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Abstract. Logical formalisms for reasoning about relations between spatial regions play
a fundamental role in geographical information systems, spatial and constraint databases,
and spatial reasoning in AI. In analogy with Halpern and Shoham’s modal logic of time
intervals based on the Allen relations, we introduce a family of modal logics equipped with
eight modal operators that are interpreted by the Egenhofer-Franzosa (or RCC8) relations
between regions in topological spaces such as the real plane. We investigate the expressive
power and computational complexity of logics obtained in this way. It turns out that our
modal logics have the same expressive power as the two-variable fragment of first-order
logic, but are exponentially less succinct. The complexity ranges from (undecidable and)
recursively enumerable to Π1

1-hard, where the recursively enumerable logics are obtained
by considering substructures of structures induced by topological spaces. As our undecid-
ability results also capture logics based on the real line, they improve upon undecidability
results for interval temporal logics by Halpern and Shoham. We also analyze modal logics
based on the five RCC5 relations, with similar results regarding the expressive power, but
weaker results regarding the complexity.

1. Introduction

Reasoning about topological relations between regions in space is recognized as one of
the most important and challenging research areas within spatial reasoning in artificial intel-
ligence (AI) and philosophy, spatial and constraint databases, and geographical information
systems (GISs). Research in this area can be classified according to the logical apparatus
employed:

– First-order theories of topological relations between regions, as studied in AI and philos-
ophy [Cla85, RCC92, PS98, CH01], spatial databases [PSV99, SS01] and from an algebraic
viewpoint in [DWM01, Ste00, DW05];

– Purely existential theories formulated as constraint satisfaction systems over jointly ex-
haustive and mutually disjoint sets of topological relations between regions [Ege94, RN99,
GPP95, SS01, RCC92, Ben94, CH01]
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– Modal logics of space with operators interpreted by the closure and interior operator of
the underlying topological space and propositions interpreted as subsets of the topological
space, see e.g., [KT44, Ben96, AvB02, Nut99, PH02].

A similar classification can be made for temporal reasoning: we have general first-order
theories [All84], temporal constraint systems [All83, VKV90, NB95] and modal temporal
logics like Prior’s tense logics, LTL, and CTL [GHR94, Eme90]. Surprisingly, one of the
most natural approaches to temporal reasoning has not yet found a fully developed analogue
on the spatial reasoning research agenda: Halpern and Shoham’s modal logic of intervals
[HS91], in which propositions are evaluated at intervals (rather than time points), and
where reference to other intervals is enabled by modal operators interpreted by Allen’s 13
relations between intervals, see also [vB83, Gal87]. Despite its bad computational behavior
(undecidable, usually not even r.e.), this framework proved rather fruitful and influential in
temporal reasoning, see e.g. [Ven90, Ven92, AF98, Ras99, Lod00, Lut03].

In this paper, we consider modal logics in which propositions are evaluated at the re-
gions of topological spaces, and reference to other regions is enabled by modal operators
interpreted as topological relations. For defining such logics, the two most important de-
cisions to be made are choosing an appropriate set of relations and identifying a suitable
notion of a “region” in a topological space.

Regarding the relations, in the initially mentioned research areas there appears to be
consensus that the eight Egenhofer-Franzosa (or RCC8) relations, which have been inde-
pendently introduced in [RCC92] and [EF91], and their coarser relative RCC5 consisting
of only five relations, are the most fundamental sets of relations between regions of topo-
logical spaces—both from a theoretical and a practical viewpoint, see e.g. [PSV99, Ege94,
RN99, SS01, RCC92]. Therefore, in the current paper we concentrate on these two sets
of relations. We should note that modal logics based on the Egenhofer-Franzosa relations
have been suggested in an early paper by Cohn [Coh93] and further considered in [Wes01].
However, it proved difficult to analyze the expressive power and computational behavior
of such logics: despite several efforts, to the best of our knowledge no results have been
obtained so far.

Concerning the regions of a topological space, we adopt a rather relaxed view: we
generally assume that regions are non-empty regular closed subsets of a topological space,
but we do not require that every such subset is a region. This view allows us to consider
logical structures, henceforth called region structures, that are based on various kinds of
regions. Among others, we consider the following options:

– Region structures in which the set of regions is exactly the set of non-empty regular closed
subsets of a topological space.

– In the Euclidean space Rn, region structures where regions are identified with all non-
empty convex regular closed sets, or with all hyper-rectangles.

– Substructures of the above region structures: for example, we may admit region structures
in which only some, but not all hyper-rectangles of Rn are regions. To distinguish this case
from the former two, we call region structures in which all regions of a particular kind are
present full region structures.

– Finite substructures of the above region structures.

The rationale behind the latter two choices of structures is that, for certain applications,
it is sufficient to require the presence of only those regions in region structures that are
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inhabited by spatial objects. If it is known that there are only finitely many such objects,
but their exact number is unknown, then finite substructures are the appropriate choice.

The main purpose of this paper is to introduce modal logics of topological relations in a
systematic way, to perform an investigation of their expressiveness and relationships, and to
analyze their computational behavior. Regarding expressiveness, our main result concerns
the relationship to first-order theories of topological relations. The expressive power of our
modal logics is incomparable with that standard theories of this kind since modal logics offer
an infinite supply of propositional variables corresponding to unary predicates of first-order
logic. In contrast, standard first-order theories of topological relations offer only eight binary
predicates interpreted as topological relations, and no unary predicates [RCC92, PS98,
PSV99, SS01]. Therefore, we consider the extension of first-order theories of topological
relations with an infinite number of “free” unary predicates. Then, we can show that our
logics based on the Egenhofer-Franzosa or RCC5 relations has exactly the same expressive
power as the two-variable fragment of first-order logic on the same set of relations (indeed,
this holds for any mutually disjoint and jointly exhaustive set of topological relations). We
also show that first-order logic is exponentially more succinct. We argue that the availability
of unary predicates is essential for a wide range of application areas: in contrast to describing
only purely topological properties of regions, it allows one to also capture other properties
such as being a country (in a GIS), a ball (for a soccer-playing robot), or a protected area
(in a spatial database). In our modal logics, we can thus formulate constraints based on
non-spatial properties such as “there are no two overlapping regions that are both countries”
and “every river is connected to an ocean or a lake”.

The main results of this paper concern the computational behavior of modal logics of
topological relations. We prove a very general undecidability result that captures all modal
logics of the RCC8 relations that are determined by a class of region structures whose
regions are (not necesserily all) non-empty regular closed sets, and that contains at least
one infinite structure. It is interesting to note that this result also covers logics that are
determined by substructures of region structures. In particular, it captures the substructures
of the real line where regions are intervals, and thus improves upon undecidability results
for interval temporal logics by Halpern and Shoham that do not capture substructures of
interval structures [HS91]. Using a variation of the proof of our central theorem, we can
even show that logics based on finite substructures of region structures are undecidable.
Although our results show that moving from full region structures to substructures does
not help to regain decidability, there is an improvement in computational complexity: we
show that most logics of RCC8 relations based on full region structures are Π1

1-hard and
thus not recursively enumerable. In contrast, we also prove that many logics determined
by substructures are recursively enumerable. Finally, we establish the undecidability of a
number of modal logics based on the RCC5 relations. The result is less general and, for
example, does not cover the substructure case. Recursive enumerability of RCC5-based
logics is left as an open problem.

This paper is organized as follows: in Section 2, we introduce region structures as the
semantical basis for modal logics of topological relations. The modal language is introduced
in Section 3. In this section, we also compare its expressiveness to that of first-order logic.
Additionally, we show that our modal logics are strictly more expressive than topological
constraint satisfaction problems. In Section 4, we introduce a number of natural modal
logics based on the Egenhofer-Franzosa relations that are induced by different notions of
regions, and briefly analyze their relationship. In Section 5, we then prove the central
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undecidability result capturing basically all interesting modal logics of RCC8 relations de-
termined by sets of region structures containing at least one infinite structure. For logics
of full region structures, this is strengthened to a Π1

1-hardness proof in Section 6. We also
prove recursive enumerability of many modal logics based on substructures of region struc-
tures. In Section 7, we prove undecidability of logics determined by classes of finite region
structures. Finally, in Section 8 we consider modal logics based on the RCC5 relations.

2. Structures

The purpose of the logics considered in this paper is to reason about regions in topolog-
ical spaces. In this section, we show how a topological space together with an appropriate
definition of “region” induces a logical structure, and establish some basic properties of the
structures obtained in this way.

Recall that a topological space is a pair T = (U, I), where U is a set and I is an interior
operator on U , i.e., for all s, t ⊆ U , we have

I(U) = U I(s) ⊆ s

I(s) ∩ I(t) = I(s ∩ t) II(s) = I(s).

The closure C(s) of s is C(s) = U − I(U − s). Of particular interest for spatial reasoning
are n-dimensional Euclidean spaces Rn based on Cartesian products of the real line with
the standard topology induced by the Euclidean metric. Depending on the application
domain, different definitions of regions in topological spaces have been introduced. Almost
all of them have in common that the regions of a topological space T = (U, I) are identified
with some set of non-empty, regular closed subsets of U , where a subset s ⊆ U is called
regular closed if CI(s) = s.1 Some popular choices for topological spaces and regions are
the following:

• the set Treg of all non-empty regular closed subsets of some topological space T, in
particular the topological spaces Rn for some n ≥ 1;

• the set Rn
conv of non-empty convex regular closed subsets of Rn, for some n ≥ 1;

• the set Rn
rect of closed hyper-rectangular subsets of Rn, i.e., regions of the form

∏n
i=1Ci, where C1, . . . , Cn are non-singleton closed intervals in R, for some n ≥ 1.

Sometimes, regions are required to satisfy additional constraints such as being connected
or homeomorphic to the closed unit disc.

Given a topological space T and a set of regions UT, we define the extension of the eight
Egenhofer-Franzosa (or RCC8) relations dc (‘disconnected’), ec (‘externally connected’), tpp

(‘tangential proper part’), tppi (‘inverse of tangential proper part’), po (‘partial overlap’),
eq (‘equal’), ntpp (‘non-tangential proper part’), and nttpi (‘inverse of non-tangential proper
part’) as the following subsets of UT × UT:

(s, t) ∈ dcT iff s ∩ t = ∅
(s, t) ∈ ecT iff I(s) ∩ I(t) = ∅ ∧ s ∩ t 6= ∅
(s, t) ∈ poT iff I(s) ∩ I(t) 6= ∅ ∧ s 6⊆ t ∧ t 6⊆ s
(s, t) ∈ eqT iff s = t

1Another possibility is to identify regions with non-empty regular open sets instead of non-empty regular
closed ones. The results presented in this paper hold for this alternative definition of regions as well.
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Figure 1: The eight relations between regions.

(s, t) ∈ tppT iff s ⊆ t ∧ s 6⊆ I(t) ∧ s 6= t
(s, t) ∈ ntppT iff s ⊆ I(t) ∧ s 6= t

(s, t) ∈ tppiT iff (t, s) ∈ tppT

(s, t) ∈ ntppiT iff (t, s) ∈ ntppT.

Figure 1 shows examples of the RCC8 relations in the real plane R2. The structure
R(T, UT) := 〈UT, dcT, ecT, poT, eqT, tppT, ntppT, tppiT, ntppiT〉 is called the concrete region
structure induced by (T, UT). Observe that concrete region structures do not include a val-
uation of propositional letters, and thus correspond to a frame in standard modal logic.
We will later extend region structures to region models by augmenting them with valuation
functions.

We now develop a first-order characterization of concrete region structures. This will
establish some fundamental properties of concrete region structures that are used through-
out the whole paper, and will also provide us with an easy proof of the fact that certain
logics considered in this paper are recursively enumerable. We call a relational structure

R = 〈W, dcR, ecR, poR, eqR, tppR, ntppR, tppiR, ntppiR〉

a general region structure if W is a non-empty set and the rR are binary relations on W
that are mutually disjoint (i.e., rR ∩ qR = ∅, for r 6= q), jointly exhaustive (i.e., the union
of all rR is W ×W ), and satisfy the following:

• eq is interpreted as the identity on W , dcR, ecR, and poR are symmetric, and tppiR

and ntppiR are the inverse relations of ttpR and ntppR, respectively;
• the rules of the composition table (Figure 2) are satisfied in the sense that, for any

entry q1, . . . , qk in row r1 and column r2, the first-order sentence

∀x∀y∀z((r1(x, y) ∧ r2(y, z)) → (q1(x, z) ∨ · · · ∨ qk(x, z))

is valid (∗ is the disjunction over all eight relations).

The following theorem shows that, in some sense, concrete region structures and general
region structures are interchangable. In what follows, we will thus often only speak of
region structures and only distinguish between general and concrete region structures when
necessary. A proof can be found in Appendix A.
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◦ dc ec tpp tppi po ntpp ntppi

dc,ec, dc,ec, dc,ec, dc,ec,
dc ∗ po,tpp, po,tpp, dc po,tpp, po,tpp, dc

ntpp ntpp ntpp ntpp

dc,ec, dc,ec, ec,po, dc,ec, po,
ec po,tppi, po,tpp, tpp, dc,ec po,tpp, tpp, dc

ntppi tppi,eq ntpp ntpp ntpp

dc,ec, dc,ec, dc,ec,
tpp dc dc,ec tpp,ntpp po,tpp, po,tpp, ntpp po,tppi,

tppi,eq ntpp ntppi

dc,ec, ec,po, po,eq, po, po,
tppi po,tppi, tppi, tpp, tppi,ntppi tppi, tpp, ntppi

ntppi ntppi tppi ntppi ntpp

dc,ec, dc,ec, po, dc,ec, po, dc,ec,
po po,tppi, po,tppi, tpp, po,tppi, ∗ tpp, po,tppi,

ntppi ntppi ntpp ntppi ntpp ntppi

dc,ec, dc,ec,
ntpp dc dc ntpp po,tpp, po,tpp, ntpp ∗

ntpp ntpp

dc,ec, po, po, po, po, tppi,
ntppi po,tppi, tppi, tppi, ntppi tppi, tpp,ntpp, ntppi

ntppi ntppi ntppi ntppi ntppi,eq

Figure 2: The composition table.

Theorem 1 (Representation theorem).

(i) Every concrete region structure is a general region structure;
(ii) every general region structure is isomorphic to a concrete region structure;
(iii) for every n > 0, every countable general region structure is isomorphic to a concrete

region structure of the form R(Rn, URn) (with URn ⊆ Rn
reg).

Note that Points (ii) and (iii) of Theorem 1 rely on the fact that we admit any non-empty
set of non-empty regular closed sets as a possible choice for the regions of a topological
space. This is of course different from admitting only structures in which, for example, all
non-empty regular closed sets are required to be regions, or all closed hyper-rectangles are
required to be regions. The logics introduced in Section 4 will be based on both kinds of
structures. Quite informally, we shall in the following call structures of the latter kind full
concrete region structures. We introduce some useful classes of region structures:

• RS is the class of all general region structures;
• T OP denotes the class of all region structures R(T,Treg).

Observe that the structures in T OP are full concrete region structures. It is interesting
to note that, in contrast to RS, T OP cannot be characterized by means of a recursively
enumerable set of first-order sentences. This follows from the non-recursive enumerability
of the logic of T OP to be introduced and investigated later.

We should also note that the region structure R(R,Rrect) = R(R,Rconv) is an interval
structure. Therefore, topological modal logics interpreted in such structures may be viewed
as temporal interval logics similar to the ones defined by Halpern and Shoham in [HS91].
A minor technical difference between our interval structure and the ones considered by
Halpern and Shoham is that our requirement of regular closedness excludes point-intervals,
while such intervals are admitted by Halpern and Shoham.
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3. The Language

The modal language LRCC8 extends propositional logic with countably many variables
p1, p2, . . . and the Boolean connectives ¬ and ∧ by means of the unary modal operators
[dc], [ec], etc. (one for each topological relation). A region model M = 〈R, pM

1 , p
M
2 , . . .〉 for

LRCC8 consists of a region structure R = 〈W, dcR, ecR, . . .〉 and the interpretation pM
i of the

variables pi of LRCC8 as subsets of W . A formula ϕ is either true at a region s ∈W (written
M, s |= ϕ) or false at s (written M, s 6|= ϕ), the inductive definition being as follows:

(1) if ϕ is a prop. variable, then M, s |= ϕ iff s ∈ ϕM;
(2) M, s |= ¬ϕ iff M, s 6|= ϕ;
(3) M, s |= ϕ1 ∧ ϕ2 iff M, s |= ϕ1 and M, s |= ϕ2;
(4) M, s |= [r]ϕ iff, for all t ∈W , (s, t) ∈ rR implies M, t |= ϕ.

We use the usual abbreviations: ϕ→ ψ for ¬ϕ ∨ ψ and 〈r〉ϕ for ¬[r]¬ϕ.
In the remainder of this section, we discuss the expressive power of the language LRCC8.

The discussion starts with some simple observations.

• First, the difference modality 2dϕ, investigated for example in [dR92], has the fol-
lowing semantics:

M, s |= 2dϕ iff M, t |= ϕ for all t ∈W such that t 6= s.

In LRCC8, it can be expressed as
∧

r∈RCC8−{eq}[r]ϕ since the relations are jointly

exhaustive and mutually exclusive.
• Second, the useful universal box 2uϕ, which is well-known from modal logic [GP92],

has the following semantics:

M, s |= 2uϕ iff M, t |= ϕ for all t ∈W.

In LRCC8, it can be expressed as ϕ ∧ 2dϕ.
• Third, we can express that a formula ϕ holds in precisely one region (i.e., is a

nominal [GV93]) by writing

nom(ϕ) = 3u(ϕ ∧ 2d¬ϕ),

where 3uϕ = ¬2u¬ϕ. The availability of nominals means that we can introduce
names for regions; e.g., the formulas

nom(Elbe), nom(Dresden)

state that “Elbe” (the name of a river) and “Dresden” each apply to exactly one
region.

• Finally, it is often useful to define operators [pp] and [ppi] as abbreviations:

[pp]ϕ = [tpp]ϕ ∧ [nttp]ϕ

[ppi]ϕ = [tppi]ϕ ∧ [nttpi]ϕ.

As in the temporal case [HS91] and following Cohn [Coh93], we can use these new
operators to classify formulas ϕ according to whether

– they are homogeneous, i.e. they hold continuously throughout regions:

2u(ϕ→ [pp]ϕ)

– they are anti-homogeneous, i.e. they hold only in regions whose interiors are
mutually disjoint:

2u(ϕ → ([pp]¬ϕ ∧ [po]¬ϕ)
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Instances of anti-homogeneous propositions are “river” and “university campus”,
while “occupied-by-water” is homogeneous.

As this paper concentrates on the investigation of the expressivity and computational prop-
erties of topological modal logics, it is out of scope to describe potential applications in
detail. Therefore, we only give a few illustrative examples of statements in LRCC8. The fol-
lowing example describes, in a drastically simplified way, the relationship of cities, harbours,
rivers, and the sea. Based on this ‘background theory’, it then describes the relationship of
the city of Dresden and the river Elbe.

2u(harbor-city ↔ (city ∧ 〈ppi〉harbor))

2u(harbor → (〈ec〉river ∨ 〈ec〉sea))

2u(Dresden → harbor-city)

2u(Elbe → river)

2u(Dresden →
∧

r∈RCC8−{dc}[r]¬sea)

2u(Dresden → (〈po〉Elbe ∧
∧

r∈RCC8−{dc}[r](river → Elbe)))

From these formulas, it follows that Dresden has a part that is a harbor and is related via
ec to the river Elbe.

The example suggests a scheme for the representation of spatial knowledge in LRCC8 that
is known from description logic [BCM+03]: a background theory (called TBox in descrip-
tion logic) represents knowledge about general classes of regions such as those describing
harbors and rivers. Knowledge about particular regions is formulated by using nominals
and expressing spatial relations between them. In description logic, knowledge of this latter
kind would be stored in an ABox.

We now relate the expressive power of the modal language LRCC8 to the expressive
power of two standard formalisms for spatial reasoning: constraint networks and spatial
first-order theories.

RCC8 constraint networks are a basic, but rather popular formalism for representing
spatial knowledge using the RCC8 relations [RN99, Ege94, GPP95, SS01, RCC92]. In the
following, we show that our modal language LRCC8 can capture constraint networks in a
straightforward way. An RCC8 constraint network is a finite set of constraints (s r r) with
s, r region variables and r an RCC8 relation. Such a network N is satisfiable in a topological
space T with regions UT if there exists an assignment δ of regions in UT to region variables
such that (s r r) ∈ N implies δ(s) rT δ(r). In our language LRCC8, we can express a
constraint network N that uses region variables s1, . . . , sk by writing

∧

(sirsj)∈N

3u(pi ∧ 〈r〉pj) ∧
∧

1≤i≤k

nom(pi).

This formula is clearly satisfiable iff N is satisfiable.
Spatial first-order theories are usually formulated in first-order languages equivalent

to the first-order language FORCC8 that has equality, eight binary predicates for the RCC8

relations, no function symbols, and no unary predicates [PSV99, PS98, SS01, RCC92]. Intu-
itively, we cannot reduce LRCC8 to such languages because they do not offer a counterpart of
LRCC8’s propositional letters. A formal proof is provided by the following two observations:

(1) FORCC8 is decidable over the region structure R(R2,R2
rect). Indeed, it is not hard

to verify that there is a reduction to the first-order theory of 〈R, <〉 which coincides
with the first-order theory of 〈Q, <〉 and, therefore, is decidable [End72]. Details
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of the reduction are omitted as it is similar to the proof of Theorem 14 given in
Appendix C (but simpler).

(2) In Section 6, we show that LRCC8 is not recursively enumerable over R(R2,R2
rect).

Thus, the adequate first-order language to compare LRCC8 with is the monadic extension
FOm

RCC8 of FORCC8 that is obtained by adding countably many unary predicates p1, p2, . . ..
By well-known results from modal correspondence theory [Gab81b], any LRCC8 formula ϕ
can be polynomially translated into a formula ϕ∗ of FOm

RCC8 with only two variables such
that, for any region model M and any region s,

M, s |= ϕ iff M |= ϕ∗[s].

More surprisingly, the converse holds as well: this follows from recent results of [LSW01]
since the RCC8 relations are mutually exclusive and jointly exhaustive. A proof sketch of
the following theorem can be found in Appendix B.

Theorem 2. For every FOm
RCC8-formula ϕ(x) with free variable x that uses only two vari-

ables, one can effectively construct a LRCC8-formula ϕ∗ of length at most exponential in the
length of ϕ(x) such that, for every region model M and any region s, M, s |= ϕ∗ iff M |=
ϕ[s].

However, there is also an important difference between LRCC8 and the two-variable fragment
of FOm

RCC8: the latter is exponentially more succinct than the former. This can be shown
using a formula proposed by Etessami, Vardi, and Wilke [EVW02] stating that any two
regions agreeing on p0, . . . , pn−1 also agree on pn. A proof can be found in Appendix B.

Theorem 3. For n ≥ 1, define a FOm
RCC8 formula

ϕn := ∀x∀y
(

∧

i<n

(pi(x) ↔ pi(y)) → (pn(x) ↔ pn(y))
)

Then every LRCC8-formula ψn that is equivalent to ϕn on the class of all region structures
RS has length 2Ω(n).2

We believe that this succinctness result also holds on other classes of region structures such
as the singleton {R(Rn,Rn

reg)}, but leave the proof as an open problem.

4. Logics

In this section, we define a number of topological modal logics by applying the language
LRCC8 to different classes of region structures. We also establish a number of separation
results showing that logics obtained from different classes of region structures do not usually
coincide.

Let S be a class of region structures. An LRCC8 formula ϕ is valid in S if it is true
in all regions of all models based on region structures from S. We use LRCC8(S) to denote
the logic of S, i.e., the set of all LRCC8-formulas valid in S. If S = {R(T, UT)} for some
topological space T with regions UT, then we abbreviate LRCC8(S) by writing LRCC8(T, UT).
The following logics of full concrete region structures (see Section 2) will play a prominent
role in this paper:

2Following the formulation of Theorem 2, the formula ψn is called equivalent to ϕn if the following holds:
for every region model M and any region s, M, s |= ψn iff M |= ϕn[s]. As the formula ϕn does not have a
free variable, the right hand side of this equivalence does not depend on s.
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• the logic LRCC8(T OP) of all full concrete region structures of regular closed regions
R(T,Treg);

• logics based on the Rn, for some n ≥ 1: LRCC8(Rn,Rn
reg), LRCC8(Rn,Rn

conv), and
LRCC8(Rn,Rn

rect).

We will also study the logic LRCC8(RS) of all region structures. Note that the region classes
underlying the above logics admit unbounded regions such as Rn. However, the technical
results proved in this paper also hold if we consider bounded regions, only.

We now investigate the relationship between the introduced logics. As an exhaustive
analysis is out of the scope of this paper, we only treat some important cases:

(1) LRCC8(T OP) 6⊆ LRCC8(RS) and LRCC8(Rn,Rn
x ) 6⊆ LRCC8(RS) for x∈{reg, conv, rect}

and n > 0 since

(nom(p) ∧ nom(q) ∧ 3u(p ∧ 〈dc〉q)) → 3u(〈ppi〉p ∧ 〈ppi〉q)

is not valid in RS (it states that any two disconnected regions are proper parts of
a region). The converse inclusions obviously hold for all n > 0.

(2) LRCC8(Rn,Rn
x ) 6⊆ LRCC8(T OP) for x ∈ {reg, conv, rect} and n > 0: 〈ppi〉⊤ is

valid in R(Rn,Rn
x ), but not in T OP . For the converse direction, we clearly have

LRCC8(T OP) ⊆ LRCC8(Rn,Rn
reg) for all n > 0.

(3) For n,m > 0 and m′ > 1, LRCC8(Rn,Rn
rect) 6⊆ L, where L is any logic from

LRCC8(Rn+1,Rn+1
rect ), LRCC8(Rm′

,Rm′

conv), LRCC8(Rm,Rm
reg), LRCC8(T OP), LRCC8(RS).

To see this define, for k > 0, an RCC8 constraint network ec[k] as follows:

ec[k] = {(xi ec xj) | 1 ≤ i, j ≤ k}.

For n > 0, ec[2n + 1] is not satisfiable in R(Rn,Rn
rect), but it is satisfiable in the

classes of region structures determining the logics L. Observe that the condition
m′ > 1 is required because R(R,Rconv) = R(R,Rrect).

(4) For n > 0, LRCC8(Rn,Rn
conv) 6⊆ LRCC8(Rn+1,Rn+1

conv). Since LRCC8(R,Rconv) =
LRCC8(R,Rrect), the case n = 1 follows from the previous item. Regarding the
cases n > 1, for simplicity we only consider n = 2 explicitly. A generalization is
straightforward. Take region variables xij, 1 ≤ i < j ≤ 4. Then the constraint
network obtained as the union of ec[4],

{(xi pp xij), (xj pp xij) | 1 ≤ i < j ≤ 4}

and
{(xij ec xk) | 1 ≤ i < j ≤ 4, k ∈ {1, 2, 3, 4} − {i, j}}

is satisfiable in R(R3,R3
conv) but not in R(R2,R2

conv).
(5) For all n,m > 0, LRCC8(Rn,Rn

reg) 6⊆ LRCC8(Rm,Rm
conv) and LRCC8(Rn,Rn

reg) 6⊆
LRCC8(Rm,Rm

rect): the following formula states that, for any three pair-wise discon-
nected regions, there is another region containing only the first two (but not the
third) as a proper part:

(

∧

1≤i≤3

nom(pi) ∧
∧

1≤i<j≤3

3u(pi ∧ 〈dc〉pj)
)

→

3u(〈ppi〉p1 ∧ 〈ppi〉p2 ∧ ¬〈ppi〉p3).

This formula is valid in R(Rn,Rn
reg), but not in R(Rn,Rn

conv) and R(Rn,Rn
rect).
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As these examples show, LRCC8 is powerful enough to “feel” the difference between different
topological spaces and different choices of regions.

While full concrete region structures are appropriate for reasoning about topological
spaces themselves, for many applications it is not adequate to demand that models have
to comprise all regions of a particular form (such as the non-empty regular closed ones
or the closed hyper-rectangles). In such applications, models may contain only some such
regions—those that are inhabited by spatial objects that are relevant for the application.
This observation gives rise to another class of topological modal logics: given a class S
of region structures, we use LS

RCC8(S) to denote the logic determined by the class of all
substructures of structures in S. Note that the class RS is closed under substructures by
definition, and thus we have LRCC8(RS) = LS

RCC8(RS). Taking this idea one step further,
we may even be concerned with applications where the number of relevant spatial objects
is known to be finite, but their exact number is unknown. Then, we should consider only
models comprising a finite number of regions, without assuming an upper bound on their
number. Thus, we use Lfin

RCC8(S) to denote the logic of all finite substructures of structures
in S.

The inclusion of such substructure logics and their finite versions is a distinguishing fea-
ture of the undecidability results proved in this paper: the general undecidability theorems
presented in Sections 5 and 7 cover all logics of full concrete region structures introduced
in this section, as well as their substructure variants and finite substructure variants. In
contrast, the undecidability proofs of Halpern and Shoham for interval temporal logics are
not applicable to the substructure variants of these logics [HS91]. Moreover, it will turn out
that logics of full concrete region structures are usually Π1

1-hard, while their substructure
counterparts are usually recursively enumerable.

We now continue our investigation of the relationship between topological modal logics,
taking into account substructure logics and their finite companions. Some of the new family
members turn out to be already known:

Theorem 4. For n > 0, we have

(1) LRCC8(RS) = LS
RCC8(T OP) = LS

RCC8(Rn,Rn
reg);

(2) Lfin
RCC8(RS) = Lfin

RCC8(T OP) = Lfin
RCC8(Rn,Rn

reg).

Proof All the mentioned logics are modal logics determined by classes of structures that
are closed under substructures. As shown in [Wol97], Corollary 3.8, such modal logics are
determined by the at most countable members of those classes. Thus, Theorem 4 is an
immediate consequence of Theorem 1.

A few additional interesting observations are the following:

(6) The non-inclusions given under Items 3 and 4 above also hold for the corresponding
substructure and finite substructure cases. The proofs are identical.

(7) The arguments given in Items 1, 2 and 5 do not carry over since the given formulas
are not valid in the corresponding substructures and finite substructures. Indeed, by
Theorem 4, in these cases the first claim of Item 1 does not hold and the remaining
claims of Item 1 and 2 do not hold for x = reg. In Item 5, the statement is wrong
in the substructure case and finite substructure case: it is not hard to see that, e.g.,
LS

RCC8(Rn,Rn
reg) ⊆ LS

RCC8(Rn,Rn
conv) and LS

RCC8(Rn,Rn
reg) ⊆ LS

RCC8(Rn,Rn
rect) for

all n > 0, and analogous claims hold in the finite substructure case.
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Lfin
RCC8(R,Rrect) = Lfin

RCC8(R,Rconv)
∪ ∪

Lfin
RCC8(R2,R2

rect) ⊃ Lfin
RCC8(R2,R2

conv)
∪ ∪

Lfin
RCC8(R3,R3

rect) ⊃ Lfin
RCC8(R3,R3

conv)
∪ ∪

Lfin
RCC8(RS) = Lfin

RCC8(Rn,Rn
reg)

∪ ∪
LRCC8(RS) = LS

RCC8(Rn,Rn
reg)

∩
LRCC8(T OP)

∩
LRCC8(Rn,Rn

reg)

Figure 3: Inclusions between logics.

(8) Lfin
RCC8(S) 6⊆ L for any class of region structures S and L among LRCC8(RS),

LRCC8(T OP) and LRCC8(Rn, Un) with n ≥ 1 and Rn
rect ⊆ Un: the Löb-formula

from modal logic
[pp]([pp]p → p) → [pp]p.

is valid in a relational structure iff there is no infinite ascending pp-chain, see
[GKWZ03], pages 8-12. Thus, this formula is valid in all finite region structures,
but not in all infinite ones.

(9) A number of additional inclusions is easily derived such as LS
RCC8(Rn+1,Rn+1

rect ) ⊆

LS
RCC8(Rn,Rn

rect), for n > 0: it is easy to convert a substructure of R(Rn+1,Rn+1
rect )

into an isomorphic substructure of R(Rn,Rn
rect).

The derived inclusions are summarized in Figure 3. By Points 1 to 9 above, all listed
inclusions are indeed proper. For the sake of readability, we do not attempt to display all
derived non-inclusions in Figure 3.

5. Undecidability

We now establish the central result of this paper: a rather general undecidability result
that covers all logics introduced in the previous section. The only exceptions are logics based
on classes of finite region structures, whose undecidability will be established in Section 7.
To the best of our knowledge, the undecidability result proved in this section covers all
classes of region structures that have been considered in the literature and contain at least
one infinite structure. As the precise formulation of the result is somewhat technical, we
start with a weaker version in which we require that the class of region structures contains
at least one structure of the form R(Rn, U) with Rn

rect ⊆ U . This condition will later be
replaced with a more general one.

Theorem 5. Let S ⊆ RS and suppose there exists n > 0 and a set U ⊆ Rn
reg such thatRn

rect ⊆ U and R(Rn, U) ∈ S. Then LRCC8(S) is undecidable.
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Figure 4: Enumerating tile positions.

Concerning the logics introduced in Section 4, we thus obtain the following:

Corollary 6. The logics LRCC8(S) and LS
RCC8(S) are undecidable, for S one of RS, T OP,

R(Rn,Rn
reg), R(Rn,Rn

conv), and R(Rn,Rn
rect), with n > 0.

We now develop the proof of Theorem 5. As we shall see, the proof suggests the mentioned
generalization of Theorem 5, which will be stated subsequently. To ease notation, in the
proofs given in this and the following sections we denote accessibility relations in models
simply with dc, ec, etc., instead of with dcR, ecR, etc.

The proof of Theorem 5 is by reduction of the domino problem that requires tiling of
the first quadrant of the plane to the satisfiability of LRCC8 formulas. As usual, a formula ϕ
is called satisfiable in a region model M = 〈W, dc, ec, . . . , pM

1 , p
M
2 , . . .〉 if there is an s ∈ W

with M, s |= ϕ.

Definition 7. Let D = (T,H, V ) be a domino system, where T is a finite set of tile types
and H,V ⊆ T × T represent the horizontal and vertical matching conditions. We say that
D tiles the first quadrant of the plane iff there exists a mapping τ : N2 → T such that, for
all (x, y) ∈ N2:

• if τ(x, y) = t and τ(x+ 1, y) = t′, then (t, t′) ∈ H
• if τ(x, y) = t and τ(x, y + 1) = t′, then (t, t′) ∈ V

Such a mapping τ is called a solution for D.

For reducing this domino problem to satisfiability in region models based on S, we fix
an enumeration of all the tile positions in the first quadrant of the plane as indicated in
Figure 4. The function λ takes positive integers to N × N-positions, i.e. λ(1) = (0, 0),
λ(2) = (1, 0), λ(3) = (1, 1), etc.

The idea of the reduction is to construct a formula ϕD that enforces the existence of
a sequence of regions r1, r2, . . . such that ri ntpp rj if i < j. Intuitively, each region ri
corresponds to the position λ(i) of the first quadrant of the plane. We introduce additional
regions “connecting” each ri with ri+1 to facilitate writing formulas that express statements
such as “if the current region ri satisfies ϕ, then the next region ri+1 satisfies ψ”, and likewise
for the previous region. Similarly, we introduce additional regions that connect each region
ri with the region rj such that the position λ(j) is to the right of the position λ(i) in the
first quadrant of the plane. These latter regions allow statements such as “if the current
region ri satisfies ϕ, then the region representing the position to its right satisfies ψ”. Using
such statements, it is obviously easy to enforce the horizontal tiling condition. By virtue of
our enumeration of plane positions, reaching the position above the current one is simply
a matter of going to the right and then advancing by one in the enumeration. Thus, we
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a ∧ b

a ∧ b

a ∧ b

a ∧ b

c

c

1

2

3

4a ∧ b

a ∧ ¬b

a ∧ b

a ∧ ¬b

a ∧ b

pos. 1

pos. 2

pos. 3

Figure 5: Left: a discrete ordering in the plane; Right: the “going right” regions.

can also enforce the vertical tiling condition. One of the main difficulties of the proof will
be to enforce the existence of the connecting regions for “going to the right”. The pursued
solution is inspired by [MR99, RZ01].

Now let D = (T,H, V ) be a domino system. For constructing ϕD, we use the following
variables:

• for each tile type t ∈ T , a variable pt;
• variables a, b, and c that are used to mark important regions;
• variables wall and floor that are used to identify regions corresponding to positions

from the sets {0} ×N (the wall) and N× {0} (the floor), respectively.

The reduction formula ϕD is defined as

a ∧ b ∧ wall ∧ floor ∧ [ntppi]¬a ∧ 2uχ,

where χ is the conjunction of a number of formulas. We list these formulas together with
some intuitive explanations:

(1) Ensure that the regions {s ∈W | M, s |= a} are ordered by the relation pp (i.e. the
union of tpp and ntpp):

a→ ([dc]¬a ∧ [ec]¬a ∧ [po]¬a) (5.1)

(2) Enforce that the regions {s | M, s |= a ∧ b} are discretely ordered by ntpp. These
regions will constitute the sequence r1, r2, . . . described above. In order to ensure
discreteness, we use a sequence of alternating a ∧ b and a ∧ ¬b regions as shown in
the left part of Figure 5.

a ∧ b → 〈tpp〉(a ∧ ¬b) (5.2)

a ∧ ¬b → 〈tpp〉(a ∧ b) (5.3)

a ∧ ¬b → [tpp](a→ b) (5.4)

a ∧ b → [tpp](a→ ¬b) (5.5)

A formal proof that these formulas work as described is given below (Point 5 of
Claim 1). If we are at an a ∧ b region, we can access the region corresponding to
the next position in the plane (w.r.t. the fixed enumeration) and to the previous
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position using

3
+ϕ = 〈tpp〉(a ∧ ¬b ∧ 〈tpp〉(a ∧ b ∧ ϕ))

3
−ϕ = 〈tppi〉(a ∧ ¬b ∧ 〈tppi〉(a ∧ b ∧ ϕ)).

(3) The additional regions that will eventually allow us to “go right” in the plane satisfy
the propositional letter c and are related to the regions corresponding to plane
positions as indicated in the right part of Figure 5. For example, Position 2 in the
figure is right of Position 1, and Position 4 is right of Position 2. We start with
stating the following:

a ∧ b → 〈tpp〉c (5.6)

c → 〈tpp〉(a ∧ b) (5.7)

c → ([dc]¬c ∧ [ec]¬c ∧ [po]¬c ∧ [tpp]¬c ∧ [tppi]¬c) (5.8)

These formulas do not yet ensure that the c regions actually bring us to the correct
position. Roughly spoken, they only help to ensure that “going to the right via
regions satisfying c” is a well-defined, monotone, and injective total function.

After further constraining the c regions, we will be able to go to the right and
upper position with

3
Rϕ = 〈tpp〉(c ∧ 〈tpp〉(a ∧ b ∧ ϕ))

3
Uϕ = 3

R
3

+ϕ.

Similarly, we will be able to go to the left and down:

3
Lϕ = 〈tppi〉(c ∧ 〈tppi〉(a ∧ b ∧ ϕ))

3
Dϕ = 3

L
3

−ϕ.

(4) Axiomatizing the behavior of tiles on the floor and on the wall ensures that our
“going to the right” relation actually brings us to the expected position in the first
quadrant of the plane:

(floor ∧ wall) → [ntppi]¬a (5.9)

wall → 3
+floor (5.10)

wall → 3
Uwall (5.11)

[ntppi]¬a ∨ (wall → 3
Dwall) (5.12)

a ∧ b → 3
R¬wall (5.13)

(a ∧ b ∧ ¬wall) → 3
L⊤ (5.14)

(5) Finally, we enforce the tiling:
∧

t,t′∈T

¬(pt ∧ pt′) (5.15)

a ∧ b→
∨

(t,t′)∈H

(pt ∧ 3
Rpt′) (5.16)

a ∧ b→
∨

(t,t′)∈V

(pt ∧ 3
Upt′) (5.17)



16 C. LUTZ AND F. WOLTER

We now prove two lemmas asserting the correctness of the reduction. The first one is
concerned with constructing solutions for D from region models for ϕD. Observe that this
lemma does not assume anything about the involved region model.

Lemma 8. If the formula ϕD is satisfiable, then the domino system D has a solution.

Proof Let M = 〈R, pM
1 , p

M
2 , . . .〉 be a region model of ϕD with R = 〈W, dc, ec, . . .〉.

Claim 1. There exists a sequence r1, r2, . . . ∈W such that

(1) M, r1 |= ϕD,
(2) r1 ntpp r2 ntpp r3 ntpp · · · ,
(3) M, ri |= a ∧ b for i ≥ 1.
(4) for each i ≥ 1, there exists a region si ∈W such that

(a) ri tpp si,
(b) M, si |= a ∧ ¬b,
(c) si tpp ri+1,
(d) for each region s with ri tpp s and M, s |= a ∧ ¬b, we have s = si, and
(e) for each region r with si tpp r and M, r |= a ∧ b, we have r = ri+1,

(5) for all r ∈W with M, r |= a ∧ b, we have that r = ri for some i ≥ 1 or ri ntpp r for
all i ≥ 1.

Proof: We start with inductively constructing a sequence r1, r2, · · · ∈W satisfying Proper-
ties 1 to 4. Afterwards, we prove that Property 5 is also satisfied. Since M is a model of
ϕD, there is a region r1 such that M, r1 |= ϕD. By definition of ϕD, Point 3 is satisfied. Due
to Formulas (5.2) and (5.3), there are regions s1 and r2 such that r1 tpp s1, M, s1 |= a∧¬b,
s1 tpp r2, and M, r2 |= a ∧ b. We show that all necessary Properties are satisfied:

• Point 2. Since r1 tpp s1 and s1 tpp r2, we have r1 tpp r2 or r1 ntpp r2 according
to the composition table which applies to all region structures by Theorem 1. But
then, the first possibility is ruled out by Formula (5.5).

• Point 4d. Suppose there is an s 6= s1 with r1 tpp s and M, s |= a ∧ ¬b. Since
r1 tpp s1, s1 and s are related via one of po, tpp, and tppi by the composition
table. But then, the first option is ruled out by Formula (5.1) and the last two by
Formula (5.4).

• Point 4e. Analogous to the previous case.

The induction step is similar: as M, ri |= a ∧ b, we may use Formulas (5.2) and (5.3) to
find the region ri+1, and then show in the same way as above that it satisfies all relevant
properties. It thus remains to prove Point 5. Assume that there is a region r such that
M, r |= a∧b, r 6= ri for all i ≥ 1, and rk ntpp r does not hold for some k ≥ 1. Since rk ntpp r
does not hold and rk 6= r, rk and r are related by one of dc, ec, po, tpp, tppi, and ntppi.
The first three possibilities are ruled out by Formula (5.1), and tpp and tppi are ruled out
by Formula (5.5). It thus remains to treat the case rk ntppi r. Consider the relationship
between r1 and r. Since r1 6= r and due to Formulas (5.1) and (5.5), there are only two
possibilities for this relation;

• r ntpp r1. Impossible by ϕD’s subformula [ntppi]¬a.
• r1 ntpp r. Then we have r1 ntpp r ntpp rk. Take the maximal i such that ri ntpp r

and the minimal j such that r ntpp rj. Since r 6= rn for all n ≥ 1, we have j = i+1.
By Point 4, there is a region s with ri tpp s, M, s |= a ∧ ¬b, and s tpp rj. Then
we have r nttpi ri tpp s. By the composition table, r is related to s by po, tppi, or
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ntppi. On the other hand, r nttp rj tppi s. By the composition table, we have one
of the relations dc, ec, po, tpp, or ntpp between r and s. Together we obtain r po s
which contradicts Formula (5.1).

The next claim identifies the regions needed for “going right” in the plane.

Claim 2. For each i ≥ 1, there exist regions ti and ui such that

(1) ri tpp ti,
(2) M, ti |= c,
(3) for each region t with ri tpp t and M, t |= c, we have t = ti,
(4) ti tpp ui,
(5) M, ui |= a ∧ b,
(6) for each region u with ti tpp u and M, u |= a ∧ b, we have u = ui.

Proof: Let i ≥ 1. By Formula (5.6), there is a ti with ri tpp ti and M, ti |= c. Let us show
that ti satisfies Property 3. To this end, let t 6= ti such that ri tpp t and M, t |= c. Then t
and ti are related via one of po, tpp, and tppi. But then, all these options are ruled out by
Formula (5.8). Now for Points 4 to 6. By Formula (5.7), there is an r such that ti tpp r and
M, r |= a ∧ b. Point 6 can now be be proved analogously to Point 3, using Formulas (5.1)
and (5.5) instead of Formula (5.8). This finishes the proof of Claim 2.
The next claim states that the regions ui fixed in Claim 2 are ordered by ntpp.

Claim 3. Let i, j ≥ 1 with i < j. Then ui ntpp uj .

Proof: By Claims 1 and 2, we have (i) ri ntpp rj, (ii) ri tpp ti, and (iii) rj tpp tj. By the
composition table, (i) and (iii) yield ri ntpp tj, which together with (ii) implies that ti and
tj are related by po, tpp, or ntpp. Since M, ti |= c and M, tj |= c by Claim 2, all but the last
possibility are ruled out by Formula (5.8). Therefore ti ntpp tj which together with tj tpp uj

(Claim 2) implies ti ntpp uj. By Claim 2 we also have ti tpp ui which by the composition
table implies that ui and uj are related by po, tpp, or ntpp. Again by Claim 2, M, ui |= a∧b
and M, uj |= a ∧ b. Hence the first two possibilities are ruled out by Formulas (5.1) and
(5.5). It follows that ui ntpp uj, as required.
Before proceeding, let us introduce some notation.

• for i, j > 0, we write i ⇒ j if the tile position λ(j) can be reached from λ(i) by
going one step to the right. Similarly, we define a relation i ⇑ j for going one step
up;

• for i, j > 0 we write ri → rj if ui = rj. Similarly, we write ri ↑ rj if ri → rj−1.

Clearly, the “→” and “↑” relations are partial functions by Claims 1 and 2. The following
claim establishes some other important properties of “→”: first, it moves only ahead in the
sequence r1, r2, . . . , but never back. And second, it is monotone and injective.

Claim 4. Let i, j ≥ 1. Then the following holds:

(1) if ri → rj, then i < j;
(2) if i < j, ri → rk, and rj → rℓ, then k < ℓ;

Proof: First for Point 1. Suppose ri → rj and i ≥ j. Then ui = rj and, by Claim 2,
ri tpp ti tpp rj. By the composition table, ri is related to rj by tpp or ntpp. But by
Claim 1, i ≥ j implies ri eq rj or ri ntppi rj. We have derived a contradiction. Hence
ri → rj implies i < j.

Now for Point 2. Assume i < j, ri → rk, and rj → rℓ. We have ui = rk and uj = rℓ.
Hence, by Claim 3, rk ntpp rℓ. Using Claim 1 and the composition table, we derive k < ℓ.
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The following claim establishes the core part of the proof: the fact that the “→” relation
“coincides” with the “⇒” relation, and similar for “↑” and “⇑”. More precisely, this follows
from Point 3 of the following claim. For technical reasons, we simultaneously prove some
other, technical properties. The proof of this claim follows the lines of Marx and Reynolds
[MR99].

Claim 5. Let i ≥ 1 and i⇒ j. Then the following holds:

(1) if λ(j) is on the floor, then M, rj |= floor;
(2) M, rj 6|= wall;
(3) ri → rj and ri ↑ rj+1.
(4) if λ(j + 1) is on the wall, then M, rj+1 |= wall

Proof: All subclaims are proved simultaneously by induction on i. First for the induction
start. Then we have i = 1 and j = 2.

(1) Clearly, λ(2) is on the floor. Since M, r1 |= ϕD, we have M, r1 |= wall. Thus
Formula (5.10) yields M, r2 |= floor.

(2) We have 1 ⇒ 2. Point 1 gives us M, r2 |= floor. Since r1 ntpp r2, we also have
M, r2 6|= [ntppi]¬a. Thus, Formula (5.9) yields M, r2 6|= wall.

(3) By Point 2, we have M, r2 6|= wall. By Formula (5.14), there are regions r, s ∈ W
such that M, r |= a ∧ b, r tpp s, M, s |= c, and s tpp r2. By Point 5 of Claim 1, we
have either r = ri for some i ≥ 1 or ri ntpp r for all i ≥ 1. In the first case, we
have ri → r2. Claim 4.1 yields i = 1 and we are done. In the second case, we have
r2 ntpp r: contradiction to r tpp s and s tpp r2. Finally, r1 ↑ r3 is an immediate
consequence of r1 → r2 and the definition of “↑”.

(4) Since λ(3) is on the wall, we have to show that M, r3 |= wall. By Point 3, we have
r1 ↑ r3. Thus, Formula (5.11) yields the desired result.

Now for the induction step.

(1) Suppose that λ(j) is on the floor. Since obviously j > 1, λ(j − 1) is on the wall.
Since i > 1, there is a k with i − 1 ⇒ k. It is readily checked that j − 1 = k + 1.
Thus, IH (Point 4) yields M, rj−1 |= wall and we can use Formula (5.10) to conclude
that M, rj |= floor as required.

(2) First assume that λ(j) is on the floor. Since j > 1, we have M, rj 6|= [ntppi]¬a.
Thus, Point 1 and Formula (5.9) yield M, rj 6|= wall as required.

Now assume that λ(j) is not on the floor. Suppose, to the contrary of what is
to be shown, that M, rj |= wall. Since j > 1, we have M, rj 6|= [ntppi]¬a. Thus,
by Formula (5.12) we obtain M, rj |= 3

Dwall. Since j is not on the floor, i ⇒ j
implies i − 1 ⇒ j − 1. Thus, the IH (Point 3) yields ri−1 ↑ rj . Hence, we can
use M, rj |= 3

Dwall to derive M, ri−1 |= wall. By IH (Point 2), we cannot have
m ⇒ i − 1 for any m. Thus, λ(i − 1) is on the wall implying that λ(i) is on the
floor. We have established a contradiction since, with i⇒ j, this yields that j is on
the floor.

(3) We start with showing ri → rj . To this end, let us prove that we have rk → rj for
some k < j. By Point 2, we have M, rj 6|= wall. By Formula (5.14), there are regions
r, s ∈ W such that M, r |= a ∧ b, r tpp s, M, s |= c, and s tpp rj . By Point 5 of
Claim 1, we have either r = rk for some k ≥ 1 or rn ntpp r for all n ≥ 1. In the first
case, Claim 4.1 yields k < j and we are done. In the second case, we have rj ntpp r:
contradiction to r tpp s and s tpp rj.
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Next, we show that k = i. To this end, assume that k 6= i. We distinguish two
cases:

• k < i. Let ℓ be such that k ⇒ ℓ. By IH (Point 3), we have rk → rℓ. Due to
functionality of “→” (Claim 2) and since rk → rj, we have ℓ = j. Due to the
injectivity of “⇒”, we get k = i, which is a contradiction.

• i < k. By Claim 2, we have ri ntpp ui and M, ui |= a∧b. By Point 5 of Claim 1,
we have either (i) ui = rℓ for some ℓ ≥ 1 or (ii) rn ntpp ui for all n ≥ 1. In
Case (ii), in particular we have rj ntpp ui. Since rk → rj , we have rj = uk, and
thus uk ntpp ui. As i < k, we have obtained a contradiction to Claim 3. Thus,
Case (ii) is impossible and we conclude ui = rℓ for some ℓ ≥ 1. Next, we make
a case distinction as follows:

– ℓ < j. There are two subcases: the tile position λ(ℓ) may or may not be
on the wall.
First assume that it is not. Then there is an h < ℓ with h ⇒ ℓ. By
definition of the “⇒” function, i ⇒ j, h ⇒ ℓ, and ℓ < j this implies
h < i. Thus we can use IH (Point 3) to conclude rh → rℓ, a contradiction
to the injectivity of “→” (Claim 4.2) and the facts that ri → rℓ and h < i.
Now assume that λ(ℓ) is on the wall. Since 1 < i < ℓ, there is a h such
that h ↑ ℓ and h → ℓ − 1. Thus, IH (Point 4) yields M, rℓ |= wall. But
then, ri → rℓ and Formula (5.13) yield a contradiction.

– ℓ = j. Then ri → rj and rk → rj , which is a contradiction to the
injectivity of “→” (Claim 4.2) since i 6= k.

– ℓ > j. Contradiction to the monotonicity of “→” (Claim 4.2).
The second part of Point 3, i.e. ri ↑ rj+1, is now an immediate consequence of the
fact that ri → rj and the definition of “↑”.

(4) Suppose that λ(j+1) is on the wall. Then λ(i) is also on the wall. Since additionally
i > 1, there is a k such that k ⇑ i and k ⇒ i− 1. By IH (Point 4), the latter yields
M, ri |= wall. Since Point 3 yields ri ↑ rj+1, Formula (5.11) yields M, rj+1 |= wall.

This finishes the proof of Claim 5. By definition of “⇒”, “⇑”, “→”, and “↑”, Point 3 of
this claim yields the following:

i⇒ j implies ri → rj and i ⇑ j implies ri ↑ rj . (∗)

Using this property, we can finally define the solution of D: set τ(i, j) to the unique t ∈ T
such that M, rn |= pt, where λ(n) = (i, j). This is well-defined due to Formulas (5.15)
and (5.16). Thus, it remains to check the matching conditions:

• Let (i, j) ∈ N2, λ(n) = (i, j), and λ(m) = (i + 1, j). Then n ⇒ m. By (∗), this
yields rn → rm. By Formula (5.16), there are (t, t′) ∈ H such that M, rn |= pt

and M, rm |= pt′ . Since this implies τ(i, j) = t and τ(i + 1, j) = t′, the horizontal
matching condition is satisfied.

• The vertical matching condition can be verified analogously using Formula (5.17).

The second lemma deals with the construction of models for ϕD from solutions for D.
Here, we have to make a suitable assumption on the class of region structures S for the
construction to succeed. One possible such assumption is given in Theorem 5. It turns out,
however, that the following more general condition is also sufficient.
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Definition 9 (Domino ready). Let R = 〈W, dc, ec, . . .〉 be a region structure. Then R

is called domino ready if it satisfies the following property: the set W contains sequences
x1, x2, . . . and y1, y2, . . . such that, for i, j ≥ 1, we have

(1) xi tpp xi+1;
(2) xi ntpp xj if j > i+ 1;
(3) x2i−1 tpp yi;
(4) yi tpp x2j−1 iff the position λ(j) can be reached from λ(i) by going one step to the

right;
(5) yi ntpp yj if j > i.

Before discussing this property in some more detail, let us show that it is indeed suitable
for our proof.

Lemma 10. Let R = 〈W, dc, ec, . . .〉 be a region structure that is domino ready. If the
domino system D has a solution, then the formula ϕD is satisfiable in a region model based
on R.

Proof Let R be a region structure that is domino ready, D = (T,H, V ) a domino system,
and τ a solution of D. We introduce new names for the regions listed in Definition 9 that
are closer to the names used in the proof of Lemma 8:

• ri := x2i−1 for i ≥ 1;
• si := x2i for i ≥ 1;
• ti := yi.

Now define a region model M based on R by interpreting the propositional letters as follows:

• aM = {ri, si | i ≥ 1};
• bM = {ri | i ≥ 1};
• cM = {ti | i ≥ 1};
• wallM = {ri | λ(i) is on the wall};
• floorM = {ri | λ(i) is on the floor};
• pM

t = {ri | τ(λ(i)) = t}.

It is now easy to verify that χ is satisfied by every region of M, and that M, r1 |= ϕD.

We have thus proved the following theorem.

Theorem 11. Let S ⊆ RS such that some R ∈ S is domino ready. Then LRCC8(S) is
undecidable.

We now show that this theorem implies Theorem 5.

Lemma 12. Each region structure R(Rn, U) with n > 0 and Rn
rect ⊆ U is domino ready.

Proof We start with n = 1. Thus, we must exhibit the existence of two sequences of convex,
closed intervals x1, x2, . . . and y1, y2, . . . satisfying Properties 1 to 5 from Definition 9: for
i ≥ 1, set

• xi := [−j, j] if i = 2j − 1;
• xi := [−j, j + 1] if i = 2j;
• yi := [−i, j] if λ(j) is the position reached from λ(i) by going a single step to the

right.

It is readily checked that these sequences of intervals are as required. To find sequences for
n > 1, just use the n-dimensional products of these intervals.
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Note that we can also prove this lemma if we admit only bounded rectangles of Rn as
regions: the construction from Lemma 12 can easily be modified so that the sequence of
a ∧ b-rectangles converges against a finite rectangle, rather than against Rn.

indeed more general than Theorem 5. For example, region structures that are obtained
by choosing all closed circles or ellipses as regions are easily seen to be domino ready, but
they do not satisfy the condition from Theorem 5.

6. Recursive Enumerability

In this section, we discuss the question whether modal logics of topological relations
are recursively enumerable. We start with a simple observation.

Theorem 13. For n > 0, LRCC8(RS) = LS
RCC8(T OP) = LS

RCC8(Rn,Rn
reg) are recursively

enumerable.

Proof The equality has already been shown in Theorem 4. LRCC8(RS) is recursively enumer-
able since (i) the class of all region structures RS is first-order definable (c.f. its definition in
Section 2); (ii) it is a standard result that LRCC8 formulas can be translated into equivalent
formulas of FOm

RCC8 (see Section 4); (iii) first-order logic is recursively enumerable.

An alternative proof of Theorem 13 can be obtained by explicitly giving an axiomatiza-
tion of LRCC8(RS). Since this is interesting in its own right, in the following we develop such
an axiomatization based on a non-standard rule. Non-standard rules, which are sometimes
called non-orthodox or Gabbay-Burgess style rules, were introduced in temporal logic in
[Bur80, Gab81a] and often enable finite axiomatizations of modal logics for which no finite
standard axiomatization (using only the rules modus ponens and necessitation) is known.
For LRCC8(RS), we leave it as an open problem whether a finite standard axiomatization
exists. To guarantee a simple presentation, we develop an axiomatization for the extension
of our language LRCC8 with countably many nominals, i.e. a new sort of variables i, j, k, . . .
interpreted in singleton sets. As noted in Section 3, nominals can be defined in the original
language, but here it is more convenient to treat them as first-class citizens since this en-
ables the application of general completeness results from modal logic.3 The universal box
2u is still used as an abbreviation. Then the logic of all region structures is axiomatized
by the following axiom and rule schemata, where ϕ and ψ range over formulas of LRCC8

extended with nominals, i over the nominals, and r, r1, r2 over the RCC8-relations:

• axioms of propositional logic;
• [r](ϕ → ψ) → ([r]ϕ → [r]ψ);
• 〈r1〉i→ ¬〈r2〉i, for r1 6= r2. These axioms ensure that the r are mutually disjoint;
• 〈r1〉〈r2〉ϕ→ 〈q1〉ϕ ∨ · · · ∨ 〈qk〉ϕ, whenever

∀x∀y∀z((r1(x, y) ∧ r2(y, z)) → (q1(x, z) ∨ · · · ∨ qk(x, z))

is in the RCC8-composition table;
• ϕ→ [r]〈r〉ϕ, whenever r is symmetric;
• ϕ→ [r1]〈r2〉ϕ and ϕ→ [r2]〈r1〉ϕ, whenever r1 is the inverse of r2;

3One could also give a finite non-standard axiomatization without adding nominals to the language by
making use of the definable difference modality 2d and then applying a general completeness result of [Ven92]
(Theorem 2.7.7).
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• 2uϕ → ϕ, 2uϕ → 2u2uϕ, and ϕ → 2u3uϕ. These axioms ensure that 2u is a
S5-modality;

• [eq]ϕ↔ ϕ;
• 3ui. This axiom ensures that the interpretation of nominals is non-empty;
• 3u(i ∧ ϕ) → 2u(i → ϕ). This axiom together with the rule cov below ensures that

the interpretation of nominals are at most singleton sets;
• the rules modus ponens, necessitation, and the non-standard rule cov:

ϕ,ϕ→ ψ

ψ

ϕ

2uϕ

i→ ϕ

ϕ
if i not in ϕ.

It is straightfoward to prove the soundness of this axiomatization. Completeness follows
from a general completeness result of [GV01] for logics with nominals and the universal
modality, since all the axioms not involving nominals are Sahlqvist axioms, and, for each
modal operator [r], we have an operator [r−1] interpreted by the converse of the accessibility
relation for [r].

Returning to our original proof of Theorem 13, we note that there is another class of log-
ics for which recursive enumerability can be proved using first-order logic: LS

RCC8(Rn,Rn
rect),

n ≥ 1. In this case, however, we need a different translation that takes into account the
underlying region structures and the shape of regions. The proof is similar to the transla-
tion of interval temporal logic into first-order logic given by Halpern and Shoham in [HS91].
The important difference is that Halpern and Shoham use their translation to prove recur-
sive enumerability of interval temporal logics determined by full interval structures that
are first-order definable, whereas we prove recursive enumerability of a logic determined by
substructures of a structure that is not first-order definable. The proof can be found in
Appendix C.

Theorem 14. For n ≥ 1, LS
RCC8(Rn,Rn

rect) is recursively enumerable.

With the exception of the class of logics LS
RCC8(Rn,Rn

conv), whose recursive enumerability
status we have to leave as an open problem, it thus turns out that all logics introduced
in Section 4 that are based on substructures of concrete region structures are recursively
enumerable.4 Interestingly, this is not the case for logics based on full concrete region
structures, and thus going from full concrete region structures to substructures yields a
computational benefit. In the following, we prove that most of the logics introduced in
Section 4 based on full concrete region structures are Π1

1-hard, and thus not recursively
enumerable. Note, however, that the conditions listed in the theorem are much less general
than those from Theorem 11.

Theorem 15. The following logics are Π1
1-hard: LRCC8(T OP) and LRCC8(Rn, Un) with

Un ∈ {Rn
reg,Rn

conv} and n ≥ 1.

To prove Theorem 15, the domino problem of Definition 7 is modified by requiring that, in
solutions, a distinguished tile t0 ∈ T occurs infinitely often in the first column of the first
quadrant, i.e. on the wall. It has been shown in [Har85] that this variant of the domino
problem is Σ1

1-hard. Since we reduce it to satisfiability as in the proof of Theorem 5, this
yields a Π1

1-hardness bound for validity.
As a first step toward reducing this stronger variant of the domino problem, we extend ϕD

with the following conjunct stating that M, s |= ϕD implies that we find an infinite sequence

4Recall that concrete region structures are those region structures induced by topological spaces.
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of regions r1, r2, . . . such that s = r1, ri ntpp ri+1, and M, ri |= a∧ b∧wall∧pt0 for all i ≥ 1:

2u(a ∧ b→ 〈ntpp〉(a ∧ b ∧ wall ∧ pt0)) (6.1)

However, this is not yet sufficient: in models of ϕD, we can have not only one discrete
ordering of a ∧ b regions, but rather many such orderings that are “stacked”. For example,
there could be two sequences of regions r1, r2, . . . , and r′1, r

′
2, . . . such that

r1 ntpp r2 ntpp r3 · · · , r′1 ntpp r′2 ntpp r′3 · · · , and ri ntpp r′j for all i, j ≥ 1.

Due to this effect, the above formula does not enforce that the main ordering (there is only
one for which we can ensure a proper “going to the right relation”) has infinitely many
occurrences of t0.

The obvious solution to this problem is to prevent stacked orderings. This is done by
enforcing that there is only one “limit region”, i.e. only one region approached by an infinite
sequence of a-regions in the limit. We add the following formula to ϕD:

2u

(

[tppi]〈po〉a→ (¬a ∧ [tpp]¬a ∧ [ntpp]¬a)
)

(6.2)

Let ϕ′
D be the resulting extension of ϕD. The classes of region structures to which the

extended reduction applies is more restricted than for the original one. We require that
they are concrete, i.e. induced by a topological space, and additionally adopt the following
property:

Definition 16 (Closed under infinite unions). Suppose that R = R(T, UT) = 〈W, dc, ec, . . .〉
is a concrete region structure. Then R is closed under infinite unions if, for any sequence
r1, r2, . . . ∈W with r1 ntpp r2 ntpp r3 · · · , we have CI(

⋃

i∈ω ri) ∈W .

We can now formulate the first part of correctness for the extended reduction.

Lemma 17. Let R(T, UT) = 〈W, dc, ec, . . .〉 be a concrete region structure that is closed
under infinite unions. If the formula ϕ′

D is satisfiable in a region model based on R, then
the domino system D has a solution with t0 occurring infinitely often on the wall.

Proof Let R(T, UT) = 〈W, dc, ec, . . .〉 be a concrete region structure that is closed under
infinite unions, M = 〈R, pM

1 , p
M
2 , . . .〉 a region model based on R(T, UT), and w ∈ W such

that M, w |= ϕ′
D. We may establish Claims 1 to 5 as in the proof of Lemma 8, and we will

use the same terminology in what follows. We first strengthen Point 5 of Claim 1:

Claim 1’. There exists a sequence r1, r2, · · · ∈W such that

(1) M, r1 |= ϕD,
(2) r1 ntpp r2 ntpp r3 ntpp · · · ,
(3) M, ri |= a ∧ b for i ≥ 1.
(4) for each i ≥ 1, there exists a region si ∈W such that

(a) ri tpp si,
(b) M, si |= a ∧ ¬b,
(c) si tpp ri+1,
(d) for each region s with ri tpp s and M, s |= a ∧ ¬b, we have s = si, and
(e) for each region r with si tpp r and M, r |= a ∧ b, we have r = ri+1,

(5’) for all r ∈W with M, r |= a ∧ b, we have r = ri for some i ≥ 1.
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Proof: We construct the sequence r1, r2, . . . as in the proof of Claim 1. Since Properties 1
to 4 are satisfied by construction, it remains to prove Point 5’: as R(T, UT) is closed under
infinite unions, we have t = CI(

⋃

i∈ω ri) ∈W. We first show that

t |= [tppi]
〈

po〉a (∗)

To this end, suppose t tppi q. Then we have the following:

(1) q − ri 6= ∅ for all i > 0.
Since t tppi q, there exists x ∈ q such that x 6∈ I(t). Suppose x ∈ ri, for some ri.

Since ri ntpp ri+1, this yields x ∈ I(ri+1). By definition of t, we get x ∈ I(t) and
have a contradiction.

(2) There exists n > 0 such that i ≥ n implies ri − q 6= ∅.
Suppose ri ⊆ q, for all i > 0. Then s =

⋃

i∈ω ri ⊆ q. Since q ∈ UT, we have
q = CI(q). Thus t = CI(s) ⊆ q, and we have a contradiction to t tppi q.

(3) There exists m > 0 such that j ≥ m implies I(rj) ∩ I(q) 6= ∅.
Since q = CI(q), we have I(q) 6= ∅. Take any x ∈ I(q). Since t = CI(

⋃

i∈ω ri) and
t tppi q, this yields x ∈

⋃

i∈ω ri. Thus there is a j with x ∈ rj. Then x ∈ I(rj+1).
Set m := j + 1. Since rm ntpp ri for all i > m, we have x ∈ I(q) ∩ I(rj+1) for all
i ≥ m.

Take k = max{n,m}. Using the above Points 1 to 3 and the definition of the po relation,
it is easily verified that q po rk, thus finishing the proof of (∗).
Now we can establish Point 5’. By Point 5 of the original Claim 1, for all r ∈ W with
M, r |= a∧ b, we have that r = ri for some i ≥ 1 or ri ntpp r for all i ≥ 1. It thus suffices to
show that the latter alternative yields a contradiction. Thus assume ri ntpp r for all i ≥ 1.
Since r1 ntpp r2 ntpp · · · and t = CI(

⋃

i∈ω ri), it is not hard to verify that this yields r = t,
t tpp r, or t ntpp r. By (∗), t satisfies [tppi]〈po〉a. By Formula (6.2), t thus also satisfies
¬a ∧ [tpp]¬a ∧ [ntpp]¬a: contradiction since M, r |= a.

Lemma 8. By Point 5’ of Claim 1’ and Formula (6.1), this solution is such that the tile
t0 occurs infinitely often on the wall.

For the second part of correctness, we consider region structures R(Rn, U) with Rn
rect ⊆

U as in Theorem 5. In contrast to the previous section, it does not suffice to demand that
region structures are domino ready.

Lemma 18. If the domino system D has a solution with t0 occurring infinitely often on
the wall, then the formula ϕ′

D is satisfiable in a region model based on R(Rn, U), for each
n ≥ 1 and each U with Rn

rect ⊆ U ⊆ Rn
reg.

Proof Let τ be a solution of D with t0 appearing infinitely often on the wall. It was shown
in the proof of Lemma 12 that the region spaces we are considering are domino ready. Thus
we can use τ to construct a model M based on the region space R(Rn, U) exactly as in
the proof of Lemma 10. It suffices to show that M satisfies, additionally, Formulas (6.1)
and (6.2). This is easy for Formula (6.1) since τ has been chosen such that t0 appears
infinitely often. Thus, let us concentrate on Formula (6.2).

Let r1, r2, . . . be the regions from the construction of M in the proof of Lemma 10. If

t = CI(
⋃

i∈ω

ri) = Rn ∈W,
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then t satisfies ¬a∧ [tpp]¬a∧ [ntpp]¬a since, clearly, t is not related via eq, tpp, and ntpp to
any of the ri. To show that Formula (6.2) holds, it thus suffices to prove that, for all s ∈W
such that s 6= t, M, s |= ¬[tppi]

〈

po〉a. Hence fix an s ∈W and assume that s 6= t. Since it is
a region, s is non-empty and regular closed. Therefore, we find a hyper-rectangle h ∈ Rn

rect

contained in s. By expanding h until we hit a point x ∈ s − Is, we obtain an h′ ∈ Rn
rect

such that h ⊆ h′ and h′ is a tangential proper part of s. Now fix an x ∈ h′ ∩ (s− Is). Then,
by the construction of the sequence r1, r2, . . . , we can find a hyper-rectangle h′′ ⊆ h′ which
contains x but is not in the relation po with any ri. In conclusion, M, h′′ |= [po]¬a and,
therefore, M, s |= 〈tppi〉[po]¬a.

Note that any region structure R(T,Treg), in particular the structures R(Rn,Rn
reg), are

closed under infinite unions. This applies as well to R(Rn,Rn
conv). Since Rn

rect ⊆ Rn
conv ⊆Rn

reg, Lemmas 17 and 18 immediately yield Theorem 15.
It is worth noting that there are a number of interesting region structures to which

this proof method does not apply. Interesting examples are the region structure of hyper-
rectangles in Rn, n ≥ 2, the region structure based on simply connected regions in R2

[SS01], and the structure of polygons in R2 [PS98]. Since these spaces are not closed under
infinite unions, the above proof does not show the non-axiomatizability of the induced logics.
We believe, however, that slight modifications of the proof introduced here can be used to
prove their Π1

1-hardness as well.

7. Finite Region Structures

As discussed in Section 4, it can be useful to only admit models with a finite (but
unbounded) number of regions. In this case, we can again establish a quite general un-
decidability result. Moreover, undecidability of a logic Lfin

RCC8(S) implies that it is not
recursively enumerable if S is first-order definable. We start with proving undecidability.

Theorem 19. If R(Rn,Rn
rect) ⊆ S ⊆ RS for some n ≥ 1, then Lfin

RCC8(S) is undecidable.

We obtain the following corollary.

Corollary 20. The following logics are undecidable for n ≥ 1: Lfin
RCC8(RS), Lfin

RCC8(T OP),

Lfin
RCC8(Rn,Rn

reg), L
fin
RCC8(Rn,Rn

conv), and Lfin
RCC8(Rn,Rn

rect).

To prove this result, we reduce yet another variant of the domino problem. For k ∈ N, the
k-triangle is the set {(i, j) | i + j ≤ k} ⊆ N2. The task of the new domino problem is,
given a domino system D = (T,H, V ), to determine whether D tiles an arbitrary k-triangle,
k ∈ N, such that the position (0, 0) is occupied with a distinguished tile s0 ∈ T , and some
position is occupied with a distinguished tile f0 ∈ T . It is shown in Appendix D that the
existence of such a tiling is undecidable.

Given a domino system D, the reduction formula ϕD is defined as

a ∧ b ∧ wall ∧ floor ∧ s0 ∧ [ntppi]¬a ∧ 2uχ ∧ (f0 ∨ 〈ntpp〉(a ∧ b ∧ f0)),

where χ is the conjunction of the Formulas (5.1), (5.3) to (5.5), and (5.7) to (5.17) of
Section 5, and the following formulas:

• The first tile that has no tile to the right is on the floor:
(

a ∧ b ∧ ¬3
R⊤ ∧ [ntppi]((a ∧ b) → 3

R⊤)
)

→ floor (7.1)
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• If a tile has no tile to the right, then the next tile (if existent) also has no tile to
the right:

(a ∧ b ∧ ¬3
R⊤) → (¬3

+⊤ ∨ 3
+¬3

R⊤) (7.2)

• The last tile is on the wall and we have no stacked orderings:

(a ∧ b ∧ ¬3
+⊤) → (wall ∧ [ntpp]¬(a ∧ b)) (7.3)

The proof of the following lemma is now a variation of the proofs of Lemma 8 and Lemma 10.
Details are left to the reader.

Lemma 21. Let D be a domino system. Then:
(i) if the formula ϕD is satisfiable in a finite region model, then D tiles a k-triangle for
some k ≥ 1;
(ii) if D tiles a k-triangle for some k ≥ 1, then ϕD is satisfiable in a region model based on
a finite substructure of R(Rn,Rn

rect), for each n ≥ 1.

Obviously, Theorem 19 is an immediate consequence of Lemma 21.
Since RS is first-order definable, we can enumerate all finite region models and also

all formulas satisfiable in finite region models. Similarly, the proof of Theorem 14 shows
that the class of at most countable substructures of R(Rn,Rn

rect) is first-order definable
(relative to the class of all at most countable structures), for n ≥ 1. Thus, the comple-
ments of Lfin

RCC8(RS) and Lfin
RCC8(Rn,Rn

rect) are recursively enumerable and Theorem 19 and
Theorem 4 give us the following:

Corollary 22. The following logics are not r.e., for each n ≥ 1: Lfin
RCC8(RS), Lfin

RCC8(T OP),

Lfin
RCC8(Rn,Rn

reg), and Lfin
RCC8(Rn,Rn

rect).

We leave it as an open problem whether the logics Lfin
RCC8(Rn,Rn

conv), n ≥ 2, are recursively
enumerable.

8. The RCC5 set of Relations

When selecting a set of relations between regions in topological spaces, the eight Egen-
hofer-Franzosa relations appear to be the most popular choice in the spatial reasoning
community. However, it is not the only choice possible. For example, a refinement of RCC8

into 23 relations has been proposed and RCC5, a coarsening into five relations, is also rather
popular [GPP95, DWM01, Ben94, CH01]. Since we have shown that modal logics based
on the Egenhofer-Franzosa relations are undecidable and often even Π1

1-complete, a natural
next step for improving the computational behaviour is to consider modal logics based on
a coarser set of relations. In this section, we define and investigate modal logics based on
the RCC5 set of relations. It turns our that often reasoning is still undecidable, although
different proof methods have to be used that yield less general theorems. For example, the
recursive enumerability of modal logics determined by full concrete RCC5 region structures
is left as an open problem.

The RCC5 set of relations is obtained from RCC8 by keeping the relations eq and po, but
coarsening (1) the tpp and ntpp relations into a new “proper-part of” relation pp; (2) the tppi

and ntppi relations into a new “has proper-part” relation ppi; and (3) the dc and ec relations
into a new disjointness relation dr. Thus, a concrete RCC5-structure R5(T, UT) induced by a

topological space T and a set of regions UT ⊆ Treg is the tuple 〈UT, eq
R, poR, drR, ppR, ppiR〉

where eq and po are interpreted as before and
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◦ dr po pp ppi

dr ∗ dr,po,pp dr,po,pp dr

po dr,po,ppi, ∗ po,pp dr,po,ppi

pp dr dr,po,pp pp ∗
ppi dr,po,ppi, po,pp eq,po,pp,ppi ppi

Figure 6: The RCC5 composition table.

• drR = dcR ∪ ecR;
• ppR = tppR ∪ nttpR;
• ppiR = tppiR ∪ nttpiR.

It is interesting to note that the RCC5 relations can be defined without appealing to the
topological notions of interior and closure. Hence, modal logics based on RCC5 may also
be viewed as modal logics determined by the following relations between sets: ‘having non-
empty intersection’, ‘being disjoint’, and ‘is a subset of’. They are thus related to the logics
considered in [Vak95].

Similarly to concrete region structures induced by the eight Egenhofer-Franzosa rela-
tions, the class of concrete RCC5-structures can be characterized by first-order sentences.
Denote by RS5 the class of all general RCC5-structures

〈W, drR, eqR, ppR, ppiR, poR〉

where W is non-empty and the rR are mutually exclusive and jointly exhaustive binary
relations on W such that (1) eq is interpreted as the identity relation on W , (2) poR and

drR are symmetric, (3) ppR is the inverse of ppiR and (4) the rules of the RCC5-composition
table (Figure 6) are valid.

The following representation theorem is proved by first establishing Point (ii) for finite
RCC5-structures and then applying the same technique as in the proof of Theorem 1.

Theorem 23.

(i) Every concrete RCC5-structure is a ageneral RCC5-structure;
(ii) every general RCC5-structure is isomorphic to a concrete RCC5-structure.
(iii) for every n > 0, every countable general RCC5-structure is isomorphic to a concrete

RCC5-structure of the form R5(Rn, URn) (with URn ⊆ Rn
reg).

As in the RCC8 case, we only distinguish between concrete and general RCC5-structures if
necessary. RCC5-models are defined in the obvious way by extending RCC5-structures with
a valuation function.

The modal language LRCC5 for reasoning about RCC5-structures extends propositional
logic with unary modal operators [dr], [eq], etc. (one for each RCC5 relation). A number of
results from our investigation of LRCC8 have obvious analogues for LRCC5.

The results established in Section 3 have counterparts in the RCC5 case: RCC5 con-
straint networks can be translated into LRCC5 in a straightforward way by defining nominals.
Moreover, LRCC5 has the same expressive power as the two-variable fragment of FLm

RCC5,
i.e. the first-order language with the five binary RCC5-relation symbols and infinitely many
unary predicates. Finally, the two-variable fragment of FLm

RCC5 is exponentially more suc-
cinct on the class of structures RS5 than LRCC5. The proofs are analogous to those from
Section 3 and Appendix B.
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Analogous to the RCC8 case, we define logics of full RCC5-structures, substructure
variants, and finite substructure variants: given a class S of RCC5-structures, we denote
with LRCC5(S) the set of LRCC5-formulas which are valid in all members of S; with LS

RCC5(S)
the set of LRCC5-formulas which are valid in all substructures of members of S; and with
Lfin

RCC5(S) the set of LRCC5-formulas which are valid in all finite substructures of members
of S. For brevity, we refrain from developing formulas that separate the different logics
obtained by applying LRCC5 to different classes of RCC5-structures. Instead, we only note
that there is an obvious analogue of Theorem 4.

Theorem 24. For n > 0, we have

(1) LRCC5(RS) = LS
RCC5(T OP) = LS

RCC5(Rn,Rn
reg);

(2) Lfin
RCC5(RS) = Lfin

RCC5(T OP) = Lfin
RCC5(Rn,Rn

reg).

We now investigate the computational properties of logics based on LRCC5. Analogously to
the RCC8 case, many natural logics are undecidable. Still, our RCC5 undecidability result is
considerably less powerful than the one for RCC8. Intuitively, we have to restrict ourselves to
RCC5-structures with the following property: for any set S ⊆W of cardinality two or three,
there exists a unique smallest region Sup(S) that covers all regions from S. Formally, we

define the class RS∃ of RCC5-structures 〈W, drR, eqR, . . .〉 satisfying the following condition:
for every set S ⊆W of cardinality two or three, there exists a region Sup(S) ∈W such that

• s eq Sup(S) or s pp Sup(S) for each s ∈ S;
• for every region t ∈W with s pp t for each s ∈ S, we have Sup(S) eq t or Sup(S) pp t;
• for every region t ∈W with t dr s for each s ∈ S, we have t dr Sup(S).

Region structures based on all non-empty regular closed sets in a topological space belong
to RS∃. This applies, in particular, to the structures R5(Rn,Rn

reg), for n ≥ 1. However,

their substructures usually do not belong to RS∃. For example, the structures R5(Rn,Rn
x )

with x ∈ {conv, rect} and n ≥ 1, are not in RS∃. Our aim is to prove the following theorem:

Theorem 25. Suppose R5(Rn,Rn
reg) ∈ S ⊆ RS∃, for some n ≥ 1. Then LRCC5(S) is

undecidable.

This clearly yields the following corollary:

Corollary 26. The following logics are undecidable, for each n ≥ 1: LRCC5(T OP) and
LRCC5(Rn,Rn

reg).

The proof of Theorem 25 is by reduction of the satisfiability problem for the undecidable
modal logic S53 to satifiability of LRCC5 formulas in S. The original undecidability proof
for S53 has been given by Maddux in an algebraic setting [Mad80]. For the reduction, we
use the modal notation of [GKWZ03]. More precisely, the language L3 is the extension of
propositional logic by means of unary modal operators 31, 32 and 33. L3 is interpreted in
S53-models

W = 〈W1 ×W2 ×W3, p
W
1 , p

W
2 , . . .〉

where the Wi are non-empty sets and pW
i ⊆W1 ×W2 ×W3. The truth-relation |= between

pairs (W, (w1, w2, w3)) with wi ∈Wi, and L3-formulas ϕ is defined inductively as follows:

• W, (w1, w2, w3) |= pi iff (w1, w2, w3) ∈ pW
i ;

• W, (w1, w2, w3) |= ¬ϕ iff W, (w1, w2, w3) 6|= ϕ;
• W, (w1, w2, w3) |= ϕ1 ∧ ϕ2 iff W, (w1, w2, w3) |= ϕ1 and W, (w1, w2, w3) |= ϕ2;
• W, (w1, w2, w3) |= 31ϕ iff there exists w′

1 ∈W1 such that W, (w′
1, w2, w3) |= ϕ;
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• W, (w1, w2, w3) |= 32ϕ iff there exists w′
2 ∈W2 such that W, (w1, w

′
2, w3) |= ϕ;

• W, (w1, w2, w3) |= 33ϕ iff there exists w′
3 ∈W3 such that W, (w1, w2, w

′
3) |= ϕ.

A formula ϕ ∈ L3 is called S53-satisfiable if there exists an S53-model W and a triple
(w1, w2, w3) such that W, (w1, w2, w3) |= ϕ.

Now for the reduction. The basic idea is to introduce three variables a1, a2, a3 and then
to represent each set Wi of an S53-model by the set of pairwise disconnected regions

{r ∈W | M, r |= ai}.

The set W1 ×W2 ×W3 is then represented by the set of regions

{Sup({w1, w2, w3}) | M, wi |= ai for i ∈ {1, 2, 3}}.

The regions in this set will be marked with a variable d. To simulate the modal operators
of S53, we will additionally refer to regions Sup({wi, wj}) with 1 ≤ i < j ≤ 3. Such regions
are marked with the variable di,j .

The details of the reduction are as follows: with every S53-formula ϕ, we associate an
LRCC5-formula

2uχ ∧ d ∧ ϕ♯ (∗)

where ϕ♯ is inductively defined below and χ is the conjunction of the following formulas:

(1) regions representing elements from W1 ∪W2 ∪W3 are pairwise disconnected, each
such region represents an element from Wi for a unique i, and the sets Wi are
non-empty: for i = 1, 2, 3, put

ai →
∧

j=1,2,3

([pp]¬aj ∧ [ppi]¬aj ∧ [po]¬aj) (8.1)

a1 → ¬a2, a1 → ¬a3, a2 → ¬a3, (8.2)

∧

i=1,2,3

3uai (8.3)

(2) the variable d identifies regions representing elements of W1 ×W2 ×W3:

d↔ (
∧

i=1,2,3

〈ppi〉ai) ∧ ¬〈ppi〉(
∧

i=1,2,3

〈ppi〉ai) (8.4)

(3) di,j identifies regions representing elements of Wi ×Wj : for 1 ≤ i < j ≤ 3, put

dij ↔ (
∧

k=i,j

〈ppi〉ak) ∧ ¬〈ppi〉(
∧

k=i,j

〈ppi〉ak). (8.5)

Now, we define ϕ♯ inductively by

p♯
i := pi

(¬ϕ)♯ := d ∧ ¬ϕ♯

(ϕ ∧ ψ)♯ := ϕ♯ ∧ ψ♯

(31ϕ)♯ := 〈ppi〉(d23 ∧ 〈pp〉(d ∧ ϕ♯))
(32ϕ)♯ := 〈ppi〉(d13 ∧ 〈pp〉(d ∧ ϕ♯))
(33ϕ)♯ := 〈ppi〉(d12 ∧ 〈pp〉(d ∧ ϕ♯))

The following Lemma immediately yields Theorem 25.
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Lemma 27. Suppose R(Rn,Rn
reg) ∈ S ⊆ RS∃, for some n ≥ 1. Then an S53-formula ϕ is

satisfiable in an S53-model iff 2uχ ∧ d ∧ ϕ♯ is satisfiable in S.

Proof (⇐) Suppose the region model

M = 〈R, aM
1 , a

M
2 , a

M
3 , d

M, dM
12, . . . , p

M
1 , . . .〉

satisfies 2uχ ∧ d ∧ ϕ♯, where R = 〈W, drR, eqR, . . .〉 ∈ RS∃. Define

W = 〈W1 ×W2 ×W3, p
W
1 , p

W
2 , . . .〉

by setting

• Wi = aM
i , for i = 1, 2, 3;

• for all (w1, w2, w3) ∈W1 ×W2 ×W3 and i < ω,

(w1, w2, w3) ∈ pW
i iff Sup({w1, w2, w3}) ∈ p

M
i .

By Formula (8.3), the Wi are non-empty. Now, the function f : W1 ×W2 ×W3 → dM,
defined by putting

f(w1, w2, w3) = Sup{w1, w2, w3},

is a well-defined bijection:

• f is well-defined (i.e., Sup{w1, w2, w3} ∈ dM) by the properties of Sup(S) and by
Formula (8.4);

• f is injective since, by Formulas (8.1) and (8.2), we have w1 dr w2 for distinct
w1, w2 ∈W1∪W2∪W3. By the properties of Sup(S), we thus get w dr Sup{w1, w2, w3}
for every w ∈W1 ∪W2 ∪W3 different from w1, w2, w3;

• By Formula (8.4), f is surjective.

Using Formula (8.5), one can show in the same way that fij : Wi×Wj → dM
ij , 1 ≤ i < j ≤ 3,

defined by
fij(wi, wj) = Sup{wi, wj},

are well-defined bijections. Moreover, for all (w1, w2, w3) ∈ W1 ×W2 ×W3 and u ∈ Wi,
v ∈Wj , 1 ≤ i < j ≤ 3, we obtain Sup{u, v} pp Sup{w1, w2, w3} iff u = wi and v = wj .

Now it is straightforward to show by structural induction that, for all subformulas ψ of
ϕ and all (w1, w2, w3) ∈W1 ×W2 ×W3, we have

W, (w1, w2, w3) |= ψ iff M, f(w1, w2, w2) |= ψ♯.

Take (w1, w2, w3) ∈W1 ×W2 ×W3 such that f(w1, w2, w3) |= ϕ♯. Then (w1, w2, w3) |= ϕ.
(⇒) By the standard translation of S53 into first-order logic and the theorem of Löwenheim-
Skolem, every satisfiable S53 formula ϕ is satisfiable in a countable model

W = 〈W1 ×W2 ×W3, p
W
1 , p

W
2 , . . .〉.

We may assume w.l.o.g. that the sets Wi are mutually disjoint. Now let n > 0 and define
a model M for 2uχ ∧ d ∧ ϕ♯ based on the structure R5(Rn,Rn

reg) as follows. Let f :

W1 ∪W2 ∪W3 → Rn
reg be an injective mapping such that f(w) dr f(w′) if w 6= w′, and set

• aM
i = {f(w) | w ∈Wi}, for i = 1, 2, 3;

• dM = {f(w1) ∪ f(w2) ∪ f(w3) | (w1, w2, w3) ∈W1 ×W2 ×W3};
• dM

ij = {f(wi) ∪ f(wj) | (wi, wj) ∈Wi ×Wj}, for 1 ≤ i < j ≤ 3;

• pM
i = {f(w1) ∪ f(w2) ∪ f(w3) | (w1, w2, w3) |= pi} for i < ω.
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It is straightforward to prove that χ is true in every point of M. Moreover, one can easily
prove by induction that, for every subformula ψ of ϕ and every (w1, w2, w3) ∈W1×W2×W3,
we have

W, (w1, w2, w3) |= ψ iff M, f(w1) ∪ f(w2) ∪ f(w3) |= ψ♯.

Since ϕ is satisfied in W, we thus obtain that 2uχ ∧ d ∧ ϕ♯ is satisfied in M.

The decidability of other RCC5 logics is left as an open problem. In particular, the
decidability status of substructure logics and their finite companions is one of the most
intriguing open problems suggested by the work presented in this paper.

Concering the recursive enumerability of logics based on LRCC5, we only note that a
counterpart of Theorem 13 is easily obtained using an analogous proof:

Theorem 28. For n > 0, LRCC5(RS) = LS
RCC5(T OP) = LS

RCC5(Rn,Rn
reg) are recursively

enumerable.

As already noted, the recursive enumerability of RCC5 logics determined by full concrete
RCC5-structures is left as an open problem.

9. Conclusion

We first compare our results with Halpern and Shoham results for interval temporal
logic [HS91]. Although one might be tempted to conjecture that their undecidability proofs
can be extended to logics of region spaces, a close inspection shows that the only spaces
for which this might be possible are the logics of hyper-rectangles LRCC8(Rn,Rn

rect). An
extension is not possible, however, for LRCC8(T OP) and LRCC8(Rn,Rn

reg), and not even for

LS
RCC8(Rn,Rn

rect). In fact, the proof technique developed in this paper is more powerful
than that of [HS91]: Theorems 5, 15, and 19 apply to logics induced by the region space
R(R,Rconv), which is clearly an interval structure.5 Interestingly, on this interval structure
our results are stronger than those of Halpern and Shoham in two respects: first, we only
need the RCC8 relations, which can be viewed as a “coarsening” of the Allen interval
relations used by Halpern and Shoham. Second and more interestingly, by Theorem 5
we have also proved undecidability of the substructure logic LS

RCC8(R,Rconv), which is a
natural but much weaker variant of the full (interval temporal) logic LRCC8(R,Rconv), and
not captured by Halpern and Shoham’s undecidability proof.

Several open questions for future research remain. Similar to the temporal case, the
main challenge is to exhibit a decidable and still useful variant of the logics proposed in
this paper. Perhaps the most interesting candidate is LRCC5(RS), which coincides with
the logics LS

RCC5(Rn,Rn
reg), and to which the reduction exhibited in Section 8 does not

apply. Other candidates could be obtained by modifying the set of relations, e.g. giving up
some of them. It has, for example, been argued that dropping po still results in a useful
formalism for applications in geographic information systems. An interesting step in this
direction is [SS05], where a number of decidability and axiomatizability results are proved for
modal logics over region structures with only one modal operator corresponding to certain
inclusion relations between regions. Finally, it is an open problem whether LRCC5(RS) and

5Notice that Halpern and Shoham allow for intervals consisting of a single point while our intervals have
to be regular closed sets and therefore non-singletons. However, as single point intervals are definable using
the formula [pp]⊥, all our negative results extend to interval structure with single point intervals.
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LRCC5(Rn,Rn
reg) are recursively enumerable. Although we believe that they are r.e. (in

contrast to their RCC8 counterparts), a proof is yet lacking.
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Appendix A. Proof of Representation Theorem

Theorem 1 (Representation theorem).

(i) Every concrete region structure is a general region structure;
(ii) every general region structure is isomorphic to a concrete region structure;
(iii) for every n > 0, every countable general region structure is isomorphic to a concrete

region structure of the form R(Rn, URn) (with URn ⊆ Rn
reg).

The proof of this theorem refers to RCC8 constraint networks as introduced in Section 3,
with the only difference that, in the following, we also admit infinite such networks. For
convenience, we repeat the definition here. An RCC8 constraint network is a set of con-
straints (s r r) with s, r region variables and r an RCC8 relation. Such a network N is
satisfiable in a topological space T with regions UT if there exists an assignment δ of regions
in UT to region variables such that (s r r) ∈ N implies δ(s) rT δ(r).

Proof (i) Is easily proved by verifying the conditions formulated for general region models.
This includes verification of the composition table, c.f. [CCR93].
(ii) is well-known for finite general region stuctures, see [Ben98]. Thus, it remains to extend
the result to infinite structures. We are going to prove this extension with the help of the
compactness theorem for first-order logic. To this end, we reduce satisfiability of RCC8

constraint networks in topological spaces to satisfiability in certain relational structures.
Fix a general region structure R = 〈W, dcR, ecR, . . .〉 with W infinite. An associated RCC8

constraint network, called the diagram of R and denoted with diag(R), is defined by

diag(R) = {(sw r sv) | w, v ∈W and M |= w r v},

where the sw, w ∈W , are region variables. To prove (ii), it suffices to show that diag(R) is
satisfiable in some topological space T with a set UT of non-empty regular closed regions:
if this is the case, then

R(T, {δ(sw) | w ∈W})

is a concrete region structure isomorphic to R, where δ is the assignment witnessing satis-
faction of diag(R) in (T, UT).

Recall that every partial order (V,R) induces a topological space (V, IR) by setting, for
X ⊆ V ,

IRX = {x ∈ V | ∀y (xRy → y ∈ X)}

(and thus CRX = {x ∈ V | ∃y (xRy ∧ y ∈ X)}). We call (V, IR) the topological space
induced by (V,R). Of particular interest for us are topological spaces induced by partial
orders that are fork frames: a partial order (V,R) is a fork frame if it is the disjoint union
of forks, where a fork is a partial order ({xb, xl, xr}, S) such that S is the reflexive closure
of {(xb, xl), (xb, xr)}. For example, Figure 7 contains an example fork frame whose induced
topological space satisfies the constraints (r po s), (s ec t), and (r dc t) if r, s, and t
are interpreted as regular-closed sets as indicated. Denote by F the class of all topological
spaces based on fork frames. It is shown in [Ben98, Ren02] that every finite constraint
network which is satisfiable in a general region structure is satisfiable in a topological space
T ∈ F with regions Treg. As diag(R) is trivially satisfiable in the general region structure R,
every finite subset of diag(R) is satisfiable in a topological space T ∈ F with regions Treg.

Next, we give a translation of subsets N of the RCC8 constraint network diag(R) to sets
Γ(N) of first-order sentences using a binary predicate R for the partial order in fork frames,
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Figure 7: A fork frame satisfying (r po s), (s ec t), and (r dc t).

and unary predicates (Pw)w∈W for regions. The translation is such that, for all T ∈ F based
on a fork frame F = (V, S), the following conditions are equivalent:

• an assignment δ witnesses satisfaction of N in T with regions Treg;
• Γ(N) is satisfied in the first-order structure M with universe V that is obtained by

setting RM := S and PM
w := δ(sw) for all region variables sw in N .

The translation introduces one sentence for each constraint in N . We only treat the case
(sw ec sv):

∃x(Pw(x) ∧ Pv(x)) ∧ ¬∃x(Pw(x) ∧ ∀y(xRy → Pv(y))) ∧ ¬∃x(Pv(x) ∧ ∀y(xRy → Pw(y))).

The cases for other RCC8 relations are easily derived from their semantics and the definition
of the topological spaces in F. Extend Γ(N) to another set of first-order sentences Γ∗(N)
by adding the following:

• “Pw is non-empty and regular closed”, for all w ∈W :

∃xPw(x) ∧ ∀x(Pw(x) ↔ ∃y(xRy ∧ ∀z(yRz → Pw(z)))).

• “R is a disjoint union of forks” (details are left to the reader).

Clearly, Γ∗(N) is satisfiable in an arbitrary first-order structure iff Γ(N) is satisfied in a
first-order structure M obtained from a fork frame as described above iff N is satisfiable in
a topological space T ∈ F with regions Treg.

Thus, satisfiability of every finite subset of diag(R) in a topological space T ∈ F with
regions Treg yields that every finite subset of Γ∗(diag(R)) is satisfiable. By compactness of
first-order logic, Γ∗(diag(R)) is also satisfiable and thus diag(R) is satisfiable in a topological
space T ∈ F with regions Treg.

(iii) Suppose that R = 〈W, dcR, ecR, . . .〉 is at most countable. From the encoding of con-
straint networks as sets of first-order sentences to be interpreted in fork frames and by
Löwenheim-Skolem, we obtain that diag(R) is satisfiable in a topological space T ∈ F based
on a fork frame (V, S) with V countable. Let δ be the assignment witnessing this satis-
faction. To satisfy diag(R) in R with regions Rreg, assume that we have an enumeration
({xi

b, x
i
l , x

i
r}, Si), i ∈ N, of the forks of (V, S). To define an assignment δ′ in Rreg, consider

the sets
Wi = {w ∈W | δ(sw) ⊇ {xi

b, x
i
r, x

i
l}}

and take mappings gi from Wi into the open interval (1
4 ,

1
3 ) such that

(1) gi(w) ≤ gi(v) if δ(sw) ⊆ δ(sv);
(2) gi(w) 6= gi(v) if δ(sw) 6= δ(sv).

Such mappings exist because for each Si = {δ(sw) | w ∈ Wi} the partial order (Si,⊆) can
be extended to a linear order which can then be embedded into the open interval (1

4 ,
1
3).
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Now set, for w ∈W ,

δ′(sw) =
⋃

i∈N,xi
r∈δ(w),xi

l
6∈δ(w)

[i, i+
1

4
]∪

⋃

i∈N,xi
l
∈δ(w),xi

r 6∈δ(w)

[i−
1

4
, i] ∪

⋃

i∈N,xi
l
,xi

r∈δ(w)

[i− gi(w), i+ gi(w)].

It is not hard to verify that each δ′(sw) is non-empty and regular closed since non-emptyness
and regular closedness of δ(sw) implies that xi

b ∈ δ(sw) iff {xi
l, x

i
r} ∩ δ(sw) 6= ∅. With the

exception of the ntpp-case, we leave it to the reader to check that the assignment δ′ witnesses
satisfaction of diag(R) in R with regions Rreg. For ntpp, suppose that (sw ntpp sv) ∈
diag(R). Then δ(sw) is in the relation ntpp to δ(sv) in the topological space induced by
(V, S). We show that δ′(sw) is in the relation ntpp to δ′(sv) in R. Clearly, by Condition 1 for
the functions gi, δ

′(sw) is a subset of δ′(sv). To show that δ′(sw) is included in the interior
of δ′(sv) we show that δ′(sw)∩ [i− 1

3 , i+
1
3 ] is included in the interior of δ′(sv)∩ [i− 1

3 , i+
1
3 ],

for all i ∈ N. Let i ∈ N. We distinguish four cases.

• δ(sw) ⊇ {xi
r, x

i
l}. Then δ(sv) ⊇ {xi

r, x
i
l} and therefore

δ′(su) ∩ [i−
1

3
, i+

1

3
] = [i− gi(u), i+ gi(u)],

for u = w, v. By Conditions 1 and 2 on the functions gi, [i − gi(w), i + gi(w)] is
included in the interior of [i− gi(v), i + gi(v)].

• xi
l ∈ δ(sw) and xi

r 6∈ δ(sw). Then δ(sv) ⊇ {xi
r, x

i
l} (because otherwise δ(sw) would

not be included in the interior of δ(sv)). But then the claim follows from the fact
that [i− 1

4 , i] is in the interior of [i− gi(v), i + gi(v)].

• xi
r ∈ δ(sw) and xi

l 6∈ δ(sw). Dual to the previous case.

• δ(sw) ∩ {xi
r, x

i
r} = ∅. Then δ′(sw) ∩ [i− 1

3 , i+
1
3 ] = ∅ and the claim follows.

Assignments witnessing satisfaction of diag(R) in Rn with regions Rn
reg, n > 1, can be

constructed similarly using hyper-rectangles.

Appendix B. Expressivity and Succinctness

The proof of the following theorem is an adaptation of the proof in [EVW02], and a
minor variant of the proof in [LSW01] that is provided here for convenience. Throughout
this section, we use 2FOm

RCC8 to denote the two-variable fragment of FOm
RCC8 and assume

that its two variables are called x and y.
Theorem 2. For every 2FOm

RCC8-formula ϕ(x) with free variable x, one can effectively
construct a LRCC8-formula ϕ∗ of length at most exponential in the length of ϕ(x) such that,
for every region model M and region s, we have M, s |= ϕ∗ iff M |= ϕ[s].

Proof A 2FOm
RCC8-formula ξ is called a unary atom if it is of the form r(x, x), r(y, y), pi(x),

or pi(y). It is called a binary atom if it is of the form r(x, y), r(y, x), x = y, or y = x.
W.l.o.g. we assume that 2FOm

RCC8-formulas are built using the operators ∃, ∧, and ¬ only.
We inductively define two mappings ·σx and ·σy , the former taking each 2FOm

RCC8-formula
ϕ(x) with free variable x to the corresponding LRCC8-formula ϕσx , and the latter doing the
same for 2FOm

RCC8-formulas ϕ(y) with free variable y. We only give the details of ·σx since
·σy is defined analogously by switching the roles of x and y:
– If ϕ(x) = pi(x), then put (ϕ(x))σx = pi.
– If ϕ(x) = r(x, x), then put (ϕ(x))σx = ⊤ if r = eq, and (ϕ(x))σx = ⊥ otherwise.
– If ϕ(x) = χ1 ∧ χ2, then put (ϕ(x))σx = χσx

1 ∧ χσx

2 .
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– If ϕ(x) = ¬χ, then put (ϕ(x))σx = ¬(χσx).
– If ϕ(x) = ∃yχ(x, y), then χ(x, y) can be written as

χ(x, y) = γ[ρ1, . . . , ρr, γ1(x), . . . , γl(x), ξ1(y), . . . , ξs(y)],

i.e. as a Boolean combination γ of ρi, γi(x), and ξi(y), where the ρi are binary atoms, the
γi(x) are unary atoms or of the form ∃yγ′i, and the ξi(y) are unary atoms or of the form
∃xξ′i. We may assume w.l.o.g. that x occurs free in ϕ(x). Our first step is to move all
formulas without a free variable y out of the scope of ∃: obviously, ϕ(x) is equivalent to

∨

〈w1,...,wℓ〉∈{⊤,⊥}ℓ

(
∧

1≤i≤ℓ

(γi ↔ wi) ∧ ∃yγ(ρ1, . . . , ρr, w1, . . . , wl, ξ1, . . . , ξs)). (∗)

Now we “guess” a relation r that holds between x and y, and then replace all binary atoms
by either true or false according to the guess. For r an RCC8 relation and 1 ≤ i ≤ r, let

• ρr
i = ⊤ if ρi = r(x, y);

• ρr
i = ⊤ if ρi = r(y, x) for r ∈ {dc, ec, po};

• ρr
i = ⊤ if ρi = tpp(y, x) and r = tppi or ρi = ntpp(y, x) and r = ntppi;

• ρr
i = ⊤ if ρi is x = y and r = eq;

• ρr
i = ⊥ otherwise.

Using this notiation, (∗) is equivalent to
∨

〈w1,...,wℓ〉∈{⊤,⊥}ℓ(
∧

1≤i≤ℓ(γi ↔ wi) ∧
∨

r∈RCC8 ∃y(r(x, y) ∧ γ(ρ
r
1, . . . , ρ

r
r, w1, . . . , wl, ξ1, . . . , ξs))).

Now compute, recursively, γσx

i and ξ
σy

i , and define ϕ(x)σ as
∨

〈w1,...,wℓ〉∈{⊤,⊥}ℓ(
∧

1≤i≤ℓ(γ
σx

i ↔ wi)∧
∨

r∈RCC8〈r〉γ(ρ
r
1, . . . , ρ

r
r, w1, . . . , wl, ξ

σy

1 , . . . , ξ
σy
s )).

Theorem 3. For n ≥ 1, define a FOm
RCC8 formula

ϕn := ∀x∀y
(

∧

i<n

(pi(x) ↔ pi(y)) → (pn(x) ↔ pn(y))
)

Then every LRCC8-formula ψn that is equivalent to ϕn on the class of all region structures
RS has length 2Ω(n).

Proof Etessami et al. [EVW02] show that, on ω-words, every temporal logic formula equiv-

alent to ϕn is of length at least 2Ω(n), where temporal logic is assumed to have the operators
“next”, “previously”, “always in the future” (2+ϕ), and “always in the past” (2−ϕ). As-
sume, to the contrary of what is to be shown, that there is an n ≥ 1 and an LRCC8 formula
ψ such that ψ is equivalent to ϕn on the class of structures RS and the length of ψ is
smaller than 2Ω(n). Let R = 〈W, dcR, ecR, . . .〉 ∈ RS be such that W = {s0, s1, s2, . . . } and
si ntppR sj if j > i. Clearly, ψ is equivalent to ϕn on R. We construct a new formula ψ∗

by exhaustively performing the following rewritings on (subformulas of) ψ:6

• [r]ϑ ⊤ if r /∈ {ntpp, ntppi};
• [eq]ϑ ϑ.

6Recall that 〈r〉ϑ is only an abbreviation.
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The formula ψ∗ is equivalent to ψ (and thus to ϕn) on R, it only refers to the relations ntpp

and ntppi, and it may only be shorter, but not longer than ψ. We may now convert ψ∗ into
a temporal logic formula ψt by substituting subformulas [ntpp]ϑ with 2

+ϑ and subformulas
[ntppi]ϑ with 2

−ϑ. It is not hard to see that ψt is equivalent to ϕn on ω-words. Thus,
we have derived a contradiction to the fact that there is no such temporal logic formula of
length smaller than 2Ω(n).

Appendix C. Recursive Enumerability of LS
RCC8(Rn,Rn

rect)

Theorem 14. For n ≥ 1, LS
RCC8(Rn,Rn

rect) is recursively enumerable.

Proof We show this result for n = 2. For n = 1 and n > 2, the proof is similar and left to
the reader. Take the first-order language FL4 with one binary relation symbol <, infinitely
many 4-ary relation symbols P1, P2, . . ., and one extra 4-ary relation symbol exists. Define
a 4-ary predicate rect(x1, x2, x3, x4) by setting

rect(x1, x2, x3, x4) = (x1 < x2) ∧ (x3 < x4).

Clearly, we can identify any vector ~a = (a1, a2, a3, a4) ∈ R2 such that R |= rect(~a) with the
rectangle

[a1, a2] × [a3, a4] ∈ R2
rect.

Moreover, it is easy (but tedious) to find, for every RCC8 relation r, a FL4 formula
ϕr(x1, . . . , x4, y1, . . . y4) such that, for any two rectangles [a1, a2]×[a3, a4] and [b1, b2]×[b3, b4],
we have

[a1, a2] × [a3, a4] r [b1, b2] × [b3, b4] iff R2 |= ϕr(~a,~b).

The details of working out these formulas are left to the reader. Now fix variables ~x =
x1, . . . , x4 and ~y = y1, . . . , y4, and define a translation s from LRCC8 into FL4 by

ps
i = rect(~x) ∧ exists(~x) ∧ Pi(~x)

(ψ1 ∧ ψ2)
s = ψs

1 ∧ ψ
s
2

(¬ψ)s = rect(~x) ∧ exists(~x) ∧ ¬ψs

(〈r〉ψ)s = rect(~x) ∧ exists(~x) ∧ ∃~y(ϕr(~x, ~y) ∧ ψ
s(~y/~x)).

Claim. For every formula ϕ ∈ LRCC8, ϕ is satisfiable in a substructure of R(R2,R2
rect) iff

ϕs is satisfiable in a first-order model of the form Q = (Q, <, existsQ, PQ
1 , P

Q
2 , . . .).

(⇒) Suppose ϕ is satisfied in a region model M based on a substructure of R(R2,R2
rect).

Then ϕs is satisfiable in the first-order model

R = (R, <, existsR, PR
1 , P

R
2 , . . .)

in which exists is interpreted as the set of all rectangles belonging to the domain of M and
the Pi are interpreted as the set of rectangles in which pi is true in M. By Löwenheim-
Skolem, there exists a countably infinite elementary substructure of R in which ϕs is satisfied
(see [End72]). Clearly, this structure is a dense linear order without endpoints. As every
countable dense linear order without endpoints is isomorphic to (Q, <), this structure is of
the form required.
(⇐) Suppose ϕs is satisfiable in Q = (Q, <, existsQ, PQ

1 , P
Q
2 , . . .). Define a region model M

based on a substructure of R(R2,R2
rect) with domain U and valuation V as follows: let U

denote the set of rectangles of the form [a1, a2] × [a3, a4] such that Q |= rect(~a) ∧ exists(~a).
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Let V(pi) be the set of all rectangles ~a in U such that Q |= Pi(~a). Then it is readily checked
that M satisfies ϕ.
This finishes the proof of the claim. Now set ϕt = ∀~x(rect(~x) ∧ exists(~x) → ϕs), for every
ϕ ∈ LRCC8. Moreover, let Γ be the conjunction of the usual first-order axioms for dense
linear orders without endpoints (see e.g. [End72]). It follows from the claim above that
ϕ is valid in all substructures of R(R2,R2

rect) iff Γ → ϕt is a theorem of first-order logic.
Thus, recursive enumerability of LS

RCC8(R2,R2
rect) is obtained from recursive enumerability

of first-order logic.

Appendix D. The Domino Problem for k-triangles

Recall that, for k ∈ N, the k-triangle is the set {(i, j) | i+ j ≤ k} ⊆ N2. We are going
to prove the following undecidability result:

Theorem 29. Given a domino system D = (T,H, V ), it is undecidable whether D tiles a
k-triangle, k ≥ 1, such that the position (0, 0) is occupied by a distinguished tile s0 ∈ T and
some position is occupied by a distinguished tile f0 ∈ T .

The proof is via a reduction of the halting problem for Turing machines with a single
right-infinite tape that are started on the empty tape. The basic idea of the proof is to
represent a run of the Turing machine as a sequence of columns of a k-triangle, where
each column represents a configuration (with the left-most tape cell at the bottom of the
column). Let A be a single-tape right-infinite Turing machine with state space Q, initial
state q0, halt state qf , tape alphabet Σ (b ∈ Σ stands for blank), and transition relation
∆ ⊆ Q×Σ×Q×Σ×{L,R}. W.l.o.g., we assume that Turing machines have the following
properties:

• the initial state q0 is only used at the beginning of computations, but not later;
• the TM comes to a stop only if it reaches qf ;
• if the TM halts, its last step is to the right;
• if the TM halts, then it labels the halting position with a special symbol # ∈ Σ

before;
• the blank symbol is never written.

It is easily checked that every TM can be modified to satisfy these requirements. The
configurations of A will be represented by finite words of one of the forms

(1) xbm,
(2) a0 · · · akxya

′
0 · · · a

′
ℓb

m,
(3) a0 · · · akyxa

′
0 · · · a

′
ℓb

m,

where

• m > 0,
• all ai and a′i are in Σ,
• x ∈ A := Q × Σ × {L,R} represents the active tape cell, its content, the current

state, and the direction to which the TM has moved to reach the current position,
and

• y ∈ A† := {〈q, σ,M〉† | 〈q, σ,M〉 ∈ A} represents the previously active tape cell, its
current content, the current state, and the direction to which A moved to reach the
current position.
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Note that the only difference between elements of A and elements of A† is that the latter
are marked with the symbol “†”. Intuitively, the elements of A describe the current head
position while the elements of A† describe the previous one. For technical reasons, the
information whether the last step was to the left or to the right is stored twice in each
column: both in the x cell and in the y cell. Configurations of Form 1 represent the initial
configuration and thus do not comprise the description of a previous state.

Given a Turing machine A, we define a domino system DA = (T,H, V, s0, f0) as follows:

• T := Σ ∪A ∪A† ∪ {$};
• s0 := 〈q0, b, L〉;
• f0 := 〈qf ,#, R〉;
• H := {(σ, σ) | σ ∈ Σ} ∪

{(〈q, σ,M〉, 〈q′ , σ′,M ′〉†) | (q, σ, q′, σ′,M ′) ∈ ∆,M ∈ {L,R}} ∪

{(σ, 〈q, σ,M〉), (〈q, σ,M〉† , 〈q′, σ,M ′〉) | σ ∈ Σ, q, q′ ∈ Q,M,M ′ ∈ {L,R}} ∪

{(〈q, σ,M〉†, σ) | q ∈ Q,σ ∈ Σ,M ∈ {L,R}} ∪

{(〈qf ,#, R〉, $), ($, $)} ∪ {(σ, $) | σ ∈ Σ} ∪

{(〈q, σ,M〉†, $) | q ∈ Q,M ∈ {L,R}}
• V := {(σ, σ′) ∈ Σ2 | σ = b implies σ′ = b} ∪

{(σ, 〈q, σ′, L〉), (〈q, σ′, R〉, σ) | σ, σ′ ∈ Σ, q ∈ Q} ∪

{(〈q, σ′, L〉†, σ), (σ, 〈q, σ′, R〉†) | σ, σ′ ∈ Σ, q ∈ Q} ∪

{(〈q, σ, L〉, 〈q, σ′, L〉†), (〈q, σ′, R〉†, 〈q, σ,R〉) | σ, σ′ ∈ Σ, q ∈ Q} ∪

($, $)}

The tile “$” is used for padding purposes: assume that there exists a terminating compu-
tation of A on the empty tape. Then this computation induces in an obvious way the tiling
of a finite rectangle such that s0 is at position (0, 0), f0 occurs somewhere in the right-most
column, and the height of the rectangle is bounded by the width w of the rectangle. We
may now perform a padding of the columns and rows in order to extend this rectangle to
a 2w-triangle: for extending the height of columns, we may pad with the blank symbol
“b”, and for extending the width of rows, we may pad with the special symbol “$”. Since
the existence of a tiling of a k-rectangle with s0 at position (0, 0) and f0 occurring some-
where induces a halting computation of A in a straightforward way, we obtain the following
lemma.

Lemma 30. The Turing machine A halts on the empty tape iff the domino system DA tiles
a k-triangle, for some k ≥ 1, such that position (0, 0) is occupied by the tile s0 and some
position is occupied by f0.

Finally, Theorem 29 is an immediate consequence of Lemma 30.

This work is licensed under the Creative Commons Attribution-NoDerivs License. To view
a copy of this license, visit http://creativecommons.org/licenses/by-nd/2.0/ or send a
letter to Creative Commons, 559 Nathan Abbott Way, Stanford, California 94305, USA.
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