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Abstract. When given a class of functions and a finite collection of sets, one might be
interested whether the class in question contains any function whose domain is a subset of
the union of the sets of the given collection and whose restrictions to all of them belong
to this class. The collections with the formulated property are said to be strongly join

permitting for the given class (the notion of join permitting collection is defined in the same
way, but without the words “a subset of”). Three theorems concerning certain instances
of the problem are proved. A necessary and sufficient condition for being strongly join
permitting is given for the case when, for some n, the class consists of the potentially
partial recursive functions of n variables, and the collection consists of sets of n-tuples
of natural numbers. The second theorem gives a sufficient condition for the case when
the class consists of the continuous partial functions between two given topological spaces,
and the collection consists of subsets of the first of them (the condition is also necessary
under a weak assumption on the second one). The third theorem is of a similar character
but, instead of continuity, it concerns computability in the spirit of the one in effective
topological spaces.

1. Introduction

To show that a given function f has a certain property, it is sometimes useful to cover the
domain of f with an appropriate collection of sets and to show that the property in question
is present for the restriction of f to any of the sets from this collection. For instance, suppose
f is the arctan function considered for all real values of its argument, and we aim at proving
the computability of this function (in the sense of the computable analysis). To do this,
we may firstly consider the restrictions of f to the intervals [−1, 1], [1,+∞) and (−∞,−1].
These restrictions can be shown to be computable as follows. The function f ↾ [−1, 1] is
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computable thanks to the fact that

arctan x = x−
x3

3
+

x5

5
−

x7

7
+ · · · (1.1)

for all real numbers x with |x| ≤ 1. The computability of f ↾ [1,+∞) can be derived from
here by using that

arctan x =
π

2
− arctan

1

x
for all positive real numbers x, and the computability of f ↾ (−∞,−1] can be reduced to
the one of f ↾ [1,+∞) by means of the equality

arctan x = − arctan(−x).

On the other hand, two successive applications of Lemma 4.3.5 from [We] (after correcting
the misprints in the lemma by replacement of a with c) show the computability of any real
function whose restrictions to the above-mentioned three intervals are computable.

Definition 1.1. Let C be a class of functions. A collection A of sets will be said to be join
permitting for C if the following implication holds for any function f whose domain is

⋃

A:

∀A ∈ A(f ↾A∈ C) =⇒ f ∈ C; (1.2)

the collection A will be said to be strongly join permitting for C if the implication (1.2)
holds for any function f whose domain is a subset of

⋃

A.

We will be interested in the above notions in the case of finite collections A, i.e. in the
case when A is a finite set of sets.

Example 1.2. If C is the class of all computable partial functions from R to R, and
c1 < c2 < · · · < cr−1 < cr are computable real numbers then the collection of the intervals
(−∞, c1], [c1, c2], . . . , [cr−1, cr], [cr,+∞) is strongly join permitting for C (this can be shown
by means of r successive applications of the above-mentioned lemma from [We]).

By trivial reasons, if some of the sets in a given collection of sets is the domain of no
function of the class C then the collection turns out to be join permitting for C, and if
some of these sets contains the domain of no function of C then the collection is strongly
join permitting for C.

There are simple examples of classes C such that finite collections exist which are join
permitting for C without being strongly join permitting for C.1 We will direct our attention
to the notion of strongly join permitting collection.

For any set A, let AC be the set of the elements of A which belong to the domain of at
least one function of C. The set A will be called relevant for C if AC = A. Clearly, AC is
always relevant for C.

Lemma 1.3. Let C be a class of functions, and A be a collection of sets. The collection

A is strongly join permitting for C iff the corresponding collection {AC |A ∈ A} is strongly

join permitting for C.

1For instance, let A1 and A2 be sets such that A1 \ A2, A2 \ A1 and A1 ∩ A2 are non-empty, and let C

consist of the partial functions in A1 ∪ A2 with one-element ranges. Then the collection {A1, A2} is join
permitting for C, but it is not strongly join permitting for C.
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Proof. Let us firstly suppose that A is strongly join permitting for C. Let f be a function
such that dom(f) ⊆

⋃

{AC |A ∈ A} and f↾AC
∈ C for any A ∈ A. We will show that f ∈ C.

The domain of f is a subset of
⋃

A because AC ⊆ A for any set A. Any point of dom(f)
belongs to AC for some A ∈ A, hence it belongs to the domain of some function from C.
Thus f↾A= f↾AC

and consequently f↾A∈ C for any A ∈ A. By the assumption that A is
strongly join permitting for C, this implies f ∈ C.

For the reasoning in the opposite direction, suppose the collection {AC |A ∈ A} is
strongly join permitting for C. Let f be a function such that dom(f) ⊆

⋃

A and f↾A∈ C

for any A ∈ A. We will show that f ∈ C. For any A ∈ A, the points of A∩ dom(f) belong
to the domain of the function f ↾A, which is a function from C, hence they belong to the
subset AC of A. Therefore f↾A= f↾AC

and consequently f↾AC
∈ C for any A ∈ A. Since any

point of dom(f) belongs to some set from A, we see also that dom(f) ⊆
⋃

{AC |A ∈ A}. By
the assumption that {AC |A ∈ A} is strongly join permitting for C, this implies f ∈ C.

For some classes C, a trivial characterization is possible of the finite collections which
are strongly join permitting for C. For instance, such is the case when C is the class of
the one-argument partial recursive functions – any finite collection of sets is strongly join
permitting for C in this case (because the class in question consists of the functions whose
graphs are recursively enumerable subsets of N2, and the union of finitely many recursively
enumerable subsets of N2 is also recursively enumerable). However, the problem is more
complicated for certain other classes. For some such classes C and the finite collections of
sets relevant for them, we will give necessary and sufficient conditions for being strongly join
permitting for C, and these conditions will be in a similar spirit. The following definition
will be used:

Definition 1.4. A set H will be said to separate a set P from a set Q if H ⊇ P and
H ∩Q = ∅.

Of course, a set separating P from Q exists iff P ∩ Q = ∅, but this equivalence can
turn out to be no more valid if some restrictions on the separating set are imposed.

Lemma 1.5. Let A be a collection of sets, K be a subcollection of A and H be a set which

separates
⋃

K \
⋃

(A \ K) from
⋃

(A \ K) \
⋃

K. Then:

(a) (
⋃

A) ∩H ⊆
⋃

K;

(b) if x ∈
⋃

A and K ⊇ {A ∈ A |x ∈ A} then x ∈ H.

Proof. By the assumptions of the lemma, H ⊇
⋃

K\
⋃

(A\K) andH ∩ (
⋃

(A \ K) \
⋃

K) = ∅.
To prove (a), suppose x ∈ (

⋃

A)∩H. Then x ∈ A for some A ∈ A. If A ∈ K then x ∈
⋃

K.
In the opposite case, x ∈

⋃

(A \ K) and then surely x ∈
⋃

K again, since otherwise x

would belong to
⋃

(A \ K) \
⋃

K, and this is impossible since x ∈ H. To prove (b), sup-
pose x ∈

⋃

A and K ⊇ {A ∈ A |x ∈ A}. Then clearly x ∈
⋃

K. On the other hand,
x 6∈

⋃

(A \ K), because the opposite would imply that x ∈ A for some A ∈ A such that
x 6∈ A. Thus x ∈

⋃

K \
⋃

(A \ K) and therefore x ∈ H.

Lemma 1.6. Let A be a collection of sets, K be a subcollection of A, and c1, c2 be two given

objects. Let f : (
⋃

K \
⋃

(A \ K)) ∪ (
⋃

(A \ K) \
⋃

K) → {c1, c2} be such that f(x) = c1 for

any x ∈
⋃

K \
⋃

(A \ K) and f(x) = c2 for any x ∈
⋃

(A \ K) \
⋃

K. Then dom(f) ⊆
⋃

A
and, for any A ∈ A, f↾A is a constant function.

Proof. The inclusion dom(f) ⊆
⋃

A is obvious. To prove the other statement of the lemma,
suppose A ∈ A. If A ∈ K then A ⊆

⋃

K , hence the intersection of A with
⋃

(A \ K) \
⋃

K
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is empty and therefore A ∩ dom(f) ⊆
⋃

K \
⋃

(A \ K). Similarly, if A ∈ A \ K then
A ⊆

⋃

(A \ K), hence the intersection of A with
⋃

K \
⋃

(A \ K) is empty and therefore
A ∩ dom(f) ⊆

⋃

(A \ K) \
⋃

K.

2. Strongly join permitting collections for the class

of the potentially partial recursive n-ary functions

Let n be a positive integer, and C be the class of all potentially partial recursive n-ary
functions (as usual, a partial function from N

n to N will be called potentially partial recursive

if it is a restriction of some n-ary partial recursive function).

Theorem 2.1. Let A be a finite collection of subsets of Nn. The collection A is strongly

join permitting for C iff, for each subcollection K of A, some recursively enumerable subset

HK of Nn separates
⋃

K \
⋃

(A \ K) from
⋃

(A \ K) \
⋃

K.

Proof. Suppose that, for any subcollection K of A, some recursively enumerable subset HK

of Nn separates
⋃

K \
⋃

(A \ K) from
⋃

(A \ K) \
⋃

K. We will prove that A is strongly
join permitting for C. Let f be a function such that dom(f) ⊆

⋃

A and f ↾A∈ C for any
A ∈ A. Clearly, all values of f are natural numbers. For any A ∈ A, the function f ↾A is a
restriction of some n-ary partial recursive function ϕA. Consider an arbitrary element x of
dom(f) and an arbitrary natural number y. Then x ∈

⋃

A. We will show that the equality
f(x) = y is equivalent to the following condition:

∃K ⊆ A(x ∈ HK & ∀A ∈ K(ϕA(x) = y)). (2.1)

Firstly, suppose that x ∈ HK & ∀A ∈ K(ϕA(x) = y) for some subcollection K of A.
The statement (a) of Lemma 1.5 implies that x ∈ A for some A ∈ K and therefore
f(x) = ϕA(x) = y for this A. For the reasoning in the opposite direction, suppose that
f(x) = y. The statement (b) of Lemma 1.5 implies that x ∈ HK, whereK = {A ∈ A |x ∈ A}.
Clearly ϕA(x) = f(x) = y for any A belonging to this K.

Thanks to the finiteness of A, the condition (2.1) defines a recursively enumerable
subset of Nn+1. An application of the Uniformization Theorem of recursion theory yields
the existence of an n-ary partial recursive function ϕ such that, whenever x ∈ N

n and the
condition (2.1) holds for some y ∈ N, then x ∈ dom(ϕ) and (2.1) is satisfied by y = ϕ(x).
The equivalence of (2.1) to the equality f(x) = y for any x ∈ dom(f) and any y ∈ N implies
that f is a restriction of ϕ.

Suppose now the collection A is strongly join permitting for C. Let K be an arbitrary
subcollection of A. We choose two distinct natural numbers c1 and c2 and consider the
corresponding function f defined as in Lemma 1.6. The function f belongs to C, since
dom(f) ⊆

⋃

A and f ↾A∈ C for any A ∈ A. Thus f is a restriction of some n-ary partial
recursive function ϕ. Then ϕ−1(c1) is a recursively enumerable subset of Nn containing
⋃

K \
⋃

(A \ K) and having an empty intersection with
⋃

(A \ K) \
⋃

K.

Remark 2.2. A recursively enumerable subset of N
n separating

⋃

K \
⋃

(A \ K) from
⋃

(A\K) \
⋃

K obviously exists if K = ∅ or K = A (the empty set in the first case and N
n

in the second one), therefore one may exclude these two cases in the condition formulated
in Theorem 2.1.

Corollary 2.3. Any finite collection of recursively enumerable subsets of N
n is strongly

join permitting for C.
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Proof. Let A be a finite collection of recursively enumerable subsets of N
n, and K be a

subcollection of A. Then
⋃

K is a recursively enumerable set which contains
⋃

K\
⋃

(A\K)
and has an empty intersection with

⋃

(A \ K) \
⋃

K.

Remark 2.4. In the situation from Corollary 2.3, the proof of Theorem 2.1, when carried
out with HK =

⋃

K, turns out to be unnecessarily complicated, because the condition (2.1)
is equivalent to the much simpler condition

∃A ∈ A(x ∈ A & ϕA(x) = y)

in this case.

Corollary 2.5. Let A be the collection {Nn \ E |E ∈ E}, where E is a finite collection of

recursively enumerable subsets of Nn. Then A is strongly join permitting for C.

Proof. Let K be a subcollection of A distinct from A, and let us set

H =
⋂

{E ∈ E |Nn \ E 6∈ K}.

Then H is a recursively enumerable subset of Nn which contains
⋃

K \
⋃

(A \ K) and has
an empty intersection with

⋃

(A \ K) \
⋃

K.

Remark 2.6. Theorem 2.1 remains true after skipping “partial” and replacing “recursively
enumerable” with “recursive” in the definition of the class C (the potentially recursive n-
ary functions are those ones which are restrictions of n-ary recursive functions, and clearly
separability by means of a recursive set is the same thing as recursive separability). The
main change in the proof consists in replacing the application of the Uniformization Theo-
rem with an appropriate definition by cases. A similar version of the theorem concerning
potential primitive recursiveness and primitive recursive separability holds too.

3. Strongly join permitting collections

for the class of the continuous partial functions

between two given topological spaces

Let X and Y be topological spaces with carriers X and Y , respectively. and C be the class
of all continuous partial functions from X to Y.

Theorem 3.1. Let A be a finite collection of subsets of X. If, for each subcollection K
of A, some open set of X separates

⋃

K\
⋃

(A\K) from
⋃

(A\K) \
⋃

K then the collection

A is strongly join permitting for C. In the case when there exists in Y an open set different

from ∅ and Y , the converse also holds.

Proof. Suppose that, for any subcollection K of A, some open set HK of X separates
⋃

K \
⋃

(A \ K) from
⋃

(A \ K) \
⋃

K. We will prove that A is strongly join permitting
for C. Let f be a function such that dom(f) ⊆

⋃

A and f ↾A∈ C for any A ∈ A. Clearly,
all values of f belong to Y . We will show that f ∈ C by proving that, for any open set V
of Y, the set f−1(V ) is the intersection of dom(f) with some open set of X. Let V be an
open set of Y. For any A ∈ A the set (f ↾A)

−1(V ) is the intersection of dom(f ↾A) with
some open set OA of X. Let x be an arbitrary element of X. We will show that x ∈ f−1(V )
iff x ∈ dom(f) and

∃K ⊆ A(x ∈ HK & ∀A ∈ K(x ∈ OA)). (3.1)
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Firstly, suppose that x ∈ dom(f) and x ∈ HK & ∀A ∈ K(x ∈ OA) for some subcollection K
of A. Since x ∈

⋃

A, statement (a) of Lemma 1.5 yields that x ∈
⋃

K, i.e. x ∈ A for
some A ∈ K. But if x ∈ A then surely x ∈ dom(f ↾A). Since, in addition, x ∈ OA, it
follows that x ∈ (f ↾A)

−1(V ) and therefore x ∈ f−1(V ). For the reasoning in the opposite
direction, suppose that x ∈ f−1(V ). Then, of course, x ∈ dom(f) and therefore x ∈

⋃

A.
By statement (b) of Lemma 1.5, x ∈ HK, where K = {A ∈ A |x ∈ A}. Clearly, whenever
A belongs to this K, then f ↾A(x) = f(x) ∈ V , consequently x ∈ (f ↾A)

−1(V ) and therefore
x ∈ OA.

It is clear now that f−1(V ) is the intersection of dom(f) with the set of those x ∈ X

which satisfy the condition (3.1), and this set is an open set of X thanks to the fact that A
is a finite set.

Suppose now that the collection A is strongly join permitting for C and some open set
of Y is different from ∅ and Y . Consider an arbitrary subcollection K of A. Let c1 and c2
be elements of Y belonging to some open set V of Y and to its complement, respectively.
We consider the corresponding function f defined as in Lemma 1.6. The function f belongs
to C, since dom(f) ⊆

⋃

A and f↾A∈ C for any A ∈ A. Therefore f−1(V ) is the intersection
of dom(f) with some open set H of X, and, since f−1(V ) = f−1(c1), it is clear that H

contains
⋃

K \
⋃

(A \ K) and has an empty intersection with
⋃

(A \ K) \
⋃

K.

Remark 3.2. Since open sets of X separating
⋃

K\
⋃

(A\K) from
⋃

(A\K)\
⋃

K obviously
exist if K = ∅ or K = A (the empty set in the first case and the set X in the second one),
these two cases can be excluded in the condition formulated in Theorem 3.1.

Remark 3.3. Analogs of Corollaries 2.3 and 2.5 hold and can be proved in a similar way,
namely the statement that any finite collection of open sets of X is strongly join permitting
for C and the same for any finite collection of closed sets of X. However, straightforward
direct proofs of these two statements are well-known, and, moreover, the validity of the first
of the statements is shown in such a direct way without using the finiteness assumption.

4. Strongly join permitting collections

for the class of the functions which are computable

with regard to a given pair of sequences of sets

Suppose U = {Uk}k∈N is a sequence of sets. Then we set U−1(x) = {k ∈ N |x ∈ Uk}
for any x ∈

⋃∞
k=0 Uk. The total enumerations of the set U−1(x) will be called U-names

of x. The element x will be called U-computable if at least one of these enumerations is
recursive; of course, the U -computability of x is equivalent to the recursive enumerability
of the set U−1(x).

Let D0,D1,D2, . . . be the canonical enumeration of the set of all finite subsets of N.
We define the sequence Û = {Ûm}m∈N as follows: Ûm =

⋂

k∈Dm

Uk, assuming that
⋂

k∈∅Uk

equals
⋃∞

k=0 Uk. The collection Û is obviously closed under finite intersection. One easily
checks that

x ∈ Ûm ⇐⇒ Dm ⊆ U−1(x) (4.1)

for any m in N and any x ∈
⋃∞

k=0 Uk.
In the sequel, sequences U = {Uk}k∈N and V = {Vl}l∈N of sets are supposed to be

given. A partial function f from
⋃∞

k=0 Uk to
⋃∞

l=0 Vl will be called (U ,V)-computable if a
recursive operator Γ exists such that, for any x ∈ dom(f), Γ transforms all U -names of x
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into V-names of f(x). One proves that f is (U ,V)-computable iff an enumeration operator F
exists such that V−1(f(x)) = F (U−1(x)) for any x ∈ dom(f).2 Thus f is (U ,V)-computable
iff a recursively enumerable subset W of N2 with the following property exists:

∀x ∈ dom(f)
(

V−1(f(x)) = {l | ∃m((m, l) ∈ W & Dm ⊆ U−1(x))}
)

. (4.2)

By (4.1), the above property is equivalent to the following one:

∀x ∈ dom(f)
(

V−1(f(x)) = {l | ∃m((m, l) ∈ W & x ∈ Ûm}
)

.

By rewriting it in the form

∀x ∈ dom(f)∀l ∈ N

(

f(x) ∈ Vl ⇔ ∃m
(

(m, l) ∈ W & x ∈ Ûm

))

, (4.3)

we see that the considered property of W is equivalent to being a (Û ,V)-approximation
system for f in the sense of [Sk, Definition 2.1] in the particular case when U and V are

bases of some topological spaces (then obviously Û is also a base of the first of these spaces,
and if they are T0 spaces then the computability notions defined above coincide with the
usual ones from the theory of computability in topological spaces).

We note that, whenever c is a V-computable element of
⋃∞

l=0 Vl, all partial functions
from

⋃∞
k=0 Uk to {c} are (U ,V)-computable (since, for instance, the set W = N × V−1(c)

has the property (4.2) for any such function f).

The sets of the form
⋃

m∈S Ûm, where S is some recursively enumerable subset of N, will

be called effective Û-unions. The union and the intersection of any two effective Û -unions
can be shown to be effective Û -unions again.

Lemma 4.1. Let f be a (U ,V)-computable partial functions from
⋃∞

k=0 Uk to
⋃∞

l=0 Vl. Then,

for any l ∈ N, the set f−1(Vl) is the intersection of dom(f) with some effective Û-union.

Proof. By the (U ,V)-computability of f , a recursively enumerable subset W of N2 with the
property (4.3) exists. This property is equivalent to the following one:

∀l ∈ N

(

f−1(Vl) = dom(f) ∩
{

x
∣

∣

∣
∃m

(

(m, l) ∈ W & x ∈ Ûm

)})

.

Let l be an arbitrary natural number, and let S = {m | (m, l) ∈ W}. Then S is a recursively

enumerable set of natural numbers, and the equality f−1(Vl) = dom(f)∩
⋃

m∈S Ûm holds.

Let C be the class of all (U ,V)-computable partial functions from
⋃∞

k=0 Uk to
⋃∞

l=0 Vl.

Theorem 4.2. Let A be a finite collection of subsets of
⋃∞

k=0 Uk. If, for each subcollection

K of A, some effective Û-union separates
⋃

K \
⋃

(A \ K) from
⋃

(A \ K) \
⋃

K then the

collection A is strongly join permitting for C. If natural numbers l1 and l2 exist such that

each of the sets Vl1 and Vl2 \Vl1 contains some V-computable element then the converse also

holds.

Proof. Suppose that, for any subcollection K of A, some effective Û -union HK separates
⋃

K\
⋃

(A\K) from
⋃

(A\K)\
⋃

K. We will prove that A is strongly join permitting for C.
Let f be a function such that dom(f) ⊆

⋃

A and f ↾A∈ C for any A ∈ A. Clearly, f is a

2The proof can be done by carrying out certain reasonings from [Ro, §9.7] in an appropriate more formal
way.
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partial function from
⋃∞

k=0 Uk to
⋃∞

l=0 Vl. For any A ∈ A, a recursively enumerable subset
WA of N2 can be chosen such that

l ∈ V−1(f(x)) ⇐⇒ ∃m((m, l) ∈ WA&Dm ⊆ U−1(x)). (4.4)

for all l ∈ N and all x ∈ A∩ dom(f). We will show that, for any x ∈ dom(f) and any l ∈ N

the condition l ∈ V−1(f(x)) is equivalent to the condition

∃K ⊆ A
(

x ∈ HK& ∀A ∈ K∃m
(

(m, l) ∈ WA&Dm ⊆ U−1(x)
))

. (4.5)

Firstly, suppose that x ∈ dom(f) (hence x ∈
⋃

A), l ∈ N, and K is a subcollection of A
such that

x ∈ HK& ∀A ∈ K∃m
(

(m, l) ∈ WA&Dm ⊆ U−1(x)
)

.

The statement (a) of Lemma 1.5 implies that x ∈ A for some A ∈ K. Hence (by the
equivalence (4.4)) l ∈ V−1(f(x)). For the reasoning in the opposite direction, suppose that
l ∈ V−1(f(x)). By statement (b) of Lemma 1.5, x ∈ HK, whereK = {A ∈ A |x ∈ A}. On the
other hand, again using the equivalence (4.4), we see that ∃m((m, l) ∈ WA&Dm ⊆ U−1(x))
holds for any A in K.

For any subcollection K of A, since HK is an effective Û -union, some recursively enu-
merable subset SK of N exists such that HK =

⋃

m∈SK
Ûm. Making use also of the equiva-

lence (4.1), we may write the condition (4.5) in the form

∃K ⊆ A
(

∃m ∈ SK

(

Dm ⊆ U−1(x)
)

& ∀A ∈ K∃m
(

(m, l) ∈ WA&Dm ⊆ U−1(x)
))

.

The above condition is equivalent to

∃m̃((m̃, l) ∈ W & Dm̃ ⊆ U−1(x)),

where W is the set of all (m̃, l) ∈ N
2 such that

∃K ⊆ A (∃m ∈ SK (Dm ⊆ Dm̃) & ∀A ∈ K∃m ((m, l) ∈ WA&Dm ⊆ Dm̃)) .

Thus
V−1(f(x)) = {l | ∃m̃((m̃, l) ∈ W & Dm̃ ⊆ U−1(x))}

for all x ∈ dom(f). As it is easy to see, the set W is recursively enumerable. Hence the
function f is (U ,V)-computable.

Suppose now the collection A is strongly join permitting for C, and l1, l2 are natural
numbers such that Vl1 and Vl2 \ Vl1 contain V-computable elements c1 and c2, respectively.
For an arbitrary subcollection K of A, we consider the corresponding function f defined
as in Lemma 1.6. By Lemma 1.6, dom(f) ⊆

⋃

A, and f ↾A is a constant function for any
A ∈ A. Taking into consideration the V-computability of c1 and c2, we see that f ↾A∈ C

for any A ∈ A. Consequently f ∈ C. By Lemma 4.1, the set f−1(Vl1) is the intersection of

dom(f) with some effective Û -union H, and, since f−1(Vl1) = f−1(c1), it is clear that H

contains
⋃

K \
⋃

(A \ K) and has an empty intersection with
⋃

(A \ K) \
⋃

K.
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Remark 4.3. If A is a finite collection of sets relevant for C then the assumption in the
first sentence of Theorem 4.2 is surely satisfied, because any set relevant for C is a subset
of

⋃∞
k=0 Uk (the converse may turn out to be false even in the case when U and V are bases

of T0 spaces).

Remark 4.4. Since effective Û -unions separating
⋃

K \
⋃

(A \ K) from
⋃

(A \ K) \
⋃

K
obviously exist if K = ∅ or K = A (namely ∅ and

⋃∞
k=0 Uk, respectively), one may exclude

these two cases in the condition formulated in Theorem 4.2.

Corollary 4.5. Any finite collection of effective Û-unions is strongly join permitting for C.

Proof. If A is a finite collection of Û -unions then, for each subcollection K of A, the set
⋃

K

is an effective Û -union containing
⋃

K \
⋃

(A \ K) and having an empty intersection with
⋃

(A \ K) \
⋃

K.

Remark 4.6. In the situation from Corollary 4.5 and its proof, the proof of Theorem 4.2,
when carried out with HK =

⋃

K, turns out to be unnecessarily complicated, because the
condition (4.5) is equivalent to the much simpler condition

∃A ∈ A
(

x ∈ A & ∃m
(

(m, l) ∈ WA&Dm ⊆ U−1(x)
))

in this case.

Corollary 4.7. Let A be the collection {
⋃∞

k=0 Uk \E |E ∈ E}, where E is a finite collection

of effective Û-unions. Then A is strongly join permitting for C.

Proof. Let K be a subcollection of A distinct from A, and let us set

H =
⋂

{E ∈ E |

∞
⋃

k=0

Uk \E 6∈ K}.

Then H is an effective Û -union which contains
⋃

K\
⋃

(A\K) and has an empty intersection
with

⋃

(A \ K) \
⋃

K.

Example 4.8. The computability proof for the arctan function indicated in the introduc-
tion is not satisfactory enough from the point of view of numerical calculations due to the
poor convergency rate of the series in the right-hand side of the equality (1.1) for the val-
ues of x in the interval [−1, 1] which are its endpoints or are near to them. The following
proof based on Corollary 4.5 is better from this point of view. Let U = V be a computable
enumeration of the set of all open intervals with rational endpoints in R. Then C is the
class of all computable unary real functions, and if a and b are rational numbers such that
0 < b < a then the collection of the intervals (−a, a), (b,+∞) and (−∞,−b) is strongly join
permitting for C. If, additionally, a < 2 and ab ≥ 1 then this can be used to prove the com-
putability of the function f(x) = arctan x by proving the computability of its restrictions
to these intervals in the following way. We prove the computability of f ↾ (−a, a) by using
the equality

arctan x = arctan
x

2
+ arctan

x

2 + x2

and applying (1.1) to the two terms in its right-hand side, then we solve the problem for the
other two intervals as we did in the introduction for the intervals [1,+∞) and (−∞,−1].

Example 4.9. The statement in Example 1.2 directly follows from Corollary 4.7 by apply-
ing it for the case of U and V as in Example 4.8.
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Example 4.10. Let n be a natural number, U be a computable enumeration of the set of all
parallelotopes which are Cartesian products of n+2 open intervals with rational endpoints
in R, and V be the same as in Example 4.8. ThenC is the class of all computable (n+2)-argu-
ment real functions, and, by Corollary 4.7, the pair of sets

{

(x, t, y1, . . . , yn) ∈ R
n+2

∣

∣x ≤ t
}

and
{

(x, t, y1, . . . , yn) ∈ R
n+2

∣

∣ x ≥ t
}

is strongly join permitting for C. In the case of n = 2,
this implies, for instance, the computability of the function

cases(x, t, y, z) =

{

y if x < t or y = z,
z if x > t or y = z

considered in [Es, Subsection 1.1].

Remark 4.11. The results in this section cover as particular instances the ones about
strongly join permitting collections for the class of the potentially partial recursive n-ary
functions. These functions are exactly the (U ,V)-computable ones, the recursively enumer-

able subsets of Nn are exactly the effective Û -unions, and any natural number is V-com-
putable if U0, U1, U2, . . . is an injective computable enumeration of the set of the one-element
subsets of Nn, and Vl = {l} for any l ∈ N.

Appendix A. Strongly join permitting families of sets

Let us call a family of sets {Ai}i∈I strongly join permitting for a class C of functions if the
corresponding collection of sets {Ai | i ∈ I} is strongly join permitting for C. The results
we proved can be easily transferred from collections to families of sets (of course, a family of
sets {Ai}i∈I is called finite if the index set I is finite). .For instance, Theorem 2.1 goes into
the following statement, where n is some positive integer, C is the class of all potentially
partial recursive n-ary functions, and, for any subset K of I, A∪

K
denotes the set

⋃

i∈K Ai.

Theorem A.1. Let {Ai}i∈I be a finite family of subsets of N
n. The family {Ai}i∈I is

strongly join permitting for C iff, for each subset K of I, some recursively enumerable

subset of Nn separates A∪
K
\ A∪

I\K from A∪
I\K \ A∪

K
.

Proof. Let A = {Ai | i ∈ I}. Suppose that, for each subset K of I, some recursively
enumerable subset of N

n separates A∪
K

\ A∪
I\K from A∪

I\K \ A∪
K
. Let K be an arbitrary

subcollection of the collection A, and let K = {i ∈ I |Ai ∈ K}. Then A∪
K

=
⋃

K and
A∪

I\K =
⋃

(A\K), hence some recursively enumerable subset of Nn separates
⋃

K\
⋃

(A\K)

from
⋃

(A\K)\
⋃

K. Therefore, by Theorem 2.1, the collection A is strongly join permitting
for C, i.e. {Ai}i∈I is strongly join permitting for C. For the reasoning in the opposite
direction, suppose that {Ai}i∈I is strongly join permitting for C, i.e. A is strongly join
permitting for C. Let K be an arbitrary subset of I, and let K = {Ai | i ∈ K}. Then K is
a subcollection of A, hence, by Theorem 2.1, some recursively enumerable subset H of Nn

separates
⋃

K \
⋃

(A \ K) from
⋃

(A \ K) \
⋃

K. Since A∪
K

=
⋃

K and A∪
I\K ⊇

⋃

(A \ K),

the set H separates also A∪
K
\ A∪

I\K from A∪
I\K \ A∪

K
.
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