
Logical Methods in Computer Science
Vol. 12(3:3)2016, pp. 1–43
www.lmcs-online.org

Submitted Oct. 31, 2015
Published Aug. 17, 2016

BLOCK STRUCTURE VS SCOPE EXTRUSION: BETWEEN

INNOCENCE AND OMNISCIENCE ∗

ANDRZEJ S. MURAWSKI a AND NIKOS TZEVELEKOS b

a University of Warwick
e-mail address: A.Murawski@warwick.ac.uk

b Queen Mary University of London
e-mail address: nikos.tzevelekos@qmul.ac.uk

Abstract. We study the semantic meaning of block structure using game semantics. To
that end, we introduce the notion of block-innocent strategies and characterise call-by-
value computation with block-allocated storage through soundness, finite definability and
universality results. This puts us in a good position to conduct a comparative study of
purely functional computation, computation with block storage as well as that with dy-
namic memory allocation. For example, we can show that dynamic variable allocation can
be replaced with block-allocated variables exactly when the term involved (open or closed)
is of base type and that block-allocated storage can be replaced with purely functional
computation when types of order two are involved. To illustrate the restrictive nature of
block structure further, we prove a decidability result for a finitary fragment of call-by-
value Idealized Algol for which it is known that allowing for dynamic memory allocation
leads to undecidability.

1. Introduction

Most programming languages manage memory by employing a stack for local variables and
heap storage for data that are supposed to live beyond their initial context. A prototypical
example of the former mechanism is Reynolds’s Idealized Algol [23], in which local variables
can only be introduced inside blocks of ground type. Memory is then allocated on entry
to the block and deallocated on exit. In contrast, languages such as ML permit variables
to escape from their current context under the guise of pointers or references. In this case,
after memory is allocated at the point of reference creation, the variable must be allowed
to persist indefinitely (in practice, garbage collection or explicit deallocation can be used
to put an end to its life).

2012 ACM CCS: [Theory of computation]: Models of computation; Semantics and reasoning—
Program semantics.

Key words and phrases: Game semantics, references, contextual equivalence.
∗ Extended abstract appeared in FOSSACS [17].
a Supported by the Engineering and Physical Sciences Research Council (EP/C539753/1).
b Supported by the Engineering and Physical Sciences Research Council (EP/F067607/1) and the Royal

Academy of Engineering.

LOGICAL METHODS
l IN COMPUTER SCIENCE DOI:10.2168/LMCS-12(3:3)2016

c© A.S. Murawski and N. Tzevelekos
CC© Creative Commons

http://creativecommons.org/about/licenses

2 A.S. MURAWSKI AND N. TZEVELEKOS

In this paper we would like to compare the expressivity of the two paradigms. As a
simple example of heap-based memory allocation we consider the language RML, introduced
by Abramsky and McCusker in [2], which is a fragment of ML featuring integer-valued
references. In op. cit. the authors also construct a fully abstract game model of RML

based on strategies (referred to as knowing strategies) that allow the Proponent to base
his decisions on the full history of play. On the other hand, at around the same time
Honda and Yoshida [8] showed that the purely functional core of RML, better known as
call-by-value PCF [21], corresponds to innocent strategies [10], i.e. those that can only rely
on a restricted view of the play when deciding on the next move. Since block-structured
storage of Idealized Algol seems less expressive than dynamic memory allocation of ML and
more expressive than PCF, it is natural to ask about its exact position in the spectrum of
strategies between innocence and omniscience. Our first result is an answer to this question.
We introduce the family of block-innocent strategies, situated strictly between innocent and
knowing strategies, and exhibit a series of results relating such strategies to a call-by-value
variant IAcbv of Idealized Algol.

Block-innocence captures the particular kind of uniformity exhibited by strategies orig-
inating from block-structured programs, akin to innocence yet strictly weaker. In fact, we
shall define block-innocence through innocence in a setting enriched with explicit store an-
notations added to standard moves. For instance, in the play shown below1, if P follows
a block-innocent strategy, P is free to use different moves as the fourth (1) and sixth (2)
moves, but the tenth one (0) and the twelfth one (0) have to be the same.

q q q 1 q 2 a a q 0 q 0

The above play is present in the strategy representing the term

f : (unit → int) → (unit → int) ⊢
(

new x in (let g = f(λyunit.(x := !x+ 1); !x) in ())
)

;
λyunit.0 : unit → int

and the necessity to play the same value (0 in this case) in the twelfth move once 0 has been
played in the tenth one stems from the fact that variables in IAcbv can only be allocated in
blocks of ground type. For example, the block in which x was allocated cannot extend over
λyunit.0.

Additionally, our framework can detect “storage violations” resulting from an attempt
to access a variable from outside of its block. For instance, no IAcbv-term will ever produce
the following play.

q q q 1 q 2 a a q q

The last move is the offending one: for the term given above, it would amount to trying to
use g after deallocation of the block for x. Note, though, that the very similar play drawn
below does originate from an IAcbv-term.

q q q 1 q 1 a a q q

Take, e.g. f : (unit → int) → (unit → int) ⊢ let g = f(λyunit.1) in λyunit.g() : unit → int.
The notion of block-innocence provides us with a systematic methodology to address

expressivity questions related to block structure such as “Does a given strategy originate

1For the sake of clarity, we only include pointers pointing more than one move ahead.

BLOCK STRUCTURE VS SCOPE EXTRUSION 3

from a stack-based memory discipline?” or “Can a given program using dynamic mem-
ory allocation be replaced with an equivalent program featuring stack-based storage?”. To
illustrate the approach we conduct a complete study of the relationship between the three
classes of strategies (innocent, block-innocent and knowing respectively) according to the
underpinning type shape. We find that knowingness implies block-innocence when terms
of base types (open or closed) are involved, that block-innocence implies innocence exactly
for types of order at most two, and that knowingness implies innocence if the term is of
base type and its free identifiers are of order 1. The fact that knowingness and innocence
coincide at terms of base types implies, in particular, that RML and IAcbv contexts have
the same expressive power: two RML-terms can be distinguished by an RML-context if, and
only if, they can be distinguished by an IAcbv-context.

As a further confirmation of the restrictive nature of the stack discipline of IAcbv, we
prove that program equivalence is decidable for a finitary variant of IAcbv which properly
contains all second-order types as well as some third-order types (interestingly, this type dis-
cipline covers the available higher-order types in PASCAL). In contrast, the corresponding
restriction of RML is known to be undecidable [15].

Related work. The stack discipline has always been regarded as part of the essence of
Algol [23]. The first languages introduced in that lineage, i.e. Algol 58 and 60, featured
both call-by-name and call-by-value parameters. Call-by-name was abandoned in Algol 68,
though, and was absent from subsequent designs, such as Pascal and C.

On the semantic front, finding models embodying stack-oriented storage management
has always been an important goal of research into Algol-like languages. In this spirit, in the
early 1980s, Reynolds [23] and Oles [18] devised a semantic model of (call-by-name) Algol-
like languages using a category of functors from a category of store shapes to the category of
predomains. Perhaps surprisingly, in the 1990s, Pitts and Stark [20, 24] managed to adapt
the techniques to (call-by-value) languages with dynamic allocation. This would appear to
create a common platform suitable for a comparative study such as ours. However, despite
the valuable structural insights, the relative imprecision of the functor category semantics
(failure of definability and full abstraction) makes it unlikely that the results obtained by
us can be proved via this route. The semantics of local effects has also been investigated
from the category-theoretic point of view in [22].

As for the game semantics literature, Ong’s work [19] based on strategies-with-state
is the work closest to ours. His paper defines a compositional framework that is proved
sound for the third-order fragment of call-by-name Idealized Algol. Adapting the results
to call-by-value and all types is far from immediate, though. For a start, to handle higher-
order types, we note that the state of O-moves is no longer determined by their justifier
and the preceding move. Instead, the right state has to be computed globally using the
whole history of play. However, the obvious adaptation of this idea to call-by-value does not
capture the block structure of IAcbv. Quite the opposite: it seems to be more compatible
with RML. Consequently, further changes are needed to characterize IAcbv. Firstly, to restore
definability, the explicit stores have to become lists instead of sets. Secondly, conditions
controlling state changes must be tightened. In particular, P must be forbidden from
introducing fresh variables at any step and, in a similar vein, must be forced to drop some
variables from his moves in certain circumstances.

Another related paper is [4], in which Abramsky and McCusker introduce a model of
Idealized Algol with passive (side-effect-free) expressions [4]. Their framework is based on a

4 A.S. MURAWSKI AND N. TZEVELEKOS

Γ, x : var ⊢M : β
Γ ⊢ new x inM : β Γ ⊢ ref : var Γ ⊢ () : unit

i ∈ Z
Γ ⊢ i : int

(x : θ) ∈ Γ
Γ ⊢ x : θ

Γ ⊢M1 : int Γ ⊢M2 : int
Γ ⊢M1 ⊕M2 : int

Γ ⊢M : int Γ ⊢ N0 : θ Γ ⊢ N1 : θ
Γ ⊢ ifM thenN1 elseN0 : θ

Γ ⊢M : var
Γ ⊢ !M : int

Γ ⊢M : var Γ ⊢ N : int
Γ ⊢M :=N : unit

Γ ⊢M : unit → int Γ ⊢ N : int → unit
Γ ⊢ mkvar(M,N) : var

Γ ⊢M : θ → θ′ Γ ⊢ N : θ
Γ ⊢MN : θ′

Γ, x : θ ⊢M : θ′

Γ ⊢ λxθ.M : θ → θ′
Γ ⊢M : (θ → θ′) → (θ → θ′)

Γ ⊢ Y(M) : θ → θ′

Figure 1: Syntax of L

distinction between active and passive moves, which correspond to active and passive types
respectively. Legal plays must then satisfy a novel correctness condition, called activity,
and strategies must be a/p-innocent. In contrast, our setting does not feature any type
support for discovering the presence of storage. Moreover, as the sequences discussed in the
Introduction demonstrate, in order to understand legality in our setting, it is sometimes nec-
essary to scrutinise values used in plays: changing 1, 1 to 1, 2 may entail loss of correctness!
This is different from the activity condition (and other conditions used in game semantics),
where it suffices to consider the kind of moves involved (question/answer) or pointer pat-
terns. Consequently, in order to capture the desired shape of plays and associated notion
of innocence in our setting, we felt it was necessary to introduce moves explicitly decorated
with stores.

Our paper is also related to the efforts of finding decidable fragments of (finitary) RML

as far as contextual equivalence is concerned. Despite several papers in the area [7, 15, 9, 5],
no full classification based on type shapes has emerged yet, even though the corresponding
call-by-name case has been fully mapped out [16]. We show that, for certain types, moving
from RML to IAcbv (thus weakening storage capabilities) can help to regain decidability.

2. Syntax

To set a common ground for our investigations, we introduce a higher-order programming
language that features syntactic constructs for both block and dynamic memory allocation.

Definition 2.1 (The language L). We define types as generated by the grammar below,
where β ranges over the ground types unit and int.

θ ::= β | var | θ → θ

The syntax of L is given in Figure 1.

Note in particular the first two rules concerning variables and the rule for the mkvar

constructor: the latter allows us to build “bad variables” in accordance with Idealized Algol.
The order of a type is defined as follows:

ord(β) = 0
ord(var) = 1

ord(θ1 → θ2) = max(ord(θ1) + 1, ord(θ2)).

BLOCK STRUCTURE VS SCOPE EXTRUSION 5

V is a value
s, V ⇓ s, V

M ⇓ 0 N0 ⇓ V
ifM thenN1 elseN0 ⇓ V

i 6= 0 M ⇓ i N1 ⇓ V
ifM thenN1 elseN0 ⇓ V

M1 ⇓ i1 M2 ⇓ i2
M1 ⊕M2 ⇓ i1 ⊕ i2

M ⇓ λx.M ′ N ⇓ V ′ M ′[V ′/x] ⇓ V
MN ⇓ V

s,M ⇓ s′, α s′(α) = i
s, !M ⇓ s′, i

s,M ⇓ s′, α s′, N ⇓ s′′, i
s,M :=N ⇓ s′′(α 7→ i), ()

M ⇓ mkvar(V1, V2) V1() ⇓ i
!M ⇓ i

M ⇓ mkvar(V1, V2) N ⇓ i V2 i ⇓ ()
M :=N ⇓ ()

M ⇓ V1 N ⇓ V2
mkvar(M,N) ⇓ mkvar(V1, V2)

M ⇓ V
Y(M) ⇓ λxθ.(V (Y(V)))x

s ∪ (α 7→ 0),M [α/x] ⇓ s′, V
s, new x inM ⇓ s′ \ α, V

α 6∈ dom s
s, ref ⇓ s ∪ (α 7→ 0), α

α 6∈ dom s

Figure 2: Operational semantics of L

For any i ≥ 0, terms that are typable using exclusively judgments of the form

x1 : θ1, · · · , xn : θn ⊢M : θ

where ord(θj) < i (1 ≤ j ≤ n) and ord(θ) ≤ i, are said to form the ith-order fragment.
To spell out the operational semantics of L, we need to assume a countable set Loc

of locations, which are added to the syntax as auxiliary constants of type var. We shall
write α to range over them. The semantics then takes the form of judgments s,M ⇓ s′, V ,
where s, s′ are finite partial functions from Loc to integers, M is a closed term and V is
a value. Terms of the following shapes are values: (), integer constants, elements of Loc,
λ-abstractions or terms of the form mkvar(λxunit.M, λyint.N).

The operational semantics is given via the large-step rules in Figure 2. Most of them
take the form

M1 ⇓ V1 M2 ⇓ V2 · · · Mn ⇓ Vn
M ⇓ V

which is meant to abbreviate:
s1,M1 ⇓ s2, V1 s2,M2 ⇓ s3, V2 · · · sn,Mn ⇓ sn+1, Vn

s1,M1 ⇓ sn+1, V

This is a common semantic convention, introduced in the Definition of Standard ML [11].
In particular, it means that the ordering of the hypotheses is significant. The penultimate
rule in the figure encapsulates the state within the newly created block, while the last one
creates a reference to a new memory cell that can be passed around without restrictions on
its scope. Note that s′ \ α is the restriction of s′ to dom s′ \ {α }.

Given a closed term ⊢ M : unit, we write M ⇓ if there exists s such that ∅,M ⇓ s, ().
We shall call two programs equivalent if they behave identically in every context. This
is captured by the following definition, parameterised by the kind of contexts that are
considered, to allow for testing of terms with contexts originating from a designated subset
of the language.

6 A.S. MURAWSKI AND N. TZEVELEKOS

Definition 2.2. Suppose L′ is a subset of L. We say that the terms-in-context Γ ⊢
M1,M2 : θ are L′-equivalent (written Γ ⊢ M1

∼=L′ M2) if, for any L′-context C such that
⊢ C[M1], C[M2] : unit, C[M1] ⇓ if and only if C[M2] ⇓.

We shall study three sublanguages of L, called PCF+, IAcbv and RML respectively.
The latter two have appeared in the literature as paradigmatic examples of programming
languages with stack discipline and dynamic memory allocation respectively.

• PCF+ is a purely functional language obtained from L by removing new x inM and ref.
It extends the language PCF [21] with primitives for variable access, but not for memory
allocation.

• IAcbv is L without the ref constant. It can be viewed as a call-by-value variant of Idealized
Algol [23]. Only block-allocated storage is available in IAcbv.

• RML is L save the construct new x inM . It is exactly the language introduced in [2] as a
prototypical language for ML-like integer references.2

We shall often use let x = M in N as shorthand for (λx.N)M . Moreover, let x = M in N ,
where x does not occur in N , will be abbreviated to M ;N . Note also that new x inM is
equivalent to let x = ref in M .

Example 2.3. The term ⊢ let v = ref in λxunit.(if !v thenΩ else v := !v + 1) : unit → unit is
an example of an RML-term that is not RML-equivalent to any term from IAcbv. On the
other hand,

⊢ λf (unit→unit)→unit.new v in f(λyunit.if !v thenΩ else v := !v + 1) : ((unit→unit)→unit)→unit

is an IAcbv-term that has no RML-equivalent in PCF+. All of the inequivalence claims will
follow immediately from our results.

Lemma 2.4. Given any base type L-term Γ, x : var ⊢ M : β, we have Γ ⊢ new x inM ∼=L

let x = ref in M : β.

Proof. The proof is based on the following two claims:

• if s,M ⇓ s′, V and α ∈ dom (s) does not appear in M , then s \ α,M ⇓ s′ \ α, V ;
• for any closed context C, value V and s, s′, if s, C[let x = ref in M] ⇓ s′, V then there is
a set of locations S ⊆ dom (s′) such that s, C[new x inM] ⇓ s′ \ S, V and S contains no
locations from s or V ;

which are proven by straightforward induction.

Hence, RML and L merely differ on a syntactic level in that L contains “syntactic sugar”
for blocks. In the opposite direction, our results will show that ref cannot in general be
replaced with an equivalent term that uses new x inM . Indeed, our paper provides a general
methodology for identifying and studying scenarios in which this expressivity gap is real.

3. Game semantics

We next introduce the game models used throughout the paper, which are based on the
Honda-Yoshida approach to modelling call-by-value computation [8].

Definition 3.1. An arena A = (MA, IA,⊢A, λA) is given by

• a set MA of moves, and a subset IA ⊆MA of initial moves,

2In other words, RML is Reduced ML [24] with the addition of the mkvar construct.

BLOCK STRUCTURE VS SCOPE EXTRUSION 7

• a justification relation ⊢A ⊆MA × (MA \ IA), and
• a labelling function λA :MA → {O,P} × {Q,A}

such that λA(IA) ⊆ {PA} and, whenever m ⊢A m′, we have (π1λA)(m) 6= (π2λA)(m
′) and

(π2λA)(m
′) = A =⇒ (π2λA)(m) = Q.

The role of λA is to label moves as Opponent or Proponent moves and as Questions
or Answers. We typically write them as m,n, . . . , or o, p, q, a, qP , qO, . . . when we want to
be specific about their kind. Note that we abbreviate elements of the codomain of λA, e.g.
(P,A) above is written as PA.

The simplest arena is 0 = (∅, ∅, ∅, ∅). Other “flat” arenas are 1 and Z, defined by:

M1 = I1 = {∗} , MZ = IZ = Z .

Below we recall two standard constructions on arenas, where ĪA stands for MA \ IA, the
OP -complement of λA is written as λ̄A, and iA, iB range over initial moves in the respective
arenas.

MA⇒B = IA⇒B ⊎ IA ⊎ IA ⊎MB

IA⇒B = {∗}

λA⇒B = [(∗, PA), (iA, OQ), λ̄A ↾ IA, λB]

⊢A⇒B = {(∗, iA), (iA, iB)} ∪ ⊢A ∪ ⊢B

MA⊗B = IA⊗B ⊎ IA ⊎ IB

IA⊗B = IA × IB

λA⊗B = [((iA, iB), PA), λA ↾ IA, λB ↾ IB]

⊢A⊗B = {((iA, iB),m) | iA ⊢A m ∨ iB ⊢B m}

∪ (⊢A↾ IA
2
) ∪ (⊢B↾ IB

2
)

Types of L can now be interpreted with arenas in the following way.

JunitK = 1

JintK = Z

JvarK = (1 ⇒ Z)⊗ (Z ⇒ 1)

Jθ1 → θ2K = Jθ1K ⇒ Jθ2K

Note that the type var is translated as a product arena the components of which represent
its read and write methods.

Although arenas model types, the actual games will be played in prearenas, which are
defined in the same way as arenas with the exception that initial moves must be O-questions.
Given arenas A and B, we can construct the prearena A→ B by setting:

MA→B =MA ⊎MB

IA→B = IA

λA→B = [(iA, OQ) ∪ (λ̄A ↾ IA) , λB]

⊢A→B = {(iA, iB)}∪ ⊢A ∪ ⊢B .

For Γ = {x1 : θ1, · · · , xn : θn }, typing judgments Γ ⊢ θ will eventually be interpreted by
strategies for the prearena Jθ1K⊗ · · · ⊗ JθnK → JθK (if n = 0 we take the left-hand side to be
1), which we shall denote by JΓ ⊢ θK or Jθ1, · · · , θn ⊢ θK.

8 A.S. MURAWSKI AND N. TZEVELEKOS

A justified sequence in a prearena A is a finite sequence s of moves of A satisfying the
following condition: the first move must be initial, but all other moves m must be equipped
with a pointer to an earlier occurrence of a move m′ such that m′ ⊢A m. We then say that
m′ justifies m. If m is an answer, we may also say that m answers m′. If a question remains
unanswered in s, it is open; and the rightmost open question in s is its pending question.

Given a justified sequence s, we define its O-view xsy and its P-view psq inductively
as follows.

• xǫy = ǫ , xs oy = xsy o , xs o · · · py = xsy o p ;
• pǫq = ǫ , ps pq = psq p , ps p · · · oq = psq p o .

Above, recall that o ranges over O-moves (i.e. moves m such that (π1λA)(m) = O), and p
ranges over P-moves.

Definition 3.2. A play in a prearena A is a justified sequence s satisfying the following
conditions.

• If s = · · ·mn · · · then λOP
A (m) = λ̄OP

A (n). (Alternation)
• If s = s1 q s2 a · · · then q is the pending question in s1 q s2. (Well-Bracketing)
• If s = s1 o s2p · · · then o appears in ps1 o s2q ;
if s = s1 p s2o · · · then p appears in xs1 p s2y . (Visibility)

We write PA to denote the set of plays in A.

We are going to model terms-in-context Γ ⊢M : θ as sets of plays in JΓ ⊢ θK subject to
specific conditions.

Definition 3.3. A (knowing) strategy σ on a prearena A is a non-empty prefix-closed
set of plays from A satisfying the first two conditions below. A strategy is innocent if, in
addition, the third condition holds.

• If even-length s ∈ σ and sm ∈ PA then sm ∈ σ. (O-Closure)
• If even-length sm1, sm2 ∈ σ then m1 = m2. (Determinacy)
• If s1m, s2 ∈ σ with odd-length s1, s2 and ps1q = ps2q then s2m ∈ σ. (Innocence)

We write σ : A to denote that σ is a strategy on A.

Note, in particular, that every strategy σ : A contains the empty sequence ǫ as well as
the elements of IA, the latter being the 1-move plays in A. Moreover, in the last condition
above, the move m in s2m points at the same move it points inside s1m: by visibility and
the fact that s1 and s2 have the same view, this is always possible.

In previous work it has been shown that knowing strategies yield a fully abstract se-
mantics for RML in the following sense3.

Theorem 3.4 ([2]). Two RML-terms are RML-equivalent if and only if their interpretations
contain the same complete plays4.

Moreover, as an immediate consequence of the full abstraction result of [8], we have that
innocent strategies (quotiented by the intrinsic preorder) yield full abstraction for PCF+.
What remains open is the model for the intermediate language, IAcbv, which requires one to
identify a family of strategies between the innocent and knowing ones. This is the problem
examined in the next section. We address it in two steps.

3Perhaps it is worth noting that the presentation of the model in [2] is in a different setting (we follow
Honda-Yoshida call-by-value games, while [2] applies the family construction on call-by-name games) which,
nonetheless, is equivalent to the one presented above.

4A play is called complete if each question in that play has been answered.

BLOCK STRUCTURE VS SCOPE EXTRUSION 9

• First we introduce a category of strategies that are equipped with explicit stores for reg-
istering private variables. We show that this category, of so-called innocent S-strategies,
indeed models block allocation: terms of IAcbv translate into innocent S-strategies (Propo-
sition 4.25) and, moreover, in a complete manner (Propositions 5.3 and 5.7).

• The strategies capturing IAcbv, called block-innocent strategies, are then defined by delet-
ing stores from innocent S-strategies.

4. Games with stores and the model of IAcbv

We shall now extend the framework to allow moves to be decorated with stores that contain
name-integer pairs. This extension will be necessary for capturing block-allocated storage.
The names should be viewed as semantic analogues of locations. The stores will be used for
carrying the values of private, block-allocated variables.

4.1. Names and stores in games. When employing such moves-with-store, we are not
interested in what exactly the names are, but we would like to know how they relate to
names that have already been in play. Hence, the objects of study are rather the induced
equivalence classes with respect to name-invariance, and all ensuing constructions and rea-
soning need to be compatible with it. This overhead can be dealt with robustly using the
language of nominal set theory [6]. Let us fix a countably infinite set A, the set of names,
the elements of which we shall denote by α, β and variants. Consider the group PERM(A)
of finite permutations of A.

Definition 4.1. A strong nominal set [6, 25] is a set equipped with a group action5

of PERM(A) such that each of its elements has finite strong support. That is to say, for
any x ∈ X, there exists a finite set ν(x) ⊆ A, called the support of x, such that, for all
permutations π, (∀α ∈ ν(x). π(α) = α) ⇐⇒ π · x = x.

Intuitively, ν(x) is the set of names “involved” in x. For example, the set A# of finite
lists of distinct atoms with permutations acting elementwise is a strong nominal set. If X
and Y are strong nominal sets, then so is their cartesian product X×Y (with permutations
acting componentwise) and their disjoint union X⊎Y . Name-invariance in a strong nominal
set X is represented by the relation: x ∼ x′ if there exists π such that x = π · x′.

We define a strong nominal set of stores, the elements of which are finite sequences of
name-integer pairs. Formally,

Σ,T ::= ǫ | (α, i) :: Σ

where i ∈ Z and α ∈ A \ ν(Σ). We view stores as finite functions from names to integers,
though their domains are lists rather than sets. Thus, we define the domain of a store
to be the list of names obtained by applying the first projection to all of its elements. In
particular, ν(dom (Σ)) = ν(Σ). If α ∈ ν(Σ) then we write Σ(α) for the unique i such that
(α, i) is an element of Σ. For stores Σ,T we write:

Σ ≤ T for dom (Σ) ⊑ dom (T),

Σ ≤X T for dom (Σ) ⊑X dom (T),

5A group action of PERM(A) on X is a function · : PERM(A) × X → X such that, for all x ∈ X

and π, π′
∈ PERM(A), π · (π′

· x) = (π ◦ π′) · x and id · x = x, where id is the identity permutation.

10 A.S. MURAWSKI AND N. TZEVELEKOS

where X ∈ {p, s}, and ⊑,⊑p,⊑s denote the subsequence, prefix and suffix relations respec-
tively. Note that Σ ≤X T ≤X Σ implies dom (Σ) = dom (T) but not Σ = T . Finally, let
us write Σ \ T for Σ restricted to ν(Σ) \ ν(T).

An S-move (or move-with-store) in a prearena A is a pair consisting of a move and a
store. We typically write S-moves as mΣ, nT , oΣ , pT , qΣ, aT . The first projection function
is viewed as store erasure and denoted by erase(). Note that moves contain no names and
therefore, for any mΣ, ν(mΣ) = ν(Σ) = ν(dom (Σ)) . A justified S-sequence in A is a
sequence of S-moves equipped with justifiers, so that its erasure is a justified sequence. The
notions of O-view and P-view are extended to S-sequences in the obvious manner. We say
that a name α is closed in s if there are no open questions in s containing α.

Definition 4.2. A justified S-sequence s in a prearena A is called an S-play if it satisfies
the following conditions, for all α ∈ A.

• If s = mΣ · · · then Σ = ǫ. (Init)
• If s = · · · oΣ · · · pT · · · then Σ ≤p T . If λA(p) = PA then T ≤p Σ too. (Just-P)
• If s = · · · pΣ · · · oT · · · then Σ ≤p T ≤p Σ. (Just-O)
• If s = s1 o

ΣqTP · · · then Σ \ T ≤s Σ and Σ \ (Σ \ T) ≤p T and

(a) if α ∈ ν(T \Σ) then α /∈ ν(s1o
Σ),

(b) if α ∈ ν(Σ \ T) then α is closed in s1o
Σ.

(Prev-PQ)
• If s = · · · pΣs′oT · · · and α ∈ (ν(T) ∩ ν(Σ)) \ ν(s′) then T (α) = Σ(α). (Val-O)

We write SPA for the set of S-plays in A.

Let us remark that, as stores have strong support, the set of S-plays SPA is a strong
nominal set. The conditions we impose on S-plays reflect the restrictions pertaining to
block-allocation of variables. In particular, given a move m, all block-allocated variables
present at m are carried over to every move n justified by m. In addition, only P is allowed
to allocate/deallocate such variables, or change their values.

Just-P. All variables allocated at o survive in p. If p is an answer then, in fact, the
subsequence from o to p represents a whole sub-block, with p closing the sub-block. Thus,
o and p must have the same private variables.

Just-O. Each O-move inherits its private variables from its justifier move. Put otherwise,
a block does not extend beyond the current P-view and we only store variables that are
created by and are private to P (so T cannot be larger that Σ).

Prev-PQ. P-questions can open or close private variables and thus alter the domain of the
store. This process must obey the nesting of variables, as reflected in the order of names
in stores. Therefore, variables are closed by removing their corresponding names from the
right end of the store: Σ \ T ≤s Σ. On the other hand, variables/names that survive
comprise the left end of the new store: Σ \ (Σ \ T) ≤p T .

In addition, any names that are added in the store must be fresh for the whole sequence
(they represent fresh private variables). A final condition disallows variables to be closed if
their block still contains open questions.

BLOCK STRUCTURE VS SCOPE EXTRUSION 11

Val-O. Since variables are private to P, it is not possible for O to change their value: at
each O-move oT , the value of each α ∈ dom (T) is the same as that of the last P-move pΣ

such that α ∈ dom (Σ).

The above is a minimal collection of rules that we need to impose for block allocation.
From them we can extract further properties for S-plays, whose proofs are delegated to
Appendix A.

Lemma 4.3. The following properties hold for S-plays s.

• If s = · · ·mΣaTP · · · then Σ \ T ≤s Σ and Σ \ (Σ \ T) ≤p T and
(a) if α ∈ ν(T) then α ∈ ν(Σ),
(b) if α ∈ ν(Σ \ T) then α is closed in s<aT

P
.

(Prev-PA)
• For any α, we have psq = s1s2s3, where
– α /∈ ν(s1) ∪ ν(s3) and ∀mΣ ∈ s2. α ∈ ν(Σ),
– if s2 6= ǫ then its first element is the move introducing α in s.
(Block form)

• If s = s1o
ΣpT s2 with α ∈ ν(Σ) \ ν(T) then α /∈ ν(s2). (Close)

We now move on to strategies for block allocation.

Definition 4.4. An S-strategy σ on an arena A is a non-empty prefix-closed set of S-plays
from A satisfying the first three of the following conditions. An S-strategy is innocent if
it also satisfies the last condition.

• If s′ ∼ s ∈ σ then s′ ∈ σ. (Nominal Closure)
• If even-length s ∈ σ and smΣ ∈ SPA then smΣ ∈ σ. (O-Closure)

• If even-length smΣ1
1 , smΣ2

2 ∈ σ then smΣ1
1 ∼ smΣ2

2 . (Determinacy)
• If s1m

Σ1 , s2 ∈ σ with s1, s2 odd-length and ps1q = ps2q then there exists s2m
Σ2 ∈ σ with

ps1mΣ1q ∼ ps2mΣ2q. (Innocence)

We write σ : A to denote that σ is an S-strategy on A.

Observe how S-strategies are defined in the same manner as ordinary strategies but
follow some additional conditions due to their involving of stores and names.

Example 4.5. For any base type β, consider the prearena Jvar → βK → JβK given below,
where we have indexed moves and type constructors to indicate provenance. We use read

and write(i) (i ∈ Z) to refer to the question-moves from JvarK, and i (i ∈ Z) and ok for the
corresponding answers.

Jvar → βK → JβK

= (JvarK ⇒ JβK) → JβK

= (JvarK ⇒1 JβK) →0 JβK

q0
❘❘

❘❘

a0
q1

①①
①①
①① ❘❘

❘❘

a1

read write(i)

i ok

Let us define the S-strategy cellβ : Jvar → βK → JβK as the S-strategy containing all even-
length prefixes of S-plays of the following form (where we use the Kleene star for move

12 A.S. MURAWSKI AND N. TZEVELEKOS

repetition).

q0 q1
(α,0)

(

read(α,0) 0(α,0)
)∗

write(i)(α,0) ok(α,i)
(

read(α,i) i(α,i)
)∗

· · · a1
(α,j) a0

Note that, although the cell strategy is typically non-innocent, it is innocent in our frame-
work, where private variables are explicit in game moves (in their stores).

Example 4.6. Let us consider the prearena Junit → intK → unit, depicted as on the left
below. Had we used sets instead of lists for representing stores, the following “S-strategy”
(right below), which represents incorrect overlap of scopes (α and β are in scope of one
another, but at the same time have different scopes), would have been valid (and innocent).

q0 ■■

∗
q1

●●

i

q0 q1
(α,0),(β,0) 01

(α,0),(β,0) q1
(α,0)

q0 q1
(α,0),(β,0) 11

(α,0),(β,0) q1
(β,0)

However, the above is not a valid S-strategy in our language setting. Intuitively, it would
correspond to a term that determines the scope of its variables on the fly, depending on the
value (0 or 1) received after memory allocation.

4.2. Composing S-plays. We next define composition of S-plays, following the approach
of [8, 25]. Let us introduce some notation on stores. For a sequence of S-moves s and stores

Σ,T , we write Σ[s], Σ[T] and Σ + T for the stores defined by: ǫ[s] = ǫ[T] , ǫ, ǫ + T , T
and

((α, i) :: Σ)[s] ,

{

(α, T (α)) :: (Σ[s]) if s = s1m
T s2 ∧ α ∈ ν(T) \ ν(s2)

(α, i) :: (Σ[s]) otherwise

((α, i) :: Σ)[T] ,

{

(α, T (α)) :: (Σ[T]) if α ∈ ν(T)

(α, i) :: (Σ[T]) otherwise

((α, i) :: Σ) + T ,

{

(α, i) :: (Σ + T) if α /∈ ν(T)

undefined otherwise

Moreover, we write st(s) for the store of the final S-move in s. For instance, by Prev-PQ
and Prev-PA, if oΣpT are consecutive inside an S-play then T = Σ[T] \ (Σ \ T) + (T \Σ).

It will also be convenient to introduce the following store-constructor. For stores
Σ0, Σ1, Σ2 we define

Φ(Σ0, Σ1, Σ2) , Σ0[Σ2] \ (Σ1 \Σ2) + (Σ2 \Σ1) .

Considering Σ1, Σ2 as consecutive, the constructor first updates Σ0 with values from Σ2,
removes those names that have been dropped in Σ2 and then adds those that have been
introduced in it.

BLOCK STRUCTURE VS SCOPE EXTRUSION 13

Definition 4.7. Let A,B,C be arenas and s ∈ SPA→B, t ∈ SPB→C . We say that s, t are
compatible, written s ≍ t, if erase(s) ↾ B = erase(t) ↾ B and ν(s)∩ ν(t) = ∅. In such a case,
we define their interaction, s ‖ t, and their mix, s • t, recursively as follows,

ǫ ‖ ǫ , ǫ ǫ • ǫ , ǫ

smΣ
A ‖ t , (s ‖ t)m

smΣ
A

• t
A snTmΣ

A(P)
• t , Φ(snT • t, T,Σ)

smΣ
A(O)

• t , Σ̃[s ‖ t]

smΣ
B ‖ tmΣ′

B , (s ‖ t)m
smΣ

B
• tmΣ′

B

B snTmΣ
B(P)

• tmΣ′

B(O) , Φ(snT • t, T,Σ)

smΣ′

B(O)
• tnTmΣ

B(P) , Φ(s • tnT , T,Σ)

s ‖ tmΣ
C , (s ‖ t)m

s • tmΣ
C

C s • tnTmΣ
C(P) , Φ(s • tnT , T,Σ)

s • tmΣ
C(O) , Σ̃[s ‖ t]

where justification pointers in s ‖ t are inherited from s and t, and Σ̃ is the store ofmA/C(O)’s
justifier in s ‖ t. Note that s • t is the store of the last S-move in s ‖ t. The composite of s
and t is

s; t , (s ‖ t) ↾ AC .

We moreover let

SInt(A,B,C) , {s ‖ t | s ∈ SPA→B ∧ t ∈ SPB→C ∧ s ≍ t}

be the set of S-interaction sequences of A,B,C.

Example 4.8. Let us demonstrate how to compose S-plays from the following strategies:

σ , J ⊢ λxvar. x := !x+ 1; !x : var → intK : 1 → (JvarK ⇒ Z)

τ , Jf : var → int ⊢ (new x in fx) + new x in fx : intK : (JvarK ⇒ Z) → Z

We depict the two prearenas below (compared to Example 4.5, in the prearena on the right
we have replaced q and a with concrete moves ∗ and i ∈ Z).

∗0
❲❲❲

❲❲❲
❲❲❲

❲❲

∗′0 ∗′0
❚❚❚

❚❚❚
❚❚❚

i0

∗1

③③
③③
③③ PP

PP ∗1

③③
③③
③③ PP

PP

i1 i1

read write(i) read write(i)

i ok i ok

The S-strategy σ is given by even-length prefixes of S-plays of the form:

∗0 ∗′0 ∗1 read i write(i+1) ok read j j1 ∗1 read i′ write(i′+1) ok read j′ j′1 · · ·

where the read’s and write’s point to the last ∗1 on their left (and each other missing pointer
is assumed to point to the next move on the left). On the other hand, the elements of τ are

14 A.S. MURAWSKI AND N. TZEVELEKOS

even-length prefixes of S-plays with the following pattern:

∗′0 ∗
(α,0)
1

(

read(α,0) 0(α,0)
)∗

write(i)(α,0) ok(α,i)
(

read(α,i) i(α,i)
)∗

· · · j1
(α,k)

∗
(α′,0)
1

(

read(α
′,0) 0(α

′,0)
)∗

write(i′)(α
′,0)

ok(α
′,i′)

(

read(α
′,i′) i(α

′,i′)
)∗

· · · j′1
(α′,k′) (j+j′)0

Observe that an S-play s ∈ σ can only be composed with a t ∈ τ if it satisfies the read-write
discipline of variables: each read move must be answered by the last write value, apart of
the initial read that should be answered by 0. Moreover, s must feature at most two moves
∗1. We therefore consider the following S-plays s ≍ t.

s = ∗0 ∗′0 ∗1 read 0 write(1) ok read 1 11 ∗1 read 0 write(1) ok read 1 11

t = ∗′0 ∗1
(α,0) read(α,0) 0(α,0) write(1)(α,0) ok(α,1) read(α,1) 1(α,1) 11

(α,1)

∗1
(α′,0) read(α

′,0) 0(α
′,0) write(1)(α

′,0)
ok(α

′,1) read(α
′,1) 1(α

′,1) 11
(α′,1) 20

By composing, we obtain:

s‖t = ∗0 ∗′0 ∗1
(α,0) read(α,0) 0(α,0) write(1)(α,0) ok(α,1) read(α,1) 1(α,1) 11

(α,1)

∗1
(α′,0) read(α

′,0) 0(α
′,0) write(1)(α

′,0)
ok(α

′,1) read(α
′,1) 1(α

′,1) 11
(α′,1) 20

and s; t = ∗0 20.
As a side-note, let us observe that, had we considered a slightly different strategy to

compose S-plays from σ with:

τ ′ , Jf : var → int ⊢ new x in fx+ fx : intK : (JvarK ⇒ Z) → Z

we would only be able to compose variants of s and t:

s′ = ∗0 ∗′0 ∗1 read 0 write(1) ok read 1 11 ∗1 read 1 write(2) ok read 2 21

t′ = ∗′0 ∗1
(α,0) read(α,0) 0(α,0) write(1)(α,0) ok(α,1) read(α,1) 1(α,1) 11

(α,1)

∗1
(α,1) read(α,1) 0(α,1) write(2)(α,1) ok(α,2) read(α,2) 2(α,2) 21

(α,2) 30

and thus obtain s′; t′ = ∗0 30.

Given an interaction sequence u and a move m of u, we call m a generalised P-move
if it is a P-move in AB or in BC (by which we mean a P-move in A → B or B → C
respectively). We call m an external O-move if it is an O-move in AC. The notions
of P-view and O-view extend to interaction sequences as follows. Let p be a generalised
P-move and o be an external O-move.

poq , o xǫy , ǫ

pupΣq , puq pΣ xuoΣy , xuy oΣ

pumT · · · oΣq , puqmT oΣ xumT · · · pΣy , xuymT pΣ

Observe that if u ends in a P-move in AB (resp. BC) then xuy = xu ↾ ABy (xu ↾ BCy).
We now show that play-composition is well-defined. The result follows from the next two

lemmas. The first one is standard, while the proof of the second one is given in Appendix A.

Lemma 4.9 (Zipper Lemma [8]). If s ∈ SPA→B , t ∈ SPB→C and s ≍ t then either
s ↾B = t = ǫ, or s ends in A and t in B (with a P-move in BC), or s ends in B (with a
P-move in AB) and t in C, or both s and t end in B (with the same move).

BLOCK STRUCTURE VS SCOPE EXTRUSION 15

Lemma 4.10. Suppose s ∈ SPA→B, t ∈ SPB→C , s ≍ t and p a generalised P-move.

(1) If s ‖ t = unT pΣ then ν(Σ \ T) ∩ ν(unT) = ∅.
(2) For any α, ps ‖ tq is in block-form: ps ‖ tq = u1u2u3 where α appears in every move of

u2, α /∈ ν(u1) ∪ ν(u3) and if u2 6= ǫ then its first move introduces α in s ‖ t.
(3) If s ‖ t = unT pΣ and α ∈ ν(T \Σ) then α is closed in unT .
(4) If s ‖ t = · · ·nT · · ·mΣ then T ≤p Σ. If m is an answer then Σ ≤p T .
(5) If s ‖ t = u1n

T pΣu2 and α ∈ ν(T \Σ) then α /∈ ν(u2).
(6) If s ‖ t = umΣ with m an O-move in AC then, for any α ∈ ν(Σ), the last appearance

of α in u occurs in AC.
(7) If s ‖ t = umΣ and s = s′mΣ′

or t = t′mΣ′
then Σ′ ≤ Σ and Σ[Σ′] = Σ. Moreover,

Σ[st(s)] = Σ[st(t)] = Σ.
(8) If s ‖ t = unT pΣ then T \ (T \Σ) ≤p Σ and T \Σ ≤s T .

Proposition 4.11 (Compositionality). S-play composition is well defined, that is, if s ∈
SPA→B, t ∈ SPB→C and s ≍ t then s; t ∈ SPA→C .

Proof. We need to verify the 5 conditions of Definition 4.2. Init is straightforward. Just-
P follows from part (d) of the Lemma 4.10. Just-O follows directly from the definition
of interaction sequences. Prev-PQ follows from parts (a,c,h) Lemma 4.10. Finally, Val-O
follows from part (f) of Lemma 4.10 and the definition of interaction sequences.

4.3. Associativity. We next show that composition of S-plays is associative. We first
extend interactions to triples of S-plays. For s ∈ SPA→B, t ∈ SPB→C , r ∈ SPC→D with
(s; t) ≍ r, s ≍ (t; r) and ν(s) ∩ ν(r) = ∅, we define s ‖ t ‖ r and s • t • r as follows,

ǫ ‖ ǫ ‖ ǫ , ǫ ǫ • ǫ • ǫ , ǫ

smΣ
A ‖ t ‖ r , (s ‖ t ‖ r)m

smΣ
A

• t • r
A snTmΣ

A(P)
• t • r , Φ(snT • t • r, T,Σ)

smΣ
A(O)

• t • r , Σ̃[s • t • r]

smΣ
B ‖ tmΣ′

B ‖ r , (s ‖ t ‖ r)m
smΣ

B
• tmΣ′

B
• r

B snTmΣ
B(P)

• tmΣ′

B(O)
• r , Φ(snT • t • r, T,Σ)

smΣ′

B(O)
• tnTmΣ

B(P)
• r , Φ(s • tnT • r, T,Σ)

s ‖ tmΣ
C ‖ rmΣ′

C , (s ‖ t ‖ r)m
s • tmΣ

C
• rmΣ′

C

C s • tnTmΣ
C(P)

• rmΣ′

C(O) , Φ(s • tnT • r, T,Σ)

s • tmΣ′

C(O)
• rnTmΣ

C(P) , Φ(s • t • rnT , T,Σ)

s ‖ t ‖ rmΣ
D , (s ‖ t ‖ r)m

s • t • rmΣ
D

D s • t • rnTmΣ
D(P) , Φ(s • t • rnT , T,Σ)

s • t • rmΣ
D(O) , Σ̃[s • t • r]

where Σ̃ is the store of the move justifying mΣ
A(O) and m

Σ
D(O) respectively.

The next lemma proves a form of associativity in Φ that will be used in the proof of
the next proposition. Its proof is delegated to Appendix A.

Lemma 4.12. Let Σ1, Σ2, Σ3, Σ4, Σ5 be stores such that, for any α,

(1) α ∈ ν(Σ5 \Σ4) =⇒ α /∈ ν(Σ1) ∪ ν(Σ2) ∪ ν(Σ3),
(2) α ∈ ν(Σ1) ∩ ν(Σ4) =⇒ α ∈ ν(Σ2).

Then, Φ(Σ1, Σ2,Φ(Σ3, Σ4, Σ5)) = Φ(Φ(Σ1, Σ2, Σ3), Σ4, Σ5).

16 A.S. MURAWSKI AND N. TZEVELEKOS

Proposition 4.13 (Associativity). If s1 ∈ SPA1→A2 , s2 ∈ SPA2→A3 and s3 ∈ SPA3→A4

with s1; s2 ≍ s3 and s1 ≍ s2; s3 then:

• (s1; s2); s3 = (s1 ‖ s2 ‖ s3) ↾ A1A4 = s1; (s2; s3),
• Φ((s1; s2) • s3, st(s1; s2), s1 • s2) = s1 • s2 • s3 = Φ(s1 • (s2; s3), st(s2; s3), s2 • s3).

Proof. By induction on |s1 ‖ s2 ‖ s3|. The base case is trivial. We examine the following
inductive cases; the rest are similar.

− (s1m
Σ
A1

; s2); s3 = ((s1; s2); s3)m
Σ′

A1

IH
= (s1 ‖ s2 ‖ s3)m

Σ′

A1
↾ A1A4 with Σ′ = (s1m

Σ
A1

; s2) • s3.

Moreover, as st(s1m
Σ
A1

; s2) = s1m
Σ
A1

• s2 and using Lemma 4.10(g),

Φ((s1; s2m
Σ
A1

); s3, st(s1m
Σ
A1

; s2), s1m
Σ
A1

• s2) = Σ′[s1m
Σ
A1

• s2] = Σ′.

We still need to show that Σ′ = s1m
Σ
A1

• s2 • s3. If mA1 is an O-move this is straightforward.

If a P-move and, say, s1 = s′1n
T then Σ′ = Φ((s1; s2) • s3, st(s1; s2),Φ(s1 • s2, T,Σ)) and

s1m
Σ
A1

• s2 • s3 = Φ(s1 • s2 • s3, T,Σ)
IH
= Φ(Φ((s1; s2) • s3, st(s1; s2), s1 • s2), T,Σ). These are

equal since they satisfy the hypotheses of Lemma 4.12. Moreover,

s1m
Σ
A1

; (s2; s3) = (s1; (s2; s3))m
Σ′′

A1

IH
= (s1 ‖ s2 ‖ s3)m

Σ′′

A1
↾ A1A4

with Σ′′ = s1m
Σ
A1

• (s2; s3). Note that st(s2; s3) = s2 • s3, so it suffices to show that Σ′′ =

s1m
Σ
A1

• s2 • s3. If mA1 an O-move then this is straightforward, otherwise

Σ′′ = Φ(s1 • (s2; s3), T,Σ)
IH
= Φ(s1 • s2 • s3, T,Σ) = s1m

Σ
A1

• s2 • s3 .

− (s1m
Σ1
A2

; s2m
Σ2
A2

); s3 = (s1; s2); s3
IH
= (s1 ‖ s2 ‖ s3) ↾ A1A4 = (s1m

Σ1
A2

‖ s2m
Σ2
A2

‖ s3) ↾ A1A4.

Assume WLOG thatmA2 is a P-move in A1A2, so st(s2; s3) = s2 • s3, and suppose s1 = s′1n
T .

Then,

Φ((s1m
Σ1
A2

; s2m
Σ2
A2

) • s3, st(s1m
Σ1
A2

; s2m
Σ2
A2

), s1m
Σ1
A2

• s2m
Σ2
A2

)

= Φ((s1; s2) • s3, st(s1; s2),Φ(s1 • s2, T,Σ1))

s1m
Σ1
A2

• s2m
Σ2
A2

• s3 = Φ(s1 • s2 • s3, T,Σ1)
IH
= Φ(Φ((s1; s2) • s3, st(s1; s2), s1 • s2), T,Σ1)

and equality follows from Lemma 4.12. Moreover,

Φ(s1m
Σ1
A2

• (s2m
Σ2
A2

; s3), st(s2m
Σ2
A2

; s3), s2m
Σ2
A2

• s3) = (s1m
Σ1
A2

• (s2m
Σ2
A2

; s3))[s2m
Σ2
A2

• s3]

lm. 4.10(g)
= s1m

Σ1
A2

• (s2m
Σ2
A2

; s3) = Φ(s1 • (s2; s3), T,Σ1)

s1m
Σ1
A2

• s2m
Σ2
A2

• s3 = Φ(s1 • s2 • s3, T,Σ1)
IH
= Φ(Φ(s1 • (s2; s3), st(s2; s3), s2 • s3), T,Σ1)

= Φ((s1 • (s2; s3))[s2 • s3], T,Σ1)
lm. 4.10(g)

= Φ(s1 • (s2; s3), T,Σ1)

as required.

BLOCK STRUCTURE VS SCOPE EXTRUSION 17

4.4. The categories S and Sinn. We next show that S-strategies and arenas form a cate-
gory, which we call S, while innocent S-strategies form a wide subcategory of S. We start
this section with a lemma on strong nominal sets. Recall that, for a nominal set X and
x, x′ ∈ X, we write x ∼ x′ if there exists a permutation π such that x = π · x′.

Lemma 4.14 (Strong Support Lemma [25]). Let X be a strong nominal set and let
xi, yi, zi ∈ X with ν(yi) ∩ ν(zi) ⊆ ν(xi), for i = 1, 2. Then, (x1, y1) ∼ (x2, y2) and
(x1, z1) ∼ (x2, z2) imply (x1, y1, z1) ∼ (x2, y2, z2).

We proceed to show compositionality of S-strategies. The interaction of S-strategies
σ : A→ B and τ : B → C is defined by:

σ ‖ τ , {s ‖ t | s ∈ σ ∧ t ∈ τ ∧ s ≍ t}

First, some lemmas for determinacy.

Lemma 4.15. If s1 ‖ t1, s2 ‖ t2 ∈ SInt(A,B,C) then s1 ‖ t1 = s2 ‖ t2 implies s1 = s2 and
t1 = t2. Consequently, if s1 ‖ t1 ∼ s2 ‖ t2 then (s1, t1) ∼ (s2, t2).

Proof. The former part of the claim is shown by straightforward induction on the length
of the interactions. For the latter part, if s1 ‖ t1 ∼ s2 ‖ t2 then there is some π such that
s1 ‖ t1 = π · (s2 ‖ t2) = (π · s2) ‖(π · t2). Hence, by the former part, (s1, t1) = (π · s2, π · t2),
from which we obtain (s1, t1) ∼ (s2, t2).

Lemma 4.16. If σ : A → B, τ : B → C are S-strategies and u1m
Σ1
1 , u2m

Σ2
2 ∈ σ ‖ τ then

u1 ∼ u2 and m1 a generalised P-move imply u1m
Σ1
1 ∼ u2m

Σ2
2 .

Proof. Let us assume that uim
Σi

i = si ‖ ti = (s′i ‖ t
′
i)m

Σi

i . Then, by the previous lemma,
(s′1, t

′
1) ∼ (s′2, t

′
2). If, say, m1 is a P-move in AB then m2 is also a P-move in AB and s1 ∼ s2,

by Zipper Lemma and determinacy of σ, so (s′1,m
Σ′

1
1) ∼ (s′2,m

Σ′
2

2), where si = s′im
Σ′

i

i . Since

ν(t′i)∩ν(m
Σ′

i

i) = ∅, we can apply the Strong Support Lemma to obtain u1m
Σ1
1 ∼ u2m

Σ2
2 .

Lemma 4.17. Let σ : A→ B, τ : B → C be S-strategies and u1, u2 ∈ σ ‖ τ with |u1| ≤ |u2|.
Then, u1 ↾ AC = u2 ↾ AC implies u1 ∼⊑p u2.

Proof. By induction on |u1|. The base case is trivial. Now suppose u1 = u′1m
Σ1
1 , and let

u2 = u′2u
′′
2 with u′2 being the greatest prefix of u2 such that u′1 ↾ AC = u′2 ↾ AC. Then, by

IH, u′1 ∼⊑p u
′
2. If m1 a generalised P-move then, by previous lemma, u1 ∼⊑p u2. If m1 an

external O-move then u′1 ends in a P-move in AC and, by u′1 ↾ AC = u′2 ↾ AC and Zipper
Lemma, u′2 must end in the same move. Thus, u1 ↾ AC ∼ u2 ↾ AC implies u1 ∼⊑p u2.

Now some lemmas for innocence. We say that a move m in an interaction sequence
s ∈ SInt(A,B,C) is a generalised O-move if it is an O-move in AB or BC.

Lemma 4.18. If s1, s2 ∈ SPA→B, t1, t2 ∈ SPB→C and si ‖ ti end in a generalised O-move
in component X,

(1) if X = AB then p(s1 ‖ t1) ↾ ABq = p(s2 ‖ t2) ↾ ABq =⇒ ps1q = ps2q,
(2) if X = BC then p(s1 ‖ t1) ↾ BCq = p(s2 ‖ t2) ↾ BCq =⇒ pt1q = pt2q.

Proof. We show (a) by induction on |s1| ≥ 1, and (b) is proved similarly. The base case is
obvious. If s1 = s′1n

T1s′′1m
Σ1 with m an O-move in AB justified by n then s2 = s′2n

T2s′′2m
Σ2

and, by IH, ps′1q = ps′2q. We need to show that T1 = T2 and Σ1 = Σ2, while we know that
the stores of the corresponding moves in si ‖ ti are equal, say Σ′

1 = Σ′
2 and T ′

1 = T ′
2. We

18 A.S. MURAWSKI AND N. TZEVELEKOS

have that T ′
i = Φ(st((si ‖ ti)<nT ′

i
), st(s′i), Ti), hence T1 \ st(s

′
1) = T2 \ st(s

′
2). By IH we have

that st(s′1) = st(s′2), so if α ∈ ν(T1)∩ν(st(s
′
1)) then, by Lemma 4.10(g), α ∈ ν(T ′

1)∩ν(st(s
′
1))

so α ∈ ν(T ′
2)∩ν(st(s

′
2)), ∴ α ∈ ν(T2)∩ν(st(s

′
2)), and viceversa. Moreover, Ti(α) = T ′

i (α) for
each such α, thus T1 = T2. This also implies that ν(Σ1) = ν(Σ2) and so, by Lemma 4.10(g),
Σ1 = Σ2.

Lemma 4.19. If σ : A→ B, τ : B → C are innocent S-strategies then, if u1m
Σ1 , u2 ∈ σ ‖ τ

with ui ending in a generalised O-move and pu1q ∼ pu2q then there exists u2m
Σ2 ∈ σ ‖ τ

such that pu1mΣ1q ∼ pu2mΣ2q.

Proof. Suppose u1 ends in an O-move in A—the other cases are shown similarly. Then,
u1m

Σ1 = s1m
Σ′

1 ‖ t1 and u2 = s2 ‖ t2 for some relevant S-plays of σ, τ . Moreover, pu1q ∼
pu2q implies, by Lemma 4.18, that ps1q ∼ ps2q and thus, by innocence, there exists s2m

Σ′
2 ∈

σ such that s1m
Σ′

1 ∼ s2m
Σ′

2 . In fact, we can pick a Σ′
2 such that s2m

Σ′
2 ≍ t2. Let

s2m
Σ′

2 ‖ t2 = u2m
Σ2 ∈ σ ‖ τ . We have that (pu1q, ps1q) ∼ (pu2q, ps2q) and (ps1q,mΣ′

1) ∼
(ps2q,mΣ′

2) and, moreover, ν(puiq)∩ ν(mΣ′
i) ⊆ ν(psiq) for i = 1, 2 thus, by Strong Support

Lemma, (pu1q, ps1q,mΣ′
1) ∼ (pu2q, ps2q,mΣ′

2). This implies that pu1mΣ1q ∼ pu2mΣ2q.

Lemma 4.20. Let σ : A → B, τ : B → C be innocent S-strategies and let u1, u2 ∈ σ ‖ τ
with |pu1q| ≤ |pu2q|. Then, pu1 ↾ ACq = pu2 ↾ ACq implies pu1q ∼⊑p pu2q.

Proof. Let us write ui for si ‖ ti. We argue by induction on |pu1q| + |pu2q|. The base
cases are obvious. Now let u1 = u′1m

Σ1 with m a B-move. We have that |u′1| ≤ |u2| and

pu′1 ↾ ACq = pu2 ↾ ACq so, by IH, pu′1q ∼⊑p pu2q. In particular, u2 = u′2m
Σ2
2 u′′2 with

pu′2q ∼ pu′1q so, by Lemma 4.19, there exists u′2m
Σ′

2
1 ∈ σ ‖ τ with pu1q ∼ pu′2m

Σ′
2

1 q. Using

Lemma 4.16, pu′2qm
Σ2
2 ∼ pu′2qm

Σ′
2

1 ∼ pu1q.
The case of m being a P-move in AC is proved along the same lines. On the other hand,
if m is an O-move in AC justified by n then u1 = v1n

T v′1m
Σ and u2 = v2n

T v′2m
Σv′′2 and,

by IH, pv1nTq = π · pv2nT q. In particular, π fixes dom (T) and therefore π · mΣ = mΣ,
∴ pv1nTqmΣ = π · (pv2nTqmΣ).

Proposition 4.21. If σ : A → B, τ : B → C are S-strategies then σ; τ : A → C is an
S-strategy. If σ and τ are innocent, so is σ; τ .

Proof. Prefix closure and nominal closure are easy to establish by noting that they hold at
the level of interactions, for σ ‖ τ . For O-closure, suppose v ∈ σ; τ and vmΣ ∈ SPA→C with,
say, m an O-move in A. Then, v = s; t for some s ∈ σ, t ∈ τ with s ending in a P-move in
A. Moreover, we can construct a (unique) store Σ′ such that smΣ′

∈ SPA→B, by means of

the O-Just and O-Val conditions. Thus, smΣ′
∈ σ and vmΣ ∈ σ; τ .

For determinacy, suppose even-length vmΣi

i ∈ σ; τ and vmΣi

i = si; ti with si, ti not both

ending in B, for i = 1, 2. Let si ‖ ti = (s′i ‖ t
′
i)m

Σi

i and suppose WLOG that |s′1 ‖ t
′
1| ≤

|s′2 ‖ t
′
2|. Then, by Lemma 4.17, s′1 ‖ t

′
1 ∼⊑p s

′
2 ‖ t

′
2 and therefore, by Lemma 4.16, s1 ‖ t1 ∼⊑p

s2 ‖ t2. In particular, vmΣ1
1 ∼ vmΣ2

2 .

For innocence, let v1m
Σ1
1 , v2 ∈ σ; τ with pv1q = pv2q being of odd length, and u1m

Σ1
1 , u2 ∈

σ ‖ τ such that v1m
Σ1
1 = u1m

Σ1
1 ↾ AC, v2 = u2 ↾ AC. By Lemma 4.20, either pu2q ∼⊑p pu1q

or pu1q ∼⊑p pu2q and pu1q 6∼ pu2q. In the latter case, by Lemmata 4.19 and 4.16 we obtain

pu1m
Σ1
1 q ∼⊑p pu2q, contradicting pv1q = pv2q. In the former case, let us assume u2 is of

maximum length such that u2 ↾ AC = v2 and |pu2q| ≤ |pu1q|. Then, by Lemma 4.19,

BLOCK STRUCTURE VS SCOPE EXTRUSION 19

there exists u2m
Σ2
2 ∈ σ ‖ τ such that either pu2m

Σ2
2 q ∼⊑p pu1q or pu2m

Σ2
2 q ∼ pu1m

Σ1
1 q.

The former case contradicts maximality of u2, while the latter implies v2m
Σ2
2 ∈ σ; τ and

pv1m
Σ1
1 q ∼ pv2m

Σ2
2 q.

We proceed to construct a category of arenas and S-strategies. For each arena A, the
identity S-strategy idA : A→ A is the copycat S-strategy:

idA = { s ∈ SPA→A | ∃s′. s ⊑p s
′ ∧ s′ ↾ Al = s′ ↾ Ar }

where by Al and Ar we denote the LHS and RHS arena A of A→ A respectively.

Proposition 4.22. Let σi : Ai → Ai+1 for i = 1, 2, 3. Then, σi; idAi+1 = idAi
;σi = σi and

σ1; (σ2;σ3) = (σ1;σ2);σ3.

Proof. Composition with identities is standard. For associativity, if s1; (s2; s3) ∈ σ1; (σ2;σ3)
then there are s′i ∼ si such that ν(s′i1) ∩ (ν(si2) ∪ ν(si3) ∪ ν(s′i2) ∪ ν(s′i3)) = ∅, for
any distinct i1, i2, i3. These S-plays satisfy the hypotheses of Proposition 4.13, hence
s′1; (s

′
2; s

′
3) = (s′1; s

′
2); s

′
3 ∈ (σ1;σ2);σ3. Moreover, since ν(s2, s

′
2) ∩ ν(s3, s

′
3) = ∅, si ∼ s′i

imply (s2, s3) ∼ (s′2, s
′
3) and therefore s2; s3 ∼ s′2; s

′
3. Since ν(s1, s

′
1) ∩ ν(s2; s3, s

′
2; s

′
3) = ∅,

we have s1; (s2; s3) ∼ s′1; (s
′
2; s

′
3), hence s1; (s2; s3) ∈ (σ1;σ2);σ3. Other direction proved

dually.

We can now define our categories of games with stores. In the following definition we
also make use of the observation that identity S-strategies are innocent.

Definition 4.23. Let S be the category whose objects are arenas and, for each pair of
arenas A,B, the morphisms are given by S(A,B) = {σ : A → B | σ an S-strategy }. Let
Sinn be the wide subcategory of S of innocent S-strategies.

4.5. The model of IAcbv. We next construct the model of IAcbv in Sinn. An innocent
S-strategy σ is specified by its view-function, viewf(σ), defined as follows.

viewf(σ) , {psq | s ∈ σ ∧ even(|s|) ∧ s 6= ǫ}

Conversely, a preplay is defined exactly like a (non-empty) S-play only that it does not
necessarily satisfy the Val-O condition. Let us write PPA for the set of preplays of A.
Obviously, SPA ⊆ PPA. Moreover, if s ∈ SPA then psq ∈ PPA.

For instance, the cell strategy of Example 4.5 can be described as the least innocent
S-strategy whose view-function contains the following preplays.

q0 q1
(α,0) a1

(α,i) a0 q0 q1
(α,0) read(α,i) i(α,i) q0 q1

(α,0) write(j)(α,i) ok(α,j)

We next make formal the connection between view-functions and innocent S-strategies.
A view-function f on A is a subset of PPA satisfying:

• If s ∈ f then |s| is even and psq = s. (View)
• If snTmΣ ∈ f and s 6= ǫ then s ∈ f . (Even-Prefix Closure)
• If s′ ∼ s ∈ f then s′ ∈ f . (Nominal Closure)

• If smΣ1
1 , smΣ2

2 ∈ f then smΣ1
1 ∼ smΣ2

2 . (Determinacy)

20 A.S. MURAWSKI AND N. TZEVELEKOS

From a view-function f we can derive an innocent S-strategy strat(f) by the following

procedure. We set strat(f) ,
⋃

i∈ω strati(f), where

strat2i+1(f) , {smΣ ∈ SPA | s ∈ strat2i(f)}

strat2i+2(f) , {smΣ ∈ SPA | s ∈ strat2i+1(f) ∧ psmΣq ∈ f}

and strat0(f) , {ǫ}.

Lemma 4.24. If σ, f are an innocent S-strategy and a view-function respectively then
viewf(σ), strat(σ) are a view-function and an innocent S-strategy respectively. Moreover,
strat(viewf(σ)) = σ and viewf(strat(f)) = f .

We can show that Sinn exhibits the same kind of categorical structure as that obtained
in [8] (in the context of call-by-value PCF), which can be employed to model call-by-value
higher-order computation with recursion. In particular, let us call an S-strategy σ : A→ B
total if for all iA ∈ IA there is iAiB ∈ σ. We write St

inn for the wide subcategory of Sinn

containing total innocent S-strategies.
For innocent S-strategies σ : A → B and τ : A → C, we define their left pairing to be

〈σ, τ〉l = strat(f), where f is the view-function:

f = { s ∈ PPA→B⊗C | s ∈ viewf(σ) ∧ s ↾ (B ⊗ C) = ǫ }

∪ { iAs1s2 ∈ PPA→B⊗C | ∃iB.iAs1iB ∈ viewf(σ) ∧ iAs2 ∈ viewf(τ) }

∪ { iAs1s2(iB , iC)s ∈ PPA→B⊗C | iAs1iBs ∈ viewf(σ) ∧ iAs2iC ∈ viewf(τ) }

∪ { iAs1s2(iB , iC)s ∈ PPA→B⊗C | iAs1iB ∈ viewf(σ) ∧ iAs2iCs ∈ viewf(τ) }

We can show that left pairing yields a product in St
inn with the usual projections:

π1 : A⊗B → A = { s ∈ SPA⊗B→A | |s| ≤ 1 } ∪ { (iA, iB)iAs ∈ SPA⊗B→A | iAiAs ∈ idA }

and dually for π2. Moreover, for every A,B,C, there is a bijection

Λ : Sinn(A⊗B,C)
∼=
→ St

inn(A,B ⇒ C)

natural in A,C. In particular, for each innocent σ : A⊗B → C, Λ(σ) = strat(f), where

f = { iA∗ iBs ∈ PPA→B⇒C | (iA, iB)s ∈ viewf(σ) } .

The inverse of Λ is defined is an analogous manner. We set evA,B = Λ−1(idA⇒B).
Thus, the functional part of IAcbv can be interpreted in Sinn using the same constructions

as in [8]. Assignment, dereferencing and mkvar can in turn be modelled using the relevant
(store-free) innocent strategies of [2]. Finally, the denotation of new x inM is obtained by
using cellβ of Example 4.5. Let us write J· · ·KS for the resultant semantic map.

Proposition 4.25. For any IAcbv-term Γ ⊢M : θ, JΓ ⊢M : θKS is an innocent S-strategy.

Proof. We present here the (inductive) constructions pertaining to variables,

• JΓ ⊢ new x inM : βKS = JΓK
Λ(JMKS)
−−−−−→ JvarK ⇒ JβK

cellβ
−−−→ JβK

• JΓ ⊢M :=N : unitKS = JΓK
〈JMKS;π2,JNKS〉l
−−−−−−−−−−→ (Z ⇒ 1)⊗ Z

ev
−→ 1

• JΓ ⊢ !M : intKS = JΓK
JMKS;π1
−−−−−→ 1 ⇒ Z

∼=
−→ (1 ⇒ Z)⊗ 1

ev
−→ Z

• JΓ ⊢ mkvar(M,N) : varKS = JΓK
〈JMKS,JNKS〉l
−−−−−−−−→ JvarK

and refer to [8] for the functional constructions and the treatment of fixpoints.

BLOCK STRUCTURE VS SCOPE EXTRUSION 21

Our model of IAcbv, based on innocent S-strategies, is closely related to one based on
knowing strategies. First observe that by erasing storage annotations in an innocent S-
strategy σ one obtains a knowing strategy (determinacy follows from the fact that stores
in O-moves are uniquely determined). We shall refer to that knowing strategy by erase(σ).
Next note that the (simpler) fully abstract model of RML from [2], based on knowing
strategies, also yields a model of IAcbv. Let us write J· · ·K for this knowing-strategy semantics
(cast in the Honda-Yoshida setting). Then we have:

Lemma 4.26. For any IAcbv-term Γ ⊢M : θ, JΓ ⊢M : θK = erase(JΓ ⊢M : θKS).

4.6. Block-innocent strategies.

Definition 4.27. A (knowing) strategy σ : A is block-innocent if σ = erase(σ′) for some
innocent S-strategy σ′.

Example 4.28. Let us revisit the two plays from the Introduction. The first one indeed
comes from an innocent S-strategy (we reveal the stores below).

q q(α,0) q(α,0) 1(α,1) q(α,1) 2(α,2) a(α,2) a q 0 q 0

For the second one to become innocent (in the setting with stores), a store with variable α,
say, would need to be introduced in the second move, to justify the different responses in
moves 4 and 6. Then α must also occur in the seventh move by Just-O, but it must not
occur in the eighth move by Just-P (the PA clause). Hence, it will not be present in the
ninth move by Just-O. Consequently, the last move is bound to break either Prev-PQ(a)
(if it contains α) or Just-P (if it does not).

q qα qα 0α qα 1α aα a q qα?

1 2 3 4 5 6 7 8 9 10

The knowledge that strategies determined by IAcbv are block-innocent will be crucial in es-
tablishing a series of results in the following sections, where we shall galvanise the correspon-
dence by investigating full abstraction (Corollary 6.3) and universality (Proposition 5.7).

5. Finitary definability and universality

In this section we demonstrate that the game model of IAcbv is complete when restricted to
finitary or recursively presentable innocent S-strategies. That is, every appropriately typed
strategy of that kind is the denotation of some IAcbv term. Although finitary innocent S-
strategies are subsumed by recursively presentable ones, the method of proving completeness
in the latter case is much more involved and we therefore prove the two results separately.
The two completeness results are called finitary definability and universality respectively.

22 A.S. MURAWSKI AND N. TZEVELEKOS

5.1. Finitary definability. We first formulate a decomposition lemma for innocent S-
strategies which subsequently allows us to show the two results. The decomposition of
innocent S-strategies follows the argument for call-by-value PCF [8] except for the case
in which the strategy replies to Opponent’s (unique) initial move with a question that
introduces a new name (case 8 in the lemma below). Let us examine this case more closely,
assuming α to be the first variable from the non-empty store. In order to decompose the
S-strategy, say σ, consider any P-view s in which α occurs in the second move qΣα

α . It turns
out that s must be of the form q qΣα

α sαs
′, where a move mΣ from s contains α if, and only

if, it is qΣα
α or in sα. In addition, no justification pointers connect s′ to qΣα

α sα, because
of the (Just-O) and (Close) conditions. This separation can be applied to decompose the
view-function of σ. The sα segments, put together as a single S-strategy, can subsequently
be dealt with in the style of factorisation arguments, which remove α from moves at the
cost of an additional var-component. Finally, to relate sα’s to the suitable s′ one can use
numerical codes for qΣα

α sα. These ideas lie at the heart of the following result.
We fix a generic notation ⌈ ⌉ for coding functions from enumerable sets to ω. For

example, ⌈i, j⌉ encodes the pair (i, j) as a number. There is an inherent abuse of notation in
our coding notation which, nevertheless, we overlook for typographical economy. Moreover,
we denote sequences θ1, · · · , θn (where n may be left implicit) as θ̄. In such cases, we may

write θ̄ji (i ≤ j) for subsequences θi, θi+1, · · · , θj .

Lemma 5.1 (Decomposition Lemma (DL)). Let θ1, . . . , θm, δ be types of IAcbv. Each
innocent S-strategy σ : Jθ1K ⊗ · · · ⊗ JθmK → JδK can be decomposed as follows.

1. If θ1, . . . , θm = θ
m′

1 , int, θ
m
m′+2 with none of θ1, . . . , θm′ being int then:

σ = {(∗m′

1 , i, qm
m′+2) s | (∗m′

1 , qmm′+2) s ∈ τi}

where τi , Jθ
m′

1 K ⊗ Jθ
m
m′+2K

∼= ; id⊗i⊗id
−−−−−−→ Jθ

m′

1 K ⊗ Z⊗ Jθ
m
m′+2K

σ
−→ JδK

• If none of θ1, . . . , θm is int then one of the following is the case.
− ∗ a ∈ σ, in which case either:

2. δ = unit and σ = JθK
!
−→ 1 (the unique total S-strategy into 1),

3. δ = int, i ∈ Z and σ = JθK
i
−→ Z (the unique total S-strategy into Z playing i),

4. δ = var and σ = 〈σ1, σ2〉 where σi , σ;πi,
5. δ = δ′ → δ′′ and σ = Λ(σ′) where σ′ = Λ−1(σ), that is:

σ′ : JθK ⊗ Jδ′K → Jδ′′K , strat{(∗, qδ′) s | ∗ a qδ′s ∈ viewf(σ)}

6. ∗ q ∈ σ with q played in some θl = var, in which case σ ∼= σ′ where

σ′ : Jθ
l−1
1 K ⊗ Jθ

m
l+1K ⊗ (1 ⇒ Z)⊗ (Z ⇒ 1) −→ JδK

is obtained from σ by simply internally permuting and re-associating its initial moves.
7. ∗ q ∈ σ with q played in some θl = θ′l → θ′′l , in which case

σ = JθK
〈Λ(σ′′),πl,σ

′〉
−−−−−−−−→ (Jθ′′l K ⇒ JδK)⊗ (Jθ′lK ⇒ Jθ′′l K)⊗ Jθ′lK

id⊗ev; ev
−−−−−→ JδK

where, taking a to be q (seen as an answer):

σ′ : JθK → Jθ′lK , strat({∗ a} ∪ {∗ a q′l s | ∗ q q′l s ∈ viewf(σ) ∧ q′l ∈MJθ′
l
K})

σ′′ : JθK ⊗ Jθ′′l K → JδK , strat{(∗, q′′l)s | ∗ q a′′l s ∈ viewf(σ) ∧ q′′l = a′′l }

BLOCK STRUCTURE VS SCOPE EXTRUSION 23

8. ∗ qΣ ∈ σ with dom (Σ) = α · · · , in which case

σ = JθK
〈Λ(σ′),id〉
−−−−−−→ (JvarK → Z)⊗ JθK

cell⊗id
−−−−→ Z⊗ JθK

σ′′

−→ JδK

where:

σ′ : JvarK ⊗ JθK → Z , strat({ψ(smT) | smT ∈ viewf(σ) ∧ α ∈ ν(T)}

∪ {ψ(s)⌈s⌉ | smT ∈ viewf(σ) ∧ α ∈ ν(st(s) \ T)})

ψ(o(α,i)::T s) , oT readT iTψ(s)

ψ(p(α,i)::T s) , write(i)T okT pTψ(s)

σ′′ : Z⊗ JθK → JδK , strat{(⌈s⌉, ∗)mT t | smT t ∈ viewf(σ) ∧ α ∈ ν(st(s) \ T)}

Proof. Cases 1-7 are the standard ones that also occur for call-by-value PCF [8]. Case 8

is the most interesting one. Here we exploit the fact that, once α occurs in the second
move of a P-view, it appears continuously (in the P-view) until it is dropped by Proponent.
Moreover, after α has been dropped, no move will ever have a justification pointer to a
move containing α (because of Just-O and Close). The σ′ strategy tracks the behaviour of
σ until α is dropped, at which point it returns the code of the current P-view. σ′′ in turn
will take a code of such a P-view and will continue the play, as σ would. Additionally, α is
factored out in σ′ through an extra JvarK arena, as in the factorisation argument of [3].

Definition 5.2. We call an innocent S-strategy σ finitary if its view-function is finite
modulo name-permutation, that is, if the set

O(viewf(σ)) = { {π · s | π ∈ PERM } | s ∈ viewf(s) }

is finite. Accordingly, we call a block-innocent strategy finitary if the underlying innocent
S-strategy is finitary.

Proposition 5.3 (Finitary definability). Let θ1, . . . , θm, δ be types of IAcbv. For any finitary
innocent S-strategy σ : Jθ1K⊗· · ·⊗JθmK → JδK there exists a term x1 : θ1, . . . , xm : θm ⊢M : δ
such that σ = Jx1 : θ1, . . . , xm : θm ⊢MKS.

Proof. We rely on the decomposition lemma to reduce the suitably calculated size of the
strategy. The right measure is obtained by combining the size of the view-function quo-
tiented by name-permutation and the maximum number of names occurring in a single
P-view. It then suffices to establish that in each case the reconstruction of the original
strategy can be supported by the syntax. For the first seven cases we can proceed as
in [8]. For the eighth case, let y : var,Γ ⊢ M ′ : int and x : int,Γ ⊢ M ′′ : δ be the terms
obtained by IH for σ′ and σ′′ respectively. Then, in order to account for σ, one can take
let x = (new y inM ′) in M ′′.

5.2. Universality. We now proceed with the universality result. In the rest of this section
we closely follow the presentation of [1]; the reader is referred thereto for a more detailed ex-
position of the background material. Let us fix an enumeration of partial recursive functions
such that φn is the n-th partial recursive function.

The universality result concerns innocent S-strategies. Recall that S-strategies and their
view-functions are saturated under name-permutations and, in fact, view-functions only
become functions after nominal quotienting. To represent them we introduce an encoding

24 A.S. MURAWSKI AND N. TZEVELEKOS

scheme that is not dependent on names. Let us define a function eff which converts S-plays
to plays in which moves are attached with lists of integers:

eff(soΣ) , eff(s)oπ2(Σ) , eff(smΣpT) , eff(smΣ)pπ2(T),|T\Σ| .

Thus, from an O-move oΣ we only keep the values stored in Σ, whereas in a P-move pT

we keep the values of T and a number indicating how many of the names of T are freshly
introduced. Because of the conditions on stores that S-plays satisfy, eff maps two S-plays to
the same encoding if, and only if, they are nominally equivalent. In the sequel we assume
that S-plays are given using the encoding above.

For the rest of the section we assume that PPA is recursively enumerable, which is
clearly the case for denotable prearenas.

Definition 5.4. A subset of PPA (for instance, a strategy or a view-function) will be
called recursively presentable if it is a recursively enumerable subset of PPA. A block-
innocent strategy will be called recursively presentable if the underlying innocent S-strategy
is recursively presentable.

It follows that an innocent S-strategy σ is recursively presentable if, and only if, its
view-function is. We therefore encode an innocent S-strategy σ by ⌈σ⌉, where the latter
is the index n such that viewf(σ) = φn (with φn seen as a partial function from codes of
P-views of S-plays to codes of P-moves).

We want to show that any recursively presentable innocent S-strategy is definable by
an IAcbv-term. The result will be proved by constructing a term that accepts the code of
a given strategy, examines its initial behaviour, mimics it and, after a subsequent O-move,
is ready to explore the relevant component of the decomposition. Observe that if we start
from a strategy on Jθ1, · · · , θk ⊢ θK the decomposition will lead us to consider strategies on
Jθ′1, · · · , θ

′
l ⊢ θ

′K, where each θ′i (as well as θ
′) is a subtype of some θj or θ. Since the given

strategy will in general be infinite, repeated applications of the Decomposition Lemma will
mean that l is unbounded. To keep track of the current component we will thus need to
be able to represent unbounded lists of variables whose types are subtypes of θ1, · · · , θk, θ.
This issue is tackled next.

List contexts. We say that a set of types T is closed if whenever θ ∈ T and δ is a
subtype of θ then δ ∈ T . For the rest of this section let us fix a closed finite set of types
T and an ordering of T , say T = T0, T1, . . . , Tn, such that T0 = unit, T1 = int, T2 = var,
T3 = unit → int and T4 = int → unit.

For each i, we encode lists of type Ti as products int× (int → Ti). In particular, we use
the notation

z : List(Ti), Γ ⊢M : δ

as a shorthand for
zL : int, zR : int → Ti, Γ ⊢M : δ

Thus, zL represents the length of the represented list. For each 1 ≤ i ≤ zL, the value of the
i-th element in the list is represented by zRi. The list can be shortened by simply ‘reducing’
zL. For example, for a term z : List(Ti), Γ ⊢M : δ we can form

z : List(Ti), Γ ⊢ let zL = zL−1 in M : δ.

Note that, although the notation seems to suggest differently, the above is unrelated to
variable assignment: it stands for (λzL.M)(zL−1). A finer removal of a list element is

BLOCK STRUCTURE VS SCOPE EXTRUSION 25

executed as follows. For a term z : List(Ti), Γ ⊢M : δ and an index j, we define the term

z : List(Ti), Γ ⊢ remove (z, j) in M : δ

to be

z : List(Ti), Γ ⊢ (λzL.λzR.M)(zL−1)(λx. if x < j then zRx else zR(x+1)) : δ.

A list can be extended as follows. For terms z : List(Ti), Γ ⊢ M : δ, N : Ti and an index j
we define the term

z : List(Ti), Γ ⊢ insert (z, j,N) in M : δ

to be:

z : List(Ti), Γ ⊢ (λzL.λzR.M)(zL+1)(λx. if x < j then zRx else if x = j thenN else zR(x−1)) : δ

Let us use the shorthands

let z = consN z in M let z = snoc z N in M

for insert (z, 1, N) in M and insert (z, zL+1, N) in M respectively (that is, Hextend inserts
at the head of lists and Textend at the tail).

We can define an (effective) indexing function indx which, for any sequence (possibly
with repetitions) θ1, . . . , θm of types from T , returns a pair of numbers (i, j) such that
θm = Ti and there are j occurrences of Ti in θ1, . . . , θm.

Suppose now we have such a sequence θ and a term z0 : List(T0), z1 : List(T1), . . . , zn :
List(Tn) ⊢M : δ. We can de-index M with respect to θ, obtaining the term x1 : θ1, . . . , xm :
θm ⊢ deindx M : δ, defined as

deindx M , let z = ⊥ in (let zlm = cons xm zlm in (. . . (let zl1 = cons x1 zl1 in M))),

where

let z = ⊥ in N , let zL0 = 0, zR0 = λx.Ω in (. . . (let zLn = 0, zRn = λx.Ω in N))

and, for each 1 ≤ i ≤ m, θi = Tli . Note that the extensions above are executed from left to
right so, in particular, x1 will be related to zRl1 1.

Universal terms. Given a closed set of types T , the way we prove universality is by
constructing for each δ ∈ T a universal term z0 : List(T0), . . . , zn : List(Tn) ⊢ Fδ : int → δ
such that, for every sequence θ1, . . . , θm from T and recursively presentable S-strategy σ :
Jθ1K ⊗ · · · ⊗ JθmK → JδK,

σ = Jdeindx (Fδ⌈σ⌉)KS .

We first need to make sure that we can move inside the Decomposition Lemma effectively,
i.e. that the passage from the code of the original strategy to the code of the components
is effective and that the case which applies can also be computed from the index of the
original strategy. Here is such a recursive version of the Decomposition Lemma (for types
in T).

26 A.S. MURAWSKI AND N. TZEVELEKOS

Lemma 5.5. There are partial recursive functions

D,H : ω ⇀ ω and B : ω × ω ⇀ ω

such that, for any θ1, . . . , θm, δ ∈ T and recursively presentable S-strategy σ : Jθ1K ⊗ · · · ⊗
JθmK → JδK,

D⌈σ⌉ =

{

i if σ falls within the i-th case of DL

⊥ otherwise

B(⌈σ⌉, i) =

{

⌈τi⌉ if σ and τi are related as in first case of DL

⊥ otherwise

H⌈σ⌉ =



























































i if σ, i are related as in third case of DL

⌈⌈σ1⌉, ⌈σ2⌉⌉ if σ, σ1, σ2 are related as in fourth case of DL

⌈σ′⌉ if σ, σ′ are related as in fifth case of DL

⌈i, ⌈σ′⌉⌉ if σ, JθlK, σ
′ are related as in sixth case of DL

and indx(θ1, ... , θl) = (2, i)

⌈i1, i2, ⌈σ
′⌉, ⌈σ′′⌉⌉ if σ, JθlK, σ

′, σ′′ are related as in seventh case of DL

and indx(θ1, ... , θl) = (i1, i2)

⌈⌈σ′⌉, ⌈σ′′⌉⌉ if σ, σ′, σ′′ are related as in eighth case of DL

Proof. We assume that the type of σ is represented in ⌈σ⌉ and can be effectively decoded by
D,B and H. D⌈σ⌉ returns 1 if any of the θi’s is int, otherwise it applies φ⌈σ⌉ to the unique

initial move of JθK and returns the number corresponding to the result. For B, given ⌈σ⌉, i,
membership in τi is checked as follows. For any (P-view) S-play s, we add i to its initial
move and check whether the resulting S-play is a member of σ. Thus we obtain φn such
that s 7→ φn(s, ⌈σ⌉, i) is the characteristic function of τi. By an application of the S-m-n
theorem we obtain ⌈τi⌉. For H we argue along the same lines.

Since (call-by-value) PCF is Turing complete, there are closed PCF-terms D̃, H̃ : int →
int and B̃ : int → int → int that represent each of the above functions with plays of
the form q ∗n f(n) or q ∗m ∗n f(m,n). The terms will be used inside the universal term,
which will be constructed by mutual recursion (there are standard techniques to recast such
definitions in PCF). Let us write θ = Tl(θ) → Tr(θ) whenever θ ∈ T is of arrow type (so
l, r : T → {0, . . . , n}).

BLOCK STRUCTURE VS SCOPE EXTRUSION 27

Definition 5.6. For each δ ∈ T we define terms

z0 : List(T0), . . . , zn : List(Tn) ⊢ Fδ : int → δ

by mutual recursion as follows.

Fδ , λkint. if zL1 6= 0 then let x = zR1 1 in remove (z1, 1) in Fδ(B̃ k x)

else case (D̃ k) of

2 : skip

3 : H̃k

4 : let ⌈k1, k2⌉ = H̃k in mkvar(Funit→int k1, Fint→unit k2)

5 : λyTl(δ) . let zl(δ) = snoc zl(δ) y in FTr(δ)
(H̃ k)

6 : let ⌈i, k⌉ = H̃k in

let z3 = snoc z3 λx
unit. !(zR2 i) in

let z4 = snoc z4 λx
int. (zR2 i) :=x in remove (z2, i) in Fδ k

7 : let ⌈i1, i2, k1, k2⌉ = H̃k in case i1 of

1 : . . .
...

j : let zr(Tj) = snoc zr(Tj) (z
R
j i2)(FTl(Tj)

k1) in Fδ k2
...
n : . . .

8 : let ⌈k1, k2⌉ = H̃k in

let z1 = cons (new x in let z4 = cons x z4 in Fint k1) z1 in Fδ k2

otherwise : Ω

The construction of Fδ follows closely the decomposition of σ according to the Decomposi-
tion Lemma. In particular, on receiving ⌈σ⌉, the term decides, using the functions B and
D of Lemma 5.5, to which branch of DL σ can be matched. Some branches decompose σ
into further strategies, in which case Fδ will recursively call some Fδ′ to simulate the rest
of the strategy. The use of lists in contexts guarantees that such a call is indeed recursive:
F is only parameterised by the output type δ′, and each such δ′ is in T .

Proposition 5.7 (Universality). For every θ1, . . . , θm, δ ∈ T and recursively presentable
innocent S-strategy σ : Jθ1K ⊗ · · · ⊗ JθmK → JδK , σ = Jdeindx (Fδ⌈σ⌉)KS .

Proof. Suppose Fδ receives ⌈σ⌉ in its input k, where σ : Jθ1K ⊗ · · · ⊗ JθmK → JδK. Then

if zL1 6= 0 then let x = zR1 1 in remove (z1, 1) in Fδ(B̃ k x)

recognizes the first branch of the DL. Recall that T1 = int, so z1 : List(int), and therefore
zL1 6= 0 holds iff there is some θi = int. If this is so, then Fδ needs to return a term
corresponding to the strategy instantiated with the leftmost element in the list z1. This is
achieved by first applying B̃ to k, (zR1 1) to obtain ⌈τi⌉ and applying Fδ to it.

If zL1 = 0, Fδ will call D̃ on ⌈σ⌉, which will return the number of the case from DL (2-8)
that applies to σ. Subsequently, Fδ will proceed to a case analysis. Below we examine two
cases in detail.

28 A.S. MURAWSKI AND N. TZEVELEKOS

5: σ is the currying of σ′, so Fδ should return ‘λy. F ⌈σ′(y)⌉’. Now, σ′ is FTr(δ)
⌈σ′⌉, i.e.

FTr(δ)
(H̃ k), where δ = Tl(δ) ⇒ Tr(δ). In order to preserve typability, we need to add

the abstracted variable to the context of FTr(δ)
(H̃ k), which is what Textend zl(δ) with y

achieves.
8: σ introduces some fresh name and decomposes to σ′, σ′′ as in the Decomposition Lemma.

Hence, Fδ should return ‘let y = (new x inF ⌈σ′(x)⌉) in F ⌈σ′′(y)⌉’, which is exactly what
the code achieves.

The other cases are similar.

Remark 5.8. It is worth noting that the universality result for innocent S-strategies implies
an analogous result for innocent strategies and PCF. Thanks to call-by-value, the result is
actually sharper than the universality results of [1, 10], which had to be proved “up to
observational equivalence”. This was due to the fact that partial recursive functions could
not always be represented in the canonical way (i.e. by terms for which the corresponding
strategy contained plays of the form q q n f(n)). This is no longer the case under the call-
by-value regime, where each partially recursive function f can be coded by a term whose
denotation will be the strategy based on plays of the shape n f(n).

6. From omniscience to innocence

In Section 2 we introduced the three languages: PCF+, IAcbv and RML, interpreted re-
spectively by innocent, block-innocent and knowing strategies. Let A be a prearena. We
write IA, BA and KA for the corresponding classes of (store-free) strategies in A. Obvi-
ously, IA ⊆ BA ⊆ KA. Next we shall study type-theoretic conditions under which one kind
of strategy collapses to another. Thanks to universality results, this corresponds to the
existence of an equivalent program in a weaker language.

Theorem 6.1. Let A = Jθ1, · · · , θn ⊢ θ → θ′K. Then BA (KA.

Proof. Observe that there exist moves q0, a0, q1, a1 such that q0 ⊢A a0 ⊢A q1 ⊢A a1 and
consider σ = { ǫ, q0a0, q0a0q1a1 }, i.e. σ has no response at q0a0q1a1q1. Then σ ∈ KA \
BA. It is worth remarking that a strategy of the above kind denotes the RML-term ⊢
let v = ref in λxunit.(if !v thenΩ else v := !v + 1) : unit → unit.

Theorem 6.1 confirms that, in general, block structure restricts expressivity. However,
the next result shows this not to be the case for open terms of base type.

Theorem 6.2. Let A = Jθ1, · · · , θn ⊢ βK. Then BA = KA.

Proof. Observe that any knowing strategy for A becomes block-innocent if in the second-
move P introduces a store with one variable that keeps track of the history of play (this
is reminiscent of the factorization arguments in game semantics). The variable should be
removed from the store by P only when he plays an answer to the initial question.

BLOCK STRUCTURE VS SCOPE EXTRUSION 29

By universality, we can conclude that each RML-term of base type is equivalent to an
IAcbv-term. Since contexts used for testing equivalence are exactly of this kind, we obtain the
following corollaries. The first one amounts to saying that RML is a conservative extension
of IAcbv. The second one states that block-structured contexts suffice to distinguish terms
that might use scope extrusion.

Corollary 6.3. For any IAcbv-terms Γ ⊢M1,M2 : θ and RML-terms Γ ⊢ N1, N2 : θ:

• Γ ⊢M1
∼=RML M2 if, and only if, Γ ⊢M1

∼=IAcbv
M2;

• Γ ⊢ N1
∼=RML N2 if, and only if, Γ ⊢ N1

∼=IAcbv
N2.

Now we investigate the boundary between block structure and lack of state.

Lemma 6.4. Let A be a prearena such that each question enables an answer 6. The
following conditions are equivalent.

(1) BA ⊆ IA.
(2) No O-question is enabled by a P-question: m ⊢A qO implies λA(m) = PA.
(3) Store content of O-questions is trivial: sqΣO ∈ SPA implies domΣ = ∅.

Proof.

(1 ⇒ 2) We prove the contrapositive. Assume that there exists a P-question qP and an
O-question qO such that qP ⊢A qO. Let s be a chain of hereditary enablers of qP
(starting from an initial move) augmented with pointers from non-initial moves to
the respective preceding moves. Then

s q
(x,0)
P q

(x,0)
O a

(x,0)
P q

(x,1)
O q

(x,1)
P

defines a block-innocent strategy that is not innocent.
(2 ⇒ 3) Suppose no P-question enables an O-question in A and let sqXO ∈ SPA. Then

the sequence of hereditary justifiers of qO in s, in order of their occurrence in s,
must have the form (qOaP)

∗. Consequently, none of the stores involved can be
non-empty, so X must be empty too.

(3 ⇒ 1) We observe that s1p
Xps2o

Xo ∈ SPA, where p justifies o, implies Xo = Xp. Note
that, in presence of block innocence, this implies innocence because the store con-
tent of O-moves can be reconstructed uniquely from the P-view. Thus, it suffices
to prove our observation correct.
– If o is a question, we simply use our assumption: then we must have Xo = ∅ and,

because domXo = domXp, we can conclude Xp = ∅.
– If o is an answer then p must be a question. We claim that no store in s2 can

contain variables from domXo = domXp. Suppose this is not the case and there
is such an occurrence. Then the earliest such occurrence must be part of an O-
move. This move cannot be a question due to our assumption, so it is an answer
move. By the bracketing condition, this must be an answer that an earlier P-
question played after p. Moreover, the store accompanying that question must
also contain a variable from domXo = domXp contradicting our choice of the
earliest occurrence.

6All denotable prearenas enjoy this property.

30 A.S. MURAWSKI AND N. TZEVELEKOS

Thanks to the following lemma we will be able to determine precisely at which types block-
innocence implies innocence.

Lemma 6.5. Jθ1, · · · , θn ⊢ θK satisfies condition 2. of Lemma 6.4 iff ord(θi) ≤ 1 (i =
1, · · · , n) and ord(θ) ≤ 2.

Consequently, second-order IAcbv-terms always have purely functional equivalents. Fi-
nally, we can pinpoint the types at which strategies are bound to be innocent: it suffices to
combine the previous findings.

Theorem 6.6. Let A = Jθ1, · · · , θn ⊢ θK. Then KA = IA iff ord(θi) ≤ 1 (i = 1, · · · , n) and
ord(θ) = 0.

In the next section we demonstrate that the gap in expressivity between KA and BA

also bears practical consequences. The undecidable equivalence problem for second-order
finitary RML becomes decidable in second-order finitary IAcbv (as well as at some third-order
types).

7. Decidability of a finitary fragment of IAcbv

In order to prove program equivalence decidable, we restrict the base datatype of integers
to the finite segment { 0, · · · , N } (N > 0) and replace recursive definitions (Y(M)) with
looping (whileM doN). Let us call the resultant language IA�. Our decidability result will
hold for a subset IA2+

� of IA�, in which type order is restricted. IA2+
� will reside inside

the third-order fragment of IA� and contain its second-order fragment. Note that the
second-order fragment of similarly restricted RML is known be undecidable (even without
loops) [15].

The decidability of program equivalence in IA2+
� will be shown by translating terms to

regular languages representing the corresponding block-innocent strategies. We stress that
we are not going to work with the induced S-plays. Nevertheless, the translation will rely
crucially on insights gleaned from the semantics with explicit stores. In particular, we shall
take advantage of the uniformity inherent in block innocence to represent only subsets of
the strategies in order to overcome technical problems presented by pointers. We discuss
the issue next.

7.1. Pointer-related issues. Pointers from answer-moves need not be represented at all,
because they are uniquely reconstructible through the well-bracketing condition. However,
this need not apply to pointers from questions. The most obvious way to represent them
is to decorate moves with integers that encode the distance from the target in some way.
Unfortunately, there are scenarios in which the distance can grow arbitrarily.

Consider, for instance, the prearena A = Jθ ⊢ θ1 → . . . → θk → βK. Due to the presence
of the k arrows on the right-hand side we obtain chains of enablers q0 ⊢ a0 ⊢ · · · ⊢ qk ⊢ ak,
where q0 is initial and each qi (i = 1, · · · , k) is initial in JθiK. We shall call the moves spinal.
Observe that plays in A can have the following shape

q0 · · · a0q1 · · · a1q1 · · · a1q1 · · · a1q2

and any of the occurrences of a1 could be used to justify q2, thus creating several different
options for justifying q2. If we consider S-plays for A, Definition 4.2 implies that none of the
moves qi, ai will ever carry a non-empty store. Consequently, whenever a play of the above

BLOCK STRUCTURE VS SCOPE EXTRUSION 31

kind comes from a block-innocent strategy, its behaviour in the q1 · · · a1 segments will not
depend on that in the other q1 · · · a1 segments. Thus, in order to explore exhaustively the
range of behaviours offered by a block-innocent strategy (so as to compare them reliably),
it suffices to restrict the number of q1’s to 1. Next, under the assumption that q1 occurs
only once, one can repeat the same argument for q2 to conclude that a single occurrence
of q2 will suffice, and so on. Altogether this yields the following lemma. Note that, due
to Visibility, insisting on the presence of a unique copy of q1, · · · , qk in a play amounts to
asking that each qi be preceded by ai−1.

Lemma 7.1. Call a play spinal if each spinal question qi (0 < i ≤ k) occurring in it is
the immediate successor of ai−1. Let P sp

A be the set of spinal plays of A. Let σ, τ : A be
block-innocent strategies. Then σ ∩ P sp

A = τ ∩ P sp
A implies σ = τ .

Hence, for the purpose of checking program equivalence, it suffices to compare the
induced sets of spinal complete plays. Moreover, the pointer-related problems discussed
above will not arise.

Now that we have dealt with one challenge, let us introduce another one, which cannot
be overcome so easily. Consider the prearena J(θ1 → θ2 → θ3) → θ4 ⊢ θK and the enabling
sequence q0 ⊢ q1 ⊢ q2 ⊢ a2 ⊢ q3 it contains. Now consider the plays q0q1(q2a2)

jq3, where
j ≥ 0. Again, to represent the pointer from q3 to one of the j occurrences of a2, one
would need an unbounded number of indices. This time it is not sufficient to restrict j
to 1, because the behaviour need not be uniform after each q2 (this is because in the
setting with stores a non-empty store can be introduced as soon as in the second move
q1). To see that the concern is real, consider the term f : (unit → unit → unit) → unit ⊢
new x in f(λyunit. · · ·λzunit. · · ·) : unit, where (· · ·) contain some code inspecting and chang-
ing the value of x.

This leads us to introduce IA2+
� via a type system that will not generate the configu-

ration just discussed. Another restriction is to omit third-order types in the context, as
they lead beyond the realm of regular languages (cf. f : ((unit → unit) → unit) → unit ⊢
f(λgunit→unit.g()). Since var leads to identical problems as unit → unit, we restrict its use
accordingly.

7.2. IA2+
� .

Definition 7.2. IA2+
� consists of IA�-terms whose typing derivations rely solely on typing

judgments of the shape x1 : ctype1, · · · , xn : ctypen ⊢ M : ttype , where ctype and ttype are
defined by the grammar below.

ctype ::= β | var | β → ctype | var → ctype | (β → β) → ctype
ttype ::= β | var | ctype → ttype

A lot of pointers from questions become uniquely determined in strategies representing
IA2+

� terms, namely, all pointers from any O-questions and all pointers from P -questions to
O-questions.

Lemma 7.3. Let A = Jctype1, · · · , ctypen ⊢ ttypeK and s1, s2 be spinal plays of A that are
equal after all pointers from O-questions and all pointers from P-questions to O-questions
have been erased. Then s1 = s2.

32 A.S. MURAWSKI AND N. TZEVELEKOS

Proof. Observe that whenever a P-question is enabled by an O-question in the prearenas
under consideration, the O-question must be spinal. Hence, because both s1 and s2 are
spinal, all such O-questions will occur only once, so pointers from P-questions to O-questions
are uniquely reconstructible.

Now let us consider O-questions. Observe that, due to restrictions on the type system
of IA2+

� , whenever an O-question is justified by a P-answer, both will be spinal. Hence only
one copy of each can occur in a spinal position, making pointer reconstruction unambiguous.
Finally, we tackle the case of O-questions justified by P-questions.

• If q comes from a type of the context then, due to the shape of types involved, any
sequence of hereditary enablers of q must be of the form q′q′1a

′
1 · · · q

′
ja

′
jq

′
j+1q, where q

′

is initial and each of the moves listed enables the following one. If a move m enables q
hereditarily, let us define its degree as the distance from the initial move in the sequence
above (this definition is independent of the actual choice of the chain of enablers; the
degree of q′i is 2i− 1, that of a′i is 2i).

By induction on move-degree we show that in any O-view only one move of a given
degree can be present, if at all. By visibility this makes pointer reconstruction unambigu-
ous.
– By definition of a play q′ can occur in an O-view only once. Whenever q′1 is present in

an O-view, it must preceded by an initial move, so its position in an O-view is uniquely
determined (always second).

– Since q′i occurs only once in an O-view, so does a′i (questions can be answered only
once). Hence, q′i+1 can also occur only once, because each occurrence must be preceded
by a′i.

Consequently, any move of degree 2j + 1 (q′j+1) can only occur once in an O-view and
thus the pointer from q can be reconstructed uniquely.

• If q originated from the type on the right-hand side of the typing judgment, we can repeat
the reasoning above. The only difference is that the sequences of enablers are now of the
form

q0a0 · · · qkakq
′q′1a

′
1 · · · q

′
ja

′
jq

′
j+1q

where qi, ai (i = 0, · · · , k) are spinal. Then the base case of the induction (q′) follows
from the fact that we are dealing with spinal plays.

Thus, the only pointers that need to be accounted for are those from P-questions to O-
answers. Here is the simplest scenario illustrating that they can be ambiguous. Consider
the terms

f : unit → unit → unit ⊢ let g1 = f() in (let g2 = f() in gi()) : unit

where i = 1, 2. They lead to the following plays, respectively for i = 1 and i = 2, which are
equal up to pointers from P-questions to O-answers.

q0 q1 a1 q1 a1 q2 q0 q1 a1 q1 a1 q2

Remark 7.4. In the conference version of the paper [17] we suggested that justification
pointers of the above kind be represented with numerical indices encoding the target of the
pointer inside the current P-view. More precisely, one could enumerate (starting from 0) all
question-enabling O-answers in the P-view. Then pointers from P-questions to O-answers
could be encoded by decorating the P-question with the index of the O-answer. The plays

BLOCK STRUCTURE VS SCOPE EXTRUSION 33

above could then be coded as q0q1a1q1a1q
0
2 and q0q1a1q1a1q

1
2 respectively. Unfortunately,

there exists terms that generate plays where such indices would be unbounded, such as

let g1 = f() in (whileh() do let g2 = f() in g2()); g1() : unit

where f : unit → unit → unit and h : unit → int. Because the number of loop iterations is
unrestricted, the number needed to represent the justification pointer corresponding to the
rightmost occurrence of g1() cannot be bounded. Consequently, the representation scheme
proposed in [17] would lead to an infinite alphabet. Next we show that this problem can
be overcome, though.

The above-mentioned defect can be patched with the help of a different representation
scheme based on annotating targets and sources of justification pointers, with ◦ and • re-
spectively. We shall use the same two symbols for each pointer. This can lead to ambiguities
if many pointers are represented at the same time in a single string. However, to avoid that,
we are going to use multiple strings to represent a single play. More precisely, these will
be strings corresponding to the underlying sequence of moves in which each pointer may or
may not be represented, i.e. plays featuring n pointers from P-questions to O-answers will
be represented by 2n encoded strings. For example, to represent

q0 q1 a1 q1 a1 q2 a2 q2
we shall use the following four strings

q0 q1 a1 q1 a1 q2 a2 q2 q0 q1 a
◦
1 q1 a1 q

•
2 a2 q2

q0 q1 a1 q1 a
◦
1 q2 a2 q

•
2 q0 q1 a

◦
1 q1 a

◦
1 q

•
2 a2 q

•
2

Note that the last string represents pointers ambiguously, though the second and third
strings identify them uniquely. We could have achieved the same effect using strings in
which only one pointer is represented [9] but, from the technical point of view, it is easier
to include all possible pointer/no-pointer combinations.

7.3. Regular-language interpretation. In order to translate IA�-terms into regular lan-
guages representing their game semantics, we we restrict our translation to terms in a
canonical shape, to be defined next. Any IA�-term can be converted effectively to such a
form and the conversion preserves denotation.

The canonical forms are defined by the following grammar. We use types as superscripts,
whenever we want to highlight the type of an identifier (u, v, x, y, z range over identifier
names). Note that the only identifiers in canonical form are those of base type, represented
by xβ below.

C ::= () | i | xβ | xβ ⊕ yβ | if xβ thenC elseC | xvar := yint | !xvar | λxθ.C |
mkvar(λxunit.C, λyint.C) | new xvar inC | whileC doC | let xβ = C in C |
let x = zyβ in C | let x = zmkvar(λuunit.C, λvint.C) in C | let x = z(λxθ.C) in C

Lemma 7.5. Let Γ ⊢ M : θ be an IA�-term. There is an IA�-term Γ ⊢ N : θ in canonical
form, effectively constructible from M , such that JΓ ⊢MK = JΓ ⊢ NK.

Proof. N can be obtained via a series of η-expansions, β-reductions and commuting conver-
sions involving let and if. We present a detailed argument in Appendix B.

34 A.S. MURAWSKI AND N. TZEVELEKOS

A useful feature of the canonical form is that the problems with pointers can be related
to the syntactic shape: they concern references to let-bound identifiers xθ such that θ is
not a base type (i.e. θ = var or θ is a function type). Below we state our representability
theorem for IA2+

� -terms. The definition of AM is actually too generous, as we shall only
need ◦, • to decorate P-questions enabled by O-answers.

Proposition 7.6. Suppose Γ ⊢M : θ is an IA2+
� -term. LetAM =MA+(MA×{◦, •}), where

A = JΓ ⊢ θK. Let CΓ⊢M be the set of non-empty spinal complete plays from JΓ ⊢ M : θK.
Then CΓ⊢M can be represented as a regular language over a finite subset of AM .

Proof. CΓ⊢M can be decomposed as
∑

i∈IA
(i Ci

Γ⊢M). Obviously CΓ⊢M is regular if, and only

if, any Ci
Γ⊢M is regular (i ∈ IA). Hence, it suffices to show that Ci

Γ⊢M is regular for any
relevant i.

As already discussed, the regular-language representations, which we shall also refer to
by Ci

Γ⊢M , will consist of plays in which individual pointers may or may not be represented.
However, because all possibilities are covered, this will yield a faithful representation of the
induced complete plays. We proceed by induction on the structure of canonical forms. Let
iΓ range over IJΓK.

• CiΓ
Γ⊢() = ⋆

• CiΓ
Γ⊢j = j

• C
(iΓ,jx)
Γ,x:β⊢x:β = j

• C
(iΓ,jx,ky)
Γ,x:int,y:int⊢x⊕y = j ⊕ k

• C
(iΓ,jx)
Γ,x:int⊢if x thenM1 elseM0

= C
(iΓ,jx)
Γ,x⊢Mh(j)

, where h(j) =
{

0 j = 0
1 j > 0

• C
(iΓ,⋆x,jy)
Γ,x:var,y:int⊢x := y = write(j)xokx⋆

• C
(iΓ,⋆x)
Γ,x:var⊢!x = readx(

∑N
j=0 jxj)

• CiΓ
Γ⊢mkvar(λxunit.M1,λyint.M2)

= ⋆(ǫ+ read C
(iΓ,⋆x)
Γ,x⊢M1

+
∑N

j=0 write(j) C
(iΓ ,jy)
Γ,y⊢M2

[ok/⋆])

• CiΓ
Γ⊢λxθ.M

= ⋆(ǫ+
∑

i∈IJθK
i C

(iΓ,ix)
Γ,x⊢M [m′

x/mx])

• CiΓ
Γ⊢new x inM = (C

(iΓ,⋆x)
Γ,x⊢M ∩ C′)[ǫ/mx] where, writing ‖ for the shuffle operator on strings,

C′ = (A′ \ (MJvarK)x)
∗ || ((readx 0x)

∗(
N
∑

j=0

write(j)x okx (readx jx)
∗)∗)

and A′ is the finite alphabet used to represent Γ, x : var ⊢M .

The substitution [m′
x/mx] highlights the fact that the moves associated with x have to be

bijectively relabelled, because the copy of θ moved from the left- to the right-hand side of
the context. [ǫ/mx] stands for erasure of all moves associated with x. Obviously, these
(homomorphic) operations preserve regularity. Note that the clause for λxθ.M is correct
because we consider spinal plays only.

For Γ ⊢ M : β we sometimes refer to components determined by the following decom-
position.

CiΓ
Γ⊢M :β =

∑

j∈IJβK

(CiΓ,j
Γ⊢M j)

BLOCK STRUCTURE VS SCOPE EXTRUSION 35

The components CiΓ,j
Γ⊢M can be extracted from CiΓ

Γ⊢M :β by applying operations preserving

regularity (intersection, erasure), so the latter is regular iff each of the former is.

• CiΓ
Γ⊢whileM doN = (

∑N
j=1 C

iΓ,j
Γ⊢M CiΓ,⋆

Γ⊢N)∗ CiΓ,0
Γ⊢M

• CiΓ
Γ⊢let xβ=M in N

=
∑

j∈IJβK
CiΓ,j
Γ⊢MC

(iΓ,jx)
Γ,x⊢N

The remaining cases are those of let-bindings of the form let x = z(· · ·) in · · · . First we
explain some notation used throughout. Consider the following context Γ, z : θ′ → θ, x : θ.
We shall refer to moves contributed by x : θ withmx. If we want to range solely over O- or P-
moves from the component, we use ox and px respectively. Moreover, we use mz,x, oz,x, pz,x
to refer to copies of mx, ox, px in the z : θ′ → θ component. The most common operation
performed using this notation will be the relabelling of mx to mz,x. If θ is a function type,
then there is a unique P-question qx enabled by the initial move ⋆x. Whenever we have a
separate substitution rule for qx, the rule for mx or px will not apply to qx. In most cases we
will want to substitute qz,x or q•z,x for qx. In the latter case, q•z,x stands for qz,x annotated
to represent the source of a pointer to a source move represented by ⋆◦z,x.

First we tackle cases where the bound value is of function type, i.e. those related to
possibly ambiguous pointer reconstruction. Note that we include plays with and without
pointer representations.

• Γ, z : β → (θ1 → θ2), y : β ⊢ let x = zy in N given Γ, z, y, x : θ1 → θ2 ⊢ N

C
(iΓ,⋆z ,jy)
Γ,z,y⊢let ··· in ··· = jz ⋆

◦
z,x C

(iΓ,⋆z ,jy,⋆x)
Γ,z,y,x⊢N [q•z,x/qx, mz,x/mx]

+ jz ⋆z,x C
(iΓ,⋆z ,jy,⋆x)
Γ,z,y,x⊢N [qz,x/qx, mz,x/mx])

• Γ, z : (β1 → β2) → (θ1 → θ2) ⊢ let x = z(λyβ1 .M) in N given Γ, z, y : β1 ⊢ M : β2 and
Γ, z, x : θ1 → θ2 ⊢ N

C
(iΓ,⋆z)
Γ,z⊢let ··· in ··· = qz C

′ ⋆◦z,x C
(iΓ,⋆z ,⋆x)
Γ,z,x⊢N [q•z,xC

′/qx, pz,xC
′/px, oz,x/ox]

+ qz C
′ ⋆z,x C

(iΓ,⋆z ,⋆x)
Γ,z,x⊢N [qz,xC

′/qx, pz,xC
′/px, oz,x/ox]

where C′ = (
∑

i∈IJβ1K
iz (

∑

j∈IJβ2K
C
(iΓ,⋆z ,iy),j
Γ,z,y⊢M jz))

∗

• Γ, z : var → (θ1 → θ2) ⊢ let x = zmkvar(λuunit.M1, λv
int.M2) in N given Γ, z, u ⊢ M1, as

well as Γ, z, v ⊢M2 and Γ, z, x : θ1 → θ2 ⊢ N

C
(iΓ,⋆z)
Γ,z⊢let ··· in ··· = qz C′ ⋆◦z,x C

(iΓ,⋆z ,⋆x)
Γ,z,x⊢N [q•z,xC

′/qx, pz,xC′/px, oz,x/ox]

+ qz C′ ⋆z,x C
(iΓ,⋆z ,⋆x)
Γ,z,x⊢N [qz,xC′/qx, pz,xC′/px, oz,x/ox],

where C′ = (readz (
∑N

j=0 C
(iΓ,⋆z ,⋆u),j
Γ,z,u⊢M1

jz) +
∑N

j=0 write(j)z C
(iΓ,⋆z ,jv),⋆
Γ,z,v⊢M2

okz)
∗

To understand the second formula (the third case is analogous) observe that, after ⋆z,x has
been played, plays for let · · · in · · · are plays from N interleaved with possible detours to
λxβ1 .M : such a detour can be triggered by iz from β1 each time the second move (qz) is
O-visible. Moreover, provided qz is O-visible, such a detour can also take place between qz
and ⋆z,x. The following auxiliary lemma will help us analyze when detours can occur.

Lemma 7.7. Let A be a prearena, s ∈ PA be non-empty and Pi — the set of P-moves
enabled by the initial move of s. Let s′ be a prefix of s containing at least two moves. Then
the O-view of s′ contains exactly one move from Pi.

36 A.S. MURAWSKI AND N. TZEVELEKOS

Proof. Any non-initial move must be either in Pi or hereditarily enabled by a move from Pi.
By visibility the O-view of s′ any prefix of s must thus contain a move from Pi. Because
moves from Pi are enabled by the initial move, they are always the second moves in O-views.
Hence, no two moves from Pi can occur in the same O-view.

Let us apply the lemma to the denotation of M . Because β2 is a base type it follows
that at any time non-trivial O-views will contain a move from Γ enabled by the initial move
or the answer from β2 (which completes the play). Returning to the play for let · · · in · · · ,
this means that during a detour the second move qz will be hidden from O-view until the
detour is completed, i.e. a single detour has to be completed before the next one begins.
Hence, C′ has the form (· · ·)∗.

Also by the lemma above, once the play after ⋆z,x progresses, the second move qz will be
O-visible if, and only if, qz,x (which ⋆z,x enables) is. Thus detours will be possible exactly
after P plays a P -move hereditarily justified by ⋆z,x, which corresponds to P playing a
P -move hereditarily justified by qx in N (hence the substitutions pz,xC

′/px restricted to
P -moves). A special case is then that of qz,x which, as a question enabled by an answer,
should be represented both with and without a pointer.

The above three cases cover all scenarios (that can arise in IA2+
�) in which z’s type is of

the form θ → (θ1 → θ2). The cases where z : θ → var are analogous except that one needs
to use qx to range over readx,write(0)x, · · · ,write(N)x rather than the single move enabled
by ⋆x. It remains to consider cases of z : θ → β. The bound values are of base type, so no
new pointer indices need to be introduced.

• Γ, z : β′ → β, y : β′ ⊢ let x = zy in N given Γ, z, y, x : β ⊢ N

C
(iΓ,⋆z ,jy)
Γ,z,y⊢let in

= jz (
∑

k∈IJβK

kz C
(iΓ,⋆z,jy,kx)
Γ,z,x,y⊢N)

• Γ, z : (β1 → β2) → β ⊢ let x = z(λyβ1 .M) in N given Γ, z, y : β1 ⊢M : β2 and Γ, z, x : β ⊢
N

C
(iΓ,⋆z)
Γ,z⊢let in

= qz C
′(

∑

k∈IJβK

kz C
(iΓ,⋆z ,kx)
Γ,z,x⊢N)

where C′ = (
∑

i∈IJβ1K
iz (

∑

j∈IJβ2K
C
(iΓ,⋆z ,iy),j
Γ,z,y⊢M jz))

∗

• Γ, z : var → β ⊢ let x = zmkvar(λuunit.M1, λv
int.M2) in N given Γ, z, u ⊢M1, Γ, z, v ⊢M2

and Γ, z, x ⊢ N

C
(iΓ,⋆z)
Γ,z⊢let in

= qz C
′(

∑

k∈IJβK

kz C
(iΓ,⋆z ,kx)
Γ,z,x⊢N)

where C′ = (readz (
∑N

j=0 C
(iΓ,⋆z ,⋆u),j
Γ,z,u⊢M1

jz) +
∑N

j=0 write(j)z C
(iΓ,⋆z ,jv),⋆
Γ,z,v⊢M2

okz)
∗.

Theorem 7.8. Program equivalence of IA2+
� -terms is decidable.

We remark that adding dynamic memory allocation in the form of ref to IA2+
� , or its

second-order sublanguage, results in undecidability [15]. Hence, at second order, block
structure is “strictly weaker” than scope extrusion.

BLOCK STRUCTURE VS SCOPE EXTRUSION 37

8. Summary

In this paper we have introduced the notion of block-innocence that has been linked with
call-by-value Idealized Algol in a sequence of results. Thanks to the faithfulness of block-
innocence, we could investigate the interplay between type theory, functional computation
and stateful computation with block structure and dynamic allocation respectively. We
have also shown a new decidability result for a carefully designed fragment of IAcbv. Its
extension to product types poses no particular difficulty. In fact, it suffices to follow the way
we have tackled the var type, which is itself a product type. The result thus extends those
from [7] and is a step forward towards a full classification of decidable fragments of IAcbv:
the language IA2+

� we considered features all second-order types and some third-order types,

while finitary IAcbv is known to be undecidable at order 5 [14]. Interestingly, IA2+
� features

restrictions that are compatible with the use of higher-order types in PASCAL [12], in which
procedure parameters cannot be procedures with procedure parameters. An interesting
topic for future work would be to characterise the uniformity inherent in block-innocence
in more abstract, possibly category-theoretic, terms.

Acknowledgement

We would like to thank the anonymous referees for their constructive comments and feed-
back.

References

[1] S. Abramsky, R. Jagadeesan, and P. Malacaria. Full abstraction for PCF. Information and Computation,
163:409–470, 2000.

[2] S. Abramsky and G. McCusker. Call-by-value games. In Proceedings of CSL, volume 1414 of Lecture
Notes in Computer Science, pages 1–17. Springer-Verlag, 1997.

[3] S. Abramsky and G. McCusker. Linearity, sharing and state: a fully abstract game semantics for Ideal-
ized Algol with active expressions. In P. W. O’Hearn and R. D. Tennent, editors, Algol-like languages,
pages 297–329. Birkhaüser, 1997.

[4] S. Abramsky and G. McCusker. Full abstraction for Idealized Algol with passive expressions. Theoretical
Computer Science, 227:3–42, 1999.

[5] C. Cotton-Barratt, D. Hopkins, A. S. Murawski, and C.-H. L. Ong. Fragments of ML decidable by
nested data class memory automata. In Proceedings of FOSSACS’15, volume 9034 of Lecture Notes in

Computer Science, pages 249–263. Springer, 2015.
[6] M. J. Gabbay and A. M. Pitts. A new approach to abstract syntax with variable binding. Formal

Aspects of Computing, 13:341–363, 2002.
[7] D. R. Ghica. Regular-language semantics for a call-by-value programming language. In Proceedings of

MFPS, volume 45 of Electronic Notes in Computer Science. Elsevier, 2001.
[8] K. Honda and N. Yoshida. Game-theoretic analysis of call-by-value computation. Theoretical Computer

Science, 221(1–2):393–456, 1999.
[9] D. Hopkins, A. S. Murawski, and C.-H. L. Ong. A fragment of ML decidable by visibly pushdown

automata. In Proceedings of ICALP, volume 6756 of Lecture Notes in Computer Science, pages 149–161.
Springer, 2011.

[10] J. M. E. Hyland and C.-H. L. Ong. On Full Abstraction for PCF: I. Models, observables and the full
abstraction problem, II. Dialogue games and innocent strategies, III. A fully abstract and universal
game model. Information and Computation, 163(2):285–408, 2000.

[11] R. Milner, M. Tofte, and R. Harper. The Definition of Standard ML. The MIT Press, Cambridge,
Massachussetts, 1990.

[12] J. C. Mitchell. Concepts in programming languages. Cambridge University Press, 2002.
[13] E. Moggi. Notions of computation and monads. Information and Computation, 93:55–92, 1991.

38 A.S. MURAWSKI AND N. TZEVELEKOS

[14] A. S. Murawski. About the undecidability of program equivalence in finitary languages with state. ACM
Transactions on Computational Logic, 6(4):701–726, 2005.

[15] A. S. Murawski. Functions with local state: regularity and undecidability. Theoretical Computer Science,
338(1/3):315–349, 2005.

[16] A. S. Murawski, C.-H. L. Ong, and I. Walukiewicz. Idealized Algol with ground recursion and DPDA
equivalence. In Proceedings of ICALP, volume 3580 of Lecture Notes in Computer Science, pages 917–
929. Springer, 2005.

[17] A. S. Murawski and N. Tzevelekos. Block structure vs scope extrusion: between innocence and omni-
science. In Proceedings of FOSSACS, volume 6014 of Lecture Notes in Computer Science, pages 33–47.
Springer-Verlag, 2010.

[18] F. Oles. Type algebras, functor categories and block structure. In M. Nivat and J. C. Reynolds, editors,
Algebraic Methods in Semantics, pages 543–573. Cambridge University Press, 1985.

[19] C.-H. L. Ong. Observational equivalence of 3rd-order Idealized Algol is decidable. In Proceedings of

IEEE Symposium on Logic in Computer Science, pages 245–256. Computer Society Press, 2002.
[20] A. M. Pitts and I. Stark. On the observable properties of higher order functions that dynamically create

local names, or: What’s new? In Proc. 18th Int. Symp. on Math. Foundations of Computer Science,
pages 122–141. Springer-Verlag, 1993. LNCS Vol. 711.

[21] G. D. Plotkin. LCF considered as a programming language. Theoretical Computer Science, 5:223–255,
1977.

[22] J. Power. Semantics for local computational effects. Electr. Notes Theor. Comput. Sci., 158:355–371,
2006.

[23] J. C. Reynolds. The essence of Algol. In J. W. de Bakker and J.C. van Vliet, editors, Algorithmic

Languages, pages 345–372. North Holland, 1981.
[24] I. D. B. Stark. Names and Higher-Order Functions. PhD thesis, University of Cambridge Computing

Laboratory, 1995. Technical Report No. 363.
[25] N. Tzevelekos. Full abstraction for nominal general references. Logical Methods in Computer Science,

5(3), 2009.

Appendix

Appendix A. S-plays

In this section we use the term “move” and “S-move” interchangeably.

Lemma A.1 (Prev-PA). If s = · · ·mΣaTP · · · is an S-play then, for any α,

(a) if α ∈ ν(T) then α ∈ ν(Σ),
(b) if α ∈ ν(Σ \ T) then α is closed in s<aT

P
.

Moreover, T ≤p Σ and therefore Σ \ (Σ \ T) ≤p T and Σ \ T ≤s Σ.

Proof. Let s = s1 q
Σ0
0 s2 a

T · · · . As qΣ0
0 is the pending-Q in s1q

Σ0
0 s2, we have that s is in

fact of the form:

s1 q
Σ0
0 qT1

1 · · · aΣ1
1 qT2

2 · · · aΣ2
2 · · · q

Tj

j · · · a
Σj

j aT

For (a), by Just-P we have that α ∈ ν(Σ0) and therefore α is not closed in s1m
Σ0
0 s2. Hence,

by Prev-PQ(b), α ∈ ν(T1) and thus, by Just-O, α ∈ ν(Σ1). Repeating this argument j
times we obtain α ∈ ν(Σj), i.e. α ∈ ν(Σ).
For (b), let α ∈ ν(Σ) = ν(Σj) be open in s<aT . We claim that then α ∈ ν(Σ0) and therefore
α ∈ ν(T) by Just-P. We have that α ∈ ν(Tj), by Just-O. Moreover, since there are no open

questions in q
Tj

j · · · a
Σj

j , we have that α is open in s<qT
j
j , so α ∈ ν(s<qT

j
j) and thus, by

Prev-PQ(a), α ∈ dom (Σj−1). Applying this argument j times we obtain α ∈ ν(Σ0).

BLOCK STRUCTURE VS SCOPE EXTRUSION 39

Finally, we show by induction that Σ0 ≤p Σi, for all 0 ≤ i ≤ j. For the inductive step, we
have that Σi \ (Σi \Ti+1) ≤p Ti+1 ≤p Σi+1. By IH, Σ0 ≤p Σi. Moreover, if α ∈ ν(Σi \Ti+1)
then α /∈ ν(Σ0), by Prev-PQ(b), so Σ0 ≤p Σi \ (Σi \ Ti+1), ∴ Σ0 ≤p Σi+1. Thus, T ≤p

Σ0 ≤p Σj = Σ.

Lemma A.2 (Block Form). If s is an S-play then psq is in block-form: for any α, we have
psq = s1s2s3, where

• α /∈ ν(s1) ∪ ν(s3) and ∀mΣ ∈ s2. α ∈ ν(Σ),
• if s2 6= ǫ then its first element is the move introducing α in s.

Proof. We do induction on |s|, with the cases of |s| ≤ 1 being trivial. If s = s′oΣ then, by
IH, psq = s′′pToΣ , some s′′pT in block-form, and ν(T) = ν(Σ), which imply that psq is
in block-form. If s = s′pΣ then psq = ps′qpΣ with ps′q = s1s2s3 in block-form by IH. If
α /∈ dom (Σ) then OK. Otherwise, if α does not appear in the last move in s1s2s3 then, by
Prev, pΣ in fact introduces α in s and therefore psq has block-form.

Lemma A.3. Let s = s1o
ΣpT s2 be an S-play with α ∈ ν(Σ)\ν(T). Then, for any s′2 ⊑p s2,

α /∈ ν(xs1oΣpT s′2y).

Proof. We do induction on |s′2|. For the base case, by the previous lemma we have that
ps1oΣq has block-form; in particular, it ends in a block of moves which contains the move
introducing α in s, and all moves in the block contain α in their stores. Hence, since
the justifier of pT , say o′Σ

′
, occurs in ps1oΣq and α /∈ ν(Σ′) (by Just and the fact that

α /∈ ν(T)), we have that o′Σ
′
occurs in s before the move introducing α in it and therefore

α /∈ ν(xs1oΣpT y). Now, if s′2 = s′′2o
′Σ′

then we need to show that α /∈ ν(xs1oΣpT s′′2yo
′Σ′

)
given by IH that α /∈ ν(xs1oΣpT s′′2y), which immediately follows from Just and Visibility.

Finally, if s′2 = s′′2p
′T ′

then, by IH, α /∈ ν(s′′2) and therefore, by Prev, α /∈ ν(T ′). Let p′T
′
be

justified by some o′Σ
′
in s. If o′Σ

′
occurs in s′′2 then our argument follows directly from the

IH. Otherwise, arguing as before, o′Σ
′
occurs in s before the introduction of α and therefore

α /∈ ν(xs1oΣpT s′′2p
′T ′

y).

Corollary A.4 (Close). If s = s1o
ΣpT s2 is an S-play with α ∈ ν(Σ) \ ν(T) then α /∈ ν(s2).

Proof of Lemma 4.10. For (a), assuming WLOG p is a P-move in AB and taking s =

s′nT
′
pΣ

′
, by definition of the interaction and Prev we have that if α ∈ ν(Σ \ T) then

α ∈ ν(Σ′ \ T ′), hence α /∈ ν(s′nT
′
) and therefore α /∈ ν(unT).

For (b), we do induction on |s ‖ t|, base case is trivial. Now, if s ‖ t = upΣ with p a
generalised P-move then ps ‖ tq = puqpΣ and, by IH, puq has block form, say u1u2u3. If
α /∈ ν(Σ) then OK. Otherwise, if α does not appear in the last move of puq then pΣ is in
fact the move introducing α in s ‖ t, so OK. Otherwise, u3 = ǫ and therefore ps ‖ tq in block
form. If s ‖ t = uoT with o an O-move in AC then ps ‖ tq = u′oT for some u′ in block-form,
and the last move in u′ has domain dom (T). This implies that s ‖ t is in block-form.

For (c), assuming WLOG p is a P-move in AB and taking s = s′nT
′
pΣ

′
, by definition of the

interaction we have α ∈ ν(T ′ \Σ′) so, by Prev, α is closed in s′nT
′
. Now suppose α is open

in unT , that is, there is an open question qΣ1
1 in unT with α ∈ ν(Σ1). Then, if qΣ0

0 is the

pending question of unT then α ∈ ν(Σ0): punT q has block-form, by (b), and qΣ0
0 appears

in it, thus if α /∈ ν(Σ0) then q
Σ0
0 would precede the move introducing α in unT and hence

it would precede qΣ1
1 too. As the interaction ends in an O-move in AB, qΣ0

0 is the pending

40 A.S. MURAWSKI AND N. TZEVELEKOS

question of unT ↾ AB. Let q
Σ′

0
0 be the move in s corresponding to qΣ0

0 . q
Σ′

0
0 is the pending

question in s′nT
′
and therefore it appears in ps′nT

′
q. Moreover, since α is closed in s′nT

′
,

α /∈ ν(Σ′
0), which means that q

Σ′
0

0 occurs in ps′nT
′
q before the move introducing α in s. But

then α /∈ ν(Σ0), a contradiction.
For (d), we do induction on |s ‖ t|, the base case being trivial. If mΣ is an O-move in
AC then the claim is obvious. So assume WLOG mΣ is a P-move in AB and consider
ps ‖ t ↾ ABq≥nT , and take two consecutive moves mΣ1

1 mΣ2
2 in it, and assume mΣ2

2 be a P-
move in AB. Then these are consecutive also in s ‖ t ↾ AB and hence, by switching, also
in s ‖ t. Let α ∈ ν(Σ1 \ Σ2). By definition of interaction, this dropping of α happens in s

too, at the respective consecutive moves m
Σ′

1
1 m

Σ′
2

2 , assuming s = · · ·nT
′
· · ·m

Σ′
1

1 m
Σ′

2
2 · · ·mΣ′

.
We can see that, as psq is in block-form, α /∈ ν(Σ′) and therefore, by Just, α /∈ ν(T ′).

More than that, nT
′
occurs in s before the move introducing α in s, thus α /∈ ν(T). We

therefore have Σ1 \ (Σ1 \ Σ2) ≤p Σ2 and ν(Σ1 \ Σ2) ∩ ν(T) = ∅. On the other hand,

if mΣ2
2 is an O-move in AB then mΣ1

1 is its justifier and therefore, by IH, Σ1 ≤p Σ2.

Thus, for every move m′′Σ′′
in ps ‖ t ↾ ABq≥nT , we have T ≤p Σ′′ and hence T ≤p Σ.

Finally, if mΣ is an answer then, since ps ‖ t ↾ ABq satisfies well-bracketing, we have that

ps ‖ t ↾ ABq≥nT = nT0qΣ1
1 aT1

1 · · · q
Σj

j a
Tj

j m
Σj+1 with dom (Σi) = dom (Ti) for each 1 ≤ i ≤ j

by IH. Assuming s≥nT ′ = nT
′
0q

Σ′
1

1 · · · a
T ′
1

1 · · · q
Σ′

j

j · · · a
T ′
j

j m
Σ′

j+1 , if α ∈ ν(Σi+1 \ Ti) for some

i then α ∈ ν(Σ′
i+1 \ T

′
i) and therefore α /∈ ν(T ′

0) = ν(Σ′
j+1). But the latter implies that

α ∈ ν(T ′
i′ \Σ

′
i′+1) for some i < i′ ≤ j and therefore α /∈ ν(Σi′+1). Thus, ν(Σ \ T) = ∅.

For (e), we replay the proof of lemma A.3, that is, we show that, for every u′2 ⊑p u2,
α /∈ ν(xu1nT pΣu′2y). We do induction on |u′2|. For the base case, by (b) we have that
pu1nT q has block-form; in particular, it ends in a block of moves which contains the move
introducing α in u, and all moves in the block contain α in their stores. Hence, since
the justifier of pΣ, say n′T

′
, occurs in pu1nT q and a /∈ ν(T ′) (by (d) and the fact that

α /∈ ν(Σ)), we have that n′T
′
occurs in u before the move introducing α in it and therefore

α /∈ ν(xu1nT pΣy). Now, if u′2 = u′′2o
′T ′

(an O-move in AC) then we need to show that

α /∈ ν(xu1mTpΣu′′2yo
′T ′

) given by IH that α /∈ ν(xu1mT pΣu′′2y), which immediately follows

from Visibility. Finally, if u′2 = u′′2p
′Σ′

(a generalised P-move) then, by IH, α /∈ ν(u′′2) and

therefore, by (a), α /∈ ν(Σ′). Let p′Σ
′
be justified by some m′T ′

in u. If m′T ′
occurs in u′′2

then our argument follows directly from the IH. Otherwise, arguing as before, m′T ′
occurs

in u before the introduction of α and therefore α /∈ ν(xu1mT pΣu′′2p
′Σ′

y).
For (f), suppose α appears in a B-move nT of u. By (e), and because α reappears in mΣ , we
have that α also appears in the move following nT in u. Applying this reasoning repeatedly,
we obtain that α appears in u ↾ AC after nT .
For (g), we do induction on |s ‖ t|, the base case being trivial. Now assume s = s′mΣ′

. If
m is an O-move then Σ′ ≤ Σ follows from (d) and from the IH applied to the subsequence
ending in the justifier of mΣ. Moreover, if α ∈ ν(Σ′) then Σ′(α) is determined by the last

appearance of α in s′, say nT
′
. By IH, the corresponding move of s′ ‖ t has store T , with

T (α) = T ′(α). But then, by inspection of the definition of interaction, any move in s ‖ t
occurring after nT does not change the value of α, hence Σ(α) = T (α) = Σ′(α). If m is a

P-move preceded by nT
′
then, using the IH, we have

Σ′ = T ′[Σ′] \ (T ′ \Σ′) + (Σ′ \ T ′) ≤ (snT
′
• t)[Σ′] \ (T ′ \Σ′) + (Σ′ \ T ′) = Σ .

BLOCK STRUCTURE VS SCOPE EXTRUSION 41

From the above, and using again the IH, we obtain also that Σ[Σ′] = Σ. Moreover, if
α ∈ ν(st(t)) then, by IH, if the last B-move of s ‖ t has store ΣB then ΣB(α) = st(t)(α)
and the value of α cannot be changed by subsequent A-moves. Hence, if α ∈ ν(Σ) then

Σ(α) = st(t)(α). The case of t = t′mΣ′
is treated dually.

For (h), the last two moves come from the same sequence, say s, so let s = s′nT
′
pΣ

′
. We

have that

T \Σ = (snT
′
• t) \ ((snT

′
• t)[Σ′] \ (T ′ \Σ′) + (Σ′ \ T ′))

= (snT
′
• t) \ ((snT

′
• t)[Σ′] \ (T ′ \Σ′)) = (T ′ \Σ′)[snT

′
• t]

where the last equality holds because T ′\Σ′ ≤ T ′ ≤ T = snT
′
• t, by (g). Hence, T \(T \Σ) =

T \(T ′ \Σ′) ≤p Σ. We still need to show that T ′\Σ′ ≤s T . Let α1, α2 be consecutive names

in dom (T) such that α1 ∈ ν(T ′ \Σ′). Then, the point of introduction of α2 in unT does not

precede that of α1, say q
Σ1
1 . Now, by (c), α1 is closed in unT so, using also (b), the latter

has the form u′qΣ1
1 · · · aT1

1 q
Σ2
2 · · · aT2

2 · · · q
Σj

j · · · a
Tj

j . Thus, by (d), the point of introduction

of α2 has to be one of the qΣi

i ’s. This implies that α1, α2 ∈ ν(s) and therefore α1, α2 are
consecutive also in T ′. But then α1 ∈ ν(T ′ \Σ′) implies α2 ∈ ν(T ′ \Σ′) too.

Proof of lemma 4.12. Let us write Σij for Σi \Σj . Then, the LHS is:

L = Σ1[Φ(Σ3, Σ4, Σ5)] \ (Σ2 \Φ(Σ3, Σ4, Σ5)) +Φ(Σ3, Σ4, Σ5) \Σ2

= Σ1[Φ(Σ3, Σ4, Σ5)] \ (Σ2 \ (Σ3[Σ5] \Σ45 +Σ54)) + (Σ3[Σ5] \Σ45 +Σ54) \Σ2

= Σ1[Φ(Σ3, Σ4, Σ5)] \ (Σ2 \ (Σ3 \Σ45)) + (Σ3[Σ5] \Σ45) \Σ2 +Σ54

where the last equality holds because of (a). The first constituent above is:

L1 = Σ1[Σ3[Σ5] \Σ45 +Σ54] \ (Σ2 \ (Σ3 \Σ45)) = Σ1[Σ3[Σ5] \Σ45] \ (Σ2 \ (Σ3 \Σ45))

On the other hand, the RHS is:

R = Φ(Σ1, Σ2, Σ3)[Σ5] \Σ45 +Σ54 = (Σ1[Σ3] \Σ23 +Σ32)[Σ5] \Σ45 +Σ54

= ((Σ1[Σ3] \Σ23) \Σ45)[Σ5] + (Σ32 \Σ45)[Σ5] +Σ54

= ((Σ1[Σ3] \Σ23) \Σ45)[Σ5] + (Σ3[Σ5] \Σ45) \Σ2 +Σ54

The first constituent above is:

R1 = ((Σ1[Σ3 \Σ45] \Σ23) \Σ45)[Σ5] = ((Σ1[Σ3[Σ5] \Σ45] \Σ23) \Σ45)[Σ5]

= (Σ1[Σ3[Σ5] \Σ45] \Σ23) \Σ45

For the last equality, let α by in the domain of the resulting store. Then α ∈ ν(Σ5)∩ ν(Σ1),
∴ α ∈ ν(Σ4) ∩ ν(Σ1), so α ∈ ν(Σ2) by (b). Moreover, α /∈ ν(Σ23), ∴ α ∈ ν(Σ3). Now, let
us write Σ for Σ1[Σ3[Σ5] \Σ45]. We need to show that

Σ \ (Σ2 \ (Σ3 \Σ45)) = (Σ \ (Σ2 \Σ3)) \Σ45

and, in fact, it suffices to show that these stores, say ΣL and ΣR, have the same domain.
By elementary computation,

• α ∈ ν(ΣL) iff (α ∈ ν(Σ) ∧ α /∈ ν(Σ2)) ∨ (α ∈ ν(Σ) ∧ α ∈ ν(Σ3) ∧ α /∈ ν(Σ45)),
• α ∈ ν(ΣR) iff (α ∈ ν(Σ)∧α /∈ ν(Σ2)∧α /∈ ν(Σ45))∨(α ∈ ν(Σ)∧α ∈ ν(Σ3)∧α /∈ ν(Σ45)).

But note now that α ∈ ν(Σ) ∧ α /∈ ν(Σ2) implies that α /∈ ν(Σ4), by (b), so α /∈ ν(Σ45).

42 A.S. MURAWSKI AND N. TZEVELEKOS

Appendix B. Proof of Lemma 7.5

We prove two auxiliary results first, which are special cases of Lemma 7.5.

Lemma B.1. Any identifier xθ satisfies Lemma 7.5. Moreover, the canonical form is of the
form λyθ1.C when θ ≡ θ1 → θ2 and of the shape mkvar(λyunit.C, λzint.C) if θ ≡ var.

Proof. Induction with respect to type structure. If θ is a base type, xθ is already in canonical
form. xvar can be converted to one using the rule

xvar −→ mkvar(λuint.x :=u, λvunit.!x)

For θ ≡ θ1 → θ2 we use the rule

xθ1→θ2 −→ λzθ1 .let vθ2 = xzθ1 in v

and appeal to the inductive hypothesis for zθ1 and vθ2 .

Lemma B.2. Suppose C1, C2 are canonical forms. Then let yθ = C1 in C2, if typable,
satisfies Lemma 7.5.

Proof. Induction with respect to type structure. If θ is a base type, the term is already
in canonical form. If θ is not a base type, C1 can take one of the following three shapes:
mkvar(λxunit.C, λyint.C), λxθ11 .C, if x

β thenC elseC or let · · · in C.
We first focus on the first two of them to which the remaining two cases will be reduced

later.

• Suppose C1 ≡ mkvar(λxunit1 .C11, λx
int
2 .C12). Then θ ≡ var. Since C2 is in canonical

form, y can only occur in it as part of a canonical subterm of the form yvar := zint or
!y. Hence, after substitution for y, we will obtain non-canonical subterms of the shape
mkvar(λxunit1 .C11, λx

int
2 .C12) := z and !(mkvar(λxunit1 .C11, λx

int
2 .C12)). Using the rules

!mkvar(λuunit.D1, λv
int.D2) −→ D1[()/u]

mkvar(λuunit.D1, λv
int.D2) := z −→ D2[z/v]

we can easily convert them (and thus the whole term) to canonical form.

• Suppose C1 ≡ λxθ11 .C3 and θ ≡ θ1 → θ2. Let us substitute C1 for the rightmost
occurrence of y in C2. This will create a non-canonical subterm in C2 of the form
let xθ2 = (λxθ11 .C3)C4 in C5 ≡ let xθ2 = (let xθ11 = C4 in C3) in C5. By inductive

hypothesis for θ1, let x
θ1
1 = C4 in C3 can be converted to canonical form, say, C6. Con-

sequently, the non-canonical subterm let xθ2 = (λxθ11 .C3)C4 in C5 can be transformed
into the form let xθ2 = C6 in C5, which — by inductive hypothesis for θ2 — can also be
converted to canonical form. Thus, we have shown how to recover canonical forms after
substitution for the rightmost occurrence of y. Because of the choice of the rightmost
occurrence, the transformation does not involve terms containing other occurrences of y,
so it will also decrease their overall number in C2 by one. Consequently, by repeated
substitution for rightmost occurrences one can eventually arrive at a canonical form for
let yθ = (λxθ11 .C3) in C2.

For the remaining two cases it suffices to take advantage of the following conversions before
referring to the two cases above.

let y = (if x thenD1 elseD0) in E −→ if x then (let y = D1 in E) else (let y = D0 in E)
let y = (let x = D in E) in F −→ let x = D in (let y = E in F)

BLOCK STRUCTURE VS SCOPE EXTRUSION 43

Now we are ready to prove Lemma 7.5 by induction on term structure. The base cases of
(), i are trivial. That of xθ follows from Lemma B.1.

The following inductive cases follow directly from the inductive hypothesis: new x inM ,
λxθ.M , whileM doM . The cases of M1⊕M2 and ifM thenN1 elseN0 are only slightly more
difficult. After invoking the inductive hypothesis one needs to apply the rules given below.
Note that in this case all the let-bindings are of base type.

D1 ⊕D2 −→ let x = D1 in (let y = D2 in (x⊕ y))
ifD thenD1 elseD0 −→ let x = D in (if x thenD1 elseD0)

For !M andM :=N we take advantage of the fact that a canonical form of type var can only
take three shapes: mkvar(λxunit.C, λyint.C), if xβ thenC elseC or let · · · in C. An appeal to
the inductive hypothesis for M and N and the conversions given below will then yield the
canonical forms for !M and M :=N .

!mkvar(λuunit.D1, λv
int.D2) −→ D1[()/u]

mkvar(λuunit.D1, λv
int.D2) := E −→ let xint = E in D2[x/v]

!(if x thenD1 elseD0) −→ if x then !D1 else !D0

(if x thenD1 elseD0) :=D −→ if x then (D1 :=D) else (D0 :=D)
!(let x = D in E) −→ let x = D in !E

(let x = D in E) :=F −→ let x = D in (E :=F)

To convert mkvar(M,N) to canonical form we observe that a canonical form of function
type can take the following shapes: λxθ.C, if xβ thenC elseC or let · · · in C. Hence, by
appealing to the inductive hypothesis and then repeately applying the rules below we will
arrive at a canonical form.

mkvar(if x thenD1 elseD0, E) −→ if x thenmkvar(D1, E) else mkvar(D0, E)
mkvar(let x =M in D,E) −→ let x =M in mkvar(D,E)

mkvar(λuunit.D, if x thenE1 elseE0) −→ if x thenmkvar(λuunit.D,E1) elsemkvar(λuunit.D,E0)
mkvar(λuunit.D, let x =M in E) −→ let x =M in mkvar(λuunit.D,E)

Finally, we handle application MN . First we apply the inductive hypothesis to both
terms. Then we use the rules below to reveal the λ-abstraction inside the canonical form of
M .

(if x thenD1 elseD0)E −→ if x then (D1E) else (D2E)
(let x = D in E)F −→ let x = D in (EF)

Now it suffices to be able to deal with terms of the form (λxθ.C1)C2 ≡ let x = C2 in C1,
and this is exactly what Lemma B.2 does.

All our transformation preserve denotations: the proofs are simple exercises in the use
of Moggi’s monadic approach [13] to modelling call-by-value languages (the store-free game
model is an instance of the monadic framework).

This work is licensed under the Creative Commons Attribution-NoDerivs License. To view
a copy of this license, visit http://creativecommons.org/licenses/by-nd/2.0/ or send a
letter to Creative Commons, 171 Second St, Suite 300, San Francisco, CA 94105, USA, or
Eisenacher Strasse 2, 10777 Berlin, Germany

	1. Introduction
	2. Syntax
	3. Game semantics
	4. Games with stores and the model of IAcbv
	4.1. Names and stores in games
	4.2. Composing S-plays
	4.3. Associativity
	4.4. The categories S and Sinn
	4.5. The model of IAcbv
	4.6. Block-innocent strategies

	5. Finitary definability and universality
	5.1. Finitary definability
	5.2. Universality

	6. From omniscience to innocence
	7. Decidability of a finitary fragment of IAcbv
	7.1. Pointer-related issues
	7.2. IA2+
	7.3. Regular-language interpretation

	8. Summary
	Acknowledgement
	References
	Appendix
	Appendix A. S-plays
	Appendix B. Proof of Lemma ??

