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ABSTRACT. The higher-orderπ-calculus is an extension of theπ-calculus to allow communication
of abstractions of processes rather than names alone. It hasbeen studied intensively by Sangiorgi in
his thesis where a characterisation of a contextual equivalence for higher-orderπ-calculus is provided
using labelled transition systems andnormalbisimulations. Unfortunately the proof technique used
there requires a restriction of the language to only allow finite types.

We revisit this calculus and offer an alternative presentation of the labelled transition system and
a novel proof technique which allows us to provide a fully abstract characterisation of contextual
equivalence using labelled transitions and bisimulationsfor higher-orderπ-calculus with recursive
types also.

1. INTRODUCTION

It is evident that there is growing interest in the study of mobile code in process languages
[3, 1, 9, 15]. It is also clear that there is some relationshipbetween the use of higher-order features
and mobility. Indeed, code mobility can be expressed as communication of process abstractions.
For this reason then it is important for us to develop a clear understanding of the use of higher-order
features in process languages.

Work towards this began several years ago with various proposals for higher-order versions of
known calculi [14, 4], including the higher-orderπ-calculus or HOπ [10]. This calculus was studied
intensively by Sangiorgi and one of his achievements was to provide a translation of the higher-
order language which supports code mobility, to a first-order π-calculus which supports only name
mobility. This translation is proved to be fully abstract with respect to barbed congruence, but with
the restriction to a language of finite types.

While the translation is of interest in its own right, it alsoturned out to be very useful for pro-
viding a powerful fully abstract characterisation of barbed congruence in terms of labelled transition
systems andnormal bisimulations. Providing direct proof techniques for contextual equivalences
in higher-order process languages is often considered to behard [13]. In this paper, the difficulty
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arises in establishing soundness of the proof technique, which is tantamount to establishing some
sort of contextuality property. It has been seen that the useof a translation of higher- to first-order
communication can alleviate this problem and such translations have been employed to this effect
[11, 7].

However, due to the restriction to finite types for the correctness of these translations, the
soundness of the proof technique is only guaranteed for finite types. Given that recursive types are
used extensively inπ-calculus, for encodings of datatypes and functions, this poses a significant
restriction. Sangiorgi has shown that by studying various subcalculi, such as the asynchronousπ-
calculus, he is able to remove the restriction to finite types[13]. To date, there has been no proof of
full abstraction for full HOπ in the presence of recursive types.

In this paper we present an alternative description of labelled transition systems and normal
bisimulations for HOπ, which is informed by Sangiorgi’s translation of higher-order to first-order
communication. Our alternative presentation allows adirect proof of soundness for contextual
equivalence which makes no use of the translation to first-order π-calculus and, more importantly,
makes no restriction on types.

The innovation here lies in the introduction of operatorsτk and 〈k ⇐ v〉 which simulate the
triggersTrk and meta-notation{k := v} of Sangiorgi [11] wherek is a unique identifier for the
trigger andv is a process abstraction. The crucial difference is that where Sangiorgi gives definitions
as HOπ terms for these devices:

Trk = (x)k〈x〉 and {k := v} = ∗k(x)v·x

wherek〈x〉 represents an output on namek and∗k(x)P represents a replicated input on namek, we
leave the operators uninterpreted. There are no interactions between the operatorsτk and〈k ⇐ v〉.
Rather, we just mimic the behaviour of triggers in the labelled transition systems. The benefit of
doing this is that it allows us to obtain a direct soundness proof that (normal) bisimilarity implies
contextual equivalence without recourse to any translation in its correctness proof.

A challenge of approaching the problem in this way is that it is not immediately clear that
bisimilarity will be complete for contextual equivalence in HOπ. That is to say, it is not obvious
whether each transition has a genuine HOπ context which validates it. At this point however we can
interpret the operatorsτk and〈k ⇐ v〉 as HOπ terms exactly as Sangiorgi does. It is then a simple
matter to demonstrate completeness following familiar techniques [3, 7, 5]. The real payoff is that
not only do we obtain a direct soundness proof but the postponement of interpreting the triggers
allows us to finesse any restrictions to finite types.

The remainder of the paper is organised as follows: in Section 2 we recall the syntax and
semantics of HOπ along with the definition of contextual equivalence which wewill be using. This
is followed in Section 3 by a presentation of the novel labelled transition system using the operators
τk and〈k⇐ v〉. We prove that bisimilarity over this labelled transition system is sound for contextual
equivalence in Section 4 and conversely, that it is completefor contextual equivalence in Section 5.
We conclude in Section 6 with some closing remarks.

2. HIGHER-ORDER π CALCULUS

Except for small changes in notation the language is as can befound in [13] with three main
differences:

(1) We assume two distinct countably infinite sets of identifiers,V andN , for variables and
channel names respectively. In general we will usex,y,z to range over variables anda,b,c
to range over channel names. This variable/name distinction makes the algebraic properties
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T, U ::= Value Types
· Unit type
ch[T] Channel type
T →⋄ Abstraction type
Z Type variable
recZ.T Recursive type

P, Q ::= Terms
v·w Application
v(x : T)P Input
v〈w〉P Output
if v = w then P else Q Matching
ν(a : T) . (P) Name creation
P ‖ Q Concurrency
∗P Repetition
0 Termination

v, w ::= Values
· Unit value
a Channel name
x Variable
(x : T)P Abstractions

Figure 1: The Syntax

of the language a little cleaner and we are confident that the techniques proposed here would
also be applicable if we identified these sets.

(2) Since we have adopted a variable/name distinction, we have used Honda and Yoshida’s
definition of observational equivalence [6] in Section 2.4 rather than Sangiorgi’s. See [2]
for a discussion of this issue.

(3) We allow communication of channel names as well as process abstractions so that there is
a coreπ-calculus as a direct subcalculus of HOπ.

2.1. Syntax. We present the syntax of HOπ in Figure 1. The grammar of types for values includes:

• (·): a singleton type just containing the value(·).

• ch[T]: the type of channels which can be used for communicating data of typeT. Note that
in this paper we are not considering input-only or output-only channels.

• T → ⋄: the type of an abstraction(x : T)P. Such an abstraction can be applied to a valuev
of typeT to return a well-typed processP[v/x].

• Z and recZ.T: these allow recursive types, such as the type for monomorphic π-calculus
channelsrecZ.ch[Z]. We requireZ to beguarded: any free occurrence ofZ lies within a
subexpression ofT of the formch[U ] orU →⋄.

The grammar of process terms includes:
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• v·w: the application of abstractionv to argumentw. During execution,v will be instantiated
by an abstraction of the form(x : T)P, andβ-reduction will give the processP[w/x].

• v(x : T)P andv〈w〉P, which are the standard synchronous input and output of theπ-calculus,
except that since abstractions are first-class values, we can communicate higher-order data
as well as first-order data.

• if v = w then P else Q: an equality test on values, where the type system will ensure thatv
andw are channels, and so we will never compare abstractions for syntactic identity.

• ν(a : T) . (P), P ‖ Q, ∗P and0: the standardπ-calculus processes for channel generation,
concurrency, replication and termination.

The grammar of values includes:

• (·): the only value of type(·).

• a andx: channel names and variables respectively.

• (x : T)P: an abstraction, which can be applied to a valuev to return a processP[v/x]. Since
abstractions are considered first-class values, they can becommunicated on channels, or
passed as arguments to other abstractions. This feature gives HOπ its higher-order power.

2.2. Reduction semantics.The reduction semantics for the language is defined in a standard man-
ner: we first introduce the evaluation contexts

E ::= [ · ] | E ‖ P | νa.E

Structural equivalence,≡ is defined to be the least congruence with respect toE contexts such that
it makes(‖,0) into a commutative monoid and moreover satisfies

νa. (P ‖ Q) ≡ νa.P ‖ Q if a 6∈ fn(P)

∗P ≡ ∗P ‖ P

We will now consider processes up to structural equivalencethroughout the remainder. We define

the reduction relation → as the least precongruence with respect toE contexts such that the
following axioms hold

(comm) a〈v〉P ‖ a(x)Q → P ‖ (x)Q ·v

(β− redn) (x)P ·v → P[v/x]

(cond—tt) if a = a then P else Q → P

(cond—ff) if a = b then P else Q → Q (a 6= b)

In a standard notation we write==⇒ to denote the reflexive, transitive closure of→ .

2.3. Type system. We introduce a simple type system for the language which comprises types for
channels and abstractions, together with recursive types.To allow us to infer recursive types for
terms we make use of type isomorphism. We define this by letting ∼iso be the least congruence on
types which includes

recZ.T ∼iso T[recZ.T/Z]

A type environmentΓ is a finite set of mappings from identifiers (channel names or variables) to
types with the restriction that channel namesa must be mapped to channel types of the formch[T].
We writeΓ,n : T to represent the environment made up of the disjoint union ofΓ and the mapping
n to T. We will call an environmentclosedif it contains mappings of channel names only and will



CONTEXTUAL EQUIVALENCE FOR HIGHER-ORDERπ-CALCULUS REVISITED 5

Γ ⊢ · : ·
Γ(v) = T
Γ ⊢ v : T

Γ,x : T ⊢ P
Γ ⊢ (x : T)P : T →⋄

Γ ⊢ v : T T ∼iso U
Γ ⊢ v : U

Γ ⊢ v : ch[T],w : ch[T]
Γ ⊢ P Γ ⊢ Q

Γ ⊢ if v = w then P else Q
Γ,a : T ⊢ P

Γ ⊢ ν(a : T) . (P)

Γ ⊢ P, Q
Γ ⊢ P ‖ Q, ∗P, 0

Γ ⊢ v : T →⋄ Γ ⊢ w : T
Γ ⊢ v·w

Γ,x : T ⊢ P Γ ⊢ v : ch[T]

Γ ⊢ v(x : T)P
Γ ⊢ P Γ ⊢ w : T Γ ⊢ v : ch[T]

Γ ⊢ v〈w〉P

Figure 2: The Typing Rules

write ∆ to indicate this. Type inference rules for the calculus are given in Figure 2. We will call a
well-typed process,P, closed if it can be typed as∆ ⊢ P for some closed∆. It is easily shown that
subject reduction holds for closed terms for the reduction relation and type inference system given.

2.4. Contextual equivalence.We will now define an appropriate notion of behavioural equiva-
lence based on contexts and barbs.

Contexts are defined by extending the syntax of processes by allowing typed holes[ ·Γ ] in
terms. The type inference system is extended to contexts by using the rule

Γ,Γ′ ⊢ [ ·Γ ]

We writeC[] to denote contexts with at most one hole andC[P] for the term which results from
substitutingP into the hole.

For any given channel namea such that∆ ⊢ a : ch[·] we write∆ |= P ⇓ a if there exists some

P′,P′′ such thatP ==⇒ ν∆′ . (a〈·〉P′′ ‖ P′) with a 6∈ ∆′.
We use type-indexed families of relations{R∆} between closed process terms to describe equiv-

alence. We will writeR to refer to the whole family of relations and

∆ |= P R Q

to indicate thatP andQ are well-typed with respect to∆ and related byR∆. For general process
terms we define theopen extensionR o of a typed relationR as

∆,x1 : T1, . . . ,xn : Tn |= P R o Q

holds if for every∆′ disjoint from∆ and everyvi such that∆,∆′ ⊢ vi : Ti (for 1≤ i ≤ n) we have

∆,∆′ |= P[v1, . . . ,vn/x1, . . . ,xn] R Q[v1, . . . ,vn/x1, . . . ,xn]

Note that, in general, for closed terms∆ |= PR Q is not equivalent to∆ |= PR o Q asR o enjoys the
weakening property that∆,∆′ |= P R o Q whenever∆ |= P R o Q, even whenR does not. However,
the contextual equivalence which we study in this paper is defined as an open extension and therefore
will satisfy this weakening.

There are a number of properties of type-indexed relations that we must define:

Symmetry:: A type-indexed relationR is symmetric whenever∆ |= PR Q implies∆ |= QR P.
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Reduction closure:: A type-indexed relationR is reduction-closed whenever∆ |= PR Q and

P → P′ implies there exists someQ′ such thatQ ==⇒ Q′ and∆ |= P′ R Q′.

Contextuality:: A type-indexed relationR is contextual wheneverΓ′ |= PR o Q andΓ⊢C[·Γ′ ]
impliesΓ |= C[P] R o C[Q].

Barb preservation:: A type-indexed relationR is barb-preserving if∆ |= PR Qand∆ |= P⇓ a
implies∆ |= Q⇓ a.

Definition 2.1 (Contextual equivalence). Let ∼= be the open extension of the largest type-indexed
relation which is symmetric, reduction-closed, contextual and barb-preserving. 2

For technical convenience it will be useful to work with a lighter definition of contextuality.
We say that a relationR is ‖-contextual if it is preserved by all contexts of the form[ ·Γ ] ‖ Rand we
let ∼=p denote the open extension of the largest typed relation overprocesses which is symmetric,
‖-contextual, reduction-closed and barb-preserving. The following lemma demonstrates that this
lighter definition is sufficient.

Lemma 2.2(Context lemma). Γ |= P∼= Q if and only if Γ |= P∼=p Q

Proof. In Appendix A.

3. FULL ABSTRACTION

In this section, we will present a bisimulation equivalencefor HOπ, and show that this equiva-
lence is fully abstract for contextual equivalence.

3.1. Labelled transitions. We will use a labelled transition system to characterize∼= over higher-
order π-calculus terms. The style of the labelled transition system differs a little from previous
transition systems offered for HOπ. Most notably, the nodes of the transition system are described
using an augmented syntax rather than process terms alone. Specifically, for eachk drawn from a
countable set of names disjoint fromN andV , we introduce two new operators:

τk and 〈k⇐ v〉

with the intuitive reading thatτk is an indirect reference to an abstraction and〈k⇐ v〉 stores the ab-
straction to whichk refers so that access tov is provided through interaction withk. The augmented
syntax for nodes is given the grammar of configurationsC obtained by extending Figure 1 with:

v ::= . . . (as Figure 1). . . | τk

C ::= P | 〈k⇐ v〉 | νa : T . (C) | C ‖C

We impose a syntactic restriction on the augmented syntax sothat in any configurationC for any
given k then〈k ⇐ v〉 appears at most once inC. Structural equivalence and reduction lift toC in
the obvious manner — note that there are no reduction rules given forτk and〈k ⇐ v〉 though. We
augment the type rules by considering judgements of the form

Γ ; Θ ⊢ v : T and Γ ; Θ ⊢C

whereΘ represents a set of mappings from reference names to typesT. The rules in Figure 2 are
easily decorated with the extraΘ environment. The further rules required are given by

Θ(k) = T
Γ ; Θ ⊢ τk : T →⋄

Θ(k) = T Γ ; Θ ⊢ v : T →⋄

Γ ; Θ ⊢ 〈k⇐ v〉
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Nodes of our labelled transition system then are well-typedclosed terms of the augmented language
of the form

(∆ ; Θ ⊢C)

The transitions are of the form(∆ ; Θ ⊢C)
α
→ (∆ ; Θ ⊢C) or (∆ ; Θ ⊢C)

τ
→ (∆ ; Θ ⊢C) where

visible labelsα are given by the grammar:

α ::= νa.α | νk .d〈τk〉! | νk .d〈τk〉? | d〈v〉? | d〈v〉!

where writed to mean either a channel namea or an indirect reference namek. The transitions are
presented in Figures 3,4,5. The intuition for these transitions is (eliding types for readability):

• P
a〈v〉?
→ P′: indicates thatP is prepared to input a valuev on channela and then perform as

P′. The type system enforces thatv is a first-order value, and not an abstraction. Moreover,
in this case botha and v are pre-existing values, and were not generated fresh for this
transition.

• P
k〈v〉?
→ P′: indicates thatP has provided a named abstraction referencek to the environment,

and that the environment is calling the abstraction with pre-existing argumentv.

• P
νb.a〈b〉?

→ P′: indicates thatP is prepared to input a fresh channelb on channela and then

perform asP′. This is the same asP
a〈b〉?
→ P′, except thatb is now a fresh channel generated

by the environment, and has not been seen before by the process.

• P
νb.k〈b〉?

→ P′: indicates thatP has provided a named abstraction referencek to the environ-
ment, and that the environment is calling the abstraction with fresh argumentb.

• P
νl .a〈τl 〉?

→ P′: indicates thatP is prepared to input an abstractionl on channela and then
perform asP′. In this case, we do not record the abstraction itself in the label, but instead
we just generate a fresh referencel to the abstraction.

• P
νl .k〈τl 〉?

→ P′: indicates thatP has provided a named abstraction referencek to the environ-
ment, and that the environment is calling that abstraction with argumentl . In this case,k
must be a higher-order abstraction, so is expecting an abstraction as an argument. Rather
than recording the abstraction itself in the label, we instead generate a fresh referencel to
the abstraction.

• Each of the above input transitions has a dual output transition, where the role of the process
and environment are exchanged.

We write ᾱ to denote the complement of an actionα, which is defined to be the actionα with the

input/output annotation inversed. We will often write==⇒ to mean the reflexive transitive closure

of
τ
→ and ==

α
⇒ to mean ==⇒

α
→ ==⇒ . The following proposition states that the labelled

transition system is well-defined in the sense that the transition relation only relates well-typed
terms.

Proposition 3.1. If ∆ ; Θ ⊢ C and(∆ ; Θ ⊢C)
α
→ (∆,∆′ ; Θ,Θ′ ⊢ C′) then∆,∆′ ; Θ,Θ′ ⊢ C′ is a

valid typing judgement.

Proof. Straightforward induction.
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C → C′

(∆ ; Θ ⊢C)
τ
→ (∆ ; Θ ⊢C′)

(∆ ; Θ ⊢C)
α
→ (∆′ ; Θ′ ⊢C′)

(∆ ; Θ ⊢C ‖ D)
α
→ (∆′ ; Θ′ ⊢C′ ‖ D)

(∆,a : T ; Θ ⊢C)
α
→ (∆,a : T,∆′ ; Θ,Θ′ ⊢C′) (a 6∈ fn(α))

(∆ ; Θ ⊢ νa : T .C)
α
→ (∆,∆′ ; Θ,Θ′ ⊢ νa : T .C′)

(∆,b : T ; Θ ⊢C)
d〈b〉!
→ (∆,b : T ; Θ ⊢C′) (d 6= b)

(∆ ; Θ ⊢ νb : T .C)
νb.d〈b〉!

→ (∆,b : T ; Θ ⊢C′)

(∆,b : T ; Θ ⊢C)
d〈b〉?
→ (∆,b : T ; Θ ⊢C′) (d 6= b)

(∆ ; Θ ⊢C)
νb.d〈b〉?

→ (∆,b : T ; Θ ⊢C′)

Figure 3: Structural labelled transition rules

3.2. Bisimilarity. We use a standard definition of (weak) bisimilarity to provide our characterisa-
tion of ∼= for HOπ:

Definition 3.2. We call a symmetric relation,R , between nodes of the labelled transition system a
bisimulationif whenever(n,m) ∈R we have

• n
τ
→ n′ implies there exists somem′ such thatm==⇒ m′ and(n′,m′) ∈R

• n
α
→ n′ implies there exists somem′ such thatm==

α
⇒ m′ and(n′,m′) ∈R

Let bisimulation equivalence, or bisimilarity,≈ be the largest bisimulation relation. 2

We will write
∆ ; Θ |= C≈ D

to mean that∆ ; Θ ⊢C and∆ ; Θ ⊢ D are valid typing judgements and moreover, they are related
by ≈ as nodes of the lts. In order to provide a bisimulation characterisation of∼= over HOπ we will
consider a subrelation of≈ by restricting our attention to nodes of the form

(∆ ; ⊢ P)

whose terms are clearly definable in HOπ. We will simply write (whenΘ is empty)

∆ |= P≈ Q

to indicate bisimilarity between such terms of HOπ considered as nodes of the labelled transition
system.

3.3. Soundness of bisimilarity for contextual equivalence.We need to demonstrate that bisimi-
larity implies contextual equivalence for all HOπ processes. In particular, because of Lemma 2.2,
we need only show that bisimilarity is contained in some symmetric, reduction-closed, barb pre-
serving and‖-contextual relation. The key to achieving this is to study the ‖-context closure of
bisimilarity. If we can demonstrate that this is reduction-closed then we have our result. To do this
we must establish a decomposition theorem for interactions. For instance, ifP andQ are bisimilar
and we compose each of them with a processR then suppose

P ‖ R → S
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T ∼iso U →⋄

(∆ ; Θ ⊢ a(x : T)P)
νk.a〈τk〉?

→ (∆ ; Θ,k : U ⊢ (x : T)P · τk)

Θ(k) ∼iso T →⋄

(∆ ; Θ ⊢ 〈k⇐ v〉)
νl .k〈τl 〉?

→ (∆ ; Θ, l : T ⊢ v· τl ‖ 〈k⇐ v〉)

∆ ; Θ ⊢ v : T →⋄

(∆ ; Θ ⊢ a〈v〉P)
νk.a〈τk〉!

→ (∆ ; Θ,k : T ⊢ 〈k⇐ v〉 ‖ P)

Θ(k) ∼iso T →⋄

(∆ ; Θ ⊢ τk ·v)
νl .k〈τl 〉!

→ (∆ ; Θ, l : T ⊢ 〈l ⇐ v〉)

Figure 4: Basic higher-order labelled transition rules

represents an interaction betweenP andR. We decompose this into complementary actions

P
α
→ P′ and R

ᾱ
→ R′

respectively. Note however thatSis not necessarily obtained by a parallel composition of thetargets
of the transitions:P′ ‖R′. Instead,P′ andR′ may contain indirect references and their corresponding
resources. These need to be matched up correctly to obtainS. We achieve this by introducing the
merge(partial) operator〈〈·〉〉 which will match up these terms and replace every indirect reference
to an abstraction with the abstraction itself. We write

C[v/τk]

to denote the substitution of the valuev for every instance of the indirect referenceτk. We define
〈〈C〉〉 then as the operator on terms of the augmented syntax (up to≡) such that

〈〈C〉〉 = C if C doesn’t contain〈k⇐ v〉 for anyk,v
〈〈ν(~a : ~T) . (〈k⇐ v〉 ‖C)〉〉 = 〈〈ν(~a : ~T) . (C[v/τk])〉〉 if τk 6∈ v

Intuitively, this says that we substitute any values storedat a〈k⇐ v〉 through for the corresponding
τk. Note that this need not substitute for all the indirect reference identifiers inC. It is clear that the
above definitions are only partial. For example, ifC contains an occurrence of〈k ⇐ v〉 for which
τk occurs inv, then〈〈C〉〉 is undefined. In order to identify for which terms the merge isdefined we
make use of the notion ofreference graph: For a termC we define the graphrg(C) to be the graph
which has nodes as the indirect reference identifiersk in C and edges

k 7→ l if τl ∈ v for 〈k⇐ v〉 in C

Proposition 3.3. 〈〈·〉〉 is a well-defined partial function such that〈〈C〉〉 is defined if and only ifrg(C)
is acyclic.

Proof. Given in Appendix B.
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∆ ⊢ v : T a base type

(∆ ; Θ ⊢ a(x : T)P)
a〈v〉?
→ (∆ ; Θ ⊢ (x : T)P ·v)

Θ(k) = T ∆ ⊢ w : T a base type

(∆ ; Θ ⊢ 〈k⇐ v〉)
k〈w〉?
→ (∆ ; Θ ⊢ v·w ‖ 〈k⇐ v〉)

∆ ⊢ v : T a base type

(∆ ; Θ ⊢ a〈v〉P)
a〈v〉!
→ (∆ ; Θ ⊢ P)

Θ(k) = T T a base type

(∆ ; Θ ⊢ τk ·v)
k〈v〉!
→ (∆ ; Θ ⊢ 0)

Figure 5: Basic first-order labelled transition rules

Lemma 3.4(Composition/Decomposition). For ∆ ; Θ ⊢C,D

(i) If 〈〈C ‖ D〉〉 ≡ E and

(∆ ; Θ ⊢C)
α
→ (∆,∆′ ; Θ,Θ′ ⊢C′) and (∆ ; Θ ⊢ D)

ᾱ
→ (∆,∆′ ; Θ,Θ′ ⊢ D′)

then there exists aE′ such thatE ==⇒ E′ and〈〈ν∆′ . (C′ ‖ D′)〉〉 = E′

(ii) If 〈〈C〉〉 ≡ E andC → C′ then there exists aE′ such thatE → E′ and〈〈C′〉〉 ≡ E′

(iii) If 〈〈C ‖ D〉〉 ≡ E andE → E′ then one of the following hold

C → C′ with 〈〈C′ ‖ D〉〉 ≡ E′

or D → D′ with 〈〈C ‖ D′〉〉 ≡ E′

or (∆ ; Θ ⊢C) ==
α
⇒ (∆,∆′ ; Θ,Θ′ ⊢C′) and(∆ ; Θ ⊢ D) ==

ᾱ
⇒ (∆,∆′ ; Θ,Θ′ ⊢ D′) with

〈〈ν∆′ . (C′ ‖ D′)〉〉 ≡ E′.

Proof. Part (ii) is straightforward as the merge operator〈〈 〉〉 simply removes subterm of the form
〈k ⇐ v〉, which can’t be involved in reductions, and substitutes higher-order values through for
variables of higher-order type. Reductions are based on structure alone except for the conditionals
which can be affected by first-order substitutions of channel names only.

To show (i) we must consider all the possible cases forα. By symmetry there are four distinct
pairs of complementary actions. We only consider the cases whereα is νk .a〈τk〉? andνl .k〈τl 〉? as
the first-order actions can be treated similarly.

Case: ∆ ; Θ ⊢C
νk.a〈τk〉?

→ ∆ ; Θ,k : U ⊢C′ and∆ ; Θ ⊢ D
νk.a〈τk〉!

→ ∆ ; Θ,k : U ⊢ D′. By inspection
we see that

– C ≡ ν∆′ . (a(x : T)P ‖C′′) with T ∼iso U →⋄
– C′ ≡ ν∆′ . ((x : T)P· τk ‖C′′)
– D ≡ ν∆′′ . (a〈v〉Q ‖ D′′)
– D′ ≡ ν∆′′ . (〈k⇐ v〉 ‖ Q ‖ D′′)
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It is easy to see that〈〈C ‖D〉〉 → 〈〈ν∆′,∆′′ .((x : T)P·v‖C′′ ‖Q‖D′′)〉〉 let us call the target
of this reductionE′. We simply need to check

E′ ≡ 〈〈ν∆′,∆′′ . ((x : T)P ·v ‖C′′ ‖ Q ‖ D′′)〉〉
(τk 6∈ v) ≡ 〈〈ν∆′ . ((x : T)P· τk ‖C′′) ‖ ν∆′′ . (〈k⇐ v〉 ‖ Q ‖ D′′)〉〉

≡ 〈〈C′ ‖ D′〉〉

Case: ∆ ; Θ ⊢ C
νl .k〈τl 〉?

→ ∆ ; Θ, l : T ⊢ C′ and ∆ ; Θ ⊢ D
νl .k〈τl 〉!

→ ∆ ; Θ, l : T ⊢ D′. Again, by
inspection we see that

– C ≡ ν∆′ . (〈k⇐ v〉 ‖C′′)
– C′ ≡ ν∆′ . (v· τl ‖ 〈k⇐ v〉 ‖C′′)
– D ≡ ν∆′′ . (τk ·w ‖ D′′)
– D′ ≡ ν∆′′ . (〈l ⇐ w〉 ‖ D′′)

Note that the previous proposition tells us thatrg(C ‖ D) must be acyclic — in particular,
τk 6∈ v. Here we see that

〈〈C ‖ D〉〉 ≡ 〈〈ν∆′,∆′′ . (〈k⇐ v〉 ‖C′′ ‖ τk ·w ‖ D′′)〉〉
(τk 6∈ v) ≡ 〈〈ν∆′,∆′′ . (〈k⇐ v〉 ‖C′′ ‖ v·w ‖ D′′)〉〉
(τl 6∈ v,w,C′′,D′′) ≡ 〈〈ν∆′,∆′′ . (〈k⇐ v〉 ‖C′′ ‖ v· τl ‖ 〈l ⇐ w〉 ‖ D′′)〉〉

≡ 〈〈C′ ‖ D′〉〉

So by lettingE′ be〈〈C′ ‖ D′〉〉 we note that〈〈C ‖ D〉〉 ==⇒ E′ as required.

To show (iii) we suppose〈〈C ‖ D〉〉 ≡ E and thatE → E′. We must consider all possible ways
in which this reduction can occur. If the reduction arises from a conditional then it is clear that we
must haveC → C′ or D → D′ for someC′ or D′. Moreover it is easy to check that〈〈C′ ‖ D〉〉 (resp
〈〈C ‖ D′〉〉) ≡ E′. There are two more possibilities to consider:

Case: the reduction arises from aβ-reduction. In this case eitherC → C′ or D → D′ as above and
the result follows easily, orv is (x : U)P and

– C ≡ ν∆′ . (τk ·w ‖C′′) with all names in∆′ appearing inw
– D ≡ ν∆′′ . (〈k⇐ v〉 ‖ D′′) with τk 6∈ v
– E′ ≡ 〈〈ν∆′,∆′′ . (P[w/x] ‖C′′ ‖ 〈k⇐ v〉 ‖ D′′)〉〉

or a symmetric version of these with the roles ofC andD reversed. So we notice that if
U ∼iso T →⋄, we have

∆ ; Θ ⊢C
νl .k〈τl 〉!

→ ∆ ; Θ, l : T ⊢C′ and ∆ ; Θ ⊢ D ====
νl .k〈τl 〉?

⇒ ∆ ; Θ, l : T ⊢ D′

whereC′ ≡ ν∆′ . (〈l ⇐ w〉 ‖C′′) andD′ ≡ ν∆′′ . (P[τl/x] ‖ 〈k⇐ v〉 ‖ D′′). We check:

〈〈C′ ‖ D′〉〉 ≡ 〈〈ν∆′ . (〈l ⇐ w〉 ‖C′′) ‖ ν∆′′ . (P[τk/x]) ‖ 〈k⇐ v〉 ‖ D′′〉〉
(τl 6∈ v,w,C′′,D′′) ≡ 〈〈ν∆′,∆′′ . (C′′ ‖ P[w/x] ‖ 〈k⇐ v〉 ‖ D′′)〉〉

≡ E′

as required. Alternatively, it could be thatU is a base type, in which case

∆ ; Θ ⊢C
ν∆′.k〈w〉!

→ ∆,∆′ ; Θ ⊢C′ and ∆ ; Θ ⊢ D ====
ν∆′.k〈w〉?

⇒ ∆,∆′ ; Θ ⊢ D′

whereC′ ≡C′′ andD′≡ ν∆′′ .(P[w/x] ‖ 〈k⇐ v〉 ‖D′′). It is easy to check that〈〈C′ ‖D′〉〉≡E′

as required.
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Case: the reduction arises from communication. Again we see that eitherC → C′ or D → D′, in
which case we easily obtain the result, or

– C ≡ ν∆′ . (a〈v〉P ‖C′′)
– D ≡ ν∆′′ . (a(x : T)Q ‖ D′′)
– E′ ≡ 〈〈ν∆′ . (P ‖C′′) ‖ ν∆′′ . ((x : T)Q ·v ‖ D′′)〉〉

or a symmetric version of this with the roles ofC andD reversed. Again we must consider
whether the typeT is a base type or higher-order. We omit the details of the former case.
Suppose then that∆ ; Θ ⊢ v : T ∼iso U →⋄ we know

∆ ; Θ ⊢C
νk.a〈τk〉!

→ ∆ ; Θ,k : U ⊢C′ and ∆ ; Θ ⊢ D
νk.a〈τk〉?

→ ∆ ; Θ,k : U ⊢ D′

whereC′ ≡ ν∆′ . (〈k⇐ v〉 ‖ P ‖C′′) andD′ ≡ ν∆′′ . ((x : T)Q · τk ‖ D′′). We check:

〈〈C′ ‖ D′〉〉 ≡ 〈〈ν∆′ . (〈k⇐ v〉 ‖ P ‖C′′) ‖ ν∆′′ . ((x : T)Q · τk ‖ D′′)〉〉
(τk 6∈ v,P,C′′,D′′) ≡ 〈〈ν∆′,∆′′ . (P ‖C′′ ‖ (x : T)Q ·v ‖ D′′)〉〉

≡ E′

as required.

Definition 3.5. Let≈m be defined to be

∆ ; Θ |= 〈〈C1 ‖ D〉〉 ≈m 〈〈C2 ‖ D〉〉 if and only if ∆ ; Θ |= C1 ≈C2 and ∆ ; Θ ⊢ D

whenever〈〈C1 ‖ D〉〉 and〈〈C2 ‖ D〉〉 are defined. 2

Note that in the case whereΘ is empty we have that〈〈Ci ‖ D〉〉 = Ci ‖ D, and hence≈m and∼=p

coincide.

Lemma 3.6. ≈m is reduction-closed.

Proof. Follows easily from the previous lemma. Take∆ ; Θ |= 〈〈C1 ‖D〉〉 ≈m 〈〈C2 ‖D〉〉 and suppose

〈〈C1 ‖ D〉〉 → E. We must show that〈〈C2 ‖ D〉〉 → E′ for someE′ such that∆ ; Θ |= E ≈m E′. We

know from Part (iii) of the previous lemma that one of three cases must hold. Either,C1 → C′
1,

D → D′ or there are complementary actions from bothC1 andD. We only deal with the last case
as the others follow easily from the hypothesis that∆ ; Θ |= C1 ≈C2 and Part (ii) of the previous
lemma.

We have then that∆ ; Θ ⊢C1 =
α
⇒ ∆,∆′ ; Θ,Θ′ ⊢C′

1 and∆ ; Θ ⊢ D =
ᾱ
⇒ ∆,∆′ ; Θ,Θ′ ⊢ D′ such

thatE ≡ 〈〈C′
1 ‖ D′〉〉. We know by hypothesis that there must exist some

∆ ; Θ ⊢C2 ==
α
⇒ ∆,∆′ ; Θ,Θ′ ⊢C′

2

such that
∆,∆′ ; Θ,Θ′ |= C′

1 ≈C′
2. (†)

We can now use Parts (i) and (ii) of the previous lemma to see that 〈〈C2 ‖ D〉〉 ==⇒ E′ such that
E′ ≡ 〈〈C′

2 ‖ D′〉〉. Note that(†) guarantees∆ ; Θ |= E ≈m E′ to finish.
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Theorem 3.7. For all closed termsP,Q of HOπ:

∆ |= P≈ Q implies ∆ |= P∼=p Q

Proof. We let≈p denote the relation

∆,∆′ |= (P ‖ R) ≈p (Q ‖ R) iff ∆ |= P≈ Q and∆,∆′ ⊢ R

It is easy to see that≈p is a‖-contextual relation over terms of HOπ. It is also easy to see that≈p

is symmetric and barb preserving and coincides with≈m for closed terms of HOπ, thus Lemma 3.6
can be instantiated to demonstrate that≈p is reduction-closed and, given that∼=p is defined to be the
largest symmetric,‖-contextual, reduction-closed, and barb-preserving relation over terms of HOπ,
then we have our result.

Corollary 3.8 (Soundness). For all termsP,Q of HOπ:

Γ |= P≈o Q implies Γ |= P∼= Q

Proof. Follows from the previous theorem and Lemma 2.2.

3.4. Completeness of bisimilarity for contextual equivalence.The interactions described by the
labelled transition system are not obviously derived by genuine contextual observations in HOπ be-
cause of the use of the extra syntax for indirect references.In order to show completeness of our
bisimilarity for contextual equivalence we must demonstrate that the indirect references are in fact
definable as terms of the language proper. Following Sangiorgi [13], we implement the implicit pro-
tocol outlined by the indirect references by using the following translation of the augmented terms
into HOπ:

[[k1 : T1, . . . ,kn : Tn]] = k1 : ch[T1], . . . ,kn : ch[Tn]

[[Γ ; Θ ⊢C]] = Γ, [[Θ]] ⊢ [[C]]Θ
[[τk]]Θ = (x : T)k〈x〉0 if Θ(k) = T

[[〈k⇐ v〉]]Θ = ∗k[[v]]Θ
The translation acts homomorphically on all other terms. Weabuse notation here by using identifiers
k as channel names in the translation. It is evident that this translation is well-defined in the sense
that the translation of well-typed augmented terms are indeed well-typed terms of HOπ.

We would now like to prove a correspondence between reductions from the terms of the aug-
mented syntax and reductions between their translations. However, we note that in translating a term
containing both〈k⇐ v〉 andτk we provide matching input and output prefixes, which, in HOπ may
create a communication which was not possible in the source term. This turns out not to be of par-
ticular concern to us though as we see that if we starting withterms of HOπ, then terms reachable
by transitions arebalancedin the following sense: we call a termC of the augmented language
balancedif for eachk thenC contains at most one ofτk (possible multiple times) or〈k ⇐ v〉. Un-
fortunately the translation may introduce extra reductions which aren’t present in the source term.
These arise through the translation of terms of the formτk ·v. Note that

[[τk ·v]] = (x : T)k〈x〉0· [[v]]
τ
→ k〈[[v]]〉0

but τk ·v has no corresponding reduction. We will identify these rogue reductions as housekeeping

reductions and indicate them with
h

→ defined as any reduction which can be derived using the
axiom

(h− redn) (x : T)k〈x〉0·v → k〈v〉0

Lemma 3.9. If ∆ ; Θ ⊢C is balanced then
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(1) If C ==⇒ C′ then[[C]]Θ ==⇒ [[C′]]Θ

(2) If [[C]]Θ ==⇒ P then[[C]]Θ ==⇒ [[D]]Θ
h
→∗ P for some∆ ; Θ ⊢ D such thatC ==⇒ D.

Proof. We will omit mention of the environmentΘ in the proof as it plays no role. Part 1 is straight-
forward. For Part 2 we use induction on the length of the reductions. If there are no reductions

then we are done. We examine the base case in which[[C]] → P. If this reduction happens to be a

housekeeping move, that is,[[C]]
h

→ P then there is nothing to prove. Suppose otherwise, then it is

not too difficult to check thatP≡ [[D]] for someD such thatC → D. For the inductive case suppose
that

[[C]] → ==⇒ P (†)

By inspecting the translation[[·]] and using the fact thatC is balanced we see that

[[C]]
h

→ → Q implies [[C]] →
h

→ Q

thus we may assume that the first reduction in(†) above is not of the form
h

→ . This means that

[[C]] → [[C′]] ==⇒ P for someC′ such thatC → C′. It is clear thatC′ is also balanced so we may
apply the inductive hypothesis to

[[C′]] ==⇒ P

to obtain aD such thatC′ ==⇒ D′ and[[C′]] ==⇒ [[D]]
h
→∗ P. Putting these together we obtain

C → C′ ==⇒ D and [[C]] → [[C′]] ==⇒ [[D]]
h
→∗ P

as required.

When∆′ is of length at most one, we shall writeδ〈∆′〉 as shorthand, defined:

δ〈 /0〉 = δ〈·〉 δ〈a : T〉 = δ〈a〉

Moreover, note that whenever(∆ ; Θ ⊢ D) ==
α
⇒ (∆,∆′ ; Θ,Θ′ ⊢ D′), we have that∆′ has at length

most one, and soδ〈∆′〉 is well-defined.

Proposition 3.10. For eachα,∆ and fresh channelsδ,δ′ of appropriate type given byα and∆, there
exists a processT ∆

α (defined in Figure 6) in HOπ such that if

∆ ; Θ ⊢C
α
→ ∆,∆′ ; Θ,Θ′ ⊢C′

then
∆, [[Θ,Θ′]],δ : ch[T0],δ′ : ch[·] ⊢ T

∆,[[Θ]]
α

and moreover, for balancedD

(∆ ; Θ ⊢ D) ==
α
⇒ (∆,∆′ ; Θ,Θ′ ⊢ D′)

if and only if ∆ ; Θ ⊢ D and

T
∆,[[Θ]]

α ‖ [[D]]Θ ==⇒ ν∆′ . (δ〈∆′〉 ‖ P) with [[D′]]Θ,Θ′
h
→∗ P.
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Proof. It is straightforward to check that∆, [[Θ,Θ′]],δ : ch[T0],δ′ : ch[·] ⊢ T ∆
α whenever

∆ ; Θ ⊢C
α
→ ∆,∆′ ; Θ,Θ′ ⊢C′.

For the remainder, to show the ‘only if’ direction we use Lemma 3.9 Part 1 to reduce our obligation

to the case of a single transition
α
→ , and we must consider each labelα. By way of example we

show the case forα = νl .k〈τl 〉! (the other cases can be treated similarly). Suppose:

(∆ ; Θ ⊢ D)
α
→ (∆ ; Θ, l : U ⊢ D′).

then we know that
D ≡ ν∆′′ . (τk ·v ‖ D′′)

and
D′ ≡ ν∆′′ . (〈l ⇐ v〉 ‖ D′′).

We see that forT ∼iso U →⋄

T
∆,[[Θ]]

α ‖ [[D]]Θ ≡ k(x : T)(∗l(y : U)x·y ‖ (δ〈〉⊕δ′〈〉)) ‖ ν∆′′ . (((z : T)k〈z〉0) · [[v]]Θ ‖ [[D′′]]Θ)

==⇒ (δ〈〉⊕δ′〈〉) ‖ ν∆′′ . (∗l(y : U)[[v]]Θ ·y ‖ [[D′′]]Θ)

==⇒ δ〈〉 ‖ [[D′]]Θ,l :U

as required.
For the converse direction we suppose that

T
∆,[[Θ]]

α ‖ [[D]]Θ ==⇒ ν∆′ . (δ〈∆′〉 ‖ P)

Again, we must perform a case analysis onα. We show the case in whichα is νl .k〈τl 〉? (the other

cases can be treated similarly). We know∆′ is empty soT ∆,[[Θ]]
α ‖ [[D]]Θ ==⇒ δ〈〉 ‖ P. Note that

T
∆,[[Θ]]

α has no reductions of its own and can only interact with[[D]]Θ so we can detail the assumed
reductions as

T
∆,[[Θ]]

α ‖ [[D]]Θ ==⇒ T
∆,[[Θ]]

α ‖ P0 → (δ〈〉⊕δ′〈〉) ‖ P1 ==⇒ δ〈〉 ‖ P

where[[D]] ==⇒ P0 andP1 ==⇒ P. We assumed thatD is balanced so Lemma 3.9 Part 2 applied to

[[D]] ==⇒ P0 tells us that[[D]] ==⇒ [[D0]]Θ
h
→∗ P0 for someD0 such thatD ==⇒ D0. We know that

P0 is obtained from[[D0]]Θ by housekeeping reductions and that it interacts withT ∆
α . This tells us

that we must have the forms
P0 ≡ ν∆′′ . (∗k[[v]]Θ ‖ P′

0)

and
P1 ≡ ν∆′′ . ([[v]]Θ · [[τl ]]Θ,l :U ‖ ∗k[[v]]Θ ‖ P′

0)

This in turn tells us that
D0 ≡ ν∆′′ . (〈k⇐ v〉 ‖ D′

0)

such that[[D′
0]]Θ

h
→∗ P′

0. Now it is clear that

(∆ ; Θ ⊢ D0)
νl .k〈τl 〉?

→ (∆ ; Θ, l : U) ⊢ D1)
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T ∆
d〈v〉? = d〈v〉(δ〈〉⊕δ′〈〉)
T ∆

d〈v〉! = d(x : T)if x = v then (δ〈〉⊕δ′〈〉) else 0 where∆(d) = ch[T]

T ∆
νb.d〈b〉? = νb : T . (d〈b〉(δ〈b〉⊕δ′〈〉)) where∆(d) = ch[T]

T ∆
νb.d〈b〉! = d(x : T)if x 6∈ ∆ then (δ〈x〉⊕δ′〈〉) else 0 where∆(d) = ch[T]

T ∆
νk.d〈τk〉?

= d〈(x : U)k〈x〉0〉(δ〈〉⊕δ′〈〉) where∆(d) = ch[T] andT ∼iso U →⋄

T ∆
νk.d〈τk〉!

= d(x : T)(∗l(y : U)x·y ‖ (δ〈〉⊕δ′〈〉)) where∆(d) = ch[T] andT ∼iso U →⋄

⊕ represents an encoding of internal choice in HOπ
if x 6∈ /0 then P else Q = P

if x 6∈ (a : T,∆) then P else Q = if x = a then Q else if x 6∈ ∆ then P else Q

Figure 6: Testing processes for labelled transitions

whereD1 ≡ ν∆′′ . (v· τl ‖ 〈k⇐ v〉 ‖ D′
0). We check

[[D1]]Θ,l :U ≡ ν∆′′ . ([[v]]Θ · [[τl ]]Θ,l :U ‖ ∗k[[v]] ‖ [[D′
0]]Θ)

h
→∗ ν∆′′ . ([[v]]Θ · [[τl ]]Θ,l :U ‖ ∗k[[v]] ‖ P′

0)
≡ P1

==⇒ P

Therefore[[D1]] =⇒ P and we can apply Lemma 3.9 Part 2 to this to see that[[D1]] =⇒ [[D′]]
h
→∗ P

for someD′ such thatD1 ==⇒ D′. By collecting the above together we obtain

(∆ ; Θ ⊢ D) ==⇒ (∆ ; Θ ⊢ D0)
α
→ (∆ ; Θ, l : U ⊢ D1) ==⇒ (∆ ; Θ, l : U ⊢ D′)

with [[D′]]Θ,l :U
h
→∗ P as required.

Lemma 3.11(Extrusion). If ∆ |= ν∆′ . (δ〈∆′〉 ‖ P) ∼=p ν∆′ . (δ〈∆′〉 ‖ Q) then∆,∆′ |= P∼=p Q.

Proof. Follows a similar argument found in [7]: define a relationR such that

∆,∆′ |= P R Q iff ∆ |= ν∆′ . (δ〈∆′〉 ‖ P) ∼=p ν∆′ . (δ〈∆′〉 ‖ Q)

and show thatR is barb-preserving, reduction-closed and‖-contextual. These properties follow
from the corresponding property for∼=p and an extra piece of context to interact withδ〈∆′〉.

Theorem 3.12(Completeness). For all closed termsP,Q of HOπ:

∆ |= P∼=p Q implies ∆ |= P≈ Q

Proof. We defineR over terms of the augmented language to be

∆ ; Θ |= C R D iff ∆, [[Θ]] |= [[C]]Θ ∼=p [[D]]Θ

and show thatR is a bisimulation. Take∆ ; Θ |= C R D and suppose that

(∆ ; Θ ⊢C)
α
→ (∆,∆′ ; Θ,Θ′ ⊢C′).

We know from Proposition 3.10 that

∆, [[Θ,Θ′]],δ : ch[T0],δ′ : ch[·] ⊢ T
∆,[[Θ]]

α

and that

T
∆,[[Θ]]

α ‖ [[C]]Θ ==⇒ ν∆′ . (δ〈∆′〉 ‖ P)
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with [[C′]]Θ,Θ′
h
→∗ P. We know that

∆, [[Θ]] |= [[C]]Θ ∼=p [[D]]Θ

by the definition ofR , and hence, by contextuality we also have

∆, [[Θ,Θ′]],δ : ch[T0],δ′ : ch[·] |= T
∆,[[Θ]]

α ‖ [[C]]Θ ∼=p T
∆,[[Θ]]

α ‖ [[D]]Θ

This tells us that

T
∆,[[Θ]]

α ‖ [[D]]Θ ==⇒ Q′

such that
∆, [[Θ,Θ′]] |= ν∆′ . (δ〈∆′〉 ‖ P) ∼=p Q′. (†)

But by the construction ofT ∆,[[Θ]]
α we notice thatν∆′ .(δ〈∆′〉 ‖P) barbs onδ but not onδ′. Therefore,

by the preservation of barbs property of∼=p, we know thatQ′ must also barb onδ but not onδ′. This

constrainsQ′ so thatQ′ ≡ ν∆′ . (δ〈∆′〉 ‖ Q). We apply Lemma 3.9 Part 2 toT ∆,[[Θ]]
α ‖ [[D]]Θ ==⇒ Q′

to see that there is someD′′ such thatT ∆,[[Θ]]
α ‖ [[D]]Θ =⇒ [[D′′]]Θ,Θ′

h
→∗ ν∆′ .(δ〈∆′〉 ‖Q) from which

it clearly follows thatD′′ ≡ ν∆′ . (δ〈∆′〉 ‖ D′) and[[D′]]Θ,Θ′
h
→∗ Q. We use Proposition 3.10 again to

see that

(∆ ; Θ ⊢ D) ==
α
⇒ (∆,∆′ ; Θ,Θ′ ⊢ D′)

and we now must show that∆,∆′ ; Θ,Θ′ |= C′ R D′. To do this we use Lemma 3.11 on(†) (note
that Q′ ≡ ν∆′ . (δ〈∆′〉 ‖ Q)) to see that∆,∆′, [[Θ,Θ′]] |= P ∼=p Q. It is also easy to check thath-
reductions are confluent with respect to all other reductions and hence preserve contextual equiva-

lence, that is
h
→∗⊆∼=p, so we also have∆,∆′, [[Θ,Θ′]] |= [[C′]]Θ,Θ′ ∼=p [[D′]]Θ,Θ′ because[[C′]]Θ,Θ′

h
→∗ P

and[[D′]]Θ,Θ′
h
→∗ Q. This allows us to conclude∆,∆′ ; Θ,Θ′ |= C′ R D′ as required.

We must also consider transitions of the form

(∆ ; Θ ⊢C)
τ
→ (∆,∆′ ; Θ,Θ′ ⊢C′).

These can be dealt with as above but in this case noT ∆
α is needed.

Corollary 3.13 (Full abstraction). For all termsP,Q of HOπ:

Γ |= P≈o Q if and only if Γ |= P∼= Q

Proof. Follows from Corollary 3.8, Lemma 2.2, and the previous theorem.

4. CONCLUDING REMARKS

We have re-examined the use of labelled transitions to characterise contextual equivalence in
the higher-orderπ calculus. The technique of augmenting the core syntax with extra operators to
assist in the definition of the labelled transitions allows use to give a direct proof of soundness of
bisimilarity for contextual equivalence. This advances Sangiorgi’s analagous result by allowing
recursive types also.

We believe that the technique of using extra operators to describe thepoints of interactionwith
the environment in the lts is fairly robust and should be applicable to many higher-order languages.
Indeed, this was the approach that the authors developed fortheir work on concurrent objects [8].

We have only concerned ourselves with the characterisationof contextual equivalence in HOπ and
so far have not studied Sangiorgi’s translation of higher-order to first-order mobility. Thus, the re-
striction to finite types for his translation is still necessary. It would be interesting to investigate
whether the current work could be of use in removing this typerestriction for his translation also.
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APPENDIX A. PROOF OFTHE CONTEXT LEMMA

We recall the statement of Lemma 2.2 and detail its proof here.

Γ |= P∼= Q if and only if Γ |= P∼=p Q.

The force of this lemma is to show that the simplified form of observational testing allowed by∼=p

is sufficient to capture the power of full contextual testing. In order to prove this we essentially need
to show that∼=p is preserved by the operators of HOπ. For the most part, this can be done directly
and is stated in Lemma A.1 below.

Lemma A.1.

(1) If ∆,x : T |= P∼=p Q and∆ ⊢ v : T then∆ |= (x : T)P·v∼=p (x : T)Q ·v.

(2) If ∆,x : T |= P∼=p Q and∆ ⊢ a : ch[T] then∆ |= a(x : T)P∼=p a(x : T)Q.

(3) If ∆ |= P∼=p Q, ∆ ⊢ w : T and∆ ⊢ a : ch[T] then∆ |= a〈w〉P∼=p a〈w〉Q.

(4) If ∆ |= P1
∼=p Q1 and∆ |= P2

∼=p Q2 then∆ |= if v= w then P1 else P2
∼=p if v= w then Q1 else Q2.

(5) If ∆,a : T |= P∼=p Q then∆ |= ν(a : T) . (P) ∼=p ν(a : T) . (Q).

(6) If ∆ |= P1
∼=p Q1 and∆ |= P2

∼=p Q2 then∆ |= P1 ‖ P2
∼=p Q1 ‖ Q2.

(7) If ∆ |= P∼=p Q then∆ |= ∗P∼=p ∗Q.

Proof. The majority of these are straightforward by exhibiting appropriate symmetric, reduction-
closed,‖-contextual, barb-preserving relations. As an example of this we show the case for input
prefixing (Case 2). We defineR so that∼=p ⊆ R and moreover

∆ |= a(x : T)P ‖ RR a(x : T)Q ‖ R for any∆ ⊢ R (†)

It is clear thatR is symmetric, barb-preserving and‖-contextual so if we can show that it is
reduction-closed then we may conclude thatR coincides with∼=p and we have our result.

Suppose that(†) holds and

a(x : T)P ‖ R → P′.

We know then that eitherR → R′ and P′ ≡ a(x : T)P ‖ R′ or the reduction came about by in-
teraction, that isR ≡ ν∆′ . (a〈v〉R′′ ‖ R′′′) with a 6∈ ∆′ and by writing R′ for R′′ ‖ R′′′ we have
P′ ≡ ν∆′ . (P[v/x] ‖ R′) for some∆,∆′ ⊢ v and ∆,∆′ ⊢ R′. If the former is true then we see im-
mediately that

a(x : T)Q ‖ R → a(x : T)Q ‖ R′

where
∆ |= a(x : T)P ‖ R′ R a(x : T)Q ‖ R′.

If instead the latter is true then we use the fact that

∆,x : T |= P∼=p Q

to see that∆,∆′ |= P[v/x] ∼=p Q[v/x] and note that

a(x : T)Q ‖ R → ν∆′ . (Q[v/x] ‖ R′)

where (using‖-contextuality and Case 5)

∆ |= ν∆′ . (P[v/x] ‖ R′) ∼=p ν∆′ . (Q[v/x] ‖ R′)

as required.
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Notice that there are two particular cases which are not covered by this lemma: application of
a function to, and output of higher-order∼=p-related values (c.f. Corollary A.11). Establishing that
∼=p is preserved in these cases can be done directly but is a little more involved. We notice that the
property we require in both cases follows immediately fromSubstitutivity(cf. Corollary A.10) , that
is (ignoring types):

if P∼=p Q thenR[(x)P/y] ∼=p R[(x)Q/y].

The remainder of the appendix is devoted to achieving this. The proof follows a very similar scheme
to the proof of Proposition 4.2.6 in [10] but simplified to avoid any use of induction on type as
appeared there.

Lemma A.2. If ∆ ⊢ (x : T)P ·w then∆ |= (x : T)P ·w∼=p P[w/x].

In the following we will make use of a “bisimulation up to” argument [12].

Definition A.3. A type-indexed relationR is reduction-closed up to(=,∼=p) whenever∆ |= PR Q

andP → P′ implies there exists someQ′ such thatQ ==⇒ Q′ and∆ |= P′ R ∼=p Q′. 2

Lemma A.4. For any type-indexed relationR which is symmetric, reduction-closed up to(=,∼=p),
‖-contextual and barb-preserving,R ⊆∼=p.

Definition A.5. We say thatx is (un)guarded inP whenever:

(1) if x 6∈ P thenx is (un)guarded inP,

(2) if x 6∈ w thenx is unguarded inx·w,

(3) if v 6= x thenx is guarded inv·w,

(4) x is guarded inv(y : T)P, v〈w〉P, andif v = w then P else Q, and

(5) if x is (un)guarded inP andQ thenx is (un)guarded inν(a : T) . (P), P ‖ Q and∗P. 2

Lemma A.6. For any∆,y : T →⋄⊢Rwith yguarded inRand for any∆⊢ v : T →⋄ and∆⊢w : T →⋄,

if R[v/y] → R′ thenR′ = R′′[v/y] for someR′′ and moreover,R[w/y] → R′′[w/y].

Proof. We first observe that as∆ ⊢ v : T → ⋄ it must be the case thatv is an abstraction and not
a channel name. From this it is routine to check that the required property holds for the reduction
axioms. Furthermore, ify is guarded inE [P] theny is guarded inP and so the required property is
preserved by reduction in evaluation contexts.

Lemma A.7. For anyP andx we can findQ andy such thatx is guarded inQ, y is unguarded inQ
andP = Q[x/y].

Proof. A routine induction onP.

Lemma A.8 (Unguarded Substitutivity). If ∆,x : T |= P ∼=p Q and∆,y : T → ⋄ ⊢ R andy is un-
guarded inR then∆ |= R[(x : T)P/y] ∼=p R[(x : T)Q/y].

Proof. We proceed by induction on the structure ofR. If y 6∈ R then the result is immediate. IfR is
not of the formv·w, the result follows easily by induction by making use of Lemma A.1. Otherwise,
sincey is unguarded inRwe must have thatR is of the formy·w with y 6∈ w. Hence:

∆ |= R[(x : T)P/y] = (x : T)P·w (asR= y·w andy 6∈ w)
∼=p P[w/x] (by Lemma A.2)
∼=p Q[w/x] (by hypothesis)
∼=p (x : T)Q ·w (by Lemma A.2)
= R[(x : T)P/y] (asR= y·w andy 6∈ w).

as required.
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Lemma A.9 (Guarded Substitutivity). If ∆,x : T |= P∼=p Q and∆,y : T → ⋄ ⊢ R andy is guarded
in R then∆ |= R[(x : T)P/y] ∼=p R[(x : T)Q/y].

Proof. Let R be defined as

∆ |= R′[(x : T)P/y] R R′[(x : T)Q/y] whenever∆,y : T →⋄ ⊢ R′ andy is guarded inR′

We show thatR is symmetric, reduction-closed up to(=,∼=p), ‖-contextual, and barb-preserving
and so the result follows by Lemma A.4. Symmetry,‖-contextuality, and barb-preservation are
direct. For reduction-closure up to(=,∼=p) we suppose:

R′[(x : T)P/y] → R′′

By Lemma A.6 we have thatR′′ = R′′′[(x : T)P/y] and moreover:

R′[(x : T)Q/y] → R′′′[(x : T)Q/y]

We use Lemma A.7 to find aR′′′′ andz such thaty is guarded inR′′′′, z is unguarded inR′′′′ and
R′′′ = R′′′′[z/y]. Hence:

R′′ = R′′′[(x : T)P/y] (from above)
= R′′′′[(x : T)P/y,(x : T)P/z] (from above)
R R′′′′[(x : T)Q/y,(x : T)P/z] (from definition ofR andy guarded inR′′′′[(x : T)P/z])
∼=p R′′′′[(x : T)Q/y,(x : T)Q/z] (from Lemma A.8 andzunguarded inR′′′′[(x : T)Q/y])
= R′′′[(x : T)Q/y] (from above)

as required.

Corollary A.10. If ∆,x : T |= P∼=p Q and∆,y : T →⋄⊢R then∆ |= R[(x : T)P/y]∼=p R[(x : T)Q/y].

Proof. Follows from Lemmas A.7, A.8 and A.9.

Corollary A.11.

(1) If ∆,x : T |= P∼=p Q and∆ ⊢ v : T → ⋄ then∆ |= v· (x : T)P∼=p v· (x : T)Q.

(2) If ∆,x : T |= P∼=p Q, ∆ ⊢ a : ch[T →⋄] and∆ ⊢ R then∆ |= a〈(x : T)P〉R∼=p a〈(x : T)Q〉R.

Proof. Follows from Corollary A.10.

Proof of Lemma 2.2: The ‘only if’ direction is immediate. For the converse it is sufficient to
show that∼=p is preserved by each process operator of HOπ as demonstrated by Lemma A.1 and
Corollary A.11.

APPENDIX B. MERGE IS A PARTIAL FUNCTION

Proof of Proposition 3.3:We consider the rewriting relation։ which we will define as the one-step
rewriting used to define the merge operation:

C ։ X if C doesn’t contain〈k⇐ v〉 for anyk,v
ν(~a : ~T) . (〈k⇐ v〉 ‖C) ։ ν(~a : ~T) . (C[v/τk]) if τk 6∈ v

It is easy to see that։ is a terminating rewriting relation. Moreover, the rewriting will terminate
with aX fromC (so that〈〈C〉〉 is defined) exactly whenrg(C) is acyclic. To see this we consider the
effect of։ on reference graphs: for

〈k⇐ v〉 ‖C ։ C[v/τk]
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the reference graph of〈k⇐ v〉 ‖C has the nodek removed and any edges such that

l ′ 7→ k 7→ l

for l ′, l 6= k, are replaced with an edge
l ′ 7→ l

all other edges involvingk are removed. So if nodek is involved in a cycle before rewriting occurs,
that is

l 7→∗ k 7→∗ l

for somel , then either it is atight loop, that isl = k andk 7→ k, or l 6= k and the cycle still exist after
rewriting asl 7→∗ l . The side-condition on the rewrite rule forbids tight loopshence we see that։
preserves cyclicity. That is:

if C ։ C′ thenrg(C) is acyclic if and only ifrg(C′) is acyclic.

Now, suppose that〈〈C〉〉 is defined. We know that there exists a finite sequence

C ։ C1 ։ · · · ։ Cn ։ X

with 〈〈C〉〉 = Cn. We know thatrg(Cn) is acyclic as it contains no edges. Thus,rg(C) is acyclic also.
Conversely, suppose thatrg(C) is acyclic. Then as։ is terminating there must be a finite sequence

C ։ C1 ։ · · · ։ Cn

such thatCn cannot be rewritten. There are two possibilities for this: either rg(Cn) contains a tight
loop, orCn is X. We see thatrg(C) is acyclic, soCn is acyclic too and therefore cannot contain a
tight loop. ThusCn is X and〈〈C〉〉 is defined.

To show that〈〈·〉〉 is a well-defined partial function it suffices to show that it is strongly confluent
for acyclic terms. Note that ifνa : T . (C) ։ C′ then eitherC′ is X or C′ ≡ νa : T . (C′′) such that
C ։ C′′. So without loss of generality suppose that

C ։ C1 and C ։ C2

for
C≡C′

1 ‖ 〈k1 ⇐ v1〉 and C ≡C′
2 ‖ 〈k2 ⇐ v2〉

so that
C1 ≡C′

1[v1/τk1] and C2 ≡C′
2[v2/τk2].

So either,k1 = k2 in which caseC1 ≡C2 or k1 6= l2 and

C′
1 ≡C′

3 ‖ 〈k2 ⇐ v2〉 and C′
2 ≡C′

3 ‖ 〈k1 ⇐ v1〉

We notice that
C1 ≡ C′

1[v1/τk1]
≡ (C′

3 ‖ 〈k2 ⇐ v2〉)[v1/τk1]
≡ C′

3[v1/τk1] ‖ 〈k2 ⇐ v2[v1/τk1]〉
(acyclicity impliesτk2 6∈ v2[v1/τk1]) ։ C′

3[v1/τk1][v2[v1/τk1]/τk2]
≡ C′

3[v1[v2[v1/τk1]/τk2]/τk1,v2[v1/τk1]/τk2]
(acyclicity) ≡ C′

3[v1[v2/τk2]/τk1,v2[v1/τk1]/τk2]
(def) ≡ C3

By a symmetric argument we see thatC2 ։C′
3[v2[v1/τk1]/τk2,v1[v2/τk2]/τk1] and, by definition, this

is justC3 so we haveC2 ։ C3. Thus։ is strongly confluent for acyclic terms and hence〈〈·〉〉 is
well-defined.
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