
Logical Methods in Computer Science
Vol. 1 (2:3) 2005, pp. 1–14
www.lmcs-online.org

Submitted Jan. 25, 2005
Published Sep. 26, 2005

STRONG NORMALISATION FOR APPLIED LAMBDA CALCULI

ULRICH BERGER

Department of Computer Science, University of Wales Swansea, Singleton Park, Swansea, SA2
8PP, United Kingdom
e-mail address: u.berger@swan.ac.uk

Abstract. We consider the untyped lambda calculus with constructors and recursively
defined constants. We construct a domain-theoretic model such that any term not denoting
⊥ is strongly normalising provided all its ‘stratified approximations’ are. From this we
derive a general normalisation theorem for applied typed λ-calculi: If all constants have
a total value, then all typeable terms are strongly normalising. We apply this result to
extensions of Gödel’s system T and system F extended by various forms of bar recursion
for which strong normalisation was hitherto unknown.

1. Introduction

Extensions of typed λ-calculi by data types and recursively defined higher-order func-
tions, often called applied λ-calculi, play an important role in logic and computer science.
They are used, for example, to represent formal proofs and to give computational in-
terpretations of logical and mathematical theories leading to relative consistency results
and estimates of the strengths of theories in terms of their provably recursive functions
[Göd58, Spe62, Gir71, Tro73, CU93]. They also form the theoretical backbone of functional
and type-theoretic proof/programming languages [ea86, PM93]. The most important and
often also most difficult problem in the study of applied λ-calculi is normalisation, i.e. the
question whether every term can be reduced to a normal form with respect to β-reduction
and the rewrite rules for the extended calculus. The best possible result in this connection is
strong normalisation, i.e. termination of every possible reduction sequence. A common pat-
tern for proving strong normalisation for an applied λ-calculus is to take an existing strong
normalisation proof for the ‘pure’ underlying typed λ-calculus w.r.t. β-reduction only and
adapt it to the applied calculus. A typical example is the strong normalisation proof for
Gödel’s system T of primitive recursive functionals in simple types [Göd58] which can be
obtained by adapting Tait’s computability method to primitive recursion [Tro73]. Similar
methods were applied to prove strong normalisation for the calculus of constructions ex-
tended by inductive types [Alt93, BJO99]. There are important extensions of system T by
stronger recursion principles, for example Spector’s bar recursion [Spe62], which also have

2000 ACM Subject Classification: F.3.2, F.3.3, F.4.1, 4.4.4.
Key words and phrases: lambda-calculus, higher-order term rewriting, strong normalisation, domain the-

ory, proof theory.

LOGICAL METHODSl IN COMPUTER SCIENCE DOI:10.2168/LMCS-1 (2:3) 2005
c© U. Berger
CC© Creative Commons

http://creativecommons.org/about/licenses

2 U. BERGER

been treated using adaptations of Tait’s computability method, however at the price of con-
siderable complications. The difficulty in proving normalisation for bar recursion and similar
recursion schemes lies in the fact that these schemes do not use a recursive descent along
some kind of wellfounded structural ordering, but rather rely on continuity arguments and
the ability to construct, in a suitable model, infinite sequences by nonconstructive choices.
Since the computability method amounts to the construction of a syntactic model (built
from strongly normalising terms) which does not satisfy these requirements, one needs to
enrich the model, either by introducing infinite terms [Tai71, Vog85], or by building the
model from sets of terms instead of single terms [Bez85]. These modifications, which work
for Spector’s bar recursion, seem to fail, however, for other recursion principles which also
rely on continuity and choice and which occur in recent work on computational interpre-
tations of classical choice and related principles [BBC98, BO05, Ber04a]. An example is
modified bar recursion (see (2.1) in section 2).

In this paper we present a new method for proving strong normalisation of applied
lambda calculi which will allow us to deal with modified bar recursion and other forms of
recursion. The method roughly proceeds as follows: Let T be a strongly normalising typed
λ-calculus. We assume that T is given as a type assignment system for untyped λ-terms
with constructors, and we require that T allows for the (nonrecursive) definition of functions
by pattern matching on constructors. Let R be a higher-order rewrite system using pattern
matching and (possibly) recursion. Then, to prove strong normalisation for T + R we

(a) interpret the untyped terms in a strict domain model where the constants are in-
terpreted according to R,

(b) show that any term not denoting ⊥ is strongly normalising,
(c) prove that all constants are total w.r.t. the notion of totality given by the typing

discipline of T

While, as we will see, (a) and (b) are always possible, (c) will depend on the given rewrite
system R. Now, by (c) (and the presumed soundness of the typing discipline w.r.t. the
model) all typeable terms are total and hence 6= ⊥. With (b) it follows that all typeable
terms are strongly normalising.

The advantages of this method lie in its generality and its manifold modularity aspects:
First, strong normalisation of the underlying typed λ-calculus can be proven separately.
Second, steps (a) and (b) above are independent of the typing discipline and can be carried
out for any rewrite system R. The constructions and proofs involved in (a) and (b) are
elementary (formalisable in primitive recursive arithmetic). Third, the logical and mathe-
matical strengths of the typing discipline and the rewrite rules only enter into step (c). The
proof of totality of the constants can usually be carried out using the intuitive argument
why the given rewrite rules are ‘semantically sound’. Fourth, the combination of different
rewrite systems for which strong normalisation can be shown using our method preserves
strong normalisation. This holds because our method only uses totality of the constants of
each rewrite system separately.

Our method appears to be similar to Plotkin’s adequacy proof for PCF [Plo77], and, in
fact, is inspired by [Plo77]. The differences are that Plotkin intertwines the computability
method for the simply typed λ-calculus with a semantic approximation argument whereas
we keep these arguments separate. Also, Plotkin deals with full recursion without pattern
matching and shows weak normalisation for closed terms of ground-type only whereas our

STRONG NORMALISATION FOR APPLIED LAMBDA CALCULI 3

recursions are of a restricted form, but we show strong normalisation for terms of arbitrary
types.

As mentioned above our method only applies to rewrite systems based on a restricted
form of pattern matching. These restrictions enforce that the rewrite rules define the op-
erational and denotational semantics of the constants in a canonical way. Hence, rules like
distributivity or permutative conversions, which express optimisations rather than defini-
tions, are not covered by our method. Strong normalisation results for higher-order rewrite
rules of the latter kind are proven in [vdPS95] with a different semantic method based on
another notion of strict functionals.

Our paper is organised as follows. Section 2 introduces untyped λ-calculi with con-
structors and constants together with higher-order rewrite rules. As our running example
we discuss a few primitive recursive constants and rewrite rules for modified bar recursion.
We give an informal argument why, under the assumption that higher type functions are
continuous, bar recursion is sound. In section 3 we define a strict domain-theoretic model
for the calculi introduced previously. We prove that any term not denoting ⊥ is strongly
normalisable provided all its ‘stratified approximations’ are, where, roughly speaking, the
n-th stratified approximation of a term is obtained by replacing each constant by a variant
for which maximally n unfoldings of the recursion equations are allowed. The untyped
result is used in section 4 to prove a strong normalisation theorem for applied λ-calculi
based on an abstract notion of a strongly normalising and total type system. We have kept
the notion of type system as general as possible in order to prepare the ground for future
applications of our method to a variety of type systems. In section 5 we consider as an ex-
ample Girard/Reynold’s system F of second-order polymorphic λ-calculus. We show that
extending this system by higher type primitive recursion and modified bar recursion does
not destroy strong normalisation. We also discuss some other higher-order rewrite systems
our method applies to.

In [Ber04b] we have worked out a special case of our method, tailored for the simply
typed λ-calculus. By giving up generality the definition of the model and the totality proofs
then are slightly simpler. However, we feel that the greater flexibility gained by the type
free approach of this paper is worth paying the price of technically slightly more involved
constructions.

Acknowledgements. The comments and the constructive criticism by two anonymous
referees contributed significantly to an improved presentation of this work.

2. The type free λ-calculus with constructors and recursion

We fix a set Var of variables x, y Given a set CO of constructors co and a set C of
constants c, the set of terms Λ = Λ(CO, C) is defined by

Λ ∋M,N := x | co(M1, . . . ,Mk) | c | λxM |MN

where k is the arity of co, which is fixed for each constructor. If CO is fixed, but C may
vary, then we write Λ(C) instead of Λ(CO, C). We let FV(M) denote the set of free variables
of a term M .

The operational meaning of the constants c ∈ C is given by a a set R of rewrite rules

of the form

cP1 . . . Pn 7→ R

4 U. BERGER

where FV(cP1 . . . Pn) ⊇ FV(R) and the Pi are constructor patterns, i.e. terms built from

variables and the constructors such that no variable occurs twice in the term c~P . The
number n of arguments Pi is fixed for each constant c and is called the arity of c. We
furthermore require the Pi to be mutually variable disjoint and the left hand sides of different

rules to be non-unifiable. A rule of the form c~P 7→ R is called a rule for c.
A conversion, M 7→ N , is either a β-conversion, (λxM)N 7→β M [N/x], or an instance

of a rewrite rule, i.e. Lσ 7→R Rσ for some rewrite rule L 7→ R ∈ R and substitution σ. We
write M →R N if N is obtained from M by replacing one subterm occurrence of the left
hand side of a conversion by its right hand side.

We call a termM strongly normalising with respect to R, SNR(M), if there is no infinite
reduction sequence M →R M1 →R Equivalently, the predicate SNR is inductively
generated by the single rule:

If SNR(N) for all N such that M →R N , then SNR(M).

Our goal is to prove strong normalisation for various classes of terms (which are usually
given by typing disciplines) with respect to various rewrite systems R.

As an example consider the constructors T, F, 0, [], S, cons and the constants if, <, lh,
get and ++ with the rewrite rules

if Tx y 7→ x

if Fx y 7→ y

n < 0 7→ F

0 < S(m) 7→ T

S(n) < S(m) 7→ n < m

lh [] 7→ 0

lh cons(x, s) 7→ S(lhs)

get cons(x, s) 0 7→ x

get cons(x, s)S(n) 7→ get s n

[] ++ t 7→ t

cons(x, s) ++ t 7→ cons(x, s++ t)

When assigning suitable types to these constructors and constants one obtains a subsystem
of Gödel’s system T of primitive recursive functionals in finite types which is well-known to
be strongly normalising. We are interested in stronger forms of recursion, for example bar
recursion, which we discuss now. To improve readability will write Mk for getMk, M∗N
for M ++ cons(N, []) and ifM thenN elseK for ifMNK. The following form of modified bar

recursion was studied in [BBC98] and [BO05]:

Φygs = y(λk.if k < |s| then sk else gk(λx.Φyg(s∗x)))

In order to make sense of this equation one should think of the variables being typed
as follows: y : (nat → ρ) → nat, g : nat → (ρ → nat) → ρ, s : list(ρ), where ρ is an
arbitrary type. A functional Φ satisfying the recursion equation above was used in [BBC98]
and [BO05] to give a realisability interpretation of the classical (i.e. negative translated)
axiom of countable dependent choice. Below we give an intuitive argument why, under the

STRONG NORMALISATION FOR APPLIED LAMBDA CALCULI 5

assumption that higher type functions are continuous, the equation above is sound in the
sense that it defines a total functional (i.e. maps total arguments to total values):

Let g, y, s be total arguments where s = [x0, . . . , xn−1] with total xi, and assume,
for contradiction, that Φygs is undefined. Then the infinite sequence λk.if k <
|s| thenxk else gk(λx.Φyg(s∗x))) cannot be total, so there must be some k such that
gk(λx.Φyg(s∗x)) is not total. Since g is total this implies that λx.Φyg(s∗x) is not
total, i.e. Φyg(s∗xn) is not total for some total xn. Repeating this argument one
arrives at an infinite sequence of total elements xk such that Φyg[x0, . . . , xm−1] is
undefined for all m ≥ n. Since all xk are total, y(λk.xk) must be defined. Further-
more, since y is assumed to be continuous it will query its argument at numbers
k smaller than some fixed number m only. But then Φyg[x0, . . . , xm−1] must be
defined as well, which is a contradiction.

In the proof of theorem 5.4 we will repeat a slight variation of this argument in a strict
domain-theoretic model in order to obtain strong normalisation of system F extended by
modified bar recursion. More precisely, since turning the equation above into a rewrite rule
would clearly not be strongly normalising, we will have to work with the following minor
variation of modified bar recursion. We replace the conditional expression on the right hand
side by a call of an auxiliary constant Ψ with an extra (boolean) argument in order to force
evaluation of the test k < |s| before the subterm Φygh(s∗x) may be further reduced (Vogel’s
trick [Vog85]).

Φygs 7→ y(λk.Ψygsk(k < |s|))
ΨygskT 7→ sk

ΨygskF 7→ gk(λx.Φyg(s∗x))
(2.1)

Our results will enable us to easily show that all terms that are typeable in system F (under
a suitable typing of the constructors and constants) are strongly normalising with respect
to the rewrite rules above.

3. A domain-theoretic model for strong normalisation

By a domain we mean a Scott domain, i.e. a consistently complete algebraic domain
with an effective base [GLSH93, AJ94]. The least element of a domain D is denoted ⊥D

(or ⊥, if no confusion is possible) and ⊑D (or ⊑) denotes the domain ordering. D → E
denotes the domain of continuous functions from D to E. Note that ⊥D→E = λa ∈ D.⊥E .
If X is an effectively given countable set, then X⊥ denotes the flat domain X ∪ {⊥} where
all elements of X are maximal and ⊥(/∈ X) is the least element. For any domain D we
let DX be the domain of all functions from X to D, ordered pointwise. For a continuous
function f : Dk → E we define the strict version, strict(f) : Dk → E, by strict(f)(~a) :=
f(~a) if ⊥ /∈ ~a, strict(f)(~a) := ⊥ otherwise. Clearly strict(f) is again continuous and
strict(f) ⊑ f . Moreover, strict(.) is itself a continuous function on the domain Dk → E.
We will also use Maybe(D) := D+1 = {Just(d) | d ∈ D}∪{Nothing}∪{⊥} where 1 denotes
some 1-element domain and, in general, D1 + . . .+Dk denotes the usual separated sum of
domains which has as carrier the disjoint union of the Di plus a new bottom element and
is ordered in the expected way.

Given a system CO of constructors we define the domain D by the recursive domain
equation

D = Σco∈COD
arity(co) + (D → D)

6 U. BERGER

The existence of a solution to such an equation is guaranteed by the fact that in the
category of domains and embedding/projection pairs the separated sum and the continuous
function space construction are continuous functors (co-variant in all arguments) and all
such functors have initial fixed points (up to isomorphism). By the definition of D every

element of D \ {⊥} is either of the form co(~a) with ~a ∈ Darity(co), or of the form abst(f)
with f ∈ D → D, and there are continuous functions abst : (D → D) → D, app : D2 → D
and case : D → (CO ∪ {abst})⊥ as well as for each constructor co of arity k continuous
functions co : Dk → D and co−1

i : D → D (i = 1, . . . , k) such that

(i) case(co(~a)) = co, case(abst(f)) = abst,
(ii) co−1

i (co(~a)) = ai,
(iii) app(abst(f), b) = f(b).

If f ∈ Dk → D, then abst(f) stands for abst(λa1 ∈ D. . . . abst(λak ∈ D.f(a1, . . . , ak)).
Similarly, app(a, b1, . . . , bk) abbreviates app(. . . app(a, b1) . . . , bk). We define for each term
M ∈ Λ(C) the strict denotational semantics [M] : DC → DVar → D by

[x]αη = η(x)

[c]αη = α(c)

[λxM]αη = strict(abst)(λa ∈ D.[M]αηa
x)

[MN]αη = strict(app)([M]αη[N]αη)

[co(M1, . . . ,Mk)]αη = strict(co)([M1]
αη, . . . , [Mk]αη)

The soundness of this definition rests on the fact that domains and continuous functions
form a cartesian closed category.

Lemma 3.1. Let M,N ∈ Λ(C), α ∈ DC, η ∈ DVar, θ : C → C′, α′ ∈ DC′
.

(a) If α(c) = ⊥D for some constant c in M , then [M]α = ⊥DVar .

(b) [M [N/x]]αη = [M]αηa
x where a := [N]αη.

(c) [Mθ]α
′
= [M]α

′◦θ (Mθ := M [θ(c)/c | c ∈ C]).
(d) [(λxM)N] ⊑ [M [N/x]].

Proof. (a-c) are proved by easy inductions on M . (d) follows from (b): Let a := [N]αη.
Then [(λxM)N]αη ⊑ app(abst(λb ∈ D.[M]αηb

x), a) = [M]αηa
x = [M [N/x]]αη.

Next we define the constant assignment αR ∈ DC naturally associated with a rewrite
system R. The values αR(c) ∈ D are defined by a simultaneous recursion, i.e. αR is the least
fixed point of a certain continuous operator on the domain DC . For a constant c without
any rule in R we set αR(c) := ⊥. The definition of αR(c) for constants with at least one rule

requires some preparation. For every vector ~P = P1, . . . , Pk of variable disjoint constructor

patterns we define a continuous ‘inverse’ ~P−1 : Dk → Maybe(DVar). The definition is by

recursion on the number of constructors in ~P . ~x−1(~a) := Just(⊥~a
~x), where ⊥~a

~x(xi) = ai, and

(~x, co(Q1, . . . , Qn), ~P)−1(~a, b,~c) :=




(~x,Q1, . . . , Qn, ~P)−1(~a, co−1
1 (b), . . . , co−1

n (b),~c) if case(b) = co

Nothing if case(b) ∈ (CO \ {co}) ∪ {abst}
⊥ if case(b) = ⊥

Lemma 3.2.

(a) If ~P−1(~a) = Just(η) and ~P and ~Q are non-unifiable, then ~Q−1(~a) ∈ {⊥,Nothing}.

STRONG NORMALISATION FOR APPLIED LAMBDA CALCULI 7

(b) ~P−1([~Pσ]αη) = [σ]αη where [σ]αη(x) := [σ(x)]αη.

Proof. Easy inductions on the number of constructors in ~P .

By lemma 3.2 (a), the condition that the left hand sides of different rules for the same
constant are non-unifiable implies that for every constant c of R-arity k and every ~a ∈ Dk

there is at most one rule c~P 7→ R ∈ R such that ~P−1(~a) = Just(η) for some η ∈ DVar. This
guarantees the soundness of the following definition of the values of a constant c with at
least one rule in R: αR(c) := abst(f) where f : Dk → D is defined (recursively) by

f(~a) =





[R]αRη if c~P 7→ R ∈ R and ~P−1(~a) = Just(η)

dummy if ~P−1(~a) = Nothing for all c~P 7→ R ∈ R
⊥ otherwise

Here dummy is some fixed element of D whose value will be irrelevant in this section. How-
ever, when applying our construction to a particular type system (Section 5), we will have
to choose dummy in such a way that it lies in the intersection of all denotations of types
(note that dummy is independent of the type that might be associated with the constant c).

We set
[M]R := [M]αR

Lemma 3.3. If M → N , then [M]Rη ⊑ [N]Rη.

Proof. Induction on M .
If M 7→β N , then we use lemma 3.1 (d).

Consider the case of a constant conversion,i.e. c~Pσ → Rσ. Set ~a := [~Pσ]Rη = [~P]Rη′

where η′(x) := [σ(x)]Rη, by lemma 3.1 (b). By lemma 3.2 (b), ~P−1(~a) = Just(η′). Therefore,

[c~Pσ]Rη ⊑ app(αR(c),~a) ⊑ [R]Rη′ = [Rσ]Rη, again by lemma 3.1 (b).
All other cases (conversion of a proper subterm) follow immediately from the induction

hypothesis and the fact that the functions strict(abst), strict(app) and strict(constr)
are monotone.

The key to our first normalisation result is the approximation of a given rewrite system
by a ‘stratified’ rewrite system, that is a rewrite system where no recursion occurs. More
precisely, let R be a rewrite system for a given term system Λ(C) and define inductively a
constant c ∈ C to be stratified (w.r.t. R) if for every rule cP1 . . . Pn 7→ R ∈ R the term
R is stratified, i.e. contains stratified constants only. Roughly speaking, stratified rewrite
systems allow nothing more than to define functions by pattern matching and case analysis
on constructors. R is called stratified if all constants are stratified w.r.t. R.

Let R be an arbitrary rewrite system for a system of constants C. For every constant
c ∈ C and each n ∈ N let cn be a new constant and set Cω := {cn | c ∈ C, n ∈ N}. For every
term M ∈ Λ(C) and n ∈ N let M[n] ∈ Λ(Cω) be the term obtained from M by replacing
every constant c by cn. We define a stratified rewrite system for Cω by

Rω := {cn+1
~P 7→ R[n] | c~P 7→ R ∈ R, n ∈ N}

In the following we let M,N, . . . range over Λ(C) while A,B, . . . range over Λ(Cω). We write
A �M if replacing in A each constant cn by c yields M . In particular M[n] �M .

Lemma 3.4. If A � M and A contains no constant of the form c0, then to every C-term

N such that M →R N there is a Cω-term A such that A→Rω
B and B � N .

Proof. Easy induction on M .

8 U. BERGER

Lemma 3.5. [M]R =
⊔

n[M[n]]
Rω .

Proof. By definition, αR is the least fixed point of the continuous functional ΓR : DC → DC

defined by ΓR(α)(c) := ⊥ if there is no rule for c in R, otherwise ΓR(α)(c) := abst(f)
where f : Dk → D is defined by

f(~a) :=





[R]αη if c~P 7→ R ∈ R and ~P−1(~a) = Just(η)

dummy if ~P−1(~a) = Nothing for all c~P 7→ R ∈ R
⊥ otherwise

Set αn(c) := αRω
(cn). We show

αn = Γn
R(⊥) (3.1)

by induction on n. For n = 0 both sides are ⊥ (the left hand side = ⊥ because there are
no rules for constants of the form c0). If there is no rule for c in R, then both sides of (3.1)
are again ⊥. Let now c be a constant with at least one rule in R. By induction hypothesis
we have Γn+1

R
(⊥)(c) = abst(fn) where

fn(~a) :=





[R]αnη if c~P 7→ R ∈ R and ~P−1(~a) = Just(η)

dummy if ~P−1(~a) = Nothing for all c~P 7→ R ∈ R
⊥ otherwise

(note that the definitions of the functions f and fn above and the definition of f after
lemma 3.2 differ in the constant environment under which the term R is evaluated). Since by
lemma 3.1 (c), [R]αnη = [R[n]]

Rωη (αn = αR ◦θn where θn(c) := cn) it follows Γn+1
R

(⊥)(c) =
αRω

(cn) = αn(c). Now, since αR is the directed supremum of the Γn
R

(⊥) it follows, by
continuity of the evaluation function [M], equation (3.1) and lemma 3.1 (c),

[M]R =
⊔

n

[M]Γ
n

R(⊥) =
⊔

n

[M]αn =
⊔

n

[M[n]]
αω

Theorem 3.6. If [M]R 6= ⊥ and all M[n] are strongly normalising w.r.t. Rω, then M is

strongly normalising w.r.t. R.

Proof. Assume [M]R 6= ⊥. By continuity we have [M]Γ
n

R(⊥) 6= ⊥ for some n. By lemma 3.5
it follows [M[n]]

αωη 6= ⊥ for some n. Since, by assumption, M[n] is strongly normalising
w.r.t. Rω it suffices to show:

If SNRω
(A), [A]α 6= ⊥ and A �M , then SNR(M). (3.2)

We show this by induction on SNRω
(A). Assume the hypotheses of (3.2). We need to show

that all one step reducts of M are strongly normalising. So, assume M →R N . Since
[A]α 6= ⊥ we know, by lemma 3.1 (a), that A contains no constant of the form c0. By
lemma 3.4 it follows that A →Rω

B with B � N for some B. By lemma 3.3 (applied to
Rω), [B]α 6= ⊥, hence we can apply the induction hypothesis to B and N .

STRONG NORMALISATION FOR APPLIED LAMBDA CALCULI 9

4. Strong normalisation via typing

In many cases the premises of theorem 3.6 can be proven for terms that are typeable in a
certain type system. Our main example will be second-order polymorphism (system F), but
any type system that meets a few natural conditions would do as well. These conditions are
isolated in the following notions of an (abstract) strongly normalising type system and the
notion of totality of a type system with respect to a type interpretation. The former notion
is the requirement that all typeable terms are strongly normalising for β-conversion plus any
stratified type-sound rewrite system. For a given type system this slightly stronger notion
of strong normalisation can usually be obtained by a simple modification of the known proof
of strong normalisation for β-conversion (for example Girard’s candidate method).

Concerning strong normalisation we clearly may restrict our attention to the set Λ0(C)
of closed terms in Λ(C).

A type system consists of a set T of types and a family of ternary relations ⊢C ⊆
T C × Λ0(C) × T (indexed by constant systems C) which is stable under type respecting
constant substitutions, that is,

if ∆ ⊢C M : ρ and ∆ = ∆′ ◦ θ, then ∆′ ⊢C′ Mθ : ρ,

for any ∆ ∈ T C , M ∈ Λ0(T), ρ ∈ T , θ : C → C′ and ∆′ ∈ T C′
.

A term M ∈ Λ0(C) is called typeable w.r.t. ∆ ∈ T C if ∆ ⊢C M : ρ for some ρ ∈ T . A
rewrite system R for Λ(C) is type-sound w.r.t. ∆ ∈ T C if ∆ ⊢C λ~xL : ρ implies ∆ ⊢C λ~xR : ρ
for every rule L 7→ R ∈ R with FV(L) = ~x and ρ ∈ T . The type system T ,⊢ is called strongly

normalising if for any set of constants C, any type assignment ∆ ∈ T C and any stratified
type-sound rewrite system R for Λ(C) all typeable closed terms are strongly normalising
w.r.t. R.

Next, we consider possible semantics of types in the model D introduced in the previous
section. Since the value of a closed term does not depend on a variable assignment, we may,
for closed terms M , set [M]α := [M]αη where η ∈ DVar is arbitrary, for example η := ⊥.
A type interpretation for T is a mapping that assigns to every type ρ ∈ T a subset [[ρ]] of
D \{⊥} such that whenever ∆ ⊢C M : ρ and α(c) ∈ [[∆(c)]] for every c ∈ C, then [M]α ∈ [[ρ]].

In the following we will call α ∈ DC total if α(c) ∈ [[∆(c)]] for all c ∈ C. Similarly we
will call a ∈ D total if a ∈ [[ρ]] provided ρ is clear from the context.

Theorem 4.1. Let T ,⊢ be a strongly normalising type system and [[·]] : T → P(D \ {⊥}) a

type interpretation. Let ∆ ∈ T C be a type assignment and R a type-sound rewrite system

such that αR is total. Then all typeable closed terms are strongly normalising w.r.t. R.

Proof. Assume ∆ ⊢C M : ρ. Since αR is total it follows that [M]αR is total, i.e. a member of
[[ρ]], and hence different from ⊥. Define the constant substitutions θn : C → Cω (n ∈ N) and
θ′ : Cω → C by θn(c) := cn and θ′(cn) := c. Note that Mθn = M[n]. Set ∆′ := ∆ ◦ θ′. Since
∆ = ∆′ ◦ θn it follows ∆′ ⊢Cω

Mθn : ρ for every n ∈ N. Furthermore, the stratified rewrite
system Rω is type-sound w.r.t. ∆′ ∈ T Cω . This can be seen as follows: Assume ∆′ ⊢ λ~xL : ρ
for some rule L 7→ R ∈ Rω with FV(L) = ~x. Since ∆′ = ∆ ◦ θ′ it follows ∆ ⊢ λ~xLθ′ : ρ.
But Lθ′ 7→ Rθ′ ∈ R. Hence ∆ ⊢ λ~xRθ′ : ρ, since R is type-sound. Since L 7→ R ∈ Rω we
have R = Rθ′θn for some n. But this implies ∆′ ⊢ λ~xR : ρ. Since we have shown that Rω is
type-sound, and since Mθn is typeable and T ,⊢ is assumed to be strongly normalising, it
follows that Mθn is strongly normalising w.r.t. Rω for every n ∈ N. Hence both premises of
theorem 3.6 are satisfied and we may conclude that M is strongly normalising w.r.t. R.

10 U. BERGER

5. Applications

As an example of an applied λ-calculus we consider system F extended by lists and
constants with rewrite rules based on pattern matching. We consider the same set of
constructors CO = {T,F, 0, [],S, cons} as in section 2, but leave the set of constants C
unspecified for the moment. Given a set TV of type variables p, p1, . . ., the set of (open)
types is defined by the grammar

ρ, σ := p | boole | nat | list(ρ) | ρ→ σ | ∀p ρ

A context is a mapping Γ from a finite set dom(Γ) of object variables to the set of types,
written as x1 : ρ1, . . . , xn : ρn. The rules for the inductive definition of the typing judgments
∆,Γ ⊢C M : ρ, where ∆ ∈ T C , Γ is a context, M ∈ Λ(C) and ρ ∈ T , are displayed in
Figure 1.

∆,Γ, x : ρ ⊢C x : ρ
c ∈ C

∆,Γ ⊢C c : ∆(c)

∆,Γ, x : ρ ⊢C M : σ

∆,Γ ⊢C λx.M : ρ→ σ

∆,Γ ⊢C M : ρ→ σ ∆,Γ ⊢C N : ρ

∆,Γ ⊢C MN : σ

∆,Γ ⊢C M : ρ

∆,Γ ⊢C M : ∀p ρ
(p not free in Γ)

∆,Γ ⊢C M : ∀p ρ

∆,Γ ⊢C M : ρ[σ/p]

∆,Γ ⊢C T : boole ∆,Γ ⊢C F : boole

∆,Γ ⊢C 0: nat
∆,Γ ⊢C M : nat

∆,Γ ⊢C S(M) : nat

∆,Γ ⊢C [] : list(ρ)
∆,Γ ⊢C M : ρ ∆,Γ ⊢C N : list(ρ)

∆,Γ ⊢C cons(M,N) : list(ρ)

Figure 1: The typing rules for extended System F

We let T0 be the set of closed types and define

∆ ⊢F
C M : ρ : ⇔ ∆, ∅ ⊢C M : ρ and ρ ∈ T0

Proposition 5.1. (T0,⊢
F) is a strongly normalising type system.

Proof. Clearly (T0,⊢
F) is a type system. In order to see that it is strongly normalising one

easily adapts the proof of strong normalisation for system F as given, for example in [Bar92]
(which is based on Girard’s proof [Gir71] in the λ-calculus version due to Tait [Tai75]), so as
to accommodate stratified rewrite systems. We leave details to the reader. A corresponding
proof for simple types is worked out in detail in [Ber04b].

Our next task is to interpret types in the domain D defined in section 3 (for the specific
set of constructors CO above). We define the element dummy ∈ D, which was left unspecified
in section 3, recursively by

dummy = abst(λa ∈ D.dummy)

STRONG NORMALISATION FOR APPLIED LAMBDA CALCULI 11

We set B̃ := {T,F} ∪ abst(D), where abst(D) := {abst(d) | d ∈ D}, and Ñ := the least
subset of D that contains {0}∪abst(D) and is closed under the constructor S. Furthermore,

for a subset A ⊆ D we set l̃ist(A) := the least subset of D that contains {nil} ∪ abst(D)
and contains with d also cons(a, d) for every a ∈ A. Finally, for A,B ⊆ D we set A→ B :=
{abst(f) ∈ D | ∀a ∈ D (a ∈ A→ f(a) ∈ B)}. Set

P̃(D) := {A ⊆ D | dummy ∈ A,⊥ 6∈ A}

Note that P̃(D) contains B̃, Ñ and is closed under arbitrary nonempty intersections and

under the operations A 7→ l̃ist(A) and (A,B) 7→ A → B (it is precisely the latter closure
condition together with the requirement that the intersection of all types has to be nonempty
that leads to the somewhat mysterious definition of dummy).

For every type ρ ∈ T and type variable assignment τ : TV → P̃(D) we define [[ρ]]τ ∈

P̃(D) by recursion on ρ:

[[p]]τ = τ(p)

[[boole]]τ = B̃

[[nat]]τ = Ñ

[[list(ρ)]]τ = l̃ist([[ρ]]τ)

[[ρ→ σ]]τ = [[ρ]]τ → [[σ]]τ

[[∀p ρ]]τ =
⋂

A∈P̃(D)

[[ρ]]τA
p

Lemma 5.2. [[.]], restricted to closed types, is a type interpretation for (T0,⊢
F).

Proof. Call η ∈ DVar total for a type assignment τ : TV → P̃(D) and a context Γ if η(x) ∈
[[Γ(ρ)]]τ for every x ∈ dom(Γ). By a straightforward induction on typing derivations one
shows that if ∆,Γ ⊢C M : ρ, then [M]αη ∈ [[ρ]]τ for all τ and all α, η that are total for
∆,Γ.

Now let C consist of the constants if, <, lh, get,++,Φ,Ψ and a constant for every higher-
type primitive recursive functional. Let MBR be the rewrite system consisting of the
rewrite rules of section 2 and the usual rewrite rules for primitive recursion. The typing ∆
for the constants is as expected. For example, writing c : ρ for ∆(c) = ρ,

if : ∀p .boole → p→ p

< : nat → nat → boole

lh : ∀p .list(p) → nat

get : ∀p .list(p) → nat → p

++ : ∀p .list(p) → list(p) → list(p)

Φ : ∀p .((nat → p) → nat) → ((p → nat) → p) → list(p) → nat

Ψ : ∀p .((nat → p) → nat) → ((p → nat) → p) → list(p) → nat → boole → p

Lemma 5.3. MBR is type-sound for ⊢F and ∆.

Proof. Immediate, by inspection of the rewrite rules.

12 U. BERGER

Theorem 5.4. System F extended by Gödel primitive recursion and modified bar recursion

is strongly normalising.

Proof. By theorem 4.1, proposition 5.1 and lemmas 5.2 and 5.3 it suffices to show that αMBR

is total. The proof of totality of αMBR(c) for constants c ∈ {if, <, lh, get,++} and, more
generally, any primitive recursive constant is easy and left to the reader. In the following

we will write c instead of αMBR(c), â(~b) instead of strict(app)(a,~b) and λ̂x.e instead
of strict(abst)(λx.e). We will also write [x0, . . . , xn−1] for cons(x0, . . . , cons(xn−1, nil))
and call such objects proper lists. According to the rewrite rules for Φ and Ψ we have
Φ = abst(ϕ) and Ψ = abst(ψ) where for total arguments y, g, s, k

ϕ(y, g, s) = ŷ(λ̂k.ψ(y, g, s, k, k < lh(s)))

ψ(y, g, s, k,T) = get(g, k)

ψ(y, g, s, k,F) = ĝ(k, λ̂x.ϕ(y, g, s ∗ x)))

ψ(y, g, s, k, b) = dummy, if case(b) ∈ (CO \ {co}) ∪ {abst}

More precisely, since Φ and Ψ have universal types, we chose an arbitrary set A ∈ P̃(D) and

take y ∈ (Ñ → A) → Ñ, g ∈ (A → Ñ) → A, s ∈ l̃ist(A), and show ϕ(y, g, s) ∈ Ñ. We may
assume that s is a proper list, i.e. s = [x0, . . . , xn−1] with xi ∈ A (i < n), because for other

s ∈ l̃ist(A) we clearly have ϕ(y, g, s) = dummy ∈ Ñ. Assume ϕ(y, g, s) 6∈ Ñ. Then there must

be some k ∈ Ñ such that k < lh(s) = F and ψ(y, g, s, k,F) 6∈ A. The latter can only happen

if ϕ(y, g, [x0, . . . , xn−1, xn]) 6∈ Ñ for some xn ∈ A. Repeating this argument one obtains an

infinite sequence of elements xn, xn+1, . . . such that each xi ∈ A and ϕ(y, g, [x0, . . . , xm]) 6∈ Ñ

for any m ≥ n. Define a continuous function f : D → D

f(k) :=





xm if k = Sm(0)
dummy if k = Sm(abst(a)) for some m ∈ N and a ∈ D
⊥ otherwise

Clearly abst(f) ∈ Ñ → A. Hence ŷ(abst(f)) ∈ Ñ. Since λa.ŷ(a) is continuous and Ñ

is an open subset of D there is a finite (compact) approximation f0 6= ⊥ of f such that
ŷ(abst(f0)) = ŷ(abst(f)). From the first equation for ψ it follows that there is some m ≥ n

such that for s′ := [x0, . . . , xm] we have abst(f0) ⊑ λ̂k.ψ(y, g, s′, k, k < lh(s′)). Therefore

ϕ(y, g, s′) = ŷ(λ̂k.ψ(y, g, s′, k, k < lh(s′))) ∈ Ñ which is a contradiction.

We conclude with a brief discussion of other rewrite systems which have been used to
interpret strong classical analytical principles and for which our method works as well. In
[BBC98] the following recursion was considered, which can be viewed as a more efficient
‘demand driven’ variant of modified bar recursion. As with modified bar recursion we use
an auxiliary constant replacing the if-then-else construct used in [BBC98, Ber04a]:

Φygs 7→ y(λn.Ψygs(n ∈ dom(s)))
ΨygsT 7→ f [n]
ΨygsF 7→ gn(λz.Φyg(s∗(n, z)))

(5.1)

where y : (nat → ρ) → nat, g : nat → (ρ → nat) → ρ and s : (nat × ρ)∗ is to be viewed
as the graph of a finite function with n ∈ dom(s) and s[n] having the expected meanings.
In [Ber04a] it was shown that (5.1) can be derived from the following principle of open

STRONG NORMALISATION FOR APPLIED LAMBDA CALCULI 13

recursion (again formulated with an auxiliary constant):

Φyα 7→ yα(λn, z.Ψyαnz(z≺αn))
ΨyαnzT 7→ λγ.Φy(αn∗z@γ)
ΨyαnzF 7→ λγ.0

(5.2)

Here ≺ : ρ × ρ → boole is (the graph of) a wellfounded relation, α, γ : nat → ρ, αn =
[α0, . . . , α(n − 1)] and s@γ = λk.if k < |s| then sk else γk. So, Φ is recursively called with
arguments of the form αn∗z@γ, which are lexicographically smaller than α. Note, however,
that the lexicographic ordering on infinite sequences is not wellfounded. Both recursions,
(5.1) and (5.2) have the proof-theoretic strengths of full second order arithmetic. Their
significance rests on the fact that they can be used to give rather direct realisability in-
terpretations of strong classical theories: (5.1) realises classical countable choice [BBC98],
while (5.1) realises open induction [Ber04a], a principle closely related to Nash-William
minimal-bad-sequence argument [NW63].

By theorem 4.1 and the results of this section, the strong normalisability of system F
plus the recursions above boils down to showing that the interpretations of (5.1) and (5.2)
are total. The totality of (5.2) can be shown by open induction. To prove totality of (5.1)
it is easiest to use the reduction to (5.2) given in [Ber04a].

References

[AJ94] S. Abramsky and A. Jung. Domain theory. In S. Abramsky, D. M. Gabbay, and T. S. E. Maibaum,
editors, Handbook of Logic in Computer Science, volume 3, pages 1–168. Clarendon Press, 1994.

[Alt93] T. Altenkirch. Constructions, Inductive Types and Strong Normalization. PhD thesis, The Uni-
versity of Edinburgh, Department of Computer Science, Edinburgh, 1993.

[Bar92] H. Barendregt. Lambda calculi with types. In S. Abramsky, D.M. Gabbay, and T.S.E. Maibaum,
editors, Handbook of Logic in Computer Science, volume 2, pages 117–309. Clarendon Press,
Oxford, 1992.

[BBC98] S. Berardi, M. Bezem, and T. Coquand. On the computational content of the axiom of choice.
Journal of Symbolic Logic, 63(2):600–622, 1998.

[Ber04a] U. Berger. A computational interpretation of open induction. In F. Titsworth, editor, Proceedings
of the Ninetenth Annual IEEE Symposium on Logic in Computer Science, pages 326–334. IEEE
Computer Society, 2004.

[Ber04b] U. Berger. Strong normalization proofs based on continuous semantics, 2004.
[Bez85] M. Bezem. Strong normalization of barrecursive terms without using infinite terms. Archive for

Mathematical Logic, 25:175–181, 1985.
[BJO99] F. Blanqui, J-P. Jouannaud, and M. Okada. The calculus of algebraic constructions. In P. Naren-

dran and M. Rusinowitch, editors, Proceedings of RTA’99, number 1631 in LNCS, pages 301–316.
Springer Verlag, Berlin, Heidelberg, New York, 1999.

[BO05] U. Berger and P. Oliva. Modified bar recursion and classical dependent choice. In Logic Colloquium
2001. Springer, 2005.

[CU93] S. Cook and A. Urquhart. Functional interpretations of feasibly constructive arithmetic. Annals
of Pure and Applied Logic, 63:103–200, 1993.

[ea86] R.L. Constable et al. Implementing Mathematics with the Nuprl Proof Development System.
Prentice–Hall, New Jersey, 1986.

[Gir71] J-Y. Girard. Une extension de l’interprétation de Gödel à l’analyse, et son application à
l’élimination des coupures dans l’analyse et la théorie des types. In J.E. Fenstad, editor, Pro-
ceedings of the Second Scandinavian Logic Symposium, pages 63–92. North–Holland, Amsterdam,
1971.

[GLSH93] E. Griffor, I. Lindström, and V. Stoltenberg-Hansen. Mathematical theory of domains. Cambridge
University Press, 1993.

[Göd58] K. Gödel. Über eine bisher noch nicht benützte Erweiterung des finiten Standpunktes. Dialectica,
12:280–287, 1958.

14 U. BERGER

[NW63] C.St.J.A. Nash-Williams. On well-quasi-ordering finite trees. Proc. Cambridge Phil. Soc., 59:833–
835, 1963.

[Plo77] G.D. Plotkin. LCF considered as a programming language. Theoretical Computer Science, 5:223–
255, 1977.

[PM93] C. Paulin-Mohring. Inductive definitions in the system Coq; rules and properties. In M. Bezem
and J.F. Groote, editors, Typed Lambda Calculi and Applications, pages 328–345. LNCS Vol. 664,
1993.

[Spe62] C. Spector. Provably recursive functionals of analysis: a consistency proof of analysis by an
extension of principles in current intuitionistic mathematics. In F. D. E. Dekker, editor, Recur-
sive Function Theory: Proc. Symposia in Pure Mathematics, volume 5, pages 1–27. American
Mathematical Society, Providence, Rhode Island, 1962.

[Tai71] W.W. Tait. Normal form theorem for barrecursive functions of finite type. In J.E. Fenstad, ed-
itor, Proceedings of the Second Scandinavian Logic Symposium, pages 353–367. North–Holland,
Amsterdam, 1971.

[Tai75] W.W. Tait. A realizability interpretation of the theory of species. In R. Parikh, editor, Logic Col-
loquium Boston 1971/72, volume 453 of Lecture Notes in Mathematics, pages 240–251. Springer
Verlag, Berlin, Heidelberg, New York, 1975.

[Tro73] A.S. Troelstra. Metamathematical Investigation of Intuitionistic Arithmetic and Analysis, volume
344 of Lecture Notes in Mathematics. Springer, 1973.

[vdPS95] J. van de Pol and H. Schwichtenberg. Strict functionals for termination proofs. In M. Dezani-
Ciancaglini and G. Plotkin, editors, Typed Lambda Calculi and Applications, volume 902 of LNCS,
pages 350–364. Springer Verlag, Berlin, Heidelberg, New York, 1995.

[Vog85] H. Vogel. Ein starker Normalisationssatz für die barrekursiven Funktionale. Archive for Mathe-
matical Logic, 18:81–84, 1985.

This work is licensed under the Creative Commons Attribution-NoDerivs License. To view
a copy of this license, visit http://creativecommons.org/licenses/by-nd/2.0/ or send a
letter to Creative Commons, 559 Nathan Abbott Way, Stanford, California 94305, USA.

	1. Introduction
	Acknowledgements

	2. The type free -calculus with constructors and recursion
	3. A domain-theoretic model for strong normalisation
	4. Strong normalisation via typing
	5. Applications
	References

