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Abstract. In the design of software and cyber-physical systems, security is often perceived
as a qualitative need, but can only be attained quantitatively. Especially when distributed
components are involved, it is hard to predict and confront all possible attacks. A main
challenge in the development of complex systems is therefore to discover attacks, quantify
them to comprehend their likelihood, and communicate them to non-experts for facilitating
the decision process.

To address this three-sided challenge we propose a protection analysis over the Quality
Calculus that (i) computes all the sets of data required by an attacker to reach a given
location in a system, (ii) determines the cheapest set of such attacks for a given notion of
cost, and (iii) derives an attack tree that displays the attacks graphically.

The protection analysis is first developed in a qualitative setting, and then extended to
quantitative settings following an approach applicable to a great many contexts. The quan-
titative formulation is implemented as an optimisation problem encoded into Satisfiability
Modulo Theories, allowing us to deal with complex cost structures. The usefulness of the
framework is demonstrated on a national-scale authentication system, studied through a
Java implementation of the framework.
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1. Introduction

Our daily life is increasingly governed by software and cyber-physical systems, which are
exploited in the realisation of critical infrastructure, whose security is a public concern. In
the design of such systems, security is often perceived as a qualitative need, but experience
tells that it can only be attained quantitatively. Especially when distributed components
are involved, it is hard to predict and confront all possible attacks. Even if it were possible,
it would be unrealistic to have an unlimited budget to implement all security mechanisms.

A main challenge in the development of complex systems is therefore to discover attacks,
quantify them to comprehend their likelihood, and communicate them to decision-makers for
facilitating deciding what countermeasures should be undertaken.

In order to address this three-sided challenge we propose a protection analysis over
the Quality Calculus [35]. The calculus offers a succinct modelling language for specifying
distributed systems with a high degree of interaction among components, which thus enjoy a
highly-branching control flow. Moreover, process-algebraic languages have proven useful for
describing software systems, organisations, and physical infrastructure in a uniform manner.

In the study of security, the compromise for obtaining such broad domain coverage while
retaining a reasonable expressive power takes place at the level of attack definition. At a
high level of abstraction, an attack can be defined as a sequence of actions undertaken by
an adversary in order to make unauthorised use of a target asset. In a process-algebraic
world, this necessary interaction between the adversary and the target system is construed
in terms of communicating processes. Input actions on the system side can be thought of as
security checks that require some information to be fulfilled. In particular, the capability of
communicating over a given channel requires the knowledge of the channel itself and of the
communication standard.

Hence, we shift the semantic load of secure communication onto channels, assuming that
they provide given degrees of security. Whilst the correctness of such secure channels [27] is
investigated in the realm of protocol verification, any system with a substantial need for
security is likely to have standardised mechanisms to achieve various degrees of protection,
and modelling them with secure channels is a coarse yet reasonable abstraction. An attack
can be thus construed as a set of channels that fulfil the security checks (input actions) on a
path leading to the target, i.e., a program point in the process under study.

The first task of the protection analysis, discovering all the attacks leading to a given
location l in a process P , in this setting reduces to compute all sets of channels over which
communication must take place in order for P to evolve to l. Technically, a process is
translated into a set of propositional constraints that relate the knowledge of channels to
communication actions and to reachability of program points. Each model of such set of
constraints contains an attack. This perspective corresponds to a qualitative formulation of
the analysis, in which all attacks are deemed equally interesting.

Nonetheless, secure channels allow modelling a great many domains. In IT systems, a
channel can be thought of as a wired or wireless communication link over which messages
are encrypted, and its knowledge mimics the knowledge of a suitable encryption key. In the
physical world, a channel can represent a door, and its knowledge the ownership of the key, a
pin code, or the capability of bypassing a retinal scan. This urges to acknowledge the variety
of protection mechanisms and devise attack metrics by assigning costs to channels, thus
quantifying the effort required to an attacker for obtaining a channel or, equivalently, the
protection ensured by the security mechanism represented by a channel. As a consequence,
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attacks can be ordered according to their cost. Finally, a conservative approach to security
demands to look for attacks that are optimal in the cost ordering (that is, minimal or
maximal, according to the notion of cost we adopt – in the following we shall focus without
loss of generality on minimality).

Quantifying attacks allows to rule out those we deem unrealistic because exceeding
the resources available to, or the skills of, a given attacker profile. Moreover, such a
quantification allows to contrast the desired security architecture of a system, defined as a
map from locations to security levels, with the actual implementation of security, defined as
the protection deployed to guard a location l, which the analysis computes as the minimal
cost required to reach l.

The second task of the protection analysis, quantifying the attacks leading to l, hence
reduces to compute the costs of the attacks detected by the qualitative analysis. For the
sake of performance, however, the naive approach that first computes all attacks (models)
and then sorts them is not advisable. We instead implement the quest for minimal models
on top of a Satisfiability Modulo Theories (SMT) solver, where minimality is sought with
respect to an objective function defined on a liberal cost structure in which both symbolic
and non-linearly-ordered cost sets can be represented.

The third task of the analysis, displaying attacks graphically, is achieved by backward
chaining the set of constraints into which a process is translated, thus obtaining an attack
tree whose root is the target location, leaves are channels, and internal nodes show how to
combine sub-trees to attain the goal. Such a tree is denoted by a propositional formula
whose minimal models can be computed with the SMT procedure mentioned above. Hence,
our attack trees encompass both the qualitative and quantitative developments at once: a
tree contains all the attacks leading to a given target, and the quest for the minimal ones
can be carried out on its propositional denotation.

A Java implementation of the framework is available, which takes as input a process
in the Value-Passing Quality Calculus, the location of interest, and the map from channels
to costs. The tool computes the cheapest sets of atomic attacks leading to the goal, and
produces an attack tree in which all attacks are summarised. The usefulness of the framework
is demonstrated on the study of the NemID system, a national-scale authentication system
used in Denmark to provide secure Internet communication between citizens and public
institutions as well as private companies.

This work is a revised and extended version of [44]. The analysis has been reformulated
for highlighting its dual nature in terms of attack discovery and quantification, and has been
combined with the insights of [43] on generating attack trees. The main novelty of the paper
lies in the harmonisation of two distinct results, offering a coherent framework where the
quantitative study of security and the generation of graphical models inform each other.

Contribution. The novelty of the protection analysis is many-fold. First of all, the problem
of inferring attacks and quantifying the protection offered by security checks is interesting per
se and poorly addressed in the literature. In particular, we devise a comprehensive approach,
from modelling systems and their security architecture to mechanising the verification of
how this architecture has been realised in the implementation.

The extension of the analysis from qualitative to quantitative settings can be mimicked
in a great many contexts, and it is seamlessly applicable to formal specifications that resort
to encoding into logic formulae. In connection with this, our SMT-based solution procedure
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can be applied to all problems requiring to rank models of a logic formula according to given
criteria.

The quest for optimal attacks can cope with arbitrary cost structures and objective
functions, whose shape is only limited by the expressiveness of modern SMT solvers. Whilst
our SMT approach to optimisation is not entirely novel, non-linearly-ordered and symbolic
cost structures have not been addressed so far in connection with this technique.

Finally, we overcome a number of shortcomings of existing methods for the automated
generation of attack trees. These techniques typically suffer from focusing on computer
networks, and thus suggest modelling languages tailored to this domain (cf. § 8.2). Moreover,
the model-checking techniques that have been proposed recently for generating attack trees
lead to an exponential explosion of the state space, limiting the applicability of automated
search procedures.

In order to overcome these drawbacks, the protection analysis derives attack trees from
process-algebraic specifications in a syntax-directed fashion. As we have already put forward,
process calculi have proven useful in describing a variety of domains, well-beyond computer
networks. On the complexity side, being syntax-driven, static analysis often enjoys better
scalability than model-checking approaches. Even though the theoretical complexity of our
analysis is still exponential in the worst case, such a price depends on the shape of the
process under study, and is not incurred systematically. Interestingly enough, the generation
of attack trees seems to boost the performance of the approach, though it is not necessary
to computing minimal attacks. In general, the interplay between static analysis and model
checking had a key role in advancing the community’s knowledge on the foundations of
formal verification, and therefore it is promising to complement the existing studies on the
attack tree generation problem with static analysis tools.

Organisation of the paper. First, we present our modelling framework based on the
Value-Passing Quality Calculus in § 2. Besides syntax (§ 2.1) and semantics (§ 2.2) of the
calculus, here we introduce our security interpretation of communication actions and the
induced attacker model (§ 2.3). The NemID system, which will be our running example
throughout the paper, is described in § 3.

The development of the protection analysis spans §§ 4, 5, 6. First, in § 4 we tackle
the problem of discovering attacks leading to a location l in a process P . To this end, we
translate P into a set of propositional constraints (§ 4.1), which we then extend to encompass
the attacker model (§ 4.2). The solution procedure (§ 4.3) computes all the models of the
constraints and from these extracts the attacks. This qualitative formulation of the analysis
is demonstrated on the NemID system in § 4.4, while in § 4.5 we comment upon integrating
the analysis in a refinement cycle.

In § 5 we extend the analysis to quantitative settings. First, we present how to formalise
the intended security architecture of a system in terms of a security lattice (§ 5.1). Then,
we introduce costs to channels so as to quantify attacks, and we relate the minimal costs for
attacking a location to its desired security level, thus checking whether the desired security
architecture is fulfilled by the implementation (§ 5.2). Our novel SMT-based approach to
computing models of minimal cost is discussed in § 5.3 and demonstrated on the NemID
system in § 5.4. The need for the SMT approach is motivated by the complex cost structures
explained in § 5.5. We give a semantic interpretation of the attacker model in § 5.6.

Finally, the problem of generating attack trees is tackled in § 6. First, we show how to
generate trees from our sets of constraints describing how to combine channels to reach the
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target l (§ 6.1). The procedure leads to generate a formula describing all attacks to l, whose
optimal models can be computed thanks to the SMT procedure. We discuss the attack tree
for the NemID system in § 6.2.

In § 7 we discuss the implementation of the quantitative analysis. The solution approaches
of §§ 5 and 6 are compared in § 7.1, and the proof-of-concept implementation is briefly
presented in § 7.2.

Finally, § 8 surveys related work, organising them with respect to the analysis in general
(§ 8.1) and to attack tree generation in particular (§ 8.2). We conclude and present our
outlook on future work in § 9.

2. The Modelling Framework

As specification formalism we adopt the Quality Calculus [35], a process calculus in the
π-calculus family. In particular, the Quality Calculus introduces a new kind of input binders,
termed quality binders, where a number of inputs are simultaneously active, and we can
proceed as soon as some of them have been received, as dictated by a guard instrumenting the
binder. Whilst these binders enhance the succinctness of highly-branching process-algebraic
models, thus increasing their readability, they do not increase the expressiveness of the
language with respect to π, and thus the protection analysis carries seamlessly to a variety
of process calculi without such binders. Therefore, as far as this work is concerned, the
reader can think of the calculus as a broadcast value-passing π-calculus enriched with quality
binders.

2.1. Syntax. The syntax of the Value-Passing Quality Calculus is displayed in Table 1.
The calculus consists of four syntactic categories: processes P , input binders b, terms t, and
expressions e. A process can be prefixed by the restriction (νc) of a name c, by an input
binder b, by an output c!t of term t on channel c, or be the terminated process 0, the parallel
composition of two processes, a replicated process, or a case clause.

A process c!t.P broadcasts term t over channel c and evolves to P : all processes ready
to make an input on c will synchronise and receive the message, but we proceed to P even if
there exists no such process (i.e., broadcast is non-blocking).

An input binder can either be a simple input c?x binding variable x to a message received
over channel c, or a quality binder &q(b1, . . . , bn), where the n sub-binders are simultaneously
active. A quality binder is consumed as soon as enough sub-binders have been satisfied, as
dictated by the quality guard q. A quality guard can be any Boolean predicate over the
sub-binders: we use the abbreviations ∀ and ∃ for the predicates specifying that all the
sub-binders or at least one sub-binder have to be satisfied before proceeding, respectively.
For instance, the process &∃(c1?x1, c2?x2).P evolves to P as soon as an input is received on
c1, or an input is received on c2.

When a quality binder is consumed, some input variables occurring in its sub-binders
might have not been bound to any value, if this is allowed by the quality guard. Building on
the example &∃(c1?x1, c2?x2).P , we can write:

(νc1)(νc2)(νc3)(&∃(c1?x1, c2?x2).P |c1!c3.P
′)

Such a process evolves to P |P ′ even if no input is received on c2. In order to record which
inputs have been received and which have not, we always bind an input variable x to an
expression e, which is some(c) if c is the name received by the input binding x, or none if the
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Table 1: The syntax of the Value-Passing Quality Calculus.

P ::= 0 | (νc)P | P1 |P2 | lb.P | lc!t.P
| !P | lcase x of some(y) : P1 else P2 (Process)

b ::= c?x | &q(b1, · · · , bn) (Binder)

t ::= c | y (Term)

e ::= x | some(t) | none (Expression)

input is not received but we are continuing anyway. In this sense, we say that expressions
represent optional data, while terms represent data, in the wake of programming languages
like Standard ML [26]. In order to insist on this distinction, variables x are used to mark
places where expressions are expected, whereas variables y stand for terms, which are names
(channels). Hence, in the example above variable x1 is replaced by some(c3) and x2 is
replaced by none.

The case clause in the syntax of processes is then used to inspect whether or not an input
variable, bound to an expression, is indeed carrying data. The process case x of some(y) :
P1 else P2 evolves into P1[c/y] if x is bound to some(c); otherwise, if x is bound to none,
P2 is executed. Therefore, case clauses allow detecting which condition triggered passing a
binder, by detecting on which channels communication took place.

In order to identify locations unambiguously, the syntax instruments each program point
with a unique label l ∈ L. This is the case of input binders, outputs, and case clauses in
Table 1. In the following, we will denote labels with the numerals , , . . . . We say that a
label l is reached in an actual execution when the sub-process following l is ready to execute.

As usual, in the following we consider closed processes (no free variable), and we make
the assumption that variables and names are bound exactly once, so as to simplify the
technicalities without impairing the expressiveness of the framework.

The syntax presented above defines a fragment of the full calculus developed in [35]. First,
we have described a value-passing calculus, as channels are syntactically restricted to names
as opposed to terms; in particular, no variable y is allowed in a channel position. Second,
terms are pure, that is, only names and variables are allowed (no function application).
Last, the calculus is limited to test whether or not a given input variable carries data, but
cannot test which data it is possibly carrying. We deem that these simplifications match
with the abstraction level of the analysis, where secure channels are assumed that have to be
established by executing given security protocols, and thus enjoy known properties. For the
very same reason we opted for pure terms, since equational reasoning is usually exploited in
process calculi to model cryptographic primitives (a Quality Calculus with such a feature is
presented in [42]).

Ultimately, resorting to a value-passing calculus is to be understood as a choice that
allows to produce attack trees of reasonable size, and not as a technical shortcoming. The
comparison here is to be made between security protocols, often studied with expressive
calculi (cf. § 8.1), and distributed systems. Security protocols can be understood as basic
building blocks that we would like to prove flawless; to this end, modelling the structure of
messages and the functions operating over them is necessary (and often not enough). On the
other hand, such a low-level representation seems instead not suitable to modelling complex
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Table 2: The structural congruence of the Value-Passing Quality-Calculus.

P ≡ P P |0 ≡ P P1 |P2 ≡ P2 |P1

P1 |(P2 |P3) ≡ (P1 |P2) |P3 !P ≡ P |!P (νc1) (νc2)P ≡ (νc2) (νc1)P

(νc)P ≡ P if c /∈ fc(P ) (νc) (P1 | P2) ≡ ((νc)P1) | P2 if c /∈ fc(P2)

P1 ≡ P2

P2 ≡ P1

P1 ≡ P2 P2 ≡ P3

P1 ≡ P3

P1 ≡ P2

C[P1] ≡ C[P2]

systems and to support analyses whose results can be computable in practice and presented
in a human-readable format. In this sense, the coarse abstraction we adopt with flat channels
is the price to pay for scaling up from analysing protocols to analysing complex systems,
where a flat name can represent an entire sub-system (software, physical, cyber-physical)
whose analysis is condensed in the price/security guarantee attached to it.

In this light, a reinforced gate can be represented with a channel g, and its cost be the
minimal grams of dynamite required to blow it up, or the average price of the tools needed
to force it, or a synthesis of both, depending on the attacker we want to consider. Similarly,
a secure communication link providing secrecy can be represented with a channel s, and its
cost be the length of the cryptographic key used for encrypting information sent over s, or
the trust we put in the encryption protocol used to implement s. More complex cost notions
can be used to describe security properties of cyber-physical devices, where for example
the battery level can dictate the security degree a sensor can afford. While it is true that
part of the burden is moved onto the definition of suitable cost structures (some solutions
particularly useful to facilitate the task in case of cyber-physical systems are advanced in
§ 5.5), the framework offers a clear separation of concerns between modelling a complex
system at an appropriate detail level, specifying the security contracts of its component, and
computing a weak-path analysis.

An extension of the framework that encompasses the key features of the full calculus
of [35] is briefly commented upon in Appendix C, and is a starting point to delve into more
specialised notions of costs, where the analysis on channels is combined with an analysis on
the structure of messages.

2.2. Semantics. The semantics of the Value-Passing Quality Calculus consists of a set
of transition rules parametrised on the structural congruence relation of Table 2. In the
congruence, we denote the free names in a process P as fc(P ), where (νc)P binds the name
c in process P . Moreover, the congruence holds for contexts C defined as

C ::= [ ] | (νc)C | C |P | P |C
As usual in π-like calculi, processes are congruent under α-conversion, and renaming is
enforced whenever needed in order to avoid accidental capture of names during substitution.

The semantics of Table 3 is based on the transition relation P =⇒ P ′, which is enabled

by combining a local transition
λ−−−→ with the structural congruence.

The semantics models asynchronous broadcast communication, and makes use of a label
λ ::= τ | c1!c2 to record whether or not a broadcast c1!c2 is available in the system. If not,
label τ is used to denote a silent action. Rule (Brd) states that an output is a non-blocking
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action, and when it is performed the broadcast is recorded on the arrow. When a process
guarded by a binder receives an output, the broadcast remains available to other processes
able to input. This behaviour is encoded in rules (In-ff) and (In-tt), where we distinguish
the case in which a binder has not received enough inputs, and thus keeps waiting, from
the case in which a binder is satisfied and thus the computation may proceed, applying the
substitution induced by the received communication to the continuation process. These
rules rely on two auxiliary relations, one defining how an output affects a binder, and one
describing when a binder is satisfied (enough inputs have been received), displayed in the
third and fourth section of Table 3, respectively.

We write c1!c2 ` b→ b′ to denote that the availability of a broadcast makes binder b
evolve into binder b′. When a broadcast name c2 is available on the channel over which an
input is listening, the input variable x is bound to the expression some(c2), marking that
something has been received. Otherwise, the input is left syntactically unchanged, that is, it
keeps waiting. Technically, the syntax of binders is extended to include substitutions:

b ::= · · · | [some(c)/x]

This behaviour is seamlessly embedded into quality binders, where a single output can affect
a number of sub-binders, due to the broadcast paradigm and to the intended semantics of
the quality binder, according to which the sub-binders are simultaneously active.

As for evaluating whether or not enough inputs have been received, the relation b ::r θ
defines a Boolean interpretation of binders. An input evaluates to θ = [none/x] with r = ff,
for it must be performed before continuing with the computation; a substitution evaluates to
itself with r = tt, since it stands for a received input. The substitution related to a quality
binder is obtained by composing the substitutions given by its sub-binders, while its Boolean
interpretation is obtained applying the quality guard, which is a Boolean predicate, to the
Boolean values representing the status of the sub-binders. This is denoted [{q}](r1, . . . , rn),
and corresponds to the Boolean ∨ for the existential guard and to the Boolean ∧ for the
universal guard.

It is worthwhile observing that substitutions are applied directly by the semantics, and
since we consider closed processes, whenever an output c1!t is ready to execute, t must have
been replaced by a name c2 (cf. rule (Brd)). For this very same reason the evaluation of
case x of some(y) : P1 else P2 is straightforward, as when the clause is reached in an actual
execution the variable x must have been replaced with a constant expression.

It is worthwhile observing that no rule for transition under restriction is provided,
therefore rule (Sys) must be applied to pull restrictions to the outer-most level. Here (ν−→c )
denotes the restriction of a list of names.

Rules (Par-) take care of interleaving. In particular, rule (Par-brd) takes care of
interleaving broadcast, and applies in two situations.

First, if the parallel component P2 is a replicated process, the broadcast has precedence
over any action of instances of P2. This means that when P2 has the form !c1?x.P , the
number of input performed by its replicated instances will depend on the unfolding performed
previously using the structural congruence as per rule (Sys). Note that this “freedom” issue
would not arise if the semantics made use of guarded recursion. Mind to observe, however,
that the encoding of replication into recursion would lead to the same problem, since
replication is essentially an unguarded recursion.

Second, if the parallel component P2 is broadcast-prefixed, its broadcast is delayed until
the current one has exhausted its synchronisation opportunities. If none of the above applies,
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Table 3: A broadcast value-passing semantics with replication.

P1 ≡ (ν−→c )P2 P2
λ−−−→ P3

P1 =⇒ P3

(Sys)

lc1!c2.P
c1!c2−−−→ P (Brd)

P1
c1!c2−−−→ P ′1 c1!c2 ` b→ b′ b′ ::ff θ

P1 | lb.P2
c1!c2−−−→ P ′1 | lb′.P2

(In-ff)

P1
c1!c2−−−→ P ′1 c1!c2 ` b→ b′ b′ ::tt θ

P1 | lb.P2
c1!c2−−−→ P ′1 | P2θ

(In-tt)

lcase some(c) of some(y) : P1 else P2
τ−−−→ P1[c/y] (Then)

lcase none of some(y) : P1 else P2
τ−−−→ P2 (Else)

P1
τ−−−→ P ′1

P1|P2
τ−−−→ P ′1|P2

(Par-tau)

P1
c1!c2−−−→ P ′1

P1|P2
c1!c2−−−→ P ′1|P2

if P2 = !P ′2 ∨ P2 = lc′1!c′2P
′
2 (Par-brd)

c1!c2 ` c1?x→ [some(c2)/x] c1!c2 ` c3?x→ c3?x if c1 6= c3

c1!c2 ` b1 → b′1 · · · c1!c2 ` bn → b′n

c1!c2 ` &q(b1, . . . , bn)→ &q(b
′
1, . . . , b

′
n)

t?x ::ff [none/x] [some(c)/x] ::tt [some(c)/x]

b1 ::r1 θ1 · · · bn ::rn θn

&q(b1, · · · , bn) ::r θn ◦ · · · ◦ θ1
where r = [{q}](r1, · · · , rn)

then either a synchronisation rule (In-) or an interleaving with a silent action (Par-tau) must
take place.

2.3. Security model. On top of the standard operational semantics of the calculus, our
process-algebraic specifications rely on a security interpretation of communication actions.
As binders are blocking actions, they can be thought of as security checks that require the
knowledge of some information to be fulfilled. This knowledge is abstracted here by resorting
to the notion of secure channel and disregarding the messages actually communicated, in
line with the value-passing nature of the calculus. This idea seamlessly applies to simple
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inputs and is refined by quality binders: the existential quality guard ∃ describes scenarios
in which different ways of fulfilling a check are available, e.g., different ways of proving one’s
identity. In contrast to this, the universal quality guard ∀ describes checks that require a
number of sub-conditions to be met at the same time, and can be used to refine a security
mechanism in terms of sub-checks.

On the other hand, an output represents the satisfaction of the security check specified
by the corresponding channel. As the semantics is broadcast, all the input waiting on the
given channel will be satisfied, that is, all the pending instances of the security check will be
fulfilled and the system will proceed until another blocking check is met. As a consequence,
if the adversary can trigger a system component to make an output on a given channel c,
it is as if c were under the control of the attacker, for all inputs on c in other components
would be satisfied.

Finally, case clauses allow to inspect how a given security check, that is, a preceding
binder, has been satisfied, by inspecting which input variables are bound to some values,
that is, on which channels the communication took place.

As a result, an attack can be construed as a set of channels, namely, those channels
needed to fulfil the security checks on a path to the target. We assume that a system P is
deployed in a hostile environment, simulated by an adversary process Q running in parallel
with P . The ultimate aim of the protection analysis is to compute what channels Q has
to communicate over in order to drive P to a given location l, i.e., P |Q =⇒∗ C[lP ′], where
C[lP ′] denotes a sub-process of P |Q that has reached label l and =⇒∗ denotes the reflexive
and transitive closure of =⇒.

In order to compute the channels that Q needs to reach a program point l, this security
model is translated into an attacker model where Q can guess every required channel, that
is, whenever a security check on the way to l cannot be avoided, Q can fulfil it.

3. The Danish NemID System

Let us introduce now an example that will be developed throughout the paper. NemID
(literally: EasyID)1 is an asymmetric cryptography-based log-in solution used by public
institutions as well as private companies in Denmark to provide on-line services, used by
virtually every person who resides in the country. Most service providers rely on a browser-
based log-in application through which their customers can be authenticated (a Java applet
or a JavaScript program – in the following simply “the applet”). For technological and
historical reasons, the applet allows proving one’s identity with various sets of credentials.
In particular, private citizens can log-in with their social security number, password, and
a one-time password, or by exhibiting an X.509-based certificate. Moreover, on mobile
platforms that do not support Java, a user is authenticated through a classic id-password
scheme.

We focus on a formalisation of the system such that authentication does not take place
unless some interactions with the environment take place. In other words, we specify the
security checks but not their fulfilment by the user who is supposed to be logging in, so as
to rule out the legal way to authenticating and focus on malicious behaviours.

The system is modelled in the Value-Passing Quality Calculus as follows:

NemID , (νcert) . . . (νaccess)(!Login | !Applet | !Mobile)

1https://www.nemid.nu/dk-en/

https://www.nemid.nu/dk-en/
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Applet ,
&∃(cert?xcert,&∀(id?xid, pwd?xpwd, otp?xotp)).
case xcert of some(ycert) : login!ok else

case xid of some(yid) :
case xpwd of some(ypwd) :

case xotp of some(yotp) : login!ok else 0
else 0

else 0

Mobile , &∀(id?x′id, pin?xpin).
case x′id of some(y′id) :
case xpin of some(ypin) : login!ok else 0

else 0

Login , login?x.access!ok

The system consists of three processes running in parallel an unbounded number of times.
For the sake of brevity, we have omitted to list all the restrictions in front of the parallel
components, that involve all the names occurring in the three processes.

Process Login is in charge of granting access to the system: whenever a user is au-
thenticated via the applet or a mobile app, an output on channel login is triggered that
can be received at label  leading to the output at label , which simulates a successful
authentication.

Process Applet models the applet-based login solution, where login is granted (simulated
by the outputs at labels  and ) whenever the user exhibits a valid certificate or the
required triple of credentials. The quality binder at label  implements such a security check:
in order to pass the binder, either (∃) a certificate has to be provided, simulated by the
first sub-binder, or three inputs have to be received (∀), mimicking an id (id), a password
(pwd), and a one-time password (otp). Observe how case constructs are used to determine
what combination allowed passing the binder: at label  we check whether the certificate
is received, and if this is not the case then we check that the other condition is fulfilled.
The main abstraction of our approach takes place at this level, as we can only test whether
something is received on a given channel, but we cannot inspect the content of what is
received. In other words, the knowledge of channel cert mimics the capability of producing
a valid certificate, and thus we say that the semantic load of the communication protocol is
shifted onto the notion of secure channel. Observe that this perspective seamlessly allows
reasoning about the cost of attacking the system: to communicate over cert, an adversary
has to get hold of a valid certificate, e.g., bribing someone or brute-forcing a cryptographic
scheme, and this might prove more expensive than guessing the triple of credentials necessary
to achieve authentication along the alternative path, as we shall conclude in § 5.4.

Finally, process Mobile describes the intended behaviour of the mobile login solution
developed by some authorities (e.g., banks, public electronic mail system), where an id and
a password or pin have to be provided upon login.

4. Discovering Attacks

The first challenge we tackle is discovering all the attacks leading to a given target. Given
a process P modelling the system of interest and a label l in P identifying the target of
the attack, the task of the analysis is to find all the sets of channels fulfilling the inputs
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occurring in P on the paths to l. In other words, we look for the knowledge that allows an
adversary Q to drive P to reach l.

To this end, P is translated into a set of propositional formulae (§ 4.1), termed flow
constraints, describing how the knowledge of channels relates to reachability of locations,
and how given a set of channels some other channels can be derived by the attacker. Then,
the constraints are extended to consider the capabilities of the attacker (§ 4.2). Each model
of the final set of constraints P l⇔ contains a set of channels that under-approximates the
knowledge required to reach l (§ 4.3).

4.1. From processes to flow constraints. The call [[P ]]tt of the recursive function [[·]]·,
defined in Table 4, translates a process P into a set of constraints of the form ϕ; p, where
ϕ is a propositional formula and p a positive literal. The intended semantics of a constraint
states that if Q knows (enough information to satisfy) ϕ, then Q knows p, i.e., p = tt. As
we shall see below, the antecedent ϕ accounts for the checks made on the path leading to
disclosing p, namely input binders and case clauses. The consequent p can either stand for a
channel literal c, meaning that Q controls c, an input-variable literal x, meaning that the
attacker can satisfy the related input (i.e., x = some(c)), or a label literal l, meaning that l
is reached.

At each step of the evaluation, the first parameter of [[·]]· corresponds to the sub-process
of P that has still to be translated, while the second parameter is a logic formula, intuitively
carrying the hypothesis on the knowledge Q needs to reach the current point in P . The
translation function is structurally defined over processes as explained below.

If P is 0, then there is no location to be attained and thus no constraint is produced. If
P = !P ′ or P = (νc)P ′, then it spontaneously evolves to P ′, hence Q does not need any
knowledge to reach P ′ and gains no knowledge since no communication is performed. A
parallel composition is translated taking the union of the sets into which the components
are translated.

Communication-related actions have instead an impact on the knowledge of Q: inputs
represent checks that require knowledge, outputs fulfil those checks, and case clauses
determine the control flow. Assume that an action π is reached in the translation under
hypothesis ϕ, that is, [[lπ.P ′]]ϕ. Then, a constraint ϕ; l is generated: if the attacker fulfils
the security checks on a path to l, then l is reached. In the logic interpretation of the
constraints, this happens when ϕ evaluates to tt under a model given by the knowledge of
the attacker, forcing l to be tt (as standard implication would do). Moreover, the nature of
action π determines whether or not other constraints are produced and how the translation
proceeds.

Consider a simple input lc?x.P ′: whenever the action is consumed, it must be that the
attacker controls the communication channel c, hence we translate P ′ under the hypothesis
ϕ ∧ c. Moreover, if the input is consumed, then x must be bound to some(c′), hence we
produce a constraint (ϕ∧ c) ; x. These two steps respectively accommodate the hypothesis
we need for passing a binder (success condition), and the conclusion we can establish
whenever a binder is passed (strongest post-condition). In Table 4 functions hp and th
take care of formalising this intuition, that seamlessly applies to quality binders, where the
hypothesis is augmented accounting for the combinations of inputs that satisfy the binder,
as dictated by the quality guard q. The last section of Table 4 shows two cases for q, but
any Boolean predicate can be used.
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Table 4: The translation [[P ]]tt from processes to flow constraints.

[[0]]ϕ = ∅
[[!P ]]ϕ = [[P ]]ϕ

[[P1|P2]]ϕ = [[P1]]ϕ ∪ [[P2]]ϕ

[[(νc)P ]]ϕ = [[P ]]ϕ

[[lb.P ]]ϕ = [[P ]](ϕ ∧ hp(b)) ∪ th(ϕ, b) ∪ {ϕ; l}
[[lc!t.P ]]ϕ = [[P ]]ϕ ∪ {ϕ; c} ∪ {ϕ; l}

[[lcase x of some(y) : P1 else P2]]ϕ = [[P1]](ϕ ∧ x) ∪ [[P2]](ϕ ∧ ¬x) ∪ {ϕ; l}

hp(c?x) = c

th(ϕ, c?x) = {(ϕ ∧ c) ; x}
hp(&q(b1, . . . , bn)) = [{q}](hp(b1), . . . , hp(bn))

th(ϕ,&q(b1, . . . , bn)) =
⋃n
i=1 th(ϕ, bi)

[{∀}](c1, . . . , cn) =
∧n
i=1 ci [{∃}](c1, . . . , cn) =

∨n
i=1 ci

The execution of an output lc!t satisfies all the security checks represented by inputs
waiting on c. Therefore, if Q can trigger such output, it obtains the knowledge related to c
without having to know the channel directly, and thus a constraint ϕ; c is generated. It is
worthwhile observing that this behaviour is justified by the broadcast semantics, and by
the fact that the calculus is limited to testing whether or not something has been received
over a given channel, shifting the semantic load on the notion of secure channel. Moreover,
note that the asymmetry between input and output is due to the fact that outputs are
non-blocking.

A case construct is translated by taking the union of the constraints into which the two
branches are translated: as the check is governed by the content of the case variable x, we
record that the then branch is followed only when x is bound to some(c) by adding a literal
x to the hypothesis, as we do for inputs, and we add ¬x if the else branch is followed.

The set of constraints [[P ]]tt computed according to Table 4 can be normalised so as
to produce a compact representation of P . Whenever two rules ϕ ; p and ϕ′ ; p are in
[[P ]]tt, they are replaced with a single rule (ϕ ∨ ϕ′) ; p. This simplification is intuitively
sound for if ϕ leads to obtain p and ϕ′ leads to obtain p, then p is available to the attacker
under the condition that ϕ ∨ ϕ′ is known. In the following, we assume to deal with sets of
constraints in such format.

4.2. Modelling the attacker. A rule ϕ; p in [[P ]]tt describes how Q can attain p playing
according to the rules of the system, namely fulfilling the checks described by ϕ. Nonetheless,
when p is a channel, an attacker can always try to obtain it directly, for instance guessing
some cryptographic keys or bursting a gate. In order to account for this possibility, we
enrich each rule ϕ; c by replacing the antecedent with the disjunction gc ∨ ϕ, where literal
gc (for “guess c”) represents the possibility of learning c directly. For each channel c such
that no rule ϕ; c is in [[P ]]tt, we add to [[P ]]tt a constraint gc ; c, expressing that Q has
no option but guessing the channel.
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Finally, observe that having added the literals gc, which tell how the attacker can get
hold of a channel in any other way than those legal in P , interpreting the relation ; as the
propositional bi-implication (equivalence) ⇔ preserves the minimal models of the system of
constraints. A constraint ϕ∨ gc ⇔ c states that c is only obtained by guessing or by making
P disclose it and, on the other hand, that if c is known to the attacker it must be because
they have guessed it or because they made P disclose it.

In the following, given a label l of interest, we shall write P l⇔ to denote the conjunction of
constraints [[P ]]tt which have undergone the transformations mentioned above. In particular,
in P l⇔
• l is a fact, expressing the query we want to study;
• there is exactly one conjunct ϕ⇔ l;
• for each channel c occurring in P , there is exactly one conjunct ϕ ⇔ c, and ϕ has the

form gc ∨ ϕ′ where gc does not occur elsewhere in P l⇔.

Intuitively, we assume that l is reached and we look for the consequences in terms of truth
values of channel literals (i.e., we look for implicants of l [14]). In the following, we present
a SAT-based solution to this problem.

4.3. A SAT-based solution technique. A model µ of P l⇔ is a propositional assignment to
the literals occurring in P l⇔ such that the formula evaluates to tt (true). Such an assignment
can be represented as a function mapping the literals in P l⇔, denoted dom(µ), to truth values
{ff, tt}. Now, denoted by Names the set of names (channels) occurring in the process P
under study, then the set

attack(µ) = {c ∈ dom(µ) | c ∈ Names ∧ µ(gc) = tt}
identifies a set of channels that, if guessed, satisfies the constraints in P l⇔. In the semantics,
attack(µ) under-approximates a set of channels that fulfil the security checks on a path
to l in P , i.e., a way for Q to drive P to l. Denoted by M l the set of all models of P l⇔,
the corresponding set of sets of channels attack(M l), obtained by point-wise application of
attack to the elements of M l, contains under-approximations to all the attacks leading to l.

Hence, in order to solve the analysis we need essentially to compute all the models M l

of the propositional constraints P l⇔, that is, we have to solve the ALL-SAT problem for the
input formula P l⇔. If no solution is found, i.e., P l⇔ is unsatisfiable, then the program point
indicated by l is not reachable.

It is worthwhile observing that the translation into flow constraints over-approximates
the behaviour of a process, giving rise to more executions than those actually arising in the
semantics. Such spurious executions correspond to attacks that under-approximate the sets
of channels required to reach the target l, and therefore the overall analysis results in an
under-approximation. This intuition is formalised in the following correctness statement:

if P |Q =⇒∗ C[lP ′] then ∃N ∈ attack(M l) s.t. N ⊆ fc(Q)

(where we slightly abuse the syntax writing C[lP ′] for the sake of conciseness), i.e., for all the
executions in which Q drives P to l, the analysis computes a set of channels N ∈ Names that
under-approximates the knowledge required of Q. The formulation of the actual theorem
requires to establish some additional notation, and therefore is deferred to Appendix A. In
the following, we shall focus instead on an example process that pinpoints the imprecision
of the analysis.
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A main source of over-approximation in the translation to flow constraints is the
treatment of replication and restriction, whose interplay is simply disregarded by the
analysis. As a matter of fact, a name restricted under replication is a different name in all
the instances of the replicated process. Consider the following example:

P , (νc)
(
(!(νa) a?xa.

c!c) |c?xc.c?x′c. . . .
)

Let label  be the location of interest and consider the following translation of P into flow
constraints, conveniently simplified for the sake of conciseness:

(ga ⇔ a) ∧ (gc ∨ a⇔ c) ∧ (c⇔ ) ∧ (tt⇔ )

According to the translation, an attacker can reach label  either by knowing a or by knowing
c, that is, attack(M) = {{a}, {c}, {a, c}}.

Whilst it is clear that if the attacker guesses c then the security checks at labels , 
can be satisfied, it is less obvious what it means for the attacker to guess a. In fact, if the
adversary makes an output on a twice, then two outputs on c are triggered, and thus the
checks on the path to the goal  are fulfilled. According to the semantics this may happen in
all traces in which the replication is unfolded at least twice. Nonetheless, the two instances
of a in the two copies of the process are different: α-renaming applies producing names a and
a′. Hence, by claiming that  can be reached by guessing a, the analysis under-approximates
the knowledge required of the attacker, who needs a and a′.

4.4. Translating NemID. The translation of the NemID system of § 3 returns the following
flow constraints, augmented as explained above. For the sake of simplicity we omit the
occurrences of tt as a conjunct in all left-hand sides.


cert⇔ xcert

id⇔ xid

pwd⇔ xpwd

otp⇔ xotp

cert ∨ (id ∧ pwd ∧ otp)︸ ︷︷ ︸
ϕ

⇔ 

ϕ ∧ xcert ⇔ 
ϕ ∧ (¬xcert)⇔ 
ϕ ∧ (¬xcert) ∧ xid ⇔ 
ϕ ∧ (¬xcert) ∧ xid ∧ xpwd ∧ xotp ⇔ 

gid ⇔ id
gpwd ⇔ pwd
gotp ⇔ otp
gcert ⇔ cert



from
[[Applet ]]tt



id⇔ x′id
pin⇔ xpin

id ∧ pin⇔ 

id ∧ pin ∧ x′id ⇔ 

id ∧ pin ∧ x′id ∧ xpin ⇔ 
gpin ⇔ pin


from

[[Mobile]]tt



login⇔ x

login⇔ 

gaccess ∨ login⇔ access

 from
[[Login]]tt
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glogin ∨ (ϕ ∧ xcert)︸ ︷︷ ︸
[[Applet ]]tt

∨ ((ϕ ∧ (¬xcert) ∧ xid ∧ xpwd ∧ xotp))︸ ︷︷ ︸
[[Applet ]]tt

∨
((

id ∧ pin ∧ x′id ∧ xpin

))︸ ︷︷ ︸
[[Mobile]]tt

 ⇔ login

where the last formula combines the constraints that show the various ways to trigger an
output on channel login. Notice how each formula models the checks on a given path: for
being granted access, i.e., reaching label , a communicating process has to know channel
login, as specified by the constraints derived from [[Login]]tt. In turn, the last formula
describes what is needed in order to get hold of login, giving rise to a backward search
procedure formalised in § 6.

As for the solutions to the set of constraints, restricting to attacks we have:

attack(µtriple) = {id, pwd, otp}
attack(µcert) = {cert}
attack(µmobile) = {id, pin}
attack(µlogin) = {login}

where the first two attacks come from the two ways of authenticating in the applet, the
third from the mobile app, and the last one from guessing login, i.e., obtaining access in a
way not encompassed by the system.

4.5. Modularity and refinement. Let us discuss now the role the analysis may take in a
broader context, where it can be used to progressively refine the modelling of sub-systems
which are revealed as potential attack targets, levering the modularity of process-algebraic
specifications.

Consider the NemID system and assume that a new way to access its services were
offered by a service provider, which would authenticate a user via a phone number:

Phone ,
phone?xph.

case xph of some(yph) : login!ok else 0

NemID ′ , (νlogin) . . . (νphone)
(!Login | !Applet | !Mobile | !Phone)

Then we have [[NemID ′]]tt = [[NemID ]]tt ∪ [[Phone]]tt, that is, the translation of a new
top-parallel process is independent from the formulae that have already been generated (but
the quest for models has be re-computed with all the clauses). Obviously, due care has to be
paid to names, e.g., the name login in Phone has to be the same as the one used in process
NemID. However, as we have seen, while restrictions play a crucial role in the semantics,
they are simply ignored by the translation.

Besides being compositional with respect to the analysis of new components, the
translation suitably integrates in a refinement cycle, where we start from a coarse abstraction
of the system and then progressively refine those components that are revealed as candidates
for being attacked, by replacing the corresponding set of formulae with a finer one. The
constraint on names translates to a constraint on the interface of the component: if process
A is replaced by process B, then B must be activated by the same inputs that activate A,
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and vice-versa, it must produce the same outputs towards the external environment that A
produces.

5. Quantifying Attacks

The second challenge we tackle is quantifying attacks with respect to a general notion of
cost. In the previous section we have presented a SAT-based solution technique, where
each model of P l⇔ contains a set of channels that are necessary to fulfil an attack. Not
all security mechanisms, however, offer the same protection guarantees, that is, not all
channels are equal. A retinal scan can prove more difficult to bypass than a pin lock, and
thus offer more protection. This is not the case, however, of an insider who is authorised to
enter the corresponding room. A cost structure over channels facilitates formalising these
considerations, and assigning costs to channels leads naturally to quantify sets of channels,
that is, attacks.

The characterisation of attacks in terms of cost allows to order them, and ultimately to
focus on those which are deemed the most likely given our understanding of the candidate
attacker profiles. Moreover, the minimal cost of reaching a given location l identifies the
protection deployed to guard l in the implementation, which can be contrasted with the
desiderata of the specification. The higher the cost for the attacker, the higher the protection
guarding the target.

In the following, we extend the qualitative analysis of § 4 to a quantitative setting. In
particular, we should follow a modular approach according to which cost considerations are
developed on top of the structure of the original analysis. The benefit of a layered strategy
is two-fold: on the one hand, we present a technique that can be exploited to transform a
great many qualitative analyses into quantitative analyses; on the other hand, whenever
quantitative information about the entities in question is not available, we can resort to the
qualitative solution.

5.1. Security labels. We have already seen how the calculus is instrumented with labels
so as to refer to locations of interest. Such labels can be levered to build a security
lattice (Σ = {σ1, . . . , σn},vΣ) specifying the desired protection deployed to guard each
location. The set Σ is equipped with the greatest lower bound operator uΣ, and we assume
to have a function security : L → Σ that maps labels into security levels. In particular,
security(l1) vΣ security(l2) denotes that the need for protection of the program point indicated
by l2 is greater than or equal to the need for protection of the program point indicated by l1.

As an example of a security lattice, consider the military lattice given by

Σ = {unclassified, confidential, secret, top-secret}
with the ordering unclassified <Σ confidential <Σ secret <Σ top-secret. More complex lattices,
in particular non-linearly-ordered ones, are discussed in [3, Ch. 7].

In the NemID example of § 3, we have observed that the system authenticates a
user at label . In terms of security levels, we can rely on a simple security lattice
unrestricted <Σ restricted, where security() = restricted. Similarly, we would like to have
the highest security level for labels  to  in process Applet and  to  in process Mobile. In
fact, such labels are reached after fulfilling the security checks at labels  and , respectively,
which have instead level unrestricted, as label  in process Login.
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5.2. From qualitative to quantitative considerations. Let cost be a function from
channels c ∈ Names to costs k ∈ K. Formally, we require (K,⊕) to be a commutative
monoid (also known as Abelian monoid), that is, ⊕ is an associative and commutative binary
operation on the set K and has an identity element. Moreover, we require K to be equipped
with a partial order vK, such that (K,vK) is a lattice, and ⊕ to be extensive, that is, the
sum of two elements always dominates both the summands:

∀k1, k2 ∈ K . k1 vK (k1 ⊕ k2) ∧ k2 vK (k1 ⊕ k2) (5.1)

Finally, we assume that ⊕ is monotone and the least element ⊥ ∈ K is its identity element,
that is, ⊕ is an upper bound operator of the lattice (K,vK), and therefore satisfies condition
(5.1). For the sake of simplicity, we assume that the costs of channels are independent.

For the sake of simplifying the notation, in the following we shall feel free to apply the
function cost to sets of names, according to the following definition:

cost : P(Names)→ K
cost({c1, . . . , cn}) =

⊕n
i=1 cost(ci)

Likewise, we extend the function cost also to sets of sets of names by point-wise application:

cost : P(P(Names))→ P(K)

cost({c1
1, . . . , c

1
n1
}, . . . , {cm1 , . . . , cmnm

}) ={
cost({c1

1, . . . , c
1
n1
}), . . . , cost({cm1 , . . . , cmnm

})
}

Therefore, given a model µ of P l⇔, the corresponding set attack(µ) = {c1, . . . , cn} can be
quantified as

cost(attack(µ)) =
⊕

c∈attack(µ)

cost(c)

It is worthwhile noticing that this Boolean approach implies that multiple occurrences of
the same basic action refer in fact to the same instance of the action, that is, to the same
security mechanism, which once bypassed is bypassed “forever”. Multiple instances of the
same security mechanism must be represented with different names. This observation is
intimately related to the over-approximating nature of the qualitative analysis discussed in
§ 4.3, where we have already mentioned that restrictions and replications are simply ignored.

As we mentioned above, however, a conservative approach to security would consider
the attacks of minimal cost. Hence, given two attacks, i.e., two distinct models µ, µ′, we
would discard µ′ in case cost(attack(µ)) <K cost(attack(µ′)). We can thus restrict the set of
models M l to the ones bearing attacks of minimal cost:

minimal(M l) =
{
µ ∈M l | ∀µ′ ∈M l.cost(attack(µ′)) 6<K cost(attack(µ))

}
It is worthwhile noticing that minimal(M l) may contain more than one model, as (i) we
consider all the attacks with same cost and (ii) some attacks may have incomparable costs
in case the cost set is not linearly ordered.

Now, we can relate an attack to the corresponding security level σ ∈ Σ required to
counter it by means of a function level : K → Σ, compressing cost regions into security levels:

level(k) =


σ1 if k ∈ {k1

1, . . . , k
1
h1
}

...

σm if k ∈ {km1 , . . . , kmhm}
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where level is a well-defined function if the sets of costs {ki1, . . . , kihi} are pair-wise disjoint
and their union is K. Moreover, it is natural to require that level is monotone. A simple
example in the cost set (N,+) and security lattice low < medium < high is given by the
choice

level(k) =


low if k ≤ 1024

medium if 1024 < k ≤ 2048

high if 2048 < k

where numbers could represent the length of cryptographic keys, and we state for instance
that a program point is poorly protected if no more than 1024 bits are necessary to attain it
(for a fixed cryptosystem).

Finally, we extend level to work on sets of costs so as to encompass all the sets of
channels produced by the analysis at once:

level : P(K)→ P(Σ)
level({k1, . . . , kn}) = {level(k1), . . . , level(kn)}

where the input {k1, . . . , kn} is the set of costs of all minimal attacks, computed as

cost(attack(minimal(M l)))

Finally, the greatest lower bound uΣ is used to derive the greatest security level compatible
with all attacks in minimal(M l), that is, the protection of a program point corresponds at
most to the cost of the weakest path leading to it.

A graphical illustration of the various components of the analysis is displayed in Fig. 1,
where it is apparent how the quantitative analysis is built on top of the qualitative analysis.
Intuitively, function security is the specification expressing the target security architecture
of a system with respect to a given security lattice, while level(cost(attack(minimal(M l))))
captures (an under-approximation of) how this architecture has been realised in the imple-
mentation.

The overall aim of the analysis, i.e., checking whether the deployed protection lives up
to the required security level, can thus be expressed by the property

∀l ∈ L . security(l) vΣ level(cost(attack(minimal(M l))))

A violation of this condition is referred to as a potential inversion of protection. The
overall under-approximation of the analysis is the result of minimising over the costs of
under-approximating sets of channels (cf. § 4.3).

5.3. Optmisation Modulo Theories. In order to compute the set of sets of channels
attack(minimal(M l)) that allow reaching l incurring minimal costs, we need to solve an
optimisation problem subject to the Boolean constraints P l⇔. There exist various techniques
to cope with such problems, each suitable for particular choices of cost sets and objective
functions. One solution is to first compute M l and then minimise it by comparing models as
explained above. Nonetheless, cost information can be levered to skip non-optimal models
during the search, hence improving the performance. In the following, we show how to
exploit an SMT solver to tackle the problem in its most general form. We limit to mention
that linear programming techniques such as Pseudo-Boolean optimisation [10] are efficient
alternatives for dealing with the monoid (Z,+) and linear objective functions.
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Figure 1: The quantitative protection analysis at a glance for a fixed process P .

In a nutshell, our task reduces to compute models of P l⇔ containing attacks of minimal
cost in the lattice K. In other words, we are looking for prime implicants of l [14], where
primality is sought with respect to the given cost set.

Such an optimisation problem can be tackled by computing models for a list Π1, . . . ,Πn

of SMT problems, where Πi is a more constrained version of Πi−1 that requires to improve
on the cost of the current solution. The initial problem Π1 consists of the propositional
constraints P l⇔ and of the objective function, whose value on the current model is stored in
variable goal.

The objective function is essentially the cost of the current model. In order to compute
cost(attack(µ)) into variable goal as part of µ itself we define:

goal :=
n⊕
i=1

(if gci then cost(ci) else ⊥)

where we combine the costs of all the channels that must be guessed, that is, the channels
ci’s such that the corresponding guessing literal gci is found to be tt. Otherwise, if a gci is
ff, then the corresponding ci needs not be guessed and its cost does not contribute to the
cost of the attack. Recall that the least element ⊥ of the cost lattice K does not contribute
any cost, for it is the neutral element with respect to the cost combinator ⊕. Hence, by
construction we have µ(goal) = cost(attack(µ)).

Then, while the problem is satisfiable, we improve on the cost of the current model by
asserting new constraints which tighten the value of goal, until unsatisfiability is reported.
Algorithm 1 displays the pseudo-code of the procedure. In particular, observe that when a
new problem Πi is generated, additional constraints are asserted that ask for (i) a different
model and (ii) a non-greater cost: the former condition speeds up the search, while the
latter explores the cost frontier.
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Data: The problem Π , P l⇔ ∧ (goal :=
⊕n

i=1(if gci then cost(ci) else ⊥))

Result: the set M of pairs (µ, cost(attack(µ))) such that µ ∈ minimal(M l)
M← ∅;
while Π satisfiable do

µ ← get-model(Π);

k ← µ(goal);

forall the (µ′, k′) ∈M | k <K k
′ do // µ outperforms µ′

M ←M\ {(µ′, k′)}
end

M ←M∪ {(µ, k)};
Π ← Π ∧ ¬(

∧n
i=1(ci = µ(ci))) ∧ ¬(goal =K k);

end
Algorithm 1: The SMT-based solution procedure.

The termination of the algorithm is ensured by the finiteness of possible models to the
propositional variables of the Πi’s, and by the fact that the same model cannot occur twice
as solution due to the new constraints we generate in each iteration. At most, we need to
solve as many Πi’s as there are models of P l⇔, which coincide with the qualitative analysis
(ALL-SAT). The correctness of the procedure stems from the fact that when unsatisfiability
is claimed, by construction of the Πi’s there cannot exist further models that comply with
the cost constraints.

It is worthwhile noticing how resorting to propositional logic integrates with the overall
under-approximating nature of the analysis: a channel can either be learnt or not, and its
cost contribute or not to the cost of an attack. This means that we do not keep track of the
number of attempts made to guess some information, and always assume that guessing c
is successful whenever gc is found to be true. In order words, for a given cost set, we are
considering the luckiest or cleverest attacker. As for the cost set (comparing and combining
costs), SMT solvers offer native support for numeric costs and common mathematical
functions, while more complex cost sets have to be encoded manually.

Finally, observe that the procedure above is not dependent on our analysis, but can be
generally exploited to find optimal models of arbitrary logic formulae in arbitrary cost sets,
and can be extended seamlessly to more complex logics.

5.4. Attacking NemID. Consider the NemID system discussed in § 3. There are several
techniques for quantifying the cost of guessing secret information. Quantification of informa-
tion leakage [6] is an information theory-based approach for estimating the information an
adversary gains about a given secret s by observing the behaviour of a program parametrised
on s. If s is quantified in bits, then the corresponding information leaked by the program
is quantified as the number of bits learnt by the adversary by observing one execution of
the system. For instance, consider a test program T parametrised on a secret password. T
inputs a string and answers whether or not the password is matched. Under the assumptions
that the adversary knows the program and the length of the secret (no security-by-obscurity),
we can estimate the knowledge gained by the adversary after one guessing attempt.

We leverage QUAIL [7], a freely-available tool for quantifying information leakage, for
determining costs to channels. Denoted leak(T, s) the leakage of T on a secret s as computed
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by QUAIL, we quantify the strength of a channel c of n bits as

cost(c) =
n

leak(T, c)

where we assume the security offered by c to be uniformly distributed over the n bits. In
this settings we are thus working in the cost monoid (Q,+).

In our running example, the secrets to be guessed are pwd, otp, cert, pin, while we
assume that id is known to the attacker and thus has cost 0 (in particular, in the NemID
system is not difficult to retrieve such id, corresponding to the social security number of an
individual). Moreover, we know that pwd contains between 6 and 40 alphanumeric symbols
and it is not case sensitive: assuming an average length of 10 symbols, given that there are
36 such symbols, we need 5.17 bits to represent each symbol, for a total length of 52 bits.
Analogously, we determine the length of otp as 20 bits, while the length of the pin depends
on the service provider: in case of a major bank it is just 14 bits. As for the certificate, the
authority is following NIST recommendations, using 2048-bit RSA keys for the time being,
and for the sake of simplicity we assume that guessing an RSA key cannot be faster than
guessing each of the bits individually. Finally, we disregard login, access by assigning them
the least upper bound of the costs of all the other channels. Names used only as messages
can be disregarded by assigning them cost 0, as they do not influence an attack. Exploiting
QUAIL and the formula defined above, we obtain the following cost map:

cost(pwd) = 4.4× 1015 cost(pin) = 1.5× 104

cost(otp) = 106 cost(cert) = 3.4× 10616

Thus, limiting our attention to the set Names of channels occurring in the process NemID,
the problem is to minimise ∑

c∈Names

(if gc then cost(c) else 0)

under the constraints given by P ⇔ . Instructed with this input, our procedure finds that the
formula is satisfiable and the single cheapest model µ contains

gid 7→ tt gpwd 7→ ff gmail 7→ ff gpin 7→ tt glogin 7→ ff

entailing attack(minimal(M)) = {{id, pin}} and cost(attack(µ)) = cost(id) + cost(pin) =
1.5× 104.

As for the desired security levels, we observed in § 3 that security() = restricted should
hold. It is desirable to take as touchstone the protection offered by the applet, for it is
standard among all service providers. The protection offered by the applet is the minimum
between the cost of guessing a certificate and the cost of guessing the triple of credential,
that is, 4.4× 1015 + 106, therefore we should set

level(k) =

{
restricted if k ≥ 4.4× 1015 + 106

unrestricted otherwise

We would like to verify that restricted vΣ level(cost(attack(M (13)))), which is false.
Hence, it is the case that the implementation potentially guarantees less protection than the
amount required by the specification, and thus we shall issue a warning to the designer of
the system.

Finally, it is worthwhile noticing that the framework allows measuring the distance
between the implementation and the specification, and not only their qualitative compliance.
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cheap
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Figure 2: The Hasse diagram of a partially-ordered cost structure.

The analysis suggests that the most practicable way to break the authentication protocol
is attacking the mobile app, as long as we believe that our cost map is sensible. For instance,
a cryptographer would deem our assumptions on breaking RSA utterly unrealistic. In the
following, we will discuss an effective alternative to the definition of numeric cost sets.

5.5. Complex cost structures. So far we have worked with an example in the cost set
(Q,+), for it is natively encoded into SMT solvers and matches a first intuition of the notion
of cost. Nonetheless, it is often difficult to provide an absolute estimate of the strength
of a protection mechanism: sometimes different mechanisms are even incomparable, as
cryptography and physical security might be. In such cases, it is more natural to describe
the relative strength of a set of mechanisms with respect to each other. This is achieved
by computing the analysis over symbolic and partially-ordered cost sets. Observe that
Algorithm 1 is already equipped to cope with the general problem of optimising on such
cost sets.

As a basic example, consider the cost lattice displayed in Fig. 2: we could characterise
the cost of obtaining given information as cheap, if it does not require a specific effort, as cpu,
if it requires significant computational capabilities (e.g., breaking an encryption scheme), as
enrg, if it requires to spend a considerable amount of energy (e.g., engaging in the wireless
exchange of a number of messages), or as expensive, if it requires both computations and
energy. In order to combine such costs, a suitable choice is to take as monoid operator ⊕
the least upper bound t of two elements in the cost lattice.

An interesting case of non-linear cost sets is offered by the study of security in Cyber-
Physical Systems, where components combine both software and physical features [41]. In
particular, in such systems an attack could require to assemble cyber actions with physical
tampering, whose costs can either be comparable or not depending on the nature of the
quantities we are interested in (for instance, energy and memory are not directly comparable).

In conclusion, three elements push independently for the comprehensive SMT-based
approach: the non-linearity of the cost set, its symbolic nature, and the non-linearity of the
objective function.

5.6. A semantic interpretation of guessing. It would be possible to formulate a neat
semantic interpretation of the guessing capability of the attacker. Assume to deal with
processes of the form ((ν−→c )P )|Q, where the first component is the system under study,
in which all restrictions are at the outer-most level, and Q is the attacker. Now, for Q
to interact with P , the attacker needs to move inside the scope of some restrictions so as
to share some channel names with P . Whenever Q enters the scope of a restriction (νc),
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Figure 3: How to enter a bank vault, for dummies.

the name c is guessed. In order to account for the cost k ∈ K of guessing a name, we can
instrument each restriction with the corresponding cost, writing (νkc), and then augment the
scope extension rule of Table 2 so as to accumulate the cost of names that are guessed. The
standard semantics of restriction used in security applications of process calculi, according
to which a new name c is only known to legal participants unless leaked (P , in our case), is
encompassed by assigning c an infinite cost.

Though possible, such an extension of the semantics is not necessary to prove the
correctness of the analysis. Every assignment that satisfies the propositional constraints
leads Q to reach the location l of interest, hence also the ones of minimal costs. Nonetheless,
it is worthwhile noticing that such a quantitative point of view on restrictions generalises the
distinction between the operators new and hide introduced in the secret π-calculus [16]. The
operator hide c, which introduces a name c inhibiting its scope extension, would correspond
to (ν∞c), while we would have a more fine-grained view on plain scope extension.

6. Displaying Attacks

We shall now embark in the last challenge of ours, that is, obtaining graphical representations
of possible attacks that foster communicating effectively security information to non-experts,
as these often are those in charge of taking decisions. We shall do this by means of attack
trees, a widely-recognised tool for showing how a goal is attained in terms of combination of
sub-goals.

Our developments on attack trees encompass both the qualitative analysis of § 4 and
the quantitative extension of § 5. On the one hand, an attack tree contains all the attacks
for a given target; on the other hand, a tree is construed as a propositional formula whose
optimal models can be computed by means of the procedure of § 5.3.

Attack trees are a widely-used graphical formalism for representing threat scenarios, as
they appeal both to scientists, for it is possible to assign them a formal semantics, and to
practitioners, for they convey their message in a concise and intuitive way (cf. references
in § 8.2). In an attack tree, the root represents a target goal, while the leaves contain
basic attacks whose further refinement is impossible or can be neglected. Internal nodes
show how the sub-trees have to be combined in order to achieve the overall attack, and to
this purpose propositional conjunction and disjunction are usually adopted as combinators.
On top of this basic model, a number of extensions and applications of attack trees have
been proposed, demonstrating how flexible and effective tool they are in practice. Figure 3
displays a simplistic attack tree, where the overall goal of entering a bank vault is obtained
by either bribing a guard or by stealing the combination and neutralising the alarm.
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6.1. Synthesising attack trees. In the following, we shall rely on the translation [[P ]]tt
devised in Table 4 but embrace a slightly different interpretation so as to allow explicitly
generating trees. In particular, we replace bi-implications in P l⇔ with implications and we
ignore literals g, obtaining a set of constraints denoted P l⇒. In order to obtain attack trees
as commonly defined in the literature, in the following we assume that all the quality guards
q in the process under study are linear.

Given a process P and a label l occurring in P , we generate a formula [[l]] representing
the attacks reaching l by backward chaining the formulae in P l⇒ so as to derive l. It is central
to observe that the procedure re-establishes the original system of bi-implications thus
guaranteeing the correctness of the analysis in terms of compatibility with the developments
of § 4.

Before explaining the algorithm, it is worthwhile discussing the nature of the backward
chaining-like procedure defined in the following. Standard backward chaining [37, Ch. 7]
combines Horn clauses so as to check whether a given goal follows from the knowledge base.
Instead, we are in fact trying to derive all the knowledge bases that allow inferring the goal
given the inference rules P l⇒, which are not strict Horn clauses as they can contain more
than one positive literal. The backward-chaining point of view stresses the relationship of
our problem to the quest for implicants of l, as we have already observed.

The rules for generating [[l]] are displayed in Table 5. For our formulae are propositional,
there is no unification other than syntactical identity of literals involved in the procedure.
Notice that the algorithm only applies valid inference rules.

Rule (Sel) selects the antecedent of the formula leading to the goal l: since there is a
unique such rule, in order to derive l we have to derive the antecedent ϕ of ϕ⇒ l. Observe
that we are not interested in deriving l in any other way: for l is derived assuming ϕ, the
original bi-implication format ϕ⇔ l is re-established.

Rule (Pone-c) encodes either a tautology (if c has to be inferred then c is in the knowledge
base) or applications of modus ponens (c is derived assuming ϕ, thanks to ϕ ⇒ c): the
whole rule is an instance of disjunction introduction.

This is the point where our algorithm differs from plain backward chaining: since we
are building the knowledge bases that allow inferring l, whenever we encounter a literal c we
need to account for all the ways of deriving c, namely by placing c itself in the knowledge
base or by satisfying a rule whose consequent is c. Moreover, c plays now the role of gc: for
the procedure assumes c without further deriving it, we can safely re-use the literal, whose
semantics coincides now with the one of gc. Observe that we could consider literals g and
their relation to channels explicitly, but this would impact the size of the tree, hence its
readability.

Similarly, rule (Pone-x) encodes an application of modus ponens, taking advantage of
the uniqueness of ϕ⇒ x (cf. Lemma B.1).

Rules (Tolle-) collect applications of modus tollens (law of contrapositive) in the classic
backward fashion (i.e., when considering the derivation from the leaves to the root such
steps would encode that modus). Rules (DM-) encode De Morgan’s laws. Finally, rules
(Comp-) simply state the compositionality of the procedure.

It is worthwhile observing that in classic backward chaining, loops are avoided by
checking whether a new sub-goal (i.e., a literal to be derived) is already on the goal stack
(i.e., is currently being derived). Component D in Table 5 is in charge of keeping track
of the current goals, but this is done on a local basis as opposed to the traditional global
stack, that would result if D were treated as a global variable. As shown in § 6.3, in our
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Table 5: Synthesising the propositional formula [[l]] for the attack tree Tl.

[[l]] = [[ϕ]]∅ where (ϕ⇒ l) ∈ P l
⇒ (Sel)

[[c]]D = c ∨
{

[[ϕ]](D ∪ {c}) if c 6∈ D,where (ϕ⇒ c) ∈ P l
⇒

ff otherwise
(Pone-c)

[[¬c]]D =

{
[[¬ϕ]](D ∪ {¬c}) if ¬c 6∈ D,where (ϕ⇒ c) ∈ P l

⇒
tt otherwise

(Tolle-c)

[[x]]D = [[ϕ]]D where (ϕ⇒ x) ∈ P l
⇒ (Pone-x)

[[¬x]]D = [[¬ϕ]]D where (ϕ⇒ x) ∈ P l
⇒ (Tolle-x)

[[¬(ϕ1 ∧ · · · ∧ ϕn)]]D = [[¬ϕ1]]D ∨ · · · ∨ [[¬ϕn]]D (DM-1)
[[¬(ϕ1 ∨ · · · ∨ ϕn)]]D = [[¬ϕ1]]D ∧ · · · ∧ [[¬ϕn]]D (DM-2)

[[ϕ1 ∧ · · · ∧ ϕn]]D = [[ϕ1]]D ∧ · · · ∧ [[ϕn]]D (Comp-1)
[[ϕ1 ∨ · · · ∨ ϕn]]D = [[ϕ1]]D ∨ · · · ∨ [[ϕn]]D (Comp-2)

[[tt]]D = tt [[ff]]D = ff

setting the global stopping criterion would lead to unsound results. Moreover, observe that
using the local environment D we lose the linear complexity in |P l⇒| typical of backward
chaining, and incur an exponential complexity in the worst case. Nonetheless, observe that
this theoretical bound is not incurred systematically, but it depends on the shape of the
process under study. Finally, a local stack allows to re-use channel literals in rule (Pone-c).

Notice that we do not need to keep track of literals x in D, as we cannot meet with a
cycle because a variable cannot be used prior to its definition (in virtue of Lemma B.1).

Finally, observe that a parse tree Tl of [[l]] is an attack tree, showing how l can be reached
by combining the knowledge of given channels. The internal nodes of the tree contain a
Boolean operator in {∧,∨}, while the leaves contain literals representing the knowledge of
channels. As De Morgan’s laws are used to push negations to literals of [[l]], negation can only
occur in the leaves of Tl. In the following, we shall manipulate attack trees always at their
denotation level, that is, the object under evaluation is [[l]] as opposed to its representation
Tl (cf. § 7.1).

For the sake of discussion, it is worthwhile noticing that the procedure for generating
[[l]] can be used to generate a tree explicitly during the computation, or even an And-
Or graph [37, Ch. 4]. It is unclear to us, however, whether the more compact graph
representation would be simpler for non-expert to understand.

Finally, observe that [[l]] only contains literals c corresponding to channels, that is, the
backward chaining-like procedure described above and formalised in Table 5 eliminates all
the literals x. Therefore, the reachability of l is only expressed in terms of knowledge of
channels. This result is formalised in Lemma B.3, and guarantees that a map from channels
to cost suffices to quantify an attack.

6.2. The attack tree for NemID. Consider the process NemID discussed in § 3 and
its translation NemID

⇒. Figure 4(a) shows the attack tree T, as generated by our
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implementation, presented in § 7.2. The denotation of T is given by the following formula:

[[]] = login ∨(
(cert ∨ (id ∧ pwd ∧ otp)) ∧ cert

)
∨(

(cert ∨ (id ∧ pwd ∧ otp)) ∧ (¬cert) ∧ id ∧ pwd ∧ otp
)
∨(

id ∧ pin
)

As a matter of fact, the algorithm tends to generate simple but redundant formulae, which
can be simplified automatically, e.g., via a reduction to a normal form. The following formula,
for instance, is equivalent to [[]] but highlights more clearly the ways in which an attack
can be carried out:

login ∨ (id ∧ pin) ∨ (id ∧ pwd ∧ otp) ∨ cert

Observe that the formula above is in Disjunctive Normal Form (DNF). Such normal form
has the merit of providing an immediate intuition of the alternative conditions that lead to
reach the program point under study, as displayed in Fig. 4(b). However, the conversion to
DNF may cause an exponential blow-up in the number of literals, and compact translations
require to introduce fresh atoms, garbling the relation between the tree and the original
system. Therefore, we did not implement such conversion in the tool.

Finally, notice that the disjunct login encodes the possibility of obtaining a login token in
any other way not foreseen in the system, and thus accounts for all the attacks not explicitly
related to the shape of our formalisation. Such possibility can be rules out by assigning the
maximum possible cost to the channel, as we have seen in § 5.4,

6.3. Global stopping criterion. We conclude this section by showing why the global
stopping criterion is unsound for the procedure of Table 5. Consider the following set of
formulae:

a⇒ b b⇒ a a ∧ b⇒ 

which stems from a conveniently simplified translation of the process

P , a?xa.
b!b | b?xb.a!a | a?x′a.

b?x′b.
c!c

The generation of [[]] unfolds as follows:

[[]] = [[a ∧ b]]∅ = [[a]]∅ ∧ [[b]]∅
where, in particular, it is

[[a]]∅ = a ∨ [[b]]{a} = a ∨ b ∨ [[a]]{a, b} = a ∨ b ∨ ff = a ∨ b
[[b]]∅ = b ∨ [[a]]{b} = b ∨ a ∨ [[b]]{b, a} = b ∨ a ∨ ff = b ∨ a

leading to [[]] = a ∨ b, which is consistent with the reachability of label  in P .
Assume now to carry out the generation of [[]] applying a global stopping criterion, that

is, to keep track of derived goals in a global environment, initially empty. We would obtain:

[[a]]∅ = a ∨ [[b]]{a} = a ∨ b ∨ [[a]]{a, b} = a ∨ b ∨ ff = a ∨ b
at this point, however, the environment contains a, b, and thus the generation of [[b]] leads to
b, resulting in [[]] = (a ∨ b) ∧ b, which is not satisfied by the model where only a is tt, and
thus is wrong. Analogously, we would obtain a wrong result if we chose to unfold [[b]] before
[[a]].
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(a) T as displayed by the Quality Protection Tool, presented in § 7.2.

∨

T

∧ login cert ∧

id pin id pwdotp

(b) The simplified DNF attack tree.

Figure 4: The attack tree T of the NemID example.

7. Implementation of the Analysis

7.1. Discussion. As the backward-chaining procedure on P l⇒ re-establishes bi-implications
and only applies valid inference rules, [[l]] and P l⇔ are equisatisfiable. They are not equivalent,
i.e., in general their models do not coincide, as [[l]] only contains channel literals, but they
contain the same attacks. Hence, we can solve the quantitative version of the protection
analysis in either way:

• generate P l⇔, compute the models bearing minimal attacks, and extract the corresponding
attacks; or,
• generate P l⇒, derive [[l]], and compute its minimal models,

finally relating the result to the security lattice by means of the function level.
It is worthwhile observing that while the procedure for generating trees is exponential

in the worst case, the size of [[l]] is much smaller than the size of P l⇔, and therefore it is not
necessarily the case that the overall running time would increase when undertaking the tree
generation. Though our example set is not extensive enough for supporting any final claim,
still it is interesting to comment briefly how the analyses on P l⇔ and on [[l]] behave in terms
of running time.
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Consider the NemID system. The translation to P l⇔ takes about one fourth of the time
the computation of [[l]] takes (in the order of seconds). Solving the optimisation problem on
P l⇔ takes about 1.25 the time it takes on [[l]]. Nonetheless, the second step is much more
demanding in terms of performance, so that on average the two approaches take the same
amount of time. The same applies to the example discussed in [44]. Increasing the size of
the process under study it seems that the generation of attack trees, while exponential in
general, tends to outperform the overall analysis on P l⇔.

It is worthwhile noticing that comparing the two approaches reduces to establishing
whether it is faster to find models of P l⇔ or [[l]], for the translation time is negligible as the
size of processes increases. Even limiting to the core propositional structure of the problem,
there is no conclusive answer to the question, whose investigation falls outside the scope
of this work. For an introduction to the problem of efficiency of satisfiability the reader
is referred to [22, Ch. 9,13] and [37, § 7.6.3]; research work on the subject is for instance
in [1, 12]. For performance of SMT solvers refer to http://smtcomp.sourceforge.net/.

Finally, let us remark that our evaluation of a tree Tl is, by definition, the evaluation
of [[l]]. In other words, the minimal cost of a tree is the minimal cost of a model µ of [[l]]
- we evaluate [[l]], as opposed to evaluating Tl. Another approach would be to evaluate
the tree itself by means of traversing its structure, which however would lead to different
results, unless a multiset-based model is adopted, such as the one proposed by Mauw and
Oostdik [23]. A more precise treatment of the Boolean approach to analyzing attack trees is
presented in [4].

7.2. The Quality Protection Tool. A proof-of-concept implementation of the framework
has been developed in Java and is available at

http://www.imm.dtu.dk/~rvig/quality-protection.html

together with the code for the NemID example described in the text.
The Quality Protection Tool takes as input an ASCII representation of a Value-Passing

Quality Calculus process P and a label l, and generates the flow constraints P l⇒.
Furthermore, the tool implements the backward-chaining procedure of § 6.1, relying on

our own simple infrastructure for propositional logic, as available libraries tend to avoid
the explicit representation of implications, that is instead handy in our case during the
backward-chaining computation with non-Horn-like clauses. Once the backward-chaining
procedure is executed, and thus [[l]] has been derived, the tool can graphically represent the
corresponding tree Tl, thanks to an encoding in DOT2 and using ZGRViewer3 for displaying
the tree.

Finally, we have implemented the optimisation loop on top of the Z3 SMT solver4 (Java
API). The tool resorts to Z3 for numerical cost sets, optimising the sum of the costs. As for
symbolic and non-linearly-ordered cost sets, a finite lattice can be fed into the tool, and the
least upper bound is used as monoid operator. Costs can be specified in two ways: numeric
costs can be directly fed to the tool, while before specifying symbolic costs the finite lattice
(K,v) has to be loaded. In order to specify a lattice, one has to declare > and ⊥, and then
the operator ⊕ as a list of entries x⊕ y = z. The names of the elements of the lattice and
the partial order v are automatically inferred from the graph of ⊕.

2http://www.graphviz.org/
3http://zvtm.sourceforge.net/zgrviewer.html
4http://z3.codeplex.com/

http://smtcomp.sourceforge.net/
http://www.imm.dtu.dk/~rvig/quality-protection.html
http://www.graphviz.org/
http://zvtm.sourceforge.net/zgrviewer.html
http://z3.codeplex.com/


DISCOVERING, QUANTIFYING, AND DISPLAYING ATTACKS 31

All these components are glued together thanks to a simple graphical interface. The
implementation of the analysis based on P l⇔ [44] is also available and this, together with
improvements on the translation from processes to clauses, is the main difference with respect
to the tool of [44].

8. Related Work

8.1. Protection analysis. Our work is inspired by a successful strand of literature in
protocol verification, where a protocol is translated into a set of first-order Horn clauses and
resolution-based theorem proving is used to establish security properties [31, 45], and by
the flow logic approach to static analysis [34]. In particular, the translation from processes
to propositional formulae is inspired by ProVerif [9] translation of protocols into first-order
Horn clauses, but can be more formally understood as a flow logic where the carrier logic is
not the usual Alternation-free Least Fixed Point Logic, since it cannot express optimisation
problems. Moreover, the main problem we discuss is propositional; ideas for a first-order
extension are sketched in § C.

In order to formalise the “need for protection” of a location we resort to security lattices,
that are widely used for describing levels of security in access control policies. An excellent
introductory reference is [3, Chs. 6,7].

As for the solution technique we exploit, different approaches have been presented to
solve optimisation problems via SMT. In particular, Nieuwenhuis and Oliveras [29] proposed
to modify the DPLL(T ) procedure inherent to SMT solvers so as to look for optimal
assignments, while Cimatti et al. [11] developed the search for an optimal assignments on
top of an SMT solver, as we do in § 5.3. Nonetheless, both these works focus on numeric
weights, which in our settings are represented with linearly ordered cost structures. Our
more general notion of weight is modelled after Meadows’s cost sets, formalised as monoids
in [24].

Finally, another perspective on the technical developments underpinning the analysis
points to computing prime implicants of a given formula [15], where in our case primality is
sought with respect to the cost set.

8.2. Attack trees. Graphical representations of security threats are often used to convey
complex information in an intuitive way. Formalisation of such graphical objects are referred
to chiefly as attack graphs [32, 17, 40, 25] and attack trees [38, 39, 23, 33, 18]. In this
work we prefer the phrase “attack trees”, but our procedure can be adapted to generate
attack graphs. We refer the reader to [21] for a recent survey on the vast literature about
attack trees, while in the following we retrace some of historical developments on modelling,
generating, and analysing attack trees that inspired our developments.

While different authors have different views on the information that should decorate such
objects, instrumental to the analysis that the tree or the graph is supporting, all definitions
share the ultimate objective of showing how atomic attacks (i.e., the leaves) can be combined
to attain a target goal (i.e., the root). This perspective is enhanced in the seminal work of
Schneier [38], that found a great many extensions and applications. In particular, Mauw
and Oostdijk [23] lay down formal foundations for attack trees, while Kordy et al. [19] and
Roy et al. [36] suggest ways to unify attacks and countermeasures in a single view. Even
though Schneier’s work is mostly credited for having introduced attack trees, and it had
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certainly a crucial role in making attack trees mainstream in computer security, the origin
of this formalism can be traced back to fault trees, expert systems (e.g., Kuang [5]), and
privilege graphs [13].

As for the automated generation of attack graphs, the literature is skewed towards
the investigation of network-related vulnerabilities: available tools expect as input rich
models, including information such as the topology of the network and the set of atomic
attacks to be considered. The backward search techniques of Phillips and Swiler [32] and
Sheyner et al. [39] have proven useful to cope with the explosion of the state space due to
such expressive models. However, the search has to be carried out on a state space that is
exponential in the number of system variables, whose construction is the real bottle-neck
of these approaches, and the result graph tends to be large even if compact BDD-based
representations are used, as argued in [2]. In particular, in [39] a model checking-based
approach is developed, where attack graphs are characterised as counter-examples to safety
properties; a detailed example is discussed in [40]. Similarly to Phillips and Swiler, we
adopt an attacker-centric perspective, which cannot simulate benign system events such as
the failure of a component, as in [39]. Directly addressing the exponential blow-up of [39],
Ammann et al. [2] propose a polynomial algorithm, but the drop in complexity relies on the
assumption of monotonicity of the attacker actions and on the absence of negation. On the
same line, Ou et al. [30] present an algorithm which is quadratic in the number of machines
in the network under study.

As for the analyses developed on top of attack trees, we present a reachability analysis
which computes the cheapest sets of atomic attacks that allow attaining a location of interest
in the system, as it is standard in the attack tree literature. This approach seamlessly
encompasses the probabilistic analysis of [39, 40] (costs to atomic attacks would represent
their likelihood and the objective function would compute the overall probability) and offers
a uniform framework to address other quantitative questions [8, 20]. The NP-completeness
of our SMT-based approach is in line with the complexity of the minimisation analysis
of [39, 40].

Finally, Mehta et al. [25] present a technique for ranking sub-graphs so as to draw
attention to the most promising security flaws. Whilst we do not directly tackle this issue,
for condensing an entire tree into a formula we gain in performance but we lose the original
structure, a post-processing step could be undertaken to compute the value of the internal
nodes (sub-formulae).

9. Conclusion

Discovering attacks is an essential part of investigating security. Quantifying the attacks is
necessary when dealing with complex systems and facing budget considerations. Both tasks
risk to become a fruitless exercise if their findings cannot be communicated effectively to
decision-makers.

Static analysis of process-algebraic specifications offers a unifying framework where
these three challenges can be addressed uniformly and by means of modular developments.
Our approach can be exploited in a great many context to temper qualitative verification
methods with quantitative considerations.

To support this claim, we have developed a protection analysis over the Value-Passing
Quality Calculus where attacks can be automatically inferred, quantified, and displayed. At
the heart of the analysis lies the abstraction of security mechanisms with secure channels,
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which allows to define security checks as input actions and thus attacks as sets of channels
over which communication must take place. Moreover, channels lend themselves naturally
to support cost considerations, as they represent different security mechanisms.

Starting from this basic assumption, we have developed a qualitative analysis to discover
all sets of channels in terms of models of a logic representation of the system under
study, resorting to propositional satisfiability (SAT). Levering costs to channels, we have
then enhanced the analysis with a quantitative layer, enriching the original SAT problem
with the notion of cost of a model and developing an SMT-based optimisation procedure
for computing optimal models. Finally, by means of a backward-chaining search on the
constraints representing a system, we have shown how to infer an attack tree for a given
target, leading to another characterisation of the quantitative analysis, possibly cheaper to
compute.

Our SMT-based optimisation allows reasoning with symbolic and non-linearly ordered
cost structures, as it is often more natural to describe the relationships between different
protection mechanisms instead of assigning them absolute numbers. What is more, this
technique is exploitable in all the contexts where models of a formula have to be ranked
according to given criteria.

A step necessary to exploit fully the expressiveness of our SMT approach to optimisation
is the refactoring of the implementation, so as to produce a stand-alone version of the
solution engine, which takes as input an SMT problem (problem, cost lattice, objective
function) and returns its optimal models. This would allow to compare our technique to
those surveyed above and in particular with the forthcoming optimising version of Z3.

On the modelling side, we present in Appendix C how to lift the developments to the
full Quality Calculus. Nonetheless, it is unclear to us whether the resulting attack trees
would benefit their intended users, for the additional information may reduce readability
drastically. It seems instead promising to investigate further the notion of priced restriction
discussed in § 5.6, and to compare its expressiveness to other approaches recently presented
in the literature. Finally, as highlighted by Meadows [24], the monoid of the cost set needs
not be commutative, as the order in which costs are paid might influence their combination.
It would be interesting to investigate mechanisms for re-determining costs dynamically, as a
process is evaluated.
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Appendix A. Correctness of the Protection Analysis

The correctness of the protection analysis with respect to the semantics of the calculus is
formalised as follows:

if P |Q =⇒∗ C[lP ′] then ∃N ∈ attack(M l) s.t. N ⊆ fc(Q)

i.e., for all the executions in which Q drives P to l, the analysis computes a set of channels
N ∈ Names that under-approximates the knowledge required of Q.

Technically, it is convenient to organise a formal proof in two steps. First, if P |Q
reaches l then P |H[fc(Q)] reaches l, where process H is the hardest attacker possible and is
parametrised on the knowledge of Q. H can be thought as the (infinite) process executing
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all possible actions on fc(Q), and the proof simply argues that whatever Q can, H can
(Fact A.2). A similar approach is detailed in [28].

Finally, the second step shows that if P |H[N ′] reaches l, then there must be a set N ∈
attack(M l) such that N ⊆ N ′ (Theorem A.3). Observe that this formulation corresponds
to the qualitative analysis of § 4. However, as attack(minimal(M l)) ⊆ attack(M l), the
correctness of the quantitative analysis follows as a particular case.

Definition A.1 (Hardest attacker). Let N = {c1, . . . , cn} be a finite set of channels. H[N ]
is the process that does all possible sequence of output actions over channels in N :

H[N ] , (νd) (!(c1!d)) | . . . | (!(cn!d))

(where labels are of no use hence omitted).

In the definition we used a fresh name d as output term, but any name can be chosen
as P cannot check the content of input variables. Observe that the channels in N might be
used to trigger necessary outputs on other channels, according to the constraints in P l⇔.

Fact A.2. Let P, P ′, Q be processes and C,C ′ contexts. It holds that

if P |Q =⇒∗ C[lP ′] then P |H[fc(Q)] =⇒∗ C ′[lP ′]

As a matter of fact, the only blocking actions in P are inputs, and since the calculus is
value-passing, the execution of P is driven exclusively by (i) the number of output actions
Q performs, (ii) the channels over which they are executed, and (iii) their order. Now, for
each channel c ∈ fc(Q), that is, for each channel known to Q, by construction H[fc(Q)]
interleaves an arbitrary number of output on c, thus mimicking all the possible sequence of
output actions on fc(Q), among which is the one performed by Q.

The main correctness result is phrased as follows. Since the semantics is value-passing,
the proof does not present any particular obstacle, and therefore we limit to present its
structure and major cases.

Theorem A.3 (Correctness of the protection analysis). Let P, P ′ be processes, C a context,
and N ∈ Names a set of channels. It holds that

if P |H[N ] =⇒∗ C[lP ′] then
(
∃N ′ .N ′ ∈ attack(M l) ∧ N ′ ⊆ N

)
Proof sketch. The proof is organised by induction on the length k of the derivation

sequence P |H[N ] =⇒∗ C[lP ′].

Basis. If k = 0, then it is P = C[lP ′], from which ∅ ∈ attack(M l), for l is a fact in P l⇔,
and thus it does not entail any channel literal to be tt. Since ∅ ⊆ N , for all set N , the thesis
follows.

Step. Assume k = k0 + 1. The derivation sequence can be written as

P |H[N ] =⇒k0 C ′′[l
′
P ′′] =⇒ C ′[lP ′]

for some context C ′′ and process P ′′. The inductive hypothesis applies to the first k0 steps
of the derivation: there exists N ′′ ∈ attack(M l′) such that N ′′ ⊆ N . Now, it suffices to show
that the last step in the derivation sequence, leading to reaching l, preserves the inclusion
relationship.

The last reduction C ′′[P ′′] =⇒ C ′[lP ′] is a short-hand writing that conflates a number
of cases, but observe that it must be entailed by combining rule (Sys) with a transition
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P ′′
λ−−−→ P ′, where we assume that the contexts C ′′, C ′ take care of hiding restrictions

preceding P ′′ and parallel components of P ′′, P ′ that are not affected by the transition. As
for the congruence step in the premise of rule (Sys), observe that the rewrite cannot produce
inputs or outputs not already considered by the analysis, as the latter always assumes
replications to be unfolded. To conclude, a formal proof requires an induction on the shape

of the inference tree for the transition P ′′
λ−−−→ P ′.

Let us comment upon the case of rule (In-tt), which is the most interesting and the
only non-trivial. Assume that the binder b is a simple input c?x, passing which the label of
interest is attained. Now, it is either c ∈ N ′′, in which case we conclude N ′ = N ′′ ⊆ N , or
c /∈ N ′′. Again, we have two cases.

If there exists a subset of N ′′ which can trigger another component of P to make an
output on c, we again conclude N ′ = N ′′ ⊆ N . Otherwise, we are in the case ϕ∧ c⇔ l with
c /∈ N ′′ and c not a consequence of the literals corresponding to N ′′. In the set of constraints
we have gc ∨ ϕ′ ⇔ c. It must then be either c ∈ N , or N ′′′ ⊆ N , where N ′′′ satisfies ϕ′,
otherwise H[N ] would not pass the input. If we look at models of P l⇔, we have that either gc
is tt or ϕ′ evaluates to tt – in every model. In the first case we conclude N ′ = N ′′ ∪{c} ⊆ N .
In the latter N ′ = N ′′ ∪N iv ⊆ N , with N iv ⊆ N ′′′, because the least way of satisfying ϕ′

by the analysis under-approximates the least way of satisfying ϕ′ by the semantics.
The same reasoning applies to the case in which b is a quality binder, as formulae are

computed according to the semantics of quality binders.

Appendix B. Properties of Attack Trees

This appendix contains some results that substantiate the procedure for generating attack
trees discussed in § 6.1.

Lemma B.1. Let P be a process. For any variable x in P , there exists exactly one formula
ϕ⇒ x in the translation P l⇒, and x does not occur in ϕ.

Proof. By induction on the structure of processes. In particular, observe that in Table 4 a
literal x is added to ϕ only when a case clause is met, and by hypothesis x must previously
appear in a binder, for processes are closed. Finally, recall that we assume processes to be
renamed apart (cf- § 2.1), hence the same variable or name cannot be bound twice.

Let us discuss now the complexity of the translation given in Table 4. Let size(C) denote
the number of literals occurring in a set of formulae C, that is, size(C) =

∑
ϕ∈C (size(ϕ)),

where size(ϕ) counts the literals in ϕ.

Lemma B.2. Let P be a process, and assuming that P contains n actions. Then size([[P ]]tt) =
O(n2).

Proof. If P consists of n actions, [[P ]]tt consists of at most O(n) formulae. More in detail,
[[P ]]tt consists of no + nc + ni + nb formulae, no being the number of outputs in P , nc the
number of case clauses, ni the number of simple inputs (including the ones occurring within
quality binders), and nb the number of binders. The number of literals in a formula depends
linearly on the number of actions preceding the label at which the formula is generated (cf.
Table 4), hence the number of literals in [[P ]]tt is asymptotically bounded by n2.
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It is interesting to observe that from a theoretical point of view O(n2) is a precise bound
to size([[P ]]tt). Consider the process IN n that consists of n sequential inputs c1?x1. . . . .cn?xn.
The number of literals in [[IN n]]tt grows with∑n

i=1 (2(i− 1) + 3) =
∑n

i=1 (2i+ 1) =

= n+ 2
∑n

i=1 i = n+ 2n(n+1)
2 =

= n2 + 2n

where i records the number of literals in the hypothesis ϕ, we have omitted counting the
tt conjuncts, and we leverage the fact that an input generates two formulae whose size is
size(ϕ) + 2 adding 1 literal to the hypothesis, from which the relation 2(i− 1) + 3 is derived.
Similarly, the translation of a process made of alternating inputs and case clauses would
grow quadratically (with greater constants than IN n).

Lemma B.3. Let P be a process. For all labels l occurring in P , the formula [[l]] built
according to the rules of Table 5 contains no literal x. In particular, [[l]] only contains literals
related to channels c.

Proof. By induction on the number of steps in the unfolding of the generation of [[l]], according
to the rules in Table 5.

Appendix C. First-Order Attack Trees

We present in this section an extension to the framework whose detailed development
deserves to be deepened in future work. The ideas discussed in the following have not been
implemented in the tool of § 7.2.

The notion of knowledge needed to perform an attack adopted so far shifts the semantics
load on the concept of secure channel. Besides its simplicity, this abstraction proves
useful to model a great many different domains and lead to a sensible notion of attack tree.
Nevertheless, it seems interesting to explore less abstract scenarios, where messages exchanged
over channels do enjoy a structure and their content is exploitable in the continuation. There
is a substantial corpus of literature on how to extend a process calculus to handle reasoning
on terms (e.g., via equational theories or pattern matching, cf. [42]), but at the semantic
heart of such calculi lies the capability of testing if what is received matches what was
expected.

In order to fully encompass the original Quality Calculus we should introduce both
testing capabilities and structured messages. We limit here to show how to deal with the
first extension, as it has a wider impact on the technical developments. As a matter of fact,
distinguishing between a term t and an expression some(t) we are already dealing with a
(very simple) signature, and this gives the necessary insight onto our idea.

The syntax of the Value-Passing Quality Calculus, introduced in § 2.1, is enhanced as
follows. First of all, we allow now input and output channels to range over terms t, writing
t?x and t1!t2. In particular, t can be a variable y, realising name-passing. Second, we update
the case clause as lcase x of some(t) : P1 else P2, allowing to check the data payload (if any)
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of an input variable x. The semantics of § 2.2 is modified accordingly:

lcase some(c) of some(c) : P1 else P2
τ−−−→ P1

lcase some(c) of some(y) : P1 else P2
τ−−−→ P1[c/y]

lcase some(c) of some(c′) : P1 else P2
τ−−−→ P2 if c 6= c′

lcase none of some(c) : P1 else P2
τ−−−→ P2

lcase none of some(y) : P1 else P2
τ−−−→ P2

The translation from processes to formulae of § 4.1 is lifted from propositional to first-order
logic, so as to account for the richer expressiveness of the case clause:

[[lcase x of some(t) : P1 else P2]]ϕ = [[P1]](ϕ ∧ ∃fv(t).(x = some(t)) ∪
[[P2]](ϕ ∧ ¬(∃fv(t).(x = some(t))) ∪
{ϕ⇒ l}

where some(·) is a unary predicate, fv(t) denotes the variables free in t, and we write x
instead of x for now x ranges over a set of optional data. Similarly, the translation of binders
has now to record the term to which an input variable is bound when the corresponding
binder is satisfied:

th(ϕ, t?x) = {∃y.(ϕ ∧ t⇒ (x = some(y))}
where t ranges over a set of data (the translation of output has to be updated similarly).

Finally, for building the tree some unification is needed in the backward-chaining search
of § 6.1:

[[∃fv(t)(x = some(t))]]D = [[ϕσ]]D
where (∃fv(t′)(ϕ⇒ (x = some(t′)))) ∈ P l⇒ ∧ ∃σ.t = t′σ

[[¬∃fv(t)(x = some(t))]]D = [[¬ϕσ]]D
where (∃fv(t′)(ϕ⇒ (x = some(t′)))) ∈ P l⇒ ∧ ∃σ.t = t′σ

where σ is a most general unifier.
We have thus shown how to lift all levels of the framework to name-passing calculi with

full testing capabilities. From a high-level perspective, the extension allows inspecting how
security checks are performed, while the basic developments consider checks as atomic entities,
distinguishing between them through the cost map. There is the concrete risk, however, that
the additional information available in the more detailed “first-order” trees would decrease
readability drastically. In addition to this, whenever a finer-grained investigation is needed,
we could take advantage of the modularity of the propositional framework, as discussed in
§ 4.5.

Finally, in order to carry the extension to the Quality Protection Tool of § 7.2, the main
extension would consist in introducing the unification of terms in the backward-chaining
procedure.

This work is licensed under the Creative Commons Attribution-NoDerivs License. To view
a copy of this license, visit http://creativecommons.org/licenses/by-nd/2.0/ or send a
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