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ABSTRACT. Session types are used to describe and structure interactions between independent processes
in distributed systems. Higher-order types are needed in order to properly structure delegation of
responsibility between processes. In this paper we show that higher-order web-service contracts
can be used to provide a fully-abstract model of recursive higher-order session types. The model is
set-theoretic, in the sense that the meaning of a contract is given in terms of the set of contracts with
which it complies. A crucial step in the proof of full-abstraction is showing that every contract has at
least one other contract with which it complies.

1. INTRODUCTION

The purpose of this paper is to show that session types [THK94, HVK98| IDCd09] can be given a
fully-abstract behavioural interpretation using web-service contracts [Pad10, |(CGPO9|]. Higher-order
session types are necessary to handle session delegation, and in turn this calls for the development of a
novel form of peer compliance between higher-order contracts. Moreover, to prove the completeness
of the model we introduce a novel form of syntactic duality for higher-order contracts, which we call
peer-duality. We believe that this peer-duality, when applied to session types, captures the intuition
of complementary behaviour more faithfully than the standard notion of type duality from [HVK9S].

The current paper is the full-version of the extended abstract [BH14]. It contains proofs for the
various results, more explanations, and more examples. It also corrects a mistake in [BH14!], which
occurred when defining our novel form of syntactic duality for higher-order contracts. This will be
explained in detail in Section 3]
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Session types: The interactions between processes in a complex distributed system often follow
a pre-ordained pattern. Session types [THK94, [HVKO9S8|] have been proposed as a mechanism for
concisely describing and structuring these interactions; they have been extensively studied [DCdQ9]]
and are being put into practice [HMM™12]]. As a simple example consider a system consisting of
two entities
(vs) (urls?(s*: S).store || urls![s* ].cstmr)
which first exchange a new private communication channel or session, s, over the public address
of the store urls; using the conventions of [[GHOS]] the customer sends to the store one endpoint
of this private session, namely s*, and keeps the other endpoint s~ for itself. The session type S
determines the nature of the subsequent interaction allowed between the two entities, each using its
own exclusive endpoint of the private session s.
One form that the session type S could take is

2Id). &(1,: 2(Addr).!(Int).T,
1,: 2(Addr).!/(Int).T, (1.1)
15: 2(Addr).!/(Int).T )

where Int, Addr, Id are some base types of integers, addresses and credentials respectively, and
&(11:S41,...,1,: §,)1s a branch type which accepts a choice between interaction on any of the
predefined labels 1;, followed by the interaction described by the residual type S ;. Thus above
dictates that store offers a sequence of four interactions on its end s* of the session, namely (i)
reception of credential, (ii) acceptance of a choice among three commodities labelled by 11, 1,, 13,
(iii) followed by the receipt of an address, and (iv) the transmission of a price, of type Int; subsequent
behaviour is determined by the type T.

The behaviour of estmr on the other end of the session, s~, is required to match the behaviour
described by S, thus satisfying a session type which is intuitively dual to S. For example, the dual to
(L.1) above is

I(Id). ® (1;: Y(Addr).?(Int).T’,
1,: !(Addr).?(Int).T", (1.2)
15: I(Addr).?(Int).T”)
under the assumption that 7’ is the dual of 7. Intuitively, input is dual to output and the dual to a
branch type is a choice type &(1;: S1,..., 1;: St ), which allows the process executing the role
described by the type to choose one among the labels 1;. These two principles lead to a general
definition of the dual of a session type T, denoted 7 in [THK94, HVKOS].

In order to allow flexibility to the processes fulfilling the roles described by these types a
subtyping relation between session types, T < S, is essential; see [[GHOS] for a description of the
crucial role played by subtyping. Intuitively 7 < S means that any process or component fulfilling
the role dictated by the session type S may be used where one is required to fulfil the role dictated by
T. Thus subtyping gives an intuitive comparative semantics to session types. However, to the best of
our knowledge, subtyping for session types has only ever been given a purely syntactic definition; in
Definition [2.3]of Section[2] we slightly generalise the standard definition of [GHOS]], so as to account
also for base types such as Int and Bool.

Recursive types: Sessions over which interactions have reached completion are described by the
type END. Some sessions, though, may allow interactions between their endpoints to go on indefinitely.
This is required for instance by processes that offer services or methods. To accommodate this,
recursion has been added in some process calculi, for instance in [HVK9S8|[YVO07,IDH11]]. To show
instances of such processes below, and also in Section we use the syntax of [YV07]. The only
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non-standard constructs in that syntax are the two which describe session delegation, that is throw
and catch. The process throw «’'[ « |; P writes the endpoint « over the endpoint «’, and continues as
P. The process catch «’(z) in X[ Q], on the other hand, inputs a name, say «, over the endpoint «’,
and continues as the process Q[z — «].

Example 1.1. [ An ever-lasting session |
Here we use the syntax of [YV07] to describe processes.

D; = X(y):=y>{plus: y2(x) in y2(z) in y![x+z].X[y]]
pos: y2(z) in y![z>0].X[y]}

D, = Y(x):=x<{pos: x![ random()].x?(z) in Y[x]}.
P (vk) (def Dg in def D, in X[« 1 || Y[« ])

The peer X[ k* ] defined by instantiating Dy accepts over «* the invocation of one of the two methods
plus and pos, reads the actual parameters, sends the result of the chosen method and starts again.
The peer Y[ «~ | defined by instantiating D, invokes via its endpoint «~ the method pos, sends a
random number, reads the result of the invoked method, and also starts again. The composition of
these two peers in P results in a never ending session in which interaction occurs between the two
peers forever.

Note that the definition of Dy is a recursive version of the math server of [GHOS].

The type T that describes the behaviour of D, on an endpoint k™ is intuitively a solution of the
equation
T = &{(plus: 2(Int).?(Int).!(Int).7, pos: 7(Int).!(Int).T)
A natural way to express solutions to such equations is to use recursive types. For instance we could
take the type T required above to be

uX. &(plus: 7(Int).2(Int).!(Int).X, pos: ?(Int).!(Int).X)

The type equations that require recursive terms arise naturally in presence of recursive pro-
cesses. The presence of recursive types justifies the coinductive definition of the subtyping (see
Definition [2.3), which follows the approach of [PS96].

Contracts: Web services [Padl10, (CGPQO9] are distributed components which may be combined
and extended to offer services to clients. These services are advertised using contracts, which are
high-level descriptions of the expected behaviour of services. These contracts come equipped with a
sub-contract relation cnt) C cnt,; intuitively this means that the contract cnt,, or rather a service
offering the behaviour described by this contract, may be used as a service which is required to
provide the contract cnt;. These abstract contracts are reminiscent of process calculi as CCS and
CSP [Mil89b) IHoa83]), and indeed the theory of these process calculi have been used to give a
behavioural interpretation of contracts and the sub-contract preorder, [Pad10, [LPO7].

Contracts are very similar, at least syntactically, to sessions types; for example above can
very easily be read as the following process description from CCS,

1(Id).(?1;.2Addr.!Int.cnt’ + 71,.?2Addr.!Int.cnt’ + ?15.?Addr.!Int.cnt’)

In fact in Section [3| we give a straightforward translation M from the language of session contracts
to that of contracts. Via the mapping M it should therefore be possible to give a behavioural
interpretation to session types, thereby explaining how session types determine process behaviour, at
least along individual sessions. Indeed steps in this direction have already been made in [Bd10, BH12|]
restricting session types to the first-order ones, that is types that cannot express session delegation.
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But, as we will now explain, the use of delegation in session types requires the use of higher-order
types, and in turn higher-order contracts, for which suitable behavioural theories are lacking.

Session delegation: Consider the following system where the costumer cstmr is replaced by girlf
and there are now four components:

(vs) (vp) (vb) (urls![ s* l.urlb![ p* J.urlb![ b* ].girlf ||
urls?(s*: S).store]|
urls?(p*: S ,).bank||
urlbf?(b*: S;).boyf)

Here we model a scenario in which a girlfriend opens a connection to a store, lets her boyfriend
choose a commodity, and then pays for the present. Three private sessions s, p, b are created and the
positive endpoints are distributed to the store, bank, and boyf respectively. One possible script for
the new customer girlf is as follows:

(i) send credential to store: send id on session s~
(ii) delegate choice of commodity to boyf: send session b~ on session s~
(iii) await delegation from boyf to arrange payment: receive session s~ back on session b~.

Thus the session type S, at which the boyfriend uses the session end b* must countenance both the
reception and transmission of session ends, rather than simply data. In this case we can take S to be
the higher-order session type
NTy).!(T2).END (1.3)

where in turn 77 is the session type &(1;: 7(Addr).enxp ) and T, must allow girlf to arrange payment
through the bank. This in turn means that 7> is a higher-order session type as payment will involve
the transmission of the payment session p.

The combination of delegation and recursion leads to processes with complicated behaviour
which in turn puts further strain on the system of session types.

Example 1.2. [ Everlasting generation of finite sessions ]
Consider the process P defined as follows,

D := X(x,y)= (vkr) (throw x[«{ ;0 || catch y(z) inX[z, &5 1)
P = (vko)(def D in X[«}, x5 1)

Intuitively, at each iteration the code X[ «;, 5 ] has the two endpoints of a pre-existing session, o,
generates a new fresh session, k¢, delegates over the endpoint «; the endpoint &, and then recursively
repeats the loop using «¢ as pre-existing session.

According to the reduction semantics in [YV07] the execution of P will never give rise to a
communication error or a deadlock. But the endpoint «; can only be assigned a session type of the
form pX.!(X).enp. Such types are forbidden in [[BAL13]] but they are allowed in the typing systems of
[HVKOS, IGHO5. [YVO07, [Vas12]]; we discuss the type inference in Section

If session types are to be explained behaviourally via the translation M into contracts, the target
language of contracts needs to be higher-order. For instance, the type of above is mapped by M
to the contract ?(!1;.?(Addr).1).?(cnty).1, where cnt, = M(T?3). This in turn means that we require
a behavioural theory of higher-order contracts. This is the topic of the current paper. In particular we
develop a novel sub-contract preorder, which we refer to as the peer sub-contract preorder & with the
property that, for all session types,

S < T if and only if M(S) & M(T) (1.4)
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On the left hand-side we have the subtyping preorder between session types, which determines
when processes with session type 7' can play the role required by type S'; on the right-hand side we
have a behaviourally determined sub-contract preorder between the interpretation of the types as
higher-order contracts. This behavioural preorder is defined in terms of a novel definition of peer
compliance between these contracts.

In the remainder of this Introduction we briefly outline how this sub-contract preorder is defined;
we will refer to it as the peer sub-contract preorder. Intuitively o; £ o, where o; are contracts,
if every contract p which complies with o) also complies with 0. In turn the intuition behind
compliance is as follows. We say that a contract p complies with contract o, written p 4k, o, if
any pair of processes in the source language p, g which guarantee the contracts p, o respectively,
can interact indefinitely to their mutual satisfaction; in particular if no further interaction is possible
between them, individually they both have reached successful or happy states. We call this relation,
which is symmetric, mutual or peer compliance, as both participants are required to attain a happy
state simultaneously. This is in contrast to [CGPQ9, [Pad10, BH12] where an asymmetric compliance
is used, in which only one participant, the client, is required to reach a happy state.

In this paper, rather than discussing processes in the source language, how they can interact
and how they guarantee contracts, we mimic the interaction between processes using a symbolic
semantics between contracts. We define judgements of the form

pllo=p |l o (1.5)

meaning that if p, g, from the source language, guarantee the contracts p, o respectively, then they
can interact and evolve to processes p’, ¢’ which guarantee the residual contracts p’, o’ respectively.
For example we will have the judgement

lInt.p’ || Real.c’ — o' || o’

On the right-hand side of the parallel constructor || we have a contract guaranteed by a process which

will accept a datum which can be used as a real; on the left-hand side there is a contract guaranteed

by a process that supplies an Int. Since we are assuming that integers can be interpreted as reals,

that is Int <, Real, we know that an interaction described by the judgement above takes place.
However it is unclear when an interaction of the form

o)p || Ao).o’ = o' | o (1.6)

should take place. Here on the right is a contract satisfied by a process which provides a session
endpoint that satisfies the contract o; on the left is a contract satisfied by one which is willing to
accept any session endpoint which guarantees the contract o-;. Intuitively the interaction should be
allowed if 0| is a sub-contract of o7, that is o7y & 0. However the whole purpose of defining the
judgements above is in order to define the preorder &; there is a circularity in our arguments.

We break this circularity by supposing a predefined sub-contract preorder 8 and allowing the
interaction whenever oy B o0,. More generally we develop a parametrised theory, with
interaction judgements of the form

.
pllo—sgp |l o
leading to a parametrised peer-compliance relation o —M—B2 o which in turn leads to a parametrised
PP

sub-contract preorder p; 2 p;. We then prove the main result of the paper, (1.4) above, by showing:
There exists a preorder By over higher-order contracts such that S < T if and only if

M(S) =80 M(T)
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This particular preorder By which we construct, and which has been referred to in (1.4) above as &,
has a natural behavioural interpretation. It satisfies the behavioural equation

o1 By o if and only if 0 5o o (1.7)

Moreover it is the largest preorder between higher-order contracts which satisfies (I.7).

The proof of depends on an alternative syntactic characterisation of the set-based preorders
C3. The proof of this syntactic characterisation relies in turn on a crucial property of the peer-
compliance relation:

for every contract o there exists a complementary contract p which complies with it,

o —H—gp P- (%)
However constructing such complementary contracts is not straightforward. One possibility is to use
the notion of the dual of a session type, [THK94, HVK9S], already discussed informally on page
A formal definition may be found in Figure[5] and is readily adapted to contracts via the translation
M; specifically we can define o to be M(M~1(c)).

However there are contracts o which do not comply with their duals, o —yf—ﬁp o. Moreover
these are not esoteric contracts but occur naturally when modelling reasonable processes. A typical
example is the contract px.?(x).1, corresponding to the session type uX.!(X).END needed to type the
process in Example In Example [5.2] we explain why this contract does not comply with its dual,
assuming B satisfies some minimal requirements.

The problem occurs with recursive contracts in which recursion variables occur in message
fields. Indeed in Theorem we show that o %?21) o whenever o has no such occurrences of
recursion variables; again subject to minor conditions on 8.

However for arbitrary contracts we need a more general method of constructing a complementary
contract, which for example applies to useful contracts such as px.?(x).1. In [BHI4] we used a
function, cplmt(-), to fulfil this role; the same function was independently proposed in [BP12],
although with a different purpose in mind. But unfortunately this has the same defect as duality:
there are also contracts ¢ such that o %P%P cplmt(o); see Example ﬂ

Here we propose another, more complicated, function prdual(—), see Definition[5.16} we refer
to prdual(o) as the peer-dual of the contract o. The intuitive idea is that prdual(o)

o first syntactically transforms o into another contract o which has no offending recursion variables,
but is in some sense still functionally equivalent to the original o
o then returns the standard dual of ook, namely o .

In Theorem we prove that o —H—gp prdual(o) for every session contract o, thus establishing (%)
above.

Paper structure: The remainder of the paper is organised as follows. In Section [2| we recall the
standard theory of session types, while Section[3]is devoted to our exposition of higher-order contracts
and our novel notion of parametrised peer sub-contract preorder 2. In Section we show that,
although the definition of this preorder is set-theoretic, it can be characterised using only the syntactic
form of contracts; this stems from the very restricted form that our higher-order contracts can take.
Using this syntactic characterisation we can develop enough properties of the preorders C% to ensure
the existence of the particular preorder B alluded to in (1.7) above; this is the topic of Section

As we have already stated, this result depends on being able to construct the complement of a
contract. Our proposal, prdual(c), is discussed separately in Section [5] This section also contains
explanations of the deficiencies of the previous proposals o, and cplmt(c). It then finishes, in
Section[5.4] with a discussion of how our proposed operator prdual(—) can be used to improve on the
type-checking systems for session types in papers such as [YV07, [Vas12].
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T,S == Session types
END Terminated session
M). T Input
\(M). T Output
&(1,:Ty,...,1,: T,) Branch,n>1
&(1y:Ty,...,1,: T,) Choice,n>1
uX.T Recursive session type
X Type variable
M,N := Message types
T Session Type
t Base type
t = Base types

Id, Addr, Int,Real,...

Figure 1: Grammar of types

Related work is then discussed in Section[6] and the appendices contain some standard material
and some minor technical results.

2. SESSION TYPES

Here we recall, using the notation from [[GHOS], the standard theory of subtyping for session types.
The grammar for the language Lstyp of session type terms is given in Figure |1, That grammar
uses a collection of unspecified base types BT, of which we enumerate a sample. It also uses a
denumerable set of labels, L = {11, 1;, 13, ...}, in the branch and choice constructs. Recall from the
Introduction that &(1;: S1,...,1,: S, ) offers different possible behaviours based on a set of labels
{1;,1,,15,...1,} while ®(1,: S1,...,1,: S, ) takes a choice of behaviours; in both constructs the
labels used are assumed to be distinct.

We use STyp to denote the set of session type terms in Lsty, which are closed and guarded, in
other words the terms that contain only variables which are not free, and that appear at least after one
non-recursive type constructor. The definitions of both concepts are standard, and they may be found
in Appendix

Subtyping is defined coinductively and uses some unspecified subtyping preorder < between
base types, a typical example being Int <, Real, meaning that an integer may be supplied where a
real number is required. Intuitively subtyping between session types is determined by two principles:

(a) Branch: a branch type T can be replaced with a branch type T, that allows more choices
than 7.
(b) Choice: achoice type T can be replaced with a choice type T that allows fewer choices than 77.

We give two examples of these principles.
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Example 2.1. Let BARTENDER = &( espresso: T} ) and
FANCYBARTENDER = &( espresso: T7,
deka: 77,
double — espresso: T5)

The type BARTENDER accepts the choice of only one option, espresso, so all the customers satisfied
by BARTENDER, are satisfied by any other type that offers at least the label espresso. It follows
that FANCYBARTENDER satisfy all the customers satisfied by the BArRTENDER. This is formalised by the
subtyping, which relates the two types

BARTENDER < FANCYBARTENDER

as long as also the continuations 71 and T are related (ie. T < T7).

Example 2.2. Let ITaLianCustomER describe the different coffees that a process may want to order
when interacting with a bar tender.

ITALIANCUSTOMER = & { espresso: T},
deka: 75,
double — espresso: T3)

All the bar tenders that are able to accept this range of choices, have to offer at least the three labels
that appear in ITaLiaNCusTOMER. Now consider the type

CusToMER = &( espresso: T} )

Since CusToMER chooses among fewer options than ITALIANCUSTOMER, a process that behaves accord-
ing to CusToMER can be used in place of one that behaves as prescribed by ITaLiaNCusToMER. This is
formalised by the subtyping relation as follows,

ITALIANCUSTOMER < CUSTOMER

if also the continuations are related (ie. 71 < T{).

Added to the principles sketched above are the standard covariant and contravariant requirements
on the input and output constructs. Recursive types are handled by a standard function unfold(T")
which unfolds all the first-level occurrences of uX.— in the (guarded) type 7. The formal definition
of unfold in turn depends on the definition of substitution T[X +— S], the syntactic substitution of the
term S for all free occurrences of X in 7. The details may be found in Appendix [Al

Definition 2.3. [ Subtyping ]
Let < : P(STyp?) — P(STyp?) be the functional defined so that (T, ) € F<(R) whenever:

(i) if unfold(T") = enp then unfold(S) = EnxD
(ii) if unfold(T") = 7(ty).S | then unfold(S) = 2(t3).S, and §1 RS, and t; <p t2
(iii) if unfold(T") = !(ty).S then unfold(S) = !(t,).S, and S| R S, and t) <p
@iv) if unfold(T) = !(T).S | then unfold(S) = (T).S, and S| RS, and T» R T
(v) if unfold(T) = 2(T;).S | then unfold(S) = 2(T»).S,and S1 RS, and T R T
(vi) ifunfold(T) = &(1,: Ty,...,l,: T, ) thenunfold(S) = &(1;: S1,...,1,: S, ) wherem <n
andT; RS;forallie[1,...,m]
(vii) ifunfold(T) = &(1,: Ty,...,L,: T, ) thenunfold(S) = &(1;: S{,...,1,: S,) wheren <m
andT; RS;forallie[l,...,n]
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If R € F<(R), then we say that R is a type simulation. The monotonicity of #= and the Knaster-
Tarski Theorem [Tar55]] ensure that there exists the greatest solution of the equation R = F<(R); we
call this solution the subtyping, and we denote it <.

The cases and are not present in the original definition of [GHO3], so our subtyping
relation is in fact slightly more general than the one of that paper. Note the use of covariance in the
first argument in ((i1)), and the contravariance in and ((iv)); the intuitions of (a) and (b)
above are reflected in ((vi)) and respectively.

In the next example we show how to prove that two types are related by the subtyping.

Example 2.4. Let S = uX.7(X).X and T = uY.2(Y).2(Y).Y. In this example we prove that
uX.2(X).X < uY.2(Y).2(Y).Y

Thanks to the Knaster-Tarski Theorem, we need only exhibit a prefixed point of the func-
tional F <, that contains the pair (S, T). Consider the following relation

R={(S.T), (%S).S,AT).AT).T), (AS).S, AT).T), (S, AT).T)}
and let A = F<(R). The set inclusion R C A follows from case of Definition (2.3).

Now that we have defined the subtyping relation <, and shown a proof method for it, we discuss
its meaning. In the context of m-calculus equipped with sessions, the relation < formalises two
notions of safe substitutivity. Suppose that Int < Real. If § < T, then both of the following are
true:

(1) a session end-point k3 at type S may safely be used in place of a session endpoint «; at type 7.
For example - using the standard & syntax - a process

P = c2(x: 2(Real).ep).x2(y: Real).b![y/2].0

may safely receive along the channel ¢ an endpoint «, that has type ?(Int).enp, instead of the
declared type ?(Real).enp. Intuitively, this is the case because ?(Int).enD < ?(Real).enp, and
thus if P can read over x a value of type Real, then it can read also a value of type Int.

(2) aprocess P that uses an endpoint « at type 7 may be safely used in place of a process Q that uses
k at type S. To sketch this phenomenon, we follow [GHOS| Section 2] and discuss the following
processes,

x<{plus: x![2].x![3].x?2(u: Int).0}.

clientbody(x)
serverbody(x) = x> {plus: x?(z: Int).x?(y: Int).x![y +2].0}

x> {plus: x?2(z: Int).x?(y: Int).x![y+2z].0
mult: x?2(z: Int).x?(y: Int).x![y*z].0}
The session type at which serverbody, (x) employs x is § = &(plus: S’ ), where
S’ = 2(Int).2(Int).!(Int).END,

while the type at which serverbody,(x) uses xis T = &(plus: S’,mult: S’), and it is routine
work to check that S < 7. Now observe that - at least intuitively - the process

serverbody,(x)

Q1 = (vk) (clientbody(x™) || serverbody, (k"))

is well-typed. Thanks to S < T and subsumption, one can adapt the type derivation for Q; to
prove that also the following process is well-typed,

0> = (vk) (clientbody(x™) || serverbody,(x™)).
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p, 0 = Higher-order session contracts
1 Satisfied contract
.o Input
It.o Output
(o).0 Contract output,
No).o Contract input,

Yiecr!li.oi  External sum I non-empty, finite
D,.,'1i.0i Internal sum I non-empty, finite
ux.o Recursive session contract

X Session contract variable

Figure 2: Grammar of higher-order session contracts

Essentially, by knowing that Q; is well-typed and that S < T, one can show that the process
serverbody, (x) can be safely replaced by the process serverbody,(x), in the sense that also O»
is well-typed.

The argument in (2) above let us argue that serverbody,(x) may be used where serverbody (x) is
required. Since the behaviours of these processes are described respectively by the types S and
T, we can reason directly on types, and argue that S < 7 means that processes adhering to the
role dictated by 7" may be used where processes following the role dictated by S are required. Out
aim is to formalise this intuition, by proving that the higher-order contracts determined by these
types, respectively M(S) and M(T), are related behaviourally using our notion of peer sub-contract
preorder.

3. HIGHER-ORDER CONTRACTS

In the first section we define higher-order session contracts and explain the set-based subcontract
preorder on them; this uses the notion of peer compliance between them. In the following section we
show that this set-based preorder can be characterised by comparing the purely syntactic structure of
contracts, up-to a parameter 5.

3.1. Contracts and compliance. The grammar for the language of contract terms Lscyg 1S given in
Figure [I} there we assume the labels 1;s to be pairwise distinct. We use SCts to denote the set of
terms which are guarded and closed. These will be referred to as higher-order session contracts, or
simply contracts.

The operational meaning of contracts is given by viewing them as processes from a simple
process calculus and interpreting them as states in a (higher-order) labelled transition system. To this
end let

Act={?1,11|1eL} U {2, !t | teBT} U {%0), (o), | o € SCts}

be the set of prefixes, ranged over by 4. We use Act, ,to denote the set Act U {r, v’} to emphasise
that the special symbols 7 and v are not in Act. In Figure [3|we give a set of axioms which define
judgements of the form

o1 — 02
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— [a-Ok] — A € Act [A-PrE]
11— o — o
pe | 7] > 1 [A-INT] m [A-ExT]
EB[GI!li'O—iH!li-o'i Dierliop — o
[a-UnroLp]

ux.o SLIN olx - ux.o]

Figure 3: The operational semantics of session contracts

where u € Act,, and o1, 05 € SCts. Note that that terms like !1.0- are singleton internal sums and

we infer their semantics by using the rule for prefixes, [A-Pre]; for example !1.00 4 o. The rule
[a-Unrorp] uses a form of substitution of a closed term p for free occurrences of a variable x in a
term o, denoted o[x - p]. In Appendix [A] we give a more general definition of the application of
a substitution s to a term o, denoted o s; then o[x — p] corresponds to os,, where s, is a simple
substitution which maps the variable x to the closed term p. We say that a contract o is stable

whenever o —;—>
In order to define compliance between two contracts p, o, we also need to say when two
processes p, g satisfying these contracts can interact. This is formalised indirectly as a relation of the
form
T ’ ’
pllo—sgp llo
which, as explained in the Introduction, is designed to capture the informal intuition that if processes
P, q satisfy the contracts p, o respectively, then they can interact and their residuals will satisfy the
residual contracts p’, o respectively. This reduction relation is parametrised on a relation o1 B 0
between contracts, which determines when the contract o can be accepted when o is required.
Using such a B we define an interaction relation between contracts as follows:

=11, 1="1

Ar=71, 1, =11

Al =11y, 1, =7t t <p t2
Ay pag A =

A=, =11t th<pt

A= o), 22 =Uo2) o1 Bo,

A1 =Ao1), 2 =Wo2) 0280y

Essentially the relation =g treats B as a subtyping on contracts; note that by definition g is
symmetric, for any 8.
The inference rules in Figure 4| are now straightforward; p || o can proceed if either of the
components o, p can proceed independently, or if the components can interact, as dictated by »g.
We are now ready to define our version of (peer) compliance.

Definition 3.1. Let C** : P(SCts?) x P(SCts?) — P(SCts?) be the rule functional defined so that
(0, o) € C™"(R, B) whenever both the following conditions hold:
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T ’ T ,
Pl [lLeer] T [I-Rur]
pllo—sgp llo pllo—sgpll o

A1 , A ,
p—p o0

” - o A1 >ag Ay [I-SyNncH]
pllo—sp |lO0

Figure 4: Interacting session contracts

T v v
(i) ifp || o -5 then p — and o0 —>
Gi) ifp || o ;>3 o || o’ thenp’ R o’
If R C C™*(R, B), then we say that R is a B-coinductive peer compliance. Fix a 8. Standard

arguments ensure that there exists the greatest solution of the equation X = C*?"(X, 8); we call this
solution the B-peer compliance, and we denote it %fzp.

The intuition here is that if p %gp o then pairs of processes satisfying these contracts can interact
indefinitely, until such time that they can both simultaneously perform the success action v'. So
the interaction between them can continue indefinitely, even forever; but if further interaction is not
possible then condition (1)) ensures that both participants must have reached the happy state.

Example 3.2. We show the impact of the symmetric requirement in Definition [3.1|{(D)). Consider the
contracts p = !Int.1, and o = uy.?Int.y. While p requires just one interaction to reach the satisfied
state 1, the contract o supports an infinite number of interactions, but never reaches a satisfied state.
Under the reasonable assumption that Int <p Int, after one interaction the composition p || o
reduces to a stable state, in which the derivative of o is not satisfied; therefore p -ﬂ-gp o.

In general the properties of the compliance relation —n—f)gzp depends on those of the underly-
ing relation 8, and of the first-order subtyping relation <, for example !(0).1 %gzp?ﬁ ).1, while

1(0).1 —M—P%P?U ).1 for B = {(0, 1)}. The ability of a contract to comply with another depends not
on its syntax but rather on its behaviour, which is determined by its operational semantics as given
by the rules in Figure 3] To emphasise this point let us adapt the standard notion of bisimulation
equivalence [Mil89a] to our setting.

Definition 3.3. [ Strong bisimulation ]
A relation R C SCts x SCts is called a (strong) bisimulation if whenever o; R o7, then

v , v
(1) 0y — if and only if 0 —, and
(2) for every u € Act;
H L H
(a) o — o implies 0o — 07, for some o7, such that o] R
iz L H
(b) conversely, oo — o, implies oy — o7 for some o7}, such that o} R o,

We write 0| ~ 0, whenever there is some bisimulation R such that oy R 0.

Our main interest in this strong form of bisimulation is encapsulated in Proposition [3.5] which in
turn uses the next lemma.

.

Lemma 3.4. Suppose p1 ~ p2. Then for every o € SCts and every B, p; || o —g implies
T

Pl o—g
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Proof. The hypothesis p; || o 7%8 1mply that both p; and o are stable. Deﬁmtlon ensures that
P2 is also stable. To prove that 2|l o 7L> g it suffices to show that (a) if p, —> then o L implies
Avkg A, Suppose that 02 N for some A, part ( j of Deﬁnltlonand the hypothesis that p; ~ p»
guarantee that p; —> The hypothesis that p; || o 7L>B and rule [I-SyncH] in Figure 4|ensure that
o L implies A v4g A’. In view of the assumption on A, we have proven (a). ]

In the proof of the next proposition we denote the transitive closure of a relation R with R*, and
the reflexive and transitive closure with R*. We will use this notation throughout the paper.

Proposition 3.5. Suppose p1 ~ py. Then for every o € SCts and every B, p; —H—P2

B
P1 -|I-P2P g.

, o implies

Proof. We have to prove the inclusion ~ - 42 C 4+ _and it suffices to show a relation R such

P2p p2p’
that ~ - 4+%, C R and that R C C"*(R, B). Let

={(’,0’) | forsome py,ps,0 € SCts such that p; Tx o, o LI o', p2 AI—gP o, p1~ P2}

The relation R contains by construction the relation ~ - %gp, and in the rest of the proof we
show that R C C*"(R, B).

Fix a pair p’ R ¢, the construction of R ensures that there exist three contracts p1, 02, o € SCts
that enjoy the following properties

B T % 7 T x
p1~p2, P2t 0, pr—  p, O— O

*

Definition p5 and

.
o, and py — * p} let us prove that o/, —M—P%P o’

, p1 ~ P2, and pg B o’ imply that there exists a p} such that p, SN
o’ ~ ph. Part ((ii)) of Deﬁnitionpz —M—P%P
Definition 3. 1| requires us to prove two facts, namely

N\t ’ ’ ’ v ’ v
1) ifp’ || o’ gthenp —, 0" —

(i) if o’ || o/ —>g p” || o’ then p” R o’
. T . .
To prove part lb suppose that p’ || o7 —~g. Since p’ ~ p/, we apply Lemma and obtain that
T g . .. . v v
05 |l o’ —/g. Since o), —H—fzp o’, part ((i)) of Deﬁmtlonlmply that o/ — and 0’ —. Now
v
p’" ~ p5 and Definition 3.3|ensure that p” —, as required.

Now we prove part 1i Suppose that p’ || o’ Sz p” |l o, we have to show that p”” R o”’.
The argument is by case analysis on the rule of Figure | used to derive the silent move at hand. If
[I-Lert] were applied, then p’ = p” and o’ = o”. It follows that p; S ", thus the construction
of R ensures that p” R o”’. If [I-RiGHT] was applied, we reason in the same manner. Suppose now

. . a1 A
that [I-SyncH]| was apphed In this case p° — p” and 0’ — ¢’ for some A and A’ such that
Avag A'. To prove that p” R o”” we exhibit a contract o/, which enjoys the following two properties,
P~ Py I ""gp o’

. 2
Since p” ~ p, and p” — p”, Deﬁmtlonensures that there exists a contract o), such that o 2, p2

and that p” ~ p/. The action performed by p, lets us infer the hand-shake p), || o’ —>3 o5 o”.

Now o} —H—gp o', and p.art li of Definition 3.1|ensure that p —n—B o”’. Observe that p), enjoys the
two properties we required above, thus p”” R . ]
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Definition 3.6. [ 8-peer subcontract preorder ]
For oy, o> € SCts let o T2 o, whenever p %ﬁp o implies p %gp o, for every p € SCts. We
B

use 0| =}, 02 to denote the equivalence associated to c3.

3.2. Syntactic characterisation. The parametrised peer subcontract preorder oy £ o, is set based,
and quantifies over the result of all peers in 8-compliance with 0. However, because of the restricted
nature of higher-order contracts, Figure [2| it turns out that CZ can be characterised by the syntactic
structure of o) and o, at least for relations $ which satisfy certain minimal conditions.
Let S : P(SCts?) x P(SCts?) — P(SCts?) be the functional such that (o1, o) € S(R, B)
whenever one of the following holds:
(1) if unfold(o;) = 1 then unfold(o) = 1
(i) if unfold(co1) = ?t;.07] then unfold(o) = ?t3.0% and 0] R 0 and t; <p t2
(iii) if unfold(oy) = !ty.07 then unfold(c) = !t2.0% and 0] R 0, and t; <p t)
(iv) if unfold(cy) = !(o}).07] then unfold(o) = !(0}).0% and | R 0, and o) B o
(v) if unfold(c1) = 2(o}).0”} then unfold(o) = ?(0%)).0 and o} R ¢/, and o B o
(vi) if unfold(ot) = Fie;?Li.07) then unfold(0) = 3je;?1 .05 where I € J and o} R o7 for all
iel
(vii) if unfold(oy) = €P,,!1;.0} then unfold(c) = DN j.a§ where J C I and a} R a§ for all
jeJ
Lemma 3.7. The functional S is monotone in both arguments:
(a) Fixa®B. IfRC R, then S(R,B) C S(R’, B)
(b) FixaR If BC B, then S(R,B) C S(R, B')

Proof. The proofs of both a) and b) are straightforward. []

Definition 3.8. [ B-syntactic peer preorder ]

If R € S(R, B), then we say that R is a B-coinductive peer preorder. Fix a 8. Standard arguments
based on part of the previous lemma ensure that there exists the greatest solution of the
equation X = S(X, B); we call this solution the B-syntactic peer preorder, and we denote it by <%.

One immediate consequence of the syntactic nature of this preorder is that it is preserved by
unfolding. This is the first part of the following lemma:
Lemma 3.9.
(1) For every o € SCts, o <% unfold(c) <% 0.
2) If oy <8 o, and o, is stable, then there exist some stable 0"1 such that o BN O"l and that
ol <8 .
Proof. Part (1) of the lemma follows from the fact that p S(R, 8) o if and only if unfold(p) S(R, B)
unfold(o). This property of S(—) in turn relies on the fact that unfold is idempotent, that is
unfold(unfold(c-)) = unfold(o)

To prove part (2) suppose o; < 0. Part (1) ensures that unfold(c) <Z 0. If unfold(c) is
not stable then it must be an internal sum of the form EBie ;!1i.p; and since o7, is stable it must be of
the form !1;.0; for some k € I. The required o} in this case is !1.0x. ]
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The reflexivity of <® depends tightly on the reflexivity of 8.
Lemma 3.10. If B is reflexive then <% is reflexive.

Proof. 1t suffices to prove that the identity relation 7 is contained in <Z. To prove this, we show
that 7 € S(Z, B). Fix a pair o 7 o. The reasoning is by case analysis on ¢, and the only two cases
worthwhile involve a higher-order 0. We discuss one such case.

Suppose that o = (c"™).0”. To show that o S(I, 8B) o, we have to explain why ¢’ I ¢’ and
o™ B o™. The first fact follows form the reflexivity of 7, and the second from the reflexivity of the
relation B. L]

In the previous lemma the hypothesis of 8 being reflexive is not only sufficient, but also necessary
for <% to be reflexive.

Example 3.11. In this example we prove that if B is not reflexive then <% need not be reflexive.
Let o = !(1).1. The empty binary relation 0 is not reflexive because (1, 1) is not in 0, so we

take ( as our candidate B. In turn this implies that (o, 0) ¢ S (<%, 0), because 1 does not satisfy the

conditions required by case of Definition Since <? = S(<°, 0), it follows that o £ 0.

Our intention is to show that the set-theoretic relation oy T2 o, coincides with the syntactically
defined relation oy < o, provided B satisfies some simple properties. In one direction the proof
requires the following technical lemma showing that % preserves the ability of contracts to interact.

Lemma 3.12. Suppose p —H—gp o1 and oy E8 o for some B, where all of o1, 0, p are stable. Then

T . . T
p |l o2 —g impliesp || o1 —g.

Proof. We know that p || 0 ;@ p’ || o for some pair p’, 0. Since p, o, are stable this reduction
must involve interaction between these contracts. That is the derivation of the reduction must end
with an application of rule [I-SyncH] from Figure [ The side condition and the premises of the

1 . . L
rule ensure that p 5 for some A;. In turn this move can only be inferred by an application of rule

v
[a-PrE] or [a-ExT] of Figure 3| In both cases one sees that p —/. But by hypothesis p %ﬁp o1, SO
part |i of Deﬁnitionensures that p || oy ;>B~ L]

.

Corollary 3.13. Suppose oy <B o, where B is transitive and p —H—gp 1. Then p || 03 - g implies
v v

p— and oy —

Proof. We know that p and o, are stable, and we let o] be the stable contract guaranteed by the

T . . .
second part Lemma such that oy — * o7 and <Z o,. Simple properties of compliance

g v v .
ensure that p %fép . Therefore by Lemma|3.12| we know that p — and 0"} —. This means that

. . . . v .
a"1 is actually 1, so, since o"1 <% o, and o, is stable, o, must also be 1; that is 05 — as required. []
Theorem 3.14. Let B be a transitive relation on session contracts. Then o1 <B o implies oy c? o).

Proof. It suffices to show that the following relation is a B-coinductive peer compliance,
R={(,02) | p 4%?21, o1, o1 <8 oy, for some o; € SCts}

This requires establishing two properties.

7 v v
(1) If p || oo - g whenever p R 0, then p — and 0 —. This follows from Corollary|3.13
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(i1) Suppose p || o ;@ p" |l o5, where p R o>. We have to prove that p” R o).
Because p R 0 we know there exists some o7 such that p —H—‘gp o and o <8 oy, We

have to find some o7} such that p’ %P%P o and < 7. The nature of o} depends on the

form of the reduction p || o i@ ol o

If this is a silent move by p to p” we can take o7} to be oy itself, since p’ —H—ﬁp or. Ifitis a
silent move by o then there are two cases. If the move is inferred using the rule [A-UNroLD]
from Figurethen unfold(c,) = unfold(c”,), which ensures that o <8 a}.

The only other possible way for o to do a silent move is by an application of rule [A-INT].
Here o, has the form @i61!1i~0'i2 and o, must be !lk.o% for some k € I. In this case again we
can take o} to be oy, since o7 <8 o).

If the reduction is due to an interaction between p and o then there are six cases to discuss.
The argument for each of them is similar, so we discuss only one case involving higher-order
communication. Suppose that p = ?(0™).p". Since o, engages in a communication with
p it must be the case that o, = !(07)).07 with o' B p™. Since o <8 o, it follows that
unfold(cy) = !(o}").0”} with of' B o' and o7} < o7 It remains to show that p’ 4%153? o. The
transitivity of 8 ensures that o' 8 p™, so we can infer p || o N % ©" || o}, which implies
that p’ —H—‘(fzp . []

Example 3.15. We show that if B is not a transitive relation, then <? need not be contained in =%,
that is <% ¢ C8.

Let 8 ={(1, !'1.!11.1),(!1.11.1, '1.1)}. This relation is not transitive, because 1 8 !1.!1.1 and
11.11.1 B !1.1, while (1,!1.1) ¢ 8.

Let o; = !(11.11.1).1 and let o, = !(1).1. We show that o; <Z o-,. The witness of this fact is the
relation R = {(o71, 02), (1, 1)}. We are required to prove that R C S(R, B). This amounts in showing
that a) 1 S(R, B) 1, and b) oy S(R, B) 0. Point a) is true thanks to case of Definition 3.8} and
point b) follows from case of the same definition.

Now we prove that o Z? o,. We have to exhibit a session contract p, such that p %fgp o1,

and p —}4—8 o,. Letp = 2(!11.1).1. To see why p —n—‘zp o1, note that the relation {(o, 071), (1, 1)}is a

p2p
B-coinductive mutual compliance.

To conclude the example, we have to prove that p —y{-gp 0. The witness that 8 is not transitive
T
is the fact that (1, !1.1) ¢ B. This implies that !(1) »g?(!1.1), and in turn that p || oy —/~g. Since
v
p —, it follows that p #2_ o».

p2p

The converse to Theorem [3.14]relies on following property of session contracts, whose proof is
relegated to Section 5} see Theorem

Theorem 3.16. Let B be a preorder on session contracts. For every session contract p there exists a
session contract prdual(p) such that p %gp prdual(p).

Theorem 3.17. Let B be a preorder on session contracts. Then o c? o, implies oy <8 o).

Proof. Since oy c? oy implies that unfold(o) 2 unfold(o), it is enough to prove that R is a
B-coinductive peer preorder, R C S(R, 8), where R is given by
R = { (01, 02) | unfold(o;) =2 unfold(o) }

Pick a pair o1 R 0. To show that o1 S(R, B) 0 we reason by case analysis on the unfoldings of
these contracts; the argument for many cases are similar, so we only discuss two cases.
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e Suppose that unfold(c;) = 1. The relation {(1, 1)} is a coinductive B-mutual compliance, so
1 4+%, unfold(o)). As unfold(c) £ unfold(c-), it follows that 1 +4+%, unfold(c). A simple
argument, based on the possible structure of o, will show that unfold(o) is stable, from which

h
it follows that 1 || unfold(c;) —~. Compliance now ensures that unfold(o) —/> Because of
the restrictive syntax for contracts this is only possible if unfold(o) is actually 1. It follows that
o1 S(R, B) os.

e Suppose that unfold(coy) = !(o]").0";. We have to prove the equality

unfold(o) = !(c3).07%

where o' 8 o', and ol R
Theorem and the hypothesis on 8 ensures the existence of some contract prdual(c-}) such
that o -5 prdual(c*}). Let p = 2(o”}").prdual(c)) and let

R’ = {(p, unfold(c))} U 4>

P2p
the relation R’ is a B-coinductive peer compliance. This is the case because the preorder B is
reflexive, thus there exists the derivation
o™ o}

: 1 ’ . ) !
p > pravallcy) unfold(e) = Ty o rmy payygrm)

p |l unfold(oy) —g prdual(c?}) || &

B B
and because, thanks to the symmetry of 4+, , prdual(c)) 4, .

It follows that p —H—P%P unfold(or1), and since unfold(co-;) &2 unfold(o,), we obtain immediately

that p -2, unfold(c).
v
Since p —~, the composition p || unfold(o) performs a silent move. The syntax of session

contracts ensures that unfold(o,) cannot be an internal sum, and therefore unfold(o,) has to
interact with p. The definition of »<g ensures that unfold(c) has to have the form !(0";).0"2 where

B
P2pP

oy B o', our first requirement. Moreover p || unfold(c) ;@ o’ || o from which p” 4+
follows.

To show the second requirement, o] R o7, let p’ be any contract satisfying the condition
p’ 4% unfold(c}); we have to prove that p 4+, unfold(c”). Note that because of Lemma 3.9((1)
we can also assume that p’ —H—P%P o|. We repeat the above argument to establish that ?(c}").p’ —H—gp
unfold(o), and since

/
o)

Aoy |l unfold(o) —g p' || o7
we know that p’ —n—ﬁp 0. The required p’ —H—ﬁp unfold(c”,) now follows by another application of

Lemma [3.9](1)). 0]
Example 3.18. We show that if B is not a reflexive relation, then CZ needs not be contained in <%:
B¢ <5

Recall Example|3.11} and the session contract we employed there, o = !(1).1. We know that

o C? o, because no peer can interact with !(1), so no peer complies with o. However in Example
we have proven that o £0 o

Corollary 3.19. For any preorder B over session contracts, oy <2 o if and only if oy 2 oy.

Proof. Follows immediately from Theorem and Theorem [3.17] O]
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4. MODELLING SESSION TYPES

In our treatment session types and contracts are obviously just syntactic variations on each other.
We formalise the relationship between them as a function which maps session types from STyp to
session contracts from SCts,
M Lstyp — Lscts
We then show that the subtyping relation between session types, S < T, can be modelled precisely
by the set-based contract preorder, M(S) £8 M(T), for a particular choice of B.
The interpretation of types into contracts is defined by the following syntactic translation:

1 if § = EnD,
t.M(S) if S =1(v).S”,
. M(S") if S = 2(1).57,

M(T)).M(S) itS =UT).8",
M(S) = S UAM(T)).M(S) itS =%T).S’,

Dieft 1 LiMS ) it S = &(11: S, .., 10 8,),
@ie[];n]!li.M(Si) ifS =(11:8541,...,1,:S,),
ux.M(S") if § =uX.S’,

X if S =X
The function M™! : Lgcis — Lsyp is the obvious inverse of M, for instance
M) = ()M o),

and we omit its definition.
Because of the syntactic nature of M and M~! the following properties are easy to establish.

Lemma 4.1. For every S,T € Lstyp and p,o € Lscts,
a) MS[X > T = (MS)HIMX) » M(T)]

b) M (plx = o]) = M (P)NIM ™ (x) > M (0)]
¢) unfold(M(T)) = M(unfold(T))

d) unfold( M1 (o)) = M~ (unfold(c))

e) unfold(M~'(c)) = T iff unfold(c) = M(T)

Proof. Part (a)) and part (b)) are proven by structural induction, respectively on S and p. Part
uses rule induction on unfold(T’) together with an application of part (a)). Part (d)) is proven by rule
induction on unfold(c-), and uses part (b)). Part (e)) is a consequence of (c)) and (d)). O

In order to find the appropriate 8 that captures the subtyping relation S < T via the interpretation
M, we need to develop some properties of functionals over contracts. Let Pre denote the collection
of preorders over the set of contracts SCts.

Lemma 4.2. (Pre, Q) is a complete lattice.

Proof. We have to show that all the subsets of Pre have infimum and supremum. Let X C Pre.
The infimum of X is defined as the intersection of the elements of X, thatis [ | X = {B| Be X }.
The supremum of X is defined as the transitive closure of the union of the elements of X, that is
LI X = (U{B]| BeX})". Itisroutine work to check that [ ] X € Band B C | | X forevery B € X.[]
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Let 7% : Pre — Pre be defined by letting 772" (B) be C2.
Proposition 4.3. 7" is a monotone endofunction.

Proof. A priori there is no simple direct argument to show, using Definition that F*%* is
monotonic. But the result is now a direct corollary of part of Lemma(3.7] and of Corollary
L]

Definition 4.4. [ Peer subcontract preorder |

We use £ to denote vX.77>"(X), the greatest fixed point of the monotone function #*2°. The existence

of this fixed point is guaranteed by Proposition We refer to < as the Peer subcontract preorder.
We also let = denote the Peer equivalence generated by & in the obvious way.

The properties of & alluded to in (1.7) of the Introduction are now easy to establish.
Proposition 4.5. T is the largest preorder B over SCts satisfying: oy B o if and only if o1 €8 0.
Proof. A direct consequence of the fact that T is the greatest fixed point of 7%, ]

The proof that £ provides a fully-abstract model of subtyping < on session types , relies on
another characterisation, which in turn uses a standard result from lattice theory [ANOI1} pag. 19].

Lemma 4.6. [ Golden lemma |
Let L be a complete lattice and f : L X L — L an endofunction monotone in both arguments. Then

vyvx. f(x,y) = vx.f(x, x).EI
Lemma 4.7. C = vX.S(X, X).

Proof. By definition £ = vX.F72"(X) = vX.CX. But by Corollary the preorder £2 coincides
with the relation <% for any preorder 8. Since ¥ is a function over Pre, we have & = v¥.<".
Deﬁnitionlets us expand <2, thereby obtaining the equality & = vY.vX.S(X, Y). The result is
now a consequence of the Golden lemma. ]

To obtain the full-abstraction result, we show how the prefixed points of the functionals S
and F < are related via M.

Lemma 4.8. Fix a relation B such that B C S(B, B) and let
T ={M (o), M (02) | o1 B}
Then T C FX(T).

Proof. (Outline) Fix a pair S| 7 S,. These types are the images via M~! of two session contracts,

respectively o and o, such that o} B o,.

The proof proceeds by a case analysis on the structure of unfold(M™!(c1)); we give the details
of two cases.

e Suppose unfold(M~!(c1)) = Enxp. According to Definition we then have to show that
unfold(M~1(c2)) = Enp. Because of Lemma we know that unfold(o;) = 1; case
of Definition ensures that unfold(o) = 1, and Lemma therefore implies the syntactic
equality unfold(M~!(c,)) = Enp.

IThe result proven in [ANO1] is more general; it pertains to both least and greatest fixed points of endofunctions.
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e Suppose unfold(M~! (o)) = !(T).S 1. We are required to prove that
unfold(M ™ (02)) = U(T2).S2 .1

for some 75 and S, suchthat 7, 7 Ty and S 7 S».
Lemmal4.1{le)) ensures that unfold(o1) = !(M(T1)).M(S1). Since we know that oy B 0, the
hypothesis that B C S(8B, B) and Definition [3.8]imply the equality
unfold(o) = !(05).0%

with o' such that o' 8 M(T) and some ¢, such that M(S ) B o7,. The construction of 7
implies that

MY YT Ty, S1T M7\(0%)
Because of 0y = M(S»), Lemmaimplies the syntactic equality unfold(c,) = M(unfold(S>)),
thus unfold(S,) = !(M’l(()";)).M*I(o"z). This ensures that above is satisfied.

The proof for the remaining cases is similar to the argument already shown, and left to the reader. [ ]
Lemma 4.9. Let T be a type simulation, and

B={MES), MT) ST T}
Then B C S(B, B).

Proof. (Outline) Suppose oy 8 0. By construction oy = M(S 1) and 0 = M(S,) for some S| and
S, related by 7. The proof is a case analysis on unfold(o).

e If unfold(c;) = 1 we have to prove that unfold(c,) = 1. An application of Lemma[.T|{e)) shows
that unfold(S 1) = enxp. The hypothesis that 7~ is a type simulation ensures that unfold(S ;) = b,
so another application of Lemma[4.1]leads to unfold(c) = 1.

e If unfold(cy) = 2(c}").0”] we have to show that

unfold(o) = 2(c5).0%
with o' 8 ) and 0| B ¢7,. We apply Lemma[4.|fe)) and obtain the equality
unfold(S 1) = 2M (@ N.M' ()
By hypothesis the relation 7 is a type simulation, so S| 7 S let us deduce that
unfold(S») = AT»).5%
with
MY AT T, M) T S)
This implies that
o' B M(T2), o] BM(SY)
Lemma unfold(S,) = AT»).S’, and o5 = M(S,) ensure the equality
unfold(o) = 2(M(T2)).M(S%).

The other cases are analogous and left to the reader. []
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The last two results make the proof of full-abstraction straightforward.

Theorem 4.10. [ Full-abstraction |
Forevery T,S € STyp, S < T if and only if M(S) & M(T).

Proof. Suppose that § < 7. Lemma.9]implies that the relation
B={MES), M) | S <T}

is contained in S(B, B), thus B C vX.S(X, X). Lemma 4.7 implies that 8 C . It follows that
M(S) S M(T).

Suppose that M(S) & M(T). Note that £ € S(E, £). Lemmal4.8|implies that the relation

T ={M ) M) | pE o)

is a type simulation, so 7~ € <. Since S 7 7, it follows that § < 7. []
Full-abstraction has two immediate consequence. The first is a result on the decidability of &.

Proposition 4.11. If <y, is decidable, then relation < is decidable.

Proof. First we describe the an algorithm to decide <. In [GHOS! Figure 11, Lemma 10, Corollary 2]
an algorithm is presented, which decides < but for a language of types with no input/output of base
types. Adding the following two rules to the ones in Figure 11 of that paper we obtain an algorithmic
subtyping relation <, that works also for types with input/output of base types.
2ES1 <S5,
X F2ty).S2 < NAtp).S2

S <
< T1sp T2
kS 1 S 2
2FI(t1).S2 < ()82
Thanks to the hypothesis that <, is decidable, Lemma 10, Corollary 2 of [GHO3] are true also for <
and <, that is for every session type S| and S,

<
t <p 11
<

i) The algorithmic subtyping + S| < S, terminates
i) FS; < Spifandonlyif §1 <8,

Now we show how to decide whether two session contracts o-; and o, are in the relation k.

1) Let S = M '(oy) and S» = M~(0). The applications of the function M~! terminates
because M~! is defined inductively,

2) apply the algorithmic subtyping to decide whether S| < §,. Part above ensures that the
algorithm terminates,

3) Part above ensures that the algorithm has decided whether S| < S,

4) Theoremnow implies that if S| < S, then oy £ 03, and if S| £ S, then oy £ 0. OJ

The second immediate consequence of Theorem [4.10]is an explanation of type equivalence.
Type equivalence, denoted =g, is the equivalence generated by the subtyping, so that

T =¢q S whenever T < S and S <T 4.2)

The explanation of =¢q is alternative to the standard one based on tree models of types [BH98].

Proposition 4.12. [ Full-abstraction type equivalence |
Forevery T,S € STyp, S =¢q T if and only if M(S) = M(T).

Proof. A direct consequence of the definitions of =¢q, ~ and of Theorem[4.10] U]
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END =END, X =X, uX.S =uX.S
2AM).S = \(M).S, (M).S = 2AM).S
&(11:81,...,1,:S,)=&(1;:51,....,1,: S,))
&(1:8S1,...,1,:S,)=&(11:S1,...,1,: 8,)

Figure 5: Standard syntactic definition of dual session types

o)

@L,[ o)1) (1) 4 (0)
= M
o O

If B is reasonable, then !(0) »%g?(0), and so o and o are not in B-mutual compliance.

Figure 6: The behaviours of the contracts p and o of Example

5. CoMPLEMENTS OF CONTRACTS

The converse to Theorem [3.17|relies on the existence for every session contract o of a “comple-
mentary” session contract prdual(o) that is in B-peer compliance with o, at least for 8s that satisfy
certain minimal conditions. The well-known syntactic duality of session types, discussed in the
Introduction and defined inductively in Figure [5 is an obvious candidate. It is defined for the
language of session contracts Lgcts by structural induction in Figure [5} we are primarily interested in
it as applied to session contracts SCts. Intuitively to obtain the dual of a contact o, denoted &,

e every internal choice is transformed into an external choice
e every external choice is transformed into an internal choice
e inputs are turned into outputs, and outputs into inputs.

But it should be emphasised that in the transformation from o to o all messages are left unchanged.
Unfortunately, as we will see in the following example, this standard duality transformation does
not satisfy our requirements for complementary contracts. First a definition.

Definition 5.1. We say that B is reasonable whenever oy 8 o implies
1) unfold(o) B unfold(o)

ey - 1 A . . .
i) if o ~ and o) 2, then Ay and A, are both input actions or output actions.
Ao o)

iii) if oy RN o} and 0 -3 o, then o' B ¢} and o] B o), ]

For instance, if !1(1).1 8 7(1).1 for some B, then B is not reasonable.
The family of reasonable relations is not arbitrary. Theorem implies that the CZ for every

preorder 8 is reasonable, thus reasonable relations are an over-approximation of the behavioural
preorders that we are concerned with.

Example 5.2. In general it is not true that o- complies with its dual &; if B is reasonable then we can
find a contract o such that o %P%P o.
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For example take o to be pux.?(x).1; here o is ux.!(x).1. The behaviour of these contracts is
depicted in Figure [l Since unfold(c) performs inputs, while unfold(c) performs outputs, and B
is reasonable, one sees that (Unf0|d(0') unfold(o)) ¢ B, and in turn (o, 0) ¢ B. This implies that

(o) %eag?(0), and so o || T —>3 unfold(o) || unfold(c) 7%3 But this means that o —yf—B o because
unfold(o-) does not perform .

5.1. Message-closed contracts. In this section we give a restriction on contracts which ensures that
they do indeed comply with their duals. The essential idea is that terms used as messages should
have no free occurrences of recursion variables.

Definition 5.3. [ Message-closed ]

For any o € Lgcis we say that it is message-closed, or m-closed, whenever a sub-term of the form
2(c™).0” or !(c™).0” occurs in the main body of o then o™ is a closed contract, that is, is in SCts.
More formally:

(1) The terms 1 and x are m-closed

(2) The term ux.o”’ is m-closed if o’ is m-closed.

(3) The terms (o). and 2(c™).0” are m-closed if o’ is m-closed and o™ is closed.

(4) The terms ;c;?1;.0; and @iel!li‘o—i are m-closed if all o; are m-closed.

It is important to note the m-closed is quite a strong condition; if o is closed then it does not
automatically follow that it is m-closed. As a counterexample we can take the contract used in

Example ux.2(x).1.
The crucial property of m-closed terms is that the dual function — is preserved by substitutions.
This is expressed in the following lemma where we use s to denote the substitution which maps each

variable X to s(X).

Lemma 5.4.
(i) Suppose o € Lscts is m-closed. Then

(a) (os) = (0)s
(b) o is m-closed
(¢) ifs(x) is m-closed for every x € dom(s) then os is also m-closed.

(ii) For every m-closed o € SCts and u € Act, /, o N implies o is also m-closed.
Proof. Part (i) is proved by structural induction on o. Part (ii) uses rule induction on the judgements
o N o”’; the case when o has the form ux.o| relies on Part (i) (¢). ]

The requirement that o be m-closed in Lemma [5.4]is essential. Again the contract o = ux.2(x).1,
used in Example provides a counterexample. Let s be the substitution [x +— o] and let o’
be the body of the recursive definition, ?(x).1, which is not m-closed. Then (0's) is the contract
I(ux.?(x).1).1 whereas, since o = ux.!(x).1, (c7)s is the different contract !(ux.!(x).1).1.

Lemma 5.5. For every o € SCts, if o is m-closed then unfold(c-) = unfold(o).

Proof. Let unfold(o) = p. We have to show that
o = unfold(c) (5.1)

We reason by rule induction on the derivation of the judgement unfold(c) = p. The base case is
when ¢ is not a recursive term, in which case p coincides with o itself. Examining Definition [5.8§]it
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is obvious that if & is a recursive term then so is o; from this we conclude that unfold(c) is & itself,
from which the required (5.1)) is trivially true.
The inductive case is when o has the form ux.c” and unfold(o-) = p because

unfold(c’[x = o]) = p
The hypothesis that o is m-closed, and Definition[5.3|imply that also ¢’ is m-closed, thus part
of Lemma/5.4]lets us prove that o”[x — o] is m-closed. Thanks to this property of o”’[x - o] we
apply the inductive hypothesis to prove that p = unfold(c”[x — o). So the required will follow
if we show unfold(c) = unfold(o”’[x — o). Since o and ¢’ are m-closed, part of Lemma
ensures that

o'lx ol =d'[x - 7] (5.2)

The equality we are after is now easy to prove,

unfold(@) = unfold(ux.c”) Because o = ux.o”
unfold(o”[x — pux.0’]) By definition of unfold
unfold(c”’[x — T)) Because o = ux.o”

= unfold(c’[x — o]) Because of li
]

This last result implies the main property of — over m-closed contracts: given a m-closed peer p, its
dual p has indeed a complementary behaviour, that is p is in compliance with p, with respect to any
preorder 8.

Lemma 5.6. Suppose B is a reflexive relation. For every session contract p, we have that either

—_ T
p—orpll p—s

v
Proof. To prove the lemma we assume that p —~, and show thatp || p ;@;. Either p 5 or o is

stable. In the first case we apply [I-LErFT] to derive the desired p || p ;@. Suppose now that p is
stable. The argument proceeds by case analysis on the shape of p, which, in view of our assumption,
cannot be 1 and has no top-most recursion. We discuss only three cases. If p = !(0).p’, then
p = 20o).p’. Since by hypothesis B is reflexive, !(o) »<g?(c), thus we apply [I-Sy~cH] to derive the
required p || p ;qg. Suppose now that p = @ie ;71i.pi. Since p is stable, it must be the case that
|I] = 1, that is I = {k} for some k. We know by definition that p =?1;.pr, and that !1; »g?1;, thus we

apply rule [I-SyncH] to infer the hand-shake p || p ;@. ]
Theorem 5.7. Suppose B is a preorder. Then p %gp p for every m-closed session contract p.

Proof. Let
R={(p1,p2) | p— * p1, p —> * p, for every m-closed p }
It is sufficient to show the set inclusion R C C*?"(R, B) for any preorder B. Pick a pair of contracts
(01, p2) in the relation R. The construction of R ensures that there exists a contract p which is
m-closed, and such that
p—p Pt (5.3)

Definition [3.1] requires us to prove two properties of the pair (o1, p2), depending on whether the

composition p; || py is stable or not. First assume that

o1 Il p2 o (5.4)
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v v T T
We have to show that p; — and that pp —. The assumption p; || p» —/>g ensures that p; —~; a
property of the unwind function, given in Lemma([A.6]of the Appendix, then ensures that

unfold(p) — * p,

Similar reasoning establishes unfold(p) BN 2. In fact by Lemma the latter may be rewritten
as unfold(p) BN 2. Introducing o to denote unfold(p) we have now established

a';>*p1 and (7';>*p2 (5.5)

There is very little scope for performing 7 transitions in above, and even less in (5.5)), since o
cannot be a recursive term of the form wx. . . .. In fact because of the assumption we can show
that
o=p; and 0 =py (5.6)
The proof of this fact proceeds by a case analysis on the syntactic structure of o-. The only possibility
for generating a 7 transition in is when either o or its dual & is an internal choice { !1;.0; | i € I},
where || > 1. Without loss of generality suppose the former. Then & is ) ;?1;.0; and p; || p» must
take the form !1;.0% || >;71;.0;, for some k € I. An application of [I-SyncH] gives a 7 transition,
o1 1l p2 LN 8, thereby contradicting the assumption .
An application of Lemma([5.6] together with the just established (5.6), immediately gives lets us

show p1 —/>, from which p; L> also follows, since p, is 0.

Now suppose that p; || p2 ;@ P} |l p, we have to prove that p| R p),. This will follow if we
exhibit a m-closed contract p such that o S P}, and D I p5. We reason by case analysis on
the rule of Figure@used to infer the silent move p; || p2 —T>g p’1 I p'z.

If [I-Lert] was applied, then p; N P} and p, = p>. The desired p is the contract p itself. If rule
[I-RigHT] again the p we are after is p itself.

The last case to discuss is when p; || p2 ;@ P} |l P is inferred applying rule [I-Synch]. In this

Pl Pl .
case pg iR p'l, 02 N p'z, and A; =g A;. We have already proven that the contract p; is m-closed,

thus Part of Lemma|5.4imply that p/ is m-closed. We pick as candidate p the contracts p{. To
finish the proof it suffices to show that p, = p_’1 We proceed by case analysis on A;, and there are four
cases to discuss, for 4, is either an input or an output, action, and there are two subcases depending
on the action being first-order or higher-order. We discuss only two cases involving higher-order
actions and one involving first-order actions.

Suppose that 1; = ?(01). In view of the restrictive syntax of contracts, it must be the case that
p1 = A0).p,. Now p — * pf implies that unfold(p) = 2(c).0/.

Since 1y pag A2, 1, = (o) for some o7, and p; = 2(c”).p},. The last fact and p I 02 imply
that unfold(p) = p,. An application of Lemmalets us obtain that p, = unfold(p) = !(a').p_’l. It
follows that p, = p_’l, as required.

If 4, = (o), or 41 = !, or A1 = 7t, the argument is analogous to the previous one.

Suppose now that A; = !1. It must be the case that unfold(p) = @iel!li.pi, and for some k € 1,
p1 = '1i.pr. The construction of R ensures that

p—"p (5.7)

and this implies that unfold(p) S 2. By definition unfold(p) = 3;c;?1;.0;, thus commutativity
T

(Lemma , ensures that unfold(p) = ;c;?1;.0;. Observe that unfold(p) —/~, thus Eq. 1} above
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P!
implies that pp = unfold(p), so p2 = X;c;?1i.0i- As P2 N p5 and 1g ><g Ay, it follows that A, = 714,
and p, = pr. The equality p;y = p| now lets us conclude that p/, = p_’l, which is the fact we were
after. [

5.2. Extension to arbitrary session contracts. Our intention here is use Theorem |5.7|to find a
complement for all session contracts. This is achieved in two steps. First for each o € SCts we
construct a behaviourally equivalent contract mcl(o-) which is m-closed. The required complement
of o, which we will denote by prdual(c-) will be taken to be the standard dual of mcl(o).

Definition 5.8. [ M-closure ]
For any o € Lscts and any s such that fv(o) € dom(s) the term mclo(o, s) is defined by structural
induction as follows:

1 ifo=1,
X ifo=ux,
t.mclo(d”, s) if o = t.o”,
?t.mclo(d”’, s) if o = 7t.0”,
mclo(o, s) = < (o™ s).mclo(o”, ) if oo = (o™).0”,
(o™ s).mclo(d”, s) if o = 2(c™).0”,
>icr'li.mclo(o, s) if o= Y,?.04,
@iel?li.mclo(m, S) ifo= @ie[!li‘o—i’
ux.mclo(o’,s - [x > os]) if o= pux.o’

Note that in the last clause the substitution s - [x — os] is well-defined, as os is closed.
For o € SCts we let mcl(o), called the m-closure of o, denote mclo(o, €).

The intuition behind mclo(o, s) is that an m-closed term equivalent to o, can be constructed by
(1) keeping track in the accumulator s of all the substitutions that take place unfolding o, and by (2)
applying these substitutions only to the messages of o, and not the continuations.

Example 5.9. In this example we apply the function mcl(—) to two session contracts. The first is the
contract p = ux.?(x).1 that we already used in Example By definition we have the equalities

mcl(p) = mclo(ux.?(x).1,¢)
= ux.mclo(?(x).1,[x — p])
= ux.?2(p).mclo(1, [x — p])
= ux.72(p).1
Since p is closed, the contract mclo(p, €) is m-closed.
Now we apply mcl(—) to a more involved contract, namely o = px.uy.?(y).x. The following
equalities are true by definition,

mcl(o) mclo(ux.uy.?(y).x, €)
ux.(mclo(uy.?(y).x, [x — o))
ux.uy.(mclo(?(y).x, s))

ux.uy. 2(wy.?2(y).o).mclo(x, s)
ux.uy. (wy.2(y).o).x

= pux.uy.2(wy.?2(y).o).x



USING HIGHER-ORDER CONTRACTS TO MODEL SESSION TYPES 27

where s = [x — o,y — uy.?(y).o]. Since o is closed also the contract uy.?(y).o is closed, thus the
contract mclo(o, €) is m-closed.

Lemma 5.10. Suppose fv(c) € dom(s). Then mclo(o, s) is m-closed.

Proof. By structural induction on o.

First suppose o has the form px.o”’. By definition mclo(o, s) = ux.mclo(o”, s - [x — os]). Since
dom(s) C dom(s - [x — os]), also the inclusion fv(c”’) € dom(s - [x + os]) is true, and we apply
induction to conclude that mclo(o”, s - [x — os]) is m-closed; by definition this means o is m-closed.

As another case suppose o has the form !(c”).0”. Here mclo(o, s) is !(c”"s).mclo(o”, s). Induc-
tion gives that mclo(o”, s) is m-closed, and since fv(c™) C fv(s) we know ¢”s is closed; this means
that by definition o is m-closed.

All remaining cases are either similar, or trivial. []

Because of Lemma we know from Theorem [5.7|that mcl(p) complies with mcl(p) for every
session contract p. We now show that that mcl(p) and p are behaviourally equivalent, in that they
comply with exactly the same contracts. This involves first establishing a sequence of technical
lemmas.

Lemma 5.11. For every o € Lscts, and substitutions s1, Sy, if $1(x) = $2(x) for every x € fv(o), then
mclo(o, s1) = mclo(o, sy), whenever both are defined.

Proof. Straightforward by structural induction on o. [
Given a substitution s = [x] = 0,..., X, = 0], we let mcl(s) = [x; = mcl(oy),...,x, =
mcl(o,)].

Proposition 5.12. Let o € Lscys, and suppose that fv(o) € dom(s;)udom(s;). Then mclo(osi, Sp) =
mclo(o, s, - s1) mcl(sy).

Proof. By structural induction on . We examine the three most interesting cases.

(1) First suppose o is a variable z. The hypothesis implies that z is either in dom(s;) or dom(s;).
Suppose that z € dom(s;). The left hand side is by definition mclo(s;(z), s2) but because s;(z) is
always a closed term, by Lemma [5.11] this is the same as mclo(s (2), &), that is mcl(s;(z)). This
is precisely the right hand side: by definition mclo(z, s, - s1) = z, so applying the substitution
mcl(s;) to z we have mcl(s;(z)).

On the other hand if z € dom(s,) and z ¢ dom(s;) then both sides evaluate to the term z.
(2) Suppose o has the form px.0”’. Here mclo(o, s, - s1) = pux.mclo(o”, s - s1 - [x — o(sz - s1)])- So
the right hand side is equal to
(ux.(mclo(o”, s - 81 - [x = o(s2 - 51)])) mcl(sy)
Applying the definition of substitution we get
px.(melo(o”, 82 - 81 - [x = 0787 - s;])mcl(s, ")) (5.8)
We show that the left hand side can be rewritten in this form also. First we apply the substitution
s1 to o and get
oS = ux.(o’ s}x)

Then applying the definition of mclo(—, —) we have

mclo(cs, s2) = px.(melo(a’s}, 5 - [x = (os1)s21))

7 \x

= ux.(mclo(o S, 582 [x > o(s2-s1)]) (5.9
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Since fv(o”’) C dom(s}x) Udom(s; - [x — o(s; - s1)]) induction lets us infer

mclo(o’s)", s - [x = o(s2 - $1)]) = melo(o”, 82 - [x = o(s2 - 51)] - 8}") mel(s) ")

\

1" can also be written as s; - [x — p], for any p, thus

The substitution [x — p] - s
s [x o o(s2 8D -8 =82 -81 - [x > (52 - 51)]
which means that rewriting (5.9) above, we get
melo(os|, s2) = px.(mclo(a”, s; - 81 - [x = o(s2 - s)hmel(s)"))
Thus the left hand side coincides with (5.8)) above, as required.

(3) Suppose o has the form ?(c™).0”. By definition mclo(o, s, - §1) =2(0™ (s; - 81)).mclo(o”, S5 - $1)
and we know by Lemma [5.10] that o™ (s, - s1) is a closed term. So the right hand side can be
written as

2(0™ (s2 - s1)).(mclo(o”, sz - s1) mcl(sy))
Here induction can be applied to the residual, and therefore the right hand side now looks like
?(O’m (52 ©S1 )) mclo(o-’s1 , Sg)
But this is exactly mclo(osy, s2), that is the left hand side. []
We will use a specific instance of this Proposition, captured in the following Corollary:

Corollary 5.13. For every o € SCts, and 01 € Lscts, if fv(o1) C {x}, then
mcl(oi[x — o2]) = mclo(oq, [x = 02]) [x — mcl(o))]

Proof. An immediate application of Proposition[5.12] with s, instantiated to the empty substitution,
and s the singleton substitution [x — o7]. ]

Proposition 5.14. Let o € SCis.
v v
(1) o1 — if and only if mcl(o}) —, moreover
(2) for every u € Act,,
(a) o1 A, o implies mcl(o) N mcl(o)

2 L o 7
(b) conversely, mcl(o1) — o’ implies ' = mcl(o) for some o satisfying oy — 0

v . . . ..
Proof. Suppose that -; —, the syntax of session contracts implies that o, = 1, thus by definition
v ) v
mcl(o;) = 1, hence mcl(o;) —. Conversely, if mcl(o;) — then the syntax ensures that mcl(o ) =

v
1, thus the definition of mcl(-) implies that o-; = 1, and plainly o] —.
Now let u € Act;. The proofs of both (1) and (2) are by structural induction on 0. We look

briefly at (2). Observe that mcl(o) 2, ensures that o # 1.
(a) Suppose oy = !(c™).07|. By definition mcl(oy) = !(c™).mcl(c)), hence the contract mcl(o)

V(M

. ™) . . :
performs only the action mcl(oy) — ¢’ with o’ = mcl(c?}). By letting 02 = o we obtain

!(0.771)

immediately o’ = mcl(o;), and oy — o7.
(b) Suppose o7y is ux.0”|. Here mcl(oy) by definition is ux.mclo(o}, [x = o1]). So the only possible

move mcl(op) 2, o is with u =t and o’ of the form mclo(c}, [x = o(]) [x = mcl(c1)]. By
Corollary this is the same as mcl(o”|[x — o1]). Setting 0> to be o] [x > o] the result

follows, because oy LN (0] [x = o1)).
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(c) All other possibilities for o are treated as in case ((1v)).

U

Proposition 5.15. For every session contract o € SCts, oo ~ mcl(o).

Proof. Let R be the set { (o, mcl(c)) | o € SCts}. It is straightforward to use Proposition to
show that R is a strong bisimulation, as given in Definition[3.3] O

Definition 5.16. [ Peer-duality | For every session contract p € SCts, let prdual(p) denote mcl(p).

B
p2p

Theorem 5.17. Suppose B is a preorder. Then p 4=, prdual(p) for every session contract p € SCts.

Proof. From Lemma [5.10| we know that mcl(p) is m-closed and therefore an application of Theo-
: B
rem gives mcl(p) 4+, prdual(p).
We also know from Proposition that p ~ mcl(p), and so the required p 4%1?’2? prdual(p)
follows by Proposition ]

5.3. The complement function. In the original extended abstract of the current paper, [BH14]] we
proposed an alternative function cplmt(—) in order to construct the complementary contracts required
by Theorem [3.16}, this function was proposed independently in [BP12], but for a different purpose.
In this section we show that the function cplmt(—) suffers the same issue of the standard duality:
there exists a o~ which is not in B-peer compliance with its proposed complement cplmt(c), for every
reasonable B (Example [5.21).
We begin by recalling the necessary definitions, and then we present a series of examples.

Definition 5.18. [ Complement ]
Let cplmt : Lgcis — Lscis be defined inductively as follows,

1 ifo=1,
X ifo = x,
7t.cpimt(c’) if o = 1t.07,
t.cpimt(o’) if oo = 7t.07,
cplmt(o) = 4 2(o™).cpimt(o”) if o = l(oc™).0”,
I(c™).cplmt(c”) if o = 2(c™).0”,
EBie]!l,-.cpImt(O',-) if o= Y,?L.04,
Sier1i.cplmt(o) if o= EBieI!li.O'i,
ux.cplmt(c’|lo - x]) ifo =pux.o’

We say that cplmt(o) is the complement of o.

In the definition above the application of |0 +— x] to ¢ stands for the substitution of ¢ in place
of x in the message fields that appear in ¢”’. The definition is the following,
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1 ifp=1,
y ifp=y,
1.0’ Lo - x)) if p =710/,
1t.(0' Lo x)) if p = 1t.0,

plo = x| =

20" o x)).(p’lo - x]) ifp=2")p,
"o - x]).(o'lo = x]) ifp=10")p0,
wy-(p'lo - x]) ifp=pyp andy # x,
ux.p’ if p = ux.p’

Example 5.19 ( Inner substitution ). In this example we show how the application of inner substi-
tutions acts on terms. Fix a term o € SCts, by definition (?(y).y)lo — y] = ?(¢).y. This equality
shows that inner substitutions operate on the variables that appear free in the message parts of terms,
and not on the ones in the continuations. We have likewise the equality (?(y).x)lo — x| =2(y).x
because x appears free only in the continuation of the term ?(y).x. As usual the substitution does not
act on closed variables, thus (uy.?(y).x)lo — y| = uy.7(y).x.

As the application of |0 — x] does not change the number of prefixes that appear in a term,
cplmt(o) is defined for every session type term o.

Example 5.20 ( Complement function ). In this example we prove that in general the function
cplmt(—) does not compute m-closed terms. Recall the type o we used in Example namely
o = ux.0’, where 0’ = uy.?(y).x. Calculations let us prove the equality

cplmt(or) = px.puy. ! (uy.2(y).x).x
The crucial observation here is that the contract cplmt(o) is not m-closed, for it contains the message
uy.2(y).x, which is an open term.

Example 5.21. In this example we show a contract o such that o %?ZP cplmt(o) for every reasonable
B. Recall the type o = px.uy.?(y).x of Example[5.9] In Example[5.20| we have proven that

cplmt(o) = px.uy.!|(0”).x where o = uy.2(y).x

Fix a reasonable relation 8. We want to prove that o %P%P cplmt(o). Since o LN unfold(o) and
cplmi(c) — unfold(cplmt(c)), it suffices to prove that
unfold(c) #2, unfold(cplmt(c-)) (5.10)

pP2pP

Let us unfold the terms o and cplmt(o),

unfold(o) = unfold(ux.uy.2(y).x)
= unfold(uy.?(y).0)
= Nuy.2(y).o).oc

unfold(ux.uy. ! (uy.2(y).x).x)

= unfold(uy.!(uy.?(y).cplmt(o)).cplmt(o))

= Il(uy.?2(y).cplmt(o)).cpimt(o)
As preliminary fact, observe that (unfold(cplmt(c)), unfold(c)) ¢ B, because unfold(cplmt(o))
performs an output action, unfold(c) performs an input action, and 8 is reasonable. It follows that
(cplmt(o), o) ¢ B.

unfold(cplmt(c))
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O:TrP>A-«":TY k: T
O;T'FWK)P>A

T* DT~ [CRes]

Figure 7: The use of duality in type inference 4 la [YVO7]

Let o; = uy.2(y).cplmt(o) and o5 = uy.?(y).o. Plainly, unfold(cplmt(c)) = !(o1).cpimt(o),
and unfold(o) = 2(07).0.

v
Since unfold(o) —4~, Eq. (5.10) will follow if we show that

unfold(c) || unfold(cpimt(o)) —/TL>B

Thanks to the syntax of the contracts unfold(c), unfold(cplmt(c)), and rule [I-SyNcH], we have to
show that !(o1) %g?(0). In view of the definition of =g we have to prove that (o1, 07) ¢ B. The

? ?
visible moves unfold(o;) ﬂ) cplmt(o), and unfold(o) g) o, together with (cplmt(o), o) ¢ B,
and part Ii of Deﬁnition ensure the desired (o1, 03) ¢ B, thus o —M-gp cplmt(o).

The argument used in the previous example can be adapted to show that that the complement function
on session types does not commute with the unfolding function:

there exists a T € Typ, such that cplmt(unfold(7')) #eq unfold(cplmt(7))

5.4. Discussion. Here we briefly discuss the use of the duality operator T in type-checking systems
for session types. For processes we use the syntax of [YV07], and the type-checking rules given
on page 89, and in Figure 6 on page 80 of the same paper. For convenience we display in Figure
a slightly generalised version of the main rule involving duality; there «*, x~ must have associated
types T*, T~ satisfying 7" D T~. Here D is some relation over types which intuitively captures
the notion of ensuring complementary behaviour. In [YVOQ7] this is actually instantiated to duality:
T* DT ifTH=T".

Let us now reconsider the program P in Example[I.2] from the Introduction and discuss, infor-
mally, how it can be assigned a type. In order to use this instantiation of the rule in Figure[/| we need
to assign to Ky, K types satisfying 7" D T~. For convenience we work up to the type equivalence
=eq generated by the subtyping relation.

Assume that z be at type T, (this could be stated in the syntax itself by using the annotation
z: Ty). Since z replaces the formal parameter x in the recursion X[ z, «; ], one expects Ty, the type of
x, to be equivalent to T, T =eq T,. By inspecting the syntax

throw x[«; 1;0 || catch y(z) in ...

we also know that the endpoint x is used according to the type T’y =¢q !(7").END, and that 7+ must be
a subtype of T, and so of Ty, T" < T. The last inequality is trivially satisfied by letting 7% =¢q T,
and this leaves us with the equation 7% =¢q !(7").END. A session type that satisfies it is the following
one,
T* = uX.!(X).END

For P to be typable it is necessary also that the type of ¢, namely 7, be complementary to 7.
Since in X[ z, «; ] the endpoint «; replaces y, it must be the case that 7~ =eq 7). At each iteration y
is used to read only once an endpoint of type T, so

Ty =eq NT).END =¢q 2(T).END =¢q ?(T").END



32 G. BERNARDI AND M. HENNESSY

and thus 7~ = 2(T*).enp. It may seem counter-intuitive that the behaviour of a process that uses an
endpoint according to the type T, i.e. uX.!(X).EnD, be complementary to the behaviour of a process
that uses the other endpoint according to type T, i.e. 2(T*).exp. But this is easily understood if we
unfold the types:

unfold(T*) = !(T%).enp

unfold(T~) = 2T™").exp
More formally, since M(T~) = unfold(M(prdual(7*))) Theorem [5.17]ensures that for any preorder
B, we have M(T™) %?zp M(T™), and by using the types T+ and T~ we can type P (see Appendix .
Our discussion shows that in general if an endpoint «* is used as prescribed by a type T, then the
other endpoint of the session, i.e. k™, needs to be used according to a type 7~ which contains the
type of «*. In other terms, to know how a system uses «~ one needs to know how the system uses «*.

Our proposal is to amend the type-checking system in [YVO7[] by using the variation of the rule

[CREs] in Figure[7| where

T D T~ whenever prdual(T*) = T~ (5.11)

Here we use prdual in the obvious manner as an operator on types although formally it has only been
defined on contracts. This version of the rule has a behavioural justification due to Theorem and
the interpretation M of types as contracts. It ensures that 7" interpreted as a contract is in 8-mutual
compliance with 77: M(T*) 45 M(T7).

This version of the rule, using prdual also leads to a more powerful type-checking system. Using
it we can type the program P from Example[I.2] In Appendix [B|we give all the details of a derivation
tree for of P, but using the generic rule from Figure[/| The construction of this derivation tree gives
rise to a series of conditions on types, which boil down to:

T, =eq !(Ty).END (5.12)
Ty =eq ATy).END (5.13)
I.DT, (5.14)

We have already argued that is satisfied by 7™, and that is satisfied by the T~ we
discussed earlier on, so if we choose D as in (5.11)) above (5.14) is also satisfied. Thus the derivation
of P exists with our suggested modified inference rule.

If we choose D to be the standard duality, then ti is not satisfied, because T+ #eq I, and
so we cannot derive + P.

Thus far, we have discussed only session types. The type systems that use session types, though,
use the duality also to type channel (i.e. non session) types.

As an example, consider the type discipline of [Vas12]. In that paper channels are resources that
can be replicated, while session endpoints are resources that cannot be replicated. This distinction is
borne out by the types, which are pairs (g, T), or simply g T, where ¢ is a qualifier that can be either
un (unbound) or lin (linear), and p is a pretype. Pretypes are elements of STyp.

Example 5.22. [ Replication and ever-lasting communications ]
we write the next process using the syntax of [Vas12],

0 = (vxy) (x(x).0 [ uny(z).z(2).0)
The process Q creates two fresh names x and y, then sends x sends over itself, to the process
uny(z).z{z).0, which is a replicated input. Upon reception of x over y, the replicated input reduces
to x(x).0 || uny(z).z{z).0. This entails a livelock, and no communication takes place.
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Lx:TH,y: T "+ P
' (vxy)P

T" DT~ [T-Res]

Figure 8: The use of duality in type inference 4 la [Vas12]

Since x sends itself, it must be an unbound resource, that is it can be duplicated. The syntax
uny(z).z{z).0 means that also the name y can be duplicated. In turn the types of both x and y will
be decorated with the qualifier un.

To show that - Q we use the derivation rules of [Vas12], but replacing the rule that depends on
the duality, namely [T-Res] of that paper, with the rule in Figure [§] The derivation of  Q, whose
details are in Appendix [B] depends on the satisfaction of three requirements, namely

Ty =equn!(Ty).eND, Ty =equn?(Ty).ExD, T, DT,

Also in this case the power of the type system can be improved by using prdual in place of the
standard duality. If, modulo the qualifiers, we instantiate O as in (5.11)) then we can derive + Q,
while if we instantiate D to the standard type duality, then we cannot derive Q. The details are in

Appendix

6. CONCLUSION

In this paper we proposed a new model for recursive higher-order session types [HVK9S]||, which
is fully-abstract with respect to the subtyping relation [GHOS]. The interpretation of session types
maps them into higher-order session contracts. This is a sublanguage of higher-order contracts for
web-services.

To construct the model, we have equipped those contracts with a novel behavioural theory. In
our theory the observable behaviour of contracts is expressed via a standard LTS, but the interactions
of contracts are parametrised over preorders Bs. The result is a family of LTS. For each one of them
we defined a mutual compliance, —n—gp. Then we defined a family of behavioural preorders, C%, such
that oy 2 o, is all the contracts in 8-mutual compliance with o7 is in 8-mutual compliance with
o5. The preorder that models the subtyping is the greatest solution of the equation X = CX, and
Theorem [4.10| shows that the model is fully-abstract.

The technical development relies on a coinductive syntactic characterisation of the preorders
c2 (Corollary . The completeness of the characterisation depends on the existence for every
contract p of a contract o in B-mutual compliance with p, at least when 8 is a preorder. To prove
this we introduced a novel function called peer-dual, and we have shown that this function improves
on the standard duality, in that it allows us to type more well-formed processes.

Moreover, the examples in Section suggest that type checking algorithms based on the
standard inductive duality, are not complete with respect to type disciplines based on the coinductive
duality of [GHOS| Def. 9].

In summary, the contributions of this paper are two, namely
o the first fully-abstract model of the subtyping for session types of [[GHOSI,

o the definition of a novel type duality, which leads to type systems more powerful than the one
relying on the standard definition of type duality [HVKO9S].
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6.1. Related work. The material in sections 2,3, and 4 is adapted from chapter 8 of [Berl3].
Lemma4.9|in this paper is analogous to Lemma 8.1.5 of [Ber13]], of that thesis. Lemma 8.1.5 relies
on Lemma 7.2.18 (also of [Ber13]]) which turns out to be false: and a counter example is the session
contract ux.!(x).1. Spurred on by this problem, we investigated a novel definition of type duality,
that we described in Section[3l

Contracts for web-services: First-order contracts for web-services and the notion of contract com-
pliance have been proposed first in [CCLP06], and have been improved on in [LPQO7]. In [CCLPO6]
a sub-contract relation is defined, which leads to the definition of compliance. In contracts, in [LPO7]]
the compliance is defined in terms of the LTS of contracts, and then, in the style of testing theory
[DHS84], the sub-contract preorder is defined using the compliance. All the subsequent works -
including this paper - adhere to that style.

The most recent accounts of first-order contracts for web-services are [Padl10, (CGP09]. A
striking difference between the two papers is the treatment of infinite behaviours. In [Pad10] infinite
behaviours are expressed by recursive contracts, whereas in [CGPQ9] there is no recursive construct,
pX.—, and the theory accounts for infinite behaviours by using a coinductively defined language. Our
treatment of infinite behaviours follows the lines of [Pad10]].

Both [Pad10, (CGPO9|] define a subcontract preorder for contracts of server processes, a more
generous weak subcontract. They propose mechanisms to coerce contracts, namely orchestrators
[Pad10] and filters [CGPO09]], and show that if two contracts, o, o, are in the weak subcontract, then
there exists a coercion f such that 0| and f(o) are in the subcontract relation [Pad10, Corollary 3.11],
[CGPO9, Theorem 3.9].

The authors of [CGP0Y] introduce also a compliance for processes, and show that if contracts
are associated to processes by a relation that satisfies a number of properties (Definition 4.2 in that
paper), then two processes are in compliance if the associated contracts are in compliance (see
Theorem 4.5 there).

Session types: Session types has been presented for the first time in [THK94]]. There the language for
types is higher-order and without recursion, and the type duality is defined inductively in the obvious
way. The main result of [THK94] is that well-typed programs cannot incur in communication errors
(see Theorem 5.10 there). This type-safety result is a landmark of session types, and is proven is
almost every presentation of session typed languages.

The original presentation of [[THK94] has been extended extended to recursive higher-order
session types in [HVKO9S8], where also the definition of type duality that we reported in Figure [5]
has been proposed. The authors of [HVKO9E] argue in favour of program abstractions, that help
programmers structure the interaction of processes around sessions. As in [THK94], the proposed
result is that a “typable program never reduces into an error” (see Theorem 5.4 (3) of [HVK9S])). In
[YVOQ7, pag. 86, paragraph 4], though, it is shown that that result is not true, that is the type system of
[HVK9S]|| does not satisfy type-safety. The authors of [Y V07| amend the type system of [HVK9S]],
thereby achieving type-safety (see Theorem 3.4 of [YVO7])).

Subtyping for recursive higher-order session types has been introduced in [GHOS], along with
a coinductive definition of the duality. In addition to the standard type-safety result (Theorem 2),
the authors show also a type-checking algorithm which they prove sound (Theorem 5) wrt the
type system. The proof of soundness, though, relies on a relation between the inductive and the
coinductive dualities (Proposition 5 there) which in general is false; a counter example is provided
by the session type uX.!(X).enp. The consequence is that there is the possibility that the algorithm of
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type T = !T.end

def f (x: T, y: dualof T) =
new a b: T
xla |
y?z. fl(z, b)

Figure 9: Script in SEPI for the process P of Example

[GHO3J, if employed in more general settings, may not be sound, that is reject programs which are
well-typed.

An alternative “fair” subtyping has been proposed recently in [Pad11]]. There session types are
higher-order and recursive, their operational semantics is defined by parametrising the interactions of
session types on pre-subtyping relations, and the fair subtyping is defined as a greatest fixed point
(Definition 2.4).

In our development we adopted the same technique of [Pad11]]. However, our aim was to model
the standard subtyping of [GHOS|, while Padovani focuses on the properties of his fair subtyping.

An overview of the major development of session types is [DCdQ9].

Session types have been fertile ground for theoretical studies as well as for implementations. For
instance, a programming language equipped with session types is SEPI [FV13]]. In SEPI, the process
P of Example[I.2]is rendered by the code in Figure 9] and the type checker accepts P, because it uses
the coinductive duality rather than the inductive one [Vas13]].

Models of Gay & Hole subtyping: The first attempt to model the Gay & Hole subtyping of [GHOS]]
in terms of a compliance preorder appeared in [LPOS]]. For a comparison of that research and our
work the reader is referred to [BH12l]. The authors of [Bd10] have shown the first sound model of
this subtyping restricted to first-order session types, by using a subset of contracts for web-services, a
mutual compliance, called orthogonality, and the preorder generated by it. The B-peer compliances
we used in this work generalises to parametrised LTSs the orthogonality of [Bd10].

Following the approach of [Bd10], in [BHI12] we have shown a fully-abstract model of the
subtyping, but using the standard asymmetric compliance and an intersection of the obvious server
and client preorders.

An alternative definition of the model proposed in [BH12] can be found in [Ber13, Chapter 5],
where must testing of [DHS84] is used in place of the compliance. This entails immediately the
differences between the standard subtyping of [[GHOS] and the fair one of [[Pad11]], for they are just
the differences between must preorder and the should preorder.

This paper subsumes [BHI2] in the sense that Theorem .10]of this work implies Theorem 5.2
of [BH12].

The authors of [Bd10] have also extended their work to higher-order session types. However
in their recent work [BdL.13]] only a subset of types is modelled, for instance the types uX.!(X).END
is ruled out, and has no behavioural interpretation at all. This is because the authors of [BdL13]]
use the standard definition of syntactic duality, and define the LTS of contracts by stratification. In
contrast with [BdL13]], we have argued that types as uX.!(X).END are necessary to type a series of
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well-formed processes. Because of this, we have replaced the standard type duality function, o, with
our novel peer-duality function, prdual(c-), and we have defined the LTS of contracts coinductively.
As aresult, the type uX.!(X).EnD in our theory is given the following observable behaviour, where
0 = M(uX.!(X).END):

-

7
P - '(0).p

(o)

Semantic subtyping: We view our main result as a behavioural or semantic interpretation of Gay
& Hole subtyping. There is an alternative well-developed approach to semantic theories of types
and subtyping [FCBOS] in which the denotation of a type is given by the set of values which inhabit
it, and subtyping is simply subset inclusion. This apparent simplicity is tempered by the fact that
for non-trivial languages, such as the pi-calculus [CDVOS], there is a circularity in the constructions
due to the fact that determining which terms are values depends in turn on the set of types. This
circularity is broken using a technique called bootstrapping or stratification, essentially an inductive
approach. The research using this approach which is closest to our results on Gay & Hole subtyping
may be found in [CDCGPQOJ; this contains a treatment of a very general language of session types,
an extension of Gay & Hole types. But there are essential differences. The most important is that
their model does not yield a semantic theory of Gay & Hole subtyping. Their subtyping relation, <,
is defined via an LTS generated by considering the transmission of values rather than session types;
effectively subtyping is not allowed on messages. The resulting subtyping is very different than our
focus of concern, the Gay & Hole subtyping relation <. For example the preorder < has bottom
elements, in contrast to <, and ?(Int).eNp < ?(Real).enDp whereas ?7(Int).exp £ ?(Real).enp. The
particular use of stratification (Theorem 2.6) is also complex, and rules out the use of session types
such as uX.!(X).enp. Finally they use as types infinite regular trees whereas we prefer to work directly
with recursive terms, as proposed in [GHO3]J; for example this allows us to discuss the inadequacies
of the type-checking rules of [YVOQ7].

Nevertheless the extended language of sessions types of [CDCGPQ9] is of considerable signif-
icance. It would be interesting to see if it can be interpreted behaviourally using our co-inductive
approach, particularly endowed with a larger subtyping preorder more akin to the standard Gay &
Hole relation [GHOS].

Further behavioural models: Recently, a behavioural model for multi-party first-order session
types appeared [DY13]], which is based on communicating automata rather than contracts for web-
services. The focus of [DY13]] is not to model the subtyping.

6.2. Future work. In [BH12], building on [Bd10], we have already developed a result similar to
the full-abstraction of Section ] but for for first-order session contracts, and using a combination of
server and client subcontract relations. We leave as future work showing how this approach can be
recovered from our peer subcontract relation.

Even though standard models of recursive types are based on regular trees [PS96, [ BHOS], tree
models for recursive higher-order session types are still lacking. We plan to develop such a model,
and to show the connection with the notions we used in this paper. Establishing such a connection
will help us motivating the complement function, and showing its connection with other notions of
duality, for instance the co-inductive one of [GHO5, Def. 9].
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Recently, type disciplines based on session types have been proposed, which guarantee that
well-typed programs are free from deadlocks [DCdYO07,Wad12, [VV13]. However, all those papers
deal but with finite (i.e. non recursive) types. We plan to investigate whether the semantic techniques
we used in this work lead to type systems for recursive session types that guarantee deadlock freedom.

Acknowledgements. The authors would like to thank Vasco Vasconcelos for having provided the SEPI
code shown in Figure (9), for his remarks on the SEPI type checker, and for having brought the type
px.y.2(y).x of Example [5.21]to our attention.

APPENDIX A. STANDARD DEFINITIONS

The following definitions apply equally well to the language of session types and the language of
session contracts. Periodically we change from one to the other in the exposition.

In the language Lgcis we have the standard notion of free and bound occurrences of the recursion
variables X, Y, ... which lead to the standard notion of closed terms.

A.1. Substitutions. A substitution is a finite partial map from variables to closed terms. Here we
use as an example language that of session contracts, thus for the language Lscts a substitution takes
the form

s : var — SCts

where dom(s) is a finite subset of var. Substitutions are composed by letting s - s, have as domain
dom(s;) U dom(s,), with

si(x), if x e dom(s;)
Sp(x), if x € dom(sy), x ¢ dom(s)

1 - 82(x) = {

This, together with the empty substitution, denoted &, endows the collection of substitutions with the
structure of a monoid. We use two further operations on substitutions: s\* has as domain dom(s) — {x}
and acts like s on all variables in its domain, while for any operator g, g(s) is the substitution with the
same domain as s and maps each X in this set to g(s(x)).

The action of a substitution on a term 7', written T's, is defined by structural induction on 7.
Thus for the language Lscts the definition is as follows:

1 ifp =1
y if p=y,y ¢ dom(s)
s(y) if p = y,y € dom(s)

s = t.(0’s) if p =710’
It.(p's) if p =lt.p’
Ap"s).(0's) if p =2p").p’
1”s).p’'s ifp=l(p")p
py.(p'sY) ifp = py.p’

Here the important clause is the last one; when applying s to the recursive term py.p’ it applies the
restricted substitution s\, which leaves the variable y untouched, to the body p’. Note that no notion
of a-conversion is required.

It is easy to show the standard compositional property of substitutions, namely (0s;)s; =
p (1 - s2), by structural induction on p.
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S[X - uX.S]unfold T
uX.S unfold T T unfold T

T # uX.S

Figure 10: Inference rules for the unfolding of terms.

A.2. Unfoldings. The unfolding of a closed session term from Lstyp is defined inductively, as the
least fixed point of the functional generated by the rules in Figure[T0}

It is easy to check that unfold is a function over closed session terms, that is if S unfold 7'} and
S unfold T, then T; = T,. For this reason we use the standard functional notation unfold(S) to
denote the unfolding of S. However, this function is not total, as the following example explains.

Example A.1. Observe that there is no finite inference using the rules from Figure [I0] that lets us
derive an unfolding of uX.X. The reason is that the last rule in the derivation has to be

uX.X unfold T
uX.X unfold T

which leads to a circularity. For this reason unfold(uX.X) is undefined.

It is easy to check also that the function is idempotent, unfold(unfold(S)) = unfold(S). In fact
unfold(S) is reminiscent of a head-normal form, in the sense that it must take one of the first five
forms in the grammar for Lgtyp in Figure

In order to isolate the terms whose subterms can be unfolded, we use the notion of guarded. Our
definition is a mild generalisation of the standard one. Recall that all the constructors but uX.— are
non-recursive.

Definition A.2. [ Guarded ]

We say a recursion variable X is guarded in T € Lgtyp if every occurrence of X in T appears under a
non-recursive type constructor. Then we say that a term S € Lgtyp is guarded if whenever uX.T is a
subterm of S then X is guarded in 7'.

Example A.3. Every variable X is a term, and it is not guarded (in itself). In the terms uX.?(X).END
and uX.?(enp).X the variable X is guarded, for it appears under the constructor ?(—).—, and so the
whole terms are guarded.

LetT = puYY and S = &(1: T). The variable Y is guarded in the term S, for it occurs
underneath the type constructor &{ — ), and it is not guarded in the the term 7', because there it occurs
directly after the recursive constructor uY.—.

Neither S nor T are guarded. The reason is that S is a subterm of itself, and of 7', and Y is not
guarded in S.

The application of a substitution to a term 7 in which every variable is guarded preserves the
top-most constructor of 7. This phenomenon lets us prove the next lemma.

Lemma A.4. For every T € Lstyp and substitution s, if every variable in T appears guarded, then
unfold(T's) is defined.

Proof. The proof is by structural induction on 7. Every variable in T appears guarded, thus T cannot
be a variable.

The only case worth discussion is when T = uY.T’, for in every other case an application of the
axiom in Figure|10|ensures the result.
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So suppose T = uY.T’. Then T's = uY.(T’s\V). The hypothesis implies that every variable in
T’ is guarded, and since 7’ is a subterm of T, by structural induction we know that unfold(7”’s’) is
defined for every substitution s’'.

Let us pick the particular substitution s’ = s\¥ - s”, where s”” maps the variable ¥ to T's. We
know by induction that we can infer

T'(s\Y - s”") unfold R

for some R. But by compositionality we know 7”(s\' - s”") = (T’s\¥)s’" and so one application of the
rule on the right in Figure|10| gives the required

T's unfold R
0]
Lemma A.5. If T is a guarded closed term in Lgtyp then unfold(T) is defined.

Proof. For every substitution s, since 7 is closed, 7s = T. Lemma|[A.4]ensures that unfold(7's) is
defined, so unfold(T) is defined. L]

The main properties used of the unfold function are now collected in the following lemma:

Lemma A.6. For every session contract o € SCts,

(a) ifor s * o and o’ is stable, then unfold(o) I P
(b) if o is m-closed then so is unfold(o).

Proof. Recall that all terms in SCts are closed and guarded, and therefore by the previous lemma,
applied to session contracts, unfold(o) is defined. For convenience let it be denoted by p.

The proof of (a) now proceeds by induction on the derivation of o unfold p from the rules in
Figure[I0] and a case analysis on the structure of o~. The only non-trivial case is when o~ has the form
ux.op.

Since ¢ is stable and there is exactly one rule from Figure |3| which can apply to ux.o, the
sequence of transitions o - * o/ must actually take the form

T T
ux.oy — olx— o]l — * o’

By induction unfold(co | [x — o) —5 * ¢, The result now follows since by the rules of Figurewe
know unfold(p[x + ¢7]) coincides with p.
The proof of statement (b) has a similar structure. ]

Note that in the statement of Lemmal[A.6a) the hypothesis that o be stable is essential. As a coun-

terexample consider the case when o is ux.uy.!1.x. We have o Sy wy.'1.0 but unfold(o) 7TL> *
wy.!1.0, since unfold(o) is 1.0

APPENDIX B. TYPE DERIVATIONS

In this appendix we discuss the derivation trees needed to prove the typing judgement + P and + Q,
where P and Q are the processes respectively of Example|l.2{and Example

Recall the type equivalence =¢q defined in Sectiond] (#.2). To use the typing rules of [YV(7]
and [Vas12] we reason up-to type equivalence.

We discuss first the derivation of - P, which is shown in In Figure The rules we used are
given in [Y V07, pag. 89], and the ones not defined there are defined in Figure 6 of the same paper.
The only difference between our presentation and [Y V07| is that in rule [CREs] we use a relation D
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y: END completed
X: T, Tyt+ X(z,Kf‘)Dy: END, z: T, ki
X: Ty, Ty+ catch y(z) inX(z, & ) > y: NT;).END, k¢ @ Ty

C
T; [VAR]

[Car]B

x: END completed
X: Ty, Ty+ 0> x: END
X: Ty, Ty + throw x[«f ;0> x: /(T{).END, ¢ :
X: Ty, Ty + throw x[« 10|
catch y(z) inX(z, kg Y > x: T, y: Ty, k¢ = T s
X: Ty, Ty + (vp) (throw x[«; 15 0]
catch y(z) inX(z, kg N> x: Ty, y: Ty

[INacT]

AL
T [THR] (%)

[Conc]

+. 7+
/<f.Tf

T D Ty [CREs]

: 0 completed [Vag]
(*)  X: Ty Ty X(kG, kg YD kbt Ty kg2 Ty Der]
EF
Fdef Din X{(«', kYo «kl: Ty, k. : T,
e in X(«g K(T> Ky x_KO y T.DT,; [CRes]
F (vko) (def D in X(«7, 5 ))

A) Ty =eq (T}).END
B) Ty =eq NT;).END
o) T, =eq Tz, Ty =eq Tf_

Figure 11: Derivation tree to infer + P in the type system of [YV07], but with rule [CREs] of our
Figure[7]

instead of the duality =. This allows us to compare the typability of P using prdual and - as duality
relations.

The existence of the derivation tree depends on the satisfaction of the constraints that we gather
building the tree. In Figure[T|the constraints and the rule applications that generate them are labelled
respectively with A, B, C.

We show how to satisfy the conditions, which are the following ones.

TX :eq !(T;).END TX :eq TZ
Ty, =eq ™T,).END Ty =eq T¢
T, D T, T} D T

We let T; and T to be definitionally equal to, respectively, T, and 7). In view of these definitions,
the constraints we have to satisfy are the following ones,

T. =eq !NT}).END T, D T,
Ty =eq ™NT,).END Ty D Ty
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Given the condition that T, D Ty an obvious way to satisfy 7" D T is to let 7, be definitionally 7.
This leaves us with three conditions
Ty =eq !(Ty)END, Ty =¢q A(Ty).END, T, DT,

The two equations are solved by letting T’y = uX.!(X).Enp, and T, = ?(uX.!(X).EnD).END. If we take
D to be -, then the types T and T, cannot satisfy 7 D T), because T, #eq Ty. If we take D to be
prdual, then the condition on D is satisfied, because cpImt(T) =eq 7.

Now we discuss the derivation of + Q, where

Q = (vxy) (X(x).0 || uny(z).z(2).0)

is the process we already used in Example[5.22] We show the derivation tree in Figure[I2] Let us
adapt our notions to the setting of [Vas12]]. We use the the syntax given in Figure 3 of that paper,

q = Qualifiers
lin linear
un unrestricted
t o= Types

Bool boolean
END termination
(¢, T) qualified pretype

where our terms 7,S,... are considered pretypes, and a type ¢ is pair composed by a qualifier
and a pretype. Now we lift the relation =¢q (i.e. the equivalence due to <) to types by writing
(q,T) =eq (¢',T") whenever g = ¢’ and T =¢q T'. We also lift the duality function prdual(-) to
types, and let
prdualQ(q, T) = (g, prdual(T")) 2.1)
This definition is analogous to the one in [Vas12l Figure 4], but there the standard duality is employed.
The premises of the rules used in the derivation tree of Figure ensure that 7', =¢q un ?(7’;).END,
and the two equations A) and B) in that figure have the same solution, so 7, < T. It turn this implies
that T, =¢q un ?(T,).enp. The existence of the derivation tree depends on two conditions, namely

Ty =equn!(T))eno, T,DT,
We already know that the equation is satisfied by the type 7 = un uX.!(X).ExD, so we have just to
find a O such that T D T,. If we instantiate D to the function prdualQ defined li above, then the

condition 7' D T, is satisfied. If we instantiate D to the standard duality, then that condition is not
satisfied, so a derivation tree necessary to conclude + Q does not exist.
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