Logical Methods in Computer Science
Vol. 1 (1:4) 2005, pp. 1-22 Submitted Sep. 17, 2004
www.Imcs-online.org Published Apr. 21, 2005

CONTEXTUAL EQUIVALENCE FOR HIGHER-ORDER mCALCULUS REVISITED

ALAN JEFFREY? AND JULIAN RATHKE P

a Bell Labs, Lucent Technologies, and CTI, DePaul University
e-mail addressajeffrey@bell-labs.com

b School of Informatics, University of Sussex
e-mail addressjulianr@sussex.ac.uk

ABSTRACT. The higher-ordert-calculus is an extension of tirecalculus to allow communication
of abstractions of processes rather than names alone. tigessstudied intensively by Sangiorgi in
his thesis where a characterisation of a contextual earieal for higher-ordar-calculus is provided
using labelled transition systems amdrmal bisimulations. Unfortunately the proof technique used
there requires a restriction of the language to only allowtefitypes.

We revisit this calculus and offer an alternative presémadf the labelled transition system and
a novel proof technique which allows us to provide a fullytedxst characterisation of contextual
equivalence using labelled transitions and bisimulatimnshigher-orderr-calculus with recursive
types also.

1. INTRODUCTION

It is evident that there is growing interest in the study ofhite code in process languages
[3,[1,[9,[15]. Itis also clear that there is some relationdl@fween the use of higher-order features
and mobility. Indeed, code mobility can be expressed as ammuation of process abstractions.
For this reason then it is important for us to develop a cledeustanding of the use of higher-order
features in process languages.

Work towards this began several years ago with various mapdor higher-order versions of
known calculi [14[4], including the higher-ordercalculus or H@t[L0]. This calculus was studied
intensively by Sangiorgi and one of his achievements wagdwuigle a translation of the higher-
order language which supports code mobility, to a first-ordealculus which supports only name
mobility. This translation is proved to be fully abstractkviespect to barbed congruence, but with
the restriction to a language of finite types.

While the translation is of interest in its own right, it atkoned out to be very useful for pro-
viding a powerful fully abstract characterisation of batlsengruence in terms of labelled transition
systems andhormal bisimulations. Providing direct proof techniques for ettial equivalences
in higher-order process languages is often considered tatzk[13]. In this paper, the difficulty

2000 ACM Subject ClassificatiorD.3.1.

Key words and phrasesHigher-order languages, concurrency, full abstraction.
@ This material is based upon work supported by the Nation@r8e Foundation under Grant No. 0430175.
b Research partially funded by the Nuffield Foundation.

|E |LOGICAL METHODS © A. Jeffrey and J. Rathke
IN COMPUTER SCIENCE DOI:10.2168/LMCS-1 (1:4) 2005 © Creative Commons

2 A. JEFFREY AND J. RATHKE

arises in establishing soundness of the proof techniquishvith tantamount to establishing some
sort of contextuality property. It has been seen that theofisetranslation of higher- to first-order
communication can alleviate this problem and such transiathave been employed to this effect
[, [4].

However, due to the restriction to finite types for the camess of these translations, the
soundness of the proof technique is only guaranteed foefipies. Given that recursive types are
used extensively imecalculus, for encodings of datatypes and functions, thisep a significant
restriction. Sangiorgi has shown that by studying variauscalculi, such as the asynchronaas
calculus, he is able to remove the restriction to finite tyfi&$. To date, there has been no proof of
full abstraction for full HQtin the presence of recursive types.

In this paper we present an alternative description of latdransition systems and normal
bisimulations for H@r, which is informed by Sangiorgi’s translation of higheder to first-order
communication. Our alternative presentation allowdiract proof of soundness for contextual
equivalence which makes no use of the translation to fidgrar-calculus and, more importantly,
makes no restriction on types.

The innovation here lies in the introduction of operatorsand (k <= v) which simulate the
triggers Try and meta-notatiofk := v} of Sangiorgi [11] wherek is a unique identifier for the
trigger andvis a process abstraction. The crucial difference is thate&vBangiorgi gives definitions
as HQOrtterms for these devices:

Tre = (X)k(x) and {k:=v} = xk(X)v-x

wherek(x) represents an output on natandxk(x)P represents a replicated input on nakneve
leave the operators uninterpreted. There are no interachetween the operatorg and (k < v).
Rather, we just mimic the behaviour of triggers in the ladgiransition systems. The benefit of
doing this is that it allows us to obtain a direct soundnes®fpthat (normal) bisimilarity implies
contextual equivalence without recourse to any transiatiats correctness proof.

A challenge of approaching the problem in this way is thas ihot immediately clear that
bisimilarity will be complete for contextual equivalenae HOTL. That is to say, it is not obvious
whether each transition has a genuinerefontext which validates it. At this point however we can
interpret the operators and (k < v) as HOtterms exactly as Sangiorgi does. It is then a simple
matter to demonstrate completeness following familiahmégques [BL 17, 5]. The real payoff is that
not only do we obtain a direct soundness proof but the postpent of interpreting the triggers
allows us to finesse any restrictions to finite types.

The remainder of the paper is organised as follows: in SeQiave recall the syntax and
semantics of H@ along with the definition of contextual equivalence whichwik be using. This
is followed in Section 3 by a presentation of the novel lagktransition system using the operators
Tk and(k < v). We prove that bisimilarity over this labelled transitigrsgeem is sound for contextual
equivalence in Section 4 and conversely, that it is comfteteontextual equivalence in Section 5.
We conclude in Section 6 with some closing remarks.

2. HIGHER-ORDERTICALCULUS

Except for small changes in notation the language is as cdoung in [13] with three main
differences:

(1) We assume two distinct countably infinite sets of idemt#j1’ and 4/, for variables and
channel names respectively. In general we will gz to range over variables aralb, c
to range over channel names. This variable/name distimatiakes the algebraic properties

CONTEXTUAL EQUIVALENCE FOR HIGHER-ORDERTCALCULUS REVISITED 3

T,U = Value Types
. Unit type
ch[T] Channel type
T—o Abstraction type
Z Type variable
recZ.T Recursive type
PQ = Terms
V-W Application
v(x: T)P Input
v(w)P Output
if v=wthen Pelse Q Matching
v(@a:T).(P) Name creation
P|IQ Concurrency
«P Repetition
0 Termination
Vv, W = Values
Unit value
a Channel name
X Variable
(x:T)P Abstractions

Figure 1: The Syntax

of the language a little cleaner and we are confident thaettteniques proposed here would
also be applicable if we identified these sets.

(2) Since we have adopted a variable/name distinction, we biaed Honda and Yoshida’s
definition of observational equivalendé [6] in Sectionl Zather than Sangiorgi's. See [2]
for a discussion of this issue.

(3) We allow communication of channel names as well as peoabstractions so that there is
a corerrcalculus as a direct subcalculus of RO
2.1. Syntax. We present the syntax of HOn Figure[l. The grammar of types for values includes:
e (-): asingleton type just containing the val(g.

e ch[T]: the type of channels which can be used for communicating afetyypeT. Note that
in this paper we are not considering input-only or outpuir@mannels.

e T — o: the type of an abstractiofx : T)P. Such an abstraction can be applied to a value
of typeT to return a well-typed proce$¥v/x|.

e Z andrecZ.T: these allow recursive types, such as the type for mononmnglalculus
channelsrecZ.ch[Z]. We requireZ to beguarded any free occurrence & lies within a
subexpression df of the formch[U] orU — o.

The grammar of process terms includes:

4 A. JEFFREY AND J. RATHKE

v-w: the application of abstractionto argumentv. During executiony will be instantiated
by an abstraction of the forrfx : T)P, andf-reduction will give the proces8|w/x.

e v(x: T)Pandv(w)P, which are the standard synchronous input and output aftedculus,
except that since abstractions are first-class values, wearamunicate higher-order data
as well as first-order data.

e if v=wthen P else Q: an equality test on values, where the type system will enthatv
andw are channels, and so we will never compare abstractionyftacic identity.

ev(@a:T).(P), P| Q, P and0: the standardtcalculus processes for channel generation,
concurrency, replication and termination.

The grammar of values includes:
e (-): the only value of typ€-).
e aandx: channel names and variables respectively.

e (x:T)P: an abstraction, which can be applied to a valte return a procesB|[v/x]. Since
abstractions are considered first-class values, they catenunicated on channels, or
passed as arguments to other abstractions. This featua® lg@rtits higher-order power.

2.2. Reduction semantics. The reduction semantics for the language is defined in aatdmdan-
ner: we first introduce the evaluation contexts

Ex=[-]| £||P | va.£
Structural equivalences is defined to be the least congruence with respegt tmntexts such that
it makes(||,0) into a commutative monoid and moreover satisfies

va.(P|Q = va.P||Q if ag¢ fn(P)
P = «P|P
We will now consider processes up to structural equivaléhoeughout the remainder. We define

the reduction relation— as the least precongruence with respecttaontexts such that the
following axioms hold

(commy a(v)P [a(x)Q — P (X)Q-v
(B—redn (X)P-v — Plv/x

(cond—t ifa=athenPelseQ — P

(cond—ff) ifa=DbthenPelseQ — Q (a#b)

In a standard notation we write—> to denote the reflexive, transitive closure of .

2.3. Type system. We introduce a simple type system for the language which cisestypes for
channels and abstractions, together with recursive typesallow us to infer recursive types for
terms we make use of type isomorphism. We define this by dettig, be the least congruence on
types which includes

recZ.T ~iso T [recZ.T /Z]

A type environment is a finite set of mappings from identifiers (channel namesaoiatiles) to
types with the restriction that channel nanaesust be mapped to channel types of the fai{ir].
We writel",n: T to represent the environment made up of the disjoint unidn afd the mapping
nto T. We will call an environmentlosedif it contains mappings of channel names only and will

CONTEXTUAL EQUIVALENCE FOR HIGHER-ORDERTCALCULUS REVISITED 5

rvy=T rx:TEP FEv:T Tr~jgoU
M= M=v:T FrEx:TP:T—o MN-v:u

MEv:ch[T],w:ch[T]
r=pP r-Q Nra:THP r-P,Q
I if v=wthen Pelse Q MrEv@:T).(P) FrEP|Q, «P, 0

FrEv:iT—o TEw:T MX:THP TkFv:chlT] P TFw:T TEv:ich[T]
Mv-w MEv(x:T)P I Ev(w)P

Figure 2: The Typing Rules

write A to indicate this. Type inference rules for the calculus avergin Figure2. We will call a
well-typed processR, closed if it can be typed ast P for some closed\. It is easily shown that
subject reduction holds for closed terms for the reduct@ation and type inference system given.

2.4. Contextual equivalence.We will now define an appropriate notion of behavioural equiv
lence based on contexts and barbs.

Contexts are defined by extending the syntax of processedidwiray typed holes| -r] in
terms. The type inference system is extended to contextsibg the rule

We write C[] to denote contexts with at most one hole &j&| for the term which results from
substitutingP into the hole.

For any given channel nangesuch thatA - a: ch[-] we write A = P || a if there exists some
P’,P” such thaP — vA'. (a(-)P" || P") witha & A'.

We use type-indexed families of relatiofigs } between closed process terms to describe equiv-
alence. We will writeg_ to refer to the whole family of relations and

AEPRQ
to indicate that? andQ are well-typed with respect th and related byga. For general process
terms we define thepen extensior ° of a typed relatiorg as
AX :Ty, o X% ThEPRCQ

holds if for every/' disjoint fromA and every; such thath, A’ - v; : Tj (for 1 <i < n) we have

AN =Py, .. Vo /X1, . %] R Q|Va, -+, Vn/Xe, - - -, Xn]
Note that, in general, for closed terhs= P % Qs not equivalent té = P % ° Q as® ° enjoys the
weakening property thdf,A" =P % ° QwheneveA = P % ° Q, even wherg does not. However,
the contextual equivalence which we study in this paperfiaeé as an open extension and therefore
will satisfy this weakening.
There are a number of properties of type-indexed relatibaswe must define:

Symmetry:: Atype-indexed relatior is symmetric whenevek =P % QimpliesA=Q<=& P.

6 A. JEFFREY AND J. RATHKE

Reduction closure:: Atype-indexed relatior is reduction-closed whenevar=P % Qand
P — P’ implies there exists son@ such thaQ =— Q andA =P % Q.

Contextuality:: A type-indexed relatio is contextual whenevér' =P ¢ °Qandl - C[-/]
impliesT = C[P] % ° C[Q].
Barb preservation:: Atype-indexed relatiom is barb-preservingih=P® QandAEP |l a

impliesA =Q | a
Definition 2.1 (Contextual equivalence)l et = be the open extension of the largest type-indexed
relation which is symmetric, reduction-closed, contekaral barb-preserving. O

For technical convenience it will be useful to work with ahligr definition of contextuality.
We say that a relatior_ is ||-contextual if it is preserved by all contexts of the fofm | || Rand we
let =, denote the open extension of the largest typed relation me@esses which is symmetric,
||-contextual, reduction-closed and barb-preserving. Dileving lemma demonstrates that this
lighter definition is sufficient.

Lemma 2.2(Context lemma)l =P=Q ifandonlyif I'=P=,Q
Proof. In Appendix(A. L]

3. FULL ABSTRACTION

In this section, we will present a bisimulation equivalefmeHOTT, and show that this equiva-
lence is fully abstract for contextual equivalence.

3.1. Labelled transitions. We will use a labelled transition system to charactefizever higher-

order t-calculus terms. The style of the labelled transition gystéffers a little from previous
transition systems offered for HO Most notably, the nodes of the transition system are desdri
using an augmented syntax rather than process terms alpeeifi€ally, for eactk drawn from a

countable set of names disjoint framd and %, we introduce two new operators:

Tk and (k<v)

with the intuitive reading thaty is an indirect reference to an abstraction @ke-= v) stores the ab-
straction to whictk refers so that access¥as provided through interaction with The augmented
syntax for nodes is given the grammar of configuratiGrabtained by extending Figuké 1 with:

v = ...(asFigurdll).. | 1

C == P | (kev) | va:T.(C) | C|C
We impose a syntactic restriction on the augmented syntdkatan any configuratiol© for any
givenk then (k <= v) appears at most once @ Structural equivalence and reduction lift@in

the obvious manner — note that there are no reduction rulen dor tx and (k <= v) though. We
augment the type rules by considering judgements of the form

M ekrv:T and M erC
where® represents a set of mappings from reference names to Typ&he rules in Figur€l2 are
easily decorated with the ext@environment. The further rules required are given by
Ok =T Ok =T I;0FvV:T -0
M oFw:T—o M0k kv

CONTEXTUAL EQUIVALENCE FOR HIGHER-ORDERTCALCULUS REVISITED 7

Nodes of our labelled transition system then are well-tygdeded terms of the augmented language
of the form
(A; OFC)

The transitions are of the forf ; © - C) — (A; © -C) or (A; ©C) - (A; O F C) where
visible labelsa are given by the grammar:

a == va.o | vk.d(tg)! | vk.d(t)? | d(v)? | d({w)!

where writed to mean either a channel nam®er an indirect reference nanke The transitions are
presented in Figurd3[3¥4,5. The intuition for these traonstis (eliding types for readability):

o P27 P indicates thaP is prepared to input a valueon channeh and then perform as

P'. The type system enforces thais a first-order value, and not an abstraction. Moreover,
in this case botta andv are pre-existing values, and were not generated fresh r th

transition.

k(v)? - : . .
o P w7 P’: indicates thaP has provided a named abstraction referdnimethe environment,

and that the environment is calling the abstraction withexisting argument.
o P vbatby? P’: indicates thaP is prepared to input a fresh chanhebn channeh and then

perform as”’. This is the same a8 ab)? P’, except thab is now a fresh channel generated
by the environment, and has not been seen before by the proces

b.k(b)? - . . .
o P vbkbr? P’: indicates thaP has provided a named abstraction referdnt®the environ-

ment, and that the environment is calling the abstractidh f&sh argumen.

o P P’: indicates thaP is prepared to input an abstractibmn channek and then
perform asP’. In this case, we do not record the abstraction itself in el but instead
we just generate a fresh referende the abstraction.

vl .k(t))?

>

vl.a(t)?
_

o P P’: indicates thaP has provided a named abstraction refergnt@the environ-
ment, and that the environment is calling that abstractigh argument. In this casek
must be a higher-order abstraction, so is expecting anaaitistn as an argument. Rather
than recording the abstraction itself in the label, we imdtgenerate a fresh refererice
the abstraction.

e Each of the above input transitions has a dual output tiansivhere the role of the process
and environment are exchanged.

We write o to denote the complement of an actionwhich is defined to be the actianwith the
input/output annotation inversed. We will often write=- to mean the reflexive transitive closure

a . .
of - and = to mean=— - —— . The following proposition states that the labelled
transition system is well-defined in the sense that the ittansrelation only relates well-typed
terms.

Proposition 3.1. If A; @+ Cand(A; ©FC) - (A,A ; ©,0 +C') thenA, A ; ©,0 +Clis a
valid typing judgement.

Proof. Straightforward induction.]

8 A. JEFFREY AND J. RATHKE

cC—-C (A;OFC) S (A O +-C)
(A; OFC) 5 (A; OFC) (A;®OFC||D) 5 (A ; ©+C' | D)

(AwT;@FQ(IMa'TN 0,0 +C) (agfn(a))
(A; ©OFva:T.C) = (AL ;0,0 Fva:T.C)
bt

B,b:T:orc) 22
(B ©Fvb: T.C) 242

W7 Ab:T:OFC) (d+#b)

YWIb? A b:T: OFC)

(Ab:T;OFC) (d#£b)
Vbd< b)! /
(Ab:T;OFC)

(Ab:T;OFC) 25
(A; ©FC) 2228

Figure 3: Structural labelled transition rules

3.2. Bisimilarity. We use a standard definition of (weak) bisimilarity to previslr characterisa-
tion of = for HOTT

Definition 3.2. We call a symmetric relatiorg_, between nodes of the labelled transition system a
bisimulationif whenever(n,m) e we have

e n— 1’ implies there exists som® such tham = nY and(n’,m’) ex.

. . . a
e n - 1’ implies there exists som® such thatm = nY and(n’,m) ex.
Let bisimulation equivalence, or bisimilarityg be the largest bisimulation relation. O

We will write
A;®=C~D
to mean thatd ; © - C andA ; © - D are valid typing judgements and moreover, they are related
by =~ as nodes of the Its. In order to provide a bisimulation cheraation of~ over HOtwe will
consider a subrelation ¢ by restricting our attention to nodes of the form

(A; EP)
whose terms are clearly definable in RONe will simply write (when® is empty)

A=P~Q
to indicate bisimilarity between such terms of R@onsidered as nodes of the labelled transition
system.

3.3. Soundness of bisimilarity for contextual equivalence.We need to demonstrate that bisimi-
larity implies contextual equivalence for all Hprocesses. In particular, because of Lenimh 2.2,
we need only show that bisimilarity is contained in some swinit, reduction-closed, barb pre-
serving and|-contextual relation. The key to achieving this is to studg f-context closure of
bisimilarity. If we can demonstrate that this is reductmosed then we have our result. To do this
we must establish a decomposition theorem for interactibns instance, iP andQ are bisimilar
and we compose each of them with a prodesisen suppose

PIR—S

CONTEXTUAL EQUIVALENCE FOR HIGHER-ORDERTCALCULUS REVISITED 9

T ~isgU — ¢

Vheafn? (A; 0,k:UFX:T)P-1y)

(A; OFax:T)P)

@(k) NisoT — <

(A; OF (k<v)) Mﬁ(A; O,1:Tkv-1 | (k<=V)

A, OFV.T —o
& 0FaMwP) X2 (A @ Kk:TH (ke ||P)

O(K) ~iso T — ©

(A; OF 1k-V) M(A; O, :TH(l<vV)

Figure 4: Basic higher-order labelled transition rules

represents an interaction betwdeandR. We decompose this into complementary actions
PLP and RLK

respectively. Note however th&is not necessarily obtained by a parallel composition ofdingets

of the transitionsP’ || R. InsteadP’ andR’ may contain indirect references and their corresponding

resources. These need to be matched up correctly to datale achieve this by introducing the

merge(partial) operatox(-)) which will match up these terms and replace every indirefereace
to an abstraction with the abstraction itself. We write

Clv/1

to denote the substitution of the valudor every instance of the indirect referenge We define
((C)) then as the operator on terms of the augmented syntax @pgach that

(C) = C if C doesn't containk <« v) for anyk,v

(v@:T). (kv [C)) = (v(@:T).Clv/ul)) ifrgv

Intuitively, this says that we substitute any values stereal(k < v) through for the corresponding
Tx. Note that this need not substitute for all the indirect refiee identifiers ilC. It is clear that the
above definitions are only partial. For exampleCi€ontains an occurrence ¢ < v) for which
Ty occurs inv, then((C)) is undefined. In order to identify for which terms the mergdeéined we

make use of the notion aéference graphFor a termC we define the graphg(C) to be the graph
which has nodes as the indirect reference identifiénsC and edges

kiml if yev for (k<v) in C

Proposition 3.3. ((+)) is a well-defined partial function such th@gt)) is defined if and only itg(C)
is acyclic.

Proof. Given in AppendiB. L]

10 A. JEFFREY AND J. RATHKE

A v: T abase type

a(v)?

(A;OFa(x:T)P) —= (A; OF (x:T)P-v)

Ok)=T AFw:T abase type

(A; OF (k<v)) M(A; OFv-w| (k<v))

A v: T abase type

a(v)!

(A; ©Fav)P) — (A; ©FP)

O(k) =T T abase type

@ orw-v) X (A or0)

Figure 5: Basic first-order labelled transition rules

Lemma 3.4(Composition/Decomposition)ForA; @ - C,D
(i) If (C||ID))=Eand
0:0FC) % (AN;0,0FC) and (A;OFD) S (AN; 0,0 FD)
then there exists B’ such thaE — E’ and((vA’.(C' || D'))) = E’
(i) If ((C)) = E andC — C’ then there exists B’ such thaE — E’ and((C')) = E’
(iii) If ((C || D)) =E andE — E’ then one of the following hold

C — C'with (C' | D)) = E/

or D — D' with (C || D)) = E)

or (A; OFC) = (AL ; 0,0 FC) and(A; OF D) = (A, ; ©,0 - D') with
(v . (C' || D)) =FE".

Proof. Part (ii) is straightforward as the merge operafo)) simply removes subterm of the form
(k <= v), which can't be involved in reductions, and substituteshbigorder values through for
variables of higher-order type. Reductions are based aotate alone except for the conditionals
which can be affected by first-order substitutions of chanaees only.

To show (i) we must consider all the possible casesifoBy symmetry there are four distinct
pairs of complementary actions. We only consider the casesea is vk. a(ty)? andvl . k(t;)? as
the first-order actions can be treated similarly.

vk.a(tk)? vk.a(tg)!

Case:A;OFC —=A;0,k:UFC andA; ©FD ——= A; ©,k:U - D’. By inspection
we see that
—C=vA' . (a(x: T)P|C") with T ~jsoU — ¢
—C'=vA . (x:T)P-1¢ || C")
- D=vA". (a(v)Q || D)
-D'=vA.((ke=v) || QD)

CONTEXTUAL EQUIVALENCE FOR HIGHER-ORDERTCALCULUS REVISITED 11

It is easy to see thd{C || D)) — (VA,A”.((x: T)P-v||C"| Q| D"))) let us call the target
of this reductiorE’. We simply need to check

E = ((vA:,A“.((x:T)P-vH”C” I Q”H D)) §
(k€ V) = (VA (X: T)P-1 || C") | vA". ((k<=V) [| Q|| D")))
= (C'||D))
Case:A; OFC M2 A o 1:THC andA; ©FD XX ™Y A @1:THD. Again, by

inspection we see that

—C=VvA' . ((kev) ||C)

—C'=vA . (v-y | (k<) || CY)

— D=VvA" . (1x-w| D)

- D'=vA".((l =w) || D)
Note that the previous proposition tells us thafC || D) must be acyclic — in particular,
Tk ¢ V. Here we see that

(C[ID) VA, A", ((k<=V) || C" || - w | D))

VAL, A", ((k<=V) || C" || v-w || D")))

(
(k€ V) (
géVA@N- ((k=v) [[C"[[v-1 || {I =w) [D")))

(1 ¢ v,w,C",D")

So by lettinge’ be ((C’' || D)) we note that(C || D)) — E’ as required.

To show (iii) we supposéC || D)) = E and thate — E’. We must consider all possible ways
in which this reduction can occur. If the reduction arisegrfra conditional then it is clear that we
must haveC — C’ or D — D’ for someC’ or D'. Moreover it is easy to check th§C’ || D)) (resp
((C|| D'))) = E'. There are two more possibilities to consider:

Case: the reduction arises fromf&reduction. In this case eithé& — C' or D — D’ as above and
the result follows easily, oris (x: U)P and
—C=VvA . (1x-w]| C") with all names i’ appearing irw
—-D=vA". ((k<vVv) || D) with TKEV
— B ={(vA",4". (Plw/x] | C" || (k<= V) || D")))
or a symmetric version of these with the roles®andD reversed. So we notice that if
U ~iso T — ¢, we have

vlLk(1))! vLk(T)?

A;OFC —5A;0,1:THC and A;OFD=—=0A;0,1:TFD

whereC’' =VvA'. ((I < w) ||C") andD’' =vA” . (P[1; /X || (k< V) || D"). We check:
(o) (VA" (I <= w) || C") [VA" (P[ti/X]) || (k<= V) || D"))

(i, A" (C" || Plw/X] || (k<= v) || D")))

E/

as required. Alternatively, it could be thdtis a base type, in which case

A k(w
A orCcEK AN - orC and A:orD 2 AN orD!

whereC' =C" andD’ =vA” . (P[w/X] || (k< v) || D”). Itis easy to check thd{C' || D')) =E’
as required.

(ur ¢ v,w,C",D")

12 A. JEFFREY AND J. RATHKE

Case: the reduction arises from communication. Again we see titlaeeC — C' orD — D/, in

which case we easily obtain the result, or

—C=vA . (a(v)P | C")

—-D=vA" . (a(x: T)Q| D)

—E'= (A" (P C") || vA".((x: T)Q-V[| D")))
or a symmetric version of this with the roles@fandD reversed. Again we must consider
whether the typd is a base type or higher-order. We omit the details of the éoroase.
Suppose then thdt; O v: T ~jsoU — ¢ we know

vk.a(tg)! vk.a(tk)?

A; OFC —5 A 0,k:ULC and A;OFD —/5SA;0k:UFD
whereC’' =VvA'. ((k<v) || P||C") andD’ =vA”.((x: T)Q- 1k || D”). We check:
(o) (A" ((k<=v) [P C") | vA”. ((x: T)Q-Tk || D")))

(tk wP.C",D") I<E<yA’,A” (PICT (x:T)Q-v [D))

as required. L]

Definition 3.5. Let ~, be defined to be
A; ©FE ((C1 || D)) =m{(Cy|| D)) ifandonlyif A;®EC; ~C, and A;©OFD
whenever(C; || D)) and((C; || D)) are defined. O

Note that in the case whe@is empty we have thatC; | D)) =C; || D, and hence=my, and=,
coincide.

Lemma 3.6. ~p, is reduction-closed.

Proof. Follows easily from the previous lemma. Take © |= ((C; || D)) ~m ((Cz || D)) and suppose
{((C1 || D)) — E. We must show thaf{C; || D)) — E’ for someE’ such thatA; © E E ~,E’. We
know from Part (jii) of the previous lemma that one of threeegsamust hold. Eithe€; — Cj,

D — D’ or there are complementary actions from b6ihandD. We only deal with the last case
as the others follow easily from the hypothesis that® = C; ~ C, and Part (ii) of the previous
lemma. _

We have then thak; ©FC; == AA'; ©,0/ - C,andA; O D == A,A'; ©,0' - D' such
thatE = ((C] || D’)). We know by hypothesis that there must exist some

A;OFC, = AN ; 0,0 -C)

such that
AL ;0,0 =C=C (1)

We can now use Parts (i) and (ii) of the previous lemma to sae(@, | D)) —— E’ such that
E' = ((C; || D’)). Note that(T) guaranteed ; © |= E ~n, E’ to finish. O

CONTEXTUAL EQUIVALENCE FOR HIGHER-ORDERTCALCULUS REVISITED 13

Theorem 3.7. For all closed term®, Q of HOTtT
A=P~Q implies AEP=,Q
Proof. We let~, denote the relation
AN = (P||R) ~p (Q| R iff AP~ QandA,A' R

It is easy to see that is a||-contextual relation over terms of HOIt is also easy to see that,
is symmetric and barb preserving and coincides wighfor closed terms of H@, thus Lemma&-316
can be instantiated to demonstrate #gtis reduction-closed and, given tte}, is defined to be the
largest symmetric||-contextual, reduction-closed, and barb-preservindiogiaver terms of H@,
then we have our result. []

Corollary 3.8 (Soundness)For all termsP,Q of HOTt
Fr=P~°Q implies TEPx~Q
Proof. Follows from the previous theorem and Lemimd 2.2.]

3.4. Completeness of bisimilarity for contextual equivalence.The interactions described by the
labelled transition system are not obviously derived byuyss contextual observations in Hi®e-
cause of the use of the extra syntax for indirect referentresrder to show completeness of our
bisimilarity for contextual equivalence we must demoristithat the indirect references are in fact
definable as terms of the language proper. Following Sagidts], we implement the implicit pro-
tocol outlined by the indirect references by using the felfg translation of the augmented terms
into HOrT

[[kl . T]_, ey kn . Tn]] = kl Ch[Tl], kn Ch[Tn]
[F:erC] = T,e]+I[Cle
[tdeo = (x:T)k(x)0 if O(k) =T
[kevlle = +k[v]e

The translation acts homomorphically on all other terms.algse notation here by using identifiers
k as channel names in the translation. It is evident that thisstation is well-defined in the sense
that the translation of well-typed augmented terms aredddeell-typed terms of H@.

We would now like to prove a correspondence between rechgfiom the terms of the aug-
mented syntax and reductions between their translatioog:ieMer, we note that in translating a term
containing bothk <= v) andtk we provide matching input and output prefixes, which, inTH@ay
create a communication which was not possible in the soerce. tThis turns out not to be of par-
ticular concern to us though as we see that if we starting teittms of HQt, then terms reachable
by transitions ardvalancedin the following sense: we call a ter@ of the augmented language
balancedif for eachk thenC contains at most one af (possible multiple times) ofk < v). Un-
fortunately the translation may introduce extra reduciamich aren’t present in the source term.
These arise through the translation of terms of the forav. Note that

[V] = (x: T)k(x)0- [V] = k([v])0
but tk - v has no corresponding reduction. We will identify these sgeductions as housekeeping

reductions and indicate them Withh—> defined as any reduction which can be derived using the
axiom

(h—redn) (x: T)k(x)0-v — k(v)0
Lemma 3.9. If A; ©Cis balanced then

14 A. JEFFREY AND J. RATHKE

(1) IfC== C'then[C]lo = [C']lo
(2) If [CJle == Pthen[C]lo = [DJlo P P for someA ; © - D such thaC = D.

Proof. We will omit mention of the environmer® in the proof as it plays no role. Pait 1 is straight-
forward. For Parfl2 we use induction on the length of the riédos. If there are no reductions

then we are done. We examine the base case in Wkigh— P. If this reduction happens to be a
housekeeping move, that i&Z]] ", Pthen there is nothing to prove. Suppose otherwise, then it is

not too difficult to check thalP = [[D]] for someD such thaC — D. For the inductive case suppose
that

[C] = =P (1)
By inspecting the translatiofi]] and using the fact th& is balanced we see that

€] —qQ imples [c] — Q

, . . h :
thus we may assume that the first reductiorftipabove is not of the form— . This means that

[C]] — [[C'] == P for someC’ such thatC — C'. lItis clear thalC’ is also balanced so we may
apply the inductive hypothesis to

[C]==P
to obtain aD such thaC' — D’ and[C'] = [D]| bp, Putting these together we obtain
C—C—D and [C]— [C]— [D]>*P
as required. L]
WhenA' is of length at most one, we shall wridA’) as shorthand, defined:
o(0) =98() o(a:T)=0da)

Moreover, note that whenevéh ; © - D) = (AN 0,0+ D'), we have that\' has at length
most one, and sd(4') is well-defined.

Proposition 3.10. For eachn, A and fresh channels & of appropriate type given by andA, there
exists a process (defined in Figur€le) in H@such that if

A;OFC L AN: 0,0 +-C

then
A, [©,0'],8: ch[To),& : ch[] - 7]

and moreover, for balancedal
(A; OF D)= (AN ; 0,0 D)
ifand only ifA; ©+ D and
17419 | [DJlo == v&'. (3() | P) with [D]ee >*P

CONTEXTUAL EQUIVALENCE FOR HIGHER-ORDERTCALCULUS REVISITED 15

Proof. It is straightforward to check th#, [©,0'],8: ch[Ty],& : ch[-] - 72 whenever
A;OFC LAN:0,0FC.
For the remainder, to show the ‘only if’ direction we use Leafg® Parfll to reduce our obligation
to the case of a single transition- , and we must consider each lalel By way of example we
show the case fax = vl . k(tj)! (the other cases can be treated similarly). Suppose:
(A; D)5 (A;©,1:UFD).
then we know that
D=vA". (1x-v] D")
and
D'=vA".({l < v) || D).
We see that fol ~igoU — ¢

1 Dle = kx:T)H(y:UX-y | (3O @ () || vA”. (((z: T)k(2)0)- [V || [D"]o)
— (B)@d() | va". (I (y: U)MoY [D"Te)
— &) | [D']euu

as required.

For the converse direction we suppose that

A©
741 | [DJo = va'. (3() || P)
Again, we must perform a case analysisconWe show the case in whidhis vl . k(tj)? (the other

cases can be treated similarly). We knAiis empty sor @l | [DJle == &() || P. Note that

‘IGA’H@“ has no reductions of its own and can only interact fiifio so we can detail the assumed
reductions as

7o' || [DJlo = 7% || Py — (3) 08 ()) | PL==8() | P

where[D]] = P, andP; = P. We assumed th&@ is balanced so LemniaB.9 P@rt 2 applied to

[D]] == Py tells us that]D]] == [Do]le .+ Py for someDg such thaD == Do. We know that
Py is obtained from[DoJlo by housekeeping reductions and that it interacts wijfh This tells us
that we must have the forms

Po=VvA". (xk[V]e || Ph)
and

PL=VA". ([V]e- [tlesu [l k[V]e [Po)

This in turn tells us that

Do=VvA".((k< V) || D)

such thaf[Dglle LK Py. Now it is clear that

(A; ©F Do) X% (A: @,1:U) + Dy)

16 A. JEFFREY AND J. RATHKE

Ty = dW(() @)

‘TdA<V>! = d(x:T)if x=vthen (5) @& () else 0 whereA(d) = ch[T]

Tohdme = VP:T.(d(b)(3(b) &3 () whereA(d) = ch[T]

Tioapy = dX:T)if x¢Z Athen (8(x) ©8()) else 0 whereA(d) = ch[T]

Tamgz = HUKX0)(B) @8 () whereA(d) = ch[T] andT ~jsoU — o
Thdmyr = T U)Xy (30 @3())) whereA(d) = ch[T] andT ~jsoU — ©

@ represents an encoding of internal choice inTHO
if X Othen Pelse Q=P
if X¢ (a:T,A) then Pelse Q=if x=athen Qelse if Xx¢Z A then Pelse Q
Figure 6: Testing processes for labelled transitions

whereD1 =VA” . (v- 1 || (k< V) || Dp). We check

[Bilers = vA".(Me- [ulleru [+k[V] Il [Dole)
5w (Ve [u]eru || +k[V] | PY)
= P
— P

Therefore[D;]] == P and we can apply LemniaB.9 P@Ert 2 to this to see(bal == [D’] hep
for someD’ such thaD; == D’. By collecting the above together we obtain

(A; OFD)== (A; ©FDg) = (A; ©,1 :UFDy) == (A; ©,1 :U D)
with [D'Je . —»* P as required.]

Lemma 3.11(Extrusion) If A = VA" (3(4') || P) =pvA". (3(4') || Q) thenA, A =P =, Q
Proof. Follows a similar argument found ihl[7]: define a relat®nsuch that
ANEPRQ iff AEVA . (3(A) || P) =pvA". (3(A) || Q)

and show thar is barb-preserving, reduction-closed dpidontextual. These properties follow
from the corresponding property féf, and an extra piece of context to interact Wii'). O

Theorem 3.12(Completeness)For all closed term®, Q of HOTt
A=P=,Q implies AEP~=Q
Proof. We defineg over terms of the augmented language to be
A;O0ECx D iff A[O] = [Cle = [Dle
and show thag_ is a bisimulation. Také ; © =C ® D and suppose that
(A; 0HC) S (AL ;0,0 HC).
We know from Proposition-3:10 that
A, [©,0],5: ch[Ty],d : ch[] - 7)
and that
Ml e N (3 || P
Ta " || [Clo == vA". (8(4) || P)

CONTEXTUAL EQUIVALENCE FOR HIGHER-ORDERTCALCULUS REVISITED 17

with [C'ee PP, We know that

A, [O] = [Cle =p [Dlle
by the definition ofg , and hence, by contextuality we also have

A,[©,0'],8: ch[To], 8 : ch[] |= 7o || [Clo 2 7*1® | [D]lo

This tells us that

500

| [DJo = @
such that
A 0,0 EvA'. (3(A) [|P) =, Q. (1)
But by the construction of 21° we notice thava'. (6(A") || P) barbs ord but not ond'. Therefore,
by the preservation of barbs property2ef, we know that) must also barb od but not ond’. This

constraingy’ so thatQ = vA'. (3(A') || Q). We apply Lemm&=319 P4 2 ol | [Dle=— @

to see that there is sond¥ such that®) || [D]e == [D"]ee Ay VA" (3(4") || Q) from which

it clearly follows thatD” = vA". (8(4') || D) and[D']e & v Q. We use Proposition-3.]L0 again to
see that

(A; OF D)= (AN ; 0,0 D)
and we now must show th&t A’ ; ©,0' =C' & D’. To do this we use Lemnia3111 ¢h) (note
thatQ = vA'. (8(4") || Q)) to see tha\, A, [©,0'] =P =, Q. Itis also easy to check that
reductions are confluent with respect to all other redusti&md hence preserve contextual equiva-

lence, that isl*ggp, sowe also havA, A, [0,0] |= [C'lee =p [D']ee becausdCo o hap

and[D']ee R Q. This allows us to concluda, A’ ; ©,0 =C’ g D’ as required.
We must also consider transitions of the form

(A; OFC) = (AL ; 0,0 C)).
These can be dealt with as above but in this casgfhis needed. L]
Corollary 3.13 (Full abstraction) For all termsP,Q of HOTtT
r=P~°Q ifandonlyif TEP=Q
Proof. Follows from Corollanf3B, Lemni{aZ.2, and the previous teen]

4. CONCLUDING REMARKS

We have re-examined the use of labelled transitions to ctetise contextual equivalence in
the higher-ordert calculus. The technique of augmenting the core syntax wittaeperators to
assist in the definition of the labelled transitions allovgg to give a direct proof of soundness of
bisimilarity for contextual equivalence. This advancesd@argi’s analagous result by allowing
recursive types also.

We believe that the technique of using extra operators toritesthepoints of interactiorwith
the environment in the Its is fairly robust and should be @pple to many higher-order languages.
Indeed, this was the approach that the authors developéhdiomwork on concurrent objects|[8].

We have only concerned ourselves with the characterisafioontextual equivalence in H@and
so far have not studied Sangiorgi’s translation of higheeo to first-order mobility. Thus, the re-
striction to finite types for his translation is still necags It would be interesting to investigate
whether the current work could be of use in removing this tygstriction for his translation also.

18 A. JEFFREY AND J. RATHKE

APPENDIXA. PROOF OFTHE CONTEXT LEMMA

We recall the statement of Lemial2.2 and detail its proof.here
N=P=Q ifandonlyif I'=P=,Q.
The force of this lemma is to show that the simplified form of@tvational testing allowed &%,
is sufficient to capture the power of full contextual testihgorder to prove this we essentially need

to show that=, is preserved by the operators of OFor the most part, this can be done directly
and is stated in LemnfaA.1 below.

Lemma A.1.
(1) HAX:TEP=,QandAv:TthenAkE= (X:T)P-v=, (x:T)Q-V.
(2) fAX:TEP=yQandAla:ch[T]thenAl=a(x: T)P=,a(x: T)Q.
(B) TAEP=,Q,AFw:TandAF a: ch[T] thenA = a(w)P =, a(w)Q.
(4) fA=PL1=,QqandA =P, =, Qa2 thenA = if v=wthen Py else P> = if v=wthen Q else Q.
(5) IfAa:TEP=,QthenAl=v(a:T).(P)=pv(a:T).(Q).
6) FAEP =pQrandA =P =, QathenA =Py || P2 =5 Q1 || Qo.
(7) If A= P22, QthenA = P =, xQ.
Proof. The majority of these are straightforward by exhibiting mympiate symmetric, reduction-

closed,||-contextual, barb-preserving relations. As an exampldisfwe show the case for input
prefixing (Casé&l2). We define so that=, C % and moreover

AEa(x:T)P||R® a(x:T)Q| RforanyA-R (1)
It is clear that® is symmetric, barb-preserving anjdcontextual so if we can show that it is

reduction-closed then we may conclude thatoincides with=, and we have our result.
Suppose thatt) holds and

ax:T)P||R—P.
We know then that eitheR — R andP’ = a(x: T)P || R or the reduction came about by in-
teraction, that isR=vA'. (a(v)R’ | R”) with a ¢ A" and by writingR for R” || R” we have
P =vA'. (Plv/x || R) for someA,A' - v andA A’ = R. If the former is true then we see im-
mediately that

ax:T)Q|R—ax:T)Q| R

where

AEFax:T)P||R % ax:T)QJR.
If instead the latter is true then we use the fact that

AX:TEP=,Q

to see thah, A’ = Pv/x] =, Q[v/X] and note that

a(x:T)Q[R— vA". (Qv/x || R)
where (using|-contextuality and Cagé 5)

A VA (Plv/X] || R) =p vA". (Q[v/H || R)

as required.]

CONTEXTUAL EQUIVALENCE FOR HIGHER-ORDERTCALCULUS REVISITED 19

Notice that there are two particular cases which are notreoviy this lemma: application of
a function to, and output of higher-ordet,-related values (c.f. Corollafy_AJl1). Establishing that
=, is preserved in these cases can be done directly but isearfitire involved. We notice that the
property we require in both cases follows immediately fidabstitutivity(cf. Corollary[AI0) , that
is (ignoring types):

if P=p QthenR[(X)P/y] =, RI(X)Q/Y].

The remainder of the appendix is devoted to achieving thig proof follows a very similar scheme
to the proof of Proposition 4.2.6 in_[1L0] but simplified to &v@ny use of induction on type as
appeared there.
LemmaA.2. If AF (x: T)P-wthenA = (x: T)P-w=p Plw/x].

In the following we will make use of a “bisimulation up to” angnent [12].
Definition A.3. A type-indexed relatio_ is reduction-closed up to=,=,) wheneveA =P % Q
andP — P’ implies there exists son@ such thaQ == Q' andA =P % =, Q. O
Lemma A.4. For any type-indexed relatioR which is symmetric, reduction-closed up(te, =),
||-contextual and barb-preserving, C =
Definition A.5. We say thak is (un)guarded if® whenever:

(1) if x¢ Pthenxis (un)guarded i,

(2) if x¢ wthenxis unguarded ix-w,

(3) if v# xthenxis guarded inv-w,

(4) xis guarded in/(y : T)P, v(w)P, andif v = w then P else Q, and

(5) if xis (un)guarded i andQ thenx s (un)guarded iv(a: T). (P), P || Q andxP. O
LemmaA.6. ForanyA,y: T — o Rwithyguarded irRand foramyA-v: T —oandA-w: T — o,
if Rlv/y] — R thenR = R’|[v/y] for someR’ and moreoveRw/y] — R'[w/y].
Proof. We first observe that a&+ v: T — ¢ it must be the case thatis an abstraction and not
a channel name. From this it is routine to check that the reduproperty holds for the reduction

axioms. Furthermore, ¥ is guarded inz [P] theny is guarded irP and so the required property is
preserved by reduction in evaluation contexts.]

Lemma A.7. For anyP andx we can findQ andy such thaix is guarded imQ, y is unguarded i)
andP = Q[x/y].
Proof. A routine induction orP. []

Lemma A.8 (Unguarded Substitutivity)If A,x: T =P =,QandA,y: T — o Randy is un-
guarded irRthenA = R[(x: T)P/y] =, R[(x: T)Q/y].

Proof. We proceed by induction on the structureRoflf y ¢ R then the result is immediate. Ris

not of the formv-w, the result follows easily by induction by making use of Leail. Otherwise,

sincey is unguarded iR we must have thaRis of the formy-w with y ¢ w. Hence:
AER[(x:T)P/y] (x:T)P-w (asR=y-wandy ¢ w)

p Pw/x (by LemmdAR)

Qw/X (by hypothesis)

(x:T)Q-w (by LemmeAR)

R((x: T)P/y] (asR=y-wandy ¢ w).

as required. L]

o

111 11

o

20 A. JEFFREY AND J. RATHKE

Lemma A.9 (Guarded Substitutivity) If A, x: T =P =, QandAy: T — o+ Randy is guarded
in RthenA = R[(x: T)P/y] =, R(x: T)Q/Y].
Proof. Let 2 be defined as

AER[(x:T)P/y] ® R[(x:T)Q/y] whenevel\,y: T — o+ R andy is guarded irR
We show thatg is symmetric, reduction-closed up te-,=), ||-contextual, and barb-preserving
and so the result follows by Lemnia’A.4. Symmetifycontextuality, and barb-preservation are
direct. For reduction-closure up fe-, =) we suppose:

R[(x:T)P/y] — R’

By LemmdA® we have th&®” = R”[(x: T)P/y] and moreover:

RI(x:T)Q/y] — R[(x: T)Q/Y]
We use Lemm&Al7 to find B”” andz such thaty is guarded irR", zis unguarded irR"”" and
R” = R"[z/y|. Hence:
R' = R'[(x:T)P/y] (from above)
R"[(x:T)P/y,(x:T)P/Z (from above)
R R"[(x:T)Q/y,(x:T)P/Z (from definition of & andy guarded irR”"[(x: T)P/Z])
[(

~, R"[(x:T)Q/y,(x:T)Q/Z (from LemmdAB and unguarded iR"[(x: T)Q/Y])
= R’[(x:T)Q/y] (from above)
as required.]
Corollary A.10. If A,x: T =P=,QandA,y: T — o RthenA|=R[(x: T)P/y] =, R(Xx: T)Q/y].
Proof. Follows from LemmaBEAIT_Al8 arld A.9. O

Corollary A.11.

(1) FAX:TEP=;QandAFv:T —othenA=v-(X: T)P=pv- (x: T)Q.

(2) HAX:TEP=,QAFa:ch[T —olandA+ RthenA = a((x: T)P)R=pa((x: T)Q)R.
Proof. Follows from CorollanyCATD.]

Proof of Lemmal[Z2: The ‘only if’ direction is immediate. For the converse it isfficient to
show that=, is preserved by each process operator off#S demonstrated by Lemrha’A.1 and
Corollary[AT].]

APPENDIXB. MERGE IS A PARTIAL FUNCTION

Proof of Proposition[3.3: We consider the rewriting relation: which we will define as the one-step
rewriting used to define the merge operation:
C » V if C doesn't containk < v) for anyk,v
v@a:T).((k<v ||C) — v(@:T).(Cv/u]) iftgv
It is easy to see that» is a terminating rewriting relation. Moreover, the rewrgiwill terminate

with av” from C (so that((C)) is defined) exactly wherg(C) is acyclic. To see this we consider the
effect of - on reference graphs: for

(k<=v)|C —» Clv/1y]

CONTEXTUAL EQUIVALENCE FOR HIGHER-ORDERTCALCULUS REVISITED 21

the reference graph ¢k < v) || C has the nod& removed and any edges such that

I — k|
for I’,1 # k, are replaced with an edge

1" |

all other edges involving are removed. So if nodeis involved in a cycle before rewriting occurs,
that is

[—* k"1
for somel, then either it is dight loop, that isl = k andk — k, or| # k and the cycle still exist after
rewriting asl —* |. The side-condition on the rewrite rule forbids tight lodynce we see that
preserves cyclicity. That is:

if C — C’ thenrg(C) is acyclic if and only ifrg(C’) is acyclic.
Now, suppose tha{C)) is defined. We know that there exists a finite sequence
C»Ci—»-+—»Ci—>»V

with ((C)) = C,. We know thatg(C,) is acyclic as it contains no edges. ThygC) is acyclic also.
Conversely, suppose that(C) is acyclic. Then as» is terminating there must be a finite sequence

C»CL—»---—>»Cy

such thatC, cannot be rewritten. There are two possibilities for thithes rg(C,,) contains a tight
loop, orC, is v'. We see thatg(C) is acyclic, soC, is acyclic too and therefore cannot contain a
tight loop. ThusC, is v and((C)) is defined.

To show that(-)) is a well-defined partial function it suffices to show thasistrongly confluent
for acyclic terms. Note that ¥a: T.(C) — C’ then eithelC' is v or C' =va: T.(C") such that
C — C”. So without loss of generality suppose that

C—»C and C—»GC
for
C=C| (ki< wi) and C=C,|| (ky <o)
so that
C1 =Civa/Tx,] and Cr=Ch[va/T,).
So eitherk; = ky in which caseC; =C, ork; # 1, and
Ci=C5 || (ko = V) and C,=Cj| (ki <=w1)
We notice that

O
hS

Cj[v1/Tig]
(Ch || (ke <= Vo)) [V /Tig]
Cy[vi/Tig] || (k2 <= V2[va/Tiy])
Ch[vi/Tig] V2lva /Thy] /i)
Cé[vl[VZ [Vl/Tkl]/Tkz]/TkaZ [Vl/rkl]/TKZ]

(acyclicity) CaVa[V2/Tio) /Ty, V2 V1 / Ty |/ Tie |

(def) Cs
By a symmetric argument we see tkat— C5[Va[V1/Tk, | /Tk,, V1[V2/Tk,| /Tk,] @nd, by definition, this
is justCs so we haveC, — C3. Thus— is strongly confluent for acyclic terms and hen¢e) is
well-defined. U]

(acyclicity impliesty, ¢ Va[vi/Tk,])

11 T | R 1 1

22 A. JEFFREY AND J. RATHKE

REFERENCES

[1] L. Cardelliand A. Gordon. Mobhile ambients. Rroc. Foundations of Software Science and Computatiorc&ires
(FoSSaCS)Lecture Notes in Computer Science. Springer-Verlag, 1998
[2] C. Fournet and G. Gonthier. A hierarchy of equivalena@salsynchronous calculi. IRroc. Int. Conf. Automata,
Languages and Programming (ICALRplume 1443 of ecture Notes in Computer Scien&pringer-Verlag, 1998.
[3] C. Fournet, G. Gonthier, J-J. Levy, L. Maranget, and DnigeA calculus of mobile agents. IRroc. CONCUR
volume 1119 oL ecture Notes in Computer Scien&pringer-Verlag, 1996.
[4] A. Giacalone, P. Mishra, and S. Prasad. Facile: A symimatregration of concurrent and functional programming.
In Proc. TAPSOFTvolume 352 of_ecture Notes in Computer Scienpages 184—209. Springer-Verlag, 1989.
[5] M. Hennessy and J. Rathke. Typed behavioural equivaelefiar processes in the presence of subtypind?roc.
Computing: the Australasian Theory Symposium (CAE®RXtronic Notes in Theoretical Computer Science. Else-
vier, 2002.
[6] K. Honda and N. Yoshida. On reduction-based process sgesal heoretical Computer Sciencgs52(2):437-486,
1995.
[7] A.S.A Jeffrey and J. Rathke. A theory of bisimulation #ofragment of Concurrent ML with local names.Pnoc.
IEEE Symp. Logic in Computer Science (LIQ®)ges 311-321. Computer Society Press, 2000.
[8] A.S.A Jeffrey and J. Rathke. A fully abstract may testsgmantics for concurrent objects. Pnoc. IEEE Symp.
Logic in Computer Science (LIC$)ages 101-112. Computer Society Press, 2002.
[9] J. Riely and M. Hennessy. A typed language for distriduteobile processes. IRroc. ACM Conf. Principles of
Programming Languages (POPLACM Press, 1998.
[10] D. Sangiorgi.Expressing Mobility in Process Algebras: First-Order anighier-Order ParadigmsPhD thesis,
University of Edinburgh, 1993.
[11] D. Sangiorgi. Bisimulation for higher-order procesdauli. Information and Computatiqri31(2):141-178, 1996.
[12] D. Sangiorgi and R. Milner. On the problem of ‘weak bisilation up to’. InProc. CONCURvolume 630 otecture
Notes in Computer Scienggages 32—-46. Springer-Verlag, 1992.
[13] D. Sangiorgi and D. Walkef he pi-calculus: A Theory of mobile process€ambridge University Press, 2001.
[14] B. ThomsenCalculi for Higher-Order Communicating SysterhD thesis, University of London, 1990.
[15] J. Vitek and G. Castagna. Seal: A framework for securbile@omputations. linternet Programming Languages
volume 1686 oL ecture Notes in Computer Scien&pringer-Verlag, 1999.

This work is licensed under the Creative Commons Attribution-NoDerivs License. To view
a copy of this license, visit http://creativecommons.org/licenses/by-nd/2.0/ or send a letter to
Creative Commons, 559 Nathan Abbott Way, Stanford, California 94305, USA.

	1. Introduction
	2. Higher-order calculus
	2.1. Syntax
	2.2. Reduction semantics
	2.3. Type system
	2.4. Contextual equivalence

	3. Full abstraction
	3.1. Labelled transitions
	3.2. Bisimilarity
	3.3. Soundness of bisimilarity for contextual equivalence
	3.4. Completeness of bisimilarity for contextual equivalence

	4. Concluding remarks
	Appendix A. Proof of The Context Lemma
	Appendix B. Merge is a partial function
	References

