Logical Methods in Computer Science
Vol. 1 (3:1) 2005, pp. 1-26 Submitted Mar. 20, 2005
www.Imcs-online.org Published Dec. 20, 2005

PROBABILISTIC ALGORITHMIC KNOWLEDGE

JOSEPH Y. HALPERN “ AND RICCARDO PUCELLA°

@ Cornell University, Ithaca, NY 14853 USA
e-mail address: halpern@cs.cornell.edu

® Northeastern University, Boston, MA 02115 USA
e-mail address: riccardo@ccs.neu.edu

ABSTRACT. The framework of algorithmic knowledge assumes that agents use determin-
istic knowledge algorithms to compute the facts they explicitly know. We extend the
framework to allow for randomized knowledge algorithms. We then characterize the in-
formation provided by a randomized knowledge algorithm when its answers have some
probability of being incorrect. We formalize this information in terms of evidence; a ran-
domized knowledge algorithm returning “Yes” to a query about a fact ¢ provides evidence
for ¢ being true. Finally, we discuss the extent to which this evidence can be used as a
basis for decisions.

1. INTRODUCTION

Under the standard possible-worlds interpretation of knowledge, which goes back to
Hintikka [1962], an agent knows ¢ if ¢ is true at all the worlds the agent considers possi-
ble. This interpretation of knowledge has been found useful in capturing some important
intuitions in the analysis of distributed protocols [Fagin, Halpern, Moses, and Vardi 1995].
However, its usefulness is somewhat limited by what Hintikka [T962] called the logical om-
niscience problem: agents know all tautologies and know all logical consequences of their
knowledge. Many approaches have been developed to deal with the logical omniscience
problem (see [Fagin, Halpern, Moses, and Vardi 1995, Chapter 10 and 11] for a discussion
and survey). We focus on one approach here that has been called algorithmic knowledge
[Halpern, Moses, and Vardi 1994]. The idea is simply to assume that agents are equipped
with “knowledge algorithms” that they use to compute what they know. An agent algo-
rithmically knows ¢ if his knowledge algorithm says “Yes” when asked ¢.!

Algorithmic knowledge is a very general approach. For example, Berman, Garay, and
Perry [1989] implicitly use a particular form of algorithmic knowledge in their analysis
of Byzantine agreement. Roughly speaking they allow agents to perform limited tests
based on the information they have; agents know only what follows from these limited

2000 ACM Subject Classification: 1.2.4; G.3.

Key words and phrases: Knowledge, Probability, Evidence, Randomized Algorithms, Algorithmic Knowl-
edge, Logic.

IWe remark that what we are calling “knowledge algorithms” here are called “local algorithms” in
[Fagin, Halpern, Moses, and Vardi 1995 [Halpern, Moses, and Vardi 1994].

|IEm| LOGICAL METHODS © J.Y.Halpernand R. Pucella
IN COMPUTER SCIENCE DOI:10.2168/LMCS-1 (3:1) 2005 @ [Creative Commons

http://creativecommons.org/about/licenses

2 J. Y. HALPERN AND R. PUCELLA

tests. Ramanujam [T999] investigates a particular form of algorithmic knowledge, where
the knowledge algorithm is essentially a model-checking procedure for a standard logic of
knowledge. More specifically, Ramanujam considers, at every state, the part of the model
that a particular agent sees (for instance, an agent in a distributed system may be aware
only of its immediate neighbors, the ones with whom he can communicate) and takes as
knowledge algorithm the model-checking procedure for epistemic logic, applied to the sub-
model generated by the visible states. Halpern and Pucella [2002] have applied algorithmic
knowledge to security to capture adversaries who are resource bounded (and thus, for ex-
ample, cannot factor the products of large primes that arise in the RSA cryptosystem
[Rivest, Shamir, and Adelman 1978]).

All these examples use sound knowledge algorithms: although the algorithm may not
give an answer under all circumstances, when it says “Yes” on input ¢, the agent really
does know ¢ in the standard possible-worlds sense. Although soundness is not required in
the basic definition, it does seem to be useful in many applications.

Our interest in this paper is knowledge algorithms that may use some randomization.
As we shall see, there are numerous examples of natural randomized knowledge algorithms.
With randomization, whether or not the knowledge algorithm says “Yes” may depend on the
outcome of coin tosses. This poses a slight difficulty in even giving semantics to algorithmic
knowledge, since the standard semantics makes sense only for deterministic algorithms. To
deal with this problem, we make the algorithms deterministic by supplying them an extra
argument (intuitively, the outcome of a sequence of coin tosses) to “derandomize” them.
We show that this approach provides a natural extension of the deterministic case.

To motivate the use of randomized knowledge algorithms, we consider a security ex-
ample from Halpern and Pucella [2002]. The framework in that paper lets us reason about
principals communicating in the presence of adversaries, using cryptographic protocols.
The typical assumption made when analyzing security protocols is that adversaries can
intercept all the messages exchanged by the principals, but cannot necessarily decrypt en-
crypted messages unless they have the appropriate decryption key. To capture precisely the
capabilities of adversaries, we use knowledge algorithms. Roughly speaking, a knowledge
algorithm for an adversary will specify what information the adversary can extract from in-
tercepted messages. In this paper, we consider an adversary that further attempts to guess
the cryptographic keys used by the principals in the protocol. We show how to capture the
knowledge of such an adversary using a randomized knowledge algorithm.

Having defined the framework, we try to characterize the information obtained by
getting a “Yes” answer to a query for ¢. If the knowledge algorithm is sound, then a “Yes”
answer guarantees that ¢ is true. However, the randomized algorithms of most interest
to us give wrong answers with positive probability, so are not sound. Nevertheless, it
certainly seems that if the probability that the algorithm gives the wrong answer is low, it
provides very useful information when it says “Yes” to a query . This intuition already
appears in the randomized algorithms literature, where a “Yes” answer from a highly reliable
randomized algorithm (i.e., one with a low probability of being wrong) is deemed “good
enough”. In what sense is this true? One contribution of our work is to provide a formal
answer to that question. It may seem that a “Yes” answer to a query ¢ from a highly
reliable randomized knowledge algorithm should make the probability that ¢ is true be
high but, as we show, this is not necessarily true. Rather, the information should be viewed
as evidence that ¢ is true; the probability that ¢ is true also depends in part on the prior
probability of ¢.

PROBABILISTIC ALGORITHMIC KNOWLEDGE 3

Evidence has been widely studied in the literature on inductive logic [Kyburg 1983].
We focus on the evidence contributed specifically by a randomized knowledge algorithm.
In a companion paper [Halpern and Pucella 2003], we consider a formal logic for reasoning
about evidence.

The rest of this paper is organized as follows. In Section [, we review algorithmic knowl-
edge (under the assumption that knowledge algorithms are deterministic). In Section B, we
give semantics to algorithmic knowledge in the presence of randomized knowledge algo-
rithms. In Section Hl, we show how the definition works in the context of an example from
the security domain. In Section Bl we characterize the information provided by a randomized
knowledge algorithm in terms of evidence. We conclude in Section Bl All proofs are deferred
to the appendix.

2. REASONING ABOUT KNOWLEDGE AND ALGORITHMIC KNOWLEDGE

The aim is to be able to reason about properties of systems involving the knowledge
of agents in the system. To formalize this type of reasoning, we first need a language. The
syntax for a multiagent logic of knowledge is straightforward. Starting with a set ® of
primitive propositions, which we can think of as describing basic facts about the system,
such as “the door is closed” or “agent A sent the message m to B”, more complicated
formulas are formed by closing off under negation, conjunction, and the modal operators
Ky, ..., K, and Xy,...,X,,. Thus, if ¢ and ¢ are formulas, then so are =p, @ A Y, K;p
(read “agent i knows ¢”), and X;p (read “agent i can compute ¢”). As usual, we take
© V1 to be an abbreviation for =(—¢ A =) and ¢ = 1 to be an abbreviation for —¢ V 1.

The standard possible-worlds semantics for knowledge uses Kripke structures [Kripke 1963]]
Formally, a Kripke structure is composed of a set .S of states or possible worlds, an inter-
pretation m which associates with each state in S a truth assignment to the primitive
propositions (i.e., 7(s)(p) € {true, false} for each state s € S and each primitive proposi-
tion p), and equivalence relations ~; on S (recall that an equivalence relation is a binary
relation which is reflexive, symmetric, and transitive). The relation ~; is agent i’s possibil-
ity relation. Intuitively, s ~; t if agent ¢ cannot distinguish state s from state ¢ (so that if s
is the actual state of the world, agent ¢ would consider ¢ a possible state of the world). For
our purposes, the equivalence relations are obtained by taking a set £ of local states, and
giving each agent a view of the state, that is, a function L; : S — L. We define s ~; t if and
only if L;(s) = L;(t). In other words, agent i considers the states s and ¢ indistinguishable
if he has the same local state at both states.

To interpret explicit knowledge of the form X;p, we assign to each agent a knowledge
algorithm that the agent can use to determine whether he knows a particular formula. A
knowledge algorithm A takes as inputs a formula of the logic, a local state £ in L, as well
as the state as a whole. This is a generalization of the original presentation of algorithmic
knowledge [Halpern, Moses, and Vardi 1994], in which the knowledge algorithms did not
take the state as input. The added generality is necessary to model knowledge algorithms
that query the state—for example, a knowledge algorithm might use a sensor to determine
the distance between a robot and a wall (see Section H). Knowledge algorithms are required
to be deterministic and terminate on all inputs, with result “Yes”, “No”, or “?”. A knowl-
edge algorithm says “Yes” to a formula ¢ (in a given state) if the algorithm determines that
the agent knows ¢ at the state, “No” if the algorithm determines that the agent does not
know ¢ at the state, and “?” if the algorithm cannot determine whether the agent knows

@Y.

4 J. Y. HALPERN AND R. PUCELLA

An algorithmic knowledge structure M is a tuple (S,m, Ly,..., Ly, A1,...,A,), where
L1, ..., L, are the view functions on the states, and A, ..., A, are knowledge algorithms.?

We define what it means for a formula ¢ to be true (or satisfied) at a state s in an
algorithmic knowledge structure M, written (M, s) |= ¢, inductively as follows:

(M,s) = pif n(s)(p) = true

(M7S)): - if (M7S) l# ‘2

(M, s) = oniif (M, s) = ¢ and (M, s) =

(M,s) = K;pif (M,t) = ¢ for all ¢t with s ~; ¢

(M, s) = Xip if Ai(p, Li(s),s) = “Yes”.
The first clause shows how we use the 7 to define the semantics of the primitive propositions.
The next two clauses, which define the semantics of — and A, are the standard clauses from
propositional logic. The fourth clause is designed to capture the intuition that agent ¢ knows
@ exactly if ¢ is true in all the states that ¢ considers possible. The final clause interprets
X, via agent i’s knowledge algorithm. Thus, agent ¢ has algorithmic knowledge of ¢ at
a given state if the agent’s algorithm outputs “Yes” when presented with ¢, the agent’s
local state, and the state. (Both the outputs “No” and “?” result in lack of algorithmic
knowledge.) As usual, we say that a formula ¢ is valid in structure M and write M = ¢ if
(M, s) = ¢ for all states s € S; ¢ is wvalid if it is valid in all structures.

We can think of K; as representing implicit knowledge, facts that the agent implicitly
knows, given its information. One can check that implicit knowledge is closed under im-
plication, that is, K;p A K;(¢ = v¥) = K;v¥ is valid, and that an agent implicitly knows
all valid formulas, so that if ¢ is valid, then K is valid. These properties say that agents
are very powerful reasoners. What is worse, while it is possible to change some properties
of knowledge by changing the properties of the relation ~;, no matter how we change it,
we still get closure under implication and knowledge of valid formulas as properties. They
seem to be inescapable features of the possible-worlds approach. This suggests that the
possible-worlds approach is appropriate only for “ideal knowers”, ones that know all valid
formulas as well as all logical consequences of their knowledge, and thus inappropriate for
reasoning about agents that are computationally limited. In contrast, X; represents explicit
knowledge, facts whose truth the agent can compute explicitly. Since we put no a priori
restrictions on the knowledge algorithms, an agent can explicitly know both ¢ and ¢ = ¥
without explicitly knowing), for example.

As defined, there is no necessary connection between X;p and K;p. An algorithm
could very well claim that agent i knows ¢ (i.e., output “Yes”) whenever it chooses to,
including at states where K;p does not hold. Although algorithms that make mistakes are
common, we are often interested in knowledge algorithms that are correct. We say that a
knowledge algorithm is sound for agent ¢ in the structure M if for all states s of M and
formulas ¢, A;(¢, Li(s),s) = “Yes” implies (M, s) = K;p, and A;(, Li(s),s) = “No” implies
(M, s) E - K;p. Thus, a knowledge algorithm is sound if its definite answers are correct. If
we restrict attention to sound algorithms, then algorithmic knowledge can be viewed as an
instance of awareness, as defined by Fagin and Halpern [I98§].

2Ha,lpern7 Moses, and Vardi [T994] introduced algorithmic knowledge in the context of dynamic systems,
that is, systems evolving in time. The knowledge algorithm is allowed to change at every state of the system.
Since the issues that interest us do not involve time, we do not consider dynamic systems in this paper.
We remark that what we are calling “algorithmic knowledge structures” here are called “algorithmic struc-
tures” in [Fagin, Halpern, Moses, and Vardi 1995} [Halpern, Moses, and Vardi 1994]. The term “algorithmic
knowledge structures” is used in the paperback edition of [Fagin, Halpern, Moses, and Vardi 1995].

PROBABILISTIC ALGORITHMIC KNOWLEDGE 5

There is a subtlety here, due to the asymmetry in the handling of the answers returned
by knowledge algorithms. The logic does not let us distinguish between a knowledge algo-
rithm returning “No” and a knowledge algorithm returning “?”; they both result in lack of
algorithmic knowledge.? In section B3l where we define the notion of a reliable knowledge
algorithm, reliability will be characterized in terms of algorithmic knowledge, and thus the
definition will not distinguish between a knowledge algorithm returning “No” or “?”. Thus,
in that section, for simplicity, we consider algorithms that are complete, in the sense that
they always return either “Yes” or “No”, and not “?”. More precisely, for a formula ¢,
define a knowledge algorithm A; to be p-complete for agent i in the structure M if for all
states s of M, A;i(p, Li(s),s) € {“Yes”, “No” }.

3. RANDOMIZED KNOWLEDGE ALGORITHMS

Randomized knowledge algorithms arise frequently in the literature (although they have
typically not been viewed as knowledge algorithms). In order to deal with randomized algo-
rithms in our framework, we need to address a technical question. Randomized algorithms
are possibly nondeterministic; they may not yield the same result on every invocation with
the same arguments. Since X;¢ holds at a state s if the knowledge algorithm answers “Yes”
at that state, this means that, with the semantics of the previous section, X;¢ would not be
well defined. Whether it holds at a given state depends on the outcome of random choices
made by the algorithm. However, we expect the semantics to unambiguously declare a
formula either true or false.

Before we describe our solution to the problem, we discuss another potential solution,
which is to define the satisfaction relation probabilistically. That is, rather than associating
a truth value with each formula at each state, we associate a probability Prs(¢) with each
formula ¢ at each state s. The standard semantics can be viewed as a special case of this
semantics, where the probabilities are always either 0 or 1. Under this approach, it seems
reasonable to take Prg(p) to be either 0 or 1, depending on whether primitive proposition p
is true at state s, and to take Pry(X;¢) to be the probability that i’s knowledge algorithm
returns “Yes” given inputs ¢, L;(s), and s. However, it is not then clear how to define
Prs(¢ A). Taking it to be Prg(¢)Prg() implicitly treats ¢ and 1 as independent, which
is clearly inappropriate if 1 is —¢.* Even ignoring this problem, it is not clear how to
define Pry(X;p A X;1), since again there might be correlations between the output of the
knowledge algorithm on input (¢, L;(s), s) and input (¢, L;(s), s).

We do not use probabilistic truth values in this paper. Instead, we deal with the prob-
lem by adding information to the semantic model to resolve the uncertainty about the truth
value of formulas of the form X;p. Observe that if the knowledge algorithm A is random-
ized, then the answer that A gives on input (p,¢,s) will depend on the outcome of coin
tosses (or whatever other randomizing device is used by A). We thus turn the randomized
algorithm into a deterministic algorithm by supplying it with an appropriate argument. For
example, we supply an algorithm that makes random choices by tossing coins a sequence
of outcomes of coin tosses. We can now interpret a knowledge algorithm answering “Yes”
with probability « at a state by considering the probability of those sequences of coin tosses
at the state that make the algorithm answer “Yes”.

3There may be reasons to distinguish “No” from “?”, and it is certainly possible to extend the logic to
distinguish them.

4T, get around this particular problem, some approaches that combine logic and probability give seman-
tics to formulas by viewing them as random variables (e.g., [Kozen 1985]).

6 J. Y. HALPERN AND R. PUCELLA

Formally, we start with (possibly randomized) knowledge algorithms Ag,...,A,. For
simplicity, assume that the randomness in the knowledge algorithms comes from tossing
coins. A derandomizer is a tuple v = (v1,...,v,) such that for every agent i, v; is a
sequence of outcomes of coin tosses (heads and tails). There is a separate sequence of coin
tosses for each agent rather than just a single sequence of coin tosses, since we do not want
to assume that all agents use the same coin. Let V' be the set of all such derandomizers.
To every randomized algorithm A we associate a derandomized algorithm A% which takes
as input not just the query ¢, local state ¢, and state s, but also the sequence v; of i’s
coin tosses, taken from a derandomizer (vi,...,v,). A probabilistic algorithmic knowledge
structure is a tuple N = (S, 7, Ly, ..., Ly, Al ,AZ, v), where v is a probability distribution
on V and A{ is the derandomized version of A;. (Note that in a probabilistic algorithmic
knowledge structure the knowledge algorithms are in fact deterministic.)

The only assumption we make about the distribution v is that it does not assign zero
probability to the nonempty sets of sequences of coin tosses that determine the result of the
knowledge algorithm. More precisely, we assume that for all agents ¢, formulas ¢, and states
s, {v | Ad(p, Li(s),s,v;) = “Yes”} # @ if and only if v({v | A%(, Li(s), s,v;) = “Yes"}) > 0,
and similarly for “No” and “?” answers. Note that this property is satisfied, for instance, if
v assigns nonzero probability to every sequence of coin tosses. We do not impose any other
restrictions on v. In particular, we do not require that the coin be fair or that the tosses
be independent. Of course, we can capture correlation between the agents’ coins by using
an appropriate distribution v.

The truth of a formula is now determined relative to a pair (s,v) consisting of a state
s and a derandomizer v. We abuse notation and continue to call these pairs states. The
semantics of formulas in a probabilistic algorithmic knowledge structure is a straightfor-
ward extension of their semantics in algorithmic knowledge structures. The semantics of
primitive propositions is given by m; conjunctions and negations are interpreted as usual;
for knowledge and algorithmic knowledge, we have

(N,s,v) E K;jp if (N,t,0") = ¢ for all o' € V and all t € S such that s ~; ¢

(N, s,v) = Xip if A%(p, Li(s), s,v;) = “Yes”, where v = (v1,...,vy).
Here, A gets v; as part of its input. A%(¢, L;(s),s,v;) is interpreted as the output of A¢
given that v; describes the outcomes of the coin tosses. It is perhaps best to interpret
(M, s,v) E X;p as saying that agent i’s knowledge algorithm would say “Yes” if it were run
in state s with derandomizer v;. The semantics for knowledge then enforces the intuition
that the agent knows neither the state nor the derandomizer used.’

Having the sequence of coin tosses as part of the input allows us to talk about the
probability that i’s algorithm answers yes to the query ¢ at a state s. It is simply v({v |
Ad(p, Li(s),s,v;) = “Yes”}). To capture this in the language, we extend the language to
allow formulas of the form Pr(p) > a, read “the probability of ¢ is at least o”.6 The
semantics of such formulas is straightforward:

(N,s,0) E Pr(p) > a if ({0 | (N, 5,0) E ¢}) > a.

SA reviewer of the paper suggested that we instead should define (M, s,v) = Ky if (M, t,v) = ¢ for all
t € S such that s ~; t. This would be appropriate if the agent knew the derandomizer being used.

6We allow a to be an arbitrary real number here. If we were concerned with complexity results and
having a finitary language, it would make sense to restrict a to being rational, as is done, for example, in
[Fagin, Halpern, and Megiddo 1990]. None of our results would be affected if we restrict « in this way.

PROBABILISTIC ALGORITHMIC KNOWLEDGE 7

Note that the truth of Pr(¢) > « at a state (s,v) is independent of v. Thus, we can
abuse notation and write (N, s) = Pr(p) > a. In particular, (N,s) = Pr(X;p) < a (or,
equivalently, (N,s) & Pr(=X;¢) > 1 — «) if the probability of the knowledge algorithm
returning “Yes” on a query ¢ is less than «, given state s.

If all the knowledge algorithms used are deterministic, then this semantics agrees with
the semantics given in Section Bl To make this precise, note that if A is deterministic, then
A, £, v;) = A% (i, ¢, v}) for all v,v’ € V. In this case, we abuse notation and write A(y, ¢).

Proposition 3.1. Let N = (S,W,Ll,...,Ln,Ad,...,Aﬁ,V) be a probabilistic algorithmic
knowledge, with Ay,..., A, deterministic. Let M = (S,7,L1,...,Ly,A1,...,Ay). If there
are no occurrences of Pr in ¢ then, for all s € S and allv € V, (N, s,v) | ¢ if and only if
(M,s) = .

Thus, derandomizers are not needed to interpret the X; operators if the knowledge
algorithms are all deterministic. Moreover, in general, derandomizers are necessary only to

interpret the Pr and X, operators.
Proposition 3.2. Let N = (S,W,Ll,...,Ln,ACf,... A 1) be a probabilistic algorithmic

) n’
knowledge structure and let M = (S, 7, L1, ..., Ly, A}, ... A)) be an algorithmic knowledge
structure, where Ay, ... Al are arbitrary deterministic knowledge algorithms. If there are
no occurrences of X; and Pr in ¢ then, for all s € S and allv € V, (N, s,v) = ¢ if and
only if (M, s) = ¢.

Propositions Bl and justify the decision to “factor out” the randomization of the
knowledge algorithms into semantic objects that are distinct from the states; the semantics
of formulas that do not depend on the randomized choices do not in fact depend on those
additional semantic objects.

4. AN EXAMPLE FROM SECURITY

As we mentioned in the introduction, an important area of application for algorithmic
knowledge is the analysis of cryptographic protocols. In previous work [Halpern and Pucella 2002] |
we showed how algorithmic knowledge can be used to model the resource limitations of an
adversary. We briefly review the framework of that paper here.

Participants in a security protocol are viewed as exchanging messages in the free al-
gebra generated by a set P of plaintexts and a set K of keys, over abstract operations -
(concatenation) and { |} (encryption). The set M of messages is the smallest set that con-
tains C and P and is closed under encryption and concatenation, so that if m; and my are
in M and k € K, then my - mg and {m; [}, are in M. We identify elements of M under the
equivalence {{m[k -1 = m. We make the assumption, standard in the security literature,
that concatenation and encryption have enough redundancy to recognize that a term is in
fact a concatenation my - mg or an encryption ﬂm[}k.

In an algorithmic knowledge security structure, some of the agents are participants in the
security protocol being modeled, while other agents are adversaries that do not participate
in the protocol, but attempt to subvert it. The adversary is viewed as just another agent,
whose local state contains all the messages it has intercepted, as well as the keys initially
known to the adversary, such as the public keys of all the agents. We use initkey({) to
denote the set of initial keys known by an agent with local state ¢ and write recv(m) € £ if
m is one of the messages received (or intercepted in the case of the adversary) by an agent
with local state £. We assume that the language includes a primitive proposition has;(m)
for every message m, essentially saying that message m is contained within a message that

8 J. Y. HALPERN AND R. PUCELLA

agent ¢ has received. Define the containment relation C on M as the smallest relation
satisfying the following constraints:

(1) mC m;

(2) if m E mq, then m C my - my;

(3) if m E mg, then m C my - my;

(4) if m C my, then m C {my .

Formally, has;(m) is true at a local state ¢ if m C m’ for some message m’ such that
recv(m’) € £.

Clearly, the adversary may not explicitly know that he has a given message if that
message is encrypted using a key that the adversary does not know. To capture these
restrictions, Dolev and Yao [T983] gave a now-standard description of capabilities of adver-
saries. Succinctly, a Dolev-Yao adversary can compose messages, replay them, or decipher
them if he knows the right keys, but cannot otherwise “crack” encrypted messages. The
Dolev-Yao model can be formalized by a relation H 5y m between a set H of messages and
a message m. (Our formalization is equivalent to many other formalizations of Dolev-Yao
in the literature, and is similar in spirit to that of Paulson [T998].) Intuitively, H 5y m
means that an adversary can “extract” message m from a set of received messages and keys
H, using the allowable operations. The derivation is defined using the following inference
rules:

meH Hbpy {mpe HbFpy k! Hbpymi-my Hlbpy myp-mg
HFpym HbFpym HbFpy my HbFpymg 7

where k™! represents the key used to decrypt messages encrypted with k.

We can encode these capabilities via a knowledge algorithm APY for the adversary
as agent 4. Intuitively, the knowledge algorithm APY simply implements a search for the
derivation of a message m from the messages that the agent has received and the initial set
of keys, using the rules given above. The most interesting case in the definition of APY is
when the formula is has;(m). To compute AP¥ (has;(m), ¥, s), the algorithm simply checks,
for every message m’ received by the adversary, whether m is a submessage of m’, according
to the keys that are known to the adversary (given by the function keysof). Checking
whether m is a submessage of m’ is performed by a function submsg, which can take apart
messages created by concatenation, or decrypt messages as long as the adversary knows the
decryption key. (The function submsg basically implements the inference rules for ty.)
APY(has;(m), ¢, s) is defined by the following algorithm:

if m € initkeys(¢) then return “Yes”
K = keysof ()
for each recv(m’) € £ do
if submsg(m,m’, K) then
return “Yes”
return “7”.

Note that the algorithm does not use the input s. Further details can be found in [Halpern and Pucella 2002]]
where it is also shown that A?Y is a sound knowledge algorithm that captures the Dolev-Yao
adversary in the following sense:

PROBABILISTIC ALGORITHMIC KNOWLEDGE 9

Proposition 4.1. [Halpern and Pucella 2002] If M = (S, 7, L1,..., Ly, A1,...,Ay) is an
algorithmic knowledge security structure with an adversary as agent i and A; = APY, then
(M, s) = Xi(has;(m)) if and only if {m | recv(m) € L;(s)} U initkeys(¢) Fpy m. Moreover,
if (M, s) = X;(has;(m)) then (M, s) |= has;(m).

The Dolev-Yao algorithm is deterministic. It does not capture, for example, an ad-
versary who guesses keys in an effort to crack an encryption. Assume that the key space
consists of finitely many keys, and let guesskeys(r) return r of these, chosen uniformly at
random. Let A?Y“g(” be the result of modifying A?Y to take random guessing into account
(the rg stands for random guess), so that AYY " (has;(m), £, s) is defined by the following
algorithm:

if m € initkeys(¢) then return “Yes”
K = keysof (£) U guesskeys(r)
for each recv(m’) € £ do
if submsg(m,m’, K) then
return “Yes”

return “?7”.

(As before, the algorithm does not use the input s.) Using AZPY“W), the adversary gets
to work with whatever keys he already had available, all the keys he can obtain using
the standard Dolev-Yao algorithm, and the additional » randomly chosen keys returned by
guesskeys(r).

Of course, if the total number of keys is large relative to r, making r random guesses
should not help much. Our framework lets us make this precise.
Proposition 4.2. Suppose that N = (S, 7, Lq,... L, A%, .. ,Afl, v) is a probabilistic algo-
rithmic knowledge security structure with an adversary as agent i and that A; = A]Z-DY“g(T').
Let K be the number of distinct keys used in the messages in the adversary’s local state £
(i.e., the number of keys used in the messages that the adversary has intercepted at a state
s with Li(s) = £). Suppose that K/|K| < 1/2 and that v is the uniform distribution on se-
quences of coin tosses. If (N,s,v) = —~K;X;(has;(m)), then (N,s,v) = Pr(X;(has;(m))) <
1 — e~ 2E/IKl . Moreover, if (N, s,v) = X;(has;(m)) then (N, s,v) = has;(m).

Proposition says that what we expect to be true is in fact true: random guessing
of keys is sound, but it does not help much (at least, if the number of keys guessed is a
small fraction of the total numbers of keys). If it is possible that the adversary does not
have algorithmic knowledge of m, then the probability that he has algorithmic knowledge
is low. While this result just formalizes our intuitions, it does show that the probabilistic
algorithmic knowledge framework has the resources to formalize these intuitions naturally.

5. PROBABILISTIC ALGORITHMIC KNOWLEDGE

While the “guessing” extension of the Dolev-Yao algorithm considered in the previous
section is sound, we are often interested in randomized knowledge algorithms that may
sometimes make mistakes. We consider a number of examples in this section, to motivate
our approach.

First, suppose that Bob knows (or believes) that a coin is either fair or double-headed,
and wants to determine which. He cannot examine the coin, but he can “test” it by having
it tossed and observing the outcome. Let dh be a proposition that is true if and only

10 J. Y. HALPERN AND R. PUCELLA

if the coin is double-headed. Bob uses the following dh-complete randomized knowledge
algorithm Apgp: when queried about dh, the algorithm “tosses” the coin, returning “Yes”
if the coin lands heads and “No” if the coin lands tails. It is not hard to check that if the
coin is double-headed, then A,y answers “Yes” with probability 1 (and hence “No” with
probability 0); if the coin is fair, then Ag,, answers “Yes” with probability 0.5 (and hence
“No” with probability 0.5 as well). Thus, if the coin fair, there is a chance that Ao, will
make a mistake, although we can make the probability of error arbitrarily small by applying
the algorithm repeatedly (alternatively, by increasing the number of coin tosses performed
by the algorithm).

Second, consider a robot navigating, using a probabilistic sensor. This sensor returns
the distance to the wall in front of the robot, within some tolerance. For simplicity, suppose
that if the wall is at distance m, then the sensor will return a reading of m—1 with probability
1/4, a reading of m with probability 1/2, and a reading of m + 1 with probability 1/4. Let
wall(m) be a proposition true at a state if and only if the wall is at distance at most m in
front of the robot. Suppose that the robot uses the following knowledge algorithm Aggpot to
answer queries. Given query wall(m), Agohot Observes the sensor. Suppose that it reads r.
If r < m, the algorithm returns “Yes”, otherwise, it returns “No”. It is not hard to check
that if the wall is actually at distance less than or equal to m, then Aggho answers “Yes”
to a query wall(m) with probability < 3/4 (and hence “No” with probability > 1/4). If
the wall is actually at distance greater than m, then Aropot answers “Yes” with probability
< 1/4 (and hence “No” with a probability > 1/4).

There are two ways of modeling this situation. The first (which is what we are implicitly
doing) is to make the reading of the sensor part of the knowledge algorithm. This means
that the actual reading is not part of the agent’s local state, and that the output of the
knowledge algorithm depends on the global state. The alternative would have been to model
the process of reading the sensor in the agent’s local state. In that case, the output of the
knowledge algorithm would depend only on the agent’s local state. There is a tradeoff here.
While on the one hand it is useful to have the flexibility of allowing the knowledge algorithm
to depend on the global state, ultimately, we do not want the knowledge algorithm to use
information in the global state that is not available to the agent. For example, we would
not want the knowledge algorithm’s answer to depend on the actual distance to the wall
(beyond the extent to which the sensor reading depends on the actual distance). It is up
to the modeler to ensure that the knowledge algorithm is appropriate. A poor model will
lead to poor results.

Finally, suppose that Alice has in her local state a number n > 2. Let prime be a
proposition true at state s if and only if the number n in Alice’s local state is prime.
Clearly, Alice either (implicitly) knows prime or knows —prime. However, this is implicit
knowledge. Suppose that Alice uses Rabin’s [I980] primality-testing algorithm to test if n
is prime. That algorithm uses a (polynomial-time computable) predicate P(n,a) with the
following properties, for a natural number n and 1 <a <n — 1:

(1) P(n,a) € {0,1};

(2) if n is composite, P(n,a) = 1 for at least n/2 choices of a;

(3) if n is prime, P(n,a) = 0 for all a.

Thus, Alice uses the following randomized knowledge algorithm Aajice: When queried about
prime, the algorithm picks a number a at random between 0 and the number n in Alice’s
local state; if P(n,a) = 1, it says “No” and if P(n,a) = 0, it says “Yes”. (It is irrelevant for

PROBABILISTIC ALGORITHMIC KNOWLEDGE 11

our purposes what the algorithm does on other queries.) It is not hard to check that Aajice
has the following properties. If the number n in Alice’s local state is prime, then Aajice
answers “Yes” to a query prime with probability 1 (and hence “No” to the same query with
probability 0). If n is composite, Apjice answers “Yes” to a query prime with probability
< 1/2 and “No” with probability > 1/2. Thus, if n is composite, there is a chance that
A pjice Will make a mistake, although we can make the probability of error arbitrarily small by
applying the algorithm repeatedly. While this problem seems similar to the double-headed
coin example above, note that we have only bounds on the probabilities here. The actual
probabilities corresponding to a particular number n depend on various number theoretic
properties of that number. We return to this issue in Section

Randomized knowledge algorithms like those in the examples above are quite common
in the literature. They are not sound, but are “almost sound”. The question is what we
can learn from such an “almost sound” algorithm. Returning to the first example, we know
the probability that Ag,p says “Yes” (to the query dh) given that the coin is double-headed;
what we are interested in is the probability that the coin is double-headed given that Aggy
says “Yes”. (Of course, the coin is either double-headed or not. However, if Bob has to
make decisions based on whether the coin is double-headed, it seems reasonable for him
to ascribe a subjective probability to the coin being double-headed. It is this subjective
probability that we are referring to here.)

Taking “dh” to represent the event “the coin is double-headed” (thus, the proposition
dh is true at exactly the states in dh), by Bayes’ rule,

Pr(Agop says “Yes” | dh)Pr(dh)
Pr(Apop, says “Yes”) ’

Pr(dh | Aggp says “Yes”) =

The only piece of information in this equation that we have is Pr(Ap,}, says “Yes” | dh). If
we had Pr(dh), we could derive Pr(Ap,}, says “Yes”). However, we do not have that infor-
mation, since we did not assume a probability distribution on the choice of coin. Although
we do not have the information needed to compute Pr(dh | A,y says “Yes”), there is still
a strong intuition that if X;dh holds, this tells us something about whether the coin is
double-headed. How can this be formalized?

5.1. Evidence. Intuitively, the fact that X;p holds provides “evidence” that ¢ holds. But
what is evidence? There are a number of definitions in the literature. They all essentially
give a way to assign a “weight” to different hypotheses based on an observation; they
differ in exactly how they assign the weight (see [Kyburg 1983] for a survey). Some of
these approaches make sense only if there is a probability distribution on the hypotheses.
Since this is typically not the case in the applications of interest to us (for example, in
the primality example, we do not want to assume a probability on the input n), we use a
definition of evidence given by Shafer [T982] and Walley [1987], which does not presume a
probability on hypotheses.

We start with a set H of hypotheses, which we take to be mutually exclusive and
exhaustive; thus, exactly one hypothesis holds at any given time. For the examples of this
paper, the hypotheses of interest have the form H = {hg, —ho}, where the hypothesis —hg
is the negation of hypothesis hg. Intuitively, this is because we want to reason about the
evidence associated with a formula or its negation (see Section B3)). For example, if hg is
“the coin is double-headed”, then —hg is “the coin is not double-headed” (and thus, if there
are only two kinds of coins, double-headed and fair, then —h is “the coin is fair”). We are
given a set O of observations, which can be understood as outcomes of experiments that we

12 J. Y. HALPERN AND R. PUCELLA

can make. Assume that for each hypothesis h € H there is a probability space (0,29,).
Intuitively, up,(0b) is the probability of ob given that hypothesis A holds. While this looks
like a conditional probability, notice that it does not require a probability on H. Taking
A(O) to denote the set of probability measures on O, define an evidence space to be a tuple
E=(H,0,F), where H, O, and F : H — A(O). Thus, F associates with each hypothesis
a probability on observations (intuitively, the probability that various observations are true
given that the hypothesis holds). We often denote F(h) as up. For an evidence space &,
the weight that the observation ob lends to hypothesis h € H, written wg(ob, h), is

fn(0b)

we(ob, h) S i (00)° (5.1)
Equation (&1I) does not define a weight we for an observation ob such that), .4, pn(0b) = 0.
Intuitively, this means that the observation ob is impossible. In the literature on confirma-
tion theory it is typically assumed that this case never arises. More precisely, it is assumed
that all observations are possible, so that for every observation ob, there is an hypothesis
h such that pp(ob) > 0. In our case, making this assumption is unnatural. We want to
view the answers given by knowledge algorithms as observations, and it seems perfectly
reasonable to have a knowledge algorithm that never returns “No”, for instance. As we
shall see (Proposition B.1), the fact that the weight of evidence is undefined in the case that
> hewn tn(ob) =0 is not a problem in our intended application, thanks to our assumption
that v does not assign zero probability to the nonempty sets of sequences of coin tosses that
determine the result of the knowledge algorithm.

Observe that the measure wg always lies between 0 and 1, with 1 indicating that the
full weight of the evidence of observation ob is provided to the hypothesis. While the weight
of evidence wg looks like a probability measure (for instance, for each fixed observation ob
for which 5, pn(0b) > 0, the sum Y, , we(0b, h) is 1), one should not interpret it as a
probability measure. It is simply a way to assign a weight to hypotheses given observations.
It is possible to interpret the weight function w as a prescription for how to update a
prior probability on the hypotheses into a posterior probability on those hypotheses, after
having considered the observations made. We do not focus on these aspects here; see
[Halpern and Pucella 2003] for more details.

For the double-headed coin example, the set H of hypotheses is {dh, ~dh}. The obser-
vations O are simply the possible outputs of the knowledge algorithm Ay, on the formula
dh, namely, {“Yes”, “No”}. From the discussion following the description of the example,
it follows that pgn(“Yes”) = 1 and pgn(“No”) = 0, since the algorithm always says “Yes”
when the coin is double-headed. Similarly, pu—gn(“Yes”) is the probability that the algo-
rithm says “Yes” if the coin is not double-headed. By assumption, the coin is fair if it is
not double-headed, so p—gn(“Yes”) = 1/2 and p—gn(“No”) = 1/2. Define F(dh) = ugn and
F(—dh) = pi—gn, and let

E = ({dh,~dh}, {“Yes”, “No” }, F).

It is easy to check that wg(“Yes”,dh) = 2/3 and wg(“Yes”, —~dh) = 1/3. Intuitively, a “Yes”
answer to the query dh provides more evidence for the hypothesis dh than the hypothesis
—dh. Similarly, w(“No”,dh) = 0 and w(“No”,—~dh) = 1. Thus, an output of “No” to the
query dh indicates that the hypothesis -dh must hold.

This approach, however, is not quite sufficient to deal with the sensor example because,
in that example, the probability of an observation does not depend solely on whether the

PROBABILISTIC ALGORITHMIC KNOWLEDGE 13

hypothesis is true or false. The probability of the algorithm answering “Yes” to a query
wall(10) when wall(10) is true depends on the actual distance m to the wall:

e if m <9, then fiyq(10)(“Yes”) = 1 (and thus pyai(10)(“No”) = 0);

o if m = 10, then jiyai(10)(“Yes”) = 3/4 (and thus pyaiio)(“No”) = 1/4).
Similarly, the probability of the algorithm answering “Yes” to a query wall(10) in a state
where —wall(10) holds depends on m in the following way:

o if m = 11, then p_yaa0)(“Yes”) = 1/4;

e if m > 12, then p_yai10)(“Yes”) = 0.
It does not seem possible to capture this information using the type of evidence space defined
above. In particular, we do not have a single probability measure over the observations given
a particular hypothesis. One reasonable way of capturing the information is to associate a
set of probability measures on observations with each hypothesis; intuitively, these represent
the possible probabilities on the observations, depending on the actual state.

To make this precise, define a generalized evidence space to be a tuple & = (H, O, F),
where now F : H — 22 We require F(h) # & for at least one h € H. What is
the most appropriate way to define weight of evidence given sets of probability measures?
As a first step, consider the set of all possible weights of evidence that are obtained by
taking any combination of probability measures, one from each set F(h) (provided that
F(h) # &). This gives us a range of possible weights of evidence. We can then define upper
and lower weights of evidence, determined by the maximum and minimum values in the
range, somewhat analogous to the notions of upper and lower probability [Halpern 2003].
(Given a set P of probability measures, the lower probability of a set U is inf,ep u(U); its
upper probability is sup,ep p(U).) Let

pn(0b)

W8(0b7 h) =
> weH,F(h)<o Hhr (0b)

pn € F(h), e € F(R'), D pw(ob) #0
h'eH
F(h)#&

Thus, We(ob, h) is the set of possible weights of evidence for the hypothesis h given by 0b.
Define the lower weight of evidence function wg by taking we(o0b, h) = inf We(ob, h); simi-
larly, define the upper weight of evidence function wg by taking wg(0b, h) = sup We(ob, h).
If We(ob,h) = @, which will happen either if F(h) = @ or if 3y ()20 1 (00) =0
for all choices of up € F(h') for F(h') # @, then we define we(ob, h) = wWg(ob, h) = 0. We
show in Proposition Bl that, in the special case where F(h) is a singleton for all A (which
has been the focus of all previous work in the literature), We(0b, h) is a singleton under our
assumptions. In particular, the denominator is not 0 in this case. Of course, if F(h) = {un}
for all hypotheses h € H, then we = wWe = we.

Lower and upper evidence can be used to model the examples at the beginning of this
section. In the sensor example, with H = {wall(10), —wall(10)}, there are two probability
measures associated with the hypothesis wall(10), namely,

Mwan(lo),gg(“YeS”) =1
Mwan(lo),:lo(“YeS”) =3/4;

14 J. Y. HALPERN AND R. PUCELLA

similarly, there are two probability measures associated with the hypothesis —wall(10),
namely

:U'—\waII(IO),ZII(“YeS”) =1/4
:U'—\waII(IO),212(“YeS”) =0.
Let € be the corresponding eneralized evidence space. It is easy to check that

We (“Yes”,wall(10)) = {4/5,1,3/4},
and thus
we(“Yes”,wall(10)) = 3/4 and we(“Yes”,wall(10)) = 1.
Indeed, using pwan(i0),<9 and fi-waii(10),=11 gives 4/5; using fiai(10),=10 and L-wali(10),=11
gives 3/4; and using either Hwall(10),<9 O fwall(10),=10 With ti_yaii(10),>12 gives 1. Similarly,

We(“Yes”, —wall(10)) = {1/5,1/4,0},

and thus

wge(“Yes”, —wall(10)) = 0 and wg(“Yes”, ~wall(10)) = 1/4.
In particular, if the algorithm answers “Yes” to a query wall(10), the evidence supports the
hypothesis that the wall is indeed at a distance less than 10 from the robot.

The primality example can be dealt with in the same way. Take H = {prime, —prime}.
There is a single probability measure fiprime associated with the hypothesis prime, namely
Pprime(“Yes”) = 1; intuitively, if the number is prime, the knowledge algorithm always
returns the right answer. In contrast, there are a number of different probability mea-
sures fi-prime,n associated with the hypothesis —prime, one per composite number n, where
we take fi-primen(“Yes”) to be the probability that the algorithm says “Yes” when the
composite number n is in Alice’s local state. Note that this probability is 1 minus the
fraction of “witnesses” a < n such that P(n,a) = 1. The fraction of witnesses depends on
number-theoretic properties of n, and thus may be different for different choices of compos-
ite numbers n. Moreover, Alice is unlikely to know the actual probability fi—primen.- As we
mentioned above, it has been shown that pi—prime,n < 1/2 for all composite n, but Alice may
not know any more than this. Nevertheless, for now, we assume that Alice is an “ideal”
agent who knows the set {ft—prime,n | 7 is composite}. (Indeed, in the standard Kripke
structure framework for knowledge, it is impossible to assume anything else!) We consider
how to model the set of probabilities used by a “less-than-ideal” agent in Section Let
& be the corresponding generalized evidence space. Then

We(“Yes”, prime) = {1/(1 + ft—prime.n(“Yes”)) | n composite}.

Since fi-primen(“Yes”) < 1/2 for all composite n, it follows that wg(“Yes”, prime) > 2/3.
Similarly,

We(“Yes”, ~prime) = {ft—prime,n(“Yes”)/ (f—prime,n(“Yes”) 4+ 1) | n composite}.

Since fi-prime,n(“Yes”) < 1/2 for all composite n, we have that wg(“Yes”, —prime) < 1/3.
Therefore, if the algorithm answers “Yes” to a query prime, the evidence supports the
hypothesis that the number is indeed prime.

Note that, in modeling this example, we have assumed that the number n is not in
Alice’s local state and that Alice knows the fraction of witnesses a for each composite
number n. This means that the same set of probabilities used by Alice for all choices of n
(since the set of probabilities used depends only on Alice’s local state), and is determined by
the set of possible fraction of elements < n that are witnesses, for each composite number n.

PROBABILISTIC ALGORITHMIC KNOWLEDGE 15

Assuming that n is in Alice’s local state (which is actually quite a reasonable assumption!)
and that Alice does not know the fraction of numbers less than n that are witnesses adds
new subtleties; we consider them in Section

5.2. Evidence for Randomized Knowledge Algorithms. We are now ready to discuss
randomized knowledge algorithms. What does a “Yes” answer to a query ¢ given by an
“almost sound” knowledge algorithm tell us about ¢? As the discussion in Section BT
indicates, a “Yes” answer to a query ¢ provides evidence for the hypotheses ¢ and —p.
This can be made precise by associating an evidence space with every state of the model to
capture the evidence provided by the knowledge algorithm. To simplify the presentation,
we restrict our attention to knowledge algorithms that are ¢-complete. (While it is possible
to deal with general knowledge algorithms that also can return “?” using these techniques,
we already saw that the logic does not let us distinguish between a knowledge algorithm
returning “No” and a knowledge algorithm returning “?”; they both result in lack of algo-
rithmic knowledge. In the next section, where we define the notion of a reliable knowledge
algorithm, reliability will be characterized in terms of algorithmic knowledge, and thus the
definition will not distinguish between a knowledge algorithm returning “No” or “?”. In
order to establish a link between the notion of reliability and evidence, it is convenient to
either consider p-complete algorithms, or somehow identify the answers “No” and “7”. We
choose the former.) Note that the knowledge algorithms described in the examples at the
beginning of this section are all complete for their respective hypotheses. We further assume
that the truth of ¢ depends only on the state, and not on coin tosses, that is, ¢ does not
contain occurrences of the X; operator.

Our goal is to associate, with every local state £ of agent 7 in N an evidence space over
the hypotheses {y, =} and the observations {“Yes”, “No”, “?”}. Let Sy = {s | Li(s) = ¢}
be the set of states where agent i has local state £. At every state s of Sy, let i, ,(0b) =
v({v' | Ad(p, ¢, 5,0!) = ob}). Intuitively, ls,, gives the probability of observing “Yes” and
“No” in state s. Let Sy, = {s € Sy | (IV,s) |= ¢} and let Sy, = {s € Sy | (N, s) = ~p}.
(Recall that ¢ depends only on the state, and not on the outcome of the coin tosses.) Define
Fopo(0) = {tts,p | 5 € Sep} and Fpo(—¢) = {ps,p | § € Sp—p}: then the evidence space is

Enipot = ({0, mp}, {“Yes”, “No™, “77}, Fi).

(We omit the “?” from the set of possible observation if the knowledge algorithm is ¢-
complete, as is the case in the three examples given at the beginning of this section.) Since
the agent does not know which state s € Sy is the true state, he must consider all the
probabilities in Fy ,(¢) and F; () in his evidence space.

We can now make precise the claim at which we have been hinting throughout the
paper. Under our assumptions, for all evidence spaces of the form &y, ., ¢ that arise in this
construction, and all observations ob that can be made in local state ¢, there must be some
expression in WgAW’Z(ob, h) with a nonzero denominator. Intuitively, this is because if ob
is observed at some state s such that L;(s) = ¢, our assumptions ensure that i, ,(0b) > 0.
In other words, observing ob means that the probability of observing ob must be greater
than 0.

Proposition 5.1. For all probabilistic algorithmic knowledge structures N, agents i, for-
mulas @, and local states ¢ of agent i that arise in N, if ob is a possible output of i’s
knowledge algorithm Af in local state £ on input @, then there exists a probability measure
p € Frplp) UFou(—p) such that p(ob) > 0.

16 J. Y. HALPERN AND R. PUCELLA

In particular, it follows from Proposition Bl that, under our assumptions, the evidence
function is always defined in the special case where Fy ,(h) is a singleton for all hypotheses
h.

To be able to talk about evidence within the logic, we introduce operators to capture
the lower and upper evidence provided by the knowledge algorithm of agent i, Ev,(¢) and
Evi(y), read “i’s lower (resp., upper) weight of evidence for ¢”, with semantics defined as
follows:

(N7 S, U)): &z((p) > aif ngiv‘PvLi(S) (A?((P7 Li(3)7 5, vi) 90)

(N7 S, U)): EVZ(QO) e if mgAiv%Li(S) (A;i(g% Li(3)7 S, 'Ui) (10)

We similarly define (N, s,v) = Ev,(¢) < a, (N, s5,v) = Evi(p) < a, (N, s,v) E Ev,;(p) = o,
and (N, s,v) = Ev;(p) = a. By Proposition Bl these formulas are all well defined.

This definition of evidence has a number of interesting properties. For instance, ob-

taining full evidence in support of a formula ¢ essentially corresponds to establishing the
truth of .

>«
> Q.
a, (

Proposition 5.2. For all probabilistic algorithmic knowledge structures N, we have
N EEv(p) =1= ¢

Suppose that we now apply the recipe above the derive the evidence spaces for the three
examples at the beginning of this section. For the double-headed coin example, consider a
structure N with two states s; and so, where the coin is double-headed at state s; and fair
at state sg, so that (N, s1,v) = dh and (N, s2,v) = =dh. Since Bob does not know whether
the coin is fair or double-headed, it seems reasonable to assume that Bob has the same local
state £y at both states. Thus, Sy, = {s1,52}, Sry.dh = {51}, and Sp, —~an{s2}. Since we are
interested only in the query dh and there is only one local state, we can consider the single
evidence space

= ({dh,—~dh}, {“Yes”, “No” }, Fun),

where

Fan(dh) = {ps, }
Fan(—dh) = {us, }
)=

Lhs, (“Veg”
s, (“Yes”) = 1/2.

We can check that, for all states (s,v) where Agg(dh, fp, s,vpon) = “Yes”, (N, s,v) E
Ev(dh) = 2/3 and (N,s,v) [Ev(dh) = 2/3, while at all states (s,v) where
Agob(dh, £o, 5,vBen) = “No”, (N, s,v) = Ev(dh) = 0 and (N, s,v) = Ev(dh) = 0. In other
words, the algorithm answering “Yes” provides evidence for the coin being double-headed,
while the algorithm answering “No” essentially says that the coin is fair.

For the probabilistic sensor example, consider a structure N with states s,, (m > 1),
where the wall at state s,, is at distance m from the robot. Suppose that we are interested
in the hypotheses wall(10) and —wall(10), so that (N, s,,,v) = wall(10) if and only m < 10.
The local state of the robot is the same at every state, say . Thus, Sy, = {sm | m > 1},
Stowali(10) = 15m | 1 < m < 10}, and Sy —wali(10) = {Sm | m > 11}. Again, since there is
only one local state and we are interested in only one query (wall(10) we can consider the

PROBABILISTIC ALGORITHMIC KNOWLEDGE 17

single evidence space
& = ({wall(10), ~wall(10)}, {“Yes”, “No” }, Fuali(10))>
where
Fuaii(ro)(wall(10)) = {m [1 <m < 10}
Fuwali(10) (~wall(10)) = {um [m = 11})
1 tfm<9

3/4 if m =10
m‘lY b —
U (YST) =000 it = 11
0 ifm>12.

It is straightforward to compute that, for all states (s,v) where Agobot (Wall(10), o, S, VRobot)
= “Yes”, (N, s,v) | Ev(wall(10)) > 3/4 and (N,s,v) | Ev(wall(10)) < 1, while at all
states (s,v) where ARopot(wall(10), 4o, 8, VRobot) = “No”, (N, s,v) | Ev(wall(10)) < 1/4
and (N, s,v) = Ev(wall(10)) > 0. In other words, the algorithm answering “Yes” provides
evidence for the wall being at distance at most 10, while the algorithm answering “No”
provides evidence for the wall being further away:.

Finally, we consider the primality example. Earlier we discussed this example under the
assumption that the number n was not part of Alice’s local state. Under this assumption,
it seems reasonable to assume that there is only one local state, call it ¢, and that we
can identify the global state with the number n. Thus, S/ pime = {n | n is prime} and
St,—prime = {1 | n is not prime}. Define Fprime(prime) = {fiprime }, Where fiprime(“Yes”) =1,
while Forime(—/) = {ptn, | 7 is not prime}, where p,,(“Yes”) is the fraction of numbers a < n
such that P(n,a) = 0.

What should we do if Alice knows the input (so that n is part of the local state)? In
that case, it seems that the obvious thing to do is to again have one state denoted n for every
number n, but since n is now part of the local state, we can take S,, = {n}. But modeling
things this way also points out a problem. With this state space, since the agent considers
only one state possible in each local state, it is easy to check that (N, s,v) = Ev(prime) = 1
if s € S, with n prime, and (N, s,v) | Ev(—prime) = 1 if s € S,, with n not prime. The
knowledge algorithm is not needed here. Since the basic framework implicitly assumes that
agents are logically omniscient, Alice knows whether or not n is prime.

To deal with this, we need to model agents that are not logically omniscient. Intuitively,
we would like to model Alice’s subjective view of the number. If she does not know whether
the number n is prime, she must consider possible a world where n is prime and a world
where n is not prime. We should allow her to consider possible a world where n is prime, and
another world where n is not prime. of course, if n is in fact prime, then the world where n
is not prime is what Hintikka [I975] has called an impossible possible worlds, one where the
usual laws of arithmetic do not hold. Similarly, since Alice does not know how likely the
knowledge algorithm is to return “Yes” if n is composite (i.e., how many witnesses a there
are such that P(n,a) = 0), then we should allow her to consider possible the impossible
worlds where the number of witnesses is k for each £ > n/2. (We restrict to k > n/2 to
model the fact that Alice does know that there are at least n/2 witnesses if n is composite.)
Thus, consider the structure N with states s, prime and sy —primek (forn>2,n/2 <k<
n). Intuitively, sy —prime,x is the state where there are k witnesses. (Clearly, if there is
more information about the number of witnesses, then the set of states should be modified

18 J. Y. HALPERN AND R. PUCELLA

appropriately.) At states sy prime and Sy —prime,a; Alice has the same local state, which we
call £, (since we assume that n is stored in her local state); however (N, sy, prime, V) = prime,
while (V, s, —prime,k, v) = —prime. For a local state £, define Sy, prime = {Sn,prime}, and
St,,,~prime = {Sn,—prime,k | N/2 < k < n}, and let Sy, = Sp,, prime U Se,,,—prime- In this model,
the evidence space at local state £, is therefore

En = ({prime7 —|prime}, {“YGS”, “No”}yfén,prime)a

where
f@,n(prime) = {,Un,prime}
Fon(—prime) = {ftn —prime ks | 7/2 < k < n}
ﬂn,prime(“YeS”) =1

Por,—prime i (“Yes”) =1 — k/n.
Using impossible possible worlds in this way gives us just the answers we expect. We
can check that, for all states (s,v) where Aajice(prime, Sajice, S,v) = “Yes”, (N, s,v) E
g(prime) > 2/3, while at all states (s,v) where Aajice(prime, sajice, $,v) = “No”, (N, s,v) =
Ev(prime) = 0. In other words, the algorithm returning “Yes” to the query whether the

number in Alice’s local state is prime provides evidence for the number being prime, while
the algorithm returning “No” essentially says that the number is composite.

5.3. Reliable Randomized Knowledge Algorithms. As we saw in the previous section,
a “Yes” answer to a query ¢ given by an “almost sound” knowledge algorithm provides
evidence for ¢. We now examine the extent to which we can characterize the evidence
provided by a randomized knowledge algorithm. To make this precise, we need to first
characterize how reliable the knowledge algorithm is. (In this section, for simplicity, we
assume that we are dealing with complete algorithms, which always answer either “Yes” or
“No”. Intuitively, this is because reliability, as we will soon see, talks about the probability of
a knowledge algorithm answering “Yes” or anything but “Yes”. Completeness ensures that
there is a single observation that can be interpreted as not-“Yes”; this lets us relate reliability
to our notion of evidence in Propositions and Allowing knowledge algorithms to
return both “No” and “?” would require us to talk about the evidence provided by the
disjunction “No”-or-“?” of the observations, a topic beyond the scope of this paper.) A
randomized knowledge algorithm A; is («, 3)-reliable for ¢ in N (for agent i) if a, 3 € [0, 1]
and for all states s and derandomizers v,
e (N,s,v) = ¢ implies ps(“Yes”) >
e (N,s,v) = —p implies ps(“Yes”) < .

These conditions are equivalent to saying N = (¢ = Pr(X;¢) > a) A (-p = Pr(X;p) < ().
In other words, if ¢ is true at state s, then an (a, 3)-reliable algorithm says “Yes” to ¢ at
s with probability at least « (and hence is right when it answers “Yes” to query ¢ with
probability at least «); on the other hand, if ¢ is false, it says “Yes” with probability at
most (3 (and hence is wrong when it answer “Yes” to query ¢ with probability at most 3).
The primality testing knowledge algorithm is (1,1/2)-reliable for prime.

The intuition here is that («, §)-reliability is a way to bound the probability that the
knowledge algorithm is wrong. The knowledge algorithm can be wrong in two ways: it can
answer “No” or “?” to a query ¢ when ¢ is true, and it can answer “Yes” to a query ¢
when ¢ is not true. If a knowledge algorithm is («a, §)-reliable, then the probability that it

PROBABILISTIC ALGORITHMIC KNOWLEDGE 19

answers “No” or “?” when the answer should be “Yes” is at most 1 — a: the probability
that it answers “Yes” when it should not is at most 3.

We can now capture the relationship between reliable knowledge algorithms and evi-
dence. The relationship depends in part on what the agent considers possible.

Proposition 5.3. If A; is p-complete and (a, 3)-reliable for ¢ in N then

(8) N E Xip A =Kinp = Evi(p) 2 355 if (o, 8) # (0,0);

(b) N E X;o A~Ki~p = Ev;(p) =1 if (o,) = (0,0);

(C) N): X A _‘Ki()@ = EVZ'(QD) < % Z'f (O@ﬂ) 7& (17 1);

(d) N E~Xip A~Kip = Evi(p) =0 if (o, 3) = (1,1).

Proposition becomes interesting in the context of well-known classes of randomized
algorithms [Motwani and Raghavan 1995]. An RP (random polynomial-time) algorithm
is a polynomial-time randomized algorithm that is (1/2,0)-reliable. It thus follows from
Proposition that if A; is an RP algorithm, then N | (X;po A —K;—¢ = Ev,(¢) =
DA (=XioAKip = Evi(¢) < 1/3). By Proposition 52, Ev,(p) = 1 = ¢ is valid, and thus
we have N = X;p A = K;—¢ = ¢. A BPP (bounded-error probabilistic polynomial-time)
algorithm is a polynomial-time randomized algorithm that is (3/4,1/4)-reliable. Thus,
by Proposition B3} if 4; is a BPP algorithm, then N | (X;o A =K;—¢ = Ev,(¢) >
3/4) N (= Xip A =Kip = Evi(p) < 1/4).

Notice that Proposition B3 talks about the evidence that the knowledge algorithm pro-
vides for . Intuitively, we might expect some kind of relationship between the evidence
for ¢ and the evidence for —¢. A plausible relationship would be that high evidence for ¢
implies low evidence for -y, and low evidence for ¢ implies high evidence for =p. Unfortu-
nately, given the definitions in this section, this is not the case. Evidence for ¢ is completely
unrelated to evidence for —p. Roughly speaking, this is because evidence for ¢ is measured
by looking at the results of the knowledge algorithm when queried for ¢, and evidence for
—p is measured by looking at the results of the knowledge algorithm when queried for —.
There is nothing in the definition of a knowledge algorithm that says that the answers of
the knowledge algorithm to queries ¢ and —p need to be related in any way.

A relationship between evidence for ¢ and evidence for = can be established by con-
sidering knowledge algorithms that are “well-behaved” with respect to negation. There is
a natural way to define the behavior of a knowledge algorithm on negated formulas. In-
tuitively, a strategy to evaluate A;(—¢, ¥, s,v;) is to evaluate A;(p, ¢, s,v;), and returns the
negation of the result. There is a choice to be made in the case when the A; returns “7”
to the query for ¢. One possibility is to return “?” to the query for —¢ when the query
for ¢ returns “7”; another possibility is to return “Yes” is the query for ¢ returns “7”.
A randomized knowledge algorithm A weakly respects negation if, for all local states £ and
derandomizers v,

“Yes” if A(p, 1, 5,v;) = “No”
Ad(—#;’e’ s, Uz') = { “No” if Ad((p,f, s, Ui) = “Yeg”
DAY, s, 0p) = 477

Similarly, a randomized knowledge algorithm A strongly respects negation, if for all local
states £ and derandomizers v,

A (—p, 0, 5,0;) = {“Yes” if A%, £y, 03) # “Yes”

“No” if A%(p, £, s,v;) = “Yes”.

20 J. Y. HALPERN AND R. PUCELLA

Note that if A; is p-complete, then the output of A; on input —¢p is the same whether
A; weakly or strongly respects negation. Say A; respects negation if it weakly or strongly
respects negation. Note that if A; is p-complete and respects negation, then A; is —-
complete.
Our first result shows that for knowledge algorithms that respect negation, reliability
for ¢ is related to reliability for —¢:
Proposition 5.4. If A; respects negation, is @-complete, and is («, 3)-reliable for ¢ in N,
then A; is («, B)-reliable for ¢ in N if and only if A; is (1 — 3,1 — «)-reliable for —¢ in N.
It is easy to check that if A; is ¢-complete and respects negation, then X;¢p < —X;—p
is a valid formula. Combined with Proposition B3l this yields the following results.
Proposition 5.5. If A; respects negation, is p-complete, and is (a, 3)-reliable for ¢ in N,
then

(a) N | Xig A ~Kimg = (Evi(0) > 225 ATVil) < 225) if (o,) # (0,0);
() N | Xip A King = (Bifi) = 1AT(~) = 0) i (4.0) = (0,00
) > 5
)

(c) Evi(¢) < 52525) if (@, 8) # (1,1);
(d N):XwAﬂchpi(V(w)z%Aﬁi() < 3) if (@, 8) = (1,1).

6. CONCLUSION

The goal of this paper is to understand what the evidence provided by a knowledge
algorithm tells us. To take an example from security, consider an enforcement mechanism
used to detect and react to intrusions in a system. Such an enforcement mechanism uses
algorithms that analyze the behavior of users and attempt to recognize intruders. While
the algorithms may sometimes be wrong, they are typically reliable, in our sense, with some
associated probabilities. Clearly the mechanism wants to make sensible decisions based on
this information. How should it do this? What actions should the system take based on a
report that a user is an intruder?

If we have a probability on the hypotheses, evidence can be used to update this prob-
ability. More precisely, as shown in [Halpern and Fagin 1992], evidence can be viewed as a
function from priors to posteriors. For example, if the (cumulative) evidence for n being a
prime is « and the prior probability that n is prime is 3, then a straightforward application
of Bayes’ rule tells us that the posterior probability of n being prime (that is, the probability
of n being prime in light of the evidence) is (af)/(a3 + (1 — a)(1 — 3)).7 Therefore, if we
have a prior probability on the hypotheses, including the formula ¢, then we can decide to
perform an action when the posterior probability of ¢ is high enough. (A similar interpre-
tation holds for the evidence expressed by we and Wg; we hope to report on this topic in
future work.) However, what can we do when there is no probability distribution on the
hypotheses, as in the primality example at the beginning of this section? The probabilistic
interpretation of evidence still gives us a guide for decisions. As before, we assume that if
the posterior probability of ¢ is high enough, we will act as if ¢ holds. The problem, of
course, is that we do not have a prior probability. However, the evidence tells us what prior
probabilities we must be willing to assume for the posterior probability to be high enough.

"The logic in this paper only considers the evidence provided by a single knowledge algorithm at a single
point in time. In general, evidence from multiple sources can be accumulated over time and combined. Our
companion paper [Halpern and Pucella 2003] discusses a more general logic in which the combination of
evidence can be expressed.

PROBABILISTIC ALGORITHMIC KNOWLEDGE 21

For example, a “Yes” from a (.999,.001)-reliable algorithm for ¢ says that as long as the
prior probability of ¢ is at least .01, then the posterior is at least .9. This may be sufficient
assurance for an agent to act.

Of course, it is also possible to treat evidence as primitive, and simply decide to act is
if the hypothesis for which there is more evidence, or for the hypothesis for which evidence
is above a certain threshold is true. It would in fact be of independent interest to study the
properties of a theory of decisions based on a primitive notion of evidence. We leave this
to future work.

ACKNOWLEDGMENTS

This work was mainly performed while the second author was at Cornell University. A
preliminary version of this paper appeared in the Proceedings of the Ninth Conference on
Theoretical Aspects of Rationality and Knowledge, pp. 118-130, 2003. Thanks to Tugkan
Batu and Hubie Chen for discussions. Authors supported in part by NSF under grant
CTC-0208535, by ONR under grants N00014-00-1-03-41 and N00014-01-10-511, by the DoD
Multidisciplinary University Research Initiative (MURI) program administered by the ONR,
under grant N00014-01-1-0795, and by AFOSR under grant F49620-02-1-0101.

APPENDIX A. PROOFS

Proposition Bl Let N = (S,7,L1,..., Ly, A%, ... A% V) be a probabilistic algorithmic
knowledge, with Ay,..., A, deterministic. Let M = (S,7,L1,...,Ly,A1,...,Ay). If there
are no occurrences of Pr in @, then for all s € S and allv € V, (N, s,v) | ¢ if and only if
(M, s) |= ¢

Proof. The key observation here is that if a knowledge algorithm A is deterministic, then
for all v € V, A%(p, £, s,v;) = A(p, £, s). The result then follows easily by induction on the
structure of ¢. If ¢ is p, then (N, s,v) = p if and only if 7(s)(p) = true if and only if
(M,s) E p. If pis 1y A, then (N,s,v) = ¥y A e if and only if (NV,s,v) = ¢y and
(N, s,v) |E 1 if and only if (M, s) = ¢y and (M, s) = 1y (by the induction hypothesis) if
and only if (M,s) = 1 A s If @ is =, then (N, s,v) = = if and only if (N, s,v) & ¢
if and only (M, s) £ ¢ (by the induction hypothesis) if and only if (M,s) &= —. If ¢ is
K;1, suppose that (N, s,v) = K, that is, for all o' € V and all ¢t ~; s, (N, t,v") = v; by
the induction hypothesis, this means that for all ¢ ~; s, (M, t) = 1, that is, (M, s) E K;v.
Conversely, suppose that (M, s) E K;1, so that for all t ~; s, (M,t) = 1; by the induction
hypothesis, for every ¢t ~; s, we have (N, t,v") 4 for all o' € V, and thus (N, s,v) | K;9.
If ¢ is X;3, then (N,s,v) = X;¢ if and only if A%(v, Li(s), s,v;) = “Yes” if and only if
A;i(¢, Li(s),s) = “Yes” (since A; is deterministic) if and only if (M, s) = X;v. O

Proposition Let N = (S,W,Ll,...,Ln,Acll,...,Ag,u) be a probabilistic algorithmic
knowledge structure, and let M = (S, 7, L1, ..., Lyn, A}, ... AL) be an algorithmic knowledge
structure where Ay, ... Al are arbitrary deterministic knowledge algorithms. If there are no

occurrences of X; and Pr in ¢, then for all s € S and allv € V, (N, s,v) = ¢ if and only
if (M,s) = .

Proof. This result in fact follows from the proof of Proposition Bl since the only use of
the assumption that knowledge algorithms are deterministic is in the inductive step for
subformulas of the form X;. []

22 J. Y. HALPERN AND R. PUCELLA

Proposition Suppose that N = (S,m,L1,..., Ly, A, ... A% V) is a probabilistic algo-
rithmic knowledge security structure with an adversary as agent i and that A; = A]Z-DY“g(T).
Let K be the number of distinct keys used in the messages in the adversary’s local state £
(i.e., the number of keys used in the messages that the adversary has intercepted at a state
s with Li(s) = £). Suppose that K/|K| < 1/2 and that v is the uniform distribution on se-
quences of coin tosses. If (N,s,v) = ~K;X;(has;(m)), then (N,s,v) = Pr(X;(has;(m))) <
1 — e 2"K/IKL Moreover, if (N,s,v) = X;(has;(m)) then (N, s,v) = has;(m).

Proof. It is not hard to show that the r keys that the adversary guesses do no good at all if
none of them match a key used in a message intercepted by the adversary. By assumption,
K keys are used in messages intercepted by the adversary. The probability that a key
chosen at random is one of these K is K/|K|, since there are || keys altogether. Thus, the
probability that a key chosen at random is not one of these K is 1—(K/|K|). The probability
that none of the r keys chosen at random is one of these K is therefore (1 — (K/|K]))". We
now use some standard approximations. Note that (1 — (K/|K|))" = e" (0 =(K/IKD "and
n(l-z)=—2z—2*2-23/3—-->—ax—2>—2°— = —z/(1-2x).

Thus, if 0 < z < 1/2, then In(l — z) > —2z. It follows that if K/|K| < 1/2, then
ermA=(K/IKD) ¢=2rK/IK| - Qince the probability that a key chosen at random does not help
to compute algorithmic knowledge is greater than e~2"%/IKl the probability that it helps is
less than 1 — e~ 2rK/IK,

Soundness of A; with respect to has;(m) follows from Proposition EJ] (since soundness
follows for arbitrary initkeys(¢) C K). L]

Proposition Bl For all probabilistic algorithmic knowledge structures N, agents i, for-
mulas @, and local states £ of agent i that arise in N, if ob is a possible output of i’s
knowledge algorithm Af in local state £ on input o, then there exists a probability measure
p € Frp(p) UFoo(—p) such that p(ob) > 0.

Proof. Suppose that £ is a local state of agent ¢ that arises in IV and ob is a possible output
of Af in local state £ on input ¢. Thus, there exists a state s and derandomizer v such that
Ad(p, Li(s),s,v;) = ob. By assumption, ps(0b) > 0.]

Proposition For all probabilistic algorithmic knowledge structures N, we have
N EEvi(p)=1= .
Proof. If (N,s,v) E Ev,(p) = 1, then ng.wL_(S)(Af(go,Li(s),vi),gp) = 1. By definition

of we, this implies that for all s’ € Sy, (s) -, ps (A(9, Li(s),s,v;)) = 0. By our

zv*P»Li(S) ’
assumption about derandomizers, this means that there is no state s’ and derandomizer v’
such that L;(s') = Li(s) and (N, s',v') = —¢ where A% (¢, Li(s), s',v!) = A%(p, Li(s), 8, v;).

Thus, we cannot have (N, s,v) = —¢. Hence, (N, s,v) | ¢, as required. O
The following lemma gives an algebraic relationship that is useful in the proofs of

Propositions and .5

Lemma A.1. Suppose that x,y,a,b are real numbers in [0,1] such that x and y are not

both 0, and a and b are not both 0. If x > a and y < b, then x/(x +y) > a/(a + b) and

y/(x+y) <b/(a+D).

PROBABILISTIC ALGORITHMIC KNOWLEDGE 23

Proof. Note that z(a + b) = xa + xb > za + ay = a(x + y), so that z/(x +y) > a/(a +b).
Similarly, y(a +b) = ya + yb < xb+ yb = b(z + y), so that y/(z +y) < b(a + b). O

Proposition B3l If A; is p-complete and (o, 3)-reliable for ¢ in N then

(a) N | Xig A ~Kimp = Evi(9) > =25 if (0, 8) # (0,0);

(b) N I= Xip A ~Kimo = Bvi(ip) = 1 4f (o, §) = (0,0);

(¢) N E~Xip A=Kip = Evi(p) < TJrﬁ if (a, 8) # (1,1);

(d) N | ~Xip A=Kip = Evi(p) =0 if (o, f) = (1,1).
Proof. For part (a), suppose that (a, 3) # (0,0) and that (N, s,v) E X;o A 7 K;—¢. Then

A4 (p, Li(s),s,v;) = “Yes” and there exists some s’ ~; s such that (N,s’,v) = . By the

latter fact, Sr,(s).p 75 . If Sp,(s),~o = D, then it is easy to see that (N, s,v) = Ev,(¢) = 1.
I S1,(s),~p # 9, let s, 8" be two arbltrary states in S,(s),, and St (s),—,» respectively. Since

Adis (a [3) reliable, p1y ,(“Yes”) > o and pgn ,(“Yes”) < 3. Therefore, by Lemma [AT], we

have
s (o) o
st o (“Yes”) + pign o (“Yes”) — (o + B)°
Since s’ and s” were arbitrary, it follows that QgAi’%Li(s)(“Yes”,gp) > a/(a+). Thus, we
have (N, s,v) = Ev;(¢) > a/(a + (). Since s and v were arbitrary, we have

N E= Xip A —K;i—p = Ev;(¢) >

o
a+f

For part (b), suppose that («, 3) = (0,0), and that (N,s,v) E X;o A =K;—¢p. Then

Ad(p, Li(s),s,v;) = “Yes” and there exists some s’ ~; s such that (N,s’,v) = . By the
latter fact, Sr,(s),0 # D- If Sp,(s),~p = D, then it is easy to see that (N, 8 ,v) E Ev, ()=1.
If S1.(8),~0 # 9D, con81der all pairs of states s',s” with s’ € Sy (s), and s'e Sy (s) . Since
A is (0,0) reliable, jy ,(“Yes”) > 0 and /LSNM(“YGS”) = 0. For such a pair ¢, ", either
Pt o(“Yes”) = 0, in which case py ,(“Yes”) + per o(“Yes”) = 0, and the pair 8’,8” does
not contribute to WEAW,LZ-(S)(“YGS” ,@); or frg o(“Yes”) = a > 0 (and by Proposition Bl at
least one such state s’ always exists), in which an argument similar to part (a) applies and,
by Lemma [A] we have

o (o)
g (Vo) F i (Yo
Thus, We, ., (“Yes”,) = {1}, QgAi%Li(s)(“Yes”,gp) =1, and (N,s,v) E Ev,(p) = 1.
Since s and v were arbitrary, we have N &= X;p A =K;—p = Ev;(¢) = 1.

For part (c), suppose that («,3) # (1,1) and that (N,s,v) E = X;p A 7 K;p. Thus,
Ad(p, Li(s),v;) = “No” (since A; is ¢-complete) and there exists some s’ ~; s such that
(N,s',v) | —¢. By the latter fact, Sp,(5),~p # 9. If Sr,(5),, = 9, then it is easy to
see that (N,s,v) = BEvi(p) = 0. If Sy, 5, # @, let §',s” be two arbitrary states in
SLi(s),e and S, (s),~ps Tespectively. Slnce Af is go—cornplete and («, 3)-reliable, we have
psto(“No”) < 1 — a and prer ,(“No”) > 1 — 3. (This is where we use @-completeness;
otherwise, the best we can say is that pg ,(“No”) + per (“?”) > 1 — 3.) Therefore, by
Lemma [A7J], we have

o
> —=1
o

,us’,cp(“NO”) 1 —«
tst o (“NO”) + pgn o (“No”) = 2 — (a +)

24 J. Y. HALPERN AND R. PUCELLA

Since s’ and s” were arbitrary, we have (N, s,v) = Ev;(¢) <1 —a/(2 — (a+ 3)). Since s
and v were arbitrary, we have
— -«
N E Xip AN —Kjp = Evi(p) < ———.
= Xip ¢ = Evi(p) @t)
The proof of part (d) is similar to that of (b), and is left to the reader. Il

Proposition B4l If A; respects negation, is @-complete, and is («, 3)-reliable for ¢ in N,
then A; is («, B)-reliable for ¢ in N if and only if A; is (1 — 3,1 — «)-reliable for —¢ in N.

Proof. This is almost immediate from the definitions. Suppose that A; respects negation, is
p-complete, and is («, 3)-reliable for ¢ in N. Consider the reliability of A; with respect to
—p. If (N, s,v) = —¢p, then
s~ (“Yes”) =1 — prg ~o(“No”) =1 — ps o(“Yes”) > 1 — .

Similarly, if (N, s,v) |= ¢, then pg -, (“Yes”) <1 —a. Thus, 4; is (1 — 3,1 — «)-reliable for
- in N.

An identical argument (replacing ¢ by —p, and («, 3) by (1 — «,1 — [3)), shows that if
A; is (1—f,1—a)-reliable for = in N then 4; is («a, §)-reliable for ¢ in N. We leave details
to the reader. L]

To prove Proposition B8, we need a preliminary lemma, alluded to in the text.

Lemma A.2. If N is a probabilistic algorithmic knowledge structure where agent i uses
a knowledge algorithm A; that is @-complete and that respects negation, then N |E X;p <

Proof. Let s be a state of N and let v be a derandomizer. If (N,s,v) = X;p, then
Ad(p, Li(s),s,v;) = “Yes”. Since A; respects negation and is ¢-complete, this implies that
Ad(=p, Li(s),s,v;) = “No” (A4 cannot return “?” since it is ¢-complete) and hence that
(N,s,v) = Xi—p, so (N,s,v) E =X;—¢. Thus, (N,s,v) E X;jpo = —-X;—p. Since s
and v were arbitrary, we have that N £ X;p = —X;—¢. Conversely, let s be a state
of N and let v be a derandomizer. If (N,s,v) = —X;—¢p, then (N,s,v) £ X;—¢, that
is, Af(wp, Li(s),s,v;) # “Yes”. Since A; is p-complete and respects negation, A4; is —p-

complete, so it must be the case that A%(=gp,L;(s),s,v;) = ¢“No”. Therefore,
A(p, Li(s),8,v;) = “Yes”, and (N,s,v) = X;p. Since s and v were arbitrary, we have
that N = X;p. (]

Proposition If A; respects negation, is p-complete, and is («, 3)-reliable for ¢ in N,
then

(2) N = Xigp A Kimg = (Evi(0) > 225 ABvil9) < 225) if (o, 5) # (0,0);
(b) N = Xip A ~Kimp = (B, () = L AEvi(~g) = 0) if (a, ﬁ) (0,0);
(©) N b Ximp A ~Kip = (Evmo > 2l N Bvi(p) < 58) if (00 B) # (1, 1)
(@) N | i A ~Kip = (B (o) = 3 AT() £) i (@08) = (1,1),

(Ev <3
Proof. Suppose that 4; is («, §)-reliable for ¢ in N. Since A; is p-complete and respects
negation, by Proposition B4, 4; is (1 — 3,1 — «)-reliable for —¢ in N. For part (a), suppose

References 25

that (o, 3) # (0,0). Let s be a state of N and let v be a derandomizer. By Proposition
applied to ¢,

a
(N,s,v) E Xjp A K=o = Evi(p) > L
By Lemma [A2 (N, s,v) E X;po = —X;~¢. By Proposition applied to =, (N, s,v) E
X~ N-K;i—~o = Evi(-mp) <(1-(1-0)/1-(1—-—a)+1—(1-70)), that is, (N, s,v) =
- X;—o AN K= = Evi(—p) < /(o + 3). Putting this together, we get

(N,s,v) E Xip A K;i—p = <EV2‘(<,0) > Oéiﬁ ANEvi(—p) < af—ﬁ) .

Since s and v are arbitrary,

N = Xip AN K=o = <Evi(cp) > aL—l—ﬂ AN Evi(—p) < af—ﬂ) .

For part (c), suppose that («, 3) # (1,1). By Proposition B3l applied to =, (N, s,v) =
XimpA=Kip = Evi(p) = (1-5)/(2—(a+3)). By LemmalA2, (N, s,v) = Xi—p = ~Xjp.
By Proposition applied to o,

(N,s,v) = ~X;p A=K = Ev;(p) < %.
Putting this together, we get
(N, 5,0) = Ximp A =Kyp = <Evi(—|(p) > 170 (e < i) .
o " 2—(a+p) "2 (a+p)
Since s and v are arbitrary,

1-p 1—«
N EXi—poAN-Kip= | Evi(~p) > ———— AEv; < — .
= Ximp K = (Bi(oe) 2 s 2 ABwle) < 5=)
We leave the proof of parts (b) and (d) to the reader. O
REFERENCES

Berman, P., J. Garay, and K. J. Perry (1989). Towards optimal distributed consensus.
In Proc. 30th IEEE Symposium on the Foundations of Computer Science (FOCS’89),
pp. 410-415.

Dolev, D. and A. C. Yao (1983). On the security of public key protocols. IEEE Transac-
tions on Information Theory 29(2), 198-208.

Fagin, R. and J. Y. Halpern (1988). Belief, awareness, and limited reasoning. Artificial
Intelligence 34, 39-76.

Fagin, R., J. Y. Halpern, and N. Megiddo (1990). A logic for reasoning about probabilities.
Information and Computation 87(1/2), 78-128.

Fagin, R., J. Y. Halpern, Y. Moses, and M. Y. Vardi (1995). Reasoning about Knowledge.
MIT Press.

Halpern, J. Y. (2003). Reasoning About Uncertainty. MIT Press.

Halpern, J. Y. and R. Fagin (1992). Two views of belief: belief as generalized probability
and belief as evidence. Artificial Intelligence 54, 275-317.

Halpern, J. Y., Y. Moses, and M. Y. Vardi (1994). Algorithmic knowledge. In Proc. 5th
Conference on Theoretical Aspects of Reasoning about Knowledge (TARK’94), pp.
255—266. Morgan Kaufmann.

26

References

Halpern, J. Y. and R. Pucella (2002). Modeling adversaries in a logic for reasoning about
security protocols. In Proc. Workshop on Formal Aspects of Security (FASec’02),
Volume 2629 of Lecture Notes in Computer Science, pp. 115-132.

Halpern, J. Y. and R. Pucella (2003). A logic for reasoning about evidence. In Proc. 19th
Conference on Uncertainty in Artificial Intelligence (UAI'03), pp. 297-304.

Hintikka, J. (1962). Knowledge and Belief. Cornell University Press.

Hintikka, J. (1975). Impossible possible worlds vindicated. Journal of Philosophical
Logic 4, 475-484.

Kozen, D. (1985). A probabilistic PDL. Journal of Computer and Systems Sciences 30(2),
162-178.

Kripke, S. (1963). A semantical analysis of modal logic I: normal modal propositional
calculi. Zeitschrift fiir Mathematische Logik und Grundlagen der Mathematik 9, 67—
96.

Kyburg, Jr., H. E. (1983). Recent work in inductive logic. In T. Machan and K. Lucey
(Eds.), Recent Work in Philosophy, pp. 87-150. Rowman & Allanheld.

Motwani, R. and P. Raghavan (1995). Randomized Algorithms. Cambridge University
Press.

Paulson, L. C. (1998). The inductive approach to verifying cryptographic protocols. Jour-
nal of Computer Security 6(1/2), 85-128.

Rabin, M. O. (1980). Probabilistic algorithm for testing primality. Journal of Number
Theory 12, 128-138.

Ramanujam, R. (1999). View-based explicit knowledge. Annals of Pure and Applied
Logic 96(1-3), 343-368.

Rivest, R. L., A. Shamir, and L. Adelman (1978). A method for obtaining digital signa-
tures and public-key cryptosystems. Communications of the ACM 21(2), 120-126.
Shafer, G. (1982). Belief functions and parametric models (with commentary). Journal

of the Royal Statistical Society, Series B 44, 322—352.

Walley, P. (1987). Belief function representations of statistical evidence. Annals of Sta-

tistics 18(4), 1439-1465.

This work is licensed under the Creative Commons Attribution-NoDerivs License. To view
a copy of this license, visit http://creativecommons.org/licenses/by-nd/2.0/ or send a
letter to Creative Commons, 559 Nathan Abbott Way, Stanford, California 94305, USA.

	1. Introduction
	2. Reasoning about Knowledge and Algorithmic Knowledge
	3. Randomized Knowledge Algorithms
	4. An Example from Security
	5. Probabilistic Algorithmic Knowledge
	5.1. Evidence
	5.2. Evidence for Randomized Knowledge Algorithms
	5.3. Reliable Randomized Knowledge Algorithms

	6. Conclusion
	Acknowledgments
	Appendix A. Proofs
	ReferencesReferencesReferences

