
Logical Methods in Computer Science
Vol. 3 (1:7) 2007, pp. 1–30
www.lmcs-online.org

Submitted Jul. 19, 2005
Published Feb. 27, 2007

REAL-TIME MODEL-CHECKING: PARAMETERS EVERYWHERE ∗

VÉRONIQUE BRUYÈRE a AND JEAN-FRANÇOIS RASKIN b

a Institut d’Informatique, Université de Mons-Hainaut, Le Pentagone, Avenue du Champ de Mars
6, B-7000 Mons, Belgium.
e-mail address: Veronique.Bruyere@umh.ac.be

b Département d’Informatique, Université Libre de Bruxelles, Boulevard du Triomphe CP 212,
B-1050-Bruxelles, Belgium.
e-mail address: Jean-Francois.Raskin@ulb.ac.be

Abstract. In this paper, we study the model-checking and parameter synthesis problems
of the logic TCTL over discrete-timed automata where parameters are allowed both in
the model (timed automaton) and in the property (temporal formula). Our results are as
follows. On the negative side, we show that the model-checking problem of TCTL extended
with parameters is undecidable over discrete-timed automata with only one parametric
clock. The undecidability result needs equality in the logic. On the positive side, we show
that the model-checking and the parameter synthesis problems become decidable for a
fragment of the logic where equality is not allowed. Our method is based on automata
theoretic principles and an extension of our method to express durations of runs in timed
automata using Presburger arithmetic.

1. Introduction

In this paper, we further investigate the model-checking problem of real-time formalisms
with parameters. In recent works, parametric real-time model-checking problems have been
studied by several authors.

Alur et al study in [2] the analysis of discrete- and dense-timed automata where clocks
are compared to parameters. For this class of parametric timed automata, they focus on
the emptiness problem: are there concrete values for the parameters so that the automaton
has an accepting run? They show that when only one clock is compared to parameters, the
emptiness problem is decidable. But this problem becomes undecidable when three clocks
are compared to parameters.1 Hune et al study in [9] a subclass of parametric dense-timed

2000 ACM Subject Classification: F.1.1.
Key words and phrases: Real-time, timed automata, timed temporal logics, parameters, decidability.

∗ A preliminary version of this paper appeared in the Proceedings of the 23rd Conference on Foundations
of Software Technology and Theoretical Computer Science, FSTTCS’03, Lecture Notes in Computer Science

2914, Springer, 2003, pp. 100-111 (see [6]).
b This research was supported by the Belgian FNRS grant 2.4530.02 of the FRFC project “Centre Fédéré

en Vérification.”.

1The authors mention the case of two clocks as an open problem.

LOGICAL METHODS
l IN COMPUTER SCIENCE DOI:10.2168/LMCS-3 (1:7) 2007

c© V. Bruyère and J.-F. Raskin
CC© Creative Commons

http://creativecommons.org/about/licenses


2 V. BRUYÈRE AND J.-F. RASKIN

x ≤ θ1

x ≤ θ2
x= 2θ

qq
10

q
2

0

0

0

1

1

σ
{x}

{x}

1

1

q

3
q

4

Figure 1: A parametric timed automaton

automata (L/U automata) such that each parameter occurs either as a lower bound or as
an upper bound.

Wang in [12, 13], Emerson et al in [8], Alur et al in [3] and the authors of this paper in [5]
study the introduction of parameters in temporal logics. The model-checking problem for
TCTL extended with parameters over discrete- and dense-timed automata (without param-
eters) is decidable. On the other hand, only a fragment of LTL extended with parameters
is decidable.

Unfortunately, in all those previous works, the parameters are only in the model (ex-
pressed as a timed automaton) or only in the property (expressed as a temporal logic
formula). Nevertheless, when expressing a temporal property of a parametric system, it is
natural to refer in the temporal formula to the parameters used in the system.

In this paper, we study the model-checking problem of the logic TCTL extended with
parameters over the runs of a discrete-timed automaton with one parametric clock. To the
best of our knowledge, this is the first work that studies the model-checking and parameter
synthesis problems with parameters both in the model and in the property. We restrict
to one parametric clock since the emptiness problem for discrete-time automata with three
parametric clocks is already undecidable (see above, [2]). The case of dense-timed automata
with one parametric clock is not investigated in this paper.

Let us illustrate the kind of properties that we can express with a parametric temporal
logic over a parametric timed automaton. The automaton A of Figure 1 is a discrete-timed
automaton with one clock x and two parameters θ1 and θ2. Here we explicitly model the
elapse of time by transitions labeled by 0 or 1. State q0 is labeled with atomic proposition σ
and in all other states this proposition is false. The possible runs of this automaton starting
at q0 are as follows. The control instantaneously leaves q0 and goes through q1, q2, q3 to
come back in q0, the time spent in this cycle is constrained by the parameters θ1 and θ2.
In fact, the control has to leave q1 at most θ1 time units after entering it and the control
has to stay exactly θ2 time units in state q2. To express properties of those behaviors, we
use TCTL logic augmented with parameters. Let us consider the next three formulae for
configuration (q0, 0), i.e. the control is in state q0 and clock x has value 0:

(i) ∀�(σ → ∀♦≤θ3σ)
(ii) ∀θ1∀θ2 · (θ2 ≤ θ1 → ∀�(σ → ∀♦≤2θ1+2σ))



PARAMETERS EVERYWHERE 3

(iii) ∀θ1 · (θ1 ≥ 5 → ∀�(σ → ∀♦<2θ1+2σ))

The parameter synthesis problem associated to formula (i), asks for which values of θ1, θ2
and θ3, the formula is true at configuration (q0, 0). By observing the model and the
formula, we can deduce the following constraint on the parameters: θ3 ≥ θ1 + θ2 + 2. This
means that any cycle through the four states has duration bounded by θ1 + θ2 +2. Formula
(ii) formalizes the next question “In all the cases where the value assigned to parameter θ1
is greater than the value assigned to parameter θ2, is it true that any cycle has a duration
bounded by 2θ1 + 2”. As there is no free parameter in the question, the question has a
yes-no answer. This is a model-checking problem. For formula (ii), the answer is yes in
configuration (q0, 0). Finally, formula (iii) lets parameter θ2 free and formalizes the question
“What are the possible values that can be given to θ2 such that for any value of θ1 ≥ 5, a
cycle through the four states lasts at most 2θ1 + 1 time units”. This is again a parameter
synthesis problem and the answer is θ2 ≤ 4.

In this paper, we study the algorithmic treatment of such problems. Our results are as
follows. On the negative side, we show that the model-checking problem of TCTL extended
with parameters is undecidable over timed automata with only one parametric clock. The
undecidability result needs equality in the logic. On the positive side, we show that the
model-checking problem becomes decidable and the parameter synthesis problem is solvable
for a fragment of the logic where the equality is not allowed. Our algorithm is based on
automata theoretic principles and an extension of our method (see [5]) to express durations
of runs in a timed automaton using Presburger arithmetic. As a corollary, we obtain the
decidability of the emptiness problem for discrete-timed automata with one parametric
clock proved by Alur et al in [2]. All the formulae given in the example above are in the
decidable fragment.

The paper is organized as follows. In Section 2, we introduce the model of one paramet-
ric clock discrete-timed automaton and the parametric extension of TCTL that we consider.
In Section 3, we establish the undecidability of the model-checking problem if equality can
be used in the logic and we show how to solve the problem algorithmically for a fragment
of the logic where equality is not allowed. Proofs of two important propositions introduced
in Section 3 are postponed to Section 4. We finish the paper in Section 5 by drawing some
conclusions.

2. Parameters Everywhere

In this section, we introduce parameters in the automaton used to model the system as
well as in the logic used to specify properties of the system. The automata are parametric
timed automata as defined in [2] with a discrete time domain and one parametric clock.
The logic is Parametric Timed CTL Logic as defined in [5]. We introduce the problems
that we want to solve and we conclude the section with an example.

Notation 2.1. Let Θ be a fixed finite set of parameters θ that are shared by the automaton
and the logical formulae. A parameter valuation for Θ is a function v : Θ → N which
assigns a natural number to each parameter θ ∈ Θ. In the sequel, α, β, . . . mean any linear
term Σi∈Iciθi + c, with ci, c ∈ N and {θi|i ∈ I} ⊆ Θ. A parameter valuation v is naturally
extended to linear terms by defining v(c) = c for any c ∈ N.
We denote by x the unique parametric clock. The same notation x is used for both the clock
and a value of the clock. A guard g is any conjunction of x ∼ α with ∼ ∈ {=, <,≤, >,≥}.



4 V. BRUYÈRE AND J.-F. RASKIN

We denote by G the set of guards. Notation x |=v g means that x satisfies g under valuation
v. We use notation Σ for the set of atomic propositions.

2.1. Parametric Timed Automata. We recall the definition of one parametric clock
discrete-timed automata as introduced in [2].

We make the hypothesis that non-parametric clocks have all been suppressed by a
technique related to the region construction, see [2] for details.

Definition 2.2. A parametric timed automaton A is a tuple (Q,E,L, I), where Q is a finite

set of states, E ⊆ Q× {0, 1} × G × 2{x} ×Q is a finite set of edges, L : Q→ 2Σ is a labeling
function and I : Q→ G assigns an invariant I(q) ∈ G to each state q.
A configuration of A is a pair (q, x), where q is a state and x is a clock value.

Whenever a parameter valuation v is given, A becomes a usual one-clock timed au-
tomaton denoted by Av. We recall the next definitions of transition and run in Av.

Definition 2.3. Let v be a parameter valuation. A transition (q, x)
τ
→ (q′, x′) between

two configurations (q, x) and (q′, x′), with time increment τ ∈ {0, 1}, is allowed in Av if (1)
x |=v I(q) and x′ |=v I(q′), (2) there exists an edge (q, τ, g, r, q′) ∈ E such that x + τ |=v g
and x′ = 0 if r = {x}, x′ = x+ τ if r = ∅.2

A run ρ = (qi, xi)i≥0 of Av is an infinite sequence of transitions (qi, xi)
τi→ (qi+1, xi+1)

such that Σi≥0τi = ∞.3 The duration t = Dρ(qi, xi) at configuration (qi, xi) of ρ is equal
to t = Σ0≤j<iτj. A finite run ρ is a finite sequence of transitions. It is shortly denoted
by (q, x)  (q′, x′) such that (q, x) (resp. (q′, x′)) is its first (resp. last) configuration. Its
duration Dρ is equal to Dρ(q

′, x′).

2.2. Parametric Timed CTL Logic. Formulae of Parametric Timed CTL logic, PTCTL
for short, are formed by a block of quantifiers over some parameters followed by a quantifier-
free temporal formula. They are defined as follows. Notation σ means any atomic proposi-
tion σ ∈ Σ and α, β are linear terms as before.

Definition 2.4. A PTCTL formula f is of the form

f = Q1θ1 · · · Qkθk ϕ

such that k ≥ 0, {θ1, . . . , θk} ⊆ Θ, Qj ∈ {∃,∀} for each j, 1 ≤ j ≤ k, and ϕ is given by the
following grammar

ϕ ::= σ | α ∼ β | ¬ϕ | ϕ ∨ ϕ | ∃© ϕ | ϕ∃U∼αϕ | ϕ∀U∼αϕ

Note that usual operators ∃U and ∀U are obtained as ∃U≥0 and ∀U≥0. We also use the
following abbreviations: ∃♦∼αϕ for ⊤∃U∼αϕ, ∀♦∼αϕ for ⊤∀U∼αϕ, ∃�∼αϕ for ¬∀♦∼α¬ϕ,
and ∀�∼αϕ for ¬∃♦∼α¬ϕ.

We use notation QF-PTCTL for the set of quantifier-free formulae ϕ of PTCTL. The
set of parameters of Θ that are free in f , that is, not under the scope of a quantifier, is
denoted by Θf . Thus, for a QF-PTCTL formula ϕ, we have Θϕ = Θ (recall that Θ is the
set of parameters that appear in the formula and in the automaton).

2Note that time increment τ is first added to x, guard g is then tested, and finally x is reset according
to r.

3Non Zenoness property.



PARAMETERS EVERYWHERE 5

We now give the semantics of PTCTL.

Definition 2.5. Let A be a parametric timed automaton and (q, x) be a configuration of A.
Let f = Q1θ1 · · · Qkθk ϕ be a PTCTL formula. Given a parameter valuation v on Θf , the
satisfaction relation (q, x) |=v f is defined inductively as follows. If f = ϕ, then (q, x) |=v ϕ
according to the following rules:

• (q, x) |=v σ iff there exists4 a run ρ = (qi, xi)i≥0 in Av with (q, x) = (q0, x0) and σ ∈ L(q)
• (q, x) |=v α ∼ β iff there exists a run ρ = (qi, xi)i≥0 in Av with (q, x) = (q0, x0) and
v(α) ∼ v(β)

• (q, x) |=v ¬ϕ iff (q, x) 6|=v ϕ
• (q, x) |=v ϕ ∨ ψ iff (q, x) |=v ϕ or (q, x) |=v ψ
• (q, x) |=v ∃© ϕ iff there exists a run ρ = (qi, xi)i≥0 in Av with (q, x) = (q0, x0) and

(q1, x1) |=v ϕ
• (q, x) |=v ϕ∃U∼αψ iff there exists a run ρ = (qi, xi)i≥0 in Av with (q, x) = (q0, x0), there

exists i ≥ 0 such that Dρ(qi, xi) ∼ v(α), (qi, xi) |=v ψ and (qj , xj) |=v ϕ for all j < i
• (q, x) |=v ϕ∀U∼αψ iff for any run ρ = (qi, xi)i≥0 in Av with (q, x) = (q0, x0), there exists
i ≥ 0 such that Dρ(qi, xi) ∼ v(α), (qi, xi) |=v ψ and (qj , xj) |=v ϕ for all j < i

If f = ∃θf ′, then (q, x) |=v f iff there exists c ∈ N such that (q, x) |=v′ f
′ where v′ is defined

on Θf ′ by v′ = v on Θf and v′(θ) = c. If f = ∀θf ′, then (q, x) |=v f iff for all c ∈ N,
(q, x) |=v′ f

′ where v′ is defined on Θf ′ by v′ = v on Θf and v′(θ) = c.

2.3. Problems. The problems that we want to solve in this paper are the following ones.
The first problem is the model-checking problem for PTCTL formulae f with no free pa-
rameters. In this case, we omit the index by v in the satisfaction relation (q, x) |= f since
no parameter (neither in the automaton nor in the formula) has to receive a valuation.

Problem 2.6. The model-checking problem is the following. Given a parametric timed
automaton A and a PTCTL formula f such that Θf = ∅, given a configuration (q, x)
of A, does (q, x) |= f hold ?

The second problem is the more general problem of parameter synthesis for PTCTL
formulae f such that Θf is any subset of Θ.

Problem 2.7. The parameter synthesis problem is the following. Given a parametric timed
automaton A and a configuration (q, x) of A, given a PTCTL formula f , compute a symbolic
representation5 of the set of parameter valuations v on Θf such that (q, x) |=v f .

Example We consider the example given in the introduction with the parametric timed

automaton A of Figure 1 and the two PTCTL formulae respectively equal to

f : ∀θ1∀θ2 · (θ2 ≤ θ1 → ∀�(σ → ∀♦≤2θ1+2 σ))

and
g : ∀θ1 · (θ1 ≥ 5 → ∀�(σ → ∀♦<2θ1+2 σ)).

4We verify the existence of a run starting in (q, x) to ensure that time can progress in A
v from that

configuration.
5For instance this representation could be given in a decidable logical formalism.



6 V. BRUYÈRE AND J.-F. RASKIN

Then Θ = {θ1, θ2}, Θf = ∅ and Θg = {θ2}. The model-checking problem “does (q0, 0) |= f
hold” has a yes answer. The parameter synthesis problem “for which parameter valuations
v on Θg does (q0, 0) |=v g hold” receives the answer θ2 ≤ 4.

2.4. Comments. We end Section 2 by some comments on the definitions and the problems
presented above.

(1) We consider timed automata with only one parametric clock for the following reason.
In [2], the authors investigate the following emptiness problem, which is a particular
case of Problem 2.6 : are there concrete values for the parameters so that a parametric
timed automaton has an accepting run? They show that the emptiness problem is de-
cidable when there is one parametric clock, that this problem is open for two parametric
clocks, and that it becomes undecidable for three parametric clocks. They illustrate the
hardness of the two-clock emptiness problem by presenting connections with difficult
open problems in logic and automata theory.

Both discrete time and dense time are considered in [2] (see [11] for further results),
whereas we only deal with discrete time in this paper.

(2) To solve Problem 2.6, we use the same approach as in our paper [5] where we propose a
simple proof of the model-checking problem for PTCTL over timed-automata without
parameters. We prove in [5] that the durations of runs starting from a region and
ending in another region can be defined by a formula of Presburger arithmetic. It
follows that the model-checking problem can be reduced to checking whether some
sentence of Presburger arithmetic is true or false.

This approach is different from the one used in [1] when there is no parameter at
all. We recall that in [1], an extra clock is added to the timed automaton and the
model-checking is solved thanks to a labeling (like for CTL) of the region graph of the
augmented automaton. We have not investigated this kind of approach here, because
the additional clock would be parametric, leading to two parametric clocks inside the
automaton.

(3) Linear terms α are present in the definition of parametric timed automata (inside the
guards and the invariants) as well as in the definition given for PTCTL. More generally
full Presburger arithmetic is present in PTCTL. Alternative restricted definitions could
be
• for parametric timed automata : guards and invariants are restricted to conjunctions

of x ∼ θ, x ∼ c (instead of any conjunction of x ∼ α);
• for PTCTL : the restricted grammar

ϕ ::= σ | ¬ϕ | ϕ ∨ ϕ | ∃© ϕ | ϕ∃U∼θϕ | ϕ∃U∼cϕ | ϕ∀U∼θϕ | ϕ∀U∼cϕ

is used instead of the grammar proposed in Definition 2.4.
In this way, the constraints over the parameters are restricted to comparisons with a
parameter or with a constant, instead of comparisons with a linear term over parameters.

However we observe in Remark 3.5 below that the undecidability result about the
model-checking problem is the same when using Definitions 2.2 and 2.4, or with the
above restricted definitions.



PARAMETERS EVERYWHERE 7

3. Decision Problems

In this section, we prove that the model-checking problem is undecidable. The un-
decidability comes from the use of equality in the operators ∃U∼α and ∀U∼α. Then for
a fragment F-PTCTL of PTCTL where equality is forbidden, we prove that the model-
checking problem becomes decidable. In this case, we also positively solve the parameter
synthesis problem. Our proofs use Presburger arithmetic and its extension with integer
divisibility.

Let us introduce the precise definition of the fragment F-PTCTL.6

Definition 3.1. Notation F-PTCTL is used to denote the fragment of PTCTL where the
equality is forbidden in the operators ∃U∼α and ∀U∼α and the inequalities >,≥ are forbid-
den in ∀U∼α. More precisely, a F-PTCTL formula f is of the form f = Q1θ1 · · · Qkθk ϕ
such that ϕ is given by the grammar

ϕ ::= σ | α ∼ β | ¬ϕ | ϕ ∨ ϕ | ∃© ϕ

| ϕ∃U<αϕ | ϕ∃U≤αϕ | ϕ∃U>αϕ | ϕ∃U≥αϕ

| ϕ∀U<αϕ | ϕ∀U≤αϕ | ϕ∀Uϕ

3.1. Undecidability for PTCTL. We prove here that Problem 2.6 is undecidable for
PTCTL. The proof relies on the undecidability of Presburger arithmetic with divisibility.

Presburger arithmetic with divisibility is an extension of Presburger arithmetic with
integer divisibility relation. The additional divisibility relation is denoted by z|z′ and means
“z divides z′”. Every formula of Presburger arithmetic with divisibility can be put into
normal form:

Qz1Qz2 . . . Qzn (¬)φ1 ⋆ (¬)φ2 ⋆ · · · ⋆ (¬)φm (3.1)

where ⋆ belongs to {∨,∧}, (¬) means that negation is optional and each φi is one of the
following atomic formulae: (i) z = α, (ii) z > α, (iii) z|z′ such that α is a linear term and
z′ > 0. While Presburger arithmetic has a decidable theory, Presburger arithmetic with
divisibility is undecidable [4].

Theorem 3.2. For any sentence Φ of Presburger arithmetic with divisibility, we can con-
struct a parametric timed automaton A, a configuration (q, x0) and a PTCTL formula f
such that Φ is true iff the answer to the model-checking problem (q, x0) |= f for A is yes.

Proof. Let us make the assumption that the sentence Φ is in normal form (3.1). We are
going to construct a PTCTL formula f and a parametric timed automaton A. The set Θ
of parameters is equal to the set of all the variables used in Φ.

For each subformula φl of the form z = α or z > α, we define the PTCTL formula
φ̂l equal to φl. For each subformula φl of the form z|z′, we construct the next parametric

timed automaton Aφl
and PTCTL formula φ̂l. The automaton Aφl

is given in Figure 2. We

label the unique initial state il of this automaton by σl1 and the unique final fl state by
σl2. It is easy to see that there is a run ρ from the initial configuration (il, 0) to the final

configuration (fl, z) with duration Dρ iff z|Dρ. For formula φ̂l, we take σl1 ∧ ∃♦=z′σ
l
2.

6In the preliminary version [6] of this paper, we considered a fragment of PTCTL that is larger than
F-PTCTL. The grammar of the proposed fragment was equal to the grammar proposed in Definition 3.1
extended with ϕ∀U>αϕ and ϕ∀U≥αϕ. We have found a mistake in the proof of the decidability of the
model-checking for this fragment.



8 V. BRUYÈRE AND J.-F. RASKIN

x ≤ zσ
{x}

0
x=z σ

1 2

0

1

0
{x}x=z

Figure 2: Automaton for z|z′

Now we construct formula f as follows

f : Qz1Qz2 · · ·Qzn (¬)φ̂1 ⋆ (¬)φ̂2 ⋆ · · · ⋆ (¬)φ̂m.

We construct the automaton A by first taking the union of all the previous automata Aφl

(introduced for the divisibility subformulae). We then merge their initial states into a
unique state of A that we call q. The label L(q) of q is the union of the labels σl1. Finally,
we add a new state q′ to A and an edge (fl, 0,⊤,∅, q

′) from any final state fl of Aφl
to state

q′ labeled with τ = 0 and without any guard and reset. To complete the construction, we
add a self-loop (q′, 1,⊤,∅, q′) on q′ that allows time to progress.

It is easy to see that given A, we have (q, 0) |= f iff Φ is true.

As a direct consequence of Theorem 3.2, we have:

Corollary 3.3. The model-checking problem for PTCTL is undecidable.

Remark 3.4. In the previous proof, all the proposed PTCTL formulae φ̂l only use the
subscript = in the operators ∃U∼θ and ∀U∼θ. It follows that the model-checking problem
is already undecidable with the grammar

ϕ ::= σ | α ∼ β | ¬ϕ | ϕ ∨ ϕ | ∃© ϕ | ϕ∃U=αϕ | ϕ∀U=αϕ

instead of the grammar given in Definition 2.4.

Remark 3.5. Given a sentence Φ of Presburger arithmetic with divisibility, we have shown in
the proof of Theorem 3.2 how to construct a parametric timed automaton A, a configuration
(q, x0) and a PTCTL formula f such that Φ is true iff the answer to the model-checking
problem (q, x0) |= f for A is yes.

As mentioned in Section 2.4 (see Comment 3), we could consider alternative restricted
definitions for parametric timed automata and PTCTL. We say that a parametric timed
automaton is restricted and that a formula of PTCTL is restricted if they respect the
restricted definitions given in Comment 3 of Section 2.4.

Let us show that given a sentence Φ of Presburger arithmetic with divisibility, we
can construct a restricted parametric timed automaton A, a configuration (q, x0) and a
restricted formula f of PTCTL such that Φ is true iff the answer to the model-checking
problem (q, x0) |= f for A is yes. The proof is in the same vein as the previous one. The
sentence Φ is supposed to be in normal form like in (3.1) with each subformula φl of the
form z = α, z > α, or z|z′. We first treat the case z = α (with hints on the construction

with α = 2θ + 2). Instead of defining φ̂l equal to φl as in the previous proof, we consider

the restricted parametric timed automaton of Figure 3, and the restricted formula φ̂l equal



PARAMETERS EVERYWHERE 9

1

≤θx
x=θ {x}

0 1 1
σ2

1

{x}

0
σ1 {x}

0

θx=
x≤θ

Figure 3: Automaton for z = 2θ + 2

to σl1 ∧ ∃♦=zσ
l
2. The case z > α is treated similarly : for the example of z > 2θ + 1, the

automaton is the one of Figure 3 with an additional loop with label 1 on the rightmost
location, and the formula is again equal to σl1 ∧ ∃♦=zσ

l
2. Finally the case z|z′ is treated

as in the previous proof since the automaton and the formula that were proposed are both
restricted.

It follows that the model-checking problem with the restricted definitions of parametric
timed automata and logic PTCTL is still undecidable. Notice that again all the proposed
restricted formulae φ̂l only use the equality in the operators ∃U∼θ and ∀U∼θ.

3.2. Decidability for F-PTCTL. In this section, we provide solutions to the model-
checking problem and the parameter synthesis problem for F-PTCTL. Our approach is
as follows. Given a state q and a formula ϕ of QF-F-PTCTL7, we construct a Presburger
formula ∆q,ϕ(x,Θ) with x and all θ ∈ Θ as free variables such that

(q, x0) |=v ϕ iff ∆q,ϕ(x0, v(Θ)) is true

for any valuation v on Θ and any value x0 of the clock (see Theorem 3.8). Solutions to
Problems 2.6 and 2.7 will be obtained as a corollary (see Corollaries 3.11 and 3.12). For
instance, the decidability of the model-checking problem will derive from the decidability of
Presburger arithmetic. Indeed, if we denote by QΘ ϕ a F-PTCTL formula f with no free
parameters, then to test if (q, x0) |= f is equivalent to test if the sentence QΘ ∆q,ϕ(x0,Θ)
is true.

Example Consider the parametric timed automaton of Figure 1 and the QF-F-PTCTL
formula ϕ equal to ∀�(σ → ∀♦≤θ3σ). Then Θ = {θ1, θ2, θ3}. Presburger formula ∆q0,ϕ(x,Θ)
is here equal to θ1 + θ2 + 2 ≤ θ3 with no reference to x since it is reset along the edge
from q0 to q1. Thus (q, x0) |=v ϕ for any clock value x0 and any valuation v such that
v(θ1) + v(θ2) + 2 ≤ v(θ3). The model-checking problem (q, x0) |= ∀θ1∀θ2∃θ3ϕ has a yes

answer for any x0 because the sentence ∀θ1∀θ2∃θ3 (θ1 + θ2 + 2 ≤ θ3) is true in Presburger
arithmetic. If clock x was not reset along the edge from q0 to q1, then the formula ∆q0,ϕ(x,Θ)
would be equal to (θ1 + θ2 + 2 ≤ θ3) ∧ (x ≤ θ1) and the above model-checking problem
would have a yes answer iff ∀θ1∀θ2∃θ3 (θ1 + θ2 + 2 ≤ θ3) ∧ (x0 ≤ θ1), that is x0 = 0.

As indicated by this example, the Presburger formula ∆q,ϕ(x,Θ) constructed from the
QF-F-PTCTL formula ϕ is a boolean combination of terms of the form θ ∼ α or x ∼ α
where θ is a parameter, x is the clock and α is a linear term over parameters. Formula
∆q,ϕ(x,Θ) must be seen as a syntactic translation of formula ϕ into Presburger arithmetic.
The question “does (q, x0) |= f hold” with f = QΘ ϕ is translated into the question “is the

7Notation QF- has been introduced after Definition 2.4 to mention that ϕ is a quantifier free formula.



10 V. BRUYÈRE AND J.-F. RASKIN

Presburger sentence QΘ ∆q,ϕ(x0,Θ) true”. At this point only, semantic inconsistencies
inside QΘ ∆q,ϕ(x0,Θ) are looked for to check if this sentence is true or not.

Our proofs require to work with a set G of guards that is more general than in Notation
2.1.

Notation 3.6. Linear terms α, β, . . . are any Σiciθi + c, with ci, c ∈ Z (instead of N). Com-
parison symbol ∼ used in expressions like x ∼ α and α ∼ β belongs to the extended
set {=, <,≤, >,≥,≡a,≤,≡a,≥}. For any constant a ∈ N

+, notation z ≡a,≤ z′ means
z ≡ z′ mod a and z ≤ z′. Equivalently, this means that there exists y ∈ N such that
z + ay = z′. Notation z ≡a,≥ z′ means z ≡ z′ mod a and z ≥ z′.
Any x ∼ α is called an x-atom, any α ∼ β is called a θ-atom. An x-conjunction is any
conjunction of x-atoms, and a θ-conjunction is any conjunction of θ-atoms. We denote by
Bx,Θ the set of boolean combinations of x-atoms and θ-atoms. A guard is any element of
Bx,Θ. Thus the set G of Notation 2.1 is now equal to the set Bx,Θ.

From now on, it is supposed that the guards and the invariants appearing in parametric
timed automata belong to the generalized set G = Bx,Θ. It should be noted that the
extension of ∼ to {=, <,≤, >,≥,≡a,≤,≡a,≥} is only valid inside automata, and not inside
PTCTL formulae. We shortly call automaton any parametric timed automaton A.

The next lemma states that any Bx,Θ formula is a Presburger formula. It also states
that this formula can be rewritten in a particular form that will be useful later.

Lemma 3.7. Any Bx,Θ formula is a Presburger formula. It can be rewritten as a disjunction
of conjunctions of x-atoms and θ-atoms with ∼ limited to {=,≤,≥,≡a,≤,≡a,≥}.

Proof. Operators ≡a,≤ and ≡a,≥ are easily rewritten in Presburger arithmetic. Even if
linear terms α, β, . . . contain constants in Z, any x ∼ α and α ∼ β can also be rewritten in
Presburger arithmetic. This shows that any Bx,Θ formula is a Presburger formula.

To rewrite a Bx,Θ formula as described in the lemma, it is first put into disjunctive
normal form. Second negation is suppressed in any ¬(z ∼ z′) as follows. This is done
easily for ∼ ∈ {<,≤, >,≥}. Negation ¬(z = z′) is replaced by z < z′ ∨ z > z′. Negation
¬(z ≡a,≤ z′) is equivalent to (z > z′) ∨ (

∨
0<b<a z + b ≡a,≤ z′). Similarly for ¬(z ≡a,≥ z′).

Third all inequalities z < z′ and z > z′ are replaced respectively by z ≤ z′−1 and z ≥ z′+1.
Finally this formula is put into disjunctive normal form.

Let us now state our main result.

Theorem 3.8. Let A be an automaton and q be a state of A. Let ϕ be a QF-F-PTCTL.
Then there exists a Bx,Θ formula ∆q,ϕ(x,Θ) with x and all θ ∈ Θ as free variables such that

(q, x0) |=v ϕ iff ∆q,ϕ(x0, v(Θ)) is true

for any valuation v on Θ and any clock value x0. The construction of formula ∆q,ϕ is
effective.

The proof of Theorem 3.8 is by induction on the way formula ϕ is constructed. Before
detailing its proof, we roughly give the main ideas. First, suppose for instance that along a
run ρ = (qi, xi)i≥0 of Av showing that (q0, x0) |=v ϕ, some configuration, say (qj , xj), needs
to satisfy (qj, xj) |=v ψ with ψ a subformula of ϕ. The automaton A is modified into A′ such
that the invariant I(qj) is augmented8 by the Bx,Θ formula ∆qj ,ψ constructed by induction.

8Such kind of invariant is allowed in Notation 3.6.



PARAMETERS EVERYWHERE 11

Along the run ρ seen in the modified automaton A′, the satisfaction relation (qj, xj) |=v ψ
holds automatically thanks to the augmented invariant of qj. Second, what we also need is a
Bx,Θ formula that expresses the existence of an infinite run starting at a given configuration
(for operator ∃� for instance) and another one that expresses the existence of a finite run
ρ starting and ending at given configurations such that Dρ ∼ v(α) (for operator ∃U∼α for
instance). This is possible by the next two propositions. Their proofs are postponed till
Section 4.

Proposition 3.9. Let A be an automaton and q be a state. Then there exists a Bx,Θ formula
Runq(x,Θ) such that for any valuation v and any clock value x0,

Runq(x0, v(Θ)) is true

iff there exists an infinite run in Av starting with (q, x0). The construction of Runq(x,Θ)
is effective.

Proposition 3.10. Let A be an automaton and q, q′ be two states. Let ∼ ∈ {<,≤, >,≥}
and α be a linear term. Then there exists a Bx,Θ formula Duration∼α

q,q′(x,Θ) such that for
any valuation v and any clock value x0,

Duration∼α
q,q′(x0, v(Θ)) is true

iff there exists a finite run ρ = (q, x0) (q′, ·) in Av with Dρ ∼ v(α). The construction of
Duration∼α

q,q′(x,Θ) is effective.

For the proof of Theorem 3.8, instead of the grammar given in Definition 3.1, we prefer
to work with the grammar

ϕ ::= σ | α ∼ β | ¬ϕ | ϕ ∨ ϕ | ∃© ϕ

| ϕ∃U<αϕ | ϕ∃U≤αϕ | ϕ∃U>αϕ | ϕ∃U≥αϕ

| ∃�<αϕ | ∃�ϕ

This grammar is equivalent because formula ϕ∀U∼αψ with ∼∈ {<,≤} can be replaced by
¬[(∃�∼α¬ψ) ∨ (¬ψ∃U∼α(¬ϕ ∧ ¬ψ))], formula ϕ∀Uψ by ¬[(∃�¬ψ) ∨ (¬ψ∃U(¬ϕ ∧ ¬ψ))],
and formula ∃�≤αϕ by ∃�<α+1ϕ.

It is not difficult to check that the semantics of the new operator ∃�<αϕ is given by

(q, x) |=v ∃�<αϕ iff there exists a run ρ = (qi, xi)i≥0 of Av with
(q, x) = (q0, x0), there exists j ≥ 0 such that Dρ(qj, xj) ≥ v(α) and
(qi, xi) |=v ϕ for all i < j.

Proof. (of Theorem 3.8). The proof is by induction on ϕ.

• If ϕ = σ, then (q, x0) |=v ϕ iff there exists an infinite run starting with (q, x0) and
σ ∈ L(q). Therefore

∆q,ϕ(x,Θ) = ⊥ if σ /∈ L(q)
= Runq(x,Θ) otherwise.

• Similarly, if ϕ = α ∼ β with ∼ ∈ {=, <,≤, >,≥}, then

∆q,ϕ(x,Θ) = (α ∼ β) ∧ Runq(x,Θ).

• If ϕ = ψ ∨ φ, then ∆q,ϕ = ∆q,ψ ∨ ∆q,φ.
• If ϕ = ¬ψ, then ∆q,ϕ = ¬∆q,ψ.



12 V. BRUYÈRE AND J.-F. RASKIN

• Let us treat ϕ = ∃© ψ. Recall that (q, x0) |=v ∃© ψ iff there exists a transition

(q, x0)
τ
→ (q′, x′0) such that (q′, x′0) |=v ψ and (q′, x′0) is the first configuration of an infinite

run ρ′. Let (q, τ, g, r, q′) be the edge of E that has lead to the transition (q, x0)
τ
→ (q′, x′0).

Then (see Definition 2.3), x′0 = 0 if r = {x}, and x′0 = x0 + τ if r = ∅. By induction
hypothesis, ∆q′,ψ has been constructed such that ∆q′,ψ(x′0, v(Θ)) is true iff (q′, x′0) |=v ψ.

The automaton A is modified into an automaton A as follows. A copy9 q′ of q′ is added
to Q such that L(q′) = L(q′), I(q′) = I(q′) ∧ ∆q′,ψ(x,Θ). A copy (q′, τ ′, g′, r′, p) is also

added for each edge (q′, τ ′, r′, g′, p) leaving q′. By Proposition 3.9 applied to A and q′,
we get a Bx,θ formula Runq′ such that Runq′(x

′
0, v(Θ)) is true iff there exists an infinite

run in A
v

starting with (q′, x′0). By construction of q′, equivalently there exists an infinite
run in Av starting with (q′, x′0) and such that (q′, x′0) |=v ψ. Hence, the expected formula
∆q,ϕ(x,Θ) is equal to

∆q,ϕ(x,Θ) =
∨

(q,τ,g,{x},q′)∈E (I(q) ∧ Runq′(0,Θ))

∨
∨

(q,τ,g,∅,q′)∈E (I(q) ∧ Runq′(x+ τ,Θ)).

• The construction of formula ∆q,ϕ for ϕ = ∃�ψ is in the same vein as the previous one.
Recall that (q, x0) |=v ϕ iff there is an infinite run in Av with first configuration (q, x0)
such that all its configurations satisfy ψ. The automaton A is here modified into A as
follows. For any state p ∈ Q, I(p) is replaced by I(p) ∧ ∆p,ψ(x,Θ). By Proposition 3.9

applied to A, we get a formula Runq such that Runq(x0, v(Θ)) is true iff there exists
an infinite run in Av starting with (q, x0) and such that all its configurations satisfy ψ.
Therefore formula ∆q,ϕ(x,Θ) is equal to

Runq(x,Θ).

• Let us turn to formula ϕ = ψ∃U∼αφ with ∼∈ {<,≤, >,≥}. We have (q, x0) |=v ϕ iff
either (1) (q, x0) |=v φ, 0 ∼ v(α) and (q, x0) is the first configuration of an infinite run,
or (2) there exists a finite run ρ = (q, x0) (q′, x′0) such that Dρ ∼ v(α), ψ is satisfied at
every configuration of ρ distinct from (q′, x′0), φ is satisfied at (q′, x′0) and (q′, x′0) is the
first configuration of an infinite run. For any state p ∈ Q, formulae ∆p,ψ and ∆p,φ have
been constructed by induction hypothesis. So, in case (1), with the same construction of
A as done before for operator ∃© (with q, φ instead of q′, ψ), we have the next formula

(0 ∼ α) ∧ Runq(x,Θ).

Case (2) is more involved. The automaton A is first modified into A as for operator ∃©
(with q′, φ instead of q′, ψ) to get formula Runq′ such that Runq′(x

′
0, v(Θ)) is true iff

there exists an infinite run in Av starting with (q′, x′0) and such that (q′, x′0) |=v φ. The
automaton A is then modified in another automaton A in the following way. A copy q′

of q′ is added to Q as well as a copy of each edge of E entering q′ as entering q′; we

define L(q′) = L(q′) and I(q′) = I(q′)∧Runq′(x,Θ).10 For any state p of Q, I(p) is replaced
by I(p) ∧ ∆p,ψ(x,Θ). Thanks to Proposition 3.10 applied to A, we obtain a formula
Duration∼α

q,q′(x,Θ) expressing the following: Duration∼α
q,q′(x0, v(Θ)) is true iff there exists

in A
v a finite run ρ = (q, x0)  (q′, x′0) with Dρ ∼ v(α). Equivalently there exists in

Av a finite run ρ = (q, x0)  (q′, x′0) with Dρ ∼ v(α) such that ψ is satisfied at every

9The copy q′ of q′ is needed to focus on the first configuration (q′, x′
0) of ρ′.

10The copy q′ of q′ is needed to focus on the last configuration (q′, x′
0) of ρ; the augmented invariant is

needed to express that φ is satisfied at (q′, x′
0) and (q′, x′

0) is the first configuration of an infinite run.



PARAMETERS EVERYWHERE 13

configuration of ρ distinct from (q′, x′0), φ is satisfied at (q′, x′0) and (q′, x′0) is the first
configuration of an infinite run. For case (2), the expected formula is thus the disjunction

∨

q′∈Q

Duration∼α
q,q′(x,Θ).

Therefore, putting together cases (1) and (2), formula ∆q,ϕ is the disjunction

((0 ∼ α) ∧ Runq(x,Θ)) ∨
∨

q′∈Q

Duration∼α
q,q′(x,Θ).

• Finally, let ϕ be ∃�<αψ. Then (q, x0) |=v ϕ iff there exists a finite run ρ = (q, x0)  
(q′, x′) such that Dρ ≥ v(α), (p, x) |=v ψ for each configuration (p, x) of ρ distinct from
(q′, x′) and (q′, x′) is the first configuration of an infinite run. As done just before in case
(2), A is modified into A except that we use Runq′ instead of Runq′ in the definition of
I(q′). By Proposition 3.10, formula ∆q,ϕ is equal to

∨

q′∈Q

Duration≥α
q,q′(x,Θ).

The proof is completed since all the proposed formulae belong to Bx,Θ and their construction
is effective.

Solutions to the model-checking problem and the parameter synthesis problem are ob-
tained as a corollary of Theorem 3.8.

Corollary 3.11. The model-checking problem for F-PTCTL is decidable.

Proof. Let QΘ ϕ be a F-PTCTL formula f with no free parameters. By Theorem 3.8,

(q, x0) |= f iff QΘ ∆q,ϕ(x0,Θ) is true.

By Lemma 3.7, formula QΘ ∆q,ϕ(x0,Θ) is a Presburger formula. As Presburger arithmetic
has a decidable theory and QΘ ∆q,ϕ(x0,Θ) is a Presburger sentence, the model-checking
problem is decidable.

The next corollary is straightforward. It states that the parameter synthesis problem
is solvable.

Corollary 3.12. Let A be an automaton and (q, x0) a configuration of A. Let {θ1, . . . , θk} ⊆
Θ with k ≥ 0 and let f = Q1θ1 · · · Qkθk ϕ be a F-PTCTL formula. Then the Presburger
formula Q1θ1 · · · Qkθk ∆q,ϕ(x0,Θ) with free variables in Θf is an effective characterization
of the set of valuations v on Θf such that (q, x0) |=v f . �

Corollary 3.12 has important consequences that we want to detail now. Let us denote
by V (A, f, q, x0) the set of valuations v on Θf such that (q, x0) |=v f . Let Θf be equal to
{θ′1, . . . , θ

′
l}. Presburger arithmetic has an effective quantifier elimination, by adding to the

operations + and ≤ all the congruences ≡ moda, a ∈ N
+. It follows the characterization

of V (A, f, q, x0) given above in Corollary 3.12 by

Q1θ1 · · · Qkθk ∆q,ϕ(x,Θ)

can be effectively rewritten without any quantifier. On the other hand, since Presburger
arithmetic has a decidable theory, any question formulated in this logic about V (A, f, q, x0)



14 V. BRUYÈRE AND J.-F. RASKIN

is decidable. For instance, the question “Is the set V (A, f, q, x0) non empty” is decidable as
it is formulated in Presburger arithmetic by

∃θ′1 · · · ∃θ′l Q1θ1 · · · Qkθk ∆q,ϕ(x,Θ).

The question “Does the set V (A, f, q, x0) contain all the valuations on Θf” is also decidable
as it can be formulated as

∀θ′1 · · · ∀θ′l Q1θ1 · · · Qkθk ∆q,ϕ(x,Θ).

The question “Is the set V (A, f, q, x0) finite” is translated into

∃z∀θ′1 · · · ∀θ′l Q1θ1 · · · Qkθk (∆q,ϕ(x,Θ) ⇒ ∧iθ
′
i ≤ z).

And so on.

4. Durations

The aim of this section is to prove Propositions 3.9 and 3.10. This is achieved thanks
to a precise description of the possible durations of finite runs in an automaton. Several
steps are necessary for this purpose.

In the first subsection, we show that we can work with automata put in some nor-
mal form. This normalization allows a simplified presentation of the proofs of the next
subsections.

In Subsections 4.2 and 4.3, we restrict to reset-free normalized automata, that is au-
tomata in which there is no reset of the clock. For this family of automata, we study the
runs of the form (i, x0)  (f, ·) such that i ∈ I, f ∈ F with I, F being two fixed subsets
of states, and x0 is a fixed clock value. In Subsection 4.2, a sequence of transformations
is performed on the automata such that the x-atoms used in the automata are limited
to equalities x = α. These simplifications lead in Subsection 4.3 to the description by a
Presburger formula of the durations Dρ of runs ρ = (i, x0) (f, ·), i ∈ I, f ∈ F .

In the last subsection, we remove the reset-free restriction imposed to the automata and
we study in details the durations Dρ of runs ρ = (q, x0) (q′, ·) between two fixed states q
and q′. Any such run ρ can be decomposed into a sequence of runs ρj, 1 ≤ j ≤ k, according
to the reset of the clock, that is the clock is reset at the beginning and the end of ρj but
not inside of ρj . The duration Dρ of ρ is thus the sum of the durations Dρj

, 1 ≤ j ≤ k.
Any Dρj

falls into durations being studied in Section 4.3. Thanks to this description of
any duration Dρ in terms of durations in reset-free automata, we are finally able to prove
Propositions 3.9 and 3.10.

In Subsections 4.1, 4.2 and 4.3, we are going to perform a sequence of transformations on
the automata A that will preserve the set of runs in Av for any valuation v, in the following
sense. During a transformation, state q will possibly be splitted into several copies qj. Runs

before and after the splitting can be supposed identical11 up to a renaming of any qj into
q.

11Such an identification of runs is already present in the proof of Theorem 3.8.



PARAMETERS EVERYWHERE 15

4.1. Normalized Automata. In this subsection, the automata are put in some normal
form. The aim of this normalization is a simplified presentation of the proofs in the rest of
the paper.

Definition 4.1. An automaton A is normalized if

• The guards labeling the edges and used in the invariants are limited to conjunctions of
x-atoms and θ-atoms with ∼ ∈ {=,≤,≥,≡a,≤,≡a,≥},

• for any state q ∈ Q, the edges (p, τ, g, r, q) entering q are all labeled by the same g and
the same r (however τ can vary).

Proposition 4.2. Any automaton A can be effectively normalized such that the set of runs
in Av is preserved for any valuation v.

Proof. Let g ∈ Bx,Θ be a guard. By Lemma 3.7, it can be rewritten as a disjunction of
k formulae δj, 1 ≤ j ≤ k, where each δj is a conjunction of x-atoms and θ-atoms with
∼ ∈ {=,≤,≥,≡a,≤,≡a,≥}. If g labels the edge (q, τ, g, r, q′) of A, then we modify A by
splitting this edge into k edges (q, τ, δj , r, q

′), 1 ≤ j ≤ k. If g = I(q) for some state q, we
modify A by splitting q into k states qj , 1 ≤ j ≤ k, such that L(qj) = L(q), I(qj) = δj and we
accordingly split any edge that enters or leaves state q. The first condition of Definition 4.1
is therefore satisfied.

For the second condition, the construction is similar. Suppose that there are several
edges (p, τ, g, r, q) entering state q with distinct couples (g, r). Then q is splitted into several
copies (one copy for one couple (g, r)) and all the edges entering q are redirected to each
copy, according to the couples (g, r). The copies of q have the same L(q) and I(q) as q.

4.2. Transformations of Reset-free Automata. In all this subsection, we assume the
next hypothesis.

Hypothesis (∗) We assume that A = (Q, I, F,E,L, I) is a reset-free normalized automaton
with a set I ⊆ Q of initial states and a set F ⊆ Q of final states. We also assume such that
I ∩ F = ∅, no edge enters i ∈ I and no edge leaves f ∈ F .

Remark As A is normalized and reset-free, given a state q, all edges (p, τ, g, r, q) entering
q have the same guard g and satisfy r = ∅. It follows that we can move guard g from
these edges to the invariant I(q) of q. Indeed g is simply erased from all the edges entering
q and added as a conjunction to I(q). By this construction, the set E of edges of A can be

rewritten as a subset of Q×{0, 1}×Q, instead of Q×{0, 1}×G×2{x}×Q (see Definitions 2.2
and 2.3).
On the other hand, as A is normalized, the invariant I(q) of any state q is a conjunction
of x-atoms and θ-atoms. We can view I(q) as a set of x-atoms and θ-atoms (instead of a
conjunction) and we will often say that an x-atom or a θ-atom belongs to q (instead of I(q))
or appears in q.

Given a valuation v and a clock value x0, we denote by

R(Av, x0)

the set of runs of Av of the form (i, x0)  (f, ·) for some i ∈ I and f ∈ F . We are going
to perform a sequence of transformations on A that will preserve R(Av, x0). The aim of
these transformations is to simplify the form of the invariants used in the automaton. The
invariant I(q) of any state q ∈ Q \ (I ∪ F ) will be a conjunction of at most one x-atom (of



16 V. BRUYÈRE AND J.-F. RASKIN

x ≤ θ2x=θ1
1

i q
1 1

f
0

0 1 11

1θ > θ2

p

Figure 4: A reset-free normalized automaton which is simplified

the form x = α) and one θ-conjunction. This simplification will be possible mainly because
the automaton is reset-free (see Proposition 4.4).

Definition 4.3. A reset-free normalized automaton A is simplified if

• for all q ∈ Q, the invariant I(q) is equal to

Ix(q) ∧ Iθ(q)

such that Ix(q) is an x-conjunction and Iθ(q) is a θ-conjunction. Among the x-atoms
x ∼ α of Ix(q), at most one is an equality x = α. Moreover, if q 6∈ I ∪ F , then Ix(q)
contains no other x-atom x ∼ β with ∼ ∈ {≤,≥,≡a,≤,≡a,≥}, and if q ∈ I (resp. q ∈ F ),
then the other x-atoms of Ix(q) are of the form x ≥ β (resp. x ≤ β).

• for any run ρ ∈ R(Av, x0), for any x-atom x = α, there exists at most one configuration
(q′, x′) of ρ such that Ix(q

′) contains x = α.

This definition is illustrated by the next very simple example.

Example Consider the simplified automaton A of Figure 4 with one initial state i and one
final state f . The invariant of state p has no component Ix(p) and its θ-conjunction Iθ(p)
is limited to the θ-atom θ1 > θ2. The other states of the automaton has no θ-conjunction.
They can have at most one x-atom which is an equality, like state q containing the equality
x = θ1. The initial state i can have x-atoms of the form x ≥ α but it has no such x-atom
in this example. The final state f has the x-atom x ≤ θ2.

Proposition 4.4. Any reset-free normalized automaton A can be effectively simplified such
that the set R(Av, x0) is preserved for any valuation v and any clock value x0.

Proof. The proof of Proposition 4.4 needs several steps. The transformations described
in the proof are based on standard constructions of automata theory. Each of them will
preserve R(Av, x0) for any valuation v and any clock value x0. After each transformation,
the resulting automaton will be again denoted by A.

In the first step, we are going to suppress in each Ix(q), for q ∈ Q, all x-atoms of the
form x ≡a,≤ α.

First step. x-atoms x ≡a,≤ α.
Let us show that any x-atom x ≡a,≤ α belonging to some state q can be suppressed at

the cost of a new x-atom x ≤ α. The idea is the following. If α ≡ b mod a for a certain
b ∈ {0, 1, . . . , a− 1}12, then

x ≡a,≤ α iff x ≡ b mod a and x ≤ α.

12As α is a linear term over the parameters, the value b such that α ≡ b mod a is not known whenever
the parameter valuation v is not fixed.



PARAMETERS EVERYWHERE 17

The automaton is transformed in a way to compute modulo a. New states are of the
form (q, c) with q ∈ Q and c ∈ {0, . . . , a − 1} expressing that x ≡ c mod a. Formally we
construct Ab = (Q′, I ′, F ′, E′,L′, I′) where Q′ = Q× {0, . . . , a− 1}, I ′ = I × {0, . . . , a− 1},
F ′ = F × {0, . . . , a − 1}, L′(q, c) = L(q) and ((q, c), τ, (q′, c′)) ∈ E′ iff (q, τ, q′) ∈ E and
c′ ≡ c+ τ mod a. Function I′ is defined as follows. For any (q, c) ∈ Q′, let I′(q, c) = I(q). If
(q, c) contains x ≡a,≤ α, suppress this state if c 6= b, replace x ≡a,≤ α by x ≤ α if c = b. If
(q, c) ∈ I ′, add the x-atom x ≡a,≥ c and the θ-atom α ≡a,≥ b to recall that α ≡ b mod a
and x ≡ c mod a initially. As α depends on the parameter valuation, value b such that
α ≡ b mod a is not known in advance. Therefore the final automaton is the disjoint union
of the automata Ab, with b ∈ {0, . . . , a− 1}.

The suppression of x-atoms x ≡a,≥ α in each Ix(q) is performed similarly. In the next
step, we are going to suppress x-atoms x ≥ α. This will be possible everywhere except
inside states q ∈ I.

Second step. x-atoms x ≥ α.
Let us consider a fixed x-atom x ≥ α. Recall that the automaton is reset-free. Along

a run ρ ∈ R(Av, x0), as soon as x ≥ α is satisfied at some configuration of ρ, the next
occurrences of x ≥ α are automatically satisfied and can be thus suppressed. The automaton
is transformed in a way to count occurrences of x ≥ α thanks to a counter c equal to 0 (1 or
2 resp.) in case of 0 (1 or 2 and more resp.) occurrence(s) of x ≥ α is (are) encountered.13

Formally we construct A′ = (Q′, I ′, F ′, E′,L′, I′) where Q′ = Q×{0, 1, 2}, F ′ = F ×{0, 1, 2},
L′(q, c) = L(q) and I′(q, c) = I(q) for all q ∈ Q and c ∈ {0, 1, 2}. Sets I ′ and E′ are defined
as follows. For any q ∈ I, state (q, c) belongs to I ′ with c = 1 if x ≥ α belongs to q, and
c = 0 otherwise. For any (q, τ, q′) ∈ E, edge ((q, c), τ, (q′, c′)) belongs to E′ with c′ = c+ 1
if q′ contains x ≥ α, and c′ = c otherwise. Finally, we suppress x ≥ α in any state (q, 2)
containing it.

Now, consider a run ρ′ ∈ R(A′v, x0) equal to (qi, ci, xi)0≤i≤n such that some state (qk, ck)
contains x ≥ α. Necessarily, ck = 1 and ci = 0 for 0 ≤ i < k by construction of A′. So
x-atom x ≥ α is satisfied at configuration (qk, ck, xk) iff

: (i) either x ≥ α is satisfied at configuration (q0, c0, x0),
: (ii) or x = α is satisfied at some configuration (qi, ci, xi) of ρ′ such that 0 < i ≤ k.

Therefore, x-atom x ≥ α can be suppressed at the cost of a new x-atom x = α (see (ii)),
except inside the initial state (q0, c0) (see (i)). This can be achieved by modifying A′ into
an automaton A′′ thanks to a construction which is not difficult but tedious, this will be
not fully detailed. The automaton A′′ has three parts :

• a first part of A′′ has to deal with paths of A′ that only contain states (q, c) with c = 0,
• a second part has to deal with paths of A′ starting with (q, c) such that q ∈ I, c = 1,
• and a third part has to deal with paths of A′ containing some state (q, c) such that q 6∈ I,
c = 1; such paths are call special.

The first part of A′′ is obtained from A′ by erasing all states (q, c) with c = 1. The second
part is obtained from A′ by erasing all states (q, c) such that q 6∈ I, c = 1 and all states
(q, c) such that q ∈ I, c = 0. We now discuss the third part of A′′. The special paths of A′

must be modified into two kinds of paths : either the x-atom x ≥ α is added to the initial
state of the path (see (i)), or the x-atom x = α is added to some intermediate state of the
path, which is situated between the initial state (not included) and state (q, c) (included)

13Thus when the counter c has value 2, any incrementation c + 1 lets it at value 2.



18 V. BRUYÈRE AND J.-F. RASKIN

(see (ii)). In both cases, the x-atom x ≥ α must be deleted from (q, c). The third part of
A′′, first case, is obtained from A′ by adding the x-atom x ≥ α to any state (q, c) such that
q ∈ I, c = 0 and by deleting the x-atom x ≥ α from any state (q, c) such that q 6∈ I, c = 1;
it is also necessary to use a marker to verify that each accepting path of A′′ corresponds
to a special path of A′. The third part of A′′, second case, is obtained from A′ as follows
: the x-atom x ≥ α is deleted from any state (q, c) such that q 6∈ I, c = 1, all states (q, c)
with q 6∈ I, c = 0 are duplicated (together with the edges entering and leaving (q, c)) such
that the x-atom x = α is added to one of the two copies of (q, c); it is also necessary to use
a marker to verify that each accepting path of A′′ corresponds to a special path of A′ and
passes through exactly one state containing the x-atom x = α.

The suppression of x-atoms x ≤ α can be performed in a similar way. Note that
here, as soon as the last (instead of the first) occurrence of x ≤ α is satisfied along a run
ρ ∈ R(Av, x0), then the previous occurrences of x ≤ α are automatically satisfied. It follows
that x-atoms x ≤ α can be suppressed everywhere except inside states q ∈ F .

At this point of the proof, for each state q, (1) if q 6∈ I ∪F , then the x-atoms contained
in q are of the form x = α, (2) if q ∈ I, then they are of the form x = α or x ≥ α, and (3) if
q ∈ F , then they are the form x = α or x ≤ α. It remains to prove two facts about x-atoms
which are equalities. First for all q ∈ Q, among the x-atoms contained in q, at most one is
an equality x = α. Second, for any run ρ ∈ R(Av, x0), for any x-atom x = α, there exists
at most one configuration (q′, x′) of ρ such that Ix(q

′) contains x = α.

Third step. x-atoms x = α.
The first fact can be easily proved. Suppose that Ix(q) =

∧
α∈A(x = α) for some set A

of linear terms. Let α′ ∈ A. Then Ix(q) is equivalent to

(x = α′) ∧
∧

α∈A

(α′ = α).

Thus Ix(q) can be replaced by x = α′ and Iθ(q) by Iθ(q) ∧
∧
α∈A(α′ = α).

Let us prove the second fact. Let ρ be a run in R(Av, x0). Assume that there are in ρ
several configurations (qj, xj), 1 ≤ j ≤ k such that qj contains a given x-atom x = α. It
follows that time does not progress from (q1, x1) to (qk, xk), that is, xj = x1 for all j. Only
the first occurrence of x = α at state q1 is useful, the next ones can be forgotten. Therefore,
A is transformed in a way to count occurrences of x = α and to remember any progress of
time. As done before, a counter c has value 0 (1 or 2 resp.) in case of 0 (1 or 2 and more resp.)
occurrences of x = α. Moreover, values 1 and 2 are indexed by + if time has progressed
since the first occurrence of x = α. Formally we construct A′ = (Q′, I ′, F ′, E′,L′, I′) where
Q′ = Q×{0, 1, 1+, 2, 2+}, F

′ = F ×{0, 1, 1+, 2, 2+}, L′(q, c) = L(q) and I′(q, c) = I(q) for all
q ∈ Q and c ∈ {0, 1, 1+, 2, 2+}. For any q ∈ I, state (q, c) belongs to I ′ with c = 1 if x = α
belongs to q, and c = 0 otherwise. For any (q, τ, q′) ∈ E, edge ((q, c), τ, (q′, c′)) belongs to
E′ where c′ is computed according Table 1. Finally, for any state (q, c) containing x = α,

τ\c 0 1 1+ 2 2+

0 1 2 2+ 2 2+

1 1 2+ 2+ 2+ 2+

if q′ contains x = α

τ\c 0 1 1+ 2 2+

0 0 1 1+ 2 2+

1 0 1+ 1+ 2+ 2+

otherwise

Table 1: Computation of c′



PARAMETERS EVERYWHERE 19

we suppress this state if c = 2+, we suppress x = α from this state if c = 2. Indeed recall
that counter 2 indicates that it is at least the second occurrence of x = α, and the presence
of index + means a progress of time since the first occurrence of x = α.

4.3. Durations in Reset-free Automata. In this subsection, we again make Hypothesis
(∗). By Proposition 4.4, we know that the reset-free normalized automaton A can be
supposed simplified. Thanks to this property of A, we are going to construct a Presburger
formula describing all the possible durations of runs in R(Av, x0) in terms of the parameters.
We need the next notation.

Notation 4.5. Let t be a variable used to denote a duration and x be a variable for a clock
value. We call t-atom any t ∼ α or t ∼ α − x, with α a linear term. A t-atom is of first
type if it is of the form

t = α,
t ≡a,≥ α,
t = α− x,
t ≡a,≥ α− x.

It is of second type if it is of the form

t ≤ α− x.

A t-conjunction is a conjunction of t-atoms of second type.

Proposition 4.6. Let A be a reset-free normalized automaton. There exists a Presburger
formula λ(t, x,Θ) such that for any valuation v and any clock value x0, there exists a run
in R(Av, x0) with duration t0 iff

λ(t0, x0, v(Θ)) is true.

This formula is a disjunction of formulae of the form

λt ∧ λ≤ ∧ λx ∧ λθ,

where λt is a first type t-atom , λ≤ is a t-conjunction, λx is an x-conjunction and λθ is a
θ-conjunction. Its construction is effective.

Let us explain this proposition on the next example.

Example Consider the simplified automaton A of Figure 4. We denote by t0 the duration
of any run (i, x0)  (f, ·) in R(Av, x0), where v is a fixed parameter valuation. Every run
has to pass through state q which contains the x-atom x = θ1. Let us study the possible
durations t1 of runs ρ1 = (i, x0) (q, ·). Each duration t1 must be equal to v(θ1)−x0. For
runs ρ1 using the cycle, constraint v(θ1) > v(θ2) holds and t1 has the form m+ 3, m ≥ 0.
The unique run ρ1 not using the cycle is not constrained and its duration equals t1 = 2.
Now any duration t0 can be decomposed as t0 = t1 + 2n + 1 = v(θ1) − x0 + 2n+ 1, n ≥ 0.
Due to the x-atom x ≤ θ2 of state f , we get another constraint x0+t0 ≤ v(θ2). In summary,
we have

[(v(θ1) − x0 ≡1,≥ 3 ∧ v(θ1) > v(θ2)) ∨ v(θ1) − x0 = 2]
∧ [t0 ≡2,≥ v(θ1) − x0 + 1]
∧ [x0 + t0 ≤ v(θ2)]



20 V. BRUYÈRE AND J.-F. RASKIN

We get the next Presburger formula λ(t, x,Θ)

[(x ≡1,≤ θ1 − 3 ∧ θ1 > θ2) ∨ x = θ1 − 2]
∧ [t ≡2,≥ θ1 + 1 − x]
∧ [t ≤ θ2 − x]

such that there exists a run in R(Av, x0) with duration t0 iff λ(t0, x0, v(Θ)) is true. This
formula is in the form of Proposition 4.6 when it is rewritten as a disjunction of conjunctions
of t-atoms, x-atoms and θ-atoms.14

Thanks to the previous example, we can give some ideas of the proof of Proposition 4.6.
Except for the initial and final states, the states of a simplified automaton contain at most
one x-atom which is of the form x = α. The proof will be by induction on these x-atoms.
Given an x-atom x = α contained in some state q, any run ρ in R(Av, x0) passing through
this state q can be decomposed as (i, x0)  (q, x1) and (q, x1)  (f, x2), for some i ∈ I
and f ∈ F . Its duration t0 can also be decomposed as t1 + t2 with the constraint that the
clock value x0 + t1 must satisfy x = α. It follows that t0 = v(α)−x0 + t2. The durations t1
and t2 and the related constraints will be computed by induction. When there is no x-atom
in the automaton (base case), only θ-atoms can appear in states. Runs will therefore be
partitioned according to the set of θ-atoms that constrain them. Their durations will be
described as fixed values or arithmetic progressions.

Proof. (of Proposition 4.6). By Proposition 4.4, the reset-free normalized A = (Q, I, F,E,L, I)
is assumed to be simplified.

(1) We can suppose that I is reduced to one initial state i and F to one final state f . At
the end of the proof, it will remain to take a disjunction over i ∈ I and f ∈ F of the
constructed formulae. From now on, we suppose that I = {i} and F = {f}.

(2) Assumption. We make the assumption that i contains no x-atom and f contains no
x-atom x ≤ α. As A is simplified, this means that for any state q ∈ Q, either Ix(q) = ⊤
or Ix(q) equals some x = α. The proof is done by induction on the x-atoms x = α that
appear as Ix(q) with q ∈ Q. The formula λ(t, x,Θ) that we will construct will have no
t-conjunction, that is λ(t, x,Θ) will be a disjunction of formulae of the form λt∧λx∧λθ.

Base case. Suppose that Ix(q) = ⊤ for all q ∈ Q, that is I(q) = Iθ(q). Durations of runs
in R(Av, x0) are thus independent on the clock values. They are simply equal to the
number of edges labeled by τ = 1 along runs from i to f . And to each of these runs is
associated a constraint which is the conjunction of the θ-atoms contained in the states
of the run.

The proof is based on the classical Kleene theorem [10] using the particular alphabet

B = {(τ, ς) | τ ∈ {0, 1}, ς ∈ {Iθ(q), q ∈ Q}}.

To any edge (q, τ, q′) of A corresponds the letter (τ, Iθ(q
′)) of B. The concatenation · of

two letters (τ1, ς1) and (τ2, ς2) is defined as (τ1 +τ2, ς1∧ ς2). Thus a word over B is equal
to (t, ς) where t is a positive integer (a duration) and ς is a θ-conjunction (a constraint on
the parameters). In particular, the empty word is equal to (0,⊤). The star operation
∗ is defined as usual and the plus15 operation + is defined by L+ = L∗ \ {(0,⊤)}.
We denote by RatB(·,+ ) the smallest family of languages containing B and closed

14λt is equal to t ≡2,≥ θ1 + 1 − x and λ≤ is equal to t ≤ θ2 − x.
15This notation should not be confused with the one used for the union operation.



PARAMETERS EVERYWHERE 21

under · and +. The elements of a set L ∈ RatB(·,+ ) have a simple form. The second
components of these elements are all identical because operation ∧ is idempotent. The
first components constitute a set which is the union of a finite set and a finite number of
arithmetic progressions [7]. In other words L is described by a disjunction of formulae
of the form λt∧λθ such that λθ equals a fixed θ-conjunction ς and λt equals either t = α
or t ≡a,≥ α with α ∈ N.

Now by Kleene’s theorem applied to A, we get a rational language over B whose first
components describe the durations of all runs of R(Av, x0) and the second components
describe the related constraints. It is not difficult to prove that this rational language
can be rewritten as a finite union of languages in RatB(·,+ ). We thus get the required
formula λ(t, x,Θ) as a disjunction of formulae λt ∧ λθ where λt is a first-type t-atom
and λθ is a θ-conjunction.

General case. Now consider a particular x-atom x = α. Let us denote by P the set of
states q such that Ix(q) is equal to x = α. As A is simplified, any run ρ of R(Av, x0)
contains 0 or 1 state of P (see the second part of Definition 4.3). We are going to prove
that the expected formula λ(t, x,Θ) is equal to

λQ\P (t, x,Θ) ∨
∨

p∈P

λp(t, x,Θ)

where λQ\P describes durations of runs containing no state of P , and λp describes
durations of runs containing one occurrence of the state p of P .

All runs containing no state of P constitute the set R(A′v, x0) of an automaton A′

obtained from A by erasing all states in P . As A′ has one x-atom less, λQ\P (t, x,Θ) can
be constructed by induction hypothesis.

Let us now fix p ∈ P and a run ρ ∈ R(Av, x0) that contains it. This run is decomposed
into a run ρ1 = (i, x0) (p, x1) with duration t1, and a run ρ2 = (p, x1) (f, x2) with
duration t2. Duration t0 of ρ is equal to t1 + t2 such that x1 = x0 + t1, x2 = x1 + t2 and
x1 satisfies x = α. Durations t1 and t2 can be computed by induction in the following
way.

Let us begin with t1. The automaton A is modified into Ap,1 by erasing states of
P \ {p} and edges leaving p. Invariant Ix(p) is replaced by ⊤. The new unique final
state is p. The new automaton has one x-atom less, so λp,1(t, x,Θ) can be constructed by
induction hypothesis such that λp,1(t1, x0, v(Θ)) is true. Formula λp,1 is a disjunction
of formulae λ1

t ∧ λ
1
x ∧ λ

1
θ where λ1

t is a first type t-atom, λ1
x is an x-conjunction and λ1

θ

is a θ-conjunction. Suppose that λ1
t is one among

t = α1, t ≡a,≥ α1, t = α1 − x, t ≡a,≥ α1 − x. (4.1)

As x1 satisfies x = α and x1 = x0 + t1, then

x1 = v(α), t1 = v(α) − x0. (4.2)

So in (4.1), t can be replaced by α− x and (4.1) becomes

α− x = α1, α− x ≡a,≥ α1, α = α1, α ≡a,≥ α1.

Thus λ1
t becomes an x-atom or a θ-atom. The modified formula λ1

t ∧λ
1
x ∧λ

1
θ is denoted

by

λ′1x ∧ λ′1θ . (4.3)



22 V. BRUYÈRE AND J.-F. RASKIN

Let us now describe t2. We modify A into Ap,2 by erasing states of P \ {p} and
edges entering p. Formula Ix(p) is replaced by ⊤. The new unique initial state is p. By
induction hypothesis, λp,2(t, x,Θ) is constructed as a disjunction of formulae λ2

t ∧λ
2
x∧λ

2
θ

where λ2
t is one among

t = α2, t ≡a,≥ α2, t = α2 − x, t ≡a,≥ α2 − x. (4.4)

Recall that λp,2(t, x,Θ) describes the duration t2 of runs ρ2 = (p, x1)  (f, x2) for
which x1 satisfies x = α. Thus in (4.4), x can be replaced by α and (4.4) becomes

t = α2, t ≡a,≥ α2, t = α2 − α, t ≡a,≥ α2 − α.

This shows that λ2
t is now of the form

t = β or t ≡a,≥ β. (4.5)

Moreover λ2
x becomes a θ-conjunction when x is replaced by α. The modified formula

λ2
x ∧ λ

2
θ is denoted by

λ′2θ . (4.6)

Finally, we can describe t0 = t1 + t2. By (4.2) and (4.5), it has the form

t0 = v(α) − x0 + v(β) or t0 ≡a,≥ v(α) − x0 + v(β). (4.7)

Hence formula λp(t, x,Θ) for t0 is a disjunction of formulae λt ∧ λx ∧ λθ such that λt
has the form (see (4.7)) t = α−x+β or t ≡a,≥ α−x+β and λx ∧λθ has the form (see
(4.3 and (4.6)) λ′1x ∧ λ′1θ ∧ λ′2θ .

(3) Under the assumption that i contains no x-atoms and f contains no x-atom x ≤ α, we
have constructed a formula λ(t, x,Θ) with no t-conjunction. So we have to take into
account the x-conjunction Ix(i) and the x-atoms x ≤ α appearing in f . Thus x0 must
satisfy Ix(i) and x0 + t0 must satisfy all x ≤ α in f . It follows that the final formula is
equal to

λ(t, x,Θ) ∧ Ix(i)(x,Θ) ∧
∧

x≤α∈f

t ≤ α− x. (4.8)

Remark 4.7. Suppose that A is an automaton such that I(i) equals x = 0 for each initial
state i ∈ I. Then formula λ(t, x,Θ) of Proposition 4.6 contains the x-atom x = 0 (see (4.8)).
Hence, if λ(t0, x0, v(Θ)) is true, then necessarily x0 = 0, which can been interpreted as a
reset of the clock. This remark will be used in the next subsection.

4.4. Durations in General. This subsection is devoted to the proofs of Propositions 3.9
and 3.10. Here there is no longer the restriction on the automaton given by Hypothesis (∗):
it is any automaton as in Definition 2.2. This automaton is supposed to be normalized by
Proposition 4.2. Thus, given a state q, the edges (p, τ, g, r, q) entering q all have the same
r. We call q a reset-state in case r = {x}. The set of reset-states of A is denoted by QR.

Let A = (Q,E,L, I) be an automaton. Let us fix two states q, q′, a parameter valuation
v, a clock value x0. We denote by

Rq,q′(A
v, x0)

the set of runs ρ = (q, x0) (q′, ·) in Av. Let us study this set.



PARAMETERS EVERYWHERE 23

A run ρ in Rq,q′(A
v, x0) possibly contains some reset-states. It thus decomposes as a

sequence of k ≥ 1 runs ρj, 1 ≤ j ≤ k, such that for any j, ρj contains no reset-state, except
possibly for the first and the last configurations of ρj . The duration Dρj

of each ρj can be

computed thanks to Proposition 4.6. For any j, 1 ≤ j ≤ k, let us denote by λj(t, x,Θ) the
Presburger formula corresponding to Dρj

which is a disjunction of formulae λt∧λ≤∧λx∧λθ.
So the total duration Dρ is equal to the sum Σ1≤j≤kDρj

. We will see that the durations Dρ

of runs ρ ∈ Rq,q′(A
v, x0) can be symbolically represented thanks to rational expressions on

an alphabet whose letters are the formulae λt∧λ≤∧λx∧λθ that appear in the λj(t, x,Θ)’s.
Thanks to this symbolic description and because our logic is the fragment F-PTCTL, we
will be able to prove Propositions 3.9 and 3.10. It should be noted that the durations Dρ

of runs ρ ∈ Rq,q′(A
v, x0) cannot be described by a Presburger formula as in Proposition 4.6,

otherwise the model-checking problem for PTCTL would be decidable (see Corollary 3.3).
Let us now explain in details all these ideas.

In a first step, we construct from A several reset-free normalized automata as in Hypoth-
esis (∗). The construction is a standard one in automata theory. Runs ρj mentioned before
will be runs in these automata and their durations will be described thanks to Proposition
4.6.

First construction. For each couple (p, p′) of states of A such that p ∈ {q}∪QR and p′ ∈ {q′}∪
QR, we construct from A the following reset-free automaton Ap,p′ = (Q′, I ′, F ′, E′,L′, I′). The
set Q′ of states is (Q \QR) ∪ {p, p′} where p, p′ are copies of p, p′. The unique initial state
is p and the unique final state is p′. Let L′(p) = L(p) and L′(p′) = L(p′). Let I′(p) be equal
to I(p) if p = q and to (I(p) ∧ x = 0)16 if p 6= q. Let I′(p′) be equal to I(p′) if p′ 6∈ QR and to
(I(p′)∧ x = 0)17 if p′ ∈ QR. The set E′ of edges is the union of E restricted to Q \QR with
the next set of new edges11

(p, τ, g, r, p1) if (p, τ, g, r, p1) ∈ E
(p1, τ, g,∅, p

′) if (p1, τ, g, r, p
′) ∈ E

(p, τ, g,∅, p′) if (p, τ, g, r, p′) ∈ E.

In this way, automaton Ap,p′ satisfies Hypothesis (∗).
Let p ∈ {q} ∪QR and p′ ∈ {q′} ∪QR. We define x1 to be equal to x0 if p = q, and to

0 if p 6= q. The runs of R(Avp,p′, x1) are exactly the non-empty runs (p, x1)  (p′, ·) of Av

that pass through no reset-state (except possibly the first and the last states of the run).

The durations of runs in R(Avp,p′, x1) are described by formula λp,p
′
(t, x,Θ) of Proposition

4.6. This formula is a disjunction
∨
j λ

p,p′,j of formulae

λp,p
′,j = λp,p

′,j
t ∧ λp,p

′,j
≤ ∧ λp,p

′,j
x ∧ λp,p

′,j
θ . (4.9)

For each couple (p, p′) and each j, we associate a distinct letter bp,p′,j to each formula

λp,p
′,j. The set of all these letters is denoted by B. We say that letter bp,p′,j is a reset-letter

if p is a reset-state. The set of reset-letters is denoted BR.

In a second step, we construct another automaton from A in a way to show how a run
of Rq,q′(A

v, x0) is decomposed into a sequence of runs ρj according to reset-states of A. This
automaton will be a classical automaton [10].

16The x-atom x = 0 imposes a reset of the clock at state p (see Remark 4.7)
17As Ap,p′ must satisfy Hypothesis (∗), no reset can appears on the edges



24 V. BRUYÈRE AND J.-F. RASKIN

Second construction. We construct an automaton B over the alphabet B as follows. The set
of states equals QR ∪ {q, q′} and the set of edges equals {(p, b, p′) | b = bp,p′,j for some j}.
The unique initial (resp. final) state is q (resp. q′).

So, any run ρ of Rq,q′(A
v, x0) is map into a path in B from q to q′ which indicates how ρ

is decomposed according to reset-states of A. The duration of ρ is symbolically represented
by the word that labels the corresponding path in B. Hence the set of durations of runs of
Rq,q′(A

v, x0) is symbolically represented by the rational subset accepted by B. We denote
by

Lq,q′

this subset of B∗. Any word of Lq,q′ has at most one letter that is non reset (the first letter
of the word).

We now study in details rational expressions over the alphabet B and in particular the
rational expression defining Lq,q′ .

Rational expressions. Let L+ be denoting L∗ \ {ǫ} with ǫ denoting the empty word and
RatB(·,+ ) be the smallest family closed under · and +, and containing B. One can prove
that any rational language over B can be effectively rewritten as a finite union of languages
in {ǫ} ∪ RatB(·,+ ). Therefore

Lq,q′ =
⋃

i

Li (4.10)

with
Li = {ǫ} or Li = {bi} or Li = bi ·Ki

such that bi ∈ B,Ki ∈ RatBR
(·,+ ). The set Rq,q′(A

v, x0) is decomposed into

Rq,q′(A
v, x0) =

⋃

i

Ri (4.11)

according to (4.10).
An non empty word of Lq,q′ is a sequence b1b2 · · · bn ∈ B+. The first letter b1 describes

runs from state q to some reset-state p1, the clock value at q is x0. Each letter bi, i ≥ 2,
is a reset-letter. If 2 ≤ i < n, bi describes runs from reset-state pi−1 to reset-state pi, the
clock value at pi−1 is 0. If i = n, bi describes runs from reset-state pn−1 to state q′, the
clock value at pn−1 is 0. Let

λit ∧ λ
i
≤ ∧ λix ∧ λ

i
θ (4.12)

be the formula associated to each letter bi, i ≥ 1 (see (4.9)). Whenever i ≥ 2, λix contains
the x-atom x = 0 by Remark 4.7 and Definition of automaton Ap,p′. In this case, we prefer18

to work with the equivalent formula

κit ∧ κ
i
≤ ∧ κiθ (4.13)

such that x has been replaced by 0 in (4.12) (in particular, λx becomes a θ-conjunction).
In this formula κit is a t-atom of the form t = α or t ≡a,≥ α, κi≤ is a conjunction of t-atoms

of the form t ≤ α and κiθ is a θ-conjunction.

18The sequence b1b2 · · · bn symbolically represents certain runs of Rq,q′(A
v, x0). We are only interested in

the initial clock value x0 treated by formula λi
x of b1.



PARAMETERS EVERYWHERE 25

The concatenation b1 · b2 · · · · bn is interpreted as follows. It is the sum t1 + t2 + · · ·+ tn
of the durations t1, t2, . . . , tn respectively described by λ1

t , κ
2
t , . . . , κ

n
t . It is the conjunction

of the related constraints

(λ1
≤ ∧ κ2

≤ ∧ · · ·κn≤) ∧ λ1
x ∧ (λ1

θ ∧ κ
2
θ ∧ · · ·κnθ ).

Formulae λ1
≤, κ

2
≤, . . . κ

n
≤ impose upper bounds on t1, t2, . . . , tn. The x-conjunction imposes

constraints on the clock value x0. The θ-conjunction (λ1
θ ∧ κ

2
θ ∧ · · ·κnθ ) impose constraints

on the parameters.

In the next lemmas, we show that certain properties of runs in Ri can be expressed
in Presburger arithmetics thanks to the symbolic representation Li of Ri (see (4.10) and
(4.11)). After these lemmas, we will be fully equipped to prove Propositions 3.9 and 3.10.
Note that Proposition 3.10 can only be proved with ∼ limited to {<,≤, >,≥}, otherwise
the model-checking problem for PTCTL would be decidable.

Lemma 4.8. One can construct a Bx,Θ formula NonEmptyLi
(x, θ) such that for any valu-

ation v and any clock value x0, NonEmptyLi
(x0, v(θ)) is true iff Ri is non empty.

Proof. Runs of Ri have durations that are symbolically represented by the words of Li. Let
us construct formula NonEmptyLi

by induction on the rational expression defining Li (see
(4.10)). This formula will be equal to ηx∧ηθ with ηx an x-conjunction imposing constraints
on the clock and ηθ a θ-conjunction imposing constraints on the parameters.

Suppose Li = {ǫ}, then NonEmptyLi
(x,Θ) equals x = 0 is q is a reset-state and

I(q)(x,Θ) otherwise. Indeed, under these constraints, Ri is non empty since it contains the
empty run with the null duration. Suppose that Li = {bi} with bi ∈ B and associated
formula λit ∧ λi≤ ∧ λix ∧ λiθ. Recall that λit is one among the t-atoms t = α, t = α − x,

t ≡a,≥ α or t ≡a,≥ α − x and that λi≤ is of the form
∧
β t ≤ β − x. It follows that the non

emptiness of Ri can be expressed thanks to the minimum duration t = α (t = α− x resp.)
of runs in Ri. Then

NonEmptyLi
(x,Θ) = (

∧

β

α ≤ β − x) ∧ λx ∧ λθ (4.14)

( = (
∧

β

α ≤ β) ∧ λx ∧ λθ resp.)

Suppose now that Li = bi · Ki with bi ∈ B and Ki ∈ RatBR
(·,+ ). Let us first prove

by induction on the rational expression defining Ki that NonEmptyKi
(Θ) equals some θ-

conjunction ηθ.
19 Let Ki = {bi} with bi ∈ BR. We obtain a formula similar to (4.14) where

x is replaced by 0 (see(4.13)), so

NonEmptyKi
(Θ) = (

∧

β

α ≤ β) ∧ κθ.

Suppose that Ki = K · K ′ and formulae NonEmptyK , NonEmptyK ′ have been con-
structed by induction. Then NonEmptyKi

(Θ) = NonEmptyK(Θ) ∧ NonEmptyK ′(Θ) be-

cause the non emptiness of Ri requires the non emptiness of both K and K ′. If Ki = K+,
then NonEmptyKi

(Θ) = NonEmptyK(Θ) because conjunction in an idempotent opera-
tion. Finally for Li = bi ·Ki, we get NonEmptyLi

(x,Θ) = NonEmpty{bi}(x,Θ) ∧ ηθ where

NonEmpty{bi}(x,Θ) is formula (4.14) and ηθ is the formula just constructed for Ki.

19There is no term ηx since Ki ⊆ B+

R , that is, x = 0 (see (4.13)).



26 V. BRUYÈRE AND J.-F. RASKIN

Lemma 4.9. One can construct a Bx,Θ formula NonNullLi
(x, θ) such that for any valuation

v and any clock value x0, NonNullLi
(x0, v(θ)) is true iff Ri contains a run with a non null

duration.

Proof. The proof is in the same vein as for Lemma 4.8 with a similar form ηx ∧ ηθ for
NonNullLi

(x, θ).
If Li = {ǫ}, then clearly NonNullLi

(x, θ) = ⊥. If Li = {bi} with bi ∈ B and associated
formula λit ∧ λ

i
≤ ∧ λix ∧ λ

i
θ. Let us study as before formulae λit and λi≤, where λi≤ =

∧
β(t ≤

β − x). If λit equals t = α, then t is non null iff α > 0. Then NonNullLi
(x,Θ) is the

formula (α > 0) ∧ (
∧
β α ≤ β − x) ∧ λix ∧ λiθ. When λit is t = α − x, we have a similar

formula with t non null if α − x > 0. If λit equals t ≡a,≥ α, then a possible non null
value for t is either α if α > 0 or a if α = 0. We get formula NonNullLi

(x,Θ) equal to
((α > 0 ∧

∧
β(α ≤ β − x)) ∨ (α = 0 ∧

∧
β(a ≤ β − x))) ∧ λix ∧ λ

i
θ. A similar argument holds

if λit equals t ≡a,≥ α− x.
Let Li = bi · Ki, with bi ∈ B and Ki ∈ RatBR

(·,+). Let us first construct formula
NonNullKi

(Θ) by induction on Ki. This formula will be a θ-conjunction. If Ki = {bi} with
bi ∈ BR, we get a formula NonNullKi

as for the case Li = {bi} such that x is replaced by 0.
If Ki = K · K ′, then there exists a non null duration in Ki iff there exists some

duration in K and some other in K ′ and one of them is non null. Thus NonNullKi
(Θ)

equals (NonNullK(Θ) ∧ NonEmptyK ′(Θ)) ∨ (NonEmptyK(Θ) ∧ NonNullK ′(Θ)). If Ki =
K+, then NonNullKi

(Θ) = NonNullK(Θ). Finally, for Li = bi · Ki, we get the formula
(NonNull{bi}(x,Θ) ∧ NonEmptyKi

(Θ)) ∨ (NonEmpty{bi}(x,Θ) ∧ NonNullKi
(Θ)).

Lemma 4.10. One can construct a Bx,Θ formula NonZenoLi
(x, θ) such that for any val-

uation v and any clock value x0, NonZenoLi
(x0, v(θ)) is true iff Ri contains runs with

arbitrarily large durations.

Proof. The proof is again similar.
Suppose Li = {ǫ}, then clearly NonZenoLi

(x,Θ) = ⊥. Let Li = {bi} with bi ∈ B and
associated formula λit∧λ

i
≤∧λix∧λ

i
θ. If λit equals t = α or t = α−x, then NonZenoLi

(x,Θ) =

⊥. If λit equals t ≡a,≥ α or t ≡a,≥ α− x, then t is arbitrarily large iff λi≤ = ⊤. In this case,

NonZenoLi
(x,Θ) = λix ∧ λ

i
θ, otherwise NonZenoLi

(x,Θ) = ⊥.
Suppose now that Li = bi ·Ki. We begin to construct a θ-conjunction NonZenoKi

(Θ)
by induction on Ki. If Ki = {bi} with bi ∈ BR, then the formula is as in the case Li =
{bi} with x replaced by 0. If Ki = K · K ′, then NonZenoKi

(Θ) equals (NonZenoK(Θ) ∧
NonEmptyK ′(Θ))∨(NonEmptyK(Θ)∧NonZenoK ′(Θ)). IfKi = K+, then Ki has arbitrarily
large durations iff K contains a non null duration, that is NonZenoKi

(Θ) = NonNullK(Θ).
Thus we get for Li = bi ·Ki the formula

(NonZeno{bi}(x,Θ) ∧ NonEmptyKi
(Θ)) ∨ (NonEmpty{bi}(x,Θ) ∧ NonZenoKi

(Θ)).

Lemma 4.11. One can construct a Presburger formula MinLi
(t, x, θ) such that for any val-

uation v and any clock value x0, MinLi
(t0, x0, v(θ)) is true iff t0 is the minimum duration

of runs of Ri. This formula is equal to µt ∧ µx ∧ µθ such that µt is of the form t = α or
t = α− x, µx is an x-conjunction and µθ is a θ-conjunction.

Proof. In this proof, we have to describe the minimum duration by the variable t and the
constraints on it by µx and µθ.



PARAMETERS EVERYWHERE 27

Let Li = {ǫ}, then MinLi
(t, x,Θ) is equal to (t = 0) ∧ (x = 0) if q is a reset-state, and

(t = 0) ∧ I(q)(x,Θ) otherwise. Let Li = {bi} with bi ∈ B. Then looking at the form of
λit, the minimum duration equals α (α− x resp.) (see (4.14) and the sentence just before).
Therefore formula MinLi

(t, x,Θ) is equal to

(t = α) ∧ (
∧

β

α ≤ β − x) ∧ λix ∧ λ
i
θ (4.15)

( (t = α− x) ∧ (
∧

β

α ≤ β) ∧ λix ∧ λ
i
θ resp.)

Suppose Li = bi ·Ki. Let us begin to construct formula MinKi
(t,Θ) the form of which

will be µt ∧ µθ. If Ki = {bi} with bi ∈ BR, then MinKi
(t,Θ) equals (4.15) with x replaced

by 0. If Ki = K ·K ′, then the minimum duration in Ki equals the sum of the minimum
durations in K and K ′. Hence, if MinK(t,Θ) = (t = α) ∧ µθ and MinK ′ = (t = α′) ∧ µ′θ,
then MinKi

(t,Θ) is equal to (t = α + α′) ∧ µθ ∧ µ′θ. If Ki = K+, then the minimum
duration in Ki is the minimum duration in K, i.e. MinKi

(t,Θ) = MinK(t,Θ). Let us
come back to Li = bi ·Ki. Let Min{bi}(t, x,Θ) be equal to (4.15) and MinKi

(t,Θ) be equal

(t = α′) ∧ µθ. Then MinLi
(t,Θ) is equal to (t = α + α′) ∧ (

∧
β α ≤ β − x) ∧ λix ∧ λ

i
θ ∧ µθ

(resp. (t = α+ α′ − x) ∧ (
∧
β α ≤ β) ∧ λix ∧ λ

i
θ ∧ µθ) .

In the next lemma, we are going to construct a formula MaxLi
(t, x,Θ) that describes

the maximum duration t in Li. Note that durations t in Li can be arbitrarily large (see
Lemma 4.10). We will thus denote symbolically by t = ∞ the (non existing) maximum
duration.

Lemma 4.12. One can construct a formula MaxLi
(t, x, θ) such that for any valuation v

and any clock value x0, MaxLi
(t0, x0, v(θ)) is true iff t0 is the maximum duration of runs

of Ri. This formula is equal to a disjunction of formulae Mt ∧Mx ∧Mθ such that Mt is of
the form t = α, t = α− x or t = ∞, Mx is an x-conjunction and Mθ is a θ-conjunction.

Proof. If Li = {ǫ}, then MaxLi
is (t = 0) ∧ (x = 0) if q is a reset-state, and to (t =

0) ∧ I(q)(x,Θ) otherwise. Let Li = {bi} with bi ∈ B. Let us study λit and λi≤ equal to∧
β(t ≤ β − x). If λit is t = α, then MaxL(t, x,Θ) equals λit ∧

∧
β(α ≤ β − x) ∧ λix ∧ λ

i
θ.

A similar formula holds when λit equals t = α − x. If λit is t ≡a,≥ α with λi≤ = ⊤, then

MaxL(t, x,Θ) equals (t = ∞) ∧ λix ∧ λ
i
θ. Suppose that λit is t ≡a,≥ α with λi≤ being a non

empty conjunction
∧
β(t ≤ β−x). Then the maximum duration is the greatest value α+ay,

for some y ∈ N, which is less than or equal to the smallest among the β − x’s, denoted by
β′ − x. Assume that β′ − x ≡ b mod a and α ≡ c mod a for some b, c ∈ {0, · · · , a − 1}. If
b ≥ c, then the maximum duration is given by formula Mt equal to t = β′ − x − (b − c)
under the condition mθ equal to t ≥ α, i.e. β′ − x− (b− c) ≥ α . If b < c, then Mt equals
t = β′ − x − (a + b − c) under the condition mθ equal to β′ − x − (a + b − c) ≥ α. Thus
MaxL(t, x,Θ) is a disjunction over the different possible values of β′, b and c of formulae

Mt ∧mθ ∧ λθ ∧Mβ′,x,b,c

such that Mβ′,b,c is the conjunction

(
∧

β

β′ ≤ β) ∧ (β′ − x ≡a,≥ b) ∧ (α ≡a,≥ c).

A similar argument can be done when λit is t ≡a,≥ α− x.



28 V. BRUYÈRE AND J.-F. RASKIN

Let Li = bi · Ki. Let us first construct MaxKi
. This formula will contain no Mx. If

Ki = {bi} with bi ∈ BR, then all the proof done before for Li = {bi} can be repeated
with x replaced by 0. Suppose that Ki = K · K ′ and that MaxK(t,Θ) and MaxK ′(t,Θ)
are a disjunction of formulae Mt ∧Mθ and M ′

t ∧ M ′
θ respectively. If Mt = (t = α) and

M ′
t = (t = α′), then MaxKi

(t,Θ) contains the conjunction (t = α + α′) ∧ Mθ ∧ M ′
θ. If

Mt = (t = ∞) or M ′
t = (t = ∞), then MaxKi

(t,Θ) contains the conjunction (t = ∞) ∧
Mθ ∧M

′
θ. Suppose that Ki = K+, then the maximum duration equals ∞ if L contains

a non null duration (see Lemma 4.9), and 0 otherwise. Thus MaxKi
(t,Θ) is the formula

((t = ∞)∧NonNullK(Θ))∨((t = 0)∧¬NonNullK(Θ)). Formula MaxLi
(t, x,Θ) for Li = bi·Ki

can be easily constructed (as done before for K ·K ′).

Proof. (of Proposition 3.9). Let us prove that one can construct a Bx,Θ formula Runq(x,Θ)
such that for any valuation v and any clock value x0, Runq(x0, v(Θ)) is true iff there exists
an infinite run in Av starting with (q, x0). Such a run exists iff for some q′ ∈ Q, there
exist runs in Rq,q′(A

v, x0) with arbitrarily large durations. As Rq,q′(A
v, x0) =

⋃
i Ri, this is

equivalent to say that some Ri contains runs with arbitrarily large durations. By Lemma
4.10, it follows that formula Runq(x,Θ) is equal to

∨
q′∈Q

∨
i NonZenoLi

(x,Θ).

Proof. (of Proposition 3.10). Let γ be a linear term and ∼ ∈ {<,≤, >,≥}. We have to
show that there exists a Bx,Θ formula Duration∼γ

q,q′(x,Θ) such that for any valuation v and

any clock value x0, Duration∼γ
q,q′(x0, v(Θ)) is true iff there exists a run in Rq,q′(A

v, x0) with

duration t ∼ v(γ).
(1) We begin with ∼ ∈ {<,≤}. To test if there exists a run in Rq,q′(A

v, x0) with duration
t ∼ v(γ) is equivalent to test that tmin ∼ v(γ) with tmin being the minimum duration of
runs in Rq,q′(A

v, x0). By Lemma 4.11, the minimum duration for each Ri is expressed by
formula MinLi

(t, x,Θ). This formula is of the form µt ∧ µx ∧ µθ with µt equal to t = α or
t = α − x. Therefore Duration∼γ

q,q′(x,Θ) is equal to
∨
iDurationi, where each Durationi is

obtained by modifying MinLi
as follows: any formula µt equal to t = α (t = α− x resp.) is

replaced by formula α ∼ γ (α− x ∼ γ resp.).
(2) We now turn to ∼ ∈ {>,≥}. The approach is similar but with the maximum (instead

of minimum) duration. By Lemma 4.12, the maximum duration for each Ri is expressed
by formula MaxLi

(t, x,Θ). This formula is a disjunction of formulae Mt ∧Mx ∧Mθ with
Mt equal to t = α, t = α − x or t = ∞. It follows that Duration∼γ

q,q′(x,Θ) is equal to∨
iDurationi, where each Durationi is obtained by modifying MaxLi

in the following way.
If Mt equals t = α, t = α− x or t = ∞, then it is replaced by formula α ∼ γ, α− x ∼ γ or
⊤ respectively.

5. Conclusion

In this paper, we have completely studied the model-checking problem and the parame-
ter synthesis problem of the logic PTCTL, an extension of TCTL with parameters, over one
parametric clock discrete-timed automata. On the negative side, we showed that the model-
checking problem is undecidable. The undecidability result needs equality in the logic. On
the positive side, we showed that for the fragment F-PTCTL where the equality is not al-
lowed, the model-checking problem becomes decidable and the parameter synthesis problem
is solvable. Our algorithm is based on automata theoretic principles and an extension of



PARAMETERS EVERYWHERE 29

our method (see [5]) to express durations of runs of a timed automaton using Presburger
arithmetic. With this approach, the model-checking problem and the parameter synthesis
problem are syntactically translated into Presburger arithmetic which has a decidable the-
ory and an effective quantifier elimination. The model checking problem is translated into
a Presburger sentence inside which the Presburger decidability process looks for semantic
inconsistencies between the parameters and the parametric clock. The parameter synthesis
problem asks for which values of the parameters is a F-PTCTL formula true at a given
configuration of the timed automaton. Thanks to Presburger quantifier elimination, this
problem is solved by expressing the values of the parameters in terms of the operations +,
≤ and ≡ moda, a ∈ N

+.
To the best of our knowledge, this is the first work that studies the model-checking

and parameter synthesis problems with parameters both in the model (timed automaton)
and in the property (PTCTL formula). The problems solved in this paper are important
as it is very natural to refer in the properties of the system to parameters appearing in the
model of the system. We illustrated in the introduction the kind of properties that can be
expressed and automatically verified in our framework.

Future works could be the following ones. A first work is to give the precise borde-
line between decidability and undecidability. Is the model-checking decidable for the logic
PTCTL such that equality is forbidden in the operators ∃U∼α and ∀U∼α? No complexities
issues are given in this paper and only the discrete time is considered. Presburger theory
is decidable with the high 3ExpTime complexity. More efficient algorithms should be de-
signed for particular fragments of F-PTCTL. The extension to dense timed models of the
method proposed in this paper should be investigated.

References

[1] R. Alur, C. Courcoubetis, and D.L. Dill. Model checking for real-time systems. In Annual IEEE Sym-

posium on Logic in Computer Science, LICS’90, pages 414–425. IEEE Computer Society Press, 1990.
[2] R. Alur, T.A. Henzinger, and M.Y. Vardi. Parametric real-time reasoning. In Annual Symposium on

Theory of Computing, STOC’93, pages 592–601. ACM Press, 1993.
[3] Rajeev Alur, Kousha Etessami, Salvatore La Torre, and Doron Peled. Parametric temporal logic for

“model measuring”. In International Colloquium of Automata, languages and Programming, ICALP’99,
volume 1644 of Lecture Notes in Computer Science, pages 159–168, 1999.

[4] Alexis Bès. A survey of arithmetical definability. A tribute to Maurice Boffa, Special Issue of Belg.

Math. Soc., pages 1–54, 2002.
[5] V. Bruyère, E. Dall’olio, and J.-F. Raskin. Durations, parametric model-checking in timed automata

with Presburger arithmetic. In Annual Symposium on Theoretical Aspects of Computer Science,

STACS’03, volume 2607 of Lecture Notes in Computer Science, pages 687–698. Springer, 2003.
[6] Véronique Bruyère and Jean-François Raskin. Real-time model-checking: Parameters everywhere.

In 23rd Conference on Foundations of Software Technology and Theoretical Computer Science,

FSTTCS’03, volume 2914 of Lecture Notes in Computer Science, pages 100–111. Springer, 2003.
[7] S. Eilenberg. Automata, Languages, and Machines, volume A. Academic Press, 1974.
[8] E. Allen Emerson and Richard J. Trefler. Parametric quantitative temporal reasoning. In Annual IEEE

Symposium on Logic in Computer Science, LICS’99, IEEE Computer Society, pages 336–343, 1999.
[9] Thomas Hune, Judi Romijn, Marielle Stoelinga, and Frits Vaandrager. Linear parametric model checking

of timed automata. Journal of Logic and Algebraic Programming, 52-53:183–220, 2002.
[10] Harry Lewis and Christos Papadimitriou. Elements of the theory of computation. Prentice Hall, 1998.
[11] Joseph S. Miller. Decidability and complexity results for timed automata and semi-linear hybrid au-

tomata. In Hybrid Systems–Computation and Control, HSCC’00, volume 1790 of Lecture Notes in

Computer Science, pages 296–309. Springer, 2000.



30 V. BRUYÈRE AND J.-F. RASKIN

[12] Farn Wang. Timing behavior analysis for real-time systems. In Annual IEEE Symposium on Logic in

Computer Science, LICS’95, pages 112–122, 1995.
[13] Farn Wang and Pao-Ann Hsiung. Parametric analysis of computer systems. In International Conference

on Algebraic Methodology and Software Technology, AMAST’97, pages 539–553, 1997.

This work is licensed under the Creative Commons Attribution-NoDerivs License. To view
a copy of this license, visit http://creativecommons.org/licenses/by-nd/2.0/ or send a
letter to Creative Commons, 559 Nathan Abbott Way, Stanford, California 94305, USA.


	1. Introduction
	2. Parameters Everywhere
	2.1. Parametric Timed Automata
	2.2. Parametric Timed CTL Logic
	2.3. Problems
	2.4. Comments

	3. Decision Problems
	3.1. Undecidability for PTCTL
	3.2. Decidability for F-PTCTL

	4. Durations
	4.1. Normalized Automata
	4.2. Transformations of Reset-free Automata
	4.3. Durations in Reset-free Automata
	4.4. Durations in General

	5. Conclusion
	References

