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Abstract. We study idempotents in intensional Martin-Löf type theory, and in particular
the question of when and whether they split. We show that in the presence of propositional
truncation and Voevodsky’s univalence axiom, there exist idempotents that do not split;
thus in plain MLTT not all idempotents can be proven to split. On the other hand,
assuming only function extensionality, an idempotent can be split if and only if its witness
of idempotency satisfies one extra coherence condition. Both proofs are inspired by parallel
results of Lurie in higher category theory, showing that ideas from higher category theory
and homotopy theory can have applications even in ordinary MLTT.

Finally, we show that although the witness of idempotency can be recovered from a
splitting, the one extra coherence condition cannot in general; and we construct “the type
of fully coherent idempotents”, by splitting an idempotent on the type of partially coherent
ones. Our results have been formally verified in the proof assistant Coq.

1. Introduction

In December 2014 Mart́ın Escardó asked me whether idempotents split in Martin-Löf type
theory (mltt). This paper is a long-winded answer.

Usually, an idempotent means a function (necessarily an endofunction) that is equal to
its composite with itself, f ◦ f = f . In mltt, using the propositions-as-types methodology,
we might naturally take this to mean a function f : X → X, for some type X, together
with a witness of idempotency I :

∏

x:X(f(f(x)) = f(x)), where “=” denotes the identity
type. (If we assume function extensionality, as we often will, then to give I is equivalent to
giving I ′ : f ◦ f = f .)

A splitting of an idempotent f on X consists of functions r : X → A and s : A → X

such that r ◦ s = idA and s ◦ r = f . In zfc set theory, an idempotent always has a splitting
with A = {x ∈ X | f(x) = x}, where s is the inclusion and r is the corestriction of f . This
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suggests that in mltt we ought to consider A =
∑

x:X(f(x) = x), with s the first projection
s(x, p) :≡ x and r defined by r(x) :≡ (f(x), I(x)). However, as Mart́ın observed, this does
not work in general:

Example 1.1. Let X be any type and let f = idX be its identity function, with I the
obvious witness defined by I(x) :≡ reflx. Then with the above-defined A, s, and r, we have
∏

a:A(r(s(a)) = a) if and only if X satisfies Uniqueness of Identity Proofs (uip). (We will
prove this in §3.) Since mltt does not prove that all types satisfy uip, neither can it prove
that this construction always splits an idempotent.

Now, if we were wondering whether mltt proved some theorem and we had found
that the obvious proof of some theorem used a classical axiom such as the law of excluded
middle, then it would be natural to seek for counterexamples in nonclassical models (such
as topological or realizability models) or disproofs from nonclassical axioms (such as strong
Church’s thesis or Brouwerian continuity principles). Similarly, having found that the
obvious way to split idempotents depends on uip, it is natural to seek counterexamples
in models that violate uip or disproofs from axioms that contradict it.

This leads us into the recently discovered realm of Homotopy Type Theory and Uni-
valent Foundations [APW13, Awo12, PW14, Uni13]. Models which violate uip, such as the
Hofmann–Streicher groupoid model [HS98] and Voevodsky’s simplicial set model [KLV12],
tend to be based on the idea that types are homotopy spaces or ∞-groupoids. The principal
known axiom that contradicts uip — Voevodsky’s univalence axiom — is also based on this
idea.

This suggests that when seeking inspiration from classical mathematics, instead of zfc
set theory we should look to homotopy theory and ∞-groupoid theory. In these fields, an
important role is played by homotopy coherence. When a structure satisfies some property
“up to homotopy”, for many purposes it is not enough to simply have such a homotopy;
often one requires this homotopy to satisfy some natural axiom(s) at the next dimension
up — and that only up to homotopy, a homotopy that in turn satisfies its own axioms up
to even higher homotopy, and so on to infinity.

For instance, instead of a group we may consider an ∞-group (a.k.a. “grouplike A∞-
space”). This is a space X with a multiplication m : X × X → X that is, among other
things, associative but only up to homotopy: for any x, y, z ∈ X instead ofm(m(x, y), z) and
m(x,m(y, z)) being equal, they are connected by a path depending continuously on x, y, z.
These paths are then required to satisfy a further property: for any x, y, z, w ∈ X there is
a pentagon that can be built out of these paths, and we require that there be a continuous
way to “fill in” that pentagon inside X. From those filled pentagons one can then construct
the boundary of a certain polyhedron, which we require to have a continuous filler, and so
on. If we stop at any finite stage, we obtain a much more poorly-behaved notion.

Now, under the homotopical interpretation of mltt, a witness of idempotency I :
∏

x:X(f(f(x)) = f(x)) corresponds to a homotopy from f ◦f to f . Thus, from a homotopy-
theoretic point of view, it is natural to expect that I itself would not be enough to obtain a
well-behaved notion of “idempotent” (such as, for instance, one that can be split): we should
ask it to satisfy a further property analogous to filling the pentagon, and that filler should
itself satisfy a higher axiom up to homotopy, and so on. In the context of ∞-categories,
such a definition of fully-coherent idempotent has been given by Lurie in [Lur09, §4.4.5],
along with proofs that every fully-coherent idempotent splits and every split idempotent is
fully-coherent.
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Unfortunately, there is a well-known problem with representing such fully-coherent
structures in mltt: on the face of it they seem to require a tower of infinitely many terms,
each dependent on the previous ones, which is not something that can be defined as a single
object in mltt. This is somewhat disheartening for the project of splitting idempotents.
However, it’s important not to read more into the results of Lurie cited above than they
say. They do say that if a function f can be written as s ◦ r where r ◦ s = id, then f admits
a “coherent system of idempotence data”. They don’t say that if f is idempotent with a
specified homotopy I, and f splits, then I must itself admit an extension to a coherent
system of idempotence data. Therefore:

• Even though a split idempotent automatically gives rise to an infinite system of
coherence data, it doesn’t follow that in order to construct a splitting we would
necessarily need to give an infinite system of coherence.

• It’s not too hard to give examples of homotopies I that are not coherent, but it’s
rather less obvious how to give an example of an incoherent idempotent for which
there doesn’t exist some other homotopy that is coherent.

Fortunately, Lurie has already addressed these questions as well (still in the∞-categorical
context). In [Lur14, Warning 1.2.4.8] he gave an example of an incoherent idempotent that
does not split, and in [Lur14, Lemma 7.3.5.14] he showed that to construct a splitting, one
additional coherence datum suffices. Inspired by these results, we will set out to transfer
them to mltt, as follows:

(1) Assuming propositional truncation and the univalence axiom, we can adapt Lurie’s
counterexample to show that a single witness of idempotency I :

∏

x:X(f(f(x)) =
f(x)) is insufficient to construct a splitting. In fact, our construction is slightly
simpler than Lurie’s, and involves an object familiar to constructive mathematicians:
the Cantor space 2N.

(2) However, under the weaker assumption of function extensionality, we can adapt
Lurie’s construction to show that if we also have J :

∏

x:X(apf (I(x)) = I(f(x))),
then we can construct a splitting. (Here apf denotes the action of f on witnesses
of equality; sometimes it is called resp.) Our construction is actually the dual of
Lurie’s: we use a limit where he uses a colimit. A colimit would probably also
work, but would require further assumptions on type theory for its construction
and well-behavedness.

Note that the latter positive result does not require the univalence axiom. So although
inspired by higher category theory, we obtain a result that should be of interest even in
pure intensional mltt.

Based on these results, we propose that, as in higher category theory, the unadorned
word idempotent should not be used for the “incoherent” notion that includes only a single
witness I. Instead we will call the pair (f, I) a pre-idempotent.

One might think that the triple (f, I, J) ought to deserve the name “idempotent”, since
although it does not include all the higher coherence data, we have seen that it does suffice
to construct a splitting. However, this is not the case. It is true, in the ∞-categorical
world, that a splitting induces a fully coherent idempotent in Lurie’s sense, and hence so
does a triple (f, I, J); but nothing guarantees that the resulting coherent idempotent is an
extension of (f, I, J) itself. In fact, we will show in mltt that it is an extension of (f, I),
but not in general of J : assuming univalence and propositional truncation, there exist
choices for J that are not coherentifiable at all. For these reasons, we will instead call a
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triple (f, I, J) a quasi-idempotent; it is analogous to the “incoherent, but coherentifiable,
equivalences” that in [Uni13] are called quasi-inverses.

At this point we may wonder whether there is any way to define the word “idempotent”
in mltt in a way that will translate to the correct notion homotopically. There is one
answer that is somewhat “cheap”: by [Lur09, Corollary 4.4.5.14], in an ∞-category the
space of idempotents on an object X is equivalent to the space of retractions of X, meaning
quadruples (A, r, s,H) where r : X → A and s : A → X and H is a homotopy r ◦ s ∼ idA.
The latter can be defined in mltt (with universes) as

Retr(X) :≡
∑

A:Type

∑

r:X→A

∑

s:A→X

∏

a:A(r(s(a)) = a),

and if we assume the univalence axiom, it will have the correct homotopy type. Thus, we
could define an idempotent on X to be an inhabitant of this type.

Of course, this would be rather unsatisfying: we expect an “idempotent” to consist of
a map f : X → X equipped with some kind of structure, and we expect the construction of
its splitting to be a nonvacuous operation. Moreover, it has an actual technical drawback
as well: since it involves a sum over a universe Type, it lives in a universe one higher than
that of X.

Both of these problems can be solved with the following trick. If we define the type of
quasi-idempotents in the expected way:

QIdem(X) :≡
∑

f :X→X

∑

I:
∏

x:X(f(f(x))=f(x))

∏

x:X(apf (I(x)) = I(f(x)))

then the above splitting construction yields a map

split : QIdem(X) → Retr(X).

On the other hand, since every retraction induces a coherent idempotent, we have a map

uli : Retr(X) → QIdem(X)

and these two maps can be shown to exhibit Retr(X) itself as a retract of QIdem(X).
Therefore, the composite uli ◦ split is a quasi-idempotent on QIdem(X), and if we construct
its splitting as above, we obtain a type equivalent to Retr(X). This splitting type is what we
propose as the definition of (fully coherent) idempotent: it has the correct homotopy
type; it is by construction an equipping of an endomap with data (indeed, infinitely many
data, encoded internally by way of the natural numbers type); and it lies in the same
universe as X.

The plan of the paper is as follows. In §2 we recall some notation and terminology
from [Uni13]. In §3 we ease into the study of idempotents by considering several hypotheses
(due to Mart́ın Escardó) under which pre-idempotents can be split. The next two sec-
tions contain the main results: in §4 we give our example of a pre-idempotent that admits
no splitting (assuming propositional truncation and the univalence axiom), and in §5 we
construct a splitting of any quasi-idempotent (assuming function extensionality).

The remaining sections are concerned with the more technical coherence questions. In
§6 we show that split exhibits Retr(X) as a retract of QIdem(X). In §7 we show that this
retraction is not an equivalence, and conclude that although the underlying pre-idempotent
of a quasi-idempotent can be recovered from its splitting, the coherence datum J cannot in
general be. In §8 we complete a proof from §7 that requires a lengthy analysis of some clas-
sifying spaces in type theory. Finally, in §9 we define the type of fully-coherent idempotents,
and in §10 we conclude with some remaining open problems.
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Throughout, we will argue in the informal style of [Uni13], and we will make use of the
basic results from Chapters 1–4 thereof. However, all the main results of this paper have
also been formally verified in the proof assistant Coq, using the Homotopy Type Theory
library [HoT15], and are available as part of that library. As of the date of publication, the
correspondence between sections of this paper and files in the library is:

Section Library File
§3 Idempotents.v

§4 Spaces/BAut/Cantor.v

§§5–7 Idempotents.v

§8 Spaces/BAut.v and Spaces/BAut/Bool.v

§9 Idempotents.v

The idempotents-paper git tag records this version of the library.

2. Some notation and terminology

For the most part, we adopt the notation and terminology of [Uni13]. We write
∏

x:AB(x)
and

∑

x:AB(x) for dependent product and sum as usual in mltt, with their non-dependent
special cases A → B and A × B. We write the identity type of two elements x, y : A as
x =A y, or usually just x = y; its canonical elements are reflx : x = x. We write x ≡ y for a
judgmental equality, and a :≡ b if a is currently being defined to equal b.

A type A is called a mere proposition if we have
∏

x,y:A(x = y). In other words,

isprop(A) :=
∏

x,y:A(x = y). It is said to be a set, or to satisfy uip (Uniqueness of Identity

Proofs), if
∏

x,y:A isprop(x = y), or equivalently
∏

x:X

∏

p:x=x(p = reflx).

For functions f, g : A → B, we write f ∼ g for the type
∏

x:A(f(x) = g(x)), and call
it the type of homotopies from f to g. The function extensionality axiom, which we
will almost always have available (either by explicit assumption, or as a consequence of
some other assumption), says that this type is equivalent (see below) to the identity type
f =A→B g.

For types A and B, we write A ≃ B for the type of equivalences from A to B. This
is defined as

∑

f :A→B isequiv(f), where isequiv(f) is any one of a number of well-behaved

definitions, the first of which was due to Voevodsky; see [Uni13, Chapter 4] for details. The
important properties are that isequiv(f) if and only if

∑

g:B→A(f ◦ g ∼ id) × (g ◦ f ∼ id)

(we generally use the “if” direction of this to construct equivalences), and that isequiv(f)
is a mere proposition. There is a canonical map (A = B) → (A ≃ B), and Voevodsky’s
univalence axiom says that this map is itself an equivalence.

The propositional truncation is, when assumed, a rule associating to every type A

a type ‖A‖ which is a mere proposition, and a map |−| : A → ‖A‖, such that any function
from A to a mere proposition factors judgmentally through ‖A‖. In other words, if B is a
mere proposition and f : A → B, then there exists g : ‖A‖ → B such that f(a) ≡ g(|a|)
for all a : A. We sometimes pronounce ‖A‖ as “merely A”, e.g. if we have an element of
‖A ≃ B‖ we say that A and B are merely equivalent. Both univalence and propositional
truncation imply function extensionality; the former is due to Voevodsky (see e.g. [Uni13,
§4.9]) and the latter to [KECA14, Corollary 9.3].

With homotopy-theoretic intuition in mind, elements of identity types (i.e. witnesses of
equality) are sometimes called paths. For p : x =A y and q : y =A z, we have p � q : x =A z

(a witness of transitivity) and p−1 : y =A x (a witness of symmetry), defined using the
eliminator of the identity type. Similarly, if f : A → B, we have apf (p) : f(x) =B f(y), and
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this operation is functorial (up to propositional equality) in two ways: apg ◦ apf = apg◦f ,
and apf (p � q) = apf (p) � apf (q).

We will frequently use the fact that homotopies between functions satisfy a naturality
property [Uni13, Lemma 2.4.3]. Specifically, given g, h : B → C and L : g ∼ h, for any
b1, b2 : B and p : b1 = b2, we have

apg(p) � L(b2) = L(b1) � aph(p).

The other important facts we will use from [Uni13] are the theorems from its Chapter 2
that characterize the identity types of different type formers (sometimes requiring univalence
and function extensionality). For instance, the type (a1, b1) =A×B (a2, b2) is equivalent to
(a1 =A a2) × (b1 =B b2), i.e. two ordered pairs are equal just when their components are.
In most cases these results are reasonably intuitive.

3. Some pre-idempotents that split

As suggested in the introduction, we define:

Definition 3.1. A pre-idempotent is an endofunction f : X → X equipped with a
witness of idempotency I : f ◦ f ∼ f .

Definition 3.2. A retract of a type X consists of a type A, functions s : A → X and
r : X → A, and a homotopy H : r ◦ s ∼ idA. A splitting of an endofunction f : X → X is
a retraction (A, r, s,H) together with a homotopy K : s ◦ r ∼ f .

The following is fairly obvious.

Lemma 3.3. If f has a splitting, then it is pre-idempotent.

Proof. Clearly anything homotopic to a pre-idempotent is pre-idempotent, so it suffices to
show that if we have a retraction (A, r, s,H) then s ◦ r is pre-idempotent. In this case, for
any x : X, we can define I(x) :≡ aps(H(r(x))) : s(r(s(r(x)))) = s(r(x)).

We can also show easily that splittings are essentially unique in at least a weak sense.

Lemma 3.4. Suppose f : X → X has two splittings (A, s, r,H,K) and (A′, s′, r′,H ′,K ′).
Then A ≃ A′.

Proof. We have two functions r′s : A → A′ and rs′ : A′ → A, and their composites are
homotopic to identities:

r′srs′ ∼ r′fs′ ∼ r′s′r′s′ ∼ idA′

and similarly rs′r′s ∼ idA.

We expect that a split endofunction is not only pre-idempotent, but fully-coherently
idempotent. As remarked in the introduction, it is difficult to define fully-coherent idem-
potents in type theory, but we can at least define the next step of coherence.

Definition 3.5. A quasi-idempotent is a pre-idempotent (f, I) together with a witness
of coherence J :

∏

x:X(apf (I(x)) = I(f(x))).

Lemma 3.6. If f has a splitting, then it is quasi-idempotent.

Proof. As in Lemma 3.3, it suffices to show that for any retraction (A, s, r,H), s◦r is quasi-
idempotent. For this case, in Lemma 3.3 we defined I(x) :≡ aps(H(r(x))) : s(r(s(r(x)))) =



IDEMPOTENTS IN INTENSIONAL TYPE THEORY 7

s(r(x)). Thus, for x : X the desired type of J(x) is

apf (aps(H(r(x)))) = aps(H(r(f(x)))).

This is equivalent to

aps(apr◦s(H(r(x)))) = aps(H(r(s(r(x))))).

Peeling off an aps, and letting a :≡ r(x), it will suffice to show that for any a : A we have

apr◦s(H(a)) = H(r(s(a))).

At first this seems like a nontrivial property of H. However, in fact it is automatic. For
by naturality of the homotopy H applied at the equality H(a), we have

apr◦s(H(a)) �H(a) = H(r(s(a))) �H(a).

Now we can cancel H(a) from both sides to obtain the desired result.

We now give a few conditions under which pre-idempotents can be split. Our first
observation is:

Theorem 3.7. If X is a set, then any pre-idempotent on X has a splitting.

Proof. Define A :≡
∑

x:X(f(x) = x), and let s and r be defined by s(x, p) = x and r(x) =
(f(x), I(x)). Now for x : X, we have s(r(x)) ≡ f(x) by definition; hence we can take
K(x) :≡ reflf(x). On the other hand, for (x, p) : A we have r(s(x, p)) ≡ (f(x), I(x)); thus
H(x, p) must inhabit ((f(x), I(x)) = (x, p)). By [Uni13, Theorems 2.7.2 and 2.11.3], to give
an element of this type we must give q : f(x) = x and r : apf (q)

−1
� I(x) � q = p. But we

can take q :≡ p, and obtain r from the assumption that X is a set.

Now here is our elaboration of Example 1.1, showing that this construction cannot
always work.

Example 3.8 (Escardó). Let X be any type and f :≡ idX , with I(x) :≡ reflx. Then with
the above-defined A, s, and r, the desired type of H(x, p) is equivalent to q−1

� reflx � q = p,
and hence to reflx = p. If this is true for all x : X and all p : x = x, then X satisfies uip.

Escardó has also observed a couple of other situations in which pre-idempotents can be
split. For the first, recall from [KECA14] that a function f : X → Y is weakly constant
if we have a witness

∏

x,y:X(f(x) = f(y)).

Theorem 3.9 (Escardó). If a pre-idempotent is weakly constant, then it has a splitting.

Proof. We use the same construction as in Theorem 3.7; by following the proof thereof,
it remains only to construct H. However, by [KECA14, Lemma 4.1]1, when f is weakly
constant, our type A :≡

∑

x:X(f(x) = x) (there called fix(f)) is a mere proposition, i.e. we
have

∏

a,b:A(a = b). This makes the construction of H trivial.

Conversely, it is easy to see that if an endofunction splits through a mere proposition,
then it is weakly constant.

For the second, recall from [KECA14] that a type is called collapsible if it admits a
weakly constant endofunction. This is equivalent to the existence of some mere proposition
P with functions A → P and P → A (since any function that factors through a mere
proposition is weakly constant, while by [KECA14, Lemma 4.1] if f is weakly constant
we can take P :≡ fix(f)). Moreover, if we have propositional truncation, collapsibility is

1Also formalized in [HoT15] as ishprop_fix_wconst in Constant.v.
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equivalent to the existence of a map ‖A‖ → A, a property which one may call having split
support. Finally, recall from [Uni13, Lemma 7.6.2] that a function f : A → B is said to
be an embedding if for all b : B the type

∑

a:A(f(a) = b) is a mere proposition.
The following theorem is our first example of a definable splitting in which the splitting

type A is not the obvious
∑

x:X(f(x) = x).

Theorem 3.10 (Escardó). An endofunction f has a splitting in which the section s is an
embedding if and only if it is pre-idempotent and the type f(x) = x is collapsible for all x.

(It is arguably more natural to formulate this theorem in terms of split support. The
advantage of using collapsibility instead is that it makes sense even in the absence of propo-
sitional truncation.)

Proof. First suppose f is pre-idempotent and each f(x) = x is collapsible. Thus, for each
x there is a mere proposition Px and maps ux : (f(x) = x) → Px and vx : Px → (f(x) = x).
(If we have propositional truncation, we can take Px :≡ ‖f(x) = x‖, and the reader may
find it easier to think about this case.) We define A :≡

∑

x:X Px, with s(x, p) :≡ x and
r(x) :≡ (f(x), uf(x)(I(x))), while K(x) :≡ reflf(x) as before. For H, given (x, p) : A where
x : X and p : Px, we must show that (f(x), uf(x)(I(x))) = (x, p), which as before amounts
to giving q : f(x) = x and an equality q∗(uf(x)(I(x))) = p, where q∗ : Pf(x) → Px denotes
transport along q. But we can define q :≡ vx(p), while the remaining equality is trivial since
Px is a mere proposition.

Now conversely, suppose f has a splitting in which s is an embedding; it remains to show
that f(x) = x is collapsible for all x : X. Since s is an embedding, the type

∑

a:A(s(a) = x)
is a mere proposition. Thus, it will suffice to construct maps in both directions relating
this type to f(x) = x, or equivalently to the type s(r(x)) = x. In one direction, given
p : s(r(x)) = x, we have (r(x), p) :

∑

a:A(s(a) = x). In the other, given a : A and
p : s(a) = x, we have s(r(x)) = s(r(s(a))) = s(a) = x.

Remarks 3.11.

(1) Theorem 3.7 is a special case of Theorem 3.10: if X is a set, then each type f(x) = x

is a mere proposition, hence trivially collapsible. Moreover, by [KECA14, Theorem
3.10], if every type x =X y is collapsible, then X is necessarily a set. However, there
do exist functions on non-sets to which Theorem 3.10 applies; a trivial example is
X :≡ Y + 1 with f(x) :≡ inr(tt).

(2) On the other hand, there can exist retractions for which the section is not an em-
bedding. For instance, any map 1 → X exhibits 1 as a retract of X, but to say
that all such maps are embeddings is just to say that X is a set. Thus, Theo-
rem 3.10 emphasizes another way in which idempotents in homotopy theory differ
from idempotents in set theory, since in set theory the splitting of an idempotent
always injects into the original set.

(3) When the conditions of Theorem 3.10 fail, it doesn’t generally mean there is any
particular x : X such that f(x) = x is not collapsible. It only means we cannot
assert that “f(x) = x is collapsible for all x : X”, since such an assertion would
imply an impossible “naturality” of the collapsing maps.

(4) Perhaps surprisingly, none of the results in this section require even function exten-
sionality.
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4. A pre-idempotent that doesn’t split

As mentioned in the introduction, it’s easy to give examples of idempotence witnesses
I : f ◦ f ∼ f that cannot be extended to a coherent system of idempotence data.

Example 4.1. Let X be any type with a point x0 : X for which there exists a nontrivial
p : x0 = x0, i.e. such that p 6= reflx0

. (For instance, in the presence of the univalence axiom,
we could let X be the universe, with x0 a type admitting a nonidentity self-equivalence,
such as 2.) Define f : X → X by f(x) :≡ x0 for all x, and let I(x) :≡ p for all x. Then
(f, I) is a pre-idempotent. But apf (q) = reflx0

for all q, so the second-level coherence type
∏

x:X(apf (I(x)) = I(f(x))) is equivalent to
∏

x:X(reflx0
= p), which by assumption is not

inhabited.

However, it’s less clear how to exhibit a pre-idempotent (f, I) for which there cannot
exist any other witness I ′ that is coherent. For instance, in the above example, we could
simply have taken I ′(x) :≡ reflx0

.
We will describe an example inspired by that of [Lur14, Warning 1.2.4.8], but not quite

identical to it. In Lurie’s example, the space X is the classifying space of the group of
endpoint-preserving self-homeomorphisms of the unit interval [0, 1]. However, the essential
feature of this choice, for the purposes of the example, is that two such homeomorphisms
can be shrunk by a factor of 2 and glued together to form a new such. This is reminiscent
of Freyd’s universal characterization of [0, 1] (see e.g. [Joh02, D4.7.17]), but in fact it can
be completely divorced from the topology. Thus, we will instead use a type familiar to
constructive mathematicians: the Cantor space.

Definition 4.2. The Cantor space is the type C :≡ (N → 2).

The essential property of C, for our purposes, is the following.

Lemma 4.3. Assuming function extensionality, C ≃ (C + C).

Proof. From left to right, given c : N → 2 we define c′(n) :≡ c(n + 1), and split into cases
based on whether c(0) is 0 or 1. In the former case, we send c to inl(c′), and in the second
case we send it to inr(c′).

From right to left, we send inl(c) to c0, where c0(0) :≡ 0 and c0(n + 1) :≡ c(n); and
similarly we send inr(c) to c1 where c1(0) :≡ 1 and c0(n + 1) :≡ c(n). It is easy to check
that these are inverse equivalences.

We now consider the “classifying space of the automorphism group of C”, starting by
defining it.

Assumption 4.4. For the rest of this section we assume both univalence and propositional
truncation.

From this assumption we also get function extensionality. In fact, as noted earlier, both
univalence and propositional truncation separately imply it.

Definition 4.5. For any Y : Type, we define BAut(Y ) :≡
∑

Z:Type‖Z = Y ‖.

Because ‖Z = Y ‖ is a mere proposition, if we have (Z, e) and (Z ′, e′) in BAut(Y ), the
type (Z, e) = (Z ′, e′) is equivalent to Z = Z ′ and hence (by univalence) to Z ≃ Z ′. This
justifies abusing the notation by identifying an element of BAut(Y ) with its first component,
which is a type Z that comes equipped with an element of ‖Z = Y ‖.
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In particular, we have the canonical element (Y, |reflY |) : BAut(Y ), and the type
(Y, |reflY |) = (Y, |reflY |) (the “loop space” of BAut(Y ) at this “basepoint”) is equivalent
to Y ≃ Y , the type of automorphisms of Y . It is in this sense that BAut(Y ) is a classifying
space for the automorphism group of Y . (The type BAut(Y ) is also a classifying space in
another sense: to give a map A → BAut(Y ) is equivalent to giving a map p : B → A such
that every fiber is merely equivalent to Y , i.e. for each a : A we have ‖Y =

∑

b:B(p(b) = a)‖.)
Our incoherent pre-idempotent will live on the type X :≡ BAut(C), where C is the

Cantor space. Thus, we must next construct a particular map f : X → X. If we translated
Lurie’s construction directly, we would do this by first defining an automorphism F of the
group Aut(C), by sending an automorphism h to the automorphism F (h) defined as the
composite

C ≃ C +C
h+id
−−−→ C + C ≃ C

where the equivalences come from Lemma 4.3. Then we would use the fact that an auto-
morphism of a group induces an automorphism of its classifying space to obtain from F an
automorphism of BAut(Y ).

However, although this fact is standard in homotopy theory, it is not obvious from our
definition of BAut(Y ) in type theory that any automorphism of the group Aut(Y ) induces
an automorphism of the type BAut(Y ). It can be deduced from the alternative construction
of classifying spaces in [LF14]; but fortunately in our case there is a better approach.

The univalence axiom has allowed us to define BAut(Y ) in such a way that its elements
literally are types that are merely equivalent to Y (or more precisely, equipped with such a
mere equivalence). Thus, we can define f to act directly on such types, rather than indirectly
on their automorphisms. Specifically, if we define f(Z) :≡ Z + C, then the induced action
on automorphisms will automatically have the intended effect as shown above.

All we have to do is verify that this definition indeed defines an endomorphism of
BAut(C), i.e. that if ‖Z = C‖ then also ‖Z + C = C‖. By the induction principle of propo-
sitional truncation, it suffices to prove that if Z = C then Z +C = C, and by univalence it
suffices to prove that if e : Z ≃ C then Z + C ≃ C. But for this we have the composite

Z + C ≃ C + C ≃ C

where the first equivalence is e+ id and the second is Lemma 4.3.
Next, we have to construct a witness of pre-idempotency for f , i.e. we must show that

for any Z : BAut(C) we have (Z + C) + C = Z + C. We again apply univalence and then
use the following composite equivalence:

(Z + C) + C ≃ Z + (C + C) ≃ Z + C (4.1)

consisting of the associativity of coproducts together with Lemma 4.3.
We are now ready for the central theorem of this section.

Theorem 4.6. There exists a pre-idempotent on X :≡ BAut(C) that does not split.

Proof. The construction of the pre-idempotent is as above; it remains to show that f does

not split. Lurie’s argument is that if it did, then the colimit X
f
−→ X

f
−→ X

f
−→ · · · would be

its splitting, and hence the map from X to that colimit would be surjective on fundamental
groups; whereas f itself is certainly not surjective on fundamental groups and so this is
impossible. In type theory, colimits are difficult to work with, though homotopy type
theory with higher inductive types makes them more tractable than otherwise. However,
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we can fortunately again give a more direct argument, based on our concrete construction
of BAut(C).

Suppose for contradiction that f is split. Then by Lemma 3.6 it is quasi-idempotent,
with witnesses I and J . For any Z : BAut(C), we have

J(Z) : apf (I(Z)) =f(f(f(Z)))=f(f(Z)) I(f(Z)).

Since f(f(f(Z))) = Z +C +C +C and f(f(Z)) = Z +C +C, by univalence and function
extensionality, J(Z) may equivalently be regarded as a homotopy between two specified
equivalences (Z + C + C + C) → (Z + C + C).

The first of these equivalences (corresponding to apf (I(Z))) decomposes the domain and
codomain as (Z+C+C)+C and (Z+C)+C, mapping the first summand Z+C+C to Z+C

by I(Z) and the second summand C to C by the identity. As for the second equivalence, if I
were the witness (4.1) that we gave above, then the equivalence Z+C+C+C → Z+C+C

corresponding to I(f(Z)) would bracket the domain instead as (Z + C) + (C + C) and
map it to (Z + C) + C by the identity on Z + C and the “fold” equivalence C + C → C.
Thus, the two could not possibly be homotopic, since they would send the third summand
of Z + C + C + C to different summands of the codomain.

This argument doesn’t quite work as stated, since I might not be the same proof
of idempotency that we gave above. (Remember that we are supposing only that f is
split, hence quasi-idempotent, in some way, since the claim to prove is that f is not split,
which makes no reference to any previously existing witness of pre-idempotence.) However,
whatever I is, it is defined “for all Z : BAut(C)”. This implies that the induced equivalences
Z + C + C → Z + C must be natural with respect to equivalences between Zs (this is not
exactly the same sort of naturality that we mentioned in §2, but it follows similarly). In
other words, for any Z,Z ′ : BAut(C) and equivalence e : Z ≃ Z ′, the following square must
commute (up to homotopy):

Z + C + C
I(Z)

//

e+id+id
��

Z +C

e+id
��

Z ′ + C + C
I(Z′)

// Z ′ + C

(4.2)

In particular, we can take Z and Z ′ to be both f(C), i.e. C + C, and let e be the “flip”
automorphism C+C ≃ C+C that interchanges the summands. Then the horizontal maps
in (4.3) are both the equivalence (C + C) + C + C → (C + C) + C induced by I(f(C)),
and (4.3) itself becomes

C + C + C + C
I(f(C))

//

e+id+id
��

C + C + C

e+id
��

C + C + C + C
I(f(C))

// C + C + C

(4.3)

Consider elements of the third and fourth summands in the upper-left corner, which are
fixed by e + id + id on the left. Since the two horizontal maps are both I(f(C)), it must
be that the image of any such element under I(f(C)) is fixed by e + id on the right. But
the only elements of C + C + C fixed by e + id are those in the third summand. Thus,
I(f(C)) must map the last two summands in the domain to the last one summand in the
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codomain, just as our original witness of pre-idempotency did, so our previous argument to
a contradiction kicks in.

Note that we actually showed a bit more: there is a pre-idempotent on BAut(C) that is
not even quasi-idempotent. Because univalence and propositional truncation are consistent
assumptions, we conclude:

Corollary 4.7. It is impossible to prove in mltt that all pre-idempotents split, or even
that all pre-idempotents are quasi-idempotent.

5. All quasi-idempotents split

We now show, in contrast to Theorem 4.6, that any quasi -idempotent can be split, assuming
nothing more than function extensionality. There is an obvious naive thing to try: just as
J extends I with an additional coherence, we might try to extend the type

∑

x:X(f(x) = x)
that worked sometimes in §3 with an additional coherence, defining

∑

x:X

∑

p:f(x)=x(apf (p) = I(x)). (5.1)

However, Kraus has shown that this does not work in general.

Example 5.1 (Kraus). Let X be a type with an element x0 : X, and define f : X → X by
f(x) :≡ x0 for all x : X. Then f is quasi-idempotent with I(x) :≡ reflx0

and J(x) :≡ reflreflx0
for all x. However, the type of (5.1) in this case becomes

∑

x:X

∑

p:x0=x(reflx0
= reflx0

).

This is equivalent to
∑

q:
∑

x:X(x0=x)(reflx0
= reflx0

)

and thence to simply reflx0
= reflx0

, since the type
∑

x:X(x0 = x) is contractible.
On the other hand, f has an evident splitting with A :≡ 1, where s picks out the point

x0. Thus, if (5.1) were also a splitting of it, then by Lemma 3.4 it would be equivalent to
1, i.e. contractible.

However, assuming univalence, there are pointed types (X,x0) for which reflx0
= reflx0

is not contractible. For instance, we can take X to be the universe Type, with x0 :≡
BAut(2). In this case, a nontrivial element of reflx0

= reflx0
is constructed in the proof

of [Uni13, Theorem 4.1.3] (we will give a slightly different construction of the same element
in Remark 8.4). Thus, mltt cannot prove that (5.1) always splits a quasi-idempotent.

Thus thwarted in our näıve attempts, we turn again to ∞-category theory. The proof
in [Lur14, Lemma 7.3.5.14] shows that one extra coherence datum suffices to construct a
splitting as the colimit of the infinite sequence

X
f
−→ X

f
−→ X

f
−→ · · ·

As observed before, colimits are difficult to handle in type theory. Fortunately, idempotents
are completely self-dual, so we might just as well consider the limit of the infinite sequence

· · ·
f
−→ X

f
−→ X

f
−→ X.

This is easy to define in type theory: it is
∑

a:N→X

∏

n:N(f(an+1) = an). Here we see the
need for function extensionality: this type involves functions, and we need to construct
equalities in it to exhibit it as a retract of X. For reference, we record exactly how to
construct equalities in this type.



IDEMPOTENTS IN INTENSIONAL TYPE THEORY 13

Lemma 5.2. Given (a, α) and (b, β) in
∑

a:N→X

∏

n:N(f(an+1) = an), to show that they
are equal (assuming function extensionality) it is necessary and sufficent to

(1) Construct for each n : N an equality ξn : an = bn, and
(2) Show that for each n : N the following diagram of equalities commutes:

f(an+1)
αn

//

apf (ξn+1)

��

an

ξn

��
f(bn+1)

βn

// bn,

(5.2)

i.e. that αn
� ξn = apf (ξn+1) � βn.

Proof. A straightforward application of the results of [Uni13, Chapter 2].

Now we can prove the main theorem of this section.

Theorem 5.3. Assuming function extensionality, any quasi-idempotent splits.

Proof. Given (f, I, J), define A :≡
∑

a:N→X

∏

n:N(f(an+1) = an) as above. We define
s : A → X by s(a, α) :≡ a0, and r : X → A by the slightly less obvious formula

r(x) :≡ (λn.f(x), λn.I(x)).

(Note that both components of r(x) are actually constant functions, i.e. independent of n.)
Now we obviously have s ◦ r = f ; the tricky part is proving r ◦ s = 1.

Let (a, α) : A, so that a : N → X and α :
∏

n:N(f(an+1) = an). We must show
(a, α) = r(s(a, α)). By definition, both components of r(s(a, α)) are constant, the first at
f(a0) and the second at I(a0); thus we need a family of equalities an = f(a0) that satisfy
commutativity relations. For convenience, we break this down into two steps, by defining an
intermediate element (b, β) : A and showing that (b, β) = (a, α) and also (b, β) = r(s(a, α)).
The definition is

bn :≡ f(f(an+1)) : X

βn :≡ apf◦f (αn+1) : f(f(f(an+2))) = f(f(an+1))

To show that (b, β) = (a, α), we apply Lemma 5.2 with

ξn :≡ I(an+1) � αn : bn = an.

We thus have to show that

apf◦f (αn+1) � I(an+1) � αn = apf (I(an+2) � αn+1) � αn

which (after cancelling αn) we can do as follows:

apf◦f (αn+1) � I(an+1) = I(f(an+2)) � apf (αn+1) (naturality)

= apf (I(an+2)) � apf (αn+1) (by J(an+2))

= apf (I(an+2) � αn+1) (functoriality)

Next we have to show that (b, β) = r(s(a, α)). By definition, r(s(a, α)) ≡ (λn.f(a0), λn.I(a0)).
Invoking Lemma 5.2 again, we need to firstly construct ξn : f(f(an+1)) = f(a0) for all n.
We do this by induction on n. The base case n ≡ 0 is simply apf (α0) : f(f(a1)) = f(a0),
while the induction step is the composite

f(f(an+2)) = f(an+1) = f(f(an+1)) = f(a0)

of apf (αn+1) and I(an+1)
−1 with the induction hypothesis.



14 MICHAEL SHULMAN

It remains to show that apf◦f (αn+1) � ξn = apf (ξn+1) � I(a0) for all n, and we do this
by induction on n as well. For the base case n ≡ 0, this means to check that

apf◦f (α1) � apf (α0) = apf (apf (α1) � I(a1)
−1

� apf (α0)) � I(a0).

Applying functoriality of apf on the right, canceling a copy of apf◦f (α1) on both sides, and
rearranging a little this becomes

apf (I(a1)) � apf (α0) = apf◦f (α0) � I(a0).

But using J we can make this into

I(f(a1)) � apf (α0) = apf◦f (α0) � I(a0).

which is an instance of naturality for I.
Finally, for the induction step, our inductive hypothesis is that the following diagram

commutes:

f(f(f(an+2)))
apf (apf (αn+1) � I(an+1)−1

� ξn)
//

apf◦f (αn+1)

��

f(f(a0))

I(a0)
��

f(f(an+1))
ξn

// f(a0)

and our goal is (after applying functoriality of apf ) to prove that the outer boundary of the
following diagram commutes.

f(f(f(an+3)))
apf◦f (αn+2)

//

apf◦f (αn+2)

��

f(f(an+2))
apf (I(an+2))−1

//

I(f(an+2))−1

77

(nat)

(J)
f(f(f(an+2)))

��

(IH)

// f(f(a0))

I(a0)

��
f(f(an+2))

apf (αn+1)
//

refl

88
♣
♣
♣
♣
♣
♣
♣
♣
♣
♣
♣
♣
♣
♣
♣
♣
♣
♣
♣
♣
♣

f(an+1)
I(an+1)−1

// f(f(an+1))
ξn

// f(a0)

The square marked (IH) is just the inductive hypothesis, while what remains can be filled
in by naturality and a further application of J .

Remark 5.4. Note that the type A and the section s : A → X involved in the spltting
can be defined without knowing either I or J , while the retraction r : X → A and the
homotopy K : s ◦ r ∼ f require only I. It is only the other homotopy H : r ◦ s ∼ idA
that requires the extra coherence datum J , and likewise only this homotopy that requires
function extensionality.

6. Splitting is a retraction

Assumption 6.1. In this section we assume the univalence axiom.

Recall from the introduction that we can define the types of retractions of X and of
quasi-idempotents on X:

Retr(X) :≡
∑

A:Type

∑

r:X→A

∑

s:A→X

∏

a:A(r(s(a)) = a)

QIdem(X) :≡
∑

f :X→X

∑

I:f◦f∼f

∏

x:X(apf (I(x)) = I(f(x)))
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Now Theorem 5.3 defines a map

split : QIdem(X) → Retr(X)

and Lemma 3.6 defines a map

uli : Retr(X) → QIdem(X).

We will now prove the following theorem.

Theorem 6.2. split and uli exhibit Retr(X) as a retract of QIdem(X). In other words,
split ◦ uli = idRetr(X).

Before proving this, however, we need to know how to construct equalities in Retr(X).

Lemma 6.3. Suppose given (A, r, s,H) and (A′, r′, s′,H ′) in Retr(X). To give an equality
(A, r, s,H) = (A′, r′, s′,H ′), it suffices to give

(1) An equivalence A ≃ A′, including functions g : A → A′ and h : A′ → A and
homotopies η : gh ∼ id and ǫ : hg ∼ id;

(2) A homotopy P : hr′ ∼ r;
(3) A homotopy Q : s′g ∼ s; and
(4) A witness that aph(H

′(g(a))) � ǫa = P (s′(g(a))) � apr(Q(a)) �H(a) for all a : A.

Proof. This should be considered a straightforward application of the results of [Uni13,
Chapter 2] characterizing identity types of types obtained from different type-formers. Since
Retr(X) is a triple Σ-type, by [Uni13, Theorem 2.7.2] we can first decompose equalities in
Retr(X) as quadruples of equalities in its constituent types. We then apply univalence to
obtain an equivalence A ≃ A′ as the first component, [Uni13, Lemma 2.9.6] to obtain P

and Q as the second and third, and similarly for the fourth component. The details are
tedious, so we leave them to the reader; like the rest of the paper they have been formalized
in Coq.

Proof of Theorem 6.2. Suppose given a retraction (A, r : X → A, s : A → X,H : r ◦ s ∼ 1);
we want to show that it is equivalent to the splitting of the induced quasi-idempotent
sr : X → X. The latter is a new retraction (A′, r′, s′,H ′) such that sr = s′r′ (in fact this
equality holds judgmentally). By Lemma 3.4, we have an equivalence A ≃ A′ composed
of g = r′s : A → A′ and h = rs′ : A′ → A, with η : gh ≡ r′srs′ = r′s′r′s′ = id and
dually ǫ : hg ≡ rs′r′s = rsrs = id. Moreover, we have P : hr′ ≡ rs′r′ = rsr = r and
Q : s′g ≡ s′r′s = srs = s; thus it remains to construct the fourth datum in Lemma 6.3.

In general, both sides of this equality are homotopies rs′r′s′r′s ∼ 1. Note that in our
case, the domain rs′r′s′r′s is judgmentally equal to rsrsrs. Substituting the definitions of
r′, s′, and H ′ from Theorem 5.3, we see that the left-hand side of the desired equality is
the composite

rsrsrsa
aprsrs(H(rsa))−1

−−−−−−−−−−−→ rsrsrsrsa
aprs(H(rsrsa))
−−−−−−−−−→ rsrsrsa

aprs(H(rsa))
−−−−−−−−→ rsrsa

H(rsa)
−−−−→ rsa

Ha
−−→ a (6.1)

while the right-hand side is the composite

rsrsrsa
H(rsrsa)
−−−−−→ rsrsa

aprs(Ha)
−−−−−−→ rsa

Ha
−−→ a. (6.2)

Now by naturality, we have

aprs(H(rsrsa)) � aprs(H(rsa)) = aprsrs(H(rsa)) � aprs(H(rsa)).
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Applying this in the middle of (6.1), and canceling aprsrs(H(rsa)) with its inverse on the
left, we reduce it to

rsrsrsa
aprs(H(rsa))
−−−−−−−−→ rsrsa

H(rsa)
−−−−→ rsa

Ha
−−→ a.

Now naturality gives aprs(H(rsa)) �H(rsa) = H(rsrsa) �H(rsa), so this is equal to

rsrsrsa
H(rsrsa)
−−−−−→ rsrsa

H(rsa)
−−−−→ rsa

Ha
−−→ a.

Comparing this to (6.2), we can cancel H(rsrsa) on the left, reducing the problem to
aprs(Ha) �Ha = H(rsa) �Ha, which is another naturality.

Theorem 6.2 makes no reference to a specified function f , but we can deduce from
it a statement that does. Given an endofunction f , we define a splitting of f to be a
retraction (A, r, s,H) : Retr(X) together with a homotopy K : s ◦ r ∼ f . These form
a type Split(X, f) :≡

∑

(A,r,s,H):Retr(X)(s ◦ r ∼ f). We also have a type QIdem(X, f) :≡
∑

(I:f◦f∼f)

∏

x:X(apf (I(x)) = I(f(x))) of “quasi-idempotence data for f”.

Corollary 6.4. For any f : X → X, the type Split(X, f) is a retract of QIdem(X, f).

Proof. Let k : Retr(X) → (X → X) take (A, r, s,H) to the composite sr. Then Split(X, f)
is, by definition, the fiber of k over f . On the other hand, by [Uni13, Lemma 4.8.1], the type
QIdem(X, f) is equivalent to the fiber over f of the first projection QIdem(X) → (X → X).
The retraction from Theorem 6.2 commutes with these maps to X → X; hence by [Uni13,
Lemma 4.7.3], it induces a retraction between their fibers.

Similarly, we can consider the case when f is already equipped with a witness I of
pre-idempotency. We define Split(X, f, I) to be

∑

(A,r,s,H,K):Split(X,f)

∏

x:X(apf (K(x))−1
�K(s(r(x)))−1

� aps(H(r(x))) �K(x) = I(x)),

the long composite being just the result of transferring the definition of Lemma 3.3 across the
homotopy K : sr ∼ f . And of course we have the type QIdem(X, f, I) :≡

∏

x:X(apf (I(x)) =
I(f(x))) of quasi-idempotence enhancements of I.

Corollary 6.5. For any (f, I), the type Split(X, f, I) is a retract of QIdem(X, f, I).

Proof. As in Corollary 6.4, we take fibers of two maps to the type f ◦ f ∼ f of I. We leave
the details to the reader; or they can be found in the formalization.

7. Splitting is not an equivalence

We now consider what can be said about the composite uli ◦ split, which is an endofunction
of QIdem(X). Our first observation is that it preserves the witness I of pre-idempotence.

Theorem 7.1. Assume function extensionality. Then given a quasi-idempotent (f, I, J), if
we split it as in Theorem 5.3, the witness of pre-idempotence induced from the splitting as
in Lemma 3.3 is equal to I.

Proof. Given a retraction s : A → X and r : X → A with H : r ◦ s ∼ 1, the induced I was
defined in Lemma 3.3 by I(x) :≡ aps(H(r(x))). For the splitting from Theorem 5.3 with
A :≡

∑

a:N→X

∏

x:X(f(an+1) = an), we have s(a, b) :≡ a0, so the induced I ′(x) is just the
0-component of the homotopy H : r ◦ s ∼ 1 at r(x) :≡ (λn.f(x), λn.I(x)). By construction,
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this is the composite

f(f(x))
apf (I(x))

−1

−−−−−−−→ f(f(f(x)))
I(f(x))
−−−−→ f(f(x))

I(x)
−−→ f(x)

where I is the given witness of pre-idempotence. But by the given J , we have apf (I(x)) =
I(f(x)), so this reduces to just I(x).

Thus, if the further coherence witness J were also recovered from the splitting, we
would have uli ◦ split = id, and hence (assuming univalence, so that the results of the
previous section apply) split and uli would be inverse equivalences between Retr(X) and
QIdem(X). By Corollary 6.4 and Corollary 6.5, this would also yield equivalences between
Split(X, f) and QIdem(X, f), and between Split(X, f, I) and QIdem(X, f, I), for any f and
I. We will show that this is impossible in general, beginning with the following observation.

Lemma 7.2. Assuming univalence, if f :≡ idX and I(x) :≡ reflx for all x, then the type
Split(X, f, I) is contractible.

Proof. Recall that for any type B and point b0 : B, the type
∑

b:B(b = b0) is contractible. By
univalence, it follows that for any type X, the type

∑

A:Type(A ≃ X) is contractible. Since

Split(X, f, I) begins with a
∑

A:Type, it will suffice to show that the rest of it is equivalent

to (A ≃ X).
We will use the “half-adjoint equivalence” definition of (A ≃ X) from [Uni13, §4.2].

The data r and s are, of course, maps back and forth, while since f ≡ idX the data H and
K have the right types to be the homotopies ǫ and η. It remains, therefore, to show that
the type of the remaining datum:

∏

x:X(apf (K(x))−1
�K(s(r(x)))−1

� aps(H(r(x))) �K(x) = I(x))

is equivalent to
∏

a:A(aps(H(a)) = K(s(a))). Now since f ≡ idX and I(x) ≡ reflx, we
can discard the apf , move the K(x)−1 to the other side, and then cancel it. If we move
K(s(r(x))) to the other side as well, we obtain

∏

x:X(aps(H(r(x))) = K(s(r(x)))). Finally,
since s, H, and K suffice to show that r is an equivalence, we can transport along it to
obtain the desired type

∏

a:A(aps(H(a)) = K(s(a))).

Therefore, if we had uli ◦ split = id, then QIdem(X, idX , λx.reflx) would also be con-
tractible for any X. However, QIdem(X, idX , λx.reflx) reduces to

∏

x:X(reflx = reflx), which
we might call the 2-center of X (see §8 for why). Thus, it suffices to construct a type
X whose 2-center has nontrivial inhabitants. Of course, such an X cannot be a set or
even a 1-type, but it will suffice for it to be a 2-type (i.e. its twice-iterated equality types
p =(x=Xy) q are sets).

Remark 7.3. As pointed out by a referee, there are many ways to construct such a 2-type
using higher inductive types. For instance, if X is the 2-truncation of the 2-sphere, we
can define an element of

∏

x:X(reflx = reflx) by truncation-induction (since reflx = reflx is
a 0-type) followed by sphere-induction, sending the basepoint to the generating 2-loop and
the rest being trivial for truncation reasons. More generally, we could take X to be an
Eilenberg–Mac Lane space K(G, 2) for any nontrivial abelian group G (see [LF14]) — the
2-truncation of the 2-sphere is a K(Z, 2). However, if we are willing to work a little harder,
we can obtain such a 2-type using only univalence and propositional truncation: just as
BAut(2) supports a nontrivial element of the 1-center

∏

x:X(x = x), to find a nontrivial
element of the 2-center we can use X :≡ BAut(BAut(2)).
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Theorem 7.4. Assuming univalence and propositional truncation, if X :≡ BAut(BAut(2)),
then

∏

x:X(reflx = reflx) has a nontrivial element.

Idea of proof. As an ∞-groupoid, BAut(2) has one object with two automorphisms, the
identity and the flip. Since automorphisms preserve identities, BAut(2) itself has only one
automorphism, but there are two self-homotopies of that automorphism. In other words, the
space of automorphisms of BAut(2) is equivalent to BAut(2) itself. Thus, BAut(BAut(2))
has one object, with only its identity morphism, but two 2-morphisms from that identity
to itself. This nonidentity 2-morphism is essentially our desired nontrivial element.

However, proving this carefully in type theory requires a lot of lemmas about classifying
spaces, so we defer it to the next section. (An alternative proof can be found in [Kra15,
Lemma 7.5.2].)

Corollary 7.5. In mltt with function extensionality (which is necessary to construct the
function split), it is impossible to prove that uli ◦ split = idQIdem(X) for every type X.

8. The double classifying space of 2

Here we will prove Theorem 7.4. For this we need some preliminary lemmas about types of
the form BAut(X).

Assumption 8.1. Throughout this section we assume both univalence and propositional
truncation.

Our first lemma says that defining a section of a family of sets indexed by BAut(X) is
equivalent to giving an element lying over X itself which is fixed by all automorphisms of
X. To make sense of “fixed by”, we use the notion of transport: given any type family
B : A → Type, if p : x =A y we have a function p∗ : B(x) → B(y) defined by identity-type
elimination (see [Uni13, Chapter 2] for more information).

For convenience, we will frequently implicitly coerce elements of BAut(X) to their
underlying types.

Lemma 8.2. Let X be any type, and suppose P : BAut(X) → Type is a family of sets.
Then

(

∏

Z:BAut(X) P (Z)
)

≃
(

∑

e:P (X)

∏

g:X=X g∗(e) = e
)

.

Proof. Since BAut(X) :≡
∑

Z:Type‖Z = X‖, we have
(

∏

Z:BAut(X) P (Z)
)

≃
(

∏

Z:Type

(

‖Z = X‖ → P (Z)
)

)

. (8.1)

Now recall from [KECA14] that if B is a set, then a function A → B factors through ‖A‖
if and only if it is weakly constant. In fact, it is not hard to show that when B is a set, the
type ‖A‖ → B is equivalent to the type of weakly constant functions A → B. Thus, the
right-hand-side of (8.1) is equivalent to

∏

Z:Type

∑

f :(Z=X)→P (Z)

∏

p,q:Z=X(f(p) = f(q)).

Rearranging this with [Uni13, Theorem 2.15.7] (the “type-theoretic axiom of choice”), we
obtain

∑

f :
∏

Z:Type(Z=X)→P (Z)

∏

Z:Type

∏

p,q:Z=X(f(Z, p) = f(Z, q)).
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Applying the universal property of identity types [Uni13, (2.15.10)], this becomes
∑

f :
∏

Z:Type(Z=X)→P (Z)

∏

p:X=X(f(X, p) = f(X, reflX)).

The same property implies that
∏

Z:Type(Z = X) → P (Z) is equivalent to P (X), where the

inverse equivalence sends e : P (X) to λZ.λq.q∗(e). Transferring across this equivalence, we
obtain the desired result.

We can use this to characterize types of the form
∏

Z:BAut(X)(Z = Z), which are “one

level down” from the type
∏

Z:BAut(X)(reflZ = reflZ) considered in Theorem 7.4.

Lemma 8.3. If X is a set, then
∏

Z:BAut(X)(Z = Z) is equivalent to
∑

f :X≃X

∏

g:X≃X(f ◦ g = g ◦ f)

Proof. Since X is a set, Z = Z is a set for any Z : BAut(X). Thus, by Lemma 8.2,
∏

Z:BAut(X)(Z = Z) is equivalent to
∑

e:X=X

∏

g:X=X(g∗(e) = e).

The result follows by applying [Uni13, Theorem 2.11.5] and the univalence axiom.

Remark 8.4. If X :≡ 2, it is easy to show that X has precisely two automorphisms,
the identity and the flip. Since the flip is an involution, it commutes with itself, and of
course it commutes with the identity; thus by Lemma 8.3 it yields a nontrivial element of
∏

Z:BAut(2)(Z = Z). This gives a slightly different proof of [Uni13, Theorem 4.1.3]. In fact,

Lemma 8.3 gives the stronger result that
∏

Z:BAut(2)(Z = Z) has exactly one nontrivial

element (hence in particular our nontrivial element agrees with that of [Uni13, Theorem
4.1.3]).

Lemma 8.3 says that
∏

Z:BAut(X)(Z = Z) is equivalent to the type of automorphisms

of X that commute with all other automorphisms of X, i.e. the center of Aut(X). This
explains why when we move up a level to the type appearing in Theorem 7.4, we may
reasonably call it the 2-center.

Lemma 8.5. If X is a 1-type, then
∏

Z:BAut(X)(reflZ = reflZ) is equivalent to
∑

f :
∏

x:X(x=x)

∏

g:X≃X

∏

x:X(apg(f(x)) = f(g(x))).

Proof. SinceX is a 1-type, (reflZ = reflZ) is a set for any Z : BAut(X). Thus, by Lemma 8.2,
∏

Z:BAut(X)(reflZ = reflZ) is equivalent to
∑

e:reflX=reflX

∏

g:X=X g∗(e) = e.

Now by univalence and function extensionality, reflX = reflX is equivalent to
∏

x:X(x = x),
while of course X = X is equivalent to X ≃ X. Under this equivalence, g∗(e) is identified
with λx.apg(f(g

−1(x))). Finally, since g is an equivalence, we can transfer it to the other
side of the equation and obtain the desired result.

We want to apply Lemma 8.5 to X :≡ BAut(2). In that case, we have a nontrivial
f :

∏

x:BAut(2)(x = x) from Remark 8.4. Therefore, to prove Theorem 7.4 it remains to

show that this f satisfies apg(f(Z)) = f(g(Z)) for all automorphisms g of BAut(2) and all
Z : BAut(2).
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Of course, this requires knowing something about all automorphisms of BAut(2). In
our proof sketch of Theorem 7.4, we claimed that the space of automorphisms of BAut(2)
should be equivalent to BAut(2) itself, but our argument involved decomposing an ∞-
groupoid into “objects, morphisms, and 2-morphisms” which is not possible in homotopy
type theory. Instead, we need to give a more “synthetic” argument, analogous to our
construction of the incoherent pre-idempotent on BAut(C) in §4.

The idea is as follows: since 2 is an abelian group (the cyclic group of order 2), BAut(2)
should also be an abelian ∞-group. Since multiplication by a fixed element of an ∞-group
is an equivalence, this will give us a map BAut(2) → (BAut(2) ≃ BAut(2)), which we can
then show to be an equivalence.

Now we have to define the group operation on BAut(2) internally. The idea to keep
in mind is that the elements of BAut(2) are the “finite sets with two elements”. They are
merely isomorphic to 2, but to specify such an isomorphism 2 ≃ Z is the same as specifying
an element of Z (to be the image of 1 : 2).

The “morally-best” definition of the group operation would perhaps be as a “tensor
product over the field with two elements”. However, since we are not assuming any colimits,
we use instead the following:

Z ∗W :≡ (Z ≃ W ).

Since 2 ≃ (2 ≃ 2), it follows that Z ≃ W is in BAut(2) if Z and W are.
This definition is obviously symmetric, Z ∗W = W ∗ Z. Moreover, it has 2 itself as a

left (hence also right) identity: if W : BAut(2) then an equivalence e : 2 ≃ W is uniquely
determined by e(1) : W . And Z ∗ Z is equivalent to 2 for any Z, since it has a canonically
specified element (namely the identity); thus in particular ∗ has inverses. The trickiest part
is showing associativity.

Lemma 8.6. For any Z,W, Y : BAut(2) we have (Z ∗W ) ∗ Y = Z ∗ (W ∗ Y ).

Proof. Since ∗ is symmetric, it suffices to prove Y ∗ (Z ∗W ) = Z ∗ (Y ∗W ). We will show
that for all Y,Z,W there is a map σ : Y ∗ (Z ∗W ) → Z ∗ (Y ∗W ), and that this map is its
own inverse (when applied with Y and Z switched).

Now, an element of Y ∗ (Z ∗W ) can be regarded as a function e : Y → (Z → W ) with
the additional properties that

(1) each function e(y) : Z → W is an equivalence, and
(2) e induces an equivalence from Y to Z ≃ W .

Since being an equivalence is a mere proposition, two elements of Y ∗ (Z ∗W ) are equal just
when their underlying functions e : Y → (Z → W ) are.

We will define σ so that its action on underlying functions simply swaps arguments:
σ(e)(z)(y) = e(y)(z). Thus, it will automatically be self-inverse. What remains is to show
that σ(e) satisfies (1) and (2) assuming e does.

However, since all of our types are finite sets (that is, they are merely isomorphic to a
standard finite type such as

∑

k:N(k < n)), a map between them is an equivalence as soon
as it is injective. Thus, to show (1) for σ(e) we must show that if e(y)(z) = e(y′)(z) for
some z : Z, then y = y′. But by (2) for e, we have y = e−1(e(y)) and y′ = e−1(e(y′)), so it
suffices to show that e(y) = e(y′). This follows from e(y)(z) = e(y′)(z) since an equivalence
between 2-element sets is determined by its action on a single element.

Similarly, to show (2) for σ(e), we must show that if e(y)(z) = e(y)(z′) for all y : Y ,
then z = z′. But this in particular implies that e(y)(z) = e(y)(z′) for some y, and thus
z = z′ by (1) for e.
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Now we can prove that BAut(2) is equivalent to its own automorphism group.

Lemma 8.7. BAut(2) ≃ (BAut(2) ≃ BAut(2)).

Proof. The map from left to right sends Z to λW.Z ∗W . Since Z ∗ (Z ∗W ) = (Z ∗Z)∗W =
2 ∗W = W , the function λW.Z ∗W is an equivalence whose inverse is itself.

The map from right to left sends e : BAut(2) ≃ BAut(2) to e−1(2). The round-trip
composite on the left is the identity since 2 is a unit for ∗. On the other side, we must show
that for any e : BAut(2) ≃ BAut(2) and W we have e(W ) = e−1(2) ∗W .

In fact, we will show that e−1(Z) ∗W = Z ∗ e(W ) for any Z,W ; the desired result then
follows by taking Z :≡ 2. However, by univalence, we have (e−1(Z) ∗W ) = (e−1(Z) = W )
and similarly on the other side, and (e−1(Z) = W ) ≃ (Z = e(W )) holds for any equivalence
e.

Finally, we can prove Theorem 7.4.

Theorem 8.8. There is an element of
∏

Z:BAut(BAut(2))(reflZ = reflZ) that is not equal to

λZ.reflreflZ .

Proof. By Remark 8.4, we have an f :
∏

x:BAut(2)(x = x) that is unequal to λx.reflx. Thus,

by Lemma 8.5, it remains to show that this f satisfies apg(f(Z)) = f(g(Z)) for all auto-
morphisms g of BAut(2) and all Z : BAut(2).

Let g and Z be given. By Lemma 8.7, we may assume g is of the form λY.W ∗ Y for
some W : BAut(2). And since our goal is a mere proposition, we may assume that Z and
W are both 2.

Now since g(Y ) ≡ 2 ∗ Y and 2 is a left unit for ∗, we have a homotopy H : g ∼ id. And
by “dependent ap” for f (see [Uni13, Lemma 2.3.4]) applied to H2 : 2 ∗ 2 = 2, we have

f(2 ∗ 2) �H2 = H2
� f(2).

Since also g(Z) ≡ 2 ∗ 2, what we have to show becomes

apg(f(2)) �H2 = H2
� f(2).

However, this is just naturality for H.

9. Coherent idempotents

We have seen that, assuming univalence, Retr(X) is a retract of QIdem(X), and in general
a nontrivial one. As remarked in the introduction, in ∞-category theory the “space of
retractions of X” is equivalent to the “space of fully-coherent idempotents on X”. This
follows from [Lur09, Corollary 4.4.5.14]. As stated, that corollary says that in an∞-category
where (fully-coherent) idempotents split, the space of all retractions is equivalent to the
space of all fully-coherent idempotents; but since this equivalence is fibered over the space
of objects of the ∞-category itself, it induces fiberwise equivalences for each object X.

Thus, in homotopy type theory with the univalence axiom, it is reasonable to expect
that Retr(X) should be equivalent to “the type of fully-coherent idempotents on X”, if we
were able to define the latter type. In particular, since Retr(X) is not generally equivalent
to QIdem(X), the latter is not a correct definition of the type of fully-coherent idempotents.

As mentioned in the introduction, we could take Retr(X) as a definition of the type of
fully-coherent idempotents, but this would suffer from two drawbacks:
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(1) It would be aesthetically unsatisfying to say that “an idempotent” comes by defini-
tion equipped with a splitting. Morally, splitting should be something that is done
to an idempotent.

(2) It lives in a higher universe than the type X, since it involves a
∑

A:Type.

Both of these problems can be solved with the following observation: since Retr(X) is a
retract of QIdem(X), the composite uli ◦ split is a quasi-idempotent on QIdem(X). We can
therefore split it using the construction of Theorem 5.3. By Lemma 3.4, the resulting type
will be equivalent to Retr(X); but it will live (like QIdem(X) itself) in the same universe as
X, and its elements do not obviously contain a splitting. Thus, we propose the following
definition.

Definition 9.1. A (fully-coherent) idempotent on a type X is an element of the split-
ting of uli ◦ split. Somewhat more explicitly, this type is

Idem(X) :≡
∑

a:N→QIdem(X)

∏

n:N(uli(split(an+1)) = an).

Similarly, an idempotent structure on f : X → X is an element of the splitting of the
similarly induced idempotent on QIdem(X, f).

It is worth thinking a little about what assumptions are necessary for this definition. It
may appear at first to require univalence, since uli◦split is only a (quasi-)idempotent because
of Lemma 6.3, which uses univalence. However, as observed in Remark 5.4, to define the
splitting type of an idempotent does not require the witnesses of quasi-idempotency or pre-
idempotency. Thus, in order to define the type Idem(X) we really only require function
extensionality, since that suffices to define the maps uli and split.

It is possible, of course, to unwind this definition further, but it becomes quite compli-
cated. Nevertheless, it is satisfying that we can give some correct definition of fully-coherent
idempotent, since the general problem of representing fully-coherent higher homotopy struc-
tures in type theory is unsolved.

There is an interesting analogy to the situation with equivalences. The näıve definition
of an equivalence (or isomorphism) between types A and B would be

∑

f :A→B

∑

g:B→A(g ◦ f ∼ idA)× (f ◦ g ∼ idB). (9.1)

However, this gives the wrong homotopy type. We might then think that we need an infinite
tower of further coherences, but in fact it suffices to give one additional datum, although
there are several choices for what that extra datum might be (see [Uni13, Chapter 4]).

Nevertheless, given an element of (9.1), it is possible to alter one of its constituent ho-
motopies to obtain a fully-coherent equivalence. This exhibits the type of equivalences as a
retract of (9.1), just as our type of idempotents is a retract of the type of quasi-idempotents.
There is a difference, however, in that “f is an equivalence” is a mere proposition, whereas
“f is an idempotent” is not.

10. Conclusions

The main result of this paper is that not all idempotents in Martin-Löf type theory can
be proven to split, but if we assume function extensionality then one additional coherence
condition suffices to make an idempotent splittable. In addition to its intrinsic interest, this
shows how ideas from homotopy theory and higher category theory can be useful even for
the study of non-homotopical type theory.
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In the homotopical case, however, there is more to say about idempotents, which can
be partially or fully coherent. Although fully coherent homotopical structures are often
difficult to define in type theory, we have managed to define the type of fully coherent
idempotents, by splitting an idempotent on the type of partially coherent ones.

With that said, this paper still leaves a number of interesting open questions about
idempotents in type theory.

Open Problem 10.1. Can we split quasi-idempotents in mltt without assuming function
extensionality? In particular, is there any more “finite” way to construct such a splitting?

Open Problem 10.2. Is the section Idem(X) → QIdem(X) an embedding? Equiva-
lently, by Theorem 3.10, is the type uli(split(f, I, J)) = (f, I, J) collapsible for every quasi-
idempotent (f, I, J)? I expect the answer is no, but an explicit counterexample would be
nice to have.

Open Problem 10.3. Similarly, is the induced map from Idem(X) to the type PIdem(X)
of pre-idempotents an embedding? Again, I expect the answer is no, but this appears to be
an open problem even in ∞-category theory; see [Shu14].

Open Problem 10.4. Can Idem(X) be defined without assuming even function extension-
ality? More precisely, is there a type we can define without function extensionality that
becomes equivalent to Idem(X) if we assume function extensionality?

Open Problem 10.5. Are there any other fully-coherent higher-homotopy structures that
can be obtained from a finite amount of coherence by splitting an idempotent?
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