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Abstract. We introduce Z-stability, a notion capturing the intuition that if a function f

maps a metric space into a normed space and if ‖f(x)‖ is small, then x is close to a zero of
f. Working in Bishop’s constructive setting, we first study pointwise versions of Z-stability
and the related notion of good behaviour for functions. We then present a recursive coun-
terexample to the classical argument for passing from pointwise Z-stability to a uniform
version on compact metric spaces. In order to effect this passage constructively, we bring
into play the positivity principle, equivalent to Brouwer’s fan theorem for detachable bars,
and the limited anti-Specker property, an intuitionistic counterpart to sequential compact-
ness. The final section deals with connections between the limited anti-Specker property,
positivity properties, and (potentially) Brouwer’s fan theorem for detachable bars.

1. Z-stability

Let f be a mapping of a metric space (X, ρ) into a normed space Y, and let

Zf ≡ {x ∈ X : f(x) = 0} = f−1(0)

be the zero set of f. We say that f is

• Z-stable at the point x ∈ X if for each ε > 0 there exists δ > 0 such that if ‖f(x)‖ < δ,
then1 ρ (x, Zf) < ε;

• Z-stable (on X) if it is Z-stable at each point of X; and
• uniformly Z-stable on X if for each ε > 0 there exists δ > 0 such that for each x ∈ X, if
‖f(x)‖ < δ, then ρ (x, Zf) < ε.

After preliminary work in the remainder of this introductory section, we move to a
study of Z-stability and the related notion of good behaviour (well behavedness), defined
in Section 2, within the framework of Bishop-style constructive mathematics (BISH)—
that is, roughly, mathematics with intuitionistic logic, an appropriate foundation such as
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CZF set theory [1] or Martin-Löf Type Theory [19], and dependent choice.2 We then
give a recursive counterexample to a classical theorem (see the next paragraph) connecting
Z-stability and uniform Z-stability when X is a compact metric space; this leads us to
constructive counterparts of that classical theorem. In the final section we link the limited
anti-Specker property (brought into play in the preceding section) and a pointwise positivity
property for real-valued functions.

With classical logic it is trivial that f is Z-stable on X: if x ∈ X, then either f(x) = 0
and we may take δ = 1 in the Z-stability condition, or else f(x) 6= 0 and we take δ = ‖f(x)‖.
Moreover, if f is continuous, then it is uniformly Z-stable on each compact subset of X. To
see this, let K ⊂ X be compact, let ε > 0, and suppose that for each δ > 0 there exists x ∈ K
such that ‖f(x)‖ < δ and ρ (x, Zf) > ε. Then there exists a sequence (xn)n>1 in K such that

for each n, ‖f(xn)‖ < 2−n and ρ (xn, Zf) > ε. Extracting a convergent subsequence, we may
assume that (xn)n>1 converges to a limit x∞ in K. Then ρ (x∞, Zf) > ε; but f is continuous,
so f(x∞) = 0, a contradiction.

Things are not so straightforward in BISH: even cubic polynomial functions need not
be Z-stable, as the following example shows. Let (an)n>1 be an increasing binary sequence,
and define f : (−1, 1) → R by

f(x) ≡ x2
(

x−
1

2

)

− a = −a −
1

2
x2 + x3, (1.1)

where a =
∑

∞

n=1 2
−nan. First note that if a > 0, then there is no zero of f in the interval

[−1/3, 1/3]. Indeed, since f′(x) = 3x2 − x = x (3x− 1), we have f′(x) < 0, and therefore f
strictly decreasing, for 0 < x < 1/3; for such x it therefore follows that f(x) < f(0) = −a < 0;
similarly, f is strictly increasing on [−1/3, 0), and f(x) < −a < 0 on that interval. Now
suppose that f is Z-stable at 0. Compute δ > 0 such that if |f(0)| < δ, then there exists
x such that |x| < 1

3 and f(x) = 0. Either f(0) 6= 0, in which case a 6= 0 and there exists
n with an = 1, or else |f(0)| < δ; in the latter case there exists x ∈ (−1/3, 1/3) such that
f(x) = 0, which, by the foregoing, rules out the possibility that a 6= 0 and therefore implies
that a = 0. We conclude that if every cubic function f : (−1, 1) → R is Z-stable, then we

can derive the essentially nonconstructive omniscience principle

LPO: For every binary sequence (an)n>1, either an = 0 for all n or else
there exists (that is, we can compute) N such that aN = 1.

A variant of this example is used on page 3 of [11] to show how the standard classical
interval-halving argument for root-finding with a computer will break down for a cubic
function whose value at the midpoint of the interval under consideration is positive but
smaller than the least positive number recognised by the computer. Given this, and that
the intermediate value theorem in its full classical form is essentially nonconstructive, it is
interesting to observe that Z-stability provides us with a constructively valid root-finding
version of that theorem. Let f : [0, 1] → R be Z-stable, sequentially continuous (we do
not need full continuity in this argument), and such that f(0)f(1) < 0. At each stage of
the interval-halving argument, we can use the Z-stability of f at the midpoint m of the
subinterval of [0, 1] under consideration, to decide either that there exists y in that interval
with f(y) = 0 or else that |f(m)| > 0; in the latter case, we proceed, as normally, to the
next stage of the interval-halving.

2For more on BISH see [4, 5, 10, 11].
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These considerations illustrate why Z-stability might be something worthy of a construc-
tive analysis:3 a common stopping criterion for root-finding algorithms is that the absolute
value of the function be smaller than some predesignated positive quantity; but if the func-
tion is not known to be constructively Z-stable, then it is possible that its correct zeroes are
not as close to the stopping point as we imagine. The same goes for algorithms for finding
fixed points—such as that of Scarf for the Brouwer fixed-point theorem and, equivalently,
the existence of equilibria in certain mathematical models of competitive economy [21, 22].

As so often happens, the particular problem caused by our cubic function—and hence,
more generally, applicable to real-analytic functions—disappears when we enter the complex
domain:

Proposition 1.1. Let K ⊂ C be compact, with a totally bounded border B, and let f : K → C

a differentiable function such that infz∈B |f(z)| > infz∈K |f(z)|. Then f is uniformly Z-stable

on K.

Proof. Corollary (5.3) of [5, p. 153] tells us that infz∈K |f(z)| = 0; whence, by [5, Theorem
(5.11), p. 157], there exist finitely many (not necessarily distinct) points z1, . . . , zm of K,
and a differentiable function g : K → C, such that

f(z) = (z− z1) · · · (z − zm)g(z) (z ∈ K)

and
0 < γ ≡ inf

z∈K
|g(z)| .

Given ε > 0, let δ ≡ γ (ε/2)m. If z ∈ K and |f(z)| < δ, then

|z− z1| · · · |z− zm| <
(ε

2

)m

and therefore there exists k with |z− zk| < ε.

From now on, we shall primarily be concerned with Z-stability in the more abstract
context of metric and normed spaces.

2. Z-stability and good behaviour

Again let f be a mapping of a metric space X into a normed space Y. Consider the condition
for Z-stability at a point x ∈ X. Written symbolically, that condition becomes

∀ε>0∃δ>0 (‖f(x)‖ < δ ⇒ ρ (x, Zf) < ε) .

We can rewrite this in the equivalent form4

∀ε>0∃δ>0 (ρ (x, Zf) > ε ⇒ ‖f(x)‖ > δ) .

Classically, the ε and δ are irrelevant; we might as well write

ρ (x, Zf) > 0 ⇒ f(x) 6= 0.

Weakening this slightly, we obtain

x ∈ ∼Zf ⇒ f(x) 6= 0.

3This is not to suggest that zero stability fails to have intrinsic merit as a constructive property.
4This is not as obvious, constructively, as it may at first appear. The quantifiers are essential for the

constructive equivalence to go through.
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where5

∼Zf ≡ {y ∈ X : ∀z∈Zf
(y 6= z)}

is the complement of Zf in X. These considerations lead us to the definition: f is well

behaved if f(x) 6= 0 for each point x ∈ ∼Zf.
6

The proposition ‘every mapping of a metric space into a normed space is well behaved’
is a constructive consequence of the statement

∀x∈R (¬ (x = 0) ⇒ x 6= 0) .

which is equivalent to Markov’s Principle,

MP: For each binary sequence (an)n>1, if it is impossible that an = 0 for
all n, then there exists N such that aN = 1,

SinceMP represents an unbounded search, we do not regard it as a valid principle of BISH.
However, it is known that every linear mapping of a normed space onto a Banach space
is well behaved [9, Theorem 1], and that this proposition holds without the range being
complete if and only if MP is derivable.

Proposition 2.1. Let f be a well-behaved mapping of a metric space X into a normed space

Y such that

Zf ≡ {z ∈ X : f(z) = 0}

is inhabited and located in X. Then f is Z-stable.

Proof. Consider a point x ∈ X and ε > 0. Either ρ(x, Zf) < ε and we take δ = 1, or
else ρ (x, Zf) > 0. In the second case, since f is well behaved, we have f(x) 6= 0; taking
δ = ‖f(x)‖, in view of ex falso quodlibet we see that if ‖f(x)‖ < δ, then ρ (x, Zf) < ε.

Note that in the example of the cubic polynomial defined at (1.1), the locatedness of
Zf implies that either a > 0 or a = 0. For if Zf is located, then it is totally bounded, so

γ ≡ inf {x ∈ (−1, 1) : f(x) = 0}

exists [11, Corollary 2.2.7]. Either γ > 0, in which case a > 0, or else γ < 1/3 and (as
before) a = 0.

For a converse to Proposition 2.1, we introduce a completeness hypothesis.

Proposition 2.2. A Z-stable mapping f of a complete metric space X into a normed space

Y is well behaved.

Proof. Fixing x in ∼Zf, construct a strictly decreasing sequence δ converging to 0 such that
if ‖f(x)‖ < δn, then ρ (x, Zf) < 2−n. Then construct an increasing binary sequence λ such
that

λn = 0 ⇒ ‖f(x)‖ < δn,

λn = 1 ⇒ ‖f(x)‖ > δn+1.

5For elements x, y of a metric space (X, ρ), the expression ‘x 6= y’ stands for ‘ρ(x, y) > 0’. This is well
known to be constructively stronger than ‘¬(x = y)’.

6What about uniform Z-stability? The defining condition in that case can be rewritten as

∀ε>0∃δ>0∀x∈X (ρ (x, Zf) > ε ⇒ ‖f(x)‖ > δ) .

This time, the ε and δ are not irrelevant, even classically, and all we obtain is an alternative criterion for
uniform Z-stability.
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We may assume that λ1 = 0. If λn = 0, pick xn ∈ Zf with ρ (x, xn) < 2−n. If λn = 1− λn−1,
set xk = xn−1 for all k > n. Then (xn)n>1 is a Cauchy sequence in X. To see this, consider
m,n with m > n. If λn = 1, then xm = xn; if λm = 0, then

ρ (xm, xn) 6 ρ (x, xm) + ρ (x, xn) < 2−m + 2−n < 2−n+1.

It readily follows that ρ (xm, xn) < 2−n+1 in all cases. Now, since X is complete, the
sequence (xn)n>1 converges to a limit x∞ ∈ X. Suppose that f(x∞) 6= 0. If there exists
n with λn = 1 − λn−1, then x∞ = xn−1 ∈ Zf, which is absurd. Hence λn = 0 for all
n, and therefore f(x) = 0, which contradicts our original choice of x. We conclude that
¬ (f(x∞) 6= 0), so f(x∞) = 0 and therefore x 6= x∞. Pick N such that ρ (x, x∞) > 2−N+1,
and suppose that λN = 0. If there exists n > N such that λn = 1 − λn−1, then x∞ = xn−1,
where ρ (x, xn−1) < 2−n+1 6 2−N+1. This contradicts our choice of N, so λn = 0 for all
n > N. Hence x∞ = limn→∞ xn = x, so x ∈ Zf, a further contradiction. It follows that
λN 6= 0; whence λN = 1 and therefore ‖f(x)‖ > δN+1.

Examining the proof of Proposition 2.2 shows that in the hypotheses we can replace
the completeness of X by that of Zf. Proposition 2.2 will be used in the proof of Proposition
3.2 in the next section.

3. Uniform Z-stability

We have already described a classical (in more than one sense) sequential compactness
proof that a uniformly continuous mapping of a compact metric space into a normed space
is uniformly Z-stable. We now present a recursive counterexample to that theorem. Since
recursive constructive mathematics—that is, BISH supplemented by the Church-Markov-
Turing thesis (CMT)—is (informally) a model of BISH, this example shows that in order
to have a chance of deriving a good constructive counterpart of the classical theorem under
consideration, we need to add to BISH some principles or hypotheses that run counter to
CMT. That we shall do in due course.

Here, then, is our recursive example. Assuming CMT, we can construct a uniformly
continuous, positive-valued function g on [0, 1/2] that has infimum 0; see [18], [10, Ch. 6],
or [3]. Let f be the uniformly continuous mapping of [0, 1] into the nonnegative real line
R0+ such that f(x) = g(x) for 0 6 x 6 1/2, f(1) = 0, and f is linear on [1/2, 1]. Then
Zf = {1}, which is inhabited and located. To prove that f is Z-stable at each point x of
[0, 1], let ε > 0 and note that either x < 1 or x > 1 − ε. In the first case, f(x) > 0,
so by ex falso, if |f(x)| < 1

2 |f(x)|, then |x− 1| < ε; this last inequality holds trivially in
the second case. Now suppose that f is uniformly Z-stable on [0, 1]. Then there exists
δ > 0 such that if x ∈ [0, 1] and |f(x)| < δ, we can find y ∈ Zf such that |x− y| < 1/4.
But inf {|f(x)| : 0 6 x 6 1/2} = 0, so there exists x ∈ [0, 1/2] with |f(x)| < δ. Clearly,
ρ (x, Zf) = 1−x > 1/4, a contradiction. This completes our recursive example of a uniformly
continuous, Z-stable mapping f : [0, 1] → R (with inhabited, located zero set) that is not
uniformly Z-stable.

This example hinges on the existence of a uniformly continuous, positive-valued function
f : [0, 1] → R with infimum 0. The natural addition to BISH that will counteract the
recursive example is the case X = [0, 1] of the following positivity property :

POSX: If f : X → R is uniformly continuous and positive-valued, then
infX f (exists and) is positive.
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Proposition 3.1. The following are equivalent over BISH:

(i) POS[0,1].

(ii) POS2N .

(iii) POSX holds for each compact metric space X.

Proof. Clearly, we need only prove that (i) ⇒ (ii) and that (ii) ⇒ (iii). First observe that,
by a seminal result of Julian and Richman ([18]; see also [10, Chapter 6]), Brouwer’s fan
theorem for detachable bars, FTD, is equivalent to POS[0,1]. Since (this is an easy exercise)

FTD implies POS2N , we see that (i) ⇒ (ii). Next, assuming (ii) and given any compact
metric space X, we apply Theorem (1.4) of [10, Chapter 5], to obtain a uniformly continuous
mapping g of 2N onto X. If f : X → R is uniformly continuous and positive-valued, then so
is f ◦ g : 2N → R; whence infX f = inf2N (f ◦ g) > 0. Thus (ii) ⇒ (iii).

We say that the implication (i) ⇒ (iii) (respectively, (ii) ⇒ (iii)) in Proposition 3.1

shows that POS[0,1] (respectively, POS2N) is prototypical for the positivity property on
compact (metric) spaces.

This brings us to our first result on the passage from Z-stability to uniform Z-stability.

Proposition 3.2. Let X be a compact metric space with the positivity property, and f a

Z-stable, uniformly continuous mapping of X into a normed space Y such that Zf is inhabited

and located. Then f is uniformly Z-stable on X.

Proof. Given ε > 0, and referring to [5, Chapter 4, Theorem (4.9)], we may assume without
loss of generality that

K ≡
{
x ∈ X : ρ (x, Zf) >

ε

2

}

is compact. By Proposition 2.2, since f is Z-stable and K is complete, the mapping x  
‖f(x)‖ is positive-valued on K. Hence

0 < δ ≡ inf
x∈K

‖f(x)‖ .

If x ∈ X and ‖f(x)‖ < δ, then x /∈ K and therefore ρ (x, Zf) < ε.

Corollary 3.3. BISH + POS[0,1] ⊢ Let X be a compact metric space, and f a Z-stable,

uniformly continuous mapping of X into a normed space Y such that Zf is inhabited and

located. Then f is uniformly Z-stable on X.

Proof. This follows from Propositions 3.1 and 3.2.

4. Anti-Specker properties and Z-stability

Now let X be a subspace of a metric space (E, ρ), and ω a point of E with ρ (ω,X) > 0. We
call the metric space X ∪ {ω} a one-point extension of X. It is straightforward to construct
one-point extensions of a given metric space X.

Recall that a sequence (xn)n>1 in E is said to be eventually bounded away from the

point x ∈ E if there exist N and δ > 0 such that ρ(x, xn) > δ for all n > N. Specker’s
theorem from recursive constructive analysis (see [10, Chapter 3]) says that there exists a
sequence in [0, 1] that is eventually bounded away from each point of that interval; this is,
of course, a strong recursive counterexample to the sequential compactness of [0, 1]. Various
antitheses of Specker’s theorem have been studied as constructive substitutes for sequential
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compactness; see [2, 7, 8, 12, 14, 15]. One of the weakest of those notions is the limited

anti-Specker property (relative to one-point extensions),

ASX
L : If X ∪ {ω} is a one-point extension of X, and (xn)n>1 is a sequence in

X ∪ {ω} that is eventually bounded away from each point of X, then there
exists n such that xn = ω.

The property ASX
L is independent of the one-point extension of X (cf. [6, Propositions 1

and 2]). It was introduced in [17] and further discussed in [13].
In Proposition 3.2 we can obtain the same conclusion if we replace the positivity prop-

erty with the limited anti-Specker property and add separability:

Proposition 4.1. Let X be a compact metric space with the limited anti-Specker property,

and f a Z-stable, uniformly continuous mapping of X into a normed space Y such that Zf is

separable. Then f is uniformly Z-stable on X.

Proof. Let X ∪ {ω} be a one-point extension of X with ρ (ω,X) > 1, and fix ε ∈ (0, 1). By
[5, Chapter 4, Theorem (4.9)], there exists a strictly decreasing sequence δ ≡ (δn)n>1 such

that for each n, 0 < δn < 2−n and the set

Kn ≡ {x ∈ X : ‖f(x)‖ 6 δn}

is compact. Let (zn)n>1 be a dense sequence in Zf, and for each n write

Sn ≡ {z1, . . . , zn}

Construct a binary sequence λ ≡ (λn)n>1 such that

λn = 0 ⇒ sup {ρ (x, Sn) : x ∈ Kn} >
ε

2
,

λn = 1 ⇒ sup {ρ (x, Sn) : x ∈ Kn} < ε.

If λn = 0, pick xn ∈ Kn with ρ (xn, Sn) > ε/2. If λn = 1, set xn ≡ ω. We show that (xn)n>1
is eventually bounded away from each point x of X. It will suffice to show that there exists
c > 0 such that ρ (xn, x) > c for all sufficiently large n with λn = 0. By the Z-stability of
f at x, we can find α > 0 such that if ‖f(x)‖ < α, then ρ (z, Zf) < ε/4. Either f(x) 6= 0 or
‖f(x)‖ < α. In the first case, choose ν such that δν < 1

2
‖f(x)‖, and then γ ∈ (0, 1) such

that ‖f(x) − f(y)‖ < 1
2 ‖f(x)‖ whenever y ∈ X and ρ (x, y) < γ. Then for all n > ν with

λn = 0 we have

‖f(x) − f(xn)‖ > ‖f(x)‖− δn > ‖f(x)‖ − δν

> ‖f(x)‖−
1

2
‖f(x)‖ =

1

2
‖f(x)‖ ,

so ρ (x, xn) > γ. In the case ‖f(x)‖ < α, pick ζ ∈ Zf with ρ (ζ, x) < ε/4; then choose N such
that ρ (ζ, zN) < ε/4 − ρ (ζ, x). For all n > N with λn = 0 we have ρ(xn, zN) > ρ (xn, Sn) >
ε/2, so

ρ (xn, x) > ρ (xn, zN) − ρ (zN, ζ) − ρ (ζ, x) >
ε

2
−

ε

4
=

ε

4
.

This completes the proof that (xn)n>1 is eventually bounded away from each point of X. We
now apply the limited anti-Specker property in X, to compute N with xN = ω and therefore
λN = 1. For each x ∈ X with ‖f(x)‖ < δN, we have x ∈ KN, so (as λN = 1)

ρ (x, Zf) 6 ρ (x, SN) < ε.

Since ε is arbitrary, we have shown that f is uniformly Z-stable on K.



8 D. BRIDGES, J. DENT, AND M. MCKUBRE-JORDENS

Next, with the aid of a stronger property than ASX
L , we head towards Proposition 4.3,

a generalised form of the principle of isolation of zeroes for complex analytic functions (cf.
[16, pp.194–195]). Although that proposition is not about uniform Z-stability, it uses both
Z-stability and an anti-Specker property, and so is a fitting digression from the main theme
of the section.

Let (X, ρ) be a metric space. Recall that if S, T are subsets of X for which there exists
r > 0 such that if x ∈ X and ρ (x, S) < r entails x ∈ T , then S is said to be well contained

in T , and we write S ⊂⊂ T . Let U be an open subset of X, and f a mapping of U into a
normed space Y. We say that the set Zf ⊂ U of zeroes of f is countably isolated if there is a
one-one enumeration (zn)n>1 of Zf that is eventually bounded away from each of its terms
zm. In that case, any one-one enumeration of Zf is eventually bounded away from each of
its terms.

Lemma 1. Let E be a complete metric space, U an open subset of E, and f a pointwise

continuous mapping of U into a normed space Y. Suppose that f is Z-stable at each point

of U, and that Zf is countably isolated, with one-one enumeration z1, z2, . . . . Then (zn)n>1
is eventually bounded away from each point of U.

Proof. Fixing x ∈ U, pick r > 0 such that the closed ball B(x, r) is well contained in U. For
each positive integer n choose δn > 0 such that if ‖f(x)‖ < δn, then there exists ζ with
f(ζ) = 0 and ρ (ζ, x) < 2−nr; we may assume that δn+1 < δn. Construct an increasing
binary sequence λ such that for each k > 1,

λk = 0 ⇒ ‖f(x)‖ < δk,

λk = 1 ⇒ ‖f(x)‖ > δk+1.

Note that if λ1 = 1, then by the continuity of f at x, the whole sequence (zn)n>1 is bounded
away from x. We may therefore assume that λ1 = 0. If λk = 0, then, using the Z-stability
of f at x, choose ζk ∈ Zf with ρ(ζk, x) < 2−nr. If λk = 1− λk−1, set ζj = ζk−1 for each j > k;

then ρ(ζk, x) < 2−k+1r. It readily follows that

ρ (ζm, ζn) 6 2−n+1r (m > n) ,

Since B(x, r) is a closed, and therefore complete, subset of E, the sequence (ζk)k>1 converges

to a limit ζ∞ ∈ B(x, r) ⊂⊂ U, and ρ (ζ∞, ζn) 6 2−n+1r for each n. By the continuity of f at
ζ∞, we have f(ζ∞) = 0. Our hypotheses on Zf now provide N such that ρ(zn, ζ∞) > 2−N+2r
for all n > N. If λN = 1, then (zn)n>1 is bounded away from x. We may therefore assume

that λN = 0. Consider any n > N. If λn = 0, then ρ(ζn, x) < 2−nr, so

ρ(zn, x) > ρ(zn, ζ∞) − ρ(ζ∞, ζn) − ρ(ζn, x)

> 2−N+2r− 2−N+1r − 2−nr

> 2−N+2r− 2−N+1r − 2−Nr = 2−Nr.

If λn = 1, then there exists k with N < k 6 n such that λk = 1 − λk−1. In this case,
ζ∞ = ζk−1, so

ρ(zn, x) > ρ(zn, ζ∞) − ρ(x, ζk−1)

> 2−N+2r− 2−k+1r

> 2−N+2r− 2−N+1r = 2−N+1r.



Z-STABILITY IN CONSTRUCTIVE ANALYSIS 9

We now see that ρ(zn, x) > 2−N+1r for all n > N. Hence (zn)n>1 is eventually bounded

away from each point x of U.7

In the final result of this section we use the full anti-Specker property (relative to one-
point extensions) for a metric space X,

ASX: If X ∪ {ω} is a one-point extension of X, and (xn)n>1 is a sequence in
X ∪ {ω} that is eventually bounded away from each point of X, then there
exists N such that xn = ω for all n > N.

This, like ASX
L , does not depend on the one-point extension of X: if it holds for some

one-point extension of X, then it holds for them all. The statement ‘ASX holds for every
compact metric space’ is equivalent, over BISH, to Brouwer’s fan theorem for c-bars [2].

Proposition 4.2. The following are equivalent over BISH:

(i) AS[0,1].

(ii) AS2N .

(iii) ASX holds for every compact metric space X.

Proof. Suppose that AS[0,1] holds. Then (see [14, Proposition 1]), 2N has the anti-Specker
property. But if X is any compact metric space, then [10, Chapter 5, Proposition (1.4)] shows
that there exists a uniformly continuous mapping of 2N onto X; whence, by [8, Proposition

10], X has the anti-Specker property. Hence each of AS[0,1] and AS2N is prototypical for
the full anti-Specker property on compact metric spaces.8

A classical sequential compactness argument shows that under the hypotheses of Lemma
1, the set of zeroes of f in a compact set well contained in U is finite. Here is our constructive
counterpart of that result.

Proposition 4.3. Let E be a complete metric space, U an open subset of E, and f a pointwise

continuous mapping of U into a normed space Y. Suppose that f is Z-stable at each point

of U, and that Zf is countably isolated, with one-one enumeration z1, z2, . . . . Let X be a

compact subset of U with the anti-Specker property. Then there exists N such that

Zf ∩ X ⊂ {z1, . . . , zN} .

Proof. By Lemma 1, (zn)n>1 is eventually bounded away from each point of X. By the

anti-Specker property for X, there exists N such that ρ (zn, x) > 2−N whenever x ∈ X and
n > N. Thus if x ∈ X and f(x) = 0, we must have x = zn for some n 6 N.

7Examination of the proof of Lemma 1 shows that the continuity of f is used

• (twice) to show that if λk = 1, and therefore ‖f(x)‖ > δk+1, then (zn)n≥1
is bounded away from x, and

• to show that f(ζ∞) = 0.

The second application can be avoided altogether by this argument. Suppose that f(ζ∞) 6= 0. If λk = 0

for all k, then ζ∞ = x and f(x) = 0, a contradiction. If λk = 1 − λk−1, then f(ζ∞) = f(ζk−1) = 0, again a
contradiction. It follows from all this that if f(ζ∞) 6= 0, then we have neither λn = 0 for all n nor λn = 1 for
some n. Since this is absurd, we cannot have f(ζ∞) 6= 0, so f(ζ∞) = 0.

In view of this, we could replace the continuity hypothesis in Lemma 1 by the following one: for each
x ∈ E, if f(x) 6= 0, then ρ (x, Zf) > 0. At the same time, however, we should bear in mind that in both the
recursive and the intuitionistic ‘models’ of BISH, every function from a complete, separable metric space
into a metric space is pointwise continuous everywhere; see [10, Ch. 3, Sec 6, and Ch. 5, Corollary (2.4)].

8This proposition originally appeared as [14, Proposition 1]. Our proof corrects the argument at the end
of Diener’s one.
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5. Concluding remarks on ASX
L and positivity properties

In order to facilitate the passage from Z-stability to uniform Z-stability in Proposition 4.1,
we replaced the positivity property, used in Proposition 3.2, by the limited anti-Specker
property. An examination of the proof of [8, Proposition 5] shows that ASX

L implies the
pointwise positivity property,

POSX
p : If f is a pointwise continuous, positive-valued mapping on a metric

space, and if infX f exists, then infX f > 0.

The following lemma will enable us to prove that the pointwise positivity property for [0, 1]

implies, and hence is equivalent to, AS
[0,1]
L . For the lemma, we need this definition. For

each t ∈ R and each δ > 0 we define the corresponding spike function to be the unique
uniformly continuous function s (t, δ, .) : R → R with the following properties:

· s (t, δ, t) = 1,
· s (t, δ, x) = 0 whenever |x− t| > δ, and
· s (t, δ, .) is linear in each of the intervals [t− δ, t] and [t, t+ δ] .

Lemma 2. Let (xn)n>1 be a sequence in [0, 1] ∪ {2} that is eventually bounded away from

each point of [0, 1] . Let δ1 ∈
(

0, 12
)

, and for each n > 2 let 0 < δn 6 min {2−n, δn−1}. Let

(an)n>1 be a sequence of real numbers, and define, for each n, a mapping fn : [0, 1] → (0, 1]
by

fn(x) ≡

{
s(xn, δn, .) if xk ∈ [0, 1] for each k 6 n

0 if xk = 2 for some k 6 n.

Then f =
∑

∞

n=1 anfn is a well-defined, pointwise continuous mapping on [0, 1].

Proof. The proof of [6, Lemma 4] carries over mutatis mutandis.

Proposition 5.1. POS
[0,1]
p and AS

[0,1]
L are equivalent over BISH.

Proof. In view of earlier remarks, it is enough to assume POS
[0,1]
p and derive AS

[0,1]
L . Con-

sider a sequence (zn)n>1 in Y ≡ [0, 1]∪ {2} that is eventually bounded away from each point
of [0, 1]. Using [6, Lemma 5], we may take zm 6= zn whenever m 6= n. Replacing the
sequence (zn)n>1 by one of its tails if necessary, we may further assume that there exists

δ0 ∈
(

0, 1
2

)

such that zn > δ0 and |zn − 1| > δ0 for all n. Setting n0 = 1 and arguing as in
the proof of [6, Theorem 6], construct, inductively, a sequence (δk)k>0 of positive numbers
and a strictly increasing sequence (nk)k>0 of positive integers such that the following hold
for each k > 1 :

(i) δk 6 min
{
2−k, δk−1

}
;

(ii) |zj − zk| > 2δk for all j > nk.

Replacing δk by a smaller value if necessary, since the terms of (zn)n>1 are distinct we may
assume that |zj − zk| > 2δk also when k 6= j < nk. It follows from Lemma 2 that

f =

∞∑

k=1

(

1− 2−k
)

s (zk, δk, .) (5.1)

defines a pointwise continuous function on [0, 1]. Consider any j, k with j > k. If |x− zj| < δj
and |x− zk| < δk, then as δj 6 δk, we have |zj − zk| < 2δk, a contradiction from which we
conclude that the supports of the terms of the series at (5.1) are pairwise disjoint. Hence
f maps [0, 1] into [0, 1). We now prove that sup f exists. Let 0 < α < β < 1, and pick a
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positive integer K such that β < 1 − 2−K+1. Either there exists k 6 K such that xk = 2,
in which case sup f = 1 − 2−k+1 for the smallest such k, and either sup f > α or sup f < β;
or else xk ∈ [0, 1] for all k 6 K, and f(xK) = 1 − 2−K > β > α. Since α,β are arbitrary, it
follows from the constructive least-upper-bound principle [11, Theorem 2.1.18] that sup f
exists.

Now let g ≡ 1 − f, which is a pointwise continuous mapping of [0, 1] into (0, 1] with

infimum equal to 1− sup f. Applying POS
[0,1]
p to g, we see that inf g > 0. Thus there exists

a positive integer κ such that 2−κ < inf g. It follows that znk
= xk = 2 for some k 6 κ.

It is no surprise that each of AS
[0,1]
L and AS2N

L is prototypical for the limited anti-
Specker property on compact spaces.

Proposition 5.2. The following are equivalent over BISH:

(i) AS
[0,1]
L .

(ii) AS2N

L .

(iii) ASX
L holds for each compact metric space X.

Proof. The argument used (before Proposition 4.3) to prove that AS2N implies ASX for any

compact X trivially adapts to show that if AS2N

L holds, then every compact metric space

has the limited anti-Specker property. Diener [15] has recently proved that AS
[0,1]
L implies

AS2N

L . Clearly, (iii) implies (i).

In turn, POS
[0,1]
p and POS2N

p are prototypical in their realm:

Proposition 5.3. The following are equivalent over BISH:

(i) POS
[0,1]
p .

(ii) POS2N
p .

(iii) POSX
p holds for each compact metric space X.

Proof. This follows from Propositions 5.1 and 5.2.

Figure 1 summarises the relationships between the anti-Specker and positivity proper-

ties that we have established here: clearly, POS
[0,1]
p , and therefore AS

[0,1]
L , implies POS[0,1].

Does POS[0,1] imply AS
[0,1]
L , and therefore ASX

L for every compact metric space X? We do
not know the answer; but if it turns out to be ‘yes’, then in view of the Julian-Richman
theorem [18], we will have found the exact fan-theoretic equivalent, relative to BISH, of

AS
[0,1]
L : namely, FTD. 303a3=Corollary 3.3
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X.
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Figure 1. Relationships between anti-Specker and positivity equivalence
classes, relative to BISH.
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[20] P. Martin-Löf: Intuitionistic type theory, Bibliopolis, Napoli,1984.
[21] H. Scarf: ‘On the approximation of fixed points of a continuous mapping’, SIAM J. Applied Math. 15,

1328–1343, 1967.
[22] H. Scarf: ‘On the computation of equilibrium prices’, in: Ten Economic Studies in the Tradition of

Irving Fisher (W. Fellner et al., eds), Chapter 8, Wiley, New York, 1967.
[23] A.S. Troelstra and D van. Dalen: Constructivism in Mathematics (Vol. I), Studies in Logic and the

Foundations of Mathematics 121, North-Holland Publishing Co., Amsterdam, 1988; Zbl 0653.03040;
MR 90e:03002a.

This work is licensed under the Creative Commons Attribution-NoDerivs License. To view
a copy of this license, visit http://creativecommons.org/licenses/by-nd/2.0/ or send a
letter to Creative Commons, 171 Second St, Suite 300, San Francisco, CA 94105, USA, or
Eisenacher Strasse 2, 10777 Berlin, Germany


	1. Z-stability
	2. Z-stability and good behaviour
	3. Uniform Z-stability
	4. Anti-Specker properties and Z-stability
	5. Concluding remarks on ASLX and positivity properties
	Acknowledgements
	References

