
Logical Methods in Computer Science
Vol. 12(3:11)2016, pp. 1–38
www.lmcs-online.org

Submitted Dec. 30, 2015
Published Sep. 22, 2016

DATA OPTIMIZATIONS FOR CONSTRAINT AUTOMATA

SUNG-SHIK T.Q. JONGMANS,a AND FARHAD ARBAB,b

a Open University of the Netherlands, Radboud University Nijmegen, the Netherlands
e-mail address: ssj@ou.nl

b Centrum Wiskunde & Informatica, Leiden University, the Netherlands
e-mail address: farhad@cwi.nl

Abstract. Constraint automata (CA) constitute a coordination model based on finite
automata on infinite words. Originally introduced for modeling of coordinators, an in-
teresting new application of CAs is implementing coordinators (i.e., compiling CAs into
executable code). Such an approach guarantees correctness-by-construction and can even
yield code that outperforms hand-crafted code. The extent to which these two potential
advantages materialize depends on the smartness of CA-compilers and the existence of
proofs of their correctness.

Every transition in a CA is labeled by a “data constraint” that specifies an atomic
data-flow between coordinated processes as a first-order formula. At run-time, compi-
ler-generated code must handle data constraints as efficiently as possible. In this paper,
we present, and prove the correctness of two optimization techniques for CA-compilers
related to handling of data constraints: a reduction to eliminate redundant variables and
a translation from (declarative) data constraints to (imperative) data commands expressed
in a small sequential language. Through experiments, we show that these optimization
techniques can have a positive impact on performance of generated executable code.

1. Introduction

Context. In the early 2000s, hardware manufacturers shifted their attention from manu-
facturing faster—yet purely sequential—unicore processors to manufacturing slower—yet
increasingly parallel—multicore processors. In the wake of this shift, concurrent program-

ming became essential for writing scalable programs on general hardware. Conceptually,
concurrent programs consist of processes, which implement modules of sequential computa-
tion, and protocols, which implement the rules of concurrent interaction that processes must
abide by. As programmers have been writing sequential code for decades, programming pro-
cesses poses no new fundamental challenges. What is new—and notoriously difficult—is
programming protocols.

In ongoing work, we study an approach to concurrent programming based on syntactic
separation of processes from protocols. In this approach, programmers write their processes

2012 ACM CCS: [Theory of computation]: Models of computation—Concurrency; Semantics and
reasoning—Program semantics.

Key words and phrases: protocols, constraint automata, Reo, compilation, optimization, performance.

LOGICAL METHODS
l IN COMPUTER SCIENCE DOI:10.2168/LMCS-12(3:11)2016

c© S.-S.T.Q. Jongmans and F. Arbab
CC© Creative Commons

http://creativecommons.org/about/licenses

2 S.-S.T.Q. JONGMANS AND F. ARBAB

in a general-purpose language (gpl), while they write their protocols in a complementary
domain-specific language (dsl). Paraphrasing the definition of dsls by Van Deursen et
al. [vDKV00], a dsl for protocols “is a programming language that offers, through ap-
propriate notations and abstractions, expressive power focused on, and [..] restricted to,
[programming protocols].” In developing dsls for protocols, we draw inspiration from ex-
isting coordination models and languages, which typically provide high-level constructs and
abstractions that more easily compose into correct—relative to programmers’ intentions—
protocol code than do lower-level synchronization mechanisms (e.g., locks or semaphores).
Significant as their software engineering advantages may be, however, performance is an im-
portant concern too. A crucial step toward adoption of coordination models and languages
for programming protocols is, therefore, the development of compilers capable of generating
efficient lower-level protocol implementations from high-level protocol specifications.

Our current work focuses on developing compilation technology for constraint automata

(ca) [BSAR06, Jon16a], a coordination model based on finite automata on infinite words,
originating from research on the coordination language Reo [Arb04, Arb11]. Every ca
models (the behavior of) a coordinator that enforces a protocol among coordinated processes.
Structurally, a ca consists of a finite set of states, a finite set of transitions, a set of
directed ports, and a set of local memory cells. States model the internal configurations of a
coordinator; transitions model a coordinator’s atomic coordination steps. Ports constitute
the interface between a coordinator and its coordinated processes, the latter of which can
perform blocking i/o-operations on their coordinator’s ports: a coordinator’s input ports

admit put operations, while its output ports admit get operations. Memory cells model a
coordinator’s internal buffers to temporarily store data in. Different from classical automata,
transition labels of cas consist of two elements: a set of ports, called a synchronization

constraint, and a logical formula over ports and memory cells, called a data constraint. A
synchronization constraint specifies which ports need an i/o-operation for its transition
to fire (i.e., those ports synchronize in that transition and their pending i/o-operations
complete), while a data constraint specifies which particular data those i/o-operations may
involve. Every ca, then, constrains when i/o-operations may complete on which ports.

Problem. Briefly, our current ca-to-Java compiler translates passive data structures for
cas into (re)active “coordinator threads”. A coordinator thread is, effectively, a state
machine whose transitions correspond one-to-one to transitions in a ca. Essentially, then,
compiler-generated coordinator threads simulate cas by firing their transitions, continuously
monitoring run-time data structures for their ports.1

To actually fire a transition, a coordinator thread must first check both that transi-
tion’s synchronization constraint and its data constraint. The check for the synchronization
constraint ensures that all ports involved in the transition have a pending i/o-operation
(and are thus ready to participate in the transition); the check for the data constraint
subsequently ensures that those pending i/o-operations can result in admissible data-flows.

1One needs to overcome a number of serious issues before this approach can yield practically useful code.
Most significantly, these issues include exponential explosion of the number of states or transitions of ca,
and oversequentialization (i.e., the situation where coordinator threads unnecessarily prevent concurrent
execution of independent activities) or overparallelization (i.e., the situation where the synchronization
necessary for parallel execution of multiple coordinator threads dominates execution time, to the extent that
concurrency causes slowdown instead of speedup) of generated code. We have already reported our work on
these issues along with promising results elsewhere [JA16, JHA14, JSA15].

DATA OPTIMIZATIONS FOR CONSTRAINT AUTOMATA 3

Checking synchronization constraints is relatively cheap. Checking data constraints,
in contrast, requires calls to a constraint solver. When using a general-purpose constraint
solver, as we currently do, such calls inflict high run-time overhead. This overhead has
a severe impact on the overall performance of programs, because coordinator threads ex-
ecute purely serially. As such, checking data constraints can become a serious sequential
bottleneck to an entire program (e.g., whenever all other threads depend on the firing of a
transition to make progress).

Contribution. In this paper, we present two techniques to optimize the performance of
checking data constraints. The first technique reduces the size of data constraints at compile-
time, to reduce the complexity of (number of variables involved in) constraint solving at
run-time. The second technique translates data constraints into small pieces of imperative
code (in a sequential language with assignment and guarded failure statements) at compile-
time, to replace expensive calls to a general-purpose constraint solver at run-time. We prove
that both our techniques are correct. Such correctness proofs are important, because they
ensure that our compilation approach guarantees correctness-by-construction (e.g., model-
checking results obtained for pre-optimized ca also hold for their generated, optimized
implementations). We evaluate our techniques in a number of experiments using their
implementation in our current ca-to-Java compiler.

In Section 2, we present preliminaries on data constraints and cas. In Section 3, we
discuss our first optimization technique; in Section 4, we discuss our second. In Section 5,
we report on an experimental evaluation of our two optimization techniques. Section 6
concludes this paper. Appendix A contains proof sketches; full, detailed proofs appear
in [Jon16b] (referenced more specifically in Appendix A). A preliminary version of this paper,
in which we report only on the optimization technique presented in Section 4, appeared in
the proceedings of Coordination 2015 [JA15].

2. Preliminaries

Data Constraints. In this subsection, we present a first-order calculus of data constraints.
In the next subsection, we label transitions in cas with objects from this calculus. We start
by defining elementary notions of data, ports, and memory cells.

Definition 2.1 (data). A datum is an unstructured object. D denotes the possibly infinite
set of all data, ranged over by d.

Definition 2.2 (empty datum). nil is an unstructured object such that nil /∈ D.

Definition 2.3 (ports). A port is an unstructured object. P denotes the set of all ports,
ranged over by p. 2P denotes the set of all sets of ports, ranged over by P .

Definition 2.4 (memory cells). A memory cell is an unstructured object. M denotes the
set of all memory cells, ranged over by m. 2M denotes the set of all sets of memory cells,
ranged over by M .

The exact content of D depends on the context of its use and formally does not matter.
Henceforth, we write elements of P in capitalized lower case sans-serif (e.g., A, B, C, In1,
Out2), while we write elements of D in lower case monospace (e.g., 1, 3.14, true, "foo").

4 S.-S.T.Q. JONGMANS AND F. ARBAB

Although data flow through ports always in a certain direction, we do not yet distinguish
input ports from output ports; this comes later.

Out of ports and memory cells, we construct data variables, which serve as the variables
in our calculus. Every data variable designates a datum. For instance, ports can hold data
(to exchange), so every port serves as a data variable in the calculus. Similarly, memory
cells can hold data, but the meaning of “to hold” differs in this case. Ports hold data only
for exchange during a coordination step (i.e., transiently, in passing). In contrast, memory
cells hold data also before and after a coordination step. Consequently, in the context of
data variables, a memory cell before a coordination step and the same memory cell after
that step have different identities. After all, the content of the memory cell may have
changed in between. Therefore—inspired by notation from Petri nets [Rei85]—for every
memory cell m, both •m and m• serve as data variables: •m refers to the datum in m
before a coordination step, while m• refers to the datum in m after that coordination step.
We abbreviate sets {•m | m ∈ M} and {m• | m ∈ M} as •M and M•.

Definition 2.5 (data variables). A data variable is an object x generated by the following
grammar:

x ::= p | •m | m•

X denotes the set of all data variables. 2X denotes the set of all sets of data variables, ranged
over by X.

We subsequently assign meaning to data variables with data assignments.

Definition 2.6 (data assignments). A data assignment is a partial function from data
variables to data. Assignm = X ⇀ D denotes the set of all data assignments, ranged over
by σ. 2Assignm denotes the set of all sets of data assignments, ranged over by Σ.

Essentially, a data assignment σ comprehensively models a coordination step involving the
ports and memory cells in Dom(σ) and the data in Img(σ). As coordinators have only
finitely many ports and memory cells in practice, we stipulate that the domain of every
data assignment is finite, too. The same holds for their support.

We proceed by defining data functions and data relations, which serve as the functions
and predicates in our calculus. Together, data, data functions, and data relations con-
stitute our set of extralogicals. To avoid excessive machinery—but at the cost of formal
imprecision—we do not distinguish extralogical symbols from their interpretation as data,
data functions, and data relations.

Definition 2.7 (data functions). A data function is a function from tuples of data to data.
F =

⋃

{Dk → D | k > 0} denotes the set of all data functions, ranged over by f .

Definition 2.8 (data relations). A data relation is a relation on tuples of data. R =
⋃

{2D
k

| k > 0} denotes the set of all data relations, ranged over by R.

Henceforth, we write elements of F in camel case monospace (e.g., divByThree, inc),
while we write elements of R in captitalized camel case monospace (e.g., Odd, SmallerThan).

Out of data variables, data, and data functions, we construct data terms, which serve
as the terms in our calculus. Every data term represents a datum.

Definition 2.9 (data terms). A data term is an object t generated by the following gram-
mar:

t ::= x | d | f(t1, . . . , tk≥1)

DATA OPTIMIZATIONS FOR CONSTRAINT AUTOMATA 5

Term denotes the set of all data terms. 2Term denotes the set of all sets of data terms,
ranged over by T .

Henceforth, let <Term denote some strict total order on Term.2

Given a data assignment whose domain includes at least the data variables in a data
term t, we can evaluate t to a datum. (To evaluate t, additionally, every data function
application in t must have the right number of inputs: the arity of a data function and its
number of inputs must match. Henceforth, we tacitly assume that this always holds true.)

Definition 2.10 (evaluation). eval : Assignm× Term → D ∪ {nil} denotes the function
defined by the following equations:

evalσ(x) =

{

σ(x) if x ∈ Dom(σ)
nil otherwise

evalσ(d) = d

evalσ(f(t1, . . . , tk)) =



















f(evalσ(t1), . . . , evalσ(tk)) if





evalσ(t1) 6= nil

and · · · and
evalσ(tk) 6= nil





nil otherwise

Out of data terms, data relations, and data variables, we construct data constraints.

Definition 2.11 (data constraints). A data constraint is an object ϕ generated by the
following grammar:

a ::= ⊥ | ⊤ | t1 = t2 | R(t1, . . . , tk≥1) (data atoms)
ℓ ::= a | ¬a (data literals)
ϕ ::= ∃x.ϕ | ℓ1 ∧ · · · ∧ ℓk≥1 (data constraints)

DC denotes the set of all data constraints. 2DC denotes the set of all sets of data constraints,
ranged over by Φ.

Henceforth, let <DC denote a strict total order on DC, and let
∧

Φ denote the unique

multiary conjunction of the data constraints in Φ under <DC. Also, for a data constraint
ϕ = ∃x1.· · ·∃xl.(ℓ1∧· · ·∧ ℓk), call ℓ1∧· · ·∧ ℓk the kernel of ϕ, and let Liter(ϕ) = {ℓ1, . . . , ℓk}.

Every data constraint characterizes a set of data assignments through an entailment re-

lation. This entailment relation, thus, formalizes the semantics of data constraints. Let ϕ[t/x]
denote data constraint ϕ with data term t substituted for every occurrence of data variable x
(in a capture-free way).

Definition 2.12 (entailment). |= ⊆ Assignm× DC denotes the smallest relation induced
by the rules in Figure 1.

Contradiction, tautology, and (multiary) conjunction have standard semantics [Rau10].
Negation ¬a means that, despite all free variables in a having a value, a does not hold
true; the extra condition on the free variables in a ensures the monotonicity of entailment
(i.e., σ|X |= ϕ implies σ |= ϕ, for all X,ϕ). Data atom t1 = t2 means that t1 and t2 evaluate
to the same datum. Typical examples include p1 = p2 (i.e., the same datum passes through
ports p1 and p2), p = m• (i.e., the datum that passes through port p enters the buffer

2It does not matter what this strict total order exactly looks like, so long as we have some way of selecting
the least element of any set of terms. We use this property in Definition 3.3.

6 S.-S.T.Q. JONGMANS AND F. ARBAB

σ |= ⊤
(2.1)

Free(a) ⊆ Dom(σ) and σ 6|= a

σ |= ¬a
(2.2)

evalσ(t1) = evalσ(t2) 6= nil

σ |= t1 = t2
(2.3)

σ |= φ[d/x] for some d

σ |= ∃x.φ
(2.4)

(evalσ(t1), . . . , evalσ(tk)) ∈ R

σ |= R(t1, . . . , tk)
(2.5)

σ |= φ1 and · · · and σ |= φk

σ |= φ1 ∧ · · · ∧ φk

(2.6)

Figure 1. Addendum to Definition 2.12

modeled by memory cell m), and p = •m (i.e., the datum in the buffer modeled by memory
cell m exits that buffer and passes through port p). Tautology ⊤ means that it does not
matter which data flow through which ports.

Henceforth, let ⇒ and ≡ denote the implication relation and the equivalence relation
on data constraints, derived from |= in the usual way [Rau10]. Furthermore, let Variabl(ϕ)
denote the set of data variables in ϕ, and let Free(ϕ) denote its set of free data variables.

Constraint Automata. We proceed by formally defining a ca a, which models a coordi-
nator, as a tuple consisting of a set of states Q, a triple of three sets of ports (P all, P in, P out),
a set of memory cells M , a transition relation −→, and an initial state q0. The set P all

contains all ports monitored and controlled by a, while P in and P out contain only its input
ports and its output ports. Although P all contains the union of P in and P out, the converse
not necessarily holds true: beside input and output ports, P all may contain also internal

ports. If a ca has internal ports, we call it a composite; otherwise, we call it a primitive.

Definition 2.13 (states). A state represents a configuration of a coordinator. Q denotes
the set of all states, ranged over by q. 2Q denotes the set of all sets of states, ranged over
by Q.

Definition 2.14 (constraint automata). A constraint automaton is a tuple:

(Q, (P all, P in, P out),M,−→, q0)

where:

• Q ⊆ Q (states)
• (P all, P in, P out) ∈ 2P × 2P × 2P such that: (ports)

P in, P out ⊆ P all and P in ∩ P out = ∅

• M ⊆ M (memory cells)

• −→ ⊆ Q× 2P
all

× DC×Q such that: (transitions)
[

q
P,ϕ
−−→ q′ implies Free(ϕ) ⊆ P ∪ •M ∪M•

]

for all q, q′, P, ϕ

• q0 ∈ Q (initial state)

Autom denotes the set of all constraint automata, ranged over by a.

DATA OPTIMIZATIONS FOR CONSTRAINT AUTOMATA 7

Q = {q1, q2}
(P all, P in, P out) = ({A,B,C}, {A,B}, {C})
M = {x}

−→ =







(q1, {A},A = x•, q2),
(q1, {B},B = x•, q2),
(q2, {C}, •x = C, q1),







q0 = q1

Textual representation

{Ain}, A = x•

{Bin}, B = x•

{Cout}, •x = C

Graphical representation

Figure 2. Example ca for a producers/consumer coordinator

The requirement Free(ϕ) ⊆ P∪•M∪M• means that the effect of a transition remains local to
its own scope: a transition cannot affect, or be affected by, ports outside its synchronization
constraint and memory cells outside its ca. Henceforth, let Dc(a) denote the set of data
constraints that occur on the transitions of a ca a (not to be confused with DC, which
denotes the set of all data constraints; see Definition 2.11).

Figure 2 shows an example of a ca. In graphical representations of cas, we annotate
ports in synchronization constraints with superscripts “in” and “out” to indicate their
direction; internal ports have no such annotation. The ca in Figure 2 models a producers/
consumer coordinator with two input ports A and B (each shared with a different producer,
presumably) and an output port C (shared with the consumer). Initially, a put by the
producer on A can complete, causing that producer to offer a datum into internal buffer x

(modeled by data constraint A = x•). Alternatively, a put by the other producer on B can
similarly complete. Subsequently, only a get by the consumer on C can complete, causing
the consumer to accept the datum previously stored in x. This coordinator, thus, enforces
asynchronous, unordered, reliable communication from two producers to a consumer.

The precise definitions of language acceptance and bisimulation for cas do not matter
in this paper. Likewise, the precise definitions of behavioral equivalence (based on lan-
guage acceptance) and behavioral congruence (based on bisimulation), such that behavioral
congruence implies behavioral equivalence, do not matter. These definitions appear else-
where [Jon16a]. The only result about the behavior of cas that matters in this paper is the
following intuitive proposition. Let ≃ denote behavioral congruence, and let a[ϕ′/ϕ] denote
ca a with data constraint ϕ′ substituted for every occurrence of data constraint ϕ.

Proposition 2.15 (Lemma 43 in [Jon16b, Appendix C.4]). ϕ ≡ ϕ′ implies a ≃ a[ϕ′/ϕ]

This proposition means that we can freely replace every data constraint in a ca with
an equivalent data constraint in a behavior-neutral way. This proposition plays a key role
in the correctness proofs of the two optimization techniques presented in the rest of this
paper.

Instead of defining cas directly, in practice, we construct them compositionally using
two binary operations [BSAR06, Jon16a]: join, denoted by ⊗, and hide, denoted by ⊖.
Join performs parallel composition: it “glues” together two cas on their shared ports, after
which those shared ports become internal. Essentially, whenever two cas have joined, if
a transition in one of those cas involves shared ports, that transition can fire only syn-
chronously with a transition in the other ca that involves exactly the same shared ports
(i.e., at any time, the cas must agree on firing transitions involving their shared ports).

8 S.-S.T.Q. JONGMANS AND F. ARBAB

{pin1 , pout2 }, p1 = p2

Sync(p1; p2)

{pin1 , pin2 },⊤

SyncDrain(p1, p2;)

{pin1 },⊤

{pin1 , pout2 },
p1 = p2

LossySync(p1; p2)

{pin1 },¬R(p1)

{pin1 , pout2 },
R(p1) ∧ p1 = p2

Filter〈R〉(p1; p2)

{pin1 },
m•

= p1

{pout2 },
p2 =

•m

Fifo{;m}(p1; p2)

{pin1 , pout3 },
p1 = p3

{pin2 , pout3 },
p2 = p3

Merg2(p1, p2; p3)

{pin1 , pout2 , pout3 },
p1 = p2 ∧ p1 = p3

Repl2(p1; p2, p3)

{pin1 , pin2 , pout3 },
f(p1, p2) = p3

BinOp〈f〉(p1, p2; p3)

Figure 3. Eight primitives

Sync(p1; p2) Infinitely often atomically
[

accepts a datum d on its input port p1,

then offers d on its output port p2
]

.

SyncDrain(p1, p2;) Infinitely often atomically
[

accepts data d1 and d2 on its input

ports p1 and p2, then loses d1 and d2
]

.

LossySync(p1; p2) Infinitely often either atomically
[

accepts a datum d on its input

port p1, then offers d on its output port p2
]

or atomically
[

accepts a

datum d on p1, then loses d
]

.

Filter〈R〉(p1; p2) Infinitely often either atomically
[

accepts a datum d on its input
port p1, then establishes that d satisfies data relation R, then offers d
on its output port p2

]

or atomically
[

accepts a datum d on p1, then

establishes that d violates R, then loses d
]

.

Fifo{;m}(p1; p2) Infinitely often first atomically
[

accepts a datum d on its input port p1,

then stores d in its memory cell m
]

and subsequently atomically
[

loads d from m, then offers d on its output port p2
]

.

Merg2(p1, p2; p3) Infinitely often atomically
[

accepts a datum d either on its input

port p1 or on its input port p2, then offers d on its output port p3
]

.

Repl2(p1; p2, p3) Infinitely often atomically
[

accepts a datum d on its input port p1,

then offers d on its output ports p2 and p3
]

.

BinOp〈f〉(p1, p2; p3) Infinitely often atomically
[

accepts data d1 and d2 on its input
ports p1 and p2, then applies data function f to d1 and d2, then
offers f(d1, d2) on its output port p3

]

.

Figure 4. Data-flow behavior of the primitives in Figure 3

Hide performs port abstraction: it “cuts” a port out from a ca. Typically, we use hide to
remove internal ports from the definition of a ca, as such ports do not directly contribute
to its observable behavior (i.e., processes cannot perform i/o-operations on internal ports).

DATA OPTIMIZATIONS FOR CONSTRAINT AUTOMATA 9

p1 p2

Sync(p1; p2)

p1 p2

SyncDrain(p1, p2;)

p1 p2

LossySync(p1, p2;)

p1 p2R

Filter〈R〉(p1; p2)

p1 p2m

Fifo{;m}(p1; p2)

p1

p2

p3

Merg2(p1, p2; p3)

p1

p2

p3

Repl2(p1; p2, p3)

p1

p2

p3

f

BinOp〈f〉(p1, p2; p3)

Figure 5. Digraphs for the primitives in Figure 3

In P Out

Sync2(In;Out)

In P Outx1 x2

Fifo2{; x1, x2}(In;Out)

P

In1

In2

Outx

LateAsyncMerg2{; x}(In1, In2;Out)

Out

P1

P2

In1

In2

x1

x2

EarlyAsyncMerg2{; x1, x2}(In1, In2;Out)

In

P1

P2

P3

P5

P7

P8

P4

Out1

P6

Out2

Rout2(In;Out1,Out2)

E

B

D a
d
d

F

G

P1

y1

P2

y2
1

C

P3

P4

P5 Ax1
0

x2

In

HOdd

Out1

Out2

OddFib2{; x1, x2, y1, y2}(In;Out1,Out2)

Figure 6. Digraphs for six example composites

To compositionally construct a ca, then, we first join a number of “small” primitive cas
into a “large” composite ca. Second, we hide all internal ports from this large ca to make
its definition more concise (without losing essential information). Figure 3 shows a number
of common primitive cas; Figure 4 explains their behavior in terms of data-flows between
their ports. In these figures, every ca has a signature formatted as follows:

name〈extralogicals 〉{internal ports ; memory cells}(input ports ; output ports)

Instead of writing explicit ⊗/⊖-expressions to construct cas, in practice, we often draw
them in a graphical, more intuitive syntax, based on the coordination language Reo [Arb04,

10 S.-S.T.Q. JONGMANS AND F. ARBAB

Arb11].3 Essentially, in this syntax, we draw a (hyper)digraph, where every vertex denotes
a port, and where every (hyper)arc denotes a ca consisting of the ports denoted by its
connected vertices. By convention, every vertex has degree 1 (for input and output ports)
or 2 (for internal ports). The ⊗/⊖-expression denoted by a digraph, then, is the join of
(the denotations of) its arcs, and the hide of (the denotations of) its vertices of degree 2.
Intuitively, every transition in the (evaluated) ⊗/⊖-expression for a digraph corresponds
to an atomic flow of data along the arcs in that digraph. Figure 5 shows digraphs for the
primitives in Figure 3; Figure 6 shows digraphs for example composites.

In Figure 6, Sync2 models the same coordinator as a single Sync: it enforces a standard
synchronous channel protocol between a producer and a consumer. Fifo2 models a coor-
dinator between a producer and a consumer that enforces a standard (order-preserving)
asynchronous channel protocol with a buffer of capacity 2. LateAsyncMerg2 is (a behaviorally
congruent ca to) the ca in Figure 2. EarlyAsyncMerg2 models a coordinator between two pro-
ducers and one consumer, as LateAsyncMerg2. The difference between the two is that with
EarlyAsyncMerg2, every producer has its own buffer, which results in significantly different
behavior (as producers no longer need to wait for each other before their puts can complete).
Rout2 models a coordinator between one producer and two consumers that enforces a sym-
metric protocol to Merg2: infinitely often, it atomically

[

accepts a datum on its input port,

then offers it on one of its output ports
]

. Finally, OddFib2 models a coordinator between
two producers and one consumer. Whenever the i-th put by the producer completes, one of
two things happens. If the i-th Fibonacci number is even, the datum put by the producer
is lost, and no interaction occurs between the producer and the two consumers. If the i-th
Fibonacci number is odd, in contrast, a get by each of the two consumers must complete
at the same time (i.e., atomically, i.e., synchronously). In this case, specifically, the datum
put by the producer is lost, while the consumers get the i-th Fibonacci number. This coor-
dinator, thus, enforces synchronous, unreliable (in the sense just described) communication
from a producer to two consumers.

The primitives in Figure 5 were introduced by Arbab [Arb04], except BinOp, which was
introduced by Jongmans [Jon16a] (BinOp is, however, a generalization of primitive Join, which
was introduced by Kokash and Arbab [KA09]). LateAsyncMerg and EarlyAsyncMerg in Figure 6
are probably folklore; these two names were first used by Jongmans [Jon16a]. OddFib is
based on Arbab’s Fibonacci [Arb05]. Rout was introduced by Arbab [Arb05].

3. Optimization I: Eliminate (Instead of Hide)

Motivating Example. To illustrate the need for our first technique to optimize the per-
formance of checking data constraints, presented in this section, we start with a motivating
example. Recall the Sync primitive in Figure 3. Sync has a special property: it acts as a
kind of algebraic identity of join and hide, in the following sense. Let a[p′/p] denote ca a

with port p′ substituted for every occurrence of port p. Let a range over the set of all cas
that (i) have an input port p2 and (ii) in which port p1 does not occur. Then:

(Sync(p1; p2) � a) � p2 ≃ a[p1/p2]

3Other syntaxes for cas beside Reo exist. For instance, we know how to translate Uml sequence/activity
diagrams and Bpmn to cas [AKM08, CKA10, MAB11]. Connector algebras of Bliudze and Sifakis [BS10] also
have a straightforward interpretation in terms of cas, so offering an interesting alternative syntax [DJAB15].

DATA OPTIMIZATIONS FOR CONSTRAINT AUTOMATA 11

In words, (Sync(p1; p2) � a) � p2 and a are behaviorally congruent modulo substitution
of p1 for p2. Generally, we can “prefix” (i.e., join on its input ports) or “suffix” (i.e., join
on its output ports) any number of Syncs to a ca without affecting—in the sense just
described—that ca’s behavior. Given this property, it seems not unreasonable to assume
that compiler-generated code for a single Sync has the same performance as a chain of 64
Syncs. Slightly more formally, if ∼ means “has the same performance”, one may expect:

Sync(p1; p65) ∼ (Sync(p1; p2) � · · · � Sync(p64; p65)) � p2 � · · · � p64

Our compiler-generated code, however, violates this equation: a single Sync fires 27 million
transitions in four minutes, whereas the chain of 64 Syncs fires only nine million transitions.

To understand this phenomenon, we first present the definition of hide [BSAR06,
Jon16a]:

Definition 3.1 (hide). � : Autom × P → Autom denotes the function defined by the
following equation:

(Q, (P all, P in, P out),M,−→, q0) � p = (Q, (P all \ {p}, P in \ {p}, P out \ {p}),M,−→�, q
0)

where −→� denotes the smallest relation induced by the following rule:

q
P,φ
−−→ q′

q
P\{p},∃p.φ
−−−−−−−→� q′

(3.1)

In words, hide removes a port both from sets P all, P in, P out and from every transition. (Be-
cause P in, P out ⊆ P all by Definition 2.14, we need to remove p not only from P in and P out

but also from P all.) But whereas hide removes ports from synchronization constraints syn-
tactically—effectively making those constraints smaller—it removes ports from data con-
straints only semantically. Indeed, � does not reduce the size of data constraints (in terms
of the number of data variables, data literals, and existential quantifications) but, in fact
and in contrast, makes data constraints larger by enveloping them in existential quantifica-
tions: the transition in the single Sync has just p1 = p65 as its data constraint, whereas the
corresponding transition in the chain of 64 Syncs has ∃p64.· · ·∃p2.(p1 = p2 ∧ · · · ∧ p64 = p65).
Clearly, although the two data constraint expressions are semantically (logically) equivalent,
checking the latter data constraint expression requires more resources than the former.

Below, we develop a variant of hide, called eliminate, that, when applied 63 times to the
chain of 64 Syncs, yields the same data constraint as the one in the single Sync. The key idea
is to mechanically simplify data constraint expressions using the equivalence ∃p.(p = t∧φ) ≡
φ[t/p], if p /∈ Free(t), whenever this equivalence becomes applicable after hiding. In the
previous example, for instance, we can use this equivalence to simplify ∃p64.· · ·∃p3.∃p2.(p1 =
p2 ∧ p2 = p3 ∧ · · · ∧ p64 = p65) to ∃p64.· · ·∃p3.(p1 = p3 ∧ · · · ∧ p64 = p65). We can subsequently
repeat this process until we indeed arrive at the expression p1 = p65, as desired.

Eliminate. First, we need to introduce the concept of determinants of free data variables
in data constraints. For a data constraint ϕ and one of its free data variables x ∈ Free(ϕ),
the set of determinants of x consists of those terms that precisely determine the datum σ(x)
assigned to x in any data assignment σ that satisfies ϕ (i.e., σ |= ϕ). “Precisely” here
means that a determinant neither overspecifies nor underspecifies σ(x). Thus, if a set of
determinants contains multiple data terms, each of those data terms evaluates to the same

12 S.-S.T.Q. JONGMANS AND F. ARBAB

datum under σ. Determinants furthermore determine σ(x) independent of x itself: no
determinant of x has x among its free data variables (i.e., determinants have no recursion).

Definition 3.2 (determinants). Determ : X×DC → 2Term denotes the function defined by
the following equations:

Determx(⊤),Determx(⊥) = ∅

Determx(t1 = t2) =







{t2} if
[

t1 = x and x /∈ Variabl(t2)
]

{t1} if
[

t2 = x and x /∈ Variabl(t1)
]

∅ otherwise

Determx(R(t1, . . . , tk)) = ∅
Determx(¬a) = ∅
Determx(ℓ1 ∧ · · · ∧ ℓk) = Determx(ℓ1) ∪ · · · ∪ Determx(ℓk)

Determx(∃x
′.ϕ′) =

{

Determx(ϕ) if x 6= x′

∅ otherwise

For instance, consider the following data constraint:

ϕeg = •x2 = B ∧ C = D ∧ add(B,D) = E ∧ E = F ∧ E = G ∧ ¬Odd(G)

(This data constraint appears in the ⊗/⊖-expression denoted by the digraph for OddFib in
Figure 6.) The free data variables in ϕeg have the following determinants:

Determ•x(ϕeg) = {B}
DetermB(ϕeg) = {•x}
DetermC(ϕeg) = {D}
DetermD(ϕeg) = {C}

DetermE(ϕeg) = {add(B,D), F,G}
DetermF(ϕeg) = {E}
DetermG(ϕeg) = {E}

Next, let a denote a ca, and let ϕ denote one of its data constraints. Suppose that we
hide x from a with �. By Definition 3.1 of �, the transition(s) of a previously labeled by ϕ
are now labeled with ∃x.ϕ. However, if x has determinants, instead of enveloping ϕ in an
existential quantification as � does, we can alternatively perform a syntactic substitution
of one of those determinants for x. We formalize such a substitution as follows.

Definition 3.3 (syntactic existential quantification). exists : X × DC → DC denotes the
function defined by the following equation:

existsx(ϕ) =

{

ϕ[t/x] if
[

Determx(ϕ) 6= ∅ and t = min(Determx(ϕ))
]

∃x.ϕ otherwise

In this definition, function min(·) takes the least element in Determx(ϕ), under the global
order on data terms <Term, to ensure that exists always produces the same output under

DATA OPTIMIZATIONS FOR CONSTRAINT AUTOMATA 13

the same input. The following equations exemplify the (nested) application of exists on ϕeg.

existsG(existsE(existsD(existsB(ϕeg))))

= existsG(existsE(existsD(existsB(
•x = B ∧ C = D ∧ add(B,D) = E ∧ E = F ∧ E = G ∧ ¬Odd(G)))))

= existsG(existsE(existsD(
•x = •x ∧ C = D ∧ add(•x,D) = E ∧ E = F ∧ E = G ∧ ¬Odd(G))))

= existsG(existsE(
•x = •x ∧ C = C ∧ add(•x,C) = E ∧ E = F ∧ E = G ∧ ¬Odd(G)))

= existsG(
•x = •x ∧ C = C ∧ add(•x,C) = F ∧ F = F ∧ F = G ∧ ¬Odd(G))

= •x = •x ∧ C = C ∧ add(•x,C) = F ∧ F = F ∧ F = F ∧ ¬Odd(F)

We define eleminate in terms of exists.

Definition 3.4 (eliminate).
 : Autom×P → Autom denotes the function defined by the
following equation:

(Q, (P all, P in, P out),M,−→, q0)
 p = (Q, (P all \ {p}, P in \ {p}, P out \ {p}),M,−→
, q
0)

where −→
 denotes the smallest relation induced by the following rule:

q
P,ϕ
−−→ q′

q
P\{p},existsp(ϕ)
−−−−−−−−−−→
 q′

(3.2)

In the previous definition, we use exists to remove ports from data constraints. Although
Definition 3.3 of exists also allows for removing data variables for memory cells, we do not
pursue such elimination in this paper.

Correctness and Effectiveness. We conclude this section by establishing the correctness
and effectiveness of eliminate. We consider eliminate correct if it yields a ca behaviorally
congruent to the ca that hide yields. Before formulating this as a theorem, the following
lemma first states the equivalence of existential quantification and exists.

Lemma 3.5. ∃x.ϕ ≡ existsx(ϕ)

From Proposition 2.15 and Lemma 3.5, we conclude the following correctness theorem.

Theorem 3.6. a � p ≃ a
 p

We consider eliminate effective if, after eliminating a port p from a ca a, that port
no longer occurs in any of that ca’s data constraint expressions. Generally, however, such
unconditional effectiveness does not hold true: if a has a data constraint ϕ in which p
occurs, but p has no determinants in ϕ, eliminate has nothing to replace p with. In that
case, existsp(ϕ) = ∃p.(ϕ), and consequently, eliminate does not have its intended (simplify-
ing) effect. Eliminate does satisfy a weaker—but useful—form of effectiveness, though. To
formulate this as a theorem, we first define a function that computes ever-determined ports.
We call a port p ever-determined in a ca a iff both p occurs in a and every data constraint
in a has a determinant for p.

14 S.-S.T.Q. JONGMANS AND F. ARBAB

Definition 3.7 (ever-determined ports). Edp : Autom → 2P denotes the function defined
by the following equation:

Edp(a) = {p |
[

[

p ∈ Variabl(ϕ)
and ϕ ∈ Dc(a)

]

implies Determp(ϕ) 6= ∅
]

for all ϕ}

For instance, p1, p2, and p3 all qualify as ever-determined in Merg2 in Figure 3. To under-
stand the ever-determinedness of p1, observe that p1 occurs in the data constraint on the
top transition in Merg2 and that p1 has a determinant in that data constraint (namely p3);
because p1 does not occur in the data constraint on the bottom transition in Merg2, p1 in-
deed qualifies as ever-determined. A similar explanation applies to p2. To understand the
ever-determinedness of p3, observe that p3 occurs in the data constraint on both transitions
in Merg2 and that p3 has a determinant in both these data constraints (namely p1 and p2).
Consequently, also p3 qualifies as ever-determined. In contrast, p1 in members of Filter in
Figure 3 does not qualify as ever-determined, because p1 occurs in the data constraint on
the top transition in Filter but does not have a single determinant in that data constraint.

The following theorem states the effectiveness of eliminate, conditional on ever-deter-
minedness: after eliminating an ever-determined port from a ca, that port no long occurs
in any of that ca’s data constraints.

Theorem 3.8. p ∈ Edp(a) implies p /∈ {x | ϕ ∈ Dc(a
 p) and x ∈ Variabl(ϕ)}

“Effectiveness” refers to a rather theoretical property; it says nothing yet about the
impact of applying
 in practice. In Section 5, we study this impact through a number of
experiments; in this section, we only revisit our motivating example. By using
 instead
of �, and after removing t = t literals (each of which trivially equates to ⊤), we get exactly
the same data constraint in the chain of 64 Syncs as in the single Sync. Consequently, the
compiler-generated code for the chain of 64 Syncs has the same performance as compiler-gen-
erated code for the single Sync (which corresponds to a 3× speedup relative to unoptimized
code generated with hide instead of eliminate).

4. Optimization II: Commandify (Instead of Seek)

Data Commands. In the previous section, we presented a first technique to optimize the
performance of checking data constraints. In this section, we present a second technique to
further optimize the performance of such checks and, in particular, the expensive constraint
solver calls involved. Essentially, this new technique comprises the generation of a little,
dedicated constraint solver for every data constraint at compile-time. At run-time, then,
instead of calling a general-purpose constraint solver to check a data constraint, the compi-
ler-generated coordinator thread for a ca calls a more efficient constraint solver generated
specifically for that data constraint. First, in this subsection, we describe a basic sequential
language (syntax, semantics, proof system) in which to express such dedicated constraint
solvers; in the next subsections, we present the process of their generation.

General-purpose techniques for constraint solving—an np-complete problem for finite
domains—inflict not only a solving overhead proportional to the size of a data constraint
but also a constant overhead for preparing, making, and processing the result of every call
to a full-fledged solver. Although we generally cannot escape using such techniques for
checking arbitrary data constraints, a better alternative exists for many data constraints in
practice. The crucial observation is that the data constraints in all cas that we know of

DATA OPTIMIZATIONS FOR CONSTRAINT AUTOMATA 15

in the literature really constitute declarative specifications of a relatively straightforward
imperative program. What we need to do, then, is develop a technique for statically trans-
lating such a data constraint ϕ, off-line at compile-time, into a small imperative program
that computes a data assignment σ such that σ |= ϕ, without resorting to general-purpose
constraint solving. We call such a small program a data command and the translation from
data constraints to data commands commandification. Essentially, we formalize and auto-
mate what programmers do when they write an imperative implementation of a declarative
specification expressed as a data constraint. After presenting our technique, we make the
class of data constraints currently supported by commandification precise.

Definition 4.1 (data commands). A data command is an object generated by the following
grammar:

π ::= skip | x := t | ϕ -> π | π ; π | ε (data commands)

Comm denotes the set of all data commands.

In the previous definition, ε denotes the empty data command, x := t denotes an as-

signment, and ϕ -> π denotes a failure statement.4 Henceforth, we often write “value of x”
instead of “the datum assigned to x”.

We define an operational semantics for data commands based on an operational seman-
tics for a sequential language by Apt et al. [AdBO09]. As data commands are supposed
to solve data constraints, we model the data state that a data command executes in with
either a function from data variables to data—a data assignment—or the distinguished ob-
ject fail, which models abnormal termination. A data configuration, then, consists of a data
command and a data state to execute that data command in.

Definition 4.2 (abnormal termination). fail is an unstructured object such that fail /∈
Assignm.

Definition 4.3 (data configurations). A data configuration is a pair (π, ς) where:

• π ∈ Comm (data command)
• ς ∈ Assignm ∪ {fail} (data state)

Conf denotes the set of all data configurations.

A transition system on configurations formalizes their evolution in time.

Definition 4.4 (transition system on data configurations). =⇒ ⊆ Conf × Conf denotes
the smallest relation induced by the rules in Figure 7.

Note that ϕ -> π indeed denotes a failure statement rather than a conditional statement :
if the current data state violates the guard ϕ, execution abnormally terminates.

Through the transition system in Definition 4.4, we associate two different semantics
with data commands. The partial correctness semantics of a data command π under a
set of initial data states Σ consists of all the final data states Σ′ to which any of those
initial states may evolve through execution of π. Notably, this partial correctness semantics
ignores abnormal termination. In contrast, the total correctness semantics of π under Σ
consists not only of Σ′ but, if at least one execution abnormally terminates, also of fail.

4The term “failure statement” may be confusing. As shortly formalized in Definition 4.4, it refers to
a special conditional statement that fails in case the first alternative cannot be selected. By calling such
statements “failure statements”, we follow Apt et al. [AdBO09], which strongly influenced this section.

16 S.-S.T.Q. JONGMANS AND F. ARBAB

(skip, σ) =⇒ (ε, σ)
(4.1)

(x := t, σ) =⇒ (ε, σ[x 7→ evalσ(t)])
(4.2)

σ |= ϕ

(ϕ -> π, σ) =⇒ (π, σ)
(4.3)

σ 6|= ϕ

(ϕ -> π, σ) =⇒ (ε, fail)
(4.4)

(π, σ) =⇒ (π′, σ′) and π′ 6= ε

(π ; π′′, σ) =⇒ (π′ ; π′′, σ′)
(4.5)

(π, σ) =⇒ (ε, σ′)

(π ; π′′, σ) =⇒ (π′′, σ′)
(4.6)

Figure 7. Addendum to Definition 4.4

Definition 4.5 (correctness semantics of data commands). Final, respectively, Finalfail de-

note the functions Comm× 2Assignm → 2Assignm∪{fail} defined by the following equations:

Final(π,Σ) = {σ′ | σ ∈ Σ and (π, σ) =⇒∗ (ε, σ′)}
Finalfail(π,Σ) = Final(π,Σ) ∪ {fail | σ ∈ Σ and (π, σ) =⇒∗ (π′, fail)}

Apt et al. showed that all programs from a superset of the set of all data commands execute
deterministically [AdBO09]. Consequently, also data commands execute deterministically.

Proposition 4.6 (Lemma 3.1 in [AdBO09, Section 3.2]).

• |Final(π, {σ})| ≤ 1
• |Finalfail(π, {σ})| = 1

To prove the correctness of commandification, we use Hoare logic [Hoa69], where triples
of the form {ϕ} π {ϕ′} play a central role. In such a triple, precondition ϕ characterizes
the set of initial data states, π denotes the data command to execute on those states, and
postcondition ϕ′ characterizes the set of final data states after executing π.

Definition 4.7 (triples). Tripl = DC×Comm×DC denotes the set of all triples, typically
denoted by {ϕ} π {ϕ′}.

Let JϕK denote the set of data states that satisfy ϕ (i.e., the data assignments character-
ized by ϕ). We interpret triples in two senses: that of partial correctness and that of total
correctness. In the former case, a triple {ϕ} π {ϕ′} holds true iff every final data state to
which an initial data state characterized by ϕ can evolve under π satisfies ϕ′; in the latter
case, additionally, execution of π does not abnormally terminate.

Definition 4.8 (interpretation of triples). |=part, |=tot ⊆ Tripl denote the smallest relations
induced by the following rules:

Final(π, JϕK) ⊆ Jϕ′K

|=part {ϕ} π {ϕ′}
(4.7)

Finalfail(π, JϕK) ⊆ Jϕ′K

|=tot {ϕ} π {ϕ′}
(4.8)

To prove properties of data commands, we use the following sound proof systems for partial
and total correctness, adopted from Apt et al. with some minor cosmetic changes [AdBO09].

Definition 4.9 (proof systems of triples). ⊢part ,⊢tot ⊆ Tripl denote the smallest relations
induced by the rules in Figure 8.

DATA OPTIMIZATIONS FOR CONSTRAINT AUTOMATA 17

⊢part {ϕ} skip {ϕ}
(4.9)

⊢tot {ϕ} skip {ϕ}
(4.10)

⊢part {ϕ[t/x]} x := t {ϕ}
(4.11)

⊢tot {ϕ[t/x]} x := t {ϕ}
(4.12)

⊢part {ϕ1} π1 {ϕ}
and ⊢part {ϕ} π2 {ϕ2}

⊢part {ϕ1} π1 ; π2 {ϕ2}
(4.13)

⊢tot {ϕ1} π1 {ϕ}
and ⊢tot {ϕ} π2 {ϕ2}

⊢tot {ϕ1} π1 ; π2 {ϕ2}
(4.14)

⊢part {ϕ
′
1} π {ϕ′

2}
and ϕ1 ⇒ ϕ′

1 and ϕ′
2 ⇒ ϕ2

⊢part {ϕ1} π {ϕ2}
(4.15)

⊢tot {ϕ
′
1} π {ϕ′

2}
and ϕ1 ⇒ ϕ′

1 and ϕ′
2 ⇒ ϕ2

⊢tot {ϕ1} π {ϕ2}
(4.16)

⊢part {ϕ ∧ ℓ} π {ϕ′}

⊢part {ϕ} ℓ -> P {ϕ′}
(4.17)

⊢tot {ϕ} π {ϕ′} and ϕ ⇒ ℓ

⊢tot {ϕ} ℓ -> π {ϕ′}
(4.18)

⊢part {ϕ} π {ϕ1} and ⊢tot {ϕ} π {ϕ2}

⊢tot {ϕ} π {ϕ1 ∧ ϕ2}
(4.19)

Figure 8. Addendum to Definition 4.9

Proposition 4.10 (Theorem 3.6 in [AdBO09, Section 3.7]).

• ⊢part {ϕ} π {ϕ′} implies |=part {ϕ} π {ϕ′}
• ⊢tot {ϕ} π {ϕ′} implies |=tot {ϕ} π {ϕ′}

Note that the first four rules for ⊢part and the first four rules for ⊢tot have the same
premise/consequence. We use ⊢part to prove the soundness of commandification; We
use ⊢tot to prove commandification’s completeness.

Commandification (without Cycles). At run-time, to check if a transition (q, P, ϕ, q′)
can fire, a compiler-generated coordinator thread first checks every port in P for readiness.
For instance, every (data structure for an) input port should have a pending put. Sub-
sequently, the coordinator thread checks whether a data state σ exists that (i) satisfies ϕ
and (ii) subsumes an initial data state σinit (i.e., σinit ⊆ σ). If so, we call σ a solution

of ϕ under σinit. The domain of σinit contains all uncontrollable data variables in ϕ: the
input ports in P (intersected with Free(ϕ)) and •m for every memory cell m in the ca (also
intersected with Free(ϕ)). More precisely, σinit maps every input port p in Free(ϕ) to the
particular datum forced to pass through p by the process thread on the other side of p (i.e.,
the datum involved in p’s pending put), while σinit maps every •m in Free(ϕ) to the datum
that currently resides in m. Thus, before the coordinator thread invokes a constraint solver
for ϕ, it already fixes values for all uncontrollable data variables in ϕ; when subsequently
invoked, a constraint solver may, in search of a solution for ϕ under σinit, select values only

18 S.-S.T.Q. JONGMANS AND F. ARBAB

for data variables outside σinit’s domain. Slightly more formally:

σinit =

{

p 7→ d

[

the put pending on input port p involves datum d
]

and p ∈ Free(ϕ)

}

∪

{

•m 7→ d

[

memory cell m currently contains datum d
]

and •m ∈ Free(ϕ)

}

With commandification, instead of invoking a constraint solver, the coordinator thread ex-
ecutes a compiler-generated data command for ϕ on σinit, thereby gradually extending σinit
to a full solution. This compiler-generated data command essentially works as an efficient,
small, dedicated constraint solver for ϕ.

To translate a data constraint of the form ℓ1 ∧ · · · ∧ ℓk, we construct a data command
that (i) enforces as many data literals of the form t1 = t2 as possible with assignment
statements and (ii) checks all remaining data literals with failure statements. We call data
literals of the form t1 = t2 data equalities. To examplify such commandification, recall data
constraint ϕeg on page 12. In this data constraint, let C denote an input port and let x
denote a memory cell. In that case, the set of uncontrollable data variables in ϕeg consists
of C and •x. Now, ϕeg has six correct commandifications:

π1 = B := •x ;
D := C ;

E := add(B,D) ;
F := E ;

G := E

¬Odd(G) -> skip ;

π2 = B := •x ;
D := C ;

E := add(B,D) ;
G := E

F := E ;

¬Odd(G) -> skip ;

π3 = B := •x ;
D := C ;

E := add(B,D) ;
G := E

¬Odd(G) -> skip ;

F := E ;

π4 = D := C ;

B := •x ;

E := add(B,D) ;
F := E ;

G := E

¬Odd(G) -> skip ;

π5 = D := C ;

B := •x ;

E := add(B,D) ;
G := E

F := E ;

¬Odd(G) -> skip ;

π6 = D := C ;

B := •x ;

E := add(B,D) ;
G := E

¬Odd(G) -> skip ;

F := E ;

We stipulate the same precondition for each of these data commands, namely that •x and C

have a non-nil value (later formalized as data literals •x = •x and C = C). This precondition
models that the execution of these data commands should always start on an initial data
state over the uncontrollable data variables •x and C. Under this precondition, if a coordi-
nator thread executes π1, it first assigns the values of •x and C to B and D. Subsequently,
it assigns the evaluation of add(B,D) to E. Next, it assigns the value of E to F and G. Fi-
nally, it checks ¬Odd(G) with a failure statement. Data commands π2 and π3 differ from
data command π1 only in the order of the last three steps; data commands π4, π5 and π6
differ from π1, π2 and π3 only in the order of the first two steps. If execution of πi on σinit
successfully terminates, the resulting final data state σ satisfies ϕeg. We call this soundness.
Moreover, if a σ′ exists such that σ′ |= ϕeg and σinit ⊆ σ′, execution of πi successfully
terminates. We call this completeness.

Generally, soundness and completeness crucially depend on the order in which assign-
ments and failure statements follow each other in π. For instance, changing the order
of G := E and ¬Odd(G) -> skip in the previous example yields a data command whose
execution always fails (because G does not have a value yet on evaluating the guard of the

DATA OPTIMIZATIONS FOR CONSTRAINT AUTOMATA 19

x = t, ℓ ∈ Liter=(ϕ)
and x ∈ Variabl(ℓ)

x = t ⊑ ℓ
(4.20)

x = t, ℓ ∈ Liter=(ϕ)
and

[

ℓ 6= x′ = t′ for all x′, t′
]

x = t ⊑ ℓ
(4.21)

ℓ1 ⊑ ℓ2 and ℓ2 ⊑ ℓ3 and ℓ2 /∈ {ℓ1, ℓ3}

ℓ1 ⊑ ℓ3
(4.22)

Figure 9. Addendum to Definition 4.12

failure statement). Such a trivially sound but incomplete data constraint serves no purpose.
As another complication, not every data equality can become an assignment. In a first class
of cases, neither the left-hand side nor the right-hand side of a data equality matches data
variable x. For instance, We must translate add(B,D) = mult(B,D) into a failure statement,
because we clearly cannot assign either of its two operands to the other. In a second class
of cases, multiple data equalities in a data constraint have a left-hand side or a right-hand
side that matches the same data variable x. For instance, we can translate only one data
equality in E = add(B,D)∧ E = mult(B,D) into an assignment, after which we must translate
the other one into a failure statement, to avoid conflicting assignments to E.

To deal with these complications, we define a precedence relation on the data liter-
als in a data constraint that formalizes their dependencies. Recall from Definition 2.11
that every data constraint consists of a conjunctive kernel of data literals, enveloped with
existential quantifications. First, for technical convenience, we introduce a function that
extends Liter(ϕ) (i.e., the data literals in the kernel of ϕ) with “symmetric data equalities”.

Definition 4.11 (=-symmetric closure). Liter= : DC → 2DC denotes the function defined by
the following equation:

Liter=(ϕ) = Liter(ϕ) ∪ {t2 = t1 | t1 = t2 ∈ Liter(ϕ)}

Obviously, because t1 = t2 ≡ t2 = t1, we have
∧

Liter(ϕ) ≡
∧

Liter=(ϕ) for all ϕ.

Definition 4.12 (precedence i). ⊑ : DC → 2DC×DC denotes the function defined by the
following equation:

⊑(ϕ) = ⊑

where ⊑ denotes the smallest relation induced by the rules in Figure 9.

We usually write⊑ϕ instead of⊑(ϕ) and use⊑ϕ as an infix relation. In words, x = t ⊑ϕ ℓ
means that the assignment x := t precedes the commandification of ℓ (i.e., ℓ depends on x).
Rule 4.20 deals with the previously discussed first class of data-equalities-that-cannot-be-
come-assignments, by imposing precedence only on data literals of the form x = t; shortly, we
comment on the second class of data-equalities-that-cannot-become-assignments. Rule 4.21
conveniently ensures that every x = t precedes all differently shaped data literals. Strictly
speaking, we do not need this rule, but it simplifies some notation and proofs later on.

For the sake of argument—generally, this does not hold true—suppose that a precedence
relation ⊑ϕ denotes a strict partial order on Liter=(ϕ). In that case, we can linearize ⊑ϕ to
a strict total order < (i.e., embedding ⊑ϕ into < such that ⊑ϕ ⊆ <) with a topological sort
on the digraph (Liter=(ϕ),⊑ϕ) [Kah62, Knu97]. Intuitively, such a linearization gives us an
order in which we can translate data literals in Liter=(ϕ) to data commands in a sound and

20 S.-S.T.Q. JONGMANS AND F. ARBAB

• x =
B

C = D
add(B,D) = E

E
= F

E
=

G

B
= •

x

D = C
E = add(B,

D)

F =
E

G
=

E

¬
O
d
d
(G

)

Figure 10. Digraph for precedence relation ⊑ϕeg (without loop arcs and
without arcs induced by Rule 4.21, to avoid further clutter). An arc (ℓ, ℓ′)
corresponds to ℓ ⊑ϕeg ℓ′. Arcs between the same data vertices, but in differ-
ent directions, lie on top of each other. Bold arcs represent a fragment of
the strict partial order extracted from ⊑ϕeg .

complete way. Shortly, we give an algorithm for doing so and indeed prove its correctness.
Problematically, however, ⊑ϕ generally does not denote a strict partial order: generally,
it violates asymmetry and irreflexivity (i.e., graph-theoretically, it contains many cycles).
For instance, Figure 10 shows the digraph (Liter=(ϕeg),⊑ϕeg), which indeed contains cycles.
For now, we defer this issue to the next subsection, because it forms a concern orthogonal
to the commandification algorithm and its correctness. Until then, we simply assume the
existence of a procedure for extracting a strict partial order from ⊑ϕ, represented by bold
arcs in Figure 10.

Algorithm 1 translates a data constraint ϕ, a set of data variables X, and a binary
relation on data literals < to a data command π. It requires the following on its input.
First, < should denote a strict total order on the =-symmetric closure of ϕ’s data literals.
Let n denote a—not necessarily the—number of data equalities in Liter=(ϕ), and let m
denote the number of remaining data literals in Liter=(ϕ). Then, ℓ1, . . . , ℓn+m denote the
data literals in Liter=(ϕ) such that (i) their indices respect < and (ii) every ℓi denotes xi = ti
for 1 ≤ i ≤ n. Next, for every data variable in a data literal in Liter=(ϕ), but outside the
set of uncontrollable data variables X, a data equality xi = ti should exist. Otherwise, such
a data variable can get a value only through search—exactly what commandification tries
to avoid—and not through assignment; underspecified data constraints fundamentally lie
outside the scope of commandification in general and Algorithm 1 in particular. Finally, if

DATA OPTIMIZATIONS FOR CONSTRAINT AUTOMATA 21

Algorithm 1 Algorithm for translating a data constraint ϕ, a set of data variables X, and
a binary relation on data literals < to a data command π

Require: < denotes a strict total order on Liter=(ϕ)
and Liter=(ϕ) = {ℓ1, . . . , ℓn+m}
and ℓ1 < · · · < ℓn < ℓn+1 < · · · < ℓn+m

and ℓ1 = x1 = t1 and · · · and ℓn = xn = tn
and Variabl(ϕ) \X ⊆ {x1, . . . , xn}

and
[

[[

x = t ∈ Liter=(ϕ) and x′ ∈ Variabl(t)
]

implies
[

x′ ∈ X or
[

x′ = t′ < x = t for some t′
]]

]

for all x, x′, t
]

function Commandify(ϕ,X,<)
π := skip

i := 1
while i ≤ n do

if xi ∈ X ∪ {x1, . . . , xi−1} then
π := (π ; xi = ti -> skip)

else
π := (π ; xi := ti)

fi
i := i+ 1

od
while i ≤ n+m do

π := (π ; ℓi -> skip)
i := i+ 1

od
return π

end function

Ensure: ⊢part {
∧

{x = x | x ∈ X}} π {ℓ1 ∧ · · · ∧ ℓn+m}

and
[











σ |= ℓ1 ∧ · · · ∧ ℓn+m implies

⊢tot {
∧

{x = σ(x) | x ∈ X}}
π
{
∧

{x = σ(x) | x ∈ X ∪ {x1, . . . , xn}}}











for all σ
]

a term t in a data equality x = t depends on a variable x′, a data equality x′ = t′ should
precede x = t under <. The rules in Definition 4.12 induce precedence relations for which
all these requirements hold true, except that those precedence relations do not necessarily
denote strict partial orders and, hence, may not admit linearization. Consequently, the
precedence relations in Definition 4.12 may not yield strict total orders as required by
Algorithm 1. We address this issue in the next subsection.

Assuming satisfaction of its requirements, Algorithm 1 works as follows. It first loops
over the first n (according to <) xi = ti data literals. If an assignment for xi already exists
in the data command under construction π, Algorithm 1 translates xi = ti to a failure
statement; otherwise, it translates xi = ti to an assignment. This approach resolves issues

22 S.-S.T.Q. JONGMANS AND F. ARBAB

ℓ1 ⊑ϕ ℓ2

ℓ1 ⊑ ℓ2
(4.23)

ℓ ∈ Liter=(ϕ)
and Variabl(ℓ) ⊆ X

⋆ ⊑ ℓ
(4.24)

x = t ∈ Liter=

and Variabl(t) ⊆ X

⋆ ⊑ x = t
(4.25)

Figure 11. Addendum to Definition 4.14

with the previously discussed second class of equalities-that-cannot-become-assignments.
After the first loop, the algorithm uses a second loop to translate the remaining m data
literals to failure statements. The algorithm runs in time linear in n+m, and it terminates.

Upon termination, Algorithm 1 ensures the soundness (first conjunct) and complete-
ness of π (second conjunct). Note that we use a different proof system for soundness (partial
correctness, ⊢part) than for completeness (total correctness, ⊢tot).

Theorem 4.13. Algorithm 1 is correct.

Algorithm 1 has the minor issue that it may produce more failure statements than
strictly necessary. For instance, if we run Algorithm 1 on the total order extracted from ⊑ϕeg

in Figure 10, we get both the assignment D := C and the unnecessary failure statement C =

D -> skip. After all, the digraph contains both D = C and C = D, one of which we added while
computing Liter=(ϕeg) to account for the symmetry of =. Generally, such symmetric data
literals result either in one assignment and one failure statement or in two failure statements;
one can easily prove that symmetric data literals never result in two assignments. In both
cases, one can safely remove one of the failure statements, because successful termination
of the remaining statement already accounts for the removed failure statement.

Commandification (with Cycles). Algorithm 1 requires that < denotes a strict total
order. Precedence relations in Definition 4.12 of ⊑, however, do not yield such orders:
graph-theoretically, they may contain cycles. In this subsection, we present a solution for
this problem. We start by extending the previous precedence relations with a unique least
element, ⋆, and by making dependencies of data literals on uncontrollable data variables
explicit. In the following definition, let X denote a set of such variables.

Definition 4.14 (precedence ii). ⊑ : DC×2X → 2(DC∪{⋆})×DC denotes the function defined
by the following equation:

⊑(ϕ,X) = ⊑

where ⊑ denotes the smallest relation induced by the rules in Figure 11.

We usually write ⊑X
ϕ instead of ⊑(ϕ,X) and use ⊑X

ϕ as an infix relation. The two new
rules state that data literals in which only uncontrollable data variables occur “depend”
on ⋆.

Relation ⊑X
ϕ denotes a strict partial order if its digraph (Liter=(ϕ) ∪ {⋆},⊑X

ϕ) defines
a ⋆-arborescence: a digraph consisting of n−1 arcs such that a path exists from ⋆ to each
of its n vertices [KV08]. Equivalently, in a ⋆-arborescence, ⋆ has no incoming arcs, every
other vertex has exactly one incoming arc, and the arcs form no cycles [KV08]. The first
formulation seems more intuitive here: every path from ⋆ to some data literal ℓ represents
an order in which Algorithm 1 should translate the data literals on that path to ensure

DATA OPTIMIZATIONS FOR CONSTRAINT AUTOMATA 23

⋆

•
x
=

•
x

• x =
B

C = D
add(B,D) = E

E
= F

E
=

G

C
=

C

B
= •

x

D = C
E = add(B,

D)

F =
E

G
=

E

¬
O
d
d
(G

)

Figure 12. B-graph corresponding to the digraph in Figure 10 (without
loop b-arcs and without three-tailed b-arcs, to avoid further clutter). An
arc (ℓ, ℓ′) corresponds to ℓ ⊑ϕeg ℓ′. Bold arcs represent an arborescence.

the correctness of the translation of ℓ. The second formulation simplifies observing that
arborescences correspond to strict partial orders.

A naive approach to extract a strict partial order from ⊑X
ϕ consists of computing a ⋆-

arborescence of the digraph (Liter=(ϕ) ∪ {⋆},⊑X
ϕ). Even if such a ⋆-arborescence exists,

however, this approach does not work as expected if Liter=(ϕ) contains a data literal x = t
where t has more than one data variable. For instance, by definition, every arborescence
of the digraph in Figure 10 has only one incoming arc for E = add(B,D), even though
assignments to both B and D must precede an assignment to E. Because these dependencies
exist as two separate arcs, no arborescence can capture them. To solve this, we must
somehow represent the dependencies of E = add(B,D) with a single incoming arc. We can do
so by allowing arcs to have multiple tails, one for every data variable. In that case, we can
replace the two separate incoming arcs of E = add(B,D) with a single two-tailed incoming
arc as in Figure 12. The two tails make explicit that to evaluate add, we need values for
both its arguments: multiple tails represent a conjunction of dependencies of a data literal.

By combining single-tailed arcs into multiple-tailed arcs, we effectively transform the
digraphs considered so far into b-graphs, a special kind of hypergraph with only b-arcs (i.e.,
backward hyperarcs, i.e., hyperarcs with exactly one head) [GLPN93]. Generally, we cannot
derive such b-graphs from precedence relations as in Definition 4.14: their richer structure
makes b-graphs more expressive—they convey strictly more information—than digraphs.
In contrast, we can easily transform a b-graph into a precedence relation by splitting b-
arcs into single-tailed arcs in the obvious way. Deriving precedence relations from more

24 S.-S.T.Q. JONGMANS AND F. ARBAB

ℓ ∈ Liter=(ϕ)
and Variabl(ℓ) = {x1, . . . , xk}
and x1 = t1, . . . , xk = tk ∈ Liter=(ϕ) ∪ {x̂ = x̂ | x̂ ∈ X}

{x1 = t1, . . . , xk = tk} ◭ ℓ
(4.26)

x = t ∈ Liter=(ϕ)
and Variabl(t) = {x1, . . . , xk}
and x1 = t1, . . . , xk = tk ∈ Liter=(ϕ) ∪ {x̂ = x̂ | x̂ ∈ X}

{x1 = t1, . . . , xk = tk} ◭ x = t
(4.27)

x ∈ X

⋆ ◭ x = x
(4.28)

Figure 13. Addendum to Definition 4.15

expressive b-graphs therefore constitutes a correct way of obtaining strict total orders that
satisfy the requirements of Algorithm 1; doing so just eliminates irrelevant information.

Thus, we propose the following. Instead of formalizing dependencies among data literals
in a set Liter=(ϕ) ∪ {⋆} directly as a precedence relation, we first formalize those depen-
dencies as a b-graph. If the resulting b-graph defines a ⋆-arborescence, we can directly
extract a cycle-free precedence relation ⊏. Otherwise, we compute a ⋆-arborescence of the
resulting b-graph and extract a cycle-free precedence relation ⊏ afterward. Either way, ⊏
denotes a strict partial order whose linearization satisfies the requirements in Algorithm 1.

Definition 4.15 (b-precedence). ◭ : DC×2X → 2(2
DC∪{⋆})×DC denotes the function defined

by the following equation:
◭(ϕ,X) = ◭

where ◭ denotes the smallest relation induced by the rules in Figure 13.

We usually write ◭X
ϕ instead of ◭(ϕ,X) and use ◭X

ϕ as an infix relation. Rule 4.26
generalizes Rule 4.20 in Definition 4.12, by joining sets of dependencies of a data literal in
a single b-arc. Rule 4.27 states that x = t does not necessarily depend on x—as implied by
Rule 4.26—but only on the free variables in t (i.e., we can derive a value for x from values
of the data variables in t). Note that through Rules 4.26 and 4.27, we extend the previous
domain Liter=(ϕ) ∪ {⋆} with semantically insignificant data equalities of the form x = x,
each of which we relate to ⋆ with Rule 4.28. We do this only for the technical convenience
of treating both uncontrollable data variables in X (which may have no data equalities
in Liter=(ϕ)) and the other variables (which must have data equalities) in a uniform way.
For instance, Figure 12 shows the b-graph for data constraint ϕeg.

Generally, in a b-graph, data literals can have multiple incoming b-arcs, which repre-
sents a disjunction of conjunctions of dependencies. Importantly, as long as Algorithm 1
respects the dependencies represented by one incoming b-arc, the other incoming b-arcs
do not matter. An arborescence, which contains one incoming b-arc for every data literal,
therefore preserves enough dependencies. Shortly, Theorem 4.17 makes this more precise.

DATA OPTIMIZATIONS FOR CONSTRAINT AUTOMATA 25

ℓ1 ∈ Liter=(ϕ) ∩ L
and L ⊳X

ϕ ℓ2

ℓ1 ⊏ ℓ2
(4.29)

x = t, ℓ ∈ Liter=(ϕ)
and

[

ℓ 6= x′ = t′ for all x′, t′
]

x = t ⊏ ℓ
(4.30)

ℓ1 ⊏ ℓ2 and ℓ2 ⊏ ℓ3 and ℓ2 /∈ {ℓ1, ℓ3}

ℓ1 ⊏ ℓ3
(4.31)

Figure 14. Addendum to Definition 4.16

We can straightforwardly compute an arborescence of a b-graph

(Liter=(ϕ) ∪ {⋆} ∪ {x = x | x ∈ X},◭X
ϕ)

with an exploration algorithm reminiscent of breadth-first search. First, let ⊳ ⊆ ◭X
ϕ denote

the aborescence under computation, and let Ldone ⊆ Liter=(ϕ) ∪ {⋆} ∪ {x = x | x ∈ X}
denote the set of vertices (i.e., data literals) already explored; initially, ⊳ = ∅ and Ldone =
{⋆}. Now, given some Ldone, compute a set of vertices Lnext connected only to vertices
in Ldone by a b-arc in ◭X

ϕ . Then, for every vertex in Lnext, add an incoming b-arc to ⊳.5

Afterward, add Lnext to Ldone. Repeat this process until Lnext becomes empty. Once
that happens, either ⊳ contains an arborescence (if Ldone = L) or no arborescence exists.
This computation runs in linear time, in the size of the b-graph. See also Footnote 5.
Henceforth, let ⊳X

ϕ denote the final arborescence so computed; if no arborescence exists, we

stipulate ⊳X
ϕ = ∅.

Definition 4.16 (precedence iii). ⊏ : DC × 2X → DC × DC denotes the function defined
by the following equation:

⊏(ϕ,X) = ⊏

where ⊏ denotes the smallest relation induced by the rules in Figure 14.

We usually write ⊏X
ϕ instead of ⊏(ϕ,X). Rules 4.30 and 4.31 have the same premise/

consequence as Rules 4.21 and 4.22; Rule 4.29 straightforwardly splits b-arcs into single-
tailed arcs. For instance, the bold arcs in Figure 10 represent a fragment of the precedence
relation so derived from the arborescence in Figure 12.

For every ⊏X
ϕ induced from a nonempty ⋆-arborescence (i.e., ⊳X

ϕ 6= ∅), let <X
ϕ de-

note its linearization. The following theorem states that this linearization satisfies the
requirements of Algorithm 1.

Theorem 4.17.

⊳
X
ϕ 6= ∅ implies

[

(ϕ,X,<X
ϕ) satisfies the requirements of Algorithm 1

]

5If a vertex ℓ in Lnext has multiple incoming b-arcs, the choice among themmatters not: the choice remains
local, because every b-arc has only one head (i.e., adding an ℓ-headed b-arc to ⊳ cannot cause another vertex
to get multiple incoming b-arcs, which would invalidate the arborescence). General hypergraphs, whose
hyperarcs can have multiple heads, violate this property (i.e., the choice of which hyperarc to add becomes
global instead of local). As a result, and in stark constrast to b-graphs, one cannot compute arborescences
of general hypergraphs—an np-complete problem [Woe92]—in polynomial time (if p 6= np).

26 S.-S.T.Q. JONGMANS AND F. ARBAB

If the b-graph (Liter=(ϕ) ∪ {⋆} ∪ {x = x | x ∈ X},◭X
ϕ) neither defines nor contains a ⋆-

arborescence, no b-graph equivalent of a path [AFF01] exists from ⋆ to at least one vertex ℓ.
In that case, the other vertices fail to resolve at least one of ℓ’s dependencies. This occurs,
for instance, when ℓ depends on x, but the b-graph contains no x = t vertex. As another
example, consider a recursive data equality x = t with x ∈ Variabl(t): unless another
data equality x = t′ with t 6= t′ exists, every incoming b-arc in its b-graph loops onto
itself. Consequently, no arborescence exists. In practice, such cases inherently require
constraint solving techniques with backtracking to find a value for x. Nonexistence of
a ⋆-arborescence thus signals a hard limit to the applicability of Algorithm 1 (although
mixed techniques of translating some parts of a data constraint to a data command at
compile-time and leaving other parts to a constraint solver at run-time seem worthwhile
to explore; we leave this possibility for future work). Thus, the set of data constraints to
which we can apply Algorithm 1 contains those (i) whose b-graph has a ⋆-arborescence,
which guarantees linearizability of the induced precedence, and (ii) that satisfy also the rest
of the requirements in Algorithm 1.

Commandify. To introduce data commands in cas, we introduce commandify as a unary
operation on cas. First, because we want to avoid ad-hoc modifications to Definitions 2.11
and 2.14 (of data constraints and cas), we present an encoding of data commands as data
relations. In the following definition, let ϕ denote a data constraint in a ca, let X denote
the set of uncontrollable data variables in ϕ, and let x1, . . . , xk denote the free data variables
in ϕ, ordered by <Term. Then, data relation R, which encodes the commandification π of ϕ,
holds true of a data tuple (d1, . . . , dk) iff execution of π on an initial data state (over the
variables in X) successfully terminates on a data state σ that maps every xi to di.

Definition 4.18 (data commands as data relations). comm : DC× 2X → DC denotes the
function defined by the following equation:

comm(ϕ,X) =



























R(x1, . . . , xk) if









Free(ϕ) = {x1, . . . , xk}
and x1 <Term · · · <Term xk
and ⊳X

ϕ 6= ∅
and X ⊆ Free(ϕ)









ϕ otherwise

where R denotes the smallest relation induced by the following rule:

π = Algorithm1(ϕ,X,⊏X
ϕ)

and σ ∈ Final(π, J
∧

{x = x | x ∈ X}K)
and σ(x1), . . . , σ(xk) ∈ D

(σ(x1), . . . , σ(xk)) ∈ R
(4.32)

Note that σ in Rule 4.32 may map also data variables outside Free(ϕ). This happens, for
instance, with data constraints with existential quantifiers. The data commands for such
data constraints explicitly assign values to quantified data variables, even though those
variables do not qualify as free. Because {x1 7→ d1, . . . , xk 7→ dk} contains the free data
variables in ϕ, however, the additional data variables mapped by σ cannot affect the truth
of ϕ (by monotonicity of entailment).

We define commandification in cas in terms of comm.

DATA OPTIMIZATIONS FOR CONSTRAINT AUTOMATA 27

Definition 4.19 (commandify). L·M : Autom → Autom denotes the function defined by
the following equation:

L(Q, (P all, P in, P out),M,−→, q0)M = (Q, (P all, P in, P out),M, L−→M, q0, µ0)

where L−→M denotes the smallest relation induced by the following rules:

q
P,ϕ
−−→ q′ and X init = P in ∪ •M

q L
P,comm(ϕ,Free(ϕ)∩Xinit)
−−−−−−−−−−−−−−−−→M q′

(4.33)

Correctness and Effectiveness. We conclude this section by establishing the correctness
and effectiveness of commandify. We consider commandify correct if it yields a behaviorally
congruent ca to the original one. Before formulating this as a theorem, the following lemma
first states the equivalence of a data constraint and its commandification.

Lemma 4.20. ϕ ≡ comm(ϕ,X)

From Proposition 2.15 and Lemma 4.20, we conclude the following correctness theorem.

Theorem 4.21. a ≃ LaM

We consider commandify effective if, after commandifying a ca a, every data constraint
in the resulting ca either encodes a data command as in Definition 4.18 or has no data
variables in it (in which case a compiler can statically check that data constraint). Generally,
however, such unconditional effectiveness does not hold true. After all, if the b-graph for a
data constraint ϕ in a has no ⋆-arborescence, we have no strict precedence relation to run
Algorithm 1 with. In that case, comm(ϕ,X) = ϕ, and consequently, commandify does not
have its intended effect. Fortunately, commandify does satisfy a weaker—but useful—form
of effectiveness. To formulate this as a theorem, we first define a relation that holds true of
arborescent cas. We consider a ca arborescent if the b-graph for each of its data constraints
has a ⋆-arborescence.

Definition 4.22 (arborescentness). ♣ ⊆ Autom denotes the smallest relation induced by
the following rule:

[

ϕ ∈ Dc(a) implies ⊳X
ϕ 6= ∅

]

for all ϕ

♣a
(4.34)

The following theorem states the effectiveness of commandify, conditional on arborescent-
ness: after commandifying an arborescent ca a, every data constraint in the resulting ca
encodes a data command as a data relation (as in Definition 4.18). Let R range over the
set of data relations defined in Definition 4.18 of comm.

Theorem 4.23. ♣a implies Dc(LaM) ⊆ {R(x1, . . . , xk) | true}

28 S.-S.T.Q. JONGMANS AND F. ARBAB

Discussion. The constraint programming community has already observed that, for con-
straint solving, “if domain specific methods are available they should be applied instead

[sic] of the general methods” [Apt09a]. Commandification pushes this piece of conventional
wisdom to an extreme: essentially, every data command generated for a data constraint ϕ
by Algorithm 1 constitutes a small, dedicated constraint solver capable of solving only ϕ.
Nevertheless, execution of data commands bears similarities with constraint propagation

techniques, in particular with forward checking [BMFL02]. Generally, constraint propaga-
tion aims to reduce the search space of a constraint satisfaction problem by transforming it
into an equivalent “simpler” one, where variables have smaller domains, or where constraints
refer to fewer variables. With forward checking, whenever a variable x gets a value d, a
constraint solver removes values from the domains of all subsequent variables that, given d,
violate a constraint. In the case of an equality x = x′, for instance, forward checking reduces
the domain of x′ to the singleton {d} after an assignment of d to x. Commandification im-
plicitly uses that same property of equality, but instead of explicitly representing the domain
of a variable and the reduction of this domain to a singleton at run-time, commandification
already turns the equality into an assignment at compile-time.

Commandification may also remind one of classical Gaussian eliminination for solving
systems of linear equations over the reals [Apt09b]: there too, one orders variables and
substitutes values/expressions for variables in other expressions. Data constraints, how-
ever, have a significantly different structure from real numbers, which makes solving data
constraints directly via Gaussian elimination at least not obvious.

Before we did the work presented in this paper, Clarke et al. already worked on purely
constraint-based implementations of protocols [CPLA11]. Essentially, Clarke et al. specify
not only the transition labels of an automaton as boolean constraints but also its state
space and transition relation. In recent work, Proença and Clarke developed a variant of
compile-time predicate abstraction to improve performance [PC13a]. They also used this
technique to allow a form of interaction between a constraint solver and its environment
during constraint solving [PC13b]. The work of Proença and Clarke resembles our work in
the sense that we all try to “simplify” constraints at compile-time. We see also differences,
though: (i) commandification fully avoids constraint solving and (ii) we adopted a richer
language of data constraints in this paper. For instance, Proença and Clarke have only
unary functions in their language, which would have avoided our need for b-graphs.

5. Experiments

Setup. We implemented our two optimization techniques as extensions to our existing ca-
to-Java compiler, a plug-in for the Eclipse Ide. This plug-in is an integrated part of a
larger toolset, which also consists of an editor that supports the graphical syntax for cas
presented in Section 2, through a drag-and-drop interface. To evaluate the impact of our
optimization techniques in practice, then, we performed a number of experiments with their
implementation, the results of which we present in this section.

We divided our experiments into two categories. The first category consists of exper-
iments involving compiler-generated coordinator threads in isolation. These experiments
are “pure” in the sense that we measure only the performance of the compiler-generated
code, without “polluting” these measurements with delays caused by process threads. The
second category consists of experiments involving compiler-generated coordinator threads

DATA OPTIMIZATIONS FOR CONSTRAINT AUTOMATA 29

Legend Sync Fifo OddFib

Merg LateAsyncMerg EarlyAsyncMerg Rout

Figure 15. Experimental results for seven sets of cas in isolation:
speedups, on the y-axis, of compiler-generated code optimized with elimi-
nate, commandify, or both, relative to unoptimized code, as a function of
the number of processes, on the x-axis

in the context of full programs. These experiments allow us to observe the impact of our
optimization techniques on the performance of full programs.

We ran each of our experiments five times on a machine with 24 cores (two Intel E5-
2690V3 processors in two sockets), without Hyper-Threading and without Turbo Boost (i.e.,
with a static clock frequency), and averaged our measurements afterward.

Category I. To study the performance of compiler-generated coordinator threads in iso-
lation, we selected seven sets of cas for experimentation, whose elements differ in the
value of k ∈ {1, 2, 3, 4, 6, 8, 12, 16, 24, 32, 48, 64}: Synck, Fifok, OddFibk, Mergk, LateAsyncMergk,
EarlyAsyncMergk, and Routk. In total, thus, we generated code for 96 cas, yielding 96 experi-
ments. Application of our optimization techniques did not add any measurable compilation
overhead. Each of these cas, except the Mergk cas, is the k-parametric generalization of
a ca denoted by a digraph in Figure 6; every Mergk ca is the k-parametric generalization
of Merg2 in Figure 3. For Synck/Fifok, parameter k controls the number of Syncs/Fifos in
the chain. For Mergk, LateAsyncMergk, and EarlyAsyncMergk, parameter k controls the number
of producers. For OddFibk and Routk, parameter k controls the number of consumers. See
Section 2 for a brief description of the behavior of these cas for k = 2.

In each run of an experiment, we measured the number of completed transitions in
four minutes after warming up the Java virtual machine for thirty seconds. To measure
the performance of only the compiler-generated code, we used “empty” producers and
consumers, which essentially execute while (true) put(...) and while (true) get(...).

30 S.-S.T.Q. JONGMANS AND F. ARBAB

Figure 15 shows our experimental results. The figure shows that, individually, our
two optimization techniques are already very effective. When we apply both optimization
techniques simultaneously, in many cases (Synck, LateAsyncMergk, EarlyAsyncMergk, and Routk),
performance is further improved, but the improvement is not the sum of the individual
improvements. The reason is that after applying one of the techniques, there is “less room”
for the other technique to make further improvement: there is only so much that can be
optimized in checking data constraints, and each of our two techniques individually seems
to already make a significant step toward an optimum. Still, as Figure 15 shows, it is useful
to apply both techniques, especially since they do not appear to negatively influence each
other.

Category II. To study the performance of compiler-generated coordinator threads in the
context of full programs, we adapted the Nas Parallel Benchmarks Npb [BBB+91], a popu-
lar suite to evaluate parallel performance with. The Npb suite specifies eight benchmarks—
five computational kernels and three realistic applications—derived from computational
fluid dynamics programs; for each of these benchmarks, to standardize comparisons, the
Npb suite specifies four classes of problem sizes (class w, class a, class b, class c).

We compared the Java reference implementation of Npb with a ca-based implementa-
tion. The Java reference implementation, developed by Frumkin et al. [FSJY03], contains a
Java program for seven of Npb’s eight benchmarks; one kernel benchmark is missing. Each
of these programs consists of a master process and a number of worker processes. The
master and its workers interact with each other under a classical master/workers protocol
(i.e., the master distributes work among its workers; the workers inform their master once
their work is done). Frumkin et al. programmed this protocol using monitors.

We took the Java reference implementation of Npb as the basis for our ca-based im-
plementation. First, we removed all instances of the master/workers protocol from the
seven programs. Then, we added ports and put/get. Separately, we drew the master/
workers protocol in our graphical syntax for cas. Subsequently, we compiled our specifica-
tion for k ∈ {2, 4, 8, 16, 32, 64} workers (unless a combination of benchmark+class supported
only fewer workers), and let our compiler automatically integrate the hand-written code (for
masters/workers) with its own compiler-generated code. Application of our optimization
techniques did not add any measurable compilation overhead.

Figures 16 and 17 show our experimental results. These results, in contrast to the
results in Figure 15, look messy and are hard to derive a meaningful conclusion from: in
some cases, using both optimizations results in the best performance, but in other cases,
using only one of the optimizations results in the best performance, and in yet a few other
cases, using no optimization actually results in the best performance.

The reason for these results, so we found out, has to do with hardware cache perfor-
mance: it turns out that the memory footprint of our compiler-generated code seriously
impacts numbers of cache misses, a phenomenon that did not yet manifest when we ran
our compiler-generated code in isolation. As we have not yet optimized compiler-generated
code for memory usage, a reasonable assumption is that code with a large memory footprint
results in more cache misses. However, things are even more subtle than that: due to the
way the Java virtual machine allocates memory, so we found out, a larger memory footprint
may in fact result in fewer cache misses. We admit that we do not yet understand the
impact of the memory footprint of our compiler-generated code on the execution-time per-
formance of the code sufficiently well enough to appropriately account for this impact in our

DATA OPTIMIZATIONS FOR CONSTRAINT AUTOMATA 31

Legend Npb-Bt: class w Npb-Bt: class a

Npb-Lu: class w Npb-Lu: class a Npb-Sp: class w Npb-Sp: class a

Figure 16. Experimental results for three Npb applications: speedups
(y-axis) of compiler-generated code optimized with eliminate, commandify,
or both, and of reference code by Frumkin et al., relative to unoptimized
compiler-generated code, as a function of the number of processes (x-axis)

optimization schemes. This investigation constitutes an important piece of our future work.
We consider the revelation of this underdeveloped aspect of our compilation technology as
a significant contribution of this paper.

6. Conclusion

We presented, and established the correctness of, two techniques to optimize the perfor-
mance of checking data constraints. The first technique, called “eliminate” and formalized
as operation
, reduces the size of data constraints at compile-time, to reduce the com-
plexity of constraint solving at run-time. The second technique, called “commandify” and
formalized as operation L·M, translates data constraints into small pieces of imperative code
at compile-time, to replace expensive calls to a general-purpose constraint solver at run-
time. Finding satisfying assignments for data constraints resembles a game of hide-and-seek,
played by our compiler-generated code at run-time with the aid of a constraint solver. This
game was reasonable when our ca compilation technology was still in its infancy, but no
longer as this technology matures.

Although the experiments in which we evaluated compiler-generated code in isolation
show that eliminate and commandify indeed have a positive impact on performance, the
experiments in which we evaluated compiler-generated code in the context of full programs
remain inconclusive because of seemingly erratic hardware cache behavior. Here lies an
important next research step: we need to better understand the impact of memory footprints

32 S.-S.T.Q. JONGMANS AND F. ARBAB

Npb-Cg: class w Npb-Cg: class a Npb-Cg: class b Npb-Cg: class c

Npb-Ft: class w Npb-Ft: class a Npb-Ft: class b Npb-Ft: class c

Npb-Is: class w Npb-Is: class a Npb-Is: class b Npb-Is: class c

Npb-Mg: class w Npb-Mg: class a Npb-Mg: class b Npb-Mg: class c

Figure 17. Experimental results for four Npb kernels: speedups, on the
y-axis, of compiler-generated code optimized with eliminate, commandify,
or both, and of reference code by Frumkin et al., relative to unoptimized
compiler-generated code, as a function of the number of processes, on the
x-axis. See Figure 16 for a legend.

DATA OPTIMIZATIONS FOR CONSTRAINT AUTOMATA 33

of compiler-generated code. So far, including in this paper, we have focused our attention
exclusively on compilation techniques for optimizing “algorithmic” aspects of compiler-gen-
erated code (i.e., minimizing the number of computation steps necessary to, for instance,
check data constraints). Our experimental results in this paper show that we need to start
considering memory too.

Another interesting piece of future work involves comparing our compilation technology
for constraint automata, including the optimization techniques presented in this paper,
with compilation technology for other coordination models and languages. One interesting
candidate is Bip. In recent work [DJAB15], we already performed a theoretical study on
the relation between (the formal semantics of) Reo and Bip. A natural next step in this line
of work consists of a practical comparison of these models (including not only performance
of their generated code, but also such software engineering qualities as programmability,
maintainability, reusability, and so on).

References

[AdBO09] Krzysztof Apt, Frank de Boer, and Ernst-Rüdiger Olderog. While Programs. In Verification
of Sequential and Concurrent Programs, Texts in Computer Science, chapter 3, pages 55–126.
Springer, 3rd edition, 2009.

[AFF01] Giorgio Ausiello, Paolo Franciosa, and Daniele Frigioni. Directed Hypergraphs: Problems, Algo-
rithmic Results, and a Novel Decremental Approach. In Antonio Restivo, Simona Ronchi Della
Rocca, and Luca Roversi, editors, Theoretical Computer Science (Proceedings of ICTCS 2001),
volume 2202 of LNCS, pages 312–328. Springer, 2001.

[AKM08] Farhad Arbab, Natallia Kokash, and Sun Meng. Towards Using Reo for Compliance-Aware Busi-
ness Process Modeling. In Tiziana Margaria and Bernhard Steffen, editors, Leveraging Applica-
tions of Formal Methods, Verification and Validation (Proceedings of ISoLA 2008), volume 17 of
CCIS, pages 108–123. Springer, 2008.

[Apt09a] Krzysztof Apt. Introduction. In Principles of Constraint Programming, chapter 1, pages 1–7.
Cambridge University Press, 2nd edition, 2009.

[Apt09b] Krzysztof Apt. Some Complete Constraint Solvers. In Principles of Constraint Programming,
chapter 4, pages 82–134. Cambridge University Press, 2nd edition, 2009.

[Arb04] Farhad Arbab. Reo: a channel-based coordination model for component composition. Mathemat-
ical Structures in Computer Science, 14(3):329–366, 2004.

[Arb05] Farhad Arbab. Abstract Behavior Types: a foundation model for components and their compo-
sition. Science of Computer Programming, 55(1–3):3–52, 2005.

[Arb11] Farhad Arbab. Puff, The Magic Protocol. In Gul Agha, Olivier Danvy, and José Meseguer, editors,
Formal Modeling: Actors, Open Systems, Biological Systems (Talcott Festschrift), volume 7000
of LNCS, pages 169–206. Springer, 2011.

[BBB+91] David Bailey, Eric Barszcz, John Barton, David Browning, Russell Carter, Leonardo Dagum, Rod
Fatoohi, Paul Frederickson, Thomas Lasinski, Robert Schreiber, Horst Simon, Venkat Venkatakr-
ishnan, and Sisira Weeratunga. The Nas Parallel Benchmarks. International Journal of High
Performance Computing Applications, 5(3):63–73, 1991.

[BMFL02] Christian Bessière, Pedro Meseguer, Eugene Freuder, and Javier Larrosa. On forward checking
for non-binary constraint satisfaction. Artificial Intelligence, 141(1–2):205–224, 2002.

[BS10] Simon Bliudze and Joseph Sifakis. Causal semantics for the algebra of connectors. Formal Methods
in System Design, 36(2):167–194, 2010.

[BSAR06] Christel Baier, Marjan Sirjani, Farhad Arbab, and Jan Rutten. Modeling component connectors
in Reo by constraint automata. Science of Computer Programming, 61(2):75–113, 2006.

[CKA10] Behnaz Changizi, Natallia Kokash, and Farhad Arbab. A Unified Toolset for Business Process
Model Formalization. In Barbora Buhnova and Jens Happe, editors, Preproceedings of FESCA
2010, pages 147–156, 2010.

[CPLA11] Dave Clarke, José Proença, Alexander Lazovik, and Farhad Arbab. Channel-based coordination
via constraint satisfaction. Science of Computer Programming, 76(8):681–710, 2011.

34 S.-S.T.Q. JONGMANS AND F. ARBAB

[DJAB15] Kasper Dokter, Sung-Shik Jongmans, Farhad Arbab, and Simon Bliudze. Relating BIP and
Reo. In Sophia Knight, Ivan Lanese, Alberto Lluch-Lafuente, and Hugo-Torres Vieira, editors,
Proceedings of ICE 2015, volume 189 of EPTCS, pages 3–20. CoRR, 2015.

[FSJY03] Michael Frumkin, Matthew Schultz, Haoqiang Jin, and Jerry Yan. Performance and Scalability
of the NAS Parallel Benchmarks in Java. In Jack Dongarra, Yves Robert, David Walker, Josep
Torrellas, and John Mellor-Crummey, editors, Proceedings of IPDPS 2003, pages 139–44. IEEE,
2003.

[GLPN93] Giorgio Gallo, Giustino Longo, Stefano Pallottino, and Sang Nguyen. Directed hypergraphs and
applications. Discrete Applied Mathematics, 42(2–3):177–201, 1993.

[Hoa69] Tony Hoare. An Axiomatic Basis for Computer Programming. Communications of the ACM,
12(10):576–580, 1969.

[JA15] Sung-Shik Jongmans and Farhad Arbab. Take Command of Your Constraints! In Tom Holvoet
and Mirko Viroli, editors, Coordination Models and Languages (Proceedings of COORDINATION
2015), volume 9037 of LNCS, pages 117–132. Springer, 2015.

[JA16] Sung-Shik Jongmans and Farhad Arbab. Global consensus through local synchronization: A for-
mal basis for partially-distributed coordination. Science of Computer Programming, 115–116:199–
224, 2016.

[JHA14] Sung-Shik Jongmans, Sean Halle, and Farhad Arbab. Automata-based Optimization of Inter-
action Protocols for Scalable Multicore Platforms. In Eva Kühn and Rosario Pugliese, editors,
Coordination Models and Languages (Proceedings of COORDINATION 2014), volume 8459 of
LNCS, pages 65–82. Springer, 2014.

[Jon16a] Sung-Shik Jongmans. Automata-Theoretic Protocol Programming. PhD thesis, Universiteit Lei-
den, 2016.

[Jon16b] Sung-Shik Jongmans. Automata-Theoretic Protocol Programming (With Proofs). Technical Re-
port FM-1601, Centrum Wiskunde & Informatica, 2016.

[JSA15] Sung-Shik Jongmans, Francesco Santini, and Farhad Arbab. Partially-Distributed Coordination
with Reo and Constraint Automata. Service Oriented Computing and Applications, 9(3):311–339,
2015.

[KA09] Natallia Kokash and Farhad Arbab. Formal Behavioral Modeling and Compliance Analysis for
Service-Oriented Systems. In Frank de Boer, Marcello Bonsangue, and Eric Madelaine, editors,
Formal Methods for Components and Objects (Proceedings of FMCO 2008), volume 5751 of LNCS,
pages 21–41. Springer, 2009.

[Kah62] Arthur Kahn. Topological Sorting in Large Networks. Communications of the ACM, 5(11):558–
562, 1962.

[Knu97] Donald Knuth. Information Structures. In Fundamental Algorithms, volume 1 of The Art of
Computer Programming, chapter 2, pages 232–465. Addison-Wesley, 3rd edition, 1997.

[KV08] Bernhard Korte and Jens Vygen. Spanning Trees and Arborescences. In Combinatorial Opti-
mization: Theory and Algorithms, volume 21 of Algorithms and Combinatorics, chapter 6, pages
127–150. Springer, 4th edition, 2008.

[MAB11] Sun Meng, Farhad Arbab, and Christel Baier. Synthesis of Reo circuits from scenario-based
interaction specifications. Science of Computer Programming, 76(8):651–680, 2011.

[PC13a] José Proença and Dave Clarke. Data Abstraction in Coordination Constraints. In Carlos Canal
and Massimo Villari, editors, Advances in Service-Oriented and Cloud Computing (Proceedings
of FOCLASA 2013), volume 393 of CCIS, pages 159–173. Springer, 2013.

[PC13b] José Proença and Dave Clarke. Interactive Interaction Constraints. In Rocco de Nicola and
Christine Julien, editors, Coordination Models and Languages (Proceedings of COORDINATION
2013), volume 7890 of LNCS, pages 211–225. Springer, 2013.

[Rau10] Wolfgang Rautenberg. First-Order Logic. In A Concise Introduction to Mathematical Logic, Uni-
versitext, chapter 2, pages 41–90. Springer, 3rd edition, 2010.

[Rei85] Wolfgang Reisig. Introductory Examples and Basic Definitions. In Petri Nets: An Introduc-
tion, volume 4 of EATCS Monographs on Theoretical Computer Science, chapter 1, pages 3–16.
Springer, 1985.

[vDKV00] Arie van Deursen, Paul Klint, and Joost Visser. Domain-Specific Languages: An Annotated
Bibliography. ACM SIGPLAN Notices, 35(6):26–36, 2000.

DATA OPTIMIZATIONS FOR CONSTRAINT AUTOMATA 35

[Woe92] Gerhard Woeginger. The complexity of finding arborescences in hypergraphs. Information Pro-
cessing Letters, 44(3):161–164, 1992.

Appendix A. Proofs

Proof of Lemma 3.5. If p has no determinant in ϕ, we have existsp(ϕ) = ∃p.ϕ, and we
are done (because ≡ is reflexive).

Therefore, suppose that p has a determinant in ϕ, and let t denote the least such deter-
minant under <Term such that existsp(ϕ) = ϕ[t/p]. By the grammar of data constraints, ϕ
must be of the form ∃p1.· · ·∃pl.(ℓ1 ∧ · · · ∧ ℓk). Thus, we must show ∃p.∃p1.· · ·∃pl.(ℓ1 ∧
· · · ∧ ℓk) ≡ (∃p1.· · ·∃pl.(ℓ1 ∧ · · · ∧ ℓk))[t/p]. To show this, without loss of generality, we
assume p, p1, p2, . . . , pl are all distinct (otherwise we can simply eliminate the quantifier of
every duplicate variable). By the usual definitions of logical equivalence and entailment, we
must show that σ |= ∃p.∃p1.· · ·∃pl.(ℓ1 ∧ · · · ∧ ℓk) implies σ |= (∃p1.· · ·∃pl.(ℓ1 ∧ · · · ∧ ℓk))[t/p],
for all σ, and vice versa.

Suppose σ |= ∃p.∃p1.· · ·∃pl.(ℓ1 ∧ · · · ∧ ℓk). By the usual semantics of ∃, this implies σ |=
(∃p1.· · ·∃pl.(ℓ1∧· · ·∧ℓk))[d/p] for some datum d. Because p is not bound by another ∃, we can
expand also the other existential quantifications, and distribute the resulting substitutions
over the conjunction, to get σ |= ℓi[d/p][d1/p1]· · ·[dl/pl] for every ℓi. Now, because t is
a determinant of p, a literal t = p (or, symmetrically, p = t) must exist among the ℓi
literals. So, for that literal, we have σ |= t[d/p][d1/p1]· · ·[dl/pl] = d. A literal t1 = t2
holds under σ iff the evaluation of t1 equals the evaluation of t2. Hence, we know that
the evaluation of t[d/p][d1/p1]· · ·[dl/pl] equals d. From this, combined with the previous
result σ |= (∃p1.· · ·∃pl.(ℓ1∧· · ·∧ℓk))[d/p], we can establish σ |= (∃p1.· · ·∃pl.(ℓ1∧· · ·∧ℓk))[t/p].

In the opposite direction, suppose σ |= (∃p1.· · ·∃pl.(ℓ1 ∧ · · · ∧ ℓk))[t/p]. We know
that evalσ(t) = d for some d, as before. In other words, there exists a d (namely evalσ(t))
such that σ |= (∃p1.· · ·∃pl.(ℓ1 ∧ · · · ∧ ℓk))[d/p]. By the usual semantics of ∃, this im-
plies σ |= ∃p.∃p1.· · ·∃pl.(ℓ1 ∧ · · · ∧ ℓk).

A full, detailed proof appears as the proof of Lemma 16 in [Jon16b, Appendix D.3].

Proof of Theorem 3.6. Follows from Proposition 2.15 and Lemma 3.5.
A full, detailed proof appears as the proof of Theorem 14 in [Jon16b, Appendix D.3].

Proof of Theorem 3.8. Reasoning toward a contradiction, suppose that p still occurs in
a data constraint ϕ in a
 p. By the definition of
, we have ϕ = existsp(ϕ

′) for a data
constraint ϕ′ in a. Because exists does not introduce new variables in data constraints, p
must have occurred already in ϕ′. Because p is an ever-determined port of a by the premise
of this theorem, by the definition of Edp, we know that p has a determinant t in ϕ′. Con-
sequently, existsp(ϕ

′) = ϕ′[t/p]. Also, from the fact that p has a determinant in ϕ′, we can
derive that p is not bound by any of the existential quantifications inside ϕ′. Hence, p does
not occur in ϕ′[t/p]. But then, p does not occur in existsp(ϕ

′) either. Therefore, p does not
occur in ϕ, which contradicts our intial assumption. Hence, p does not occur in any data
constraint in a
 p, which is the result stated in the consequence of this theorem.

A full, detailed proof appears as the proof of Theorem 15 in [Jon16b, Appendix D.3].

36 S.-S.T.Q. JONGMANS AND F. ARBAB

Proof of Theorem 4.13. To show the correctness of Algorithm 1 (henceforth “the al-
gorithm”), we need to show that if its requirements are satisfied, upon termination, it
ensures both:

⊢part {
∧

{x = x | x ∈ X}} π {ℓ1 ∧ · · · ∧ ℓi}

and










σ |= ℓ1 ∧ · · · ∧ ℓn+m implies

⊢tot {
∧

{x = σ(x) | x ∈ X}}
π
{
∧

{x = σ(x) | x ∈ X ∪ {x1, . . . , xn}}}











for all σ

We call the former soundness and the latter completeness and prove their truth separately.

Soundness: We start by arguing that ⊢part {
∧

{x = x | x ∈ X}} π {ℓ1 ∧ · · · ∧ ℓi} holds after
every iteration of the first loop. For 1 ≤ i ≤ n, after doing an assignment xi := ti in a
data state σ, literal ℓi = xi = ti holds in σ if all variables in ti have a non-nil value.
(Otherwise, ti evaluates to nil, which the definition of |= forbids.)

Reasoning toward a contradiction, suppose that some variable y in ti has a nil value.
Then, because no assignment assigns nil, no y := t assignment has occurred previously.
But because y ∈ Variabl(ti), either

[

a literal y = t ∈ L exists that precedes xi = ti
]

or y ∈ X (by the requirements of the algorithm). In the former case, a y:=t assignment
must have occurred previously, such that y in fact has a non-nil value (namely, the
evaluation of t). In the latter case, by the precondition of the triple we are proving, we
know that σ |= y = y holds. By the definition of |=, this means that y has a non-nil
value.

Thus, ℓi = xi = ti holds in σ after its update with xi := ti. By the precondition of the
triple, we know that x = x held for all x ∈ X before updating σ. Additionally, suppose
that the preceding literals xj = tj (for 1 ≤ j < i) held before updating σ. Each of
those literals can have become false only if the update overwrote an x or an xj . In that
case, xi ∈ X ∪ {x1, . . . , xi−1}. But then, the algorithm did not translate xi = ti to an
assignment in the first place but to a failure statement xi = ti -> skip. If execution of
this statement successfully terminates, obviously xi = ti holds, and because it leaves σ
unchanged, all preceding literals remain true. Note that the ⊢part proof rule for failure
statements allows us to assume that the guard holds; we do not need to establish this
yet (cf. completeness below, where we use ⊢tot).

We can inductively repeat the reasoning in the previous paragraphs for all 1 ≤ i ≤ n
to conclude that ⊢part {

∧

{x = x | x ∈ X}} π {ℓ1 ∧ · · · ∧ ℓi} holds after the first loop.
The failure statements added in the second loop leave state σ unchanged, meaning that
literals that held before executing those statements in σ remain true. Thus, if those
statements successfully terminate,

⊢part {
∧

{x = x | x ∈ X}} π {ℓ1 ∧ · · · ∧ ℓn+m}

holds.
Completeness: Assume that σ′ |= ℓ1 ∧ · · · ∧ ℓn+m for some σ′. We start by arguing

that ⊢tot {
∧

{x = σ′(x) | x ∈ X}} π {
∧

{x = σ′(x) | x ∈ X ∪ {x1, . . . , xi}}} holds after ev-
ery iteration of the first loop. This means that the data state σ after executing π (starting
from a data state where

∧

{x = σ′(x) | x ∈ X} holds) maps every xj (for 1 ≤ j ≤ i) to
the same value as σ′ (i.e., σ(xj) = σ′(xj)). Let 1 ≤ i ≤ n.

DATA OPTIMIZATIONS FOR CONSTRAINT AUTOMATA 37

If xi /∈ X ∪ {x1, . . . , xi−1}, we know that ℓi = xi = ti holds in σ after its update
with xi:=ti (see soundness above). By our initial assumption, we also know that ℓi = xi =
ti holds in σ′. Thus, by the definition of |=, we conclude σ(xi) = evalσ(ti) and σ′(xi) =
evalσ′(ti). Now, because a y = t literal precedes xi = ti for all y ∈ Variabl(ti) (see
soundness above), σ maps every such a y to the same value as σ′ (i.e., y = xj for
some 1 ≤ j < i). Consequently, evalσ(ti) = evalσ′(ti). Combining this with the previous
intermediate result, the following equation holds: σ(xi) = evalσ(ti) = evalσ′(ti) = σ′(xi).
Thus, xi = σ′(xi) holds in σ. As before (see soundness above), we can also establish that,
for xj ∈ X ∪ {x1, . . . , xi−1}, updating σ with xi := ti does not make xj = σ′(xj) literals
that held already before this update false. Thus,

∧

{x = σ′(x) | x ∈ X ∪ {x1, . . . , xi}}
holds in σ.

If xi ∈ X ∪{x1, . . . , xi−1}, we can immediately conclude that xj = σ′(xj) held in σ for
all xj ∈ X∪{x1, . . . , xi−1} already before executing the failure statement xi = ti -> skip

added by the algorithm. To prove that this failure statement also successfully terminates,
the ⊢tot proof rule for failure statements dictates that we must establish—instead of
assume (cf. soundness above)—that the guard xi = ti holds in σ. This follows from the
fact that xi = ti holds in σ′ by our initial assumption, and because σ and σ′ map all
variables in ℓi = xi = ti to the same values. To prove the latter, we can use a similar
argument involving the precedence relation and its linearization as before (see soundness
above).

We can inductively repeat the previous reasoning for all 1 ≤ i ≤ n to conclude
that ⊢tot {

∧

{x = σ′(x) | x ∈ X}} π {
∧

{x = σ′(x) | x ∈ X ∪ {x1, . . . , xn}}} holds after
the first loop. The failure statements added in the second loop leave σ unchanged,
meaning that the xj = σ′(xj) literals that held already before executing those state-
ments in σ, for xj ∈ X ∪ {x1, . . . , xn}, remain true. In order to prove the success-
ful termination of those failure statements, we can use a similar argument as for the
failure statements added in the first loop: by our initial assumption, σ′ |= ℓi for
all n + 1 ≤ j ≤ n + m, and σ and σ′ still map the same variables to the same
values. Thus, ⊢tot {

∧

{x = σ′(x) | x ∈ X}} π {
∧

{x = σ′(x) | x ∈ X ∪ {x1, . . . , xn+m}}}
holds also after the second loop.

A full, detailed proof appears as the proof of Theorem 18 in [Jon16b, Appendix D.4].

Proof of Theorem 4.17. Recall that the rules in Definition 4.12 of ⊑ (and, therefore,
also the rules in Definition 4.14) induce precedence relations for which all requirements of
Algorithm 1 (henceforth: “the algorithm”) hold, except that those precedence relations do
not necessarily denote strict partial orders. What we need to show here, then, is that ⊏X

ϕ

is both a strict partial order and a “large enough” subset of ⊑X
ϕ to satisfy the algorithm’s

requirements. The theorem subsequently follows, as <X
ϕ is just the linearization of ⊏X

ϕ .

The fact that ⊏X
ϕ is a strict partial order follows from ⊳X

ϕ forming an arborescence.

To show ⊏X
ϕ ⊆ ⊑X

ϕ , we need to consider the three rules in Definition 4.16 of ⊏.

First, take any pair (ℓ, ℓ′) such that ℓ ⊏X
ϕ ℓ′ by Rule 4.29. Then, by the premise of that

rule, {ℓ1, . . . , ℓk} ⊳X
ϕ ℓ′ such that ℓ = ℓi for some 1 ≤ i ≤ k. Because ⊳X

ϕ ⊆ ◭X
ϕ (because

the former is an arborescence of the latter), the premises of the rules in Definition 4.15
of ◭, subsequently guarantee after some manipulation that ℓ = ℓi = x = t for some x and t.
Moreover, x ∈ Variabl(ℓ′). By Rule 4.20, we subsequently conclude that ℓ ⊑X

ϕ ℓ′ holds.

38 S.-S.T.Q. JONGMANS AND F. ARBAB

Second, Rule 4.30 is identical to Rule 4.21, so any pair (ℓ, ℓ′) in ⊏X
ϕ induced by the former

is also induced in ⊑X
ϕ by the latter. Third, by induction, we can show the same result for

pairs (ℓ, ℓ′) such that ℓ ⊏X
ϕ ℓ′ by Rule 4.31. Thus, ⊏X

ϕ ⊆ ⊑X
ϕ .

Finally, we must show that ⊏X
ϕ is “large enough” for it to satisfy the precondition

of the algorithm. Informally, this means that arborescences do not exclude b-arcs in the
b-graph that actually represent essential dependencies: for every free variable y that a
literal ℓ ∈ L depends on, ⊏X

ϕ must contain at least one pair (y = t, ℓ) (for some t). To
see that this holds, note that every b-arc entering a literal ℓ represents a complete set
of dependencies of ℓ. If ℓ has multiple incoming b-arcs, this simply means that several
ways exist to resolve ℓ’s dependencies. In principle, however, keeping one of those options
suffices for our purpose. Therefore, the single incoming b-arc that ℓ has in an arborescence
represents enough dependencies of ℓ.

A full, detailed proof appears as the proof of Theorem 19 in [Jon16b, Appendix D.4].

Proof of Lemma 4.20. Follows from Theorems 4.13 and 4.17 and Definition 4.18.
A full, detailed proof appears as the proof of Lemma 18 in [Jon16b, Appendix D.4].

Proof of Theorem 4.21. Follows from Proposition 2.15 and Lemma 4.20.
A full, detailed proof appears as the proof of Theorem 20 in [Jon16b, Appendix D.4].

Proof of Theorem 4.23. To prove this theorem, by Definition 4.19 of L·M, we need to
show that for every data constraint ϕ in a, the pair (ϕ,X) for X = Free(ϕ) ∩ (P in ∪ •M)
satisfies the four conditions in Definition 4.18 of comm. The first two conditions always
hold. The third condition follows from ♣a: by Definition 4.22 of ♣ , every data constraint
in a is arborescent. Finally, the fourth condition follows from set theory.

A full, detailed proof appears as the proof of Theorem 21 in [Jon16b, Appendix D.4].

This work is licensed under the Creative Commons Attribution-NoDerivs License. To view
a copy of this license, visit http://creativecommons.org/licenses/by-nd/2.0/ or send a
letter to Creative Commons, 171 Second St, Suite 300, San Francisco, CA 94105, USA, or
Eisenacher Strasse 2, 10777 Berlin, Germany

	1. Introduction
	Context
	Problem
	Contribution

	2. Preliminaries
	Data Constraints
	Constraint Automata

	3. Optimization I: Eliminate (Instead of Hide)
	Motivating Example
	Eliminate
	Correctness and Effectiveness

	4. Optimization II: Commandify (Instead of Seek)
	Data Commands
	Commandification (without Cycles)
	Commandification (with Cycles)
	Commandify
	Correctness and Effectiveness
	Discussion

	5. Experiments
	Setup
	Category I
	Category II

	6. Conclusion
	References
	Appendix A. Proofs
	Proof of Lemma ??
	Proof of Theorem ??
	Proof of Theorem ??
	Proof of Theorem ??
	Proof of Theorem ??
	Proof of Lemma ??
	Proof of Theorem ??
	Proof of Theorem ??

