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ABSTRACT. This paper describes a logic of progress for concurrent programs. The logic is
based on that of UNITY, molded to fit a sequential programming model. Integration of the
two is achieved by using auxiliary variables in a systematic way that incorporates program
counters into the program text. The rules for progress in UNITY are then modified to
suit this new system. This modification is however subtle enough to allow the theory of
Owicki and Gries to be used without change.

1. INTRODUCTION

While verifying concurrent programs has been the topic of much research, deriving them
has not. Even less work has been put into deriving concurrent programs in a way that gives
equal consideration to both progress and safety requirements (as opposed to derivation that
is based only on safety requirements). This paper contributes to this goal by defining a
new logic of safety and progress. The paper does not address methodological questions of
how to incorporate the logic into a design method for concurrent program derivation, and
this is left as a subject for further work. The paper confines itself to defining the new logic,
presenting an example of its use, and describing how the logic compares to other work in
this area.

The point of departure for this paper is the theory of Owicki and Gries [OGT70, [Dij82),
Fv(G99], a theory of partial correctness only, which means that it can only be used to reason
about safety requirements. Two reasons recommend this point of departure. The first is
that this theory is attractively simple. Proofs are carried out in a programming language
(using the assertional style of Hoare) rather than in some other programming model such
as a Petri net, IO automaton, or process algebra. We see this as an important advantage
for program design, where the practicality of model-based reasoning turns, in some large
part, on the transparency, ease and reliability of the translation of the model into code.

The second reason for using the theory is that it has already been used as an effective
method of concurrent program derivation [Fv(G99], albeit derivation that is based only on
safety requirements. The attitude of Feijen and van Gasteren is instructive in this regard, as
it represents a deliberate decision to eschew the expressiveness of temporal logic in favour of

|E |LOGICAL METHODS © B. Dongol and D. Goldson
IN COMPUTER SCIENCE DOI:10.2168/LMCS-2 (1:6) 2006 @ [Creative Commons


http://creativecommons.org/about/licenses

2 B. DONGOL AND D. GOLDSON

the simplicity of Owicki and Gries. The benefit of doing so is a collection of design heuristics
that are attractively simple to use and that, as already remarked, have been shown to be
effective. The cost of the decision is that reasoning about progress requirements becomes
both informal and post hoc. It is a welcome outcome that so much can be achieved in this
way, yet it remains true that satisfaction of progress requirements using this approach is
in an important sense left to chance. The pragmatic attitude of Feijen and van Gasteren,
together with the limitation of the theory of Owicki and Gries, sets the methodological
agenda for this paper. That is, the paper describes how to extend the theory of Owicki
and Gries with a logic of progress that so far as possible, retains the simplicity of the
original theory while at the same time provides a logic in which to formalise and prove
progress requirements. This work then is a prolegomenon to our larger goal, which is a
method of program derivation that assigns equal consideration to both progress and safety
requirements.

The step from standard predicate logic to temporal predicate logic represents an order
of magnitude increase in complexity, which is why Feijen and van Gasteren refused to take
it. In their words, “powerful formalisms for dealing with progress are available. However,
the thing that has discouraged us from using them in practice is that they bring about so
much formal complexity. ... We have decided to investigate how far we can get in designing
multiprograms without doing formal justice to progress” ([Fv(G99] p79). Other authors,
while taking the step, fully recognise its significance. For instance, Lamport writes “TLA
differs from other temporal logics because it is based on the principle that temporal logic
is a necessary evil that should be avoided as much as possible. Temporal formulas tend
to be harder to understand than formulas of ordinary first-order logic, and temporal logic
reasoning is more complicated than ordinary mathematical reasoning” ([Lam94], p917).
Caution in the face of this added complexity has recommended to us the approach taken in
UNITY [CMSR], where assertion ‘P leads to @’ formalises an important class of progress
requirements called ‘eventuality’ requirements, and where eventuality assertions are defined
without using temporal logic. The progress logic of UNITY is ideal for three reasons: the
rules fully capture the temporal notion of leads-to [GPR9], they thereby support reasoning
about progress without resort to operational reasoning, and the rules are simple to use
(relative to comparable program logics such as [Sch97, [Lam94]). At the same time, we
resile from the UNITY programming model because it lacks all notion of a control state,
which makes (what should be simple) conventional sequential programming much harder.
Fundamental operators such as “;” cannot easily be represented [SdR94].

So we have chosen to add the complexity of the logic of UNITY to the theory of
Owicki and Gries over the complexity of full temporal predicate logic, or, to be more
precise, to add a logic of progress that, while clearly inspired by UNITY logic, is tailored
to fit the fundamentally different programming model of multiple sequential programs. In
adapting the UNITY logic to fit a sequential programming model, a decision on how to
represent the control state of a sequential program was first to be made. [OGT6] offers a
partial representation of control through the use of auxiliary variables, while [Sch97, [Lam&7]
opt for a fuller representation through the use of control predicates. Our approach is a
novel use of auxiliary variables to represent program counters, which provides a complete
representation of the control points in a sequential program. This means that the formal
complications that are introduced by the use of control predicates in the generalised Hoare
logic of [Sch97, [Lam87] are avoided in our logic, and we are able to retain the predicate
transformer semantics of Dijkstra. The main contribution of this paper is to combine
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the strengths of these two different theories, Owicki-Gries and UNITY, in order to create
something new.

The paper is structured as follows. Section Bl describes the theory of Owicki and Gries
and provides background to Section Bl which gives the formal basis for the extended logic
described in Section . An application of the new logic to a program design task is also
given in Section B and finally Section B makes a conclusion.

2. THE THEORY OF OWICKI AND GRIES

This section describes the theory of Owicki and Gries [OGT76, [D1j82), [F'v(399] as presented
in [FvG99)]. Section ZJldescribes the underlying programming language and its operational
model. Section describes the predicate transformer wip that underlies the logical model
of programs and concludes with the core theory of Owicki and Gries.

2.1. The programming language and its operational model. The programming no-
tation is the language of guarded commands [Dij70].

Definition (Statement). For statements S, Sy, Sa,...Sy, booleans By, Bs, ..., B, variables
Z1...T, and expressions F1 ... E,,, a statement is defined inductively as follows.

(1) skip is a statement.
(2) A (multiple) assignment z:= E is a statement where,
r=F= T1:= El ” To:=— E2 H N H T — Em
and x; # x; for i # j.
(3) S1;52 is a statement.
(4) (S) is a statement.
(5) The following are statements, where each B; — S; is called a guarded command with
guard B; and command S;.
(a) if By — S1[[Bs — Sa|...[|Bn — Sy fi
(b) do Bl—>SlﬂBg—>SgﬂﬂBn—>SnOd ’

The statements IF and DO are defined as representatives of the general notion of an

if or do statement.

IF = if Bl — SlﬂBQ — 52 fi

DO =do B— S od
A sequential program, also called a component, is just a statement. A concurrent program,
also called a multiprogram, is a collection of components, together with a precondition that
defines its initial states. In this paper, we will refer to a concurrent program as a program
and to a sequential program as a component. The values of the variables in a program
define its current data state. A variable of a component may be local to that component,
meaning it is not read or written by any other component; private to that component,
meaning it can be read but not written by any other component; or shared, meaning it can
be both read and written by any other component.

A component is executed by executing its atomic actions. An atomic action is an execu-
tion step that results in a single update of the control state of the whole program, i.e., when
an atomic action is executed, the control state of the component in which the action occurs
changes once, and the control state of all other components remains the same. Note that
an atomic action is guaranteed to terminate when it is executed. We adopt a programming
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model in which an atomic action corresponds to an assignment statement, to a skip state-
ment, to a guard evaluation step in an if or do statement, or to a coarse-grained atomic
statement. The latter is defined by applying the ‘atomicity operator’ (S) to an arbitrary
statement S, where the operator eliminates any control points in S so that (S) is executed
atomically as just described. Note that execution of (S) is only enabled (not blocked) if
execution of S is guaranteed to terminate. While this creates an impossible difficulty for
the implementor, since a machine can not, in general, decide whether a statement will ter-
minate, the use of coarse-grained atomic statements in our language allows us to nicely
capture otherwise informal concepts (see [GD05]). [AO9T] solve this problem syntactically,
by disallowing S to contain a loop or a synchronisation statement, whereas our approach
is to make it the responsibility of the programmer to ensure that a coarse-grained atomic
statement is guaranteed to terminate.

Condition synchronisation in the model is achieved using the if statement. Execution of
the guard evaluation action of an if statement is blocked when the guard evaluation action
is not enabled, which is when all of the guards are evaluated false. A guard evaluation
action of an if statement is therefore a conditional atomic action because it may not always
be enabled. A guard evaluation action of a do statement is an unconditional atomic action
because it is always enabled, as are skip and assignment actions. The programming model
prescribes weak fairness, so that on termination of an atomic action, an atomic action that
follows it, if there is one, is eventually executed if it is continually enabled. This means
that in the concurrent execution of a number of components, the execution of the next
(continually enabled) atomic action of no component is delayed indefinitely.

2.2. Hoare triples, the wip and the core theory of Owicki and Gries. If P and Q
are any two predicates, and S is a statement, a Hoare-triple, {P} S {Q} is true iff each
terminating execution of S that starts in an initial state satisfying P is guaranteed to end
in a final state satisfying Q). P is called the precondition of S and @ the postcondition.
A predicate that appears in a Hoare-triple is also called an assertion and programs that
have such assertions are referred to as being annotated. The annotation of a program also
defines the program’s initial state with a precondition, which is referred to as Pre.

Definition (Weakest Liberal Precondition). The weakest liberal precondition (wlp) [Dij76]
predicate transformer is defined inductively as follows, where P|x:= E] denotes the textual
substitution of each E; for free occurrences of x; in P.

(1) wip.skip.P = P

(2) wip.(x:= E).P = Plx:= F]

(3) wip.(S).P = wlp.S.P

(4) wip.(S1;S2).P = wip.S;.(wlp.Ss.P)

(5) wlp.IF.P = (B; = wlp.S1.P) A\ (By = wlp.S3.P)

(6) wlp in the case of statement DO need no longer be first order definable [Gum99], as

we do not know when (or if) the loop terminates. The wip of a DO loop is defined

in terms of a countable sequence of conditionals of the form
D = if B — S[|-B — skip fi which gives us:

wip.DO.P = \/ wip.D,,.P

n=1

where D,, is the n-fold iteration of statement D. ¢
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The fundamental relation between Hoare-triples and wip is that, for any statement S
and predicates P and Q",
{P} S{Q} =P = wip.5.Q
In a program design setting it is usually most convenient to present proofs using the
predicate transformer wlp. However, this is not always the case due to the awkwardness
of the definition of wip for statement DO, where it is more convenient to make use of the
following theorem

(P} DO {Q} < ((PAB= wlp.S.P)A(PA-B=Q))

Any predicate P that satisfies this relation is referred to as a loop invariant, and proving
correctness of an annotated DO statement amounts to finding a P that satisfies this relation.

We are now in a position to state the core theory of Owicki and Gries, which defines
the conditions under which a program annotation is correct.

Rule (Local Correctness). An assertion P in a component is locally correct (LC) when,

(1) if P is textually preceded by program precondition Pre, then Pre = P
(2) if P is textually preceded by {Q} S, then {Q} S {P} holds, i.e., @ = wip.S.P.

Rule (Global Correctness). An assertion P in a component is globally correct (GC) if for
each {@Q} S from a different component, {P A Q} S {P} holds, i.e., PAQ = wip.S.P. W

An assertion is correct if it is both locally and globally correct. An annotation is correct
if all assertions are correct.

Rule (Postcondition). A predicate P is a valid postcondition of a program if the conjunction
of the correct postconditions of the components implies P. |

It is useful at this point to introduce a simple example of how the theory can be used
to prove a safety requirement which will serve to make the foregoing discussion concrete.
Consider this program of two components X and Y

Program (1)

Pre:x =0

Component X: Component Y:
r=x+1 Ti=x 4+ 2

Safety: Program (1) has terminated = = = 3
Program (1) satisfies Safety.

Proof. X and Y are annotated locally correct (LC) and note that both satisfy part (1) of
the LC rule

Program (1)

Pre:x =0

Component X: Component Y:
{z =0} {z =0}
r=z+1 r=x+ 2
{z=1} {z =2}

1t is common to relate Hoare-triples to the total correctness predicate transformer wp, however, this is
ill-suited to a programming paradigm in which termination is not always desired.
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Global correctness (GC) of the annotation is now arranged by weakening all four assertions,
noting that this maintains LC.

Program (1)

Pre:x =0

Component X: Component Y:
P:{x=0vz=2} {r=0ve=1}
r=x+1 Ti=x + 2
Q:{r=1vz=3} {r=2vx=3}

The GC of the assertions P and ) in X are calculated:

wlp.(v:=x + 2).P wlp.(zv:= 2z +2).Q)
= {Substituting the value of P} = {Substituting the value of @}
wip.(x:=x+2).(x =0V =2) wip.(x:=x+2).(x =1V =3)
< {By definition of wip} < {By definition of wip}
z=0 =1
= {By logic} = {By logic}
(r=0Vz=2)A(x=0VvVa=1) (r=1Vz=3)A(z=0VvVa=1)

Finally, the conjunction of the two final assertions of X and B establishes the desired safety
requirement

(x=1ve=3)AN(z=2Vx=3) = =3 []

The simplicity of the core theory is reflected in its limited power. The lack of a means
to reason about a program’s control state means that safety requirements that are clearly
met may not be provable, such as in the following program.

Program (2)

Pre: =0

Component X: Component Y:
r=z+1 r=xz+1

Safety: Program (2) has terminated = x = 2

It is an interesting exercise to convince yourself that this safety requirement is not
provable in the core theory. The solution in [OGT76] is to add auxiliary information into a
program which could be used in its correctness proof. We start by defining an auziliary
assignment, which is an assignment to a fresh variable, different from all program variables,
called an auxiliary variable. The assignment may only appear as part of an atomic action,
hence, does not introduce any new control points. We require that actions remain well-
formed when all auxiliary assignments are removed. Furthermore, as addition of auxiliary
information should not affect control and data states of the original program, auxiliary
variables may not appear in any guard and assigned to a non-auxiliary variable.

Returning to the example of Program (2), we augment the program with auxiliary
assignments to fresh variables pc.A and pc.B to give us the following program.
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Program (3)

Pre: x =pc.X =pcY =0

Component X: Component Y:
r=x+1| pcX:=1 r=x+1|pcY:=1

Safety: Program (3) has terminated = =z = 2

Program (3) satisfies Safety.

Proof. This is now much as for Program (1). The two components can be annotated for LC

Program (3)

Pre: x =pc. X =pcY =0

Component X: Component Y:
{z = 0}{pc.X =0} {z = 0}{pc.Y =0}
r=x+1| pc.X:=1 r=x+1|pcY:=1
{z =1}{pec.X =1} {z =1}{pcY =1}

GC is arranged by a combination of strengthening and weakening these assertions as follows:

Program (3)

Pre: x =pc.X =pc.Y =0

Component X: Component Y:

P:{(z=0ApcY =0)V(x=1ApcY =1)} {x=0ApcX =0)V(z=1ApcX =1)}
{pc.X =0} {pc.Y =0}

r=z+1]|peX:=1 r=xz+1]|pcY:=1

Q:{(z=1ApcY =0)V(x=2ApcY =1)} {x=1ApcX =0)V(z=2ApcX =1)}

{pe.X =1} {pc.Y =1}

As before, the GC of P and @) in X are calculated:

wip.(x:=x+ 1| pc.Y:=1).((x =0ApcY =0)V(x =1ApcY =1)) Apc.X =0)
= {By definition of wip}

z=0ApcX =0
< {By logic}

(x=0ApcY =0)V(z=1ApcY =1)) Apc.X =0ApcY =0

wp(z:=z+ 1| pcY:=1).((z=1ApcY =0)V(r =2ApcY =1)) Apc.X =1)
= {By definition of wip}
r=1ApcX =1
< {By logic}
((x=1ApcY =0)V(z=2ApcY =1)) Apc.X =1ApcY =0
Finally, the conjunction of the two final assertions of A and B establishes the desired safety
requirement.

((x=1ApcY =0)V(x=2ApcY =1)ApcY =1 = x=2 O]

Noting that Program (3) is just Program (2) with auxiliary assignments to pc.A and
pc.B superimposed on it, we are entitled to conclude that Program (2) satisfies the same

safety requirement, because the two programs are equivalent in having the same data and
control states.
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3. THE EXTENDED THEORY OF OWICKI AND GRIES

It is fairly clear, so far as reasoning about progress is concerned, that the theory of
Owicki and Gries is deficient because it lacks a systematic means to describe a program’s
control state. Any extension to the theory must therefore provide for this, and the extension
to be described in this section has two parts. First, control points in a component are
named by naming the atomic action to be executed at the corresponding point. This is
done by labelling all of the atomic actions in the component. Second, an auxiliary variable
is introduced into each component in a way that models its ‘program counter’, i.e., the value
of this variable indicates the active control point in the component, which is just the label
of the atomic action that corresponds to that control point.

Sections Bl and introduces the twin notions of a labelled program and a program
counter while Section reviews the reasons why program counters were chosen over control
predicates as the formalisation of program control states.

3.1. Labelled statements. The first step toward describing an active control point in a
statement requires being able to refer to the next atomic action to be executed. We do
this by assigning a unique label to each atomic action that occurs in the statement. The
label of a statement’s initial atomic action will be called the initial label of that statement.
In addition, a label will be assigned to the end of the statement which will be called the
final label of the statement. A final label of a statement will always label the initial atomic
action of a statement that follows it. However, if there is no following statement, then the
final label does not refer to any atomic action, but simply marks the end of the statement.

Definition (Labelled Statement).

(1) A labelled skip statement has the form i: skip j: where i is the initial label and j is
the final label.

(2) A labelled assignment statement has the form i: x:= F j: where i is the initial label
and j is the final label.

(3) A labelled sequential statement has the form i: Sy; j: Sy k: where i is the initial label
of statement S7, j is the final label of S7, j is the initial label of statement Sy and
k is the final label of Ss.

(4) A labelled coarse-grained atomic statement (S) has the form i: (S) j: where ¢ is the
initial label and j is the final label, and statement S is not labelled.

(5) A labelled statement IF has the form

1:if Bl — j:SlﬂBQ — k: 52 fil:

where 7 is the initial label of IF" and [ is the final label of IF, i is the label of the
initial atomic action of IF', which is the guard evaluation action, and j and k are
the final labels of the guard evaluation action. j is the initial label of statement S,
k is the initial label of statement Sy and [ is the final label of both S; and Ss.

(6) A labelled statement DO has the form

i:do B— j:5 od k:

where 7 is the initial label of DO and k is the final label of DO, i is the label of the
initial atomic action of DO, which is the guard evaluation action, and j and k are
final labels of the guard evaluation action. j is the initial label of statement S and
i is the final label of S.

(7) If i and j are the initial labels for different actions of any statement, then i # j. 4



EXTENDING THE THEORY OF OWICKI AND GRIES WITH A LOGIC OF PROGRESS 9

In what follows A.; will be used to denote ‘the atomic action in component A labelled
1> whenever 7 is not the final label of component A.

3.2. Modelling program counters. There are essentially two ways of using this addi-
tional information that labelled statements provide. One way is to introduce into the logic
new control predicates to express propositions such as, for instance, that ‘control in com-
ponent A is at the atomic action labelled ¢’. This kind of approach is taken in ([Sch97],
pp96-108, pp136-140) and in ([Lam87]), but the cost is that the familiar axioms of Hoare
logic, as presented in Section Z2] must be given up in favour of generalised axioms that take
account of the fact that, say, {P} i:skip j: {P} is no longer true for all P (for example,
when P asserts that ‘control is at label ¢’). A further cost is that new axioms must be
introduced to capture the intended interpretation of the new control predicates. The desire
to make only conservative extension to the theory of Owicki and Gries, prompted by the
desire to retain old, familiar and trusted ways (the wip), has led us to resist this approach
in favour of the use of auxiliary variables to reason about the control state. In our method,
{P} i:skip j: {P} is also not an axiom. However, we do avoid the extra axioms on the
control state required by control predicates, and are able to retain the wip as the main tool
for proving predicates.

Consequently, we formalise a program’s control state in the following way. An auxiliary
variable is introduced into each component in a way that models its ‘program counter’, i.e.,
the value of this variable indicates the active control point in the component, which is just
the label of the next atomic action to be executed, or the end of the component if no such
action exists. Given a component A, this variable pc.A will be called the program counter
of A, and its essence is to record the control state of A, but in so doing to change neither
the program’s control state nor its data state. Given this essence, program counter pc.A
must be updated at every atomic action in A in a way that assigns pc.A a final label of that
action. This is done by superimposing an auxiliary assignment to pc.A onto every atomic
action in A in the following way.

Definition (Program Counter). Given a program with precondition Pre and labelled com-
ponent A, variable pc.A is the program counter of A when

(1) pc.A is a local variable of A.
(2) If i is the initial label of A then Pre = pc.A =i
(3) A labelled skip statement has the form i: (skip; pc.A:= j) j: .
(4) A labelled assignment statement has the form i:x:= F || pc.A:=j j: .
(5) A labelled coarse-grained atomic statement has the form i: (S; pc.A:= j) j: .
(6) A labelled statement IF has the form
i:if (B1 — pc.A:=j) j:51[(B2 — pcAi=k) k: Sy fi l:
(7) A labelled statement DO has the form
i:do (B — pc.A:=j) j:S [[(-B — pc.A:= k) od k:

Given that guard evaluation is an atomic action (as it changes the program control
state whenever a guard is evaluated true), and given that a program counter must be
updated at every atomic action in a component, we are required to extend the grammar
of statements IF and DO in order to make explicit the state change that can accompany
a guard evaluation. To this end we modify the syntax of guarded command B — j:5 to
(B — pc.A:= j) j: S so that the transfer of program control from the guard evaluation to
the initial action of S when guard B evaluates true is made explicit. Note how atomicity
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brackets ( ) are used to indicate that the update of the program counter is part of the
guard evaluation. However, we acknowledge that this grammar is awkward, because it is
semantically misleading whenever a statement consists of several alternatives. For example,
in statement
if (By — pc.A:=j) j:51[(B2 — pcA:i=k) k: Sy fi l:

the two pairs of atomicity brackets suggest two atomic guard evaluations, which is not the
case, rather there is one atomic guard evaluation labelled by 4, which has three outcomes,
the first where guard Bj is evaluated to true and control passes to the initial action of Sy
labelled by j, the second where guard Bs is evaluated to true and control passes to the
initial action of S5 labelled by k, and the third where both guards By and By are evaluated
to false and control remains at the guard evaluation action labelled by 3.

The case of statement DO

i:do B— j:5 od k:
is further complicated by the fact that the loop is not a blocking statement, which is to
say that when guard B is evaluated false control does not remain at the guard evaluation
labelled by 4, but rather it passes to the control point labelled by k. This transfer of
control requires an explicit update to the program counter, which we have accommodated
by changing the grammar of the DO statement in a way that makes this outcome of the
guard evaluation explicit
i:do B— j:S [|-B — od k:

The DO statement now admits a guarded command —B — with an empty command, which,
if selected, has the total effect on the program state of passing control to the control point
labelled by k. The operational semantics of this syntactically modified DO statement is
unchanged, with the sole purpose of the modification being to introduce a peg on which to
hang the assignment pc.A:= k.

Finally, note that we are free to interpret predicate pc.A = i to mean that ‘control in
A is at A.7’ because pc.A = 1 is a correct precondition of A.i and because labels are unique.
LC follows from the definition of pc.A, and GC follows from the same, on account of pc.A
being a local variable of A.

3.3. Program counters vs. control predicates. Recalling that the reason for choosing
program counters over control predicates has been driven by a desire to make only con-
servative changes to the theory of Owicki and Gries, we can view this choice as one of
a superficial (i.e., syntactic) change to guarded commands in order to make explicit the
way that a guard evaluation can change the control state, over a significant (i.e., semantic)
change to the program logic. The chief practical gains are that we are able to retain the
semantics of wip as the logical basis of the programming model and that the absence of
primitive control predicates means that we do not need to introduce additional logical rules
to define them. The core theory of Owicki and Gries as described in Section therefore
remains the same under the changes described in Sections Bl and B2, and the definition of
the wlp predicate transformer is extended to a labelled statement with program counter pc
as follows

(1) wip.(i: (skip; pc:= j) j ).P = wlp.(pc:= j).P
J

(2) wip.(i: (x:= E || pe:= 5) ]_)P = Plz:= E || pc:= j]

(3) wip.(i: (S;pc:=7) j:).P = wlp.(S;pc:= j).P
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(4) wip.(i: S1;5: Sa k:).P = wlp.(i: S1 j:).(wlp.(j: S2 k:).P)
(5) wlp.(i:if (By — pc:=j) j:Si[|{B2 — pe=k) k: Sy fi l:).P
(B1 = wip.(pe:= j)-(wlp.(j: S1 1:).P)) A (B2 = wip.(pc:= k).(wip.(k: S2 I:).P))
(6) {P} i:do (B — pc:=3j) 7:S [(-B — pe:=k) od k: {Q}
=
(P A B = wlp.(pc:= j).(wlp.(j: S i:).P)) A (P AN =B = wlp.(pc:=k).Q)
It is noteworthy that typical axioms [Lam&87, [AS89] that are required to define the
meaning of a control predicate now become easy derived rules of the program counters
model.

(1) Each component has at most one active control point. This is trivial on account of
(Vi 7 :5 #1i: pc.A =1 = pc.A+# j) and the uniqueness of labels.

(2) Each component has at least one active control point. This holds on account of the
invariance of (Ji :: pc.A =1).

(3) Execution of an atomic statement in component a different from A does not change
the active control point in component A. This is trivial on account of A’s program
counter being a local variable of A.

Against the advantages of using program counters, the chief drawback is the syntactic
complexity that the program counter assignments add to the program under consideration.
However, this added complexity is nicely avoided in practice by making the assignments
implicit in the program. In effect, this amounts to redefining the wip for a labelled statement
with implicit program counter pc as follows
) wlp.(i: skip j:).P = wip.(pc:= j).P
wip.(i: :E—E] ).P = Plz:= E || pc:= j]
wlp (i:(S) j:).P = wip.(S; pe:= j).P

Ip.(

Ip.(

i:S1;5: So k:).P =wlp.(i:S1 j:).(wlp.(j: S2 k:).P)

(1
(2)
(3)
(4)
(5) 21fBl—>jSlﬂB2—> k’SQﬁl)

IIIEE

(B = wlip.(pc:= 7).(wlp.(j: S1 1:).P)) A (By = wip.(pe:= k).(wlp.(k: Sz 1:).P))
(6) {P}i:do B— j:Sodk: {Q}

)

(P A B = wlp.(pc:= j).(wip.(j: S i).P)) A (P AN =B = wip.(pc:= k).Q)
and this is what we do.

4. A LOGIC OF PROGRESS FOR THE EXTENDED THEORY

As we now have the means to reason about the control state of a program, we are now
in a position to extend the theory to support reasoning about progress requirements. The
rules for progress in the extended theory are described in Section EETl. Section describes
an application of the new logic to a program design task, which compares favourably to the
treatment in ([FxG99], pp2 07-212) and Section describes a second application of the
logic, this time to the proof of correctness of a program transformation.
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4.1. Rules of progress. As already remarked in Section [, the logic to be presented is
almost just that of UNITY ([CMSS], pp47-74), where the notion of progress is formalised
using the relation leads-to (denoted ~-), where, for any predicates P and @, P ~» @ holds
if it is always the case that in a program state in which P holds, execution of the program
is such that a program state will eventually be reached in which @ holds. In temporal logic
IMP92] terms, P ~» Q = O(P = Q) where O and ¢ are the ‘always’ and ‘eventually’
operators respectively. In order to axiomatize this relation, we begin by defining the notion
of unless (un).

Definition (Unless). If P and @ are any two predicates, P un @ holds if
{PA-QANU} S A{PVQ}

holds for all atomic statements {U} S, where U denotes the precondition of S in the
annotated program. ¢

Relation unless says that a program state in which P holds and @ does not, is per-
petuated until a state is reached in which @ holds. But note that this does not guarantee
that @ will ever hold, for (an extreme) example, true un @ holds for all @, including false.
To formalise progress properties we also need a notion of what it means for a statement to
establish a predicate given that it is not yet true. In (JCMSS|, pp50-52) this is formalised
by the relation ensures, which forms the basis of the definition of leads-to. In our setting,
and purely for presentational reasons, we have chosen not to define ensures, but rather to
define the basic part of leads-to directly in terms of the several forms of atomic action in
the programming language. More substantially, the basic part of our definition of leads-to,
which is the point at which the relation is bound to the program under consideration, is the
only point at which the two definitions of leads-to differ, the inductive part of our definition
being identical to that in (JCMSKS8], p52). However, this difference in the basic definition of
leads-to is an essential difference, on account of the fundamentally different programming
model that is used here and in UNITY. Our programs consist of a number of concurrently
executing sequential components, each of which is constructed using the guarded command
language [Dij76], whereas a UNITY program is a single non-terminating loop of guarded
assignments.

We remind ourselves that for the basic part of the definition of leads-to, the atomic
actions are skip, assignment, guard evaluation and coarse-grained atomic statements of the
form (S) for arbitrary statement S. A judgment P ~» @) arrived at using this rule ensures
that if a program state is reached in which P holds, execution of the program is such that P
will continue to hold until a program state is reached in which @ holds, and, further, a state
in which @ holds will be reached. We will call this the ‘immediate progress’ rule because
it allows us to actually exhibit an atomic action that is guaranteed to bring @) about. Our
convention is that operator ~~ binds weaker than any logical operator. Hence, for example,
(PZ>Q)M—>R = P:>Q«~>R.

Rule (Immediate Progress). P ~» @ holds if P un @ holds, and there exists a labelled
statement with initial label ¢ in a component with program counter pc and

(1) PN=Q = pc=1

(2) (a) the statement is a skip or an assignment statement i: S j: and,

PA-Q = wip.(i:S j:).Q.
(b) the statement is a coarse-grained atomic statement i: (S) j: and,
PA-Q = wp.S.(Qpc:=j])
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(c) the statement is an I'F statement ¢:if By — j: S1[|Ba — k:Ss fi [: and,
(i) PA-Q = B1V DB
(i) (PA~QA By = Qlpe= ) A (PA-Q A By = Qlpe= k).
(d) the statement is a DO statement i:do B — j:S od k: and,
(PAN=QAB = Q[pc:=j]) N (PAN=-QAN—-B = Q[pc:= k). |

To make sense of this rule we provide these interpretative notes. P ~~ @ is here justified
on the basis of being able to actually exhibit a continually enabled atomic action at an active
control point that makes ) true when it is executed. To see how the rule formalises this,
we first note that P A —(Q) is assumed. As P un () must hold, we can be assured that P
remains true as long as —(Q) is true. Clause 1 establishes that control is at an atomic action
labelled 7 in a component. Clause 2 establishes that this action is enabled when P A —=Q
is true, and that its execution makes () true. It follows from clause 1 that the action is
continually enabled as long as —(@) is true and as we are assuming weak fairness, that the
action is eventually executed. Clause 2 is separated into three cases to cover the three kinds
of atomic actions: execution of an atomic statement; guard evaluation to an if statement;
and guard evaluation to a do statement. In case (2a), an assignment action is always
enabled and it is enough to ensure that its execution makes @ true. In case (2b), a guard
evaluation action in an if statement is not always enabled and so clause (2bi) ensures that
it is enabled when P A =@ is true. Clause (2bii) further ensures that its execution makes
@ true. In case (2¢), a guard evaluation action in a do statement is always enabled and it
is again enough to ensure that its execution makes @) true.

The inductive part of the definition of leads-to is given by

Rule (Inductive Progress).
(Transitivity) (P ~ R) < (P~ Q)N (Q ~ R)
(Disjunction) For any set W, ((Ji :i € W: Pa) ~ Q) < (Vi:i € W: Pi~ Q)
|

The rule of transitivity requires no explanation. The rule of disjunction, in its finite
application of, say, two progress assertions, amounts to the inference that if P.0 ~~ () and
P11~ @Q then POV P.1 ~ ). Via a finite number of applications of the immediate and
inductive progress rules, we are now able to prove any eventuality property that can be
proved using leads-to. The ‘next’ temporal operator is missing from our logic, just as it
was missing from UNITY. However, this is not a big problem in concurrent environments
as reasoning about ‘next’ seldom makes sense to the inherent non-determinacy.

[CMS8§| also present a thorough treatment of a collection of derived rules for leads-to,
all of which remain true in our setting, and which are listed below. The proofs of these
derived rules are presented in Appendix A.

Rule (Derived Progress Rules).
(1) (Implication Theorem) P ~~ Q < (P = Q)
(2) (Impossibility Theorem) =P <« (P ~ false)
(3) (Disjunction Theorem)
(3m :-meW: Pm)~ (Im :meW: Q.m)) <« (Vm:m e W: Pm ~ Q.m)
(4) (Cancellation Theorem)
(Pv~»QVR) « (P~»QVD)\N(D~ R)
(5) (PSP (Progress-Safety-Progress) Theorem)
(PANR~ (QAR)VD) <« (P~ Q)AN(Run D)
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(6) (Induction Theorem) Let M be a total function from program states to set W. Let
(W, <) be well-founded. Variable m in the following premiss ranges over W and
predicates P and () do not contain free occurrences of variable m. Then,

(P~Q) < (Ym: P\M=m~ (PAM <m)VQ)

(7) (Completion Theorem) Let P.i and Q.i be predicates where i ranges over a finite
set. Then,

((Vi:: Pi) ~ (Vi Q.i)VD) < (Vi (P~ Q.iVD)A(Q.i un D)) |

The remainder of this section gives two examples of how the new logic can be used.
The first presents an application of the logic to a program design task, which compares
favourably to the treatment in ([Fx(G99], pp207-212), and the second presents a proof of
correctness of a program transformation called the “guard conjunction lemma”, which is
taken from the same source ([ExG99], pp118-120).

4.2. The initialisation protocol. The first example is taken from [Fv(G99] where it ap-
pears as both an exercise in verification (p84) and as an exercise in design (p207). Here we
present an alternative design that starts with the following program

The Initialisation Protocol

Pre: true

Component X: Component Y:
Init. X; Init.Y;

y:= false; x:= false;

(if y — skip fi); (if x — skip fi);
S.X SY

Progress: There is no individual deadlock

The safety requirement of the initialisation protocol is omitted from the specification on
account of this program already satisfying it, the requirement being that X cannot begin
execution of code S.X until Y has completed execution of code Init.Y, and vice versa.
This requirement is maintained provided that only assignment y:= true in Y is allowed,
and this only after Init.Y’, which is nicely ensured by restricting attention to the protocol
code below:

The Initialisation Protocol — simplified and labelled
Pre: pc.X =pcY =1

Component X: Component Y:

1: y:= false; 1: z:= false;

2: (if y — skip fi) 2: (if x — skip fi)
3: 3:

Progress: pc.X =2~ pc.X =3
Topology: Only y:= true is allowed in Y
Progress is proved as follows:

pe.X =2
~» {By case analysis on the guard of X.2}

(pe.X =2Ay)V (pe.X =2 A —y)
~» {Immediate progress rule with X.2, y is GC in X}
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pe.X =3V (pe.X =2 A —y)
As this is our first encounter with the immediate progress rule, let us elaborate the last step
of the proof. We have:
(pe.X =2ANy)V (pe.X =2A-y) ~ pc.X =3V (pc.X =2A-y) (4.1)
This means we have the following instantiations:
P=(pc.X =2ANy)V (pec.X =2Ay)
Q =pc.X =3V (pc.X =2 —y).

We first show that P un @ holds.

Against X.1 we have: Against X.2 we have:
PA-Q = wip.(X.1).(PVQ) PA-Q = wip.(X.2).(PVQ)

= {Substituting value of X.1 and by wip} = {Substituting value of X.2 and by wip}
PA-Q = (PVQ)[y:=false,pc. X:= 2] PA-QANy = (PVQ)[pcX:= 3|

= {By substitution} = {By wlp calculation}
PA-Q = true PA-QAy = true
= {By logic} = {By logic}
true true
Against Y.1 we have: Against Y.2 we have:
PA-Q = wip(Y1).(PVQ) PA-Q = wip.(Y.2).(PVQ)
= {Substituting value of Y.1 and by wlp} = {Substituting value of Y.2 and by wip}
PA-Q = PVQ PA-QANz = PVQ
= {By logic} = {By logic}
true true

Clause (1) of the immediate progress rule holds, as P A =Q = pc.X = 2. Finally, as we are
dealing with a coarse-grained atomic statement, we refer to clause (2a) which gives us:
PA-Q = wip.(X.2).Q
= {Substituting value of X.2 and by wip}
PA-Q ANy = Qlpc.X:=3]
= {By wlp calculation}
PA-QANy = true
= {By logic}
true
It is still required that pc.X = 2 A =y ~ pc.X = 3 be shown to complete the proof, which
demands proof that a disabled component makes progress. Transitivity may be used so
that the proof obligation is broken up into

peX =2N-y ~ pc.X =2Ay (4.2)

pc.X =2Ay ~ pc.X =3 (4.3)

so that becoming enabled, and making progress is shown in two different steps. We will
skip the proof of @3] as it is similar to that of ([@Il), however point out the importance
of our topology constraint in the proof of ([3)). Imagine that there was a statement in

component Y that makes y false. In our proof of pc.X = 2Ay un pc.X = 3, we would have
a calculation of the following form:



16 B. DONGOL AND D. GOLDSON

pe.X =2ANyApeX #3 = wip.(i:y:= false j:).((pc.X =2 ANy)V peX = 3)
= {By wlp calculation and logic}
pc.X =2ANy = pc.X =3
which is clearly not true.
We now return to the proof of ([L2). Notice that component X is disabled, which gives
us no choice but to consult component Y. Hence, we have:
pe.X =2A-y ~ pe.X =2Ay
< {By disjunction}
(Vi pe. X =2AN-yApcY =i ~ pc.X =2A\y)
This is now demanding that the execution of the rest of the program, i.e., component Y,

lead to a state which makes the guard at X.2 true. We now perform case analysis on
pe.Y € {1,2,3}.

pc.X =2AN-yApeY =1 ~ peX =2Ay (4.4)
pe.X =2AN-yApeY =2 ~~ pe X =2Ay (4.5)
pc.X =2AN-yApeY =3 ~ peX =2Ay (4.6)

For (E4]), on account of Y.1 not hampering progress, on account of being an assignment,
and being orthogonal to pc.X = 2 A —y, we opt for deferring the obligation to make y true,
by delegating the task to Y.2. () is therefore proved as follows:
pcX =2A-yApcY =1
~» {Immediate progress with Y.1}
pc.X =2AN-yApcY =2
- {By @3}
pcX =2ANy
For (A, since Y.2 is a guarded skip, deadlock is avoided by requiring invariance of:
pc.X =2AN-yApcY =2A-x = false (4.7)
We may simplify 1) as follows:
pe.X =2AN-yApeY =2AN-z = false
= {By logic}
pc.Y =2 = pe. X #2VyVze
Since pe.X is local to X and because of the topological constraint on Y, there is no choice
but to introduce assignment y:= true at Y.2 to give us:

The Initialisation Protocol — refinement 1
Pre: pc.X =pcY =1

Component X: Component Y:
1. y:= false; 1. z:= false;
4: x:= true; 4: y:=true;
2: (if y — skip i) {pe.X #£#2VyVuz}
3: 2: (if v — skip fi)
3:

(D) is now proved as follows:
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pc.X =2AN-yApcY =2
~ {By @D}
pe.X =2AN-yApcY =2Azx
~» {Immediate progress rule with Y.2}
pc.X =2AN-yApcY =3
~ {By &)}
pc.X =2ANy

17

For (6l), we opt to add a second assignment y:= true at Y.3 which gives us the following:

The Initialisation Protocol — refinement 2
Pre: pc.X =pcY =1
Component X: Component Y:
1: y:= false; 1: x:= false;
4: x:=true; 4: y:=true;
2: (if y — skip fi); 2: (if x — skip fi);
3: x:=true 3. y:=true
5: o:

But note that this derivation is typical in its interplay between proof and program
development, and the new code at Y.4 and Y.3 has extended the case analysis to cases
pc.Y € {1,2,3,4,5}. Case pc.Y = 4 is again by progress rule, but case pc.Y = 5 is a
different matter. Evidently, introducing an assignment is not an option here for reason of

infinite regress, so we look to arrange invariance of:
pcY =5 =y
We now perform calculation on (6] which gives us:
pc.X =2AN-yApcY =5
~ {By EX)}

false
~ {Implication theorem}
pc.X =2ANy
The Initialisation Protocol — annotated for progress
Pre: pc.X =pcY =1
Component X: Component Y:
1. y:= false; 1. x:= false;
4:  x:= true; 4: y:=true;
2: (if y — skip fi); 2: (if z — skip fi);
3 z=true 3. y:=true
5: {y}
o:

For GC of assertion y at Y.5 we look to strengthen (X)) with pc. X # 1
pc.Y =5 = yApeX #1

which induces the following annotation of Y:

(4.8)

(4.9)
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The Initialisation Protocol — correctly annotated
Pre: pc.X =pcY =1
Component X: Component Y:
1. y:= false; 1. x:= false;
4: zi=true; {z = pc.X # 1}
2: (if y — skip fi); 4:  y:=true;
3: xi=true 2: (if z — skip fi);
5: {pc.X # 1}
3:  y:=true
{yHpe.X # 1}
o:

GC of pc.X # 1 is for free because every action in X makes it true on account of X.1 being
the initial action of X. This concludes the derivation.

The example is a nice one for two reasons. First, because the problem itself is quite
delicate, as can be seen by reworking the design from the point at which it was decided
to establish (f4]) by the transitivity rule rather than by introducing an assignment. The
alternative path leads all the way to:

Pre: pc.X =pcY =1
Component X: Component Y:
6: x:= true; 6: y:=true;
1. y:= false; 1. z:= false;
4: x:= true; 4:  y:=true;
2: (if y — skip fi); 2: (if x — skip fi);
3: x:=true 3 y:=true
5: {yH{? pe.X # 1}
o:

but now the derivation falls down on account of the (lack of) GC of pc. X # 1 at Y.5.

Second, while the derivation is marked by a complete absence of operational thinking,
yet it was completely driven by progress concerns. This is just what we want to see in a
problem like this where progress is of the essence. In this regard, it is instructive to compare
it to the derivation in [Fv(G99] and to note there the authors closing remark that “we have
to admit that, no matter how crisp the final solution turned out to be, its derivation seems
to be driven by hope and a kind of opportunism.”(p212). In our view, this is not true in
the present case, rather we see this derivation as a small step toward our larger goal of
developing a method of program derivation in which progress requirements are given equal
consideration with safety requirements.

4.3. The guard conjunction lemma. The guard conjunction lemma ([FxG99], pp118-
120) describes a correct program transformation by justifying the replacement of a guarded
skip with a (coarse-grained) conjunctive guard BAC by a pair of (fine-grained) guarded skips
with guards B and C, when B is GC in the component in which the guarded skip occurs.
The lemma states that the transformation preserves the safety and progress properties of
the original program, and it is noteworthy that the proof of the latter part is outside of
the scope of the basic theory of Owicki and Gries (as presented in Section Z2)). Thus,
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we are told by Feijen and van Gasteren that the basic theory “is not suited for proving
[progress|. Fortunately, Dr. J. Hooman proved it for us. He did so by considering the sets
of all possible computations that can be evoked by the original and by the new system,
respectively, and then showing that the two systems have the same properties as far as
deadlock and individual progress are concerned. The proof is not for free and we are
grateful to him for having designed it for us.” ([FxG99], p118). The purpose of this section
is to show how the guard conjunction lemma can be proved in the extended theory of Owicki
and Gries (as presented in Section ). The lemma states

Lemma (Guard Conjunction Lemma). For a globally correct B, guarded command
i:(if BANC — S fi) j:
may be replaced by
i:(if B—skipfi); k:(if C - S fi) j:
without impairing total correctness of the design, i.e.

(i) impairing the correctness of the annotation of the program
(ii) introducing total deadlock
(iii) endangering individual progress, i.e., given any component X, and labels i3, jj, each
proof of the form pc.X = ii ~ pc.X = jj is preserved

For the sake of completeness, we begin by reproducing the proof of (i).

Proof. We prove (i) as follows using notation X C Y to mean “fragment X can be trans-
formed to fragment Y without affecting safety”.
i:(if BAC — S fi) j:
C {Adding a skip does not affect safety}
i: ( if true — skip fi );k: (if BAC — S fi) j:
{Strengthening the guard}
i: (if B— skip fi );k:(if BAC — Sfi) j:
{Introducing globally correct assertion B}
i:(if B— skipfi );{B} k:(if BAC — Sfi) j:
{Logic}
i: (if B — skip fi );{B} k: (if C - S fi) j:
C {Weakening the annotation}
i: (if B— skip fi );k:(ifC — Sfi) j:
Part (ii) follows from (iii) when we interpret (iii) to mean that a program that contains the
refined code has the same progress properties as the original program. In order to formalise
(iii), we conceptualise two programs, one is the original program that consists of component
A and all other components. The other is this program, but with A replaced by A’, which
is obtained from A by replacing the coarse-grained guarded skip by the pair of finer-grained
statements.
We will first show that individual progress holds in the modified component, then show
that individual progress holds for any other component in the program. Hence, we first
show that:

M

1M

M

(pc.A=i~spcA=j) = (pc.A =i~ pcA =j)
Observe that when B is globally correct, as the two codes {B} (if C — S fi ) and ( if BA
C — S fi ) are equivalent, it is enough to prove that codes

i:(if BANC — Sfi) j:
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and

i: (if B—skipfi); k:(if BAC — S fi) j:
have the same progress properties. Start by assuming that A can pass its guarded statement,
ie., pc.A =1~ pc.A = j holds. By the immediate progress rule, this is only possible if the
following equations hold:

pcA=1i ~ pcA=iANBANC
pcA=iANBANC ~ pcA=j

We would thus like to show that the corresponding equations hold for component A’ in the
new program, i.e., prove that:

pcA' =i ~ pcA'=iANBAC (4.10)
pcA'=iANBAC ~ pcA =j (4.11)
In the new program, the only component that has changed is A, hence, the rest of the
program will preserve the proofs of ([EI) and [TIT). Component A’ preserves the proof of
(ETQ) as control remains at 4, which completes the proof of [I0). Now, A’ is guaranteed
to reach control point k& because:
pc.A' =i ANBAC
~ {Immediate progress rule, B is GC in A’}
pcA'=kANBAC
Furthermore, pc.A’ = i ~ pc.A’ = k does not change the state of the rest of the program,

because a guard evaluation action can only change the control state of the component in
which the action occurs, which is A’. Hence,

CS: When pc.A =i and pc. A’ = k the rest of the program containing A is in
the same state as the rest of the program containing A’.

which gives us the following calculation:
pcA'=kEANBAC
~ {CS, pcA=iNBANC ~ pcA=j}
pc. A =j
This concludes the proof that A’ is no less progressive than A. We now prove that the
implication also holds the other way, that is

pcA' =i~ pcA =5 = pcA=i~spcA=j

The above proof shows how A’ (with pc.A’ = k) can get ahead of A (with pc.A = i) when
=(C is true, but, of course, the action at A.k must wait for the rest of the program to make
C true. Since pc.A' = kANC = pc. A’ = kN B A C by the annotation of A’, and by CS, the
A.i guard is enabled whenever the A’.k guard is, which concludes the proof that A’ is no
more progressive than A.

Now given any other component say Y # A, if the proof of pc.Y = ii ~ pc.Y = jj
depends on the proof of pc.A = i ~ pc.A = 7, then as pc.A’ = i ~ pc.A’ = j holds whenever
pc.A = i ~ pc.A = j, the assertion pc.Y = ii ~ pc.Y = jj continues to hold in the new
program. If the proof does not depend on A, then as no modifications have been made to
the rest of the program, again pc.Y = ii ~» pc.Y = jj continues to hold. L]
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5. CONCLUSION

In the context of sequential programs, Hoare [Hoa69)] showed how a sequential program
could be verified without reference to its operational semantics. Then, in the context of
concurrent programs, Owicki and Gries [OGT76] showed how safety properties could be ver-
ified by adding interference freedom conditions to Hoare’s logic, but leaving the underlying
logic unchanged. Although this modification was small, the Owicki-Gries theory improved
on the previously existing global invariant method of [Ash75] because it avoided a state
explosion problem [dReall] by decomposing a global invariant into a program annotation
[Lam87]. In this paper we have developed this theory further and incorporated a theory of
progress into the formalism.

[OLR2] presents a proof system where the temporal operators [J and ¢ have been
incorporated into the Owicki-Gries formalism. One of the drawbacks of their system is that
both conditional selection and blocking statements have not been described, and one must
simulate these using the looping construct. The logic is also missing both ‘next’ and ‘unless’
making it less expressive than ours. Furthermore, keywords, ‘at’, ‘after’ and ‘in’ are used
to describe the control state of the program, and temporal logic has been encoded directly
(as opposed to axiomatically) into their logic. This has meant that the method needs to
stay within the realms of logical reasoning, as opposed to algebraic calculation, which as
[F'v(G99] has pointed out, is not suitable in the context of program derivation.

Several event based models exist, such as JCMSKS8| [BS89, [LT8Y, Sha93, [Lam94], but,
as Lamport suggests, proofs in these models can easily be translated from one model to
another, and the difference lies in the ease with which a given program can be formalised
in a given model. If a target implementation is based on a concurrent sequential program
model, then we see no reason why this implementation should be modelled in an event
based one. We therefore see one advantage of our approach over these others in the way
that it can support a more direct translation of a program design into code.

The extended theory of Owicki and Gries includes a logic of progress, but it is up to us
how to make use of it. Our ultimate aim is to integrate this logic into a method of program
design (derivation) in the same kind of style as [ExG99]. Early work in this direction is
promising, and a more comprehensive example can be found in [GD05], which presents a
derivation of Dekker’s program for two process mutual exclusion. In a program verification,
we do not have the freedom to change a program when a proof does not work out. We are
left with the dilemma of not knowing whether the program or the proof is at fault. In this
respect, deriving a program that satisfies a specification is certainly superior. [Fv(G99] have
already shown how commonly occurring design patterns can be identified in both programs
and their proofs, and how these patterns can be used to shorten proofs. We believe that
patterns such as these will emerge with the extended theory as well. It is a case of realising
when they do and noting them accordingly.

We note that although leads-to is a widely accepted construct for reasoning about
progress, it is not without deficiencies. For instance, while leads-to can always be used
to express the proposition that P will eventually be true, by itself it can not express the
proposition that P will be true in the next program state. [Sha93] hints at the possibility of
using auxiliary variables to express the notion of next state. Whether greater expressivity of
temporal logic can be achieved in the Owicki-Gries theory by combining auxiliary variables
and leads-to is a topic of further research.
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APPENDIX A: DERIVED RULES OF THE LOGIC OF PROGRESS

The logic of UNITY in [CMSS, [MisO1] is based on an inductive definition of a relation
leads-to. Given this definition, a number of derived properties are proved. The purpose of
this appendix is to confirm that these are also derived rules of our progress logic too. The
Inductive Progress Rules in our definition of leads-to (in Section H) are identical to those
in [CMS8§|, only the Immediate Progress Rule is different, to take account of the different
programming models. Therefore, in what follows the proof of a derived rule will assume
that a use of leads-to always results from a use of the Immediate Progress Rule.

Theorem (Implication Theorem). (P = Q) = (P ~ Q)

Proof. First note that, for any R, (P = Q) = ((P A—Q) = R). It follows that the three
premisses of the Immediate Progress Rule are true on account of this equation, because
(1) Pun Q
= {By definition, for any atomic statement {U} S}
PA-QAU = wlp.S.(PV Q)
(2) PAN=Q = pc=1
(3) Any atomic statement can be chosen on account of P A =@ = false when assuming
P=qQ. L]
Theorem (Impossibility Theorem). (P ~~ false) = =P

Proof. First note that, for any S, wip.S.false = false. We look at the three forms of
atomic statement that occur in premiss (3) of the Immediate Progress Rule.

(1) If (P ~ false) because of a skip, assignment statement, or coarse-grained atomic
statement i: S j: then
P = wlp.S.false
= {By wlp and logic}
-P
(2) If (P ~~ false) because of an IF statement of the form
i:if By — j:S1[|Ba — k: Sy fi l:

then

(PN By = false) N (P A By = false)
= {By logic}

(=P V -B1) A (-PV —Bj3)
= {By logic}

-P vV (—|Bl VAN —\Bg)
= {By premiss (3bi), P = B; V By}
-P
(3) If (P ~ false) because of a DO statement of the form
i:do B — j: S od k:
then
(PAB= false) N (P AN—-B = false)
= {By logic}
(=PV=B) A (=PV B)
= {By logic}
-P VvV (-BAB)
{By logic}
-P L]
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Theorem (Disjunction Theorem).

(Vm :meW: Pm~ Q.m) = ((3m:meW: Pm)~ (Im :meW: Q.m))
Proof. As in [CMSS]. OJ
Theorem (Cancellation Theorem).

(P~QVD)N(D~R) = (P~QVR)
Proof. As in [CMSS]. ]
Theorem (PSP Theorem).
(P~ Q)A(RunD) = (PAR~ (QAR)VD)

Proof. We assume the antecedent and show that, for the consequent, the three premisses of
the Immediate Progress Rule are true. The proof uses two equations

RA-QA-D = RA-((QAR)V D) (5.1)
QAN(RVD) = (QAR)VD

(1)  (P~Q) A (RunD)
= {By Immediate Progress Rule}
(Pun @) A (Run D)
= {By definition of un, for any atomic statement {U} S}
(PAN-QAU = wlp.S(PVQ) N (RAN-DAU = wlp.S.(RV D))
= {By logic and conjunctivity of wip}
PA-QARA-DAU = wip.S.(PVQ)A(RV D))
= {By logic}
PA-QARAN-DAU = wip.S.((PAR)V(QAR)V (PAD)V(QAD))
= {As (PAD)V(QAD) = D}
PA-QARA-DAU = wip.S.(PAR)V (QAR)V D)
= {By BI)}
PARAN-((QANR)VD)ANU = wip.S((PANR)V(QAR)V D)
= {By definition of un}
PAR un (QAR)V D
(2) For any statement i: S j:
(P~Q) N Run D
= {By Immediate Progress and logic}
PA-Q=pc=1
= {By logic}
PARAN=-((QANR)VD)=pc=1
(3) (a) If (P~ Q) because of a skip, assignment statement, or coarse-grained atomic
statement i: S j: then
(P~ Q) AN (Run D)
= {By definition of un and ~»}
(PA-Q = wlp.(i:S j:).Q) N (RAN—-D = wip.(i: S j:).(RV D))
= {By logic}
PA-QANRA-D = wlp.(i:S j:).(Q AN (RV D))
= {By (B&I), (&2) and monotonicity of wip}
PARAN=((QANR)VD) = wlp.(i:S 7:).(Q ANR) V D)
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(b) If (P ~ Q) because of an IF statement of the form
i:if By — j:S1[|Ba — k: S fi l:

For premiss (3bi)
P~ Q

= {By definition}
PA-Q = B1V DB

= {By logic}
PARA=((QAR)VD) = BV By

and for premiss (3bii)
(P~ Q) N (Run D)

= {By definition}
(RA-DAB; = (RVD)[pe:=3]) A (RA=DA By = (RV D)[pe:= k]) A
(PA-QA B = Qlpei=j]) A (P A-QA Bz = Qlpe= k)

= {By logic}
(PA-QARA-DAB; = (QA(RV D))pe:=j]) A
(PA-QARA-DA By = (QA(RV D))pe:= k])

= {By ) and (E2)}
(PANRA-((QANR)VD)ABy = ((QAR)V D)[pc:=j]) A
(PANRA-((QANR)VD)ABy= ((QAR)V D)[pc:= k])

(c) The case where (P ~ @) because of a DO statement is similar to case (b). []

Theorem (Induction Theorem). Let M be a total function from program states to set
W. Let (W, <) be well-founded. Variable m in the following premiss ranges over W and
predicates P and () do not contain free occurrences of variable m.

(VYm:= PANM=m~ (PAM<m)VQ) = (P~ Q)
Proof. As in [CMSS]. Il

Theorem (Completion Theorem). Let P.i and Q.i be predicates where i ranges over a
finite set.
(Vi (Pi~QiVD)AN(Qiun D))= ((Vi: Pi)~ (Vi Q.i)VD)

Proof. As in [CMSS]. Il

This work is licensed under the Creative Commons Attribution-NoDerivs License. To view
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