs a subrecursive Delayed Recursion Theorem.

17 Our application of Lemma 2.20 here does not and does not need to make full use of all the self/other
reference available in this lemma.
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For each p, x,

ϕe(p, x) =































ϕp(x), if p = w ∨ (∃y < p)[ϕw(y) = p] ∨

T 6⊢x ≪ (∃r, t 6= r)[ζr = ζt] ≫;

prime(p+ 1)x, if p 6= w ∧ (∀y < p)[ϕw(y)↓ 6= p] ∧

T ⊢x ≪ (∃r, t 6= r)[ζr = ζt] ≫;

↑, otherwise.

(2.39)

ϕ-program c, spelled out just below, outputs a ϕ-program which computes the composition
of two input ζ-programs. It is employed by ϕ-program w′ further below.

For each p, q,
ϕϕc(〈p,q〉)(x) = ζp(ζq(x)). (2.40)

ϕ-program w′, spelled out next, rewrites each output of ϕ-program c above so that the
output of w′ computes the same partial function as this output of c, but has combinatorially
useful numeric properties regarding evenness.

For each p, q,

ϕw′(〈p, q〉) =



























































the first value v, if any, found by iteratively applying

pad to ϕc(〈p, q〉) such that: v 6= w, v is even,

v > 〈p, q〉 (hence, v > p, q by Lemma 1.1),

(∀x < 〈p, q〉)[ϕw′(x)↓],

[if 〈p, q〉 > 0, then v > ϕw′(〈p, q〉 − 1) which ↓],

and, for 〈r, s〉 = v,

(¬∃x < 〈p, q〉)[ϕw′(x) = r ∨ ϕw′(x) = s];

↑, if no such v exists.

(2.41)

As we’ll see, ϕ-program w, spelled out next, is such that ϕw = ζw (Claim 2.29 below), and it
computes the m = 1 case control structure of composition from [28, Lemma 3.10] (see Foot-
note 8 above) — but for the ζ-system (Claim 2.32). This w rewrites the output of w′ above
so that the resultant ζ-system composition will have strong associativity properties at the
ζ-program code number level : let comp1 = ζw; then for all ζ-programs a, b, c, the ζ-program
number comp1(comp1(a, b), c) will be the same ζ-program number as comp1(a, comp1(b, c)).
This strong property is, in effect, further developed in Claims 2.34 through 2.37, these
claims put limits on the nature of unequal ζ-program numbers in ρ(comp1) — so they
cannot interfere with the unprovability part of Theorem 2.21, and, then, they are used in
proving the difficult to prove Claim 2.40. This latter claim provides most of the desired
unprovability — with Claim 2.41 finishing it off.

For each p, q,

ϕw(〈p, q〉) =















































ϕw(〈ϕw(〈p, r〉), s〉), if (∀〈r, s〉 < q)[ϕw(〈r, s〉)↓] ∧

(∃〈r, s〉 < q)[ϕw(〈r, s〉) = q],

then select minimum such s

and, then, select the minimum r

corresponding to this s;

ϕw′(〈p, q〉), if (∀〈r, s〉 < q)[ϕw(〈r, s〉)↓ 6= q];

↑, otherwise.

(2.42)
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Claim 2.22. PA proves ≪ ϕc is total ≫.

Proof of Claim 2.22. In general proofs of recursion theorems, especially including Lemma
2.20 above, are so simple that their proofs can be carried out in PA (albeit tediously).

Claim 2.22

Claim 2.23. For all x > 0, if ϕw′(x− 1)↓ ∧ ϕw′(x)↓, then ϕw′(x− 1) < ϕw′(x).

Proof of Claim 2.23. This follows directly from (2.41). Claim 2.23

Claim 2.24. ϕw′ is total, and PA proves that.

Proof of Claim 2.24. Assume for induction that for arbitrarily-fixed 〈p, q〉, for all x < 〈p, q〉,
we have ϕw′(x)↓. By Claim 2.22, ϕc(〈p, q〉)↓. By Claim 2.19 the output of pad is always
even and greater than the input. Thus, repeatedly applying pad to ϕc(〈p, q〉) will result
in v having an even value, v 6= w, v > p, v > q, and v > 〈p, q〉. Furthermore, by the
induction assumption, [if 〈p, q〉 > 0, then ϕw′(〈p, q〉 − 1)↓], and padding ϕc(〈p, q〉) until
v > ϕw′(〈p, q〉 − 1) is certainly possible. Lastly, by the induction assumption, checking
whether for (〈r, s〉 = v) there does or does not (∃x < 〈p, q〉)[ϕw′(x) = r ∨ ϕw′(x) = s] is
algorithmically testable.

Thus, by induction, ϕw′ is total. The above inductive proof is accessible to PA, thus
PA proves it. Claim 2.24

Claim 2.25. ρ(ϕw) ⊆ ρ(ϕw′). Furthermore, PA proves this.

Proof of Claim 2.25. For each input x, exactly one of the three clauses of (2.42) must
hold. If the first clause holds, then whatever value ϕw(x) has must be a value that was in
the range of ϕw on some other input; by implicit application of Lemma 1.1, this recursion
must bottom out at some value, and that value must come from some other clause. If the
second clause holds, then ϕw(x) = ϕw′(x), and thus is a value in the range of ϕw′ . Lastly,
if the third clause holds, then ϕw(x)↑, and no value is added to the range of ϕw. Thus, all
values in the range of ϕw have some x such that the second clause of (2.42) holds for ϕw(x),
and therefore, the range of ϕw is a (potentially proper) subset of the range of ϕw′ . PA can
handle the preceding argument. Claim 2.25

Claim 2.26. If q ∈ ρ(ϕw), then (∃〈r, s〉 < q)[ϕw(〈r, s〉)↓ = q]. Furthermore, PA proves
this.

Proof of Claim 2.26. Fix arbitrary q, assume that q ∈ ρ(ϕw). Per the proof of Claim 2.25
and the second clause of (2.42), there then exists x such that ϕw(x) = q = ϕw′(x). By
Claims 2.23 and 2.24, for x such that ϕw′(x) = q, it must be the case that x ≤ q. By (2.41),
x 6= q. Thus, (∃x < q)[ϕw(x) = q]; as this follows from the assumption that q ∈ ρ(ϕw), it
therefore follows that if q ∈ ρ(ϕw), (∃x < q)[ϕw(x) = q]. This proves the claim except for
the part about PA. Lastly, PA can handle the just prior reasoning. Claim 2.26

Claim 2.27. For all p, if (∃〈r, s〉 < p)[ϕw(〈r, s〉) = p], then the minimum such s is not in
the range of ϕw.
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Proof of Claim 2.27. Assume by way of contradiction otherwise. Fix the least counterex-
ample p to the claim, and fix the minimum s corresponding to that p. By the assumption
by way of contradiction, (∃〈r′, s′〉)[ϕw(〈r

′, s′〉) = s]. Fix the minimum such s′ and the corre-
sponding r′ such that 〈r′, s′〉 is minimum. By Claim 2.26, 〈r′, s′〉 < s. By the first clause of
(2.42), ϕw(〈r, s〉) = ϕw(〈ϕw(〈r, r

′〉), s′〉). Since s is minimum as indicated above and s′ < s
(by Lemma 1.1), it follows that 〈ϕw(〈r, r

′〉), s′〉 ≥ p.

Case one: The first clause of (2.42) holds for input 〈ϕw(〈r, r
′〉), s′〉. Then s′ is also a

counterexample to Claim 2.27, which, since s′ < p, contradicts p’s minimality.
Case two: The second clause of (2.42) holds for input 〈ϕw(〈r, r

′〉), s′〉. Then

ϕw(〈ϕw(〈r, r
′〉), s′〉) = ϕw′(〈ϕw(〈r, r

′〉), s′〉).

Then, by (2.41), it follows that

ϕw(〈ϕw(〈r, r
′〉), s′〉) > 〈ϕw(〈r, r

′〉), s′〉,

and thus, by substitution, it follows that p > 〈ϕw(〈r, r
′〉), s′〉; this contradicts

〈ϕw(〈r, r
′〉), s′〉 ≥ p.

Case three: The third clause of (2.42) holds for input 〈ϕw(〈r, r
′〉), s′〉; this contradicts

ϕw(〈r, s〉)↓ = p.

All cases lead to a contradiction; therefore, the claim holds. Claim 2.27

Claim 2.28. ϕw is total; furthermore, PA proves this.

Proof of Claim 2.28. Assume for induction that for arbitrarily-fixed 〈p, q〉, for all x <
〈p, q〉, ϕw(x)↓. It follows from inequalities about pairing (Lemma 1.1) and the induction
assumption that (∀〈r, s〉 < q)[ϕw(〈r, s〉)↓]. Thus, for input 〈p, q〉, the first clause of (2.42)
holds if (∃〈r, s〉 < q)[q = ϕw(〈r, s〉)] and the second clause of (2.42) holds if (¬∃〈r, s〉 <
q)[q = ϕw(〈r, s〉)]; thus, the third clause of (2.42) does not hold for input 〈p, q〉.

If the second clause of (2.42) holds for input 〈p, q〉, then by Claim 2.24, ϕw(〈p, q〉)↓.
If the first clause of (2.42) holds for input 〈p, q〉, then

ϕw(〈p, q〉)↓ ⇔ ϕw(〈ϕw(〈p, r〉), s〉)↓,

where 〈r, s〉 < q, q = ϕw(〈r, s〉), s is minimum such that that is the case, and r is minimum
corresponding to s. It follows that both r < q and s < q. From the fact that r < q, it follows
that ϕw(〈p, r〉)↓ by the inductive assumption. As s < q, and s 6∈ ρ(ϕw) (by Claim 2.27), it
then follows from the induction hypothesis that (∀〈r′, s′〉 < s)[ϕw(〈r

′, s′〉)↓ 6= s]; thus, the
second clause of (2.42) holds for ϕw(〈ϕw(〈p, r〉), s〉), which is therefore defined by Claim 2.24.

From the inductive assumption, then, ϕw(〈p, q〉)↓. By induction, ϕw is total. PA can
prove this as well. Claim 2.28

Claim 2.29. ζw = ϕw, and PA proves this.

Proof of Claim 2.29. The equality follows immediately from the first disjunct of the
disjunction in the first clause of (2.39); PA can prove this as well. Claim 2.29

Claim 2.30. (∀p, q)[ϕϕw′ (〈p,q〉) = ζp ◦ ζq]; furthermore, PA proves this.
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Proof of Claim 2.30. The claim follows from (2.41, 2.40) and Claim 2.24 above.
Claim 2.30

Claim 2.31. (∀p, q)[ϕϕw′ (〈p,q〉) = ϕϕw(〈p,q〉)]; furthermore, PA proves this.

Proof of Claim 2.31. Assume for induction that for arbitrary p, q, for all q′ < q, for all p′,
ϕϕw′ (〈p′,q′〉) = ϕϕw(〈p′,q′〉).

Case one: The first clause of (2.42) holds for 〈p, q〉. Then, there exists (〈r, s〉 < q)[q =
ϕw(〈r, s〉)]; fix r and s in accordance with that clause. Then fix r and s in accordance with
that clause; thus, 〈r, s〉 < q = ϕw(〈r, s〉). It follows that ϕw(〈p, q〉) = ϕw(〈ϕw(〈p, r〉), s〉).
Since 〈r, s〉 < q, it follows by Lemma 1.1 that r < q and s < q; thus, by the induction
assumption, ϕϕw(〈ϕw(〈p,r〉),s〉) = ϕϕw′ (〈ϕw(〈p,r〉),s〉) and ϕϕw(〈p,r〉) = ϕϕw′ (〈p,r〉). By Claim 2.30,
ϕϕw′ (〈p,r〉) = ζp ◦ ζr, and ϕϕw′ (〈ϕw(〈p,r〉),s〉) = ζϕw(〈p,r〉) ◦ ζs. By Claim 2.26 and the second

disjunct of the first clause of (2.39), ζϕw(〈p,r〉) = ϕϕw(〈p,r〉). By repeated substitutions, it
follows that ϕϕw(〈p,q〉) = ϕϕw(〈ϕw(〈p,r〉),s〉) = ϕϕw′ (〈ϕw(〈p,r〉),s〉) = ζϕw(〈p,r〉) ◦ ζs = ϕϕw(〈p,r〉) ◦
ζs = ϕϕw′ (〈p,r〉) ◦ ζs = ζp ◦ ζr ◦ ζs. It follows from Claim 2.30 that ϕϕw′ (〈p,q〉) = ζp ◦ ζq. As

q = ϕw(〈r, s〉) and is thus in ρ(ϕw), it follows from (2.39) that ζq = ϕq, and by substitution
it follows that ϕq = ϕϕw(〈r,s〉). From the induction assumption, it follows that ϕϕw(〈r,s〉) =
ϕϕw′ (〈r,s〉), and then from Claim 2.30 it follows that ϕϕw′ (〈r,s〉) = ζr ◦ ζs; and thus it follows
that ϕϕw′ (〈p,q〉) = ζp ◦ ζr ◦ ζs. It then immediately follows that ϕϕw′ (〈p,q〉) = ϕϕw(〈p,q〉).

Case two: The second clause of (2.42) holds for 〈p, q〉. Then, it immediately follows
from that clause that ϕϕw′ (〈p,q〉) = ϕϕw(〈p,q〉).

Case three: The third clause of (2.42) holds for 〈p, q〉. By Claim 2.28, this case is
impossible.

In all possible cases, ϕϕw′ (〈p,q〉) = ϕϕw(〈p,q〉); therefore, by induction,

(∀p, q)[ϕϕw′ (〈p,q〉) = ϕϕw(〈p,q〉)].

PA can handle the above reasoning, and thus the claim follows. Claim 2.31

Claim 2.32. PA ⊢ ≪ w is a witness to composition in ζ ≫.

Proof of Claim 2.32. This claim follows directly from Claims 2.28, 2.29, 2.30, and 2.31.
Claim 2.32

Claim 2.33. All values in the range of ϕw are even.

Proof of Claim 2.33. By (2.41), the range of ϕw′ consists of only even numbers. The claim
follows from that fact and Claim 2.25. Claim 2.33

In the remainder of this proof, we will need the ability to treat programs in the range of
ϕw — which are now known to be compositions of other programs — as a sequence of such
compositions. Furthermore, we need the ability to take potentially-long such sequences and
pull off a single element from the front or back, and recompose the rest of the sequence to
get another ζ-program. In order to do this, we introduce chain and unchain; chain takes
the code number of a ζ-program and outputs a sequence of ζ-programs such that if the
sequence is composed in order, the computed partial function is equivalent to the partial
function computed by the input ζ-program; while unchain takes a non-empty sequence of
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ζ-programs and outputs a single ζ-program which is equivalent to composing the sequence
in order.

chain(p)
def
=































chain(r), s, if (∃〈r, s〉 < p)[ϕw(〈r, s〉) = p],

then select the minimum such s

and, then, select the minimum such r

corresponding to this selected s;

p, otherwise.

(2.43)

When v is a sequence of more than one element, the terminology employed just below,
all-but-last(v) and last(v), is self-explanatory.

unchain(v)
def
=











that element, if v is a sequence

of one element;

ϕw(〈unchain(all-but-last(v)), last(v)〉), otherwise.

(2.44)

Claim 2.34. For p0, p1, . . . , pn = chain(x), ζx = ζp0 ◦ ζp1 ◦ . . . ◦ ζpn .

Proof of Claim 2.34. Let x be an arbitrary value, and assume for induction that for all
y < x, the claim holds for chain(y).

Case one: chain(x) = x. It immediately follows that the claim holds for chain(x) in this
case.

Case two: chain(x) = chain(p), q. Then ϕw(〈p, q〉) = x, x > p, and x > q.
Then p and q are such that the second clause of (2.42) holds on input 〈p, q〉, per

Claim 2.27. Then x = ϕw′(〈p, q〉), from which it follows that ϕx = ζp ◦ ζq. Furthermore,
since x is in the range of ϕw, ζx = ϕx by the second disjunct of the first clause of (2.39).
From the just previous reasoning and the induction assumption, the claim also holds for
chain(x) in this case.

By the induction, the claim holds for all x. Claim 2.34

Claim 2.35. For any p, none of the elements of chain(p) are in ρ(ϕw).

Proof of Claim 2.35. Assume by induction that for all p′ < p, the elements of chain(p′) are
each not in ρ(ϕw).

Case one: The first clause of (2.43) holds for p. Let r, s be per that clause; by Lemma 1.1,
it follows that r < p. Therefore, by the induction assumption, the elements of chain(r)
are each not in ρ(ϕw). By Claim 2.27, s is also not in ρ(ϕw); thus, each element of
chain(p) is not in ρ(ϕw).

Case two: The second clause of (2.43) holds for p. By Claim 2.26, if p is in the range of
ϕw, then (∃〈r, s〉 < p)[ϕw(〈r, s〉)↓ = p]; thus, p 6∈ ρ(ϕw), and the only element of chain(p)
is not in ρ(ϕw).

By induction, the claim holds for all p. Claim 2.35

Claim 2.36. For all x, unchain(chain(x)) = x.
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Proof of Claim 2.36. If chain(x) is a sequence of one element, unchain(chain(x)) is just
x per the first clause of (2.44). Let n be some number greater than 1. Assume for in-
duction that for all x such that chain(x) is a sequence of length no more than n − 1,
unchain(chain(x)) = x. Then let x be such that chain(x) is a sequence of length n. That
sequence, for some r, s, dependent on x, is chain(r), s. Furthermore, by the first clause
of (2.43), x = ϕw(〈r, s〉). In such a sequence, for unchain(chain(r), s), the second clause
of (2.44) holds, and outputs the result of ϕw(〈unchain(chain(r)), s〉) — by inductive as-
sumption, it follows that unchain(chain(s)) is s, from which it follows that the output of
unchain(chain(x)) is ϕw(〈r, s〉) — which is already known to be x. Thus, the claim follows
by induction on the length of chain(x). Claim 2.36

Claim 2.37. For any sequence p0, p1, .., pn of length at least two such that there exists p
such that chain(p) = p0, p1, . . . , pn, ζp = ζp0 ◦ ζunchain(p1,...,pn).

Proof of Claim 2.37. Let p′ = unchain(p1, .., pn). By (2.43, 2.44) above and by Claim 2.35,
it follows that chain(p′) = p1, .., pn. Therefore, by Claim 2.34, ζp′ = ζp1 ◦ . . . ◦ ζpn . Thus,
ζp0 ◦ ζunchain(p1,..,pn) = ζp0 ◦ ζp1 ◦ . . . ◦ ζpn ; by Claim 2.34, this is exactly ζp. Claim 2.37

Claim 2.38. For all x such that [x is odd or x in ρ(ϕw)], ζw(x) > x, and, if x is in ρ(ϕw),
then there does not exist y 6= x such that ζw(y) = ζw(x).

Proof of Claim 2.38. Suppose x is odd. For 〈p, q〉 = x, q must be odd — per Lemma 1.1.
As such, because ϕw only outputs even values, q cannot be in the range of ϕw, and thus
ϕw(x) = ϕw′(x) by (2.42). By (2.41), ϕw′(x) > x. By Claim 2.29, ζw = ϕw, and thus
ζw(x) > x.

Suppose x ∈ ρ(ϕw). For 〈p, q〉 = x, by Lemma 1.1, p ≤ x and q ≤ x. By (2.41) and
Claim 2.24, there does not exist y < x such that ϕw′(y) = either p or q. By (2.41) and
Claim 2.24, ϕw′(0) > 0; from this and Claims 2.23 and 2.24, it follows that there does not
exist y such that ϕw′(y) = either p or q. Therefore, by Claim 2.25, q 6∈ ρ(ϕw′), from which
it follows, by (2.42), ϕw(x) = ϕw′(x). As p 6∈ ρ(ϕw′) and thus p 6∈ ρ(ϕw), it follows by
pairing being 1-1 that there does not exist any p′, r, s such that 〈ϕw(〈p

′, r〉), s〉 = x.
Therefore, there exists no y such that both the first clause of (2.42) holds on input y and

ϕw(y) = ϕw(x). By Claims 2.23 and 2.24, there exists no y 6= x such that ϕw′(x) = ϕw′(y);
from this and the fact that ϕw(x) = ϕw′(x), it follows that for y 6= x, if the second clause
of (2.42) holds on input y, ϕw(y) 6= ϕw(x). Therefore, there does not exist y 6= x such that
[ϕw(x) = ϕw(y)]. Furthermore, from (2.41) and the fact that ϕw(x) = ϕw′(x), it follows
that ϕw(x) > x.

Thus, the claim follows. Claim 2.38

Claim 2.39. If, for some x0, T ⊢x0 ≪ (∃r, t 6= r)[ζr = ζt] ≫, then (∀p)(∀x ≥ x0 | x is odd
∨ x ∈ ρ(ϕw))[ζp(x)↓ ∧ [ζp(x) odd ∨ ζp(x) ∈ ρ(ϕw)] ∧ ζp(x) > x].

Proof of Claim 2.39. Assume by way of contradiction that the claim does not hold. Fix
least p and least corresponding x ≥ x0 such that [x is odd ∨ x ∈ ρ(ϕw)] so that either
ζp(x)↑, or ζp(x) even and not in the range of ϕw, or ζp(x) ≤ x.

Case one: p is w. Then, by Claims 2.28, 2.38 and 2.29, a contradiction follows immediately.
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Case two: p is not w and not in ρ(ϕw). Then, by (2.39), ζp(x) = prime(p + 1)x, which is
an odd value greater than x. A contradiction follows immediately.

Case three: p is in ρ(ϕw). Let p0, . . . , pn be chain(p) and let p′ = unchain(p0, . . . , pn−1).
18

By Claim 2.35, pn 6∈ ρ(ϕw). By Claim 2.36 and (2.43), ϕw(〈p
′, pn〉) = p. From (2.43) we

have that p′, pn, 〈p
′, pn〉 < p. Then by Claims 2.30 and 2.31 and (2.39), it follows that

ζp = ζp′ ◦ ζpn . By the second clause of (2.42), ϕw(〈p
′, pn〉) = ϕw′(〈p′, pn〉), thus p > p′

by (2.41).
Subcase one: pn is not w. Then, ζpn(x) = prime(pn + 1)x, which is both
odd and greater than x; thus, by the assumption that p is the least value
such that the claim does not hold, ζp′(prime(pn + 1)x) is greater than
prime(pn+1)x, which is greater than x. ζp′(prime(pn+1)x) is also either
odd or in ρ(ϕw); as ζp(x) is that value, contradiction follows immediately.
Subcase two: pn is w. Then, by (2.39), ζpn(x) is in the range of ϕw,
moreover, by Claim 2.38, it is > x. By the assumption that p is the least
value such that the claim does not hold, ζp′(ζpn(x)) is greater than ζpn(x),
which, as previously shown, is greater than x. ζp′(ζpn(x)) is also either
odd or in ρ(ϕw); as that value is equal to ζp(x) — a contradiction follows
immediately.

In all cases, a contradiction follows; thus, the claim holds. Claim 2.39

Claim 2.40. If, for some x0, T ⊢x0 ≪ (∃r, t 6= r)[ζr = ζt] ≫, then (∀r′, t′ 6= r′)(
∞
∃x)[ζr′(x) 6=

ζt′(x)].

Proof of Claim 2.40. Assume by way of contradiction otherwise. Then by the assumption
that T does not prove false things, (∃p′, q′ 6= p′)[ζp′ = ζq′ ]. Thus, (∃p′, q′ 6= p′)(∀x ≥
0)[ζp′(x) = ζq′(x)]. Let p be the least number such that chain(p) is of minimum length so
that there are q and x′′ with q 6= p and x′′ so that (∀x ≥ x′′)[ζp(x) = ζq(x)]; then let q be the
least corresponding q. Let x0 be the least number such that T ⊢x0 ≪ (∃r, t 6= r)[ζr = ζt] ≫.
Let x′ be the least value such that each of the following hold: x′ is in the range of ϕw,
x′ ≥ x0, and x

′ ≥ x′′. By Claim 2.38, there is a value in the range of ϕw greater than any
fixed odd number, and thus such an x′ must exist.

Case 1: p = w.
Subcase 1.1: q = w. This immediately contradicts our assumption that
p 6= q.
Subcase 1.2: q 6= w and q 6∈ ρ(ϕw). Then, by (2.39), ζq(x

′) = prime(q +

1)x
′
, which is an odd value, and by Claim 2.33, ζw(x

′) is even; a contra-
diction follows immediately.
Subcase 1.3: q ∈ ρ(ϕw). Let q0, . . . , qn = chain(q). By Claim 2.35, q0 is
not in ρ(ϕw). Let q

′ = unchain(q1, . . . , qn). By Claim 2.37, ζq = ζq0 ◦ ζq′ .
By Claim 2.39, ζq′(x

′) > x′ and ζq′(x
′) is either odd or in the range of

ϕw.
Sub-subcase 1.3.1: q0 6= w. Then by (2.39), ζq(x) =

ζq0(ζq′(x
′)) = prime(q0 + 1)ζq′ (x

′), which is an odd value,
while, by Claim 2.33, ζw(x

′) is even; therefore, ζq(x
′) 6=

ζp(x
′); a contradiction.

18 By (2.43), for all x in the range of ϕw , the length of chain(x) ≥ 2.
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Sub-subcase 1.3.2: q0 = w. Therefore, since ζq0(ζq′(x
′)) =

ζq(x
′) = ζp(x

′), ζq0(ζq′(x
′)) = ζw(ζq′(x

′)), and ζp(x
′) =

ζw(x
′), it follows that ζq(x

′) = ζw(x
′). However, ζq′(x

′) >
x′, and by Claim 2.38, it follows from the fact that ζw(x

′) =
ζw(ζq′(x

′)) that x′ = ζq′(x
′) — a contradiction.

Case 2: p 6= w and p 6∈ ρ(ϕw).
Subcase 2.1: q = w. The same argument holds as for Case 1.2, inter-
changing p and q.
Subcase 2.2: q 6= w and q 6∈ ρ(ϕw). Then by (2.39), ζp(x

′) = prime(p +

1)x
′
and ζq(x

′) = prime(q + 1)x
′
, thus prime(p + 1)x

′
= prime(q + 1)x

′
,

which implies that p = q, a contradiction.
Subcase 2.3: q ∈ ρ(ϕw). Let q0, . . . , qn = chain(q); then let q′ =
unchain(q1, . . . , qn). By Claim 2.37, ζq = ζq0 ◦ ζq′ . By Claim 2.39, for all
x ≥ x′, ζp′(x) is greater than x

′ and either odd or in the range of ϕw. By

Claim 2.35, q0 /∈ ρ(ϕTM
w ).

Sub-subcase 2.3.1: q0 = w. Then ζq(x
′) = ζw(ζq′(x

′)),
which is even per Claim 2.33. By the second clause of
(2.39), ζp(x

′) is odd; a contradiction to ζp(x
′) = ζq(x

′)
follows.
Sub-subcase 2.3.2: q0 = p. Then, as ζq(x

′) = ζq0(ζq′(x
′), it

follows that ζq(x
′) = prime(p+1)ζq′(x

′). Likewise, ζp(x
′) =

prime(p + 1)x
′
. Therefore, ζq′(x

′) = x′, which is a contra-
diction to Claim 2.39.
Sub-subcase 2.3.3: q0 6= w and q0 6= p. Then, by (2.39)
and the fact that ζq(x

′) = ζq0(ζq′(x
′)), ζq(x

′) is a power of

prime(q0 + 1) and ζp(x
′) is prime(p + 1)x

′
; thus ζq(x

′) 6=
ζp(x

′), a contradiction.
Case 3: p ∈ ρ(ϕw).

Subcase 3.1: q = w. The same argument holds as for Case 1.3, inter-
changing p and q.
Subcase 3.2: q 6= w and q 6∈ ρ(ϕw). The same argument holds as for case
two subcase three, interchanging p and q.
Subcase 3.3: q ∈ ρ(ϕw). Let p0, . . . , pm = chain(p), let q0, . . . , qn =
chain(q). Let p′ = unchain(p1, . . . , pm) and q′ = unchain(q1, . . . , qn). By
Claim 2.37, ζq = ζq0 ◦ ζq′ , and ζp = ζp0 ◦ ζp′ . By Claim 2.39, for all x ≥ x′,
ζp′(x) and ζq′(x) are both greater than x′ and either odd or in the range
of ϕw.

Sub-subcase 3.3.1: p0 = q0 6= w. Then, by (2.39), for
each x ≥ x′, ζp0(x) = ζq0(x) = prime(p0 + 1)x. Thus, for
each x ≥ x′, for each y ≥ x′ ∧ y 6= x, ζp0(x) 6= ζq0(y).
As it is the case that for all x ≥ x′, ζp′(x) and ζq′(x) are
both greater than x′, it then follows from the previous
equalities and inequalities about p0 and q0, as well as the
facts that ζq = ζq0 ◦ ζq′ , and ζp = ζp0 ◦ ζp′ , that (∀x ≥
x′)[ζp′(x) = ζq′(x)]. But since chain(p′) is shorter than
chain(p), this contradicts our assumption that p had the
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shortest chain such that there exists q 6= p and x′′ so that
(∀x ≥ x′′)[ζp(x) = ζq(x)].
Sub-subcase 3.3.2: p0 = q0 = w. By Claim 2.38 and the
fact that for all x ≥ x′, ζp′(x) and ζq′(x) are both greater
than x′ and either odd or in the range of ϕw, it follows
from reasoning similar to that of sub-subcase 3.3.1, that
for all x ≥ x′, ζp′(x) = ζq′(x), which again contradicts our
assumption that p had the shortest chain such that there
exists q 6= p and x′′ so that (∀x ≥ x′′)[ζp(x) = ζq(x)].
Sub-subcase 3.3.3: p0 6= q0, and neither p0 nor q0 is w.
Then, by (2.39) and the facts that ζp = ζp0 ◦ ζp′ and ζq =
ζq0 ◦ ζq′ , it follows that ζp(x

′) is a power of prime(p0 + 1),
and ζq(x

′) is a power of prime(q0+1); thus, ζp(x
′) 6= ζq(x

′),
a contradiction.
Sub-subcase 3.3.4: p0 6= q0, and p0 = w. Then, by
Claim 2.33 and the fact that ζp = ζp0 ◦ ζp′ , it follows that
ζp(x

′) is even. By Claim 2.35, q0 6∈ ρ(ϕw) and q0 6= w; thus
by (2.39), the fact that ζq = ζq0 ◦ ζq′ , and the fact that
ζq′(x

′) ≥ x′, it follows that ζq(x
′) is odd; a contradiction

to the assumption that ζp(x
′) = ζq(x

′).
Sub-subcase 3.3.5: p0 6= q0, and q0 = w. The same rea-
soning holds as for sub-subcase 3.3.4, with p and q inter-
changed.

Every case leads to a contradiction; thus the assumption is false, and the claim follows.
Claim 2.40

Claim 2.41. T 6⊢ ≪ (∃r, t 6= r)[ζr = ζt] ≫.

Proof of Claim 2.41. By Claim 2.40, if T ⊢ ≪ (∃r, t 6= r)[ζr = ζt] ≫, then (∀r′, t′ 6=

r′)(
∞
∃x)[ζr′(x) 6= ζt′(x)]. Thus, there does not exist r, t 6= r such that ζr = ζt. Since T does

not prove false things, the claim follows. Claim 2.41

Claim 2.42. ζ is acceptable.

Proof of Claim 2.42. By Claim 2.41, the third disjunct of the first clause of (2.39) is true for
all x. Thus, for all p and x, ζp(x) = ϕp(x); that is, ζ = ϕ, which is known to be acceptable.

Claim 2.42

The theorem follows immediately from Claims 2.32, 2.41, and 2.42 Theorem 2.21
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S. Feferman, editor, Kurt Gödel. Collected Works. Vol. I, pages 145–195. Oxford Univ. Press, 1986.
[13] P. Halmos. Naive Set Theory. Springer-Verlag, NY, 1974.
[14] T. Jech. Set Theory. Academic Press, NY, 1978.
[15] A. Kanamori. The Higher Infnite: Large Cardinals in Set Theory from their Beginnings. Springer-Verlag,

2008.
[16] R. Ladner. On the structure of polynomial time reducibility. Journal of the ACM, 22:155–171, 1975.
[17] M. Machtey. On the density of honest subrecursive classes. Technical report, Computer Science Depart-

ment, Purdue University, 1973.
[18] M. Machtey and P. Young. An Introduction to the General Theory of Algorithms. North Holland, New

York, 1978.
[19] Y. Marcoux. Composition is almost (but not quite) as good as s-1-1. Theoretical Computer Science,

120:169–195, 1993.
[20] E. Mendelson. Introduction to Mathematical Logic. Chapman & Hall, London, fifth edition, 2009.
[21] H. Putnam. What is innate and why: Comments on the debate. In M. Piattelli-Palmarini, editor,

Language and Learning: The Debate between Jean Piaget and Noam Chomsky, pages 287–309. Harvard
University Press, Cambridge, MA, 1980.

[22] G. Riccardi. The Independence of Control Structures in Abstract Programming Systems. PhD thesis,
SUNY Buffalo, 1980.

[23] G. Riccardi. The independence of control structures in abstract programming systems. Journal of Com-
puter and System Sciences, 22:107–143, 1981.
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