
Logical Methods in Computer Science
Vol. 12(2:8)2016, pp. 1–31
www.lmcs-online.org

Submitted Nov. 2, 2015
Published Jun. 23, 2016

TWO-VARIABLE LOGIC WITH COUNTING AND A LINEAR ORDER

WITOLD CHARATONIK AND PIOTR WITKOWSKI

Institute of Computer Science, University of Wroclaw, Poland
e-mail address: Witold.Charatonik@cs.uni.wroc.pl, pwit@pwit.info

Abstract. We study the finite satisfiability problem for the two-variable fragment of
first-order logic extended with counting quantifiers (C2) and interpreted over linearly
ordered structures. We show that the problem is undecidable in the case of two linear
orders (in the presence of two other binary symbols). In the case of one linear order it
is NExpTime-complete, even in the presence of the successor relation. Surprisingly, the
complexity of the problem explodes when we add one binary symbol more: C2 with one
linear order and in the presence of other binary predicate symbols is equivalent, under
elementary reductions, to the emptiness problem for multicounter automata.

1. Introduction

Since 1930s, when Alonzo Church and Alan Turing proved that the satisfiability problem
for first-order logic is undecidable, much effort was put to find decidable subclasses of this
logic. One of the most prominent decidable cases is the two-variable fragment FO2. FO2

is particularly important in computer science because of its decidability and connections
with other formalisms like modal, temporal or description logics or applications in XML
or ontology reasoning. The satisfiability of FO2 was proved to be decidable in [32, 24] and
NExpTime-complete in [9].

All decidable fragments of first-order logic have limited expressive power and a lot of
effort is being put to extend them beyond first-order logic while preserving decidability. Many
extensions of FO2, in particular with transitive closure or least fixed-point operators, quickly
lead to undecidability [8, 12]. Extensions that go beyond first order logic, but their (finite)
satisfiability problem remains decidable, include FO2 over restricted classes of structures
where one [16] or two relation symbols [17] are interpreted as equivalence relations (but
there are no other binary symbols); where one [26] or two relations are interpreted as linear
orders [31]; where two relations are interpreted as successors of two linear orders [21, 7, 4];
where one relation is interpreted as linear order, one as its successor and another one as
equivalence [1]; where one relation is transitive [33]; where an equivalence closure can be
applied to two binary predicates [15]; where deterministic transitive closure can be applied
to one binary relation [3]. It is known that the finite satisfiability problem is undecidable

2012 ACM CCS: [Theory of computation]: Logic.
Key words and phrases: Two-variable logic, counting quantifiers, linear order, satisfiability, complexity.
Research supported by NCN Grant no. 2011/03/B/ST6/00346.

LOGICAL METHODSl IN COMPUTER SCIENCE DOI:10.2168/LMCS-12(2:8)2016
c© W. Charatonik and P. Witkowski
CC© Creative Commons

http://creativecommons.org/about/licenses

2 W. CHARATONIK AND P. WITKOWSKI

for FO2 with two transitive relations [14], with three equivalence relations [16], with one
transitive and one equivalence relation [17], with three linear orders [13], with two linear
orders and their two corresponding successors [21]. A summary of complexity results for
extensions of FO2 with binary predicates being the order relations (in the absence of other
binary relations) can be found in [22].

When studying extensions of FO2 it is enough to consider relational signatures with
symbols of arity at most 2 [9]. Some of the above mentioned decidability results, e. g., [1,
3, 7, 21, 31], hold under the assumption that there are no other binary predicates in the
signature; some, like [4, 15, 16, 17, 26, 33] are valid in the general setting. Similarly, for
undecidability results additional binary symbols are required e. g., in [8, 12, 17], but not
required in [13, 14, 16, 21].

The two-variable fragment with counting quantifiers (C2) extends FO2 by allowing
counting quantifiers of the form ∃<k, ∃≤k, ∃=k, ∃≥k and ∃>k, for all natural numbers k. The
two problems of satisfiability and finite satisfiability for C2 (which are two different problems
as C2 does not have a finite model property) were proved to be decidable in [11]. Another
decidability proof together with a NExpTime-completeness result under unary encoding of
numbers in counting quantifiers can be found in [27]. Pratt-Hartmann in [28] established
NExpTime-completeness of both satisfiability and finite satisfiability under binary encoding
of numbers in counting quantifiers. All these algorithms are quite sophisticated, a significant
simplification can be found in [29]. There are not many known decidable extensions of
C2. In [4] it is shown that finite satisfiability for C2 interpreted over structures where
two binary relations are interpreted as forests of finite trees (which subsumes the case of
two successor relations on two linear orders) is NExpTime-complete. [30] shows that the
satisfiability and finite satisfiability problems for C2 with one equivalence relation are both
NExpTime-complete. All extensions of C2 mentioned above allow arbitrary number of other
binary relations.

In this paper we study extensions of C2 with linear orders. We show that the finite
satisfiability problem for C2 with two linear orders, in the presence of other binary predicate
symbols, is undecidable. For C2 with one linear order, even if the successor of this linear
order is present, in the absence of other binary predicate symbols, it is decidable and
NExpTime-complete. A surprising result is that when we add one more binary predicate
symbol, the complexity of the problem explodes: the finite satisfiability problem for C2

with one linear order and in the presence of one more binary predicate symbol is equivalent,
under elementary reductions, to the emptiness problem for multicounter automata. Thus it
is decidable, but as complex as the reachability problem for vector addition systems.

Multicounter automata (MCA) are a very simple formalism equivalent to Petri Nets and
vector addition systems (VAS) [25], which are used e. g., to describe distributed, concurrent
systems and chemical/biological processes. One of the main reasoning tasks for VAS is to
determine reachability of a given vector. It is known that this problem is decidable [18, 23, 19]
and ExpSpace-hard [20], but precise complexity is not known, and after over 40 years of
research it is even not known if the problem is elementary. We present a reduction from
the emptiness problem of MCA (which is equivalent to the reachability for VAS) to finite
satisfiability of C2 with one linear order and one more binary predicate symbol. Although we
show that C2 with one linear order and its successor, in the presence of arbitrary number of
binary predicate symbols is decidable, it is very unlikely that it has an elementary decision
algorithm since existence of such an algorithm implies existence of an elementary algorithm
for VAS reachability.

The current paper is a revised and extended version of [5].

TWO-VARIABLE LOGIC WITH COUNTING AND A LINEAR ORDER 3

2. Preliminaries

We will consider finite satisfiability problems for the two-variable logic with counting (C2

for short) over finite structures, where some distinguished binary symbols are interpreted
as linear orders or successors of linear orders. We will be interested in largest antireflexive
relations < contained in linear orders ≤; for a linear order ≤ we write a < b iff a ≤ b
and a 6= b. In the rest of the paper by a linear order we mean the relation < rather
than ≤. We use symbols <, <1, <2 to denote linear orders and +1, +11, +12 to denote their
respective successors. Given a finite signature Σ we write O(Σ, <,+1) to denote the class of
finite structures over Σ, where < is interpreted as a linear order and +1(x, y) means that
y is a successor of x in this order. We also adopt a similar notation for other classes of
structures. Logics we consider will be denoted by C2 (#u,#b, I), where #u,#b ∈ N ∪ {∗}
denote the number of unary resp. binary symbols allowed in formulas, and I is the signature
of distinguished binary symbols. We use * to denote that #u resp. #b are unbounded and
we do not count the size of I in #b.

Specifically, we will be interested in the following logics: C2 (∗, ∗, {<}), C2 (∗, ∗, {<,+1})
and C2 (∗, 2, {<1, <2}). By C2 (∗, ∗, {<}) we mean the logic C2 over a signature that contains
an arbitrary number of unary and binary predicates, and < is interpreted as a linear order.
The definition of C2 (∗, ∗, {<,+1}) is similar, with the exception that +1 is interpreted as
the successor of <. The logic C2 (∗, 2, {<1, <2}) allows an arbitrary number of unary and
at most 4 binary symbols, two of them are interpreted as linear orders. Notice that we do
not allow constant symbols in signatures, but this does not cause loss of generality since
constants can be simulated by unary predicates and counting quantifiers.

3. Two linear orders

We start with the observation that the induced successor relation of a linear order can be
expressed in C2 (∗, ∗, {<}). More precisely, let s be a non-distinguished binary predicate.
The following lemma says that s can be defined to mean the successor of < in C2 (∗, 1, {<}).
Intuitively, it is enough to state that s is a subrelation of < such that each element (with
the exception of the least and the greatest one) has exactly one s-successor and exactly one
s-predecessor.

Lemma 3.1. There exists a formula ϕs of C2 (∗, 1, {<}) such that for every finite struc-
ture M, we have M |= ϕs if and only if sM is the induced successor relation of <M.

Proof. Define ϕs as conjunction of the following three formulas.

∀x∀y.s(x, y)→ x < y (3.1)

∀x. (∀y.y < x ∨ y = x) ∨ ∃=1y.s(x, y) (3.2)

∀y. (∀x.y < x ∨ y = x) ∨ ∃=1x.s(x, y) (3.3)

Conjunct (3.1) of ϕs says that sM is a subrelation of <M. Conjuncts (3.2) and (3.3)
state that every non-least (respectively, non-greatest) element w.r.t. <M has precisely one
s-successor (respectively, s-predecessor).

Let M be a finite model of ϕs and let e1 be the least w.r.t. <M element of M. By
a simple inductive argument we can construct a sequence e1, . . . ek of elements of M such
that sM(ei, ei+1) holds for all i ∈ {1, . . . , k − 1} and ek is the greatest element in M. By
conjuncts (3.2) and (3.3) no element occurs more than once in this sequence.

4 W. CHARATONIK AND P. WITKOWSKI

Observe that if the sequence e1, . . . ek contains all elements ofM then sM is the induced
successor relation of <M. Now, seeking for contradiction, assume that e is an element of M
that does not appear in the sequence. Then, again by induction, we can construct another
finite sequence that contains e, is disjoint with e1, . . . ek (so it contains neither the least not
the greatest element inM), and where every element has an s-successor and an s-predecessor.
It follows that the second sequence is an s-cycle, which contradicts conjunct (3.1).

For the other direction, ifM is such that sM is the successor relation of linear order <M,
then it can be checked by inspection that M |= ϕs.

Corollary 3.2. Finite satisfiability of C2 (∗, ∗, {<,+1}) is reducible in linear time to finite
satisfiability of C2 (∗, ∗, {<}). Finite satisfiability of C2 (∗, 0, {<1,+11, <2,+12}) is reducible
in linear time to finite satisfiability of C2 (∗, 2, {<1, <2}).

Since FO2 (∗, 0, {<1,+11, <2,+12}), i. e., the two-variable logic with two linear orders
and their corresponding successors, is undecidable [21], we have the following conclusion.

Corollary 3.3. Finite satisfiability problem of C2 (∗, ∗, {<1, <2}) is undecidable. This
remains true even for C2 (∗, 2, {<1, <2}).

Remark 3.4. Observe that the proof of Lemma 3.1 works also in a setting where the symbol
< is interpreted as an arbitrary acyclic relation (a relation is acyclic if its diagram is an
acyclic graph). Actually, assuming that <M is an acyclic relation, the formula ϕs forces it
to be the linear order induced by sM.

4. C2 (∗, 0, {<,+1}) is NExpTime-complete

We will show that finite satisfiability problem for C2 (∗, 0, {<,+1}) is NExpTime-complete.
Since the lower bound follows from the complexity of FO2 with only unary predicates [6,
Theorem 11], we will concentrate on proving the upper bound. The proof presented here is
inspired by a corresponding result [2] on FO2 on finite trees: we bring the input formula to
a normal form and then check its local and global consistency, using a notion of types that
is similar to the one introduced in [2] .

We will be interested in C2 (∗, 0, {<,+1}) formulas ϕ in normal form

ϕ = ∀x∀y.χ(x, y) ∧
m∧
h=1

∀x∃lhChy.χh(x, y), (4.1)

where χ, χ1, . . . , χm are quantifier-free formulas. Here symbols lh, for h = {1, . . . ,m},
denote either ≤ or ≥, and C1, . . . , Cm are positive integers encoded in binary. We refer
to the number c = max{Ch | h ∈ {1, . . . ,m}} as the height of the formula ϕ. It is well
known [10, Theorem 2.2] that by adding additional unary predicates each C2 formula ϕ
can be transformed in polynomial time to a formula in normal form that is equisatisfiable
with ϕ over models of cardinality at least c.

Observe that C2 (∗, 0, {<,+1}) may be seen as a fragment of the weak monadic second-
order logic with one successor WS1S, where unary relations are simulated by second-order
existential quantifiers and counting quantifiers by first-order ones (e.g., a formula of the
form ∃≤kx.χ(x) can be replaced by an equivalent formula with k + 1 universal quantifiers).
However, this view leads to formulas with three alternations of quantifiers that can be
checked for satisfiability in 4ExpTime, which is not a desired complexity bound.

TWO-VARIABLE LOGIC WITH COUNTING AND A LINEAR ORDER 5

Because an element of a model of ϕ may require up to c witnesses for satisfaction, we will
be interested in multisets counting these witnesses. Let Nc = {n ∈ N | n ≤ c} ∪ {∞}. For
k, k′ ∈ Nc define cutc(k) = k if k ≤ c and cutc(k) =∞ if k > c. Define k⊕c k′ = cutc(k+k′).
A c-multiset of elements from a given set A is any function f : A→ Nc. For a given element
a in A, the singleton {a} is the multiset defined by {a}(x) = 1 if x = a and {a}(x) = 0
for x 6= a. The union of two multisets f and g is a function denoted f ∪ g such that
(f ∪ g)(x) = f(x)⊕c g(x). We say that f is a submultiset of g, written f ⊆ g, if f(a) ≤ g(a)
for all a ∈ A. The empty multiset, denoted ∅, is the constant function equal 0 for all
arguments. The following fact is obvious.

Fact 4.1. Every ascending (resp. descending) w.r.t. ⊆ chain of c-multisets consists of at
most |A| ∗ (c+ 2) distinct elements.

Let us call maximal consistent formulas specifying the relative position of a pair of
elements in a structure in O(Σ, <,+1) order formulas. There are five possible order for-
mulas: x=y ∧ ¬+1(y, x) ∧ ¬+1(x, y) ∧ y 6<x ∧ x 6<y, x 6=y ∧+1(y, x) ∧ ¬+1(x, y) ∧ y<x ∧ x 6<y,
x 6=y ∧ +1(x, y) ∧ ¬+1(y, x) ∧ x<y ∧ y 6<x, x 6=y ∧ ¬+1(x, y) ∧ ¬+1(y, x) ∧ x<y ∧ y 6<x, and
x 6=y ∧ ¬+1(x, y) ∧ ¬+1(y, x) ∧ y<x ∧ x 6<y. They are denoted, respectively, as: θ=, θ−1, θ+1,
θ<, θ>. Let Θ be the set of these five formulas.

A 1-type over the signature Σ is a maximal consistent conjunction of atomic and negated
atomic formulas over Σ involving only the variable x. The set of all 1-types over Σ will be

denoted Π(Σ). The family of all c-multisets of 1-types over the signature Σ is denoted NΠ(Σ)
c .

To be able to check local consistency of a formula (see Definition 4.4 below) we introduce
the notion of a full type. Intuitively, a full type of an element e in a structure contains
enough information to check that the formula is (locally) true in e. The information stored
in the full type of e tells us about 1-types of all other elements e′ in the structure, divided
into five multisets depending on relative positions of e and e′.

Definition 4.2 (Full type over Σ w.r.t. c). A full type over Σ w.r.t. c is a function

σ : Θ → NΠ(Σ)
c , such that σ(θ−1) and σ(θ+1) are singletons or empty, and σ(θ=) is a

singleton.

Definition 4.3 (Full type in A w.r.t. c). Let A be a structure over a signature Σ and let a

be an element of A. The full type of a in A, denoted ftA(a) is the function σ : Θ→ NΠ(Σ)
c

such that

• σ(θ=) is the singleton of the 1-type of a in A,
• σ(θ−1) is the singleton of the 1-type of the predecessor of a (if a has a predecessor) or

empty multiset (if a has no predecessor),
• σ(θ+1) is the singleton of the 1-type of the successor of a (if a has a successor) or empty

multiset (if a has no successor),
• σ(θ<) is the c-multiset of 1-types of elements strictly smaller than a in A, excluding the

predecessor (if it exists), and
• σ(θ>) is the c-multiset of 1-types of elements strictly greater than a in A, excluding the

successor (if it exists).

A structure A is said to realise a full type σ if ftA(a) = σ for some a ∈ A. In the following we
identify a full type σ, which is a function, with the tuple 〈σ(θ−1), σ(θ=), σ(θ+1), σ(θ<), σ(θ>)〉.

Let σ be a full type w.r.t. c such that σ(θ=) = {π} and let ∀x∃lhChy.χh(x, y) be a
conjunct in ϕ. The following five functions are used to count witnesses w.r.t. this conjunct

6 W. CHARATONIK AND P. WITKOWSKI

for elements of full type σ.

Wχh
= (σ) =

{
1 if π(x) |= χh(x, x)

0 otherwise

Wχh
−1 (σ) =

{
1 if σ(θ−1) = {π′} and π(x) ∧ π′(y) ∧ θ−1(x, y) |= χh(x, y)

0 otherwise

Wχh
+1 (σ) =

{
1 if σ(θ+1) = {π′} and π(x) ∧ π′(y) ∧ θ+1(x, y) |= χh(x, y)

0 otherwise

Wχh
< (σ) = cutc

(∑
π′:π(x)∧π′(y)∧θ<(y,x)|=χh(x,y)

(σ(θ<))(π′)
)

Wχh
> (σ) = cutc

(∑
π′:π(x)∧π′(y)∧θ>(y,x)|=χh(x,y)

(σ(θ>))(π′)
)

Note that in the definition above (σ(θ>))(π′) is simply the number of occurrences of the
1-type π′ in the multiset σ(θ>).

The following definition and lemma formalise local consistency of a formula.

Definition 4.4 (Compatible full types). Let σ be a full type w.r.t. c such that σ(θ=) = {π}
and let ϕ be a formula of height c in normal form (4.1). We say that σ is compatible with ϕ
if the following conditions are satisfied.

• π(x) |= χ(x, x),
• π(x) ∧ π′(y) ∧ θ(x, y) |= χ for all θ ∈ {θ−1, θ+1, θ<, θ>} and all π′ ∈ σ(θ), and
• for each conjunct ∀x∃lhChy.χh(x, y) of ϕ we have

Wχh
= (σ) +Wχh

−1 (σ) +Wχh
+1 (σ) +Wχh

< (σ) +Wχh
> (σ) lh Ch

It is quite obvious that whenever A |= ϕ, all full types realised in A are compatible with ϕ.
It is not difficult to see that the converse is also true, as the following lemma says.

Lemma 4.5. For any ordered structure A and any C2 (∗, 0, {<,+1}) formula ϕ in normal
form, if all full types realised in A are compatible with ϕ then A |= ϕ.

Proof. Take arbitrary two elements of the structure A. If the two elements are equal then
the first item of Definition 4.4 guarantees that they satisfy the conjunct χ of ϕ. If they are
different, χ is satisfied by the second item. In any case, the conjunct χ is satisfied. Similarly,
take any element e of the structure and consider any conjunct ∀x∃lhChy.χh(x, y) of ϕ. Each
element e′ such that A |= χ(e, e′) belongs to exactly one of the five sets: the singleton of e,
the singleton of the predecessor of e, the singleton of the successor of e, elements smaller
than the predecessor of e and the elements greater than the successor of e. The five functions
used in the third item of Definition 4.4 correctly (up to c) count the number of such elements
e′ in these five sets. Since the constant Ch does not exceed c, the the condition in the third
item guarantees that the conjunct is satisfied.

TWO-VARIABLE LOGIC WITH COUNTING AND A LINEAR ORDER 7

To be able to check global consistency of a formula (see Lemma 4.6 below) we introduce
the notion of the graph GΣ,c. It is the graph 〈V,E〉 where the set V of nodes is the set of
full types over Σ w.r.t. c and the set E of edges is defined as follows.

〈〈Π−1, {π}, {π+1},Π<,Π>〉, 〈{π}, {π+1},Π′+1,Π
′
<,Π

′
>〉〉 ∈ E iff Π′< = Π< ∪Π−1 and

Π> = Π′> ∪Π′+1

Intuitively, a path in this graph describes a possible evolution of full types in a structure.
Each edge in the graph describes the change in a full type when we move from an element
in the structure to its successor: (the singleton containing the 1-type of) the successor is
moved to the position of current element; the current element is moved to the predecessor
position; the predecessor is added to (the multiset of the 1-types of the) strictly smaller
elements; and finally the multiset of strictly greater elements is split into the new multiset
of strictly greater elements and the new successor element.

We define the graph GϕΣ,c as the subgraph of GΣ,c consisting of nodes compatible with ϕ.

The nodes of the form 〈∅, . . . , . . . , ∅, . . .〉 are called source nodes; the nodes of the form
〈. . . , . . . , ∅, . . . , ∅〉 are called target nodes. Intuitively, a source node corresponds to a full
type of the least element in some model of ϕ while a target node corresponds to the greatest
element in some model.

Lemma 4.6. Let ϕ be a C2 (∗, 0, {<,+1}) formula of height c in normal form, over signa-
ture Σ. Then ϕ is finitely satisfiable if and only if there exists a path from a source node to
a target node in the graph GϕΣ,c.

Proof. First, assume that ϕ is finitely satisfiable, and let A be a model of ϕ. Let a1, . . . , ak
be all elements of A ordered w.r.t. <A. Then ftA(a1), . . . , ftA(ak) is a path from a source
node to a target node in GϕΣ,c.

Second, assume that there exists a path σ1, . . . , σk from a source node to a target node
in GϕΣ,c. We will construct a structure A over elements a1, . . . ak such that A |= ϕ. Let the
universe of A consist of k distinct elements a1, . . . ak. Define unary predicates in A in such
a way that for all i ∈ {1, . . . , k} the 1-type of ai coincides with σi(θ=). Then define the
relation +1A as {〈ai, ai+1〉 | 1 ≤ i ≤ k − 1} and <A as the transitive closure of +1A.

The definition of +1A guarantees that for θ ∈ {θ−1, θ+1} and for all i we have σi(θ) =
ftA(ai)(θ). A simple inductive proof shows that σi coincides with ftA(ai) on θ< and θ>, too.
Since σ1 is a source node, σ1(θ<) is the empty multiset, which coincides with the value of
ftA(a1) on θ<. In the inductive step, assuming that σi(θ<) and ftA(a1)(θ<) coincide, we
show the same for σi+1 and ftA(ai+1): both the edge relation E and the definition of full
types require that the values of σi+1 and ftA(ai+1) on θ< are the c-multiset union of the
value of σi on θ< with the singleton of the 1-type of the predecessor of ai. The case of the
value on θ> is symmetric: the induction starts in k with empty multisets and goes down to 1
adding in each step respective successors. This shows that ftA(ai) = σi for all i ∈ {1, . . . , k}.
Therefore all full types realised in A are compatible with ϕ and by Lemma 4.5 we have
A |= ϕ.

Lemma 4.6 leads us directly to the main theorem of this section. To check satisfiability
of a formula in C2 (∗, 0, {<,+1}) it is enough to guess an appropriate path in GϕΣ,c. Moreover,
it is enough to use only exponentially many different full types in the guessed path.

Theorem 4.7. The finite satisfiability problem for C2 (∗, 0, {<,+1}) is NExpTime-complete.

8 W. CHARATONIK AND P. WITKOWSKI

Proof. The lower bound follows from the complexity of the finite satisfiability problem for
FO2 with only unary predicates. For the upper bound, an algorithm for deciding finite
satisfiability of C2 (∗, 0, {<,+1}) works as follows. It takes a C2 (∗, 0, {<,+1}) formula ψ and
converts it to a normal form ϕ (in polynomial time). It also checks (by nondeterministic
guessing) if there exists a model of ψ of cardinality at most c, where c is the height of ϕ.
Then the algorithm guesses a path from a source node to a target node in GϕΣ,c where Σ
is the signature of ϕ. This requires in particular verification of the fact that all nodes are
compatible with ϕ.

All this can be accomplished in time polynomial in the size of the graph. This size
is potentially doubly exponential in |ϕ|: the number of all 1-types over Σ is exponential
in |ϕ|, so the number of sets of 1-types, and, in consequence, the number of full types, is
doubly exponential. The potential 2NExpTime complexity of the algorithm can be lowered
to NExpTime using the observation that the θ< and θ> components of full types behave in
a monotone way along any path connecting any source node with any target node. The θ<
component may only increase and θ> only decrease along any such path. Thus multisets on a
path form an ascending resp. descending chain, and by Fact 4.1 there are only O(|Π(Σ)| ∗ c)
such multisets occurring along the path. Therefore it is enough to guess only exponentially
many (in |ϕ|) different full types.

5. Hardness of C2 (∗, 1, {<})

In this section we show that the finite satisfiability problem for C2 (∗, 1, {<}), with a
binary relation s, is at least as hard as non-emptiness of multicounter automata. Similar
reductions from emptiness of multicounter automata in this context can be found e.g. in [1]
and [22]. Here, for a given multicounter automaton M , we first construct a C2 (∗, 1, {<,+1})
formula ϕM which has a finite model if and only if M is non-empty. Then, using the idea
from Section 3, we argue that the reduction can be modified to work for C2 (∗, 1, {<}).

We adopt a notion of multicounter automata (MCA for short) similar to one in [1] or [22],
but with empty input alphabet and simplified counter manipulation. The exposition below
closely follows the one from the long version of [22]. Intuitively, an MCA is a finite state
automaton without input but equipped with a finite set of counters which can be incremented
and decremented, but not tested for zero. More formally, a multicounter automaton M is a
tuple 〈Q,C,R, δ, qI , F 〉, where the set Q of states, the initial state qI ∈ Q and the set F ⊆ Q
of final states are as in usual finite state automata, C is a finite set (the counters) and R is
a subset of C. The transition relation δ is a subset of

Q× {inc(c), dec(c), skip | c ∈ C} ×Q.
An MCA is called reduced if it does not have skip transitions and R = C (in this case we
just omit the R component of tuple M).

A configuration of a multicounter automaton M is a pair 〈p, ~n〉 where p is a state and
~n ∈ NC gives a value ~n(c) for each counter c in C. Transitions with inc(c) and skip can
always be applied, whereas transitions with dec(c) can only be applied to configurations with
~n(c) > 0. Applying a transition 〈p, inc(c), q〉 to a configuration 〈p, ~n〉 yields a configuration
〈q, ~n0〉 where ~n0 is obtained from ~n by incrementing its c-th component and keeping values
of all other components unchanged. Analogously, applying (an applicable) transition
〈p, dec(c), q〉 to a configuration 〈p, ~n〉 yields a configuration 〈q, ~n0〉 where ~n0 is obtained
from ~n by decrementing its c-th component. Transitions with skip do not change value

TWO-VARIABLE LOGIC WITH COUNTING AND A LINEAR ORDER 9

of any counter in C. A run is an interleaving sequence of configurations and transitions
conf 1, trans1, . . . , transk−1, conf k such that trans i applied to conf i gives conf i+1, for 1 ≤
i < k. A run is accepting, if it starts in configuration 〈qI ,~0〉 and ends in some configuration
〈qF , ~nF 〉 with qF ∈ F and ~nF (c) = 0 for every c ∈ R (note that for counters c ∈ C \R the
value ~nF (c) may be arbitrary). The emptiness problem for multicounter automata is the
question whether a given automaton M has an accepting run. It is well known that this
problem (for both MCA and reduced MCA) is decidable, as it is polynomial-time equivalent
to the reachability problem in Vector Addition Systems/Petri Nets[18, 23].

Definition 5.1. Let M = 〈Q,C, δ, qI , F 〉 be a reduced MCA. Let Σ = {q | q ∈ Q} ∪
{incc, decc | c ∈ C} ∪ {min,max, <,+1, s} where predicates q, incc, decc,min and max are
unary and <,+1 and s are binary. Define ϕM as the conjunction of the following Σ-formulas.

(1) ∃=1x.min(x) ∧ ∃=1x.max(x)
(2) ∀x∀y. (min(x)→ (x < y ∨ x = y)) ∧ (max(x)→ (y < x ∨ y = x))

(3) ∀x.
(∨

q∈Q q(x)
)
∧
∧
q∈Q

(
q(x)→

∧
q′∈Q\{q} ¬q′(x)

)
(4) ∀x. (min(x)→ qI(x)) ∧

(
max(x)→

∨
qF∈F qF (x)

)
(5) ∀x∀y.+1(x, y)→∨

〈q,inc(c),q′〉∈δ (q(x) ∧ incc(x) ∧ q′(y)) ∨
∨
〈q,dec(c),q′〉∈δ (q(x) ∧ decc(x) ∧ q′(y))

(6) ∀x. (¬max(x))→
∨
c∈C (incc(x) ∨ decc(x))

(7) ∀x.
∧
c∈C

(
incc(x)→ ¬decc(x) ∧

∧
c′∈C\{c} (¬decc′(x) ∧ ¬incc′(x))

)
(8) ∀x.

∧
c∈C

(
decc(x)→ ¬incc(x) ∧

∧
c′∈C\{c} (¬incc′(x) ∧ ¬decc′(x))

)
(9) ∀x.max(x)→

∧
c∈C (¬incc(x) ∧ ¬decc(x))

(10) ∀x∀y.s(x, y)→
∨
c∈C (incc(x) ∧ decc(y))

(11) ∀x∀y.s(x, y)→ x < y
(12) ∀x.

(
max(x) ∨ ∃=1y. (s(x, y) ∨ s(y, x))

)
We will interpret ϕM as a C2 (∗, 1, {<,+1}) formula. Models of ϕM encode accepting

runs of MCA M . The first two conjuncts of ϕM define the meaning of the auxiliary predicates
min and max; they hold for the least (resp. the greatest) element of a model. Each element
of the model corresponds to precisely one state q ∈ Q, as specified by Conjunct 3. Thus
the model is just a sequence of states. The first of them must be the starting state qI and
the last must be a final state qF ∈ F , as defined by Conjunct 4. Every two consecutive
elements of the model form a transition. A state in which the transition is fired is marked
by predicate of the form incc or decc denoting a counter to increment or decrement; this is
specified by Conjunct 5. Every state, with the exception of the last one, must be labelled by
precisely one predicate of the form incc or decc, as expressed by Conjuncts 6–8. The last
element is not labelled by any of these predicates (Conjunct 9), as no transition is fired there.
Since the values of all counters in starting and final state is 0 and no counter may fall below
0, each incrementation of a counter c must be eventually followed by its decrementation,
and conversely, each decrementation of c must be preceded by its incrementation. We
use the relation s to match these increments and decrements, as stated in Conjunct 10.
Conjunct 11 states that decrementation of a counter indeed follows its incrementation. Since
each state, except the final one, is a starting state of some transition, it either corresponds
to incrementation or decrementation of some counter. Therefore it emits or accepts precisely

10 W. CHARATONIK AND P. WITKOWSKI

one edge labelled s, as stated by Conjunct 12 of ϕM . Formally, we have the following lemma
and a corollary that results from it.

Lemma 5.2. Let M = 〈Q,C, δ, qI , F 〉 be a reduced multicounter automaton and let ϕM be
the C2 (∗, 1, {<,+1}) formula constructed in Definition 5.1. Formula ϕM is finitely satisfiable
if and only if M is non-empty.

Proof. First, assume that M is non-empty. Then M has an accepting run of the form
conf 1, trans1, . . . , transk−1, conf k, where conf i = 〈qi, ~ni〉 for i ∈ {1, . . . , k}, and trans i =
〈qi, inc(ci), qi+1〉 or trans i = 〈qi, dec(ci), qi+1〉, for i ∈ {1, . . . , k − 1}. We will construct a
structure A on elements e1, . . . , ek and show that A models ϕM . Define (<)A = {〈ei, ej〉 |
i, j ∈ {1, . . . , k}, i < j} and (+1)A = {〈ei, ei+1〉 | i ∈ {1, . . . , k − 1}}. Label e1 by predicate
min and ek by max. This leads to satisfaction of Conjuncts 1 and 2 of ϕM . Label each
element ei by qi, for i ∈ {1, . . . , k}. This leads to satisfaction of Conjunct 3. Conjunct 4
says that e1 should be labelled by qI and ek by some qF with qF ∈ F . Since run r is
accepting, indeed we have qI = q1 and qk ∈ F and thus Conjunct 4 is satisfied by A. For
each i ∈ {1, . . . , k − 1} label the element ei by incci if trans i = 〈qi, inc(ci), qi+1〉 or by decci
if trans i = 〈qi, dec(ci), qi+1〉. This leads to satisfaction of Conjuncts 5–9. Finally we define
relation sA in such a way that it connects ei with ej if transj decrements the same counter
that is incremented by trans i and the value of the counter after firing transj is for the first
time equal to the value before firing trans i. Formally,

sA(ei, ej) iff i < j,

trans i = 〈qi, inc(ci), qi+1〉,
transj = 〈qj , dec(cj), qj+1〉,
ci = cj , and

j = min{l | l > i ∧ ~nl+1(ci) = ~ni(ci)}.
Conjuncts 10 and 11 of ϕM are satisfied by construction. In the last configuration all counters
have value 0, so each incrementation of a counter has a later matching decrementation of
the same counter. Similarly, in the first configuration all counters have value 0, so each
decrementation of a counter has an earlier matching incrementation of the same counter.
Therefore Conjunct 12 is also satisfied.

Second, assume that ϕM is finitely satisfiable and let A be a model of ϕM . We will
show that MCA M is non-empty. Assume that elements of A sequenced in order (<)A are
e1, . . . , ek. By Conjunct 3 of ϕM there exist a sequence of M states q1, . . . , qk such that
qAi (ei) hold for every i ∈ {1, . . . , k}. By Conjuncts 6–9 each ei with i < k is labelled by
precisely one predicate of the form incAc (ei) or decAc (ei). For i ∈ {1, . . . , k} let

conf i = 〈qi, ~ni〉, where for every c ∈ C
~ni(c) = |{ej ∈ A | j < i and relation sA(ej , el) holds for some l ≥ i}|.

For i ∈ {1, . . . , k − 1} let

trans i = 〈qi, inc(c), qi+1〉 provided that incAc (ei) holds, or

trans i = 〈qi, dec(c), qi+1〉 provided that decAc (ei) holds for some c ∈ C.
The accepting run r of M is

conf 1, trans1, . . . , transk−1, conf k.

TWO-VARIABLE LOGIC WITH COUNTING AND A LINEAR ORDER 11

We will show that r is an accepting run. First we prove that it is a run of M . Assume that
for some i < k sequence conf 1, trans1, . . . , trans i−1, conf i forms a run. We will show that
trans i is applicable to configuration conf i. This is clear when trans i = 〈qi, inc(c), qi+1〉, for
some c ∈ C. Otherwise trans i = 〈qi, dec(c), qi+1〉. Therefore decAc (ei) holds. Since i < k, by
Conjunct 12 of ϕM , element ei emits or accepts precisely one s edge. Because it corresponds
to decrementation of c, by Conjunct 10 it must accept s edge from some element ej . By
Conjunct 11 we have j < i. Therefore, by definition of ~ni we have ~ni(c) > 0. Thus trans i
is applicable to conf i and conf 1, trans1, . . . , trans i−1, conf i, trans i, conf i+1 indeed forms a
run.

Clearly, q1 = qI and qk ∈ F , by Conjunct 4. Moreover, ~n1 = ~0 and ~nk = ~0, thus conf 1

and conf k are starting and resp. final configuration. Thus run r is accepting and M is a
non-empty MCA.

Corollary 5.3. The finite satisfiability problem for C2 (∗, 1, {<,+1}) is at least as hard as
the emptiness problem for multicounter automata.

The result above can be strengthened by observing that +1 symbol is not necessary.
Without this symbol in the signature we may still encode accepting runs of multicounter
automata in C2 (∗, 1, {<}) by complicating slightly the definition of the predicate s. In
the new encoding its purpose is not only to provide correspondence between increase and
decrease of a counter but also to encode the successor relationship between elements of
a structure. This, however, requires a slight change in a way we encode accepting runs.
In Definition 5.1 a run conf 1, trans1, . . . , trans i−1, conf i, transk−1, conf k is represented as a
structure with k elements, where the i-th element (for i < k) represents both the state of
conf i and the counter manipulation defined by transition trans i. In the modified encoding we
separate elements representing states and transitions. In a C2 (∗, 1, {<}) formula we say that
every element representing a state (with the exception of first and last one) has precisely one
s edge to- and from- an element representing transition. Similarly, every transition element
has precisely one s edge to- and from- a state element. Since we still require that s(x, y)
implies x < y, it follows that a state element x (resp. a transition element) is connected to
a transition element y (resp. a state element) by an s edge if and only if y is the successor
of x w.r.t. < (we have seen a formula that specifies a similar property in Section 3). The
formula does not constrain in any way s edges between two transition elements. Thus we
may expand the formula with conjuncts that use s edges to match an increase of a counter
in a transition with a decrease of the same counter in some following transition. This leads
to the following corollary.

Theorem 5.4. The finite satisfiability problem for C2 (∗, 1, {<}) is at least as hard as the
emptiness problem for multicounter automata.

Note that by Remark 3.4 we have the following corollary.

Corollary 5.5. The finite satisfiability problem for C2 (∗, 2, {≺}), where ≺ is interpreted as
an acyclic relation, is at least as hard as the emptiness problem for multicounter automata.

6. Satisfiability of C2 (∗, ∗, {<,+1})

In this section we show that the finite satisfiability problem of C2 (∗, ∗, {<,+1}) is decidable.
Here again the algorithm consists of three parts: we bring the input formula to a normal

12 W. CHARATONIK AND P. WITKOWSKI

form and then we check its local and global consistency. Local consistency is checked using
frames that store information about possible types in a structure. Global consistency is
checked using multicounter automata. Compared to the previous section, both types and
automata are much more complicated.

6.1. Normal form of C2 formulas. For a natural number n denote by n the set {1, . . . , n}.
We will assume that input C2 (∗, ∗, {<,+1}) formula ϕ is in a normal form

ϕ = ∀x∀y.(α(x, y) ∨ x = y)∧
∧
h∈m
∀x∃=1y.(fh(x, y) ∧ x 6= y) (6.1)

where α is a quantifier-free formula with unary and binary predicate symbols and f1, . . . , fm
are binary predicates. By a routine adaptation of transformation in [10] we may convert
each C2 formula to an exponentially larger C2 formula ϕ′ in normal form, such that ϕ and ϕ′

are equisatisfiable (on structures of cardinality > 1).

Remark 6.1. In Section 4 we use a notion of normal forms for C2 formulas with only
polynomial blowup. Here, for simplicity of presentation, we decided to employ the one with
exponential blowup. Since there is no elementary upper bound on the complexity of the
problem to which we reduce our logic, the construction in the present section would not
benefit from the usage of a more succinct normal form.

6.2. 2-types and message types. To be able to reason about local consistency of a
formula we introduce several (standard in finite-model theory) notions of types, often
following notations from [29]. Intuitively, a 2-type defined below is a generalisation of an
order formula from Section 4. It contains enough information to check whether the conjunct
α from a formula in normal form (6.1) is locally true and if a given element is a witness for
another element w.r.t. a conjunct ∀x∃=1y.(fh(x, y)∧x 6= y). Star types defined in Section 6.4
generalise full types from Section 4 and contain enough information to check if an element
has the right number of witnesses.

Fix a finite signature Σ. A 2-type is a maximal consistent conjunction of atomic and
negated atomic formulas over Σ involving only the variables x and y and satisfying three
additional restrictions: first, it contains ¬(x = y); second, whenever it contains +1(x, y) or
+1(y, x), it also contains respectively x < y or y < x; and third, it contains either x < y or
y < x, but not both. We will identify a 1-type π (resp. a 2-type τ) with the set of positive
atomic formulas occurring in π (resp. in τ). Each 2-type τ(x, y) uniquely determines two
1-types of x and y, respectively, that we denote tp1(τ) and tp2(τ). For a 2-type τ , the 2-type
obtained by swapping the variables x and y is denoted τ−1. The symbol T (Σ) denotes the
set of of 2-types over Σ.

For a structure A over the signature Σ and an element e ∈ A, tpA(e) denotes the unique
1-type π ∈ Π(Σ) such that A |= π(e). Similarly, for e1, e2 ∈ A, tpA(e1, e2) is the unique
2-type τ ∈ T (Σ) such that A |= τ(e1, e2). If A |= τ(e1, e2), we say that e1 emits the type τ
and e2 accepts it and that τ originates in e1. A 1-type π (resp. 2-type τ) is realised in A
if π = tpA(e) (resp. τ = tpA(e1, e2)) for some e ∈ A (resp. e1, e2 ∈ A, with e1 6= e2). The
symbols Π(A) and T (A) denote respectively the set of 1-types and the set of 2-types over Σ
realised in A. A 1-type κ ∈ Π(Σ) that has only one realisation in a structure A is said to be
a royal 1-type in A. If an element e of A realises a royal 1-type then it is said to be a king
in A. Any structure may have multiple kings.

TWO-VARIABLE LOGIC WITH COUNTING AND A LINEAR ORDER 13

If Σ is a relational signature and f = f1, . . . , fm is a sequence of distinct binary
predicates in Σ, then the pair 〈Σ, f〉 is called a classified signature. Let 〈Σ, f̄〉 be a classified
signature and let τ(x, y) be a 2-type over Σ. We say that τ is a message type over 〈Σ, f̄〉 if
f(x, y) ∈ τ(x, y) for some predicate f in f̄ . Predicates in f̄ will be called message predicates.
Given a structure A over the signature 〈Σ, f̄〉 and an element a ∈ A, we want to capture
message types connecting a to other elements of A and all 2-types connecting a to kings of
A. We first define the set of all these 2-types. If K is a set of royal 1-types from A, then
denote by τ(K,Σ, f̄) the set of all 2-types µ, such that µ is a message type over 〈Σ, f̄〉 or
tp2(µ) ∈ K. A 2-type from τ(K,Σ, f̄) is called an essential type. If τ is an essential type
(resp. a message type) such that τ−1 is also an essential type (resp. a message type) then
we say that τ is an invertible essential type (resp. invertible message type). On the other
hand, if τ is a 2-type such that neither τ nor τ−1 is an essential type, then we say that τ is
a silent type.

Given a structure A over a classified signature 〈Σ, f〉 and a message type τ , if A |=
τ(e1, e2) then e2 is called a witness for e1 in A. It follows that if τ is an invertible message
type then also e1 is a witness for e2. This is because A |= τ−1(e2, e1) and τ−1 is an (invertible)
message type. From now on we assume that the classified signature of ϕ is 〈Σ, f̄〉, that is, Σ
contains unary and binary predicates from ϕ and f̄ = f1, . . . fm is the sequence of binary
predicates occurring under existential quantifiers in ϕ.

Since we consider predicates of arity at most 2, a structure A can be seen as a complete
directed graph, where nodes are labelled by 1-types and edges are labelled by 2-types. Thus
to define such a structure it is enough to define 1-types of its elements and 2-types of all
pairs of elements provided that the projections of 2-types onto 1-types coincide with these
1-types and that for each pair 〈e1, e2〉 of elements connected by a 2-type µ the pair 〈e2, e1〉
is connected by the 2-type µ−1. In the rest of the paper we use the notions of nodes and
elements interchangeably.

6.3. Normal structures. Now, to simplify the reasoning, we restrict the class of models
that we consider. Intuitively, besides some simple sanity conditions, we want to avoid
non-royal 1-types with small number of occurrences. In other words, each 1-type either
should be royal or it should have many occurrences in a structure. Here “many” means that
we can always find a representative of this 1-type that is not a witness in any conjunct of
the form ∀x∃=1y . . . and thus can be connected to any other non-royal element with a silent
2-type.

Definition 6.2. A finite structure A ∈ O(Σ, <,+1) over a classified signature 〈Σ, f̄〉 is
normal if

(1) both the smallest and the largest elements w.r.t. <A are kings in A,
(2) for every two non-royal elements e1, e2 ∈ A satisfying e1 <

A e2 there exist two elements
e′1, e

′
2 ∈ A such that e′1 <

A e′2, tpA(e1) = tpA(e′1), tpA(e2) = tpA(e′2), and tpA(e′1, e
′
2) is

a silent 2-type,
(3) for every node e ∈ A and f ∈ f̄ we have |{e′ ∈ A | A |= f(e, e′)}| = 1, and
(4) for every e1, e2 ∈ A if +1A(e1, e2) then tpA(e1, e2) is an invertible essential type.

Lemma 6.5 below says that when dealing with models of C2 (∗, ∗, {<,+1}) formulas, we
may restrict to normal structures. To prove it we will need some technical lemmas. If A is a
model of a formula in C2 (∗, ∗, {<,+1}) and S is a set containing some elements of A, then

14 W. CHARATONIK AND P. WITKOWSKI

by minA(S) we denote the smallest element of S w.r.t. the linear order <A. Similarly, by
maxA(S) we denote the largest element of S w.r.t. <A.

Let A be a structure over 〈Σ, f̄〉 and π be a 1-type realised in A. Let {ei}ki=1 be the
sequence of all elements of A that realise π, and such that ei <

A ei+1 for i ∈ {1, . . . , k − 1}.
Define S(A, π) = {ei | i ∈ {1, . . . ,min(k, 2m+ 1)}} and L(A, π) = {ei | i ∈ {max(1, k + 1−
(2m+ 1)), . . . , k}. Intuitively, S(A, π) consists of min(k, 2m+ 1) smallest (w.r.t. <A) nodes
that realise 1-type π, and L(A, π) consists of min(k, 2m + 1) largest nodes that realise π.
Recall that here m is the number of predicates in f̄ . If π, π′ are two 1-types realised
in A then we say that a pair 〈π, π′〉 is correct w.r.t. structure A if |S(A, π)| = 2m + 1,
|L(A, π′)| = 2m+ 1 and maxA(S(A, π)) <A minA(L(A, π′)). A pair 〈π, π′〉 is incorrect w.r.t.
A if it is not correct w.r.t. A.

Lemma 6.3. Let A be a structure over 〈Σ, f̄〉. Let π and π′ be 1-types such that the pair
〈π, π′〉 is correct w.r.t. A. Then, for some distinct elements e, e′ ∈ A the 2-type τ connecting
e to e′ is silent, tp1(τ) = π, tp2(τ) = π′ and (x < y) ∈ τ .

Proof. Since the pair 〈π, π′〉 is correct, there exist two sequences of A’s elements {ei}2m+1
i=1

and {e′i}
2m+1
i=1 such that maxA({ei}2m+1

i=1) <A minA({e′i}
2m+1
i=1), tpA(ei) = π and tpA(e′i) = π′

for i ∈ 1, . . . , (2m+ 1).
Consider the substructure of A generated by (directed) edges connecting elements of

{ei}2m+1
i=1 to elements of {e′i}

2m+1
i=1 . The number of these edges is (2m+1)2. Since each element

needs at most m witnesses (and none of the types π, π′ is royal), there are at most 2(2m+1)m
edges among them that are labelled with essential types. Since 2(2m+ 1)m < (2m+ 1)2,
at least one of these edges is labelled with a silent type. Take such an edge. It connects
some element e ∈ {ei}2m+1

i=1 to some e′ ∈ {e′i}
2m+1
i=1 . Let τ = tpA(e, e′). Clearly, τ is a silent

2-type, tp1(τ) = π, tp2(τ) = π′ and (x < y) ∈ τ .

In every finite structure, which we are dealing with, the largest (w.r.t. <) node is always
present. Thus predicate +1 cannot be among message predicates of any normal structure as
it would violate Condition 3 of Definition 6.2. For similar reasons < cannot be one of these
predicates. Therefore, to satisfy Conditions 3 and 4, we need the following lemma.

Lemma 6.4. Let A be a structure over a classified signature 〈Σ, f̄〉. By interpreting two
additional binary message-predicates we can expand A to a structure B such that for every
e1, e2 ∈ B if +1B(e1, e2) then tpB(e1, e2) is an invertible essential type.

Proof. Let e1, . . . , ek be all nodes of A sequenced in order <A. Let fback and fforth be
two fresh binary predicates. We add them to f̄ and expand the structure A by putting
fBforth = {〈ei, ei+1〉 | i < k} ∪ {〈ek, e1〉} and fBback = {〈ei+1, ei〉 | i < k} ∪ {〈e1, ek〉}. Then for

all i ∈ k − 1 we have tpB(ei, ei+1) is an invertible essential type.

Lemma 6.5. Let ϕ be a C2 (∗, ∗, {<,+1}) formula in normal form, over a classified signature
〈Σ, f̄〉. If ϕ is finitely satisfiable then there exists a signature 〈Σ′, f̄ ′〉 such that Σ ⊆ Σ′

and f̄ ⊆ f̄ ′ and a finite normal 〈Σ′, f̄ ′〉-structure B such that B |= ϕ. Moreover, |Σ′| is
polynomial in |Σ| and |f̄ ′| = |f̄ |+ 2.

Proof. Let A be a model of ϕ. By Lemma 6.4 we may assume that Condition 4 of Defi-
nition 6.2 is satisfied. Condition 3 of this definition is also true, as ϕ is in normal form.
The following algorithm constructs B from A in a sequence of steps numbered by a natural
number j. In each step the algorithm interprets fresh unary predicates and does not change
the interpretation of binary predicates thus not violating Conditions 3 and 4.

TWO-VARIABLE LOGIC WITH COUNTING AND A LINEAR ORDER 15

Initially j = 0, structure B0 is A where the smallest and the largest node is turned into
king by interpreting two fresh unary predicates, and Pairs = {〈π, π′〉|π and π′ are non-royal
1-types realised in B0}.
(1) while there exists a pair 〈π, π′〉 ∈ Pairs which is incorrect w.r.t. Bj , execute steps (2)–(3)
(2) construct structure Bj+1 by labelling all nodes of Bj from S(Bj , π) ∪ L(Bj , π′) by fresh

unary predicates to turn them into kings of Bj+1,
(3) remove pair 〈π, π′〉 from Pairs, increment j,
(4) put B = Bj and terminate the algorithm

Clearly, the above algorithm terminates after at most |Pairs| steps, i. e., after O(22|Σ|) steps.
At each step the algorithm creates at most 2(2m + 1) new kings, so the total number of

kings created by the algorithm is 2(2m+ 1)|Pairs|, which is O(2(2m+ 1)22|Σ|). The number
of fresh unary predicates required to distinguish that number of kings is logarithmic w.r.t.
that latter number. Therefore |Σ′| is polynomial in |Σ|. Since A models ϕ, also B models ϕ.

We now show that B is normal. Condition 1 in Definition 6.2 is satisfied, because it is
satisfied by B0 and all kings of B0 are left untouched during the construction of B from B0.

In order to show that Condition 2 in Definition 6.2 is also satisfied, take non-royal
elements e1, e2 ∈ B such that e1 <

B e2. Let π = tpB(e1) and π′ = tpB(e2). Since π and π′

are non-royal 1-types realised in B, they are also non-royal 1-types realised in A. Thus, at
the beginning of the algorithm we have 〈π, π′〉 ∈ Pairs. Moreover, tuple 〈π, π′〉 was never
selected at step (1) of the algorithm. Therefore pair 〈π, π′〉 is correct w.r.t. B. By Lemma 6.3
we obtain the desired conclusion. Thus B is a normal structure.

6.4. Star types. Given a structure A over a signature 〈Σ, f̄〉 and an element a ∈ A, we
want to capture essential 2-types emitted from a to other elements of A. For this reason
we introduce star types. Intuitively a star type of an element a in a structure describes
a small neighbourhood of a and contains enough information to check whether a has the
right number of witnesses.

Definition 6.6 (Star type in A). Let A be a normal structure over 〈Σ, f̄〉, and let a be an
element of A. Let K = {κ | κ is a royal type in A}. The star type of a in A, denoted stA(a)
is a pair σ = 〈π, T 〉 where π = tpA(a) and T is the set of essential types originating in a:

T = {µ ∈ τ(K,Σ, f̄) | tpA(a, b) = µ for some b ∈ A}.
We denote the type π by π(σ). We say that a 2-type µ occurs in σ, written µ ∈ σ, if µ ∈ T .
We write σ−µ for the star-type σ′ = 〈π, T \ {µ}〉. When S is a set of 2-types we write σ \S
to denote the star type 〈π, T \ S〉.

Observe that in the definition above σ satisfies the conditions

(1) for all µ1, µ2 ∈ σ if f(x, y) ∈ µ1 and f(x, y) ∈ µ2 for some f ∈ f̄ then µ1 = µ2,
(2) µ ∈ σ implies tp1(µ) = π for all µ ∈ τ(K,Σ, f̄),
(3) |{µ ∈ σ | tp2(µ) = κ}| = 1 for all κ ∈ K such that κ 6= π,
(4) |{µ ∈ σ | tp2(µ) = π}| = 0 if π ∈ K.

The first of these conditions is obvious, as normal structures emit precisely one edge τ with
f(x, y) ∈ τ for f ∈ f̄ . The second one says that all 2-types originating in a have the same
1-type of the origin, namely the 1-type of a. The third one says that for all kings k (in A)
the element a is connected with k by exactly one 2-type (provided that k 6= a). The last

16 W. CHARATONIK AND P. WITKOWSKI

condition says that if a is a king then it is not connected with itself by any 2-type (recall
that 2-types connect different elements).

Definition 6.7. A star type over the set of 2-types τ(K,Σ, f̄) is any pair of the form 〈π, T 〉
satisfying Conditions 1–4 above. A structure A is said to realise a star type σ if stA(a) = σ
for some a ∈ A.

For a given set of star types ST, by π(ST) we denote the set of 1-types {π(σ) | σ ∈ ST}.
The set of 2-types occurring in star types from ST, that is the set {µ | ∃σ ∈ ST µ ∈ σ}
is denoted by τ(ST), and the set {〈π, T ′〉 | 〈π, T 〉 ∈ ST for some T satisfying T ′ ⊆ T } by
partial(ST). Elements of partial(ST) are called partial star types. A partial star type is said
to be empty if it is of the form 〈π, ∅〉.

6.5. Frames. We now introduce finite and small structures called frames. Frames contain,
among others, the information about all 2-types and all star types that may occur in
a structure. This is enough to check whether the universal subformula α of a formula in
normal form (6.1) is true and if all elements have the right number of witnesses. Intuitively,
a correctly guessed frame confirms that a formula is locally consistent (see Definition 6.9).

Definition 6.8 (Frame). Let 〈Σ, f̄〉 be a classified signature, K be a set of 1-types over Σ,
let ST be a set of star types over τ(K,Σ, f̄) and let Ξ be a set of silent 2-types over 〈Σ, f̄〉.
The tuple 〈K,ST,Ξ,Σ, f̄〉 is called a frame if the following conditions are satisfied

(1) for each 2-type τ ∈ τ(ST) ∪ Ξ if +1(x, y) ∈ τ or +1(y, x) ∈ τ then τ is an invertible
essential type,

(2) there exists exactly one star type σfirst ∈ ST such that for all τ ∈ σfirst we have
+1(y, x) 6∈ τ ,

(3) there exists exactly one star type σlast ∈ ST such that for all τ ∈ σlast we have
+1(x, y) 6∈ τ ,

(4) for each κ ∈ K there exists exactly one σ ∈ ST such that π(σ) = κ, and
(5) for each star type σ ∈ ST and each 2-type µ, if µ ∈ σ then tp2(µ) ∈ π(ST).

Frames are intended to describe local configurations in normal structures A. The set
K contains all royal 1-types of A, ST contains all star types of A and the set Ξ contains
all silent 2-types realised in A. Condition 1 says that every node in A is connected to its
successor and predecessor by invertible essential types. Conditions 2 and 3 say that there
are unique star types for the first and the last node in A. Note that Conditions 1–3 are
true in every normal structure. Condition 4 says that each king has exactly one star type.
Condition 5 ensures that if a neighbour of a node in a structure has some 1-type π, then
there exists a star type σ ∈ ST such that π ∈ π(ST). The last two conditions hold in every
relational structure.

Intuitively, we want to check finite satisfiability of a C2 formula ϕ by guessing a right
frame. “Right” means here that two conditions must be satisfied. First, the frame should
be locally consistent with ϕ. This means that every 2-type occurring in the frame entails
the subformulas of ϕ of the form ∀x∀y . . ., and that the number of witnesses in every star
type is correct. This is formalised in the following definition. Second, the frame should be
globally consistent in the sense that there exists a structure that fits this frame – this is
formalised in Definition 6.10.

Definition 6.9 (F |= ϕ). Consider a frame F = 〈K,ST,Ξ,Σ, f̄〉 and a C2 (∗, ∗, {<,+1})
formula ϕ in normal form (6.1) over 〈Σ, f̄〉. We say that F satisfies ϕ, in symbols F |= ϕ, if

TWO-VARIABLE LOGIC WITH COUNTING AND A LINEAR ORDER 17

• for each 2-type µ ∈ Ξ ∪ τ(ST), the formula α is a consequence of µ and of µ−1, that is
|= µ→ α and |= µ−1 → α, where µ is seen as conjunction of literals, and
• for each σ ∈ ST and h ∈ m we have |{µ ∈ σ | fh(x, y) ∈ µ}| = 1.

Definition 6.10. Let 〈K,ST,Ξ,Σ, f̄ , c〉 be a frame, and A a structure over 〈Σ, f̄〉. We say
that A fits the frame F if

• the set of royal 1-types realised in structure A is K, and
• the set of all silent types realised in A is a subset of Ξ, and
• the set of star types of A is a subset of ST, in symbols stA(A) ⊆ ST.

The following proposition reduces the finite satisfiability problem of C2 (∗, ∗, {<,+1}) to
the problem of existence of a structure in O(Σ, <,+1) that fits a given frame. This is the
reduction that splits the problem into local and global consistency.

Proposition 6.11. Let ϕ be a C2 (∗, ∗, {<,+1}) formula in normal form over a classified
signature 〈Σ, f〉, where {<,+1} ⊆ Σ. Let A be a structure in O(Σ, <,+1).

(1) If A is normal and A |= ϕ then there exists a frame F , such that A fits F and F |= ϕ.
(2) If there exists a frame F such that A fits F and F |= ϕ then A |= ϕ.

Proof. For the proof of the first statement, assume that A is normal and A |= ϕ. Let K be
the set of royal 1-types realised in A, let ST be the set of star types of A and let Ξ be the
set of all silent types realised in A. The facts that the tuple F = 〈K,ST,Ξ,Σ, f̄ , c〉 forms a
frame, F |= ϕ and A fits F are immediate, once Definitions 6.8, 6.9 and 6.10 are unravelled.

For the proof of the second statement, let F be a frame such that F |= ϕ and let A be
a structure such that A fits F . Since ϕ is in normal form, it is of the form (6.1). Let µ
be any 2-type realised in A. Then either µ is a silent type or it occurs in some star type
realised in A. In any case, by Definition 6.10 we have that µ ∈ Ξ ∪ τ(ST). By Definition
6.9 it follows that |= µ→ α. So A |= ∀x∀y.(α ∨ x = y). Since A fits F and F |= ϕ, it also
follows that for each star type σ realised in A and each h such that 1 ≤ h ≤ m we have
|{µ ∈ σ | fh(x, y) ∈ µ}| = 1, and thus A |=

∧
h∈m ∀x∃=1y.(fh(x, y) ∧ x 6= y). Hence A |= ϕ

as required.

6.6. High-level multicounter automata. In the rest of this section we show how to
decide, for a given frame F , whether there exists a structure in O(Σ, <,+1) that fits this
frame. This will be done by a reduction to the emptiness problem for multicounter automata.

We now introduce a syntactic extension to multicounter automata that we call High-level
MultiCounter Automata (HMCA). The idea is to specify transitions of an automaton as
programs in a higher-level imperative language with conditionals, loops and arrays, which
leads to clearer exposition of reachability problems. A transition in a High-Level MCA is a
sequence ∆ of actions; each action in turn may update and test finite-domain variables, and
conduct conditional or loop instructions depending on results of these tests. A transition
may also increment or decrement, but not test the value of, counters, which are the only
infinite-domain variables of the automaton.

In the following subsections we give formal syntax and semantics of high-level multi-
counter automata and we prove that HMCA can be compiled to multicounter automata. If
the reader is familiar with finite-state machines and how they handle finite information, it
should be more or less clear how to translate HMCA to MCA. In such a case we suggest to
skip Sections 6.6.2 and 6.6.3 and move directly to Section 6.7.

18 W. CHARATONIK AND P. WITKOWSKI

6.6.1. Syntax of HMCA. Formally, an HMCA is a tuple H = 〈Vfin ,VecN,Type,∆, ρI , PF , E〉.
The set Vfin consists of variables v to be interpreted in the finite domain Type(v). We
may think of Vfin as a declaration of finite-domain variables of the program. The set VecN
corresponds to a declaration of arrays, it consists of variables −→vec to be interpreted as vectors
of natural numbers indexed by elements of some finite set A, where Type(−→vec) = A → N.
We will refer to the index set A as the domain Dom(−→vec). The Type function assigns to
every variable in Vfin ∪VecN its type. The sequence of actions ∆ is the actual program built
from actions defined below. The starting state of H is ρI , the set of accepting states is PF .
The set E is a subset of {〈~v, a〉 | ~v ∈ VecN, a ∈ Dom(~v)}, and is used in the acceptance
condition explained later.

We now define a set of actions α that constitute transitions in HMCA. The simplest
action is an assignment of the form v := Expr , where v is a variable of some domain A =
Type(v), and Expr is an expression built from variables from Vfin , constants from appropriate
domains and operators. An operator is any effectively computable function, e. g., ∪, ∩, \ are
operators of domain (2B)2 → 2B for any domain B; function π : ST(K,Σ, f̄)→ Π(Σ) from
Definition 6.6 is also an operator, provided that our finite domain contains ST(K,Σ, f̄) and
Π(Σ). We silently extend the Type function to constants by letting Type(a) = A if a ∈ A,
and to expressions, e. g., Type(s1∪s2) = 2B if Type(s1) = 2B and Type(s2) = 2B. We require
that assignments v := Expr are well typed, i. e., that Type(v) = Type(Expr). An atomic
test is of the form Expr1 = Expr2 or Expr3 ∈ Expr4, where Expr1, Expr2, Expr3, Expr4 are
expressions such that Type(Expr1) = Type(Expr2) and Type(Expr4) = 2Type(Expr3). A test
is an arbitrary Boolean combination of atomic tests. Notice that tests do not use counters.
A non-deterministic assignment action is of the form guess v ∈ Expr with Test , where
Type(Expr) = 2Type(v) and the variable v may occur in Test . A conditional action is of the
form if Test then α∗ else α′∗ endif or if Test then α∗ endif. A loop action is of the form
while Test do α∗ endwhile. An incrementing action (resp. decrementing action) is of the

form inc(~f [Expr]) (resp. dec(~f [Expr])), where Expr evaluates to an index of the array ~f ,

that is, ~f ∈ VecN, Type(~f) = A→ N and Type(Expr) = A. The remaining action, Reject,
simply rejects current computation.

6.6.2. Semantics of HMCA. Expressions and tests are evaluated in context of variable
valuations. A variable valuation (also called a state) is any function ρ that assigns to
every finite-domain variable v a value JvKρ ∈ Type(v). The semantics of expressions is
defined inductively: JvKρ = ρ(v) for v ∈ Vfin , JExpr1 ./ Expr2Kρ = JExpr1Kρ ./ JExpr2Kρ
where ./∈ {∪,∩, \}, and Jf(Expr1, . . . ,Exprk)Kρ = f(JExpr1Kρ, . . . , JExprkKρ) where f is an
operator. In a similar way we define semantics of tests.

A counter valuation is any function ϑ that assigns (a sequence of) natural numbers to
(arrays of) counters. A configuration of HMCA H is a pair 〈ρ, ϑ〉 where ρ is an variable
valuation (i. e., a state) and ϑ is a counter valuation. Actions transform configurations. Most
actions work only on variable valuations; the exceptions are incrementing and decrementing
of counters. With the exception of the decrementing action, the semantics of actions is
self-explanatory; dec(c) decrements the counter c if it is strictly positive and otherwise (if it
is 0) it rejects the current computation.

A run of an HMCA H is a sequence of configurations 〈ρ1, ϑ1〉, . . . 〈ρk, ϑk〉 such that
〈ρi+1, ϑi+1〉 is obtained after executing transition ∆ in configuration 〈ρi, ϑi〉, for all i ∈
{1, . . . , k − 1}. A single transition (〈ρi, ϑi〉,∆) ; 〈ρi+1, ϑi+1〉, is formalised on Figures 1

TWO-VARIABLE LOGIC WITH COUNTING AND A LINEAR ORDER 19

ρ2 = ρ1[v ← JExprKρ1]

(ρ1, v := Expr) ; ρ2

e ∈ JExprKρ1 JTestKρ1[v←e] = true

(ρ1,guess v ∈ Expr with Test) ; ρ1[v ← e]

JTestKρ1 = true (ρ1, α
∗) ; ρ2

(ρ1, if Test then α∗ else α′∗ endif) ; ρ2

JTestKρ1 = false (ρ1, α
′∗) ; ρ2

(ρ1, if Test then α∗ else α′∗ endif) ; ρ2

JTestKρ1 = true (ρ1, α
∗) ; ρ (ρ,while Test do α∗ endwhile) ; ρ2

(ρ1,while Test do α∗ endwhile) ; ρ2

JTestKρ1 = false

(ρ1,while Test do α∗ endwhile) ; ρ1

Figure 1: Semantics of actions that operate on state. For these actions α we define
(〈ρ1, ϑ〉, α) ; 〈ρ2, ϑ〉 if (ρ1, α) ; ρ2.

and 2. A run is accepting, if it starts in an initial configuration 〈ρI , ϑ0〉 with ρI being initial
state and ϑ0 assigning 0 to all counters, and it ends in some configuration 〈ρF , ϑF 〉 with ρF
being a final state and ϑF assigning 0 to all counters specified in the set E of final counters:

ϑF (~f)(a) = 0 for every 〈f, a〉 ∈ E. The emptiness problem for high-level multicounter
automata is the question whether a given automaton H has an accepting run.

For a counter valuation ϑ, ~v ∈ VecN and a function f with domain Type(~v) by ϑ[~v ← f]
we mean the valuation identical to ϑ, with the exception that ϑ(~v) = f . In a similar way, for
a variable valuation ρ, v ∈ Vfin and a ∈ Type(v), we define the variable valuation ρ[v ← a].

Figures 1 and 2 present the natural semantics of actions in a formal way, separately
for actions that operate on states and counters. The semantics of assignment, conditional
and loop actions is the expected one. E. g., assignment v := Expr updates current state
ρ by assigning to v the value JExprKρ; conditional action if Test then α∗ endif executes
α∗ provided that JTestKρ is true, and skips to next action otherwise. A non-deterministic
assignment guess v ∈ Expr with Test assigns to v an arbitrary value e ∈ JExprKρ such

that Test holds when v becomes e, i. e., when JTestKρ[v←e] is true. Let Type(~f) = A→ N
and e = JExprKρ. Incrementing action inc(~f [Expr]) transforms a configuration 〈ρ, ϑ〉 to

〈ρ, ϑ[~f ← ~f ′]〉, where f ′(a) = ϑ(f)(a) + 1 for a = e and f ′(a) = ϑ(f)(a) for remaining

elements a ∈ A. Decrementing action dec(~f [Expr]) works similarly, but it decrements the
value ϑ(f)(e), provided that it is positive (the computation rejects if ϑ(f)(e) = 0). Finally,
action Reject rejects the computation unconditionally.

6.6.3. Compilation of HMCA. Intuitively, a compilation of an HMCA to an MCA consists
in hiding the control structures and finite-domain variables (including tests for zero on
finite-domain variables) in states of the constructed MCA. Formally, we have the following
proposition.

20 W. CHARATONIK AND P. WITKOWSKI

e = JExprKρ1 ϑ2 = ϑ1[~f(e)← ~f(e) + 1](
〈ρ1, ϑ1〉, inc(~f(Expr))

)
; 〈ρ2, ϑ2〉

(〈ρ1, ϑ1〉, α) ; 〈ρ, ϑ〉 (〈ρ, ϑ〉, α∗) ; 〈ρ2, ϑ2〉
(〈ρ1, ϑ1〉, α;α∗) ; 〈ρ2, ϑ2〉

e = JExprKρ1 ϑ1(~f)(e) > 0 ϑ2 = ϑ1[~f(e)← ~f(e)− 1](
〈ρ1, ϑ1〉,dec(~f(Expr))

)
; 〈ρ2, ϑ2〉 (〈ρ1, ϑ1〉, ε) ; 〈ρ1, ϑ1〉

Figure 2: Semantics of incrementing and decrementing actions and semantics of actions
composition.

Proposition 6.12. Emptiness problem for HMCA is reducible to emptiness problem of
multicounter automata, and is therefore decidable.

Proof. Let H = 〈Vfin ,VecN,Type,∆, ρI , PF , E〉 be an HMCA. We define an MCA MH =
〈Q,C,R, δ, qI , F 〉 such that H is non-empty if and only if MH is non-empty. Assume
that ∆ consists of k actions. Let v1, . . . vl be an arbitrary enumeration of Vfin and P =
Type(v1)× . . .×Type(vl) be the set of all variable valuations. Let Q = {1, . . . , k}×P . Every
state q ∈ Q is a pair 〈i, ρ〉, which is intended to capture the number of an action to be executed
and values of variables v1, . . . , vk in the state just before execution of the action. We use a
shortcut q(vi) to denote the i-th component of k-tuple ρ and q(1) to denote its first component.

The set of counters C of MCA MH is defined as C = {c~f(e)
| ~f ∈ VecN and e ∈ Type(~f)}.

The starting state qI of MH is 〈1, ρI〉. The set of final states F = {〈1, ρF 〉 | ρF ∈ PF }. The

set R = {c~f(e)
| 〈~f, e〉 ∈ E}.

Assume that each action α in ∆ is assigned a unique number i ∈ N, interpreted as line
number in which α occurs. Below we will write αi to denote action α occurring in line i. A

control flow graph (CFG) of ∆ is a graph ({i ∈ N | αi ∈ ∆}, {→, true−−−→, false−−−→}). Edges of
CFG are defined as follows. For every action αi, with the exception of loop and conditional
action, let j be the line number of next action to be executed. If no such action exists then
we put j = 1 denoting that ∆ may be reexecuted. We put i→ j. For loop or conditional
actions let jtrue and jfalse be numbers of actions to be executed provided the action’s test
succeeds, resp. fails. As in previous case, if jtrue (resp. jfalse) are undefined we put jtrue = 1

(resp. jfalse = 1). We put i
true−−−→ jtrue and i

false−−−→ jfalse. This completes the definition of
CFG for ∆.

For every action αi of ∆ and every valuation ρ we put the following transitions to δ.

(1) αi is v := Expr : put 〈〈i, ρ〉, skip, 〈j, ρ[v ← JExprKρ]〉〉, where i→ j;
(2) αi is guess v ∈ Expr with Test : for every every e ∈ JExprKρ such that JTestKρ[v←e] is

true put 〈〈i, ρ〉, skip, 〈j, ρ[v ← e]〉〉, where i→ j;

(3) αi is inc(~f(Expr)): let e = JExprKρ. Put 〈〈i, ρ〉, inc(cf(e)), 〈j, ρ〉〉, where i→ j;

(4) αi is dec(~f(Expr)): let e = JExprKρ. Put 〈〈i, ρ〉, dec(cf(e)), 〈j, ρ〉〉, where i→ j;
(5) αi is Reject: put 〈〈i, ρ〉, skip, 〈i, ρ〉〉;
(6) αi is if Test then α∗itrue

else α′∗ifalse endif: if JTestKρ is true then put 〈〈i, ρ〉, skip, 〈itrue, ρ〉〉,
otherwise put 〈〈i, ρ〉, skip, 〈ifalse, ρ〉〉, where i

true−−−→ jtrue and i
false−−−→ jfalse;

TWO-VARIABLE LOGIC WITH COUNTING AND A LINEAR ORDER 21

(7) αi is if Test then α∗itrue
endif or αi is while Test do α∗itrue

endwhile: if JTestKρ is true

then put 〈〈i, ρ〉, skip, 〈itrue, ρ〉〉, otherwise put 〈〈i, ρ〉, skip, 〈j, ρ〉〉, where i
true−−−→ jtrue

and i
false−−−→ jfalse.

Transitions defined above correspond to semantics of actions from Figures 1 and 2. The only
exception is for Reject, which does not have any computable effect. Instead, it is modelled
as a transition of MH that loops, and therefore cannot lead to any accepting configuration.

For a counter valuation ϑ define vectorise(ϑ) as vector ~nϑ indexed by the set {c~f(e)
|

~f ∈ VecN and e ∈ Dom(~f)} such that ~nϑ(c~f(e)
) = ϑ(~f)(e).

The statement to be proven is: for every sequence of action α∗ ⊆ ∆ starting in a
line i and finishing in a line j, and every configurations 〈ρ, ϑ〉 and 〈ρ′, ϑ′〉 of HMCA H we
have (〈ρ, ϑ〉, α∗) ; 〈ρ′, ϑ′〉 if and only if MCA MH transits from configuration 〈〈i, ρ〉, ~nϑ〉 to
〈〈j, ρ′〉, ~nϑ′〉. The proof proceeds by a standard induction on the structure of α∗.

From the inductive statement we conclude that (〈ρI , ϑI〉,∆) ; 〈ρF , ϑF 〉 if and only if
〈〈1, ρI〉, ~nϑI 〉 transits to 〈〈1, ρF 〉, ~nϑF 〉. Here 〈ρI , ϑI〉 is the starting configuration of H and

〈ρF , ϑF 〉 is an accepting configuration of H. I. e., ρI is the starting state of H, ϑI(c~f(e)
) = ~0

for all ~f ∈ VecN and e ∈ Type(~f), ρF ∈ PF and ϑF is any counter valuation satisfying

ϑF (c~f(e)
) = 0 for every 〈~f, e〉 ∈ E. Therefore existence of an accepting run of HMCA H is

equivalent to existence of an accepting run of MCA MH .

6.7. Global consistency. In this section we check global consistency of a formula by
checking for a given (locally consistent with the formula) frame F = 〈K,ST,Ξ,Σ, f̄〉 whether
there exists a normal structure that fits F . Intuitively, this is like solving a jigsaw puzzle:
the frame gives us a set of shapes (star types) and we have to decide if it is possible to put
pieces of these shapes together to build a complete picture (a structure). Here a piece of
a given shape has some number of tabs (essential types) of two kinds: tabs corresponding to
invertible essential types must be connected to a matching tab in a matching piece; tabs
corresponding to non-invertible essential types must be simply connected to a matching
piece.

Figure 4 shows a high-level multicounter automaton HF that solves this problem. The
automaton guesses one by one the sequence of elements of the structure as they appear in
the order <. In each iteration of the transition ∆ one element of the structure is guessed.

During the construction we have to make sure that several conditions are satisfied. One
of them is that all royal types from K are used exactly once. For this reason we keep track of
the set of nodes visited (i. e., guessed) so far; their 1-types are stored in variable Visited . The
variable is updated in line 4 and used in line 30 and in the acceptance condition. Another
condition is that the constructed structure is normal, in particular it satisfies Condition 2 in
Definition 6.2. Therefore every time the automaton guesses (the star type of) a new element
in line 30, it guesses it from the set

Allowed(Visited) = {σ ∈ ST | π(σ) ∈ K \Visited} ∪
{σ ∈ ST | ∀π ∈ Visited (π 6∈ K ⇒ ∃τ ∈ Ξ.tp1(τ) = π ∧ (x < y) ∈ τ ∧ tp2(τ) = π(σ))}.

This way we formally forbid guessing a royal type more than once or violating Condition 2
in Definition 6.2. Note that here Allowed : 2partial(ST) → 2partial(ST) is a unary operator in
the language of HMCA.

22 W. CHARATONIK AND P. WITKOWSKI

Figure 3: Difference type of e1 w.r.t. e contains the arrows that cross the dotted line.

Intuitively, during solving our jigsaw puzzle, we have to represent somehow the border

of the partial picture constructed so far. This is stored in the vector
−→
Cut. It is indexed

with partial shapes (formally, partial star types) because we are not interested in parts of
pieces that are already connected to the picture; we are only interested in parts of pieces
that belong to the border. The cut vector says for each partial shape how many pieces of
this shape belong to the border. For technical reasons this vector also counts empty shapes
(which correspond to pieces that are fully connected to the picture); these counters are then
ignored in the acceptance condition of the constructed automaton.

Formally, we define a difference type of a node w.r.t. to another node in a structure. In
the analogy with jigsaw puzzle, the difference type of e1 w.r.t. e describes the tabs of the
piece e1 that belong to the border of the constructed picture just before adding the piece e.
Figure 3 shows an example of a difference type.

Definition 6.13 (Difference type of e′ w.r.t. e in a structure A). Let A ∈ O(Σ, <,+1) and
e′, e ∈ A be elements satisfying e′ <A e. Let σ be the star type of e′ and let {τi}ki=1 be
essential types emitted from e′ and accepted by nodes <A than e. The partial star type
σ \ {τi}ki=1 is called the difference type of e′ w.r.t. e in A.

Definition 6.14. Let A ∈ O(Σ, <,+1) and e ∈ A. The cut at point e in A is the vector
−→
Cute of natural numbers indexed by star types from partial(ST) such that

−→
Cute[σ] = |{e1 ∈ A | difference type of e1 w.r.t. e in A is σ}|.

Final states of the automaton are states where all kings from K are visited. Intuitively, final
counter valuations are valuations where the border of the picture is empty, i. e., the counters
corresponding to non-empty shapes must be zeroed. Note that the remaining counters,
corresponding to empty shapes, store the numbers of internal pieces of the picture with that
particular shape (the partial shapes of these pieces are empty because all tabs are already
connected to other pieces) and contain non-zero values.

Intuitively, one iteration of the transition ∆ works as follows. Before the transition
starts we take a piece e of shape σc; at the end of the iteration the piece is connected to the
picture constructed so far and the shape of the next piece is guessed. The new border of the
picture is computed in two loops in lines 6–24. Before these loops, in line 5, we compute the
tabs of e that must be connected to the picture. In the loop in lines 6–16 we take one by one
these tabs τ and connect them to the picture: first the shape σu of a matching piece e′ in
the picture is guessed and then the border is updated: in line 14 the shape of e′ is removed
from the border and in line 15 the updated shape is added to the new border. In order to

TWO-VARIABLE LOGIC WITH COUNTING AND A LINEAR ORDER 23

Initial Configuration Initial state is ρI such that ρI(σc) = σfirst, ρI(Visited) = ∅ and the value
of ρI on remaining variables is arbitrary (but fixed). Initial counter valuation assigns 0 to all
counters.

Accepting Configurations The set of accepting states PF consists of all states ρF satisfy-

ing K ⊆ ρF (Visited). Accepting counter valuations are defined by the set E = {〈
−→
Cut, σ〉 |

σ ∈ partial(ST) is non-empty}.
Transition ∆
1: if σc = ⊥ then
2: Reject
3: endif
4: Visited := Visited ∪ {π(σc)}
5: σ := σc

<

6: while σ 6= ∅ do
7: τ := choose(σ)
8: σ := σ − τ
9: if τ is an invertible essential type then

10: guess σu ∈ partial(ST) with τ−1 ∈ σu>
11: else
12: guess σu ∈ partial(ST) with π(σu) = tp2(τ)
13: endif
14: dec(

−→
Cut[σu

>])

15: inc(
−−−−−−→
Processed[σu

> − τ−1])
16: endwhile
17: guess anotherIteration ∈ {true, false}
18: while anotherIteration do
19: guess σg ∈ partial(ST)
20: guess τ ∈ σg> with tp2(τ) = π(σc) and (τ is non-invertible essential type)

21: dec(
−→
Cut[σg

>])

22: inc(
−−−−−−→
Processed[σg

> − τ])
23: guess anotherIteration ∈ {true, false}
24: endwhile
25: inc(

−→
Cut[σc

>])
26: τ+1 := τ+1(σc)
27: if τ+1 = ⊥ then
28: σc := ⊥
29: else
30: guess σc ∈ Allowed(Visited) with (τ+1)−1 ∈ σc
31: endif
32: guess anotherIteration ∈ {true, false}
33: while anotherIteration do
34: guess σg ∈ partial(ST)

35: dec(
−−−−−−→
Processed[σg

>])

36: inc(
−→
Cut[σg

>])
37: guess anotherIteration ∈ {true, false}
38: endwhile

Figure 4: A high-level multicounter automaton HF corresponding to a frame F .

24 W. CHARATONIK AND P. WITKOWSKI

avoid confusion between the old and the new border, the new one is stored in a separate

vector
−−−−−−→
Processed. The loop in lines 18–24 connects in a similar way the tabs of the second

kind (non-invertible essential types) from the picture to the piece e. Then remaining tabs
of e are added to the border in line 25. Finally, the shape of the next piece is guessed and
the new border is added to the old one in lines 32–38.

Formally, the set of finite-domain variables of the automaton HF is {σc,Visited , σ, τ, σu,

σg, τ+1, anotherIteration} and there are two arrays of counters
−→
Cut and

−−−−−−→
Processed. The Type

function is defined as follows. The type of σc is ST ∪ {⊥} (that is, formally, Type(σc) =
ST∪{⊥}); variables σ, σu and σg are of type partial(ST); variable τ has type τ(ST) and τ+1

has type τ(ST) ∪ {⊥}. The type of Visited is 2π(ST) (that is, this variable ranges over sets

of 1-types). Finally, the type of vectors of counters
−→
Cut and

−−−−−−→
Processed is partial(ST)→ N.

For a star type σ define σ< = {τ ∈ σ | (y < x) ∈ τ} and σ> = {τ ∈ σ | (x < y) ∈ τ}.
Intuitively σ< (resp. σ>) denotes the set of tabs that are connected to (resp. remain in the
border of) the picture when adding a piece of shape σ. For a star type σ from ST define
τ+1(σ) as the only 2-type τ such that +1(x, y) ∈ τ (intuitively, this is the tab that connects a
piece of shape σ to the next piece in the picture), or the special value ⊥ if σ is the star type
of the greatest element in a structure. We also define choose(σ) in line 7 to be an arbitrary
2-type τ such that τ ∈ σ.

In each iteration of the transition ∆ the automaton guesses one element e of the structure

and assigns star type σc to it. Intuitively, at the beginning of an iteration the
−→
Cut vector

stores the cut at e. Technically, it is the sum of
−→
Cut and

−−−−−−→
Processed that stores the cut,

but we may assume that the
−−−−−−→
Processed vector is zeroed (see Lemma 6.17 below). The

−−−−−−→
Processed vector stores the information about changes in cuts between the current and

the next element. The value of
−→
Cut is updated in two loops in lines 6–24. During the

computation some counters from
−→
Cut are decremented, and some counters from

−−−−−−→
Processed —

incremented. Decrementation of a counter corresponds to establishing a 2-type between e
and some e′ smaller than e (this is done in the loop in lines 6–16), or between e′ and e (loop
in lines 18–24). In order not to establish multiple 2-types between the same pair of nodes,

we remove the difference type of e′ w.r.t. e from
−→
Cut and store it in

−−−−−−→
Processed. When the

second loop (lines 18–24) finishes its execution the initial value of
−→
Cut vector for next node

is the sum of the values of updated vectors
−→
Cut and

−−−−−−→
Processed in line 24.

In lines 26–31 we guess the star type of the next node, or the special value ⊥ in case we
are already at the largest node of the structure. Finally, the loop in lines 32–38 may move

the content of vector
−−−−−−→
Processed to

−→
Cut. We may assume (by Lemma 6.17) that the entire

content is actually moved. Formally, the correspondence between a frame F and HMCA
HF is captured by the following proposition.

Proposition 6.15. Let F = 〈K,ST,Ξ,Σ, f̄〉 be a frame. The automaton HF is non-empty
if and only if there exists a structure M∈ O(Σ, <,+1) that fits F .

To prove Proposition 6.15, we first show (in Lemma 6.16) that if a structure fits a frame
then the frame induces a non-empty HMCA. Then (in Lemma 6.19) we show that if there
exists a frame for which the induced HMCA is non-empty, then we can construct a structure
that fits the frame.

Lemma 6.16. Let F = 〈K,ST,Ξ,Σ, f̄〉 be a frame. If there exists a normal structure
M∈ O(Σ, <,+1) that fits F then HF is non-empty.

TWO-VARIABLE LOGIC WITH COUNTING AND A LINEAR ORDER 25

Proof. We will show that HF is non-empty by presenting its accepting run. Let e1, . . . , ek be
nodes of M sequenced in order <M. Define Visited i = {tpM(ej) | j < i}, for i ∈ k. Recall

that
−→
Cutei is the cut at point ei in A. The accepting run of HF is

〈ρ1, ϑ1〉, . . . , 〈ρk, ϑk〉, 〈ρk+1, ϑk+1〉
where, for i ∈ k, ρi(σc) = stA(ei), ρi(Visited) = Visited i and the value of ρi on other

variables is arbitrary. Moreover ϑi(
−→
Cut) =

−→
Cutei and ϑi(

−−−−−−→
Processed) = ~0.

Define the last configuration of the above sequence, i. e., 〈ρk+1, ϑk+1〉, as ρk+1(σc) = ⊥,

ρk+1(Visited) = {tpM(ej) | j ≤ k}, ϑk+1(
−−−−−−→
Processed) = ~0 and ϑk+1(

−→
Cut) =

−→
CutAcc, where

−→
CutAcc[σ] =

{
|{ei | 1 ≤ i ≤ k and tpM(e1) = π(σ)}| if σ is empty

0 otherwise.

By inspecting Figure 4 we may observe that 〈ρk+1, ϑk+1〉 is indeed an accepting configuration
of HF . Next, we show that 〈ρ1, ϑ1〉 is the initial configuration of HF . Indeed, observe that

σfirst is stA(e1), and Visited1 = ∅. Moreover,
−→
Cute1 = ~0.

To show that the specified run is indeed accepting, assume that MCA HF is in state
〈ρi, ϑi〉, where i ∈ k. We will show that it may transit to state 〈ρi+1, ϑi+1〉.

Clearly, star type stM(ei) is different from the special value ⊥. Thus the test in line 1
fails and computation does not reject in line 2. Then, in line 4 the set of visited 1-types
is updated accordingly. This way we obtain Visited i+1. Next, in lines 6–24 the value of

variable
−→
Cut is transformed from ϑi(

−→
Cut) to ϑi+1(

−→
Cut) in two loops. Now we explain both

loops in more detail.
The loop in lines 6 –16 is responsible for verifying satisfaction of requirements imposed

by (stM(ei))
<

, i. e., for checking that essential 2-types that ei wants to emit to smaller nodes

can be accepted. The loop handles each 2-type τ ∈ (stM(ei))
<

in a single iteration. Let e′

be the unique element of M such that tpM(ei, e
′) = τ . There are two cases. First, if τ is an

invertible essential type then the star type stM(e′) contains τ−1. Let σu be the difference
type of e′ w.r.t. ei in M. Since e′ <M ei, the star type σu also contains τ−1. Thus σu can
be guessed in line 10. The second case is when τ is a non-invertible essential type. Then
no information about connection with ei is stored in stM(e′). In line 12 we guess σu, the

difference type of e′ w.r.t. ei in M. In both cases, by definition of σu we have
−→
Cutei [σu] > 0.

Thus decrementing
−→
Cut[σu] in line 14 will not reject. To remember that some edges emitted

by e′ must be accepted by nodes greater than ei, we then increment
−−−−−−→
Processed[σu − τ−1].

Note that when τ is a non-invertible essential type then σu − τ−1 = σu.

The loop in lines 18–24 is responsible for updating the arrays
−→
Cut and

−−−−−−→
Processed to

reflect connections of nodes e′ smaller than ei to ei by non-invertible essential types. In
each iteration the transition guesses a difference type of some node e′ w.r.t. ei in M and
assigns it to σg. Then it guesses a 2-type τ that e′ wants to emit to ei (lines 19 and 20). To

reflect that the connection indeed exists,
−→
Cut[σg] is decremented, type τ removed from σg

and vector
−−−−−−→
Processed[σg − τ] is incremented in lines 21 and 22. Finally, when the loop is

over we increment
−→
Cut[σc

>] to reflect that the edges emitted by ei to greater nodes have
to be matched later on, provided that i < k. When i = k, node ei is the last node of the
structure, and it must accept all essential types not accepted by smaller nodes.

26 W. CHARATONIK AND P. WITKOWSKI

In lines 26–31 we guess the star type of the next node, or the special value ⊥ in case i = k.
The next value of σc must be such that it accepts invertible essential type τ+1 emitted by
ei. Note that +1(x, y) ∈ τ+1, which verifies that ei+1 is indeed the successor of ei w.r.t. <M.
Moreover, stM(ei+1) ∈ Allowed(Visited i+1) as either ei+1 is a king in M or it is not a king
and can be connected to every smaller non-royal node by a silent 2-type. The latter property
holds because M is normal. Thus stM(ei+1) can be guessed as the new σc.

Finally, the loop in lines 32–38 may move the content of vector
−−−−−−→
Processed to

−→
Cut. We

may assume (see Lemma 6.17 below) that the entire content is actually moved. Then, vector
−→
Cut obtains the value of

−→
Cutei+1 .

The proof of the other direction, that is the construction of a structure from a run of
HF , is more complicated and we need some additional lemmas. First, observe that at the
end of the transition of HF (lines 32–38) there is a loop that non-deterministically chooses

a partial star-type σg, decrements
−−−−−−→
Processed[σg] and increments

−→
Cut[σg]. W.l.o.g. we may

assume that this procedure erases the entire vector
−−−−−−→
Processed, and thus

−−−−−−→
Processedi = ~0 for

all i ∈ {1, . . . k}. Thus we have the following lemma.

Lemma 6.17. Let F be a frame such that multicounter automaton HF is non-empty. Then

there exists an accepting run 〈ρ1, ϑ1〉, . . . , 〈ρk, ϑk〉 of HF such that ϑi(
−−−−−−→
Processed) = ~0 for

every i ∈ k.

Proof. Assume that HF is non-empty and let 〈ρ′1, ϑ′1〉, . . . , 〈ρ′k, ϑ′k〉 be its accepting run. For

i ∈ k let ρi = ρ′i, and ϑi(
−→
Cut) = ϑ′i(

−→
Cut) + ϑ′i(

−−−−−−→
Processed), ϑi(

−−−−−−→
Processed) = ~0. We now argue

that the run 〈ρ1, ϑ1〉, . . . , 〈ρk, ϑk〉 is accepting. Consider a configuration 〈ρ′i, ϑ′i〉, for i ∈ k − 1.
By assumption HF may transit from 〈ρ′i, ϑ′i〉 to 〈ρ′i+1, ϑ

′
i+1〉. We will show that HF may

transit from 〈ρi, ϑi〉 to 〈ρi+1, ϑi+1〉. Execution of HF ’s transition can be broken into two
parts. First, lines 1–31 and second, lines 32–38.

Execution of the first part on configuration 〈ρ′i, ϑ′i〉 may be mimicked on configuration

〈ρi, ϑi〉 for two reasons. First, the execution doesn’t depend on value of vector
−−−−−−→
Processed

(i. e., the first part of the execution does not use decreasing actions on
−−−−−−→
Processed). Second

we have ϑi(
−→
Cut) ≥ ϑ′i(

−→
Cut), and since the execution does not reject on smaller values of

−→
Cut,

it won’t reject on higher values of
−→
Cut.

In the second part of the execution (lines 32–38) we may conduct non-deterministic

guesses in such a way that the entire vector
−−−−−−→
Processed is reset. Thus HF may transit from

〈ρi, ϑi〉 to 〈ρi+1, ϑi+1〉. Since the selection of i was arbitrary, we conclude that all transitions
in sequence 〈ρ1, ϑ1〉, . . . , 〈ρk, ϑk〉 can be conducted. Since 〈ρ′1, ϑ′1〉 is the starting configuration

of HF , we have ϑ′1(
−−−−−−→
Processed) = ~0. Furthermore, ϑ1(

−→
Cut) = ϑ′1(

−→
Cut), ϑ1(

−−−−−−→
Processed) = ~0 and

ρ1 = ρ′1. Therefore 〈ρ1, ϑ1〉 = 〈ρ′1, ϑ′1〉 and 〈ρ1, ϑ1〉 is the starting state of HF . Moreover, as

〈ρ′k, ϑ′k〉 is an accepting state, we have ϑ′k(
−−−−−−→
Processed) = ~0, which leads to a conclusion that

〈ρk, ϑk〉 is also an accepting state. Therefore the specified run is accepting, and it satisfies
requirements imposed by the lemma.

By a partial structure we mean a (usually not complete) graph whose nodes are labelled
with 1-types and edges are labelled with 2-types such that whenever an edge 〈e1, e2〉 is
labelled with τ then e1 is labelled with tp1(τ) and e2 is labelled with tp2(τ). Intuitively,
partial structures are graphs that can be extended to (full) relational structures by adding
some edges. In the following lemma we construct a partial structure from a run of the

TWO-VARIABLE LOGIC WITH COUNTING AND A LINEAR ORDER 27

automaton HF . Each iteration of the transition ∆ corresponds to an extension of the
structure constructed so far with edges connecting the element guessed in the iteration. Here
we are interested only in edges that are labelled with essential types.

Lemma 6.18. Let 〈ρ1, ϑ1〉, . . . , 〈ρk, ϑk〉, 〈ρk+1, ϑk+1〉 be an accepting run of HF such that

ϑi(
−−−−−−→
Processed) = ~0 for every i ∈ k + 1. There exists a partial structure E with nodes e1, . . . , ek

such that

• ϑi(
−→
Cut) is the cut at point ei in E, for i ∈ k,

• the star type of ei in E (i. e., stE(ei)) is ρi(σc) for i ∈ k, and
• E |= +1(ei, ei+1), for i ∈ k − 1.

Proof. We say that a node ei wants to emit an edge of type τ if τ ∈ ρi(σc) and in the partial
structure being constructed no edge τ emitted from ei is yet present. We will construct
the partial structure E in k steps. We start with an empty partial structure E0. At the
beginning of each step i, for i ∈ k, we have a partial structure Ei−1 with nodes e1, . . . ei−1

and some essential types established between these nodes. In step i we extend Ei−1 with
node ei to form Ei. During the construction we will maintain the following invariants:

• During step i all essential types τpctr emitted from ei to nodes ej , where j < i, are

established. These essential types are defined by (ρi(σc))
<.

• For any essential type τbrdr , just before step i, vector ϑi(
−→
Cut) captures the number of

edges τbrdr that “want” to be emitted from nodes ej , where j < i, and accepted by nodes

ej′ , where j′ ≥ i. The number is
∑
{σ|τbrdr∈σ}

(
ϑi(
−→
Cut)

)
(σ). Some of these edges will be

accepted by ei, and some by nodes with larger indices.

The first invariant trivially holds before step 1. Since ϑ1(
−→
Cut) = ~0, as 〈ρ1, ϑ1〉 is the starting

configuration of HF , the second invariant also holds. Now, assuming that both invariants
hold and that Ei−1 is constructed, we construct the structure Ei. This is done in one
transition of HF , and after the transition the invariants are preserved.

The loop in lines 6–16 is used for preserving the first invariant, that is, for ensuring
that all essential types τpctr ∈ (ρi(σc))

< are established. In the loop each such type τpctr is
considered one by one.

There are two cases. If τpctr is an invertible essential type then there must be a node ej
with j < i, that wants to emit an edge (τpctr)−1. Therefore, there must be a partial star-type

σu such that (τpctr)−1 ∈ σu and ϑi(
−→
Cut)(σu) > 0. We guess this type in line 10. In the

second case, if τpctr is a non-invertible essential type then this fact is not reflected in the star
type of a node that will accept it. Therefore, we only need to make sure that a node ej , with

j < i and with 1-type tp2(τpctr) exists. Again, ϑi(
−→
Cut) contains sufficient data to verify this.

In line 12 a star-type σu of such a node ej is guessed. Next, in both cases, line 14 verifies that
the guess is correct and reflects that an edge between ei and ej is established. The partial
star type σu− (τpctr)−1 may be non-empty, i. e., there may be other essential types that want

to be emitted from ej . We store this information by increasing ϑi(
−−−−−−→
Processed)(σu − (τpctr)−1)

in line 15. Note that we use a separate vector
−−−−−−→
Processed as we must avoid assigning more

than one essential type between the same pair of nodes ei and ej . For this reason we index
−→
Cut and

−−−−−−→
Processed by partial star types instead of essential types.

To preserve the second invariant, we look at loops in lines 18–24 and 32–38. The loop
in lines 18–24 is used for verifying that some essential types that nodes ej (for j < i) want

28 W. CHARATONIK AND P. WITKOWSKI

to emit to larger nodes, are accepted by ei. Note that the number of iterations made by the
loop is not determined, unlike the case of the loop considered previously. In lines 19 and 20
a partial star-type σg and an essential type τbrdr ∈ σg are guessed. Note that τbrdr cannot be
invertible, as such types were considered in the previous loop. After verifying the correctness
of the guess by decrementing an appropriate counter, we store the information about

remaining essential type that ej wants to emit by incrementing ϑi(
−−−−−−→
Processed)(σg − (τbrdr)).

When the execution reaches line 25, all essential types between ei and smaller nodes are
established. Since ρi(σc) is (ρi(σc))

< ∪ (ρi(σc))
>, node ei still wants to emit essential types

from (ρi(σc))
>. To reflect this the action in line 25 increases an appropriate counter.

In lines 26–31 we guess the star type of the next node, or the special value ⊥ in case
i = k. If i < k then the next value of σc must be such that it accepts invertible essential
type τ+1 emitted by ei. This ensures that nodes e1, . . . , ek are guessed in order.

Finally, the loop in lines 32–38 may move the content of vector
−−−−−−→
Processed to

−→
Cut, and by

assumption of the lemma it indeed moves the entire content of
−−−−−−→
Processed to

−→
Cut, ensuring

that the second invariant is satisfied just before step i+ 1.
Put E = Ek and consider the partial structure E . Since 〈ρk+1, ϑk+1〉 is an accept-

ing configuration, we have ϑk+1(
−→
Cut)(σ) = 0, for every non-empty star type σ. Thus∑

{σ|τbrdr∈σ}

(
ϑk+1(

−→
Cut)

)
(σ) = 0, for every essential type τbrdr . By the second invariant we

conclude that for all i ∈ k, all essential types τ ∈ (ρi(σc))
> are emitted from ei and accepted

by some ej , where j > i and j ≤ k. This means that ϑi(
−→
Cut) is the cut at point ei in E (first

condition of the lemma). As guaranteed by first invariant, in step i we emitted from ei all
types τ ∈ (ρi(σc))

<. Since ρi(σc) is (ρi(σc))
< ∪ (ρi(σc))

>, the node ei in Ek does not want
to emit any essential type. This means that ei realises the star type stE(ei) = ρi(σc) (second
condition of the lemma). Finally, as already observed, in lines 26–31 the transition of HF
ensured that nodes of E are guessed in order (third condition of the lemma).

In previous lemma we constructed a partial structure with all edges labelled with
essential types. This structure is still not a complete graph because edges labelled with
silent types are missing. In the following lemma we add these edges.

Lemma 6.19. Let F = 〈K,ST,Ξ,Σ, f̄〉 be a frame. If HF is non-empty then there exists a
structure M∈ O(Σ, <,+1) that fits F .

Proof. Assume that HF is non-empty. By Lemma 6.17 there exists an accepting run of

HF : 〈ρ1, ϑ1〉, . . . , 〈ρk, ϑk〉, 〈ρk+1, ϑk+1〉 where ϑi(
−−−−−−→
Processed) = ~0 for every i ∈ k + 1. By

Lemma 6.18 there exists a partial structure E whose nodes sequenced in order are e1, . . . ek
and stE(ei) = ρi(σc), for every i ∈ k. Note that Type(σc) = ST and therefore stE(ei) ∈ ST.
Moreover, every royal type from K is realised in E , as the acceptance condition of HF requires
that ρk+1(Visited) contains the set of kings. We now show that we may supplement E to
a full relational structure M∈ O(Σ, <,+1) by silent types from Ξ. This will be enough to
show that M is a structure that fits F .

Take any pair of elements 〈ei, ej〉 such that no type is established for this pair in E .
This means that neither ei nor ej is a king. W.l.o.g. assume that i < j. Let πi = tpE(ei)
and πj = tpE(ej). Consider the execution of HF in step j − 1. In line 30 of the transition
the star type of ej is guessed in such a way that all already visited non-royal 1-types can
be connected by a silent type from Ξ to the 1-type π(σc), i. e., to πj (cf. Condition 2 in
Definition 6.2). Since πi is one of such visited types, we may find a type τ ∈ Ξ such that

TWO-VARIABLE LOGIC WITH COUNTING AND A LINEAR ORDER 29

tp1(τ) = πi, tp2(τ) = πj and (x < y) ∈ τ . We then establish the type τ between ei and ej ,
and we continue the procedure for remaining pairs of nodes. In this way we construct the
structure M. It is clear from the construction that M fits F and that M∈ O(Σ, <,+1).

6.8. Main theorem.

Theorem 6.20. The finite satisfiability problem for C2 (∗, ∗, {<,+1}) is decidable.

Proof. We may assume that the input C2 (∗, ∗, {<,+1}) formula ϕ is in normal form (oth-
erwise it can be brought to the normal form). A non-deterministic decision procedure for
the finite satisfiability problem guesses a frame F such that F |= ϕ and checks if HMCA
HF is non-empty. If so, then by Proposition 6.15 we obtain a structure M ∈ O(Σ, <,+1)
that fits F . Because M fits F and F |= ϕ, by Proposition 6.11 we conclude that M |= ϕ.
This shows that ϕ is finitely satisfiable, so our procedure is sound. On the other hand, if ϕ
is finitely satisfiable then, by Lemma 6.5, it has a model M which is a normal structure.
Again, by Proposition 6.11 there exists a frame F such that M fits F and F |= ϕ. By
Proposition 6.15 we conclude that HF is non-empty, so the procedure is complete.

Note that the size of F is at most doubly exponential in the size of the formula’s
signature 〈Σ, f̄〉, so there are finitely many frames that can be guessed. Furthermore, the
emptiness problem of HMCA HF is decidable, as stated in Proposition 6.12.

The decidability result for C2 (∗, ∗, {<}) can be applied to decide C2 with one acyclic
relation. Every acyclic relation can be extended to a linear order by topological ordering, and
conversely, every relation contained in a linear order is acyclic. Thus we have the following
corollary.

Corollary 6.21. The finite satisfiability problem for C2 (∗, ∗, {≺}), where ≺ is interpreted
as an acyclic relation, is decidable.

Proof. A formula ϕ is finitely satisfiable in C2 (∗, ∗, {≺}) if and only if the formula ϕ ∧
∀x∀y x ≺ y ⇒ x < y is finitely satisfiable in C2 (∗, ∗, {<}).

7. Conclusion

We have shown several complexity results for finite satisfiability of two-variable logics with
counting quantifiers and linear orders. In particular we proved NExpTime-completeness of
the problem for C2 (∗, 0, {<,+1}), VAS-completeness for C2 (∗, ∗, {<}) and undecidability
for C2 (∗, 2, {<1, <2}). The results for C2 (∗, ∗, {<}) extend to C2 with one acyclic relation.
There are still some unsolved cases, including C2 (∗, 0, {<1, <2}) and C2 (∗, 1, {<1, <2}).

There are lots of open problems in the area. One of them is general satisfiability. None
of the logics considered here has the finite model property. Our techniques rely on finiteness
of the underlying structure, so they cannot be directly applied to general satisfiability on
possibly infinite structures. Among possible directions for future work one can choose
combination of C2 with other interpreted binary relations like preorders [22] or transitive
relations [33]. Another possibility is to consider C2 with closure operations on some relations,
like equivalence closure [15] or deterministic transitive closure [3].

30 W. CHARATONIK AND P. WITKOWSKI

References

[1] Mikolaj Bojanczyk, Claire David, Anca Muscholl, Thomas Schwentick, and Luc Segoufin. Two-variable
logic on data words. ACM Trans. Comput. Log., 12(4):27, 2011.

[2] Witold Charatonik, Emanuel Kieronski, and Filip Mazowiecki. Satisfiability of the two-variable fragment
of first-order logic over trees. CoRR, abs/1304.7204, 2013.

[3] Witold Charatonik, Emanuel Kieroński, and Filip Mazowiecki. Decidability of weak logics with determin-
istic transitive closure. In Joint Meeting of the Twenty-Third EACSL Annual Conference on Computer
Science Logic (CSL) and the Twenty-Ninth Annual ACM/IEEE Symposium on Logic in Computer
Science (LICS), CSL-LICS ’14, Vienna, Austria, July 14 - 18, 2014, page 29, 2014.

[4] Witold Charatonik and Piotr Witkowski. Two-variable logic with counting and trees. In 28th Annual
ACM/IEEE Symposium on Logic in Computer Science, LICS 2013, New Orleans, LA, USA, June 25-28,
2013, pages 73–82, 2013.

[5] Witold Charatonik and Piotr Witkowski. Two-variable logic with counting and a linear order. In 24th
EACSL Annual Conference on Computer Science Logic, CSL 2015, September 7-10, 2015, Berlin,
Germany, pages 631–647, 2015.

[6] Kousha Etessami, Moshe Y. Vardi, and Thomas Wilke. First-order logic with two variables and unary
temporal logic. Inf. Comput., 179(2):279–295, 2002.

[7] Diego Figueira. Satisfiability for two-variable logic with two successor relations on finite linear orders.
Computing Research Repository, abs/1204.2495, 2012.

[8] E. Grädel, M. Otto, and E. Rosen. Undecidability results on two-variable logics. Archive for Mathematical
Logic, 38:213–354, 1999.

[9] Erich Grädel, Phokion Kolaitis, and Moshe Vardi. On the decision problem for two-variable first-order
logic. Bulletin of Symbolic Logic, 3(1):53–69, 1997.

[10] Erich Grädel and Martin Otto. On logics with two variables. Theor. Comput. Sci., 224(1-2):73–113,
1999.

[11] Erich Grädel, Martin Otto, and Eric Rosen. Two-variable logic with counting is decidable. In LICS,
pages 306–317. IEEE Computer Society, 1997.

[12] N. Immerman, A. Rabinovich, T. Reps, M.Sagiv, and G. Yorsh. The boundary between decidability
and undecidability for transitive-closure logics. In Proceedings of the 18th Annual Conference of the
European Association for Computer Science Logic (CSL’04), pages 160–174, 2004.

[13] Emanuel Kieroński. Decidability issues for two-variable logics with several linear orders. In Marc Bezem,
editor, CSL, volume 12 of LIPIcs, pages 337–351. Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
2011.

[14] Emanuel Kieroński and Jakub Michaliszyn. Two-variable universal logic with transitive closure. In
Patrick Cégielski and Arnaud Durand, editors, CSL, volume 16 of LIPIcs, pages 396–410. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2012.

[15] Emanuel Kieroński, Jakub Michaliszyn, Ian Pratt-Hartmann, and Lidia Tendera. Two-variable first-order
logic with equivalence closure. In LICS, pages 431–440. IEEE, 2012.

[16] Emanuel Kieroński and Martin Otto. Small substructures and decidability issues for first-order logic
with two variables. In LICS, pages 448–457. IEEE Computer Society, 2005.

[17] Emanuel Kieroński and Lidia Tendera. On finite satisfiability of two-variable first-order logic with
equivalence relations. In LICS, pages 123–132. IEEE Computer Society, 2009.

[18] S. Rao Kosaraju. Decidability of reachability in vector addition systems (preliminary version). In
Proceedings of the Fourteenth Annual ACM Symposium on Theory of Computing, pages 267–281, 1982.

[19] Jérôme Leroux. The general vector addition system reachability problem by presburger inductive
invariants. In Proceedings of the 24th Annual IEEE Symposium on Logic in Computer Science, pages
4–13, 2009.

[20] R. J. Lipton. The reachability problem requires exponential space. 62, New Haven, Connecticut: Yale
University, Department of Computer Science, Research, Jan, 1976.

[21] Amaldev Manuel. Two variables and two successors. In Petr Hlinený and Antońın Kucera, editors,
MFCS, volume 6281 of Lecture Notes in Computer Science, pages 513–524. Springer, 2010.

[22] Amaldev Manuel and Thomas Zeume. Two-variable logic on 2-dimensional structures. In Simona
Ronchi Della Rocca, editor, Computer Science Logic 2013 (CSL 2013), CSL 2013, September 2-5, 2013,
Torino, Italy, volume 23 of LIPIcs, pages 484–499. Schloss Dagstuhl – Leibniz-Zentrum fuer Informatik,
2013. Long version of the paper available from the authors.

TWO-VARIABLE LOGIC WITH COUNTING AND A LINEAR ORDER 31

[23] Ernst W. Mayr. An algorithm for the general Petri net reachability problem. SIAM J. Comput.,
13(3):441–460, 1984.

[24] Michael Mortimer. On languages with two variables. Mathematical Logic Quarterly, 21(1):135–140, 1975.
[25] B. O. Nash. Reachability problems in vector addition systems. The American Mathematical Monthly,

80(3):pp. 292–295, 1973.
[26] Martin Otto. Two variable first-order logic over ordered domains. J. Symb. Log., 66(2):685–702, 2001.
[27] Leszek Pacholski, Wieslaw Szwast, and Lidia Tendera. Complexity of two-variable logic with counting.

In LICS, pages 318–327. IEEE, 1997.
[28] Ian Pratt-Hartmann. Complexity of the two-variable fragment with counting quantifiers. Journal of

Logic, Language and Information, 14(3):369–395, 2005.
[29] Ian Pratt-Hartmann. The two-variable fragment with counting revisited. In Anuj Dawar and Ruy J.

G. B. de Queiroz, editors, WoLLIC, volume 6188 of Lecture Notes in Computer Science, pages 42–54.
Springer, 2010.

[30] Ian Pratt-Hartmann. Logics with counting and equivalence. In Joint Meeting of the Twenty-Third
EACSL Annual Conference on Computer Science Logic (CSL) and the Twenty-Ninth Annual ACM/IEEE
Symposium on Logic in Computer Science (LICS), CSL-LICS ’14, Vienna, Austria, July 14 - 18, 2014,
page 76, 2014.

[31] Thomas Schwentick and Thomas Zeume. Two-variable logic with two order relations - (extended abstract).
In Anuj Dawar and Helmut Veith, editors, CSL, volume 6247 of Lecture Notes in Computer Science,
pages 499–513. Springer, 2010.

[32] Dana Scott. A decision method for validity of sentences in two variables. Journal of Symbolic Logic,
27:477, 1962.

[33] Wieslaw Szwast and Lidia Tendera. FO2 with one transitive relation is decidable. In 30th International
Symposium on Theoretical Aspects of Computer Science (STACS 2013), volume 20 of Leibniz International
Proceedings in Informatics (LIPIcs), pages 317–328, Dagstuhl, Germany, 2013. Schloss Dagstuhl–Leibniz-
Zentrum fuer Informatik.

This work is licensed under the Creative Commons Attribution-NoDerivs License. To view
a copy of this license, visit http://creativecommons.org/licenses/by-nd/2.0/ or send a
letter to Creative Commons, 171 Second St, Suite 300, San Francisco, CA 94105, USA, or
Eisenacher Strasse 2, 10777 Berlin, Germany

	1. Introduction
	2. Preliminaries
	3. Two linear orders
	4. C2[...] is NEXPTIME-complete
	5. Hardness of C2[...]
	6. Satisfiability of C2[...]
	6.1. Normal form of C2 formulas
	6.2. 2-types and message types
	6.3. Normal structures
	6.4. Star types
	6.5. Frames
	6.6. High-level multicounter automata
	6.7. Global consistency
	6.8. Main theorem

	7. Conclusion
	References

