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Abstract. We study which standard operators of probabilistic process calculi allow for composi-
tional reasoning with respect to bisimulation metric semantics. We argue that uniform continuity
(generalizing the earlier proposed property of non-expansiveness) captures the essential nature of
compositional reasoning and allows now also to reason compositionally about recursive processes.
We characterize the distance between probabilistic processes composed by standard process algebra
operators. Combining these results, we demonstrate how compositional reasoning about systems
specified by continuous process algebra operators allows for metric assume-guarantee like perfor-
mance validation.

1. Introduction

Probabilistic process algebras, such as probabilistic CCS[JLY01, Bar04, DD07], CSP [JLY01,
Bar04, DvGH+07, DL12] and ACP [And99, And02], are languages that are employed to describe
probabilistic concurrent communicating systems, or probabilistic processes for short. Nondeter-
ministic probabilistic transition systems [Seg95] combine labeled transition systems [Kel76] and
discrete time Markov chains [Ste94, HJ94]. They allow us to model separately the reactive system
behavior, nondeterministic choices and probabilistic choices.

Behavioral semantics provide formal notions to compare systems. Behavioral equivalences are
behavioral semantics that allow us to determine the observational equivalence of systems by ab-
stracting from behavioral details that may be not relevant in a given application context. In essence,
behavioral equivalences equate processes that are indistinguishable to any external observer. The
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most prominent example is bisimulation equivalence [LS91,SL95, Seg95], which provides a well-
established theory of the behavior of probabilistic nondeterministic transition systems.

Recently it became clear that the notion of behavioral equivalence is too strict in the context
of probabilistic models. The probability values in those models originate either from observations
(statistical sampling) or from requirements (probabilistic specification). Behavioral equivalences
such as bisimulation equivalence are binary notions that can only answer the question if two sys-
tems behave precisely the same way or not. However, a tiny variation of the probabilities, which
may be due to a measurement error or limitations how precise aspecified probabilistic choice can
be realized in a concrete system, will make these systems behaviorally inequivalent without any
further information. In practice, many systems are approximately correct. This leads immediately
to the question of what is an appropriate notion to measure the quality of the approximation. The
most prominent notion is behavioral metric semantics [DGJP04, vBW05, DCPP06] which provides
a behavioral distance that characterizes how far the behavior of two systems is apart. Bisimulation
metrics are the quantitative analogue to bisimulation equivalences and assign to each pair of pro-
cesses a distance which measures the proximity of their quantitative properties. The distances form
a pseudometric1 with bisimilar processes at distance 0.

In order to specify and verify systems in a compositional manner, it is necessary that the be-
havioral semantics is compatible with all operators of the language that describe these systems. For
behavioral equivalence semantics there is common agreement that compositional reasoning requires
that the considered behavioral equivalence is a congruencewith respect to all language operators.
For example, consider a termf (s1, s2) which describes a system consisting of subcomponentss1

ands2 that are composed by the binary operatorf . When replacings1 with a behaviorally equiva-
lent s′1, ands2 with a behaviorally equivalents′2, congruence of the operatorf guarantees that the
composed systemf (s1, s2) is behaviorally equivalent to the resulting replacement system f (s′1, s

′
2).

This implies that equivalent systems are inter-substitutable: Whenever a systems in a language
contextC[s] is replaced by an equivalent systems′, the obtained contextC[s′] is equivalent toC[s].
The congruence property is important since it is usually much easier to model and study (a set of)
small systems and then combine them together rather than to work with a large monolithic system.

However, for behavioral metric semantics there is no satisfactory understanding of which prop-
erty an operator should satisfy in order to facilitate compositional reasoning. Intuitively, what is
needed is a formalization of the idea that systems close to each other should be approximately inter-
substitutable: Whenever a systems in a language contextC[s] is replaced by a close systems′,
the obtained contextC[s′] should be close toC[s]. In other words, there should be some relation
between the behavioral distance betweens and s′ and the behavioral distance betweenC[s] and
C[s′]. This ensures that any limited change in the behavior of a subcomponents implies a smooth
and limited change in the behavior of the composed systemC[s] (absence of chaotic behavior when
system components and parameters are modified in a controlled manner). Earlier proposals such
as non-expansiveness [DGJP04] and non-extensiveness [BBLM13] are only partially satisfactory
for non-recursive operators and even worse, they do not allow at all to reason compositionally over
recursive processes. More fundamentally, those proposalsare kind of ‘ad hoc’ and do not capture
systematically the essential nature of compositional metric reasoning.

In this paper we consider uniform continuity as a property that generalizes non-extensiveness
and non-expansiveness and captures the essential nature ofcompositional reasoning w.r.t. behavioral
metric semantics. A uniformly continuous binary process operator f ensures that for any non-zero

1A bisimulation metric is in fact a pseudometric. For convenience we use the term bisimulation metric instead of
bisimulation pseudometric.
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bisimulation distanceǫ (understood as the admissible tolerance from the operational behavior of the
composed processf (s1, s2)) there are non-zero bisimulation distancesδ1 andδ2 (understood as the
admissible tolerances from the operational behavior of theprocessess1 ands2) such that the distance
between the composed processesf (s1, s2) and f (s′1, s

′
2) is at mostǫ whenever the components′1

(resp.s′2) is in distance of at mostδ1 from s1 (resp. at mostδ2 from s2). Uniform continuity ensures
that a small variance in the behavior of the parts leads to a bounded small variance in the behavior
of the composed processes. Since uniformly continuous operators preserve the convergence of
sequences, this allows us to approximate composed systems by approximating its subsystems. In
summary, uniform continuity allows us to investigate the behavior of systems by disassembling them
into their components, analyze at the component level, and then derive properties of the composed
system. We consider the uniform notion of continuity (technically, theδi depend only onǫ and are
independent of the concrete systemssi) because we aim at universal compositionality guarantees.
As important notion of uniform continuity we consider Lipschitz continuity which ensures that the
ratio between the distance of composed processes and the distance between its parts is bounded.

Our main contributions are as follows:
(1) We develop for many non-recursive and recursive processoperators used in various probabilis-

tic process algebras tight upper bounds on the distance between processes combined by those
operators (Sections 3.2 and 4.2).

(2) We show that non-recursive process operators, esp. (nondeterministic and probabilistic variants
of) sequential, alternative and parallel composition, allow for compositional reasoning w.r.t. the
compositionality criteria of non-expansiveness and hencealso w.r.t. both Lipschitz and uniform
continuity (Section 3).

(3) We show that recursive process operators, e.g. (nondeterministic and probabilistic variants of)
Kleene-star iteration andπ-calculus bang replication, allow for compositional reasoning w.r.t.
the compositionality criterion of Lipschitz continuity and hence also w.r.t. uniform continuity,
but not w.r.t. non-expansiveness and non-extensiveness (Section 4).

(4) We discuss the copy operator proposed in [BIM95, FvGdW12] to specify the fork operation
of operating systems as an example of operator allowing for compositional reasoning w.r.t. the
compositionality criterion of uniform continuity, but notw.r.t. Lipschitz continuity.

(5) We demonstrate the practical relevance of our methods byreasoning compositionally over a
network protocol built from uniformly continuous operators. In detail, we show how to derive
performance guarantees for the entire system from performance assumptions about individual
components. In reverse, we show also how to derive performance requirements on individual
components from performance requirements of the complete system (Section 5).

2. Preliminaries

2.1. Probabilistic Transition Systems. We consider transition systems with process terms as states
and labeled transitions taking states to distributions over states. Process terms are inductively de-
fined by process combinators.

Definition 2.1 (Signature). A signatureis a structureΣ = (F, r), where

(1) F is a countable set ofoperators, and
(2) r : F → N is arank function.
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The rank function gives byr( f ) the arity of operatorf . We call operators with arity 0constants.
If the rank of f is clear from the context we will use the symboln for r( f ). We may writef ∈ Σ as
shorthand forΣ = (F, r) with f ∈ F.

Terms are defined by structural recursion over the signature. We assume an infinite set ofstate
variablesVs disjoint fromF.

Definition 2.2 (State terms). The set ofstate termsover a signatureΣ and a setV ⊆ Vs of state
variables, notationT(Σ,V), is the least set satisfying:

• V ⊆ T(Σ,V), and
• f (t1, . . . , tn) ∈ T(Σ,V) wheneverf ∈ Σ andt1, . . . , tn ∈ T(Σ,V).

We write c for c() if c is a constant. The set ofclosed state termsT(Σ, ∅) is abbreviated as
T(Σ). The set ofopen state termsT(Σ,Vs) is abbreviated asT(Σ). We may refer to operators inΣ as
process combinators, to state variables inVs asprocess variables, and to closed state terms inT(Σ)
asprocesses.

A probability distribution over the set of closed state terms T(Σ) is a mappingπ : T(Σ)→ [0, 1]
with

∑

t∈T(Σ) π(t) = 1 that assigns to each closed termt ∈ T(Σ) its respective probabilityπ(t). The
probability mass of a set of closed termsT ⊆ T(Σ) in some probability distributionπ is given by
π(T) =

∑

t∈T π(t). We denote by∆(T(Σ)) the set of all probability distributions overT(Σ). We let
π, π′ range over∆(T(Σ)).

Notation 2.3 (Notations for probability distributions). We denote byδ(t) with t ∈ T(Σ) the Dirac
distribution defined by (δ(t))(t) = 1 and (δ(t))(t′) = 0 for all t′ ∈ T(Σ) with t , t′. The convex
combination

∑

i∈I piπi of a family {πi}i∈I of probability distributionsπi ∈ ∆(T(Σ)) with pi ∈ (0, 1]
and
∑

i∈I pi = 1 is defined by (
∑

i∈I piπi)(t) =
∑

i∈I (piπi(t)) for all termst ∈ T(Σ). The expression
f (π1, . . . , πn) with f ∈ Σ andπi ∈ ∆(T(Σ)) denotes the product distribution ofπ1, . . . , πn defined by
( f (π1, . . . , πn))( f (t1, . . . , tn)) =

∏n
i=1 πi(ti) and (f (π1, . . . , πn))(t) = 0 for all termst ∈ T(Σ) not in the

form t = f (t1, . . . , tn). For binary operatorsf we may use the infix notation and writeπ1 f π2 for
f (π1, π2).

Next, we introduce a language to describe probability distributions. We assume an infinite
set ofdistribution variablesVd and letµ, ν range overVd. We denote byV the set of state and
distribution variablesV = Vs∪Vd and letζ, ζ′ range overV.

Definition 2.4 (Distribution terms). The set ofdistribution termsover a signatureΣ, a set of state
variablesVs ⊆ Vs and a set of distribution variablesVd ⊆ Vd, notationDT(Σ,Vs,Vd), is the least set
satisfying:

(1) Vd ⊆ DT(Σ,Vs,Vd),
(2) {δ(t) | t ∈ T(Σ,Vs)} ⊆ DT(Σ,Vs,Vd),
(3)
∑

i∈I piθi ∈ DT(Σ,Vs,Vd) wheneverθi ∈ DT(Σ,Vs,Vd) andpi ∈ (0, 1] with
∑

i∈I pi = 1, and
(4) f (θ1, . . . , θn) ∈ DT(Σ,Vs,Vd) wheneverf ∈ Σ andθ1, . . . , θn ∈ DT(Σ,Vs,Vd).

Distribution terms have the following meaning. Adistribution variableµ ∈ Vd is a variable
that takes values from∆(T(Σ)). An instantiable Dirac distributionδ(t) is an expression that takes
as value the Dirac distributionδ(t′) when state variables int are substituted such thatt becomes
the closed termt′. Case 3 allows us to construct convex combinations of distributions. Case 4 lifts
structural recursion from state terms to distribution terms.

The set ofclosed distribution termsDT(Σ, ∅, ∅) is abbreviated asDT(Σ). The set ofopen distri-
bution termsDT(Σ,Vs,Vd) is abbreviated asDT(Σ). We writeθ1 ⊕p θ2 for

∑2
i=1 piθi with p1 = p

andp2 = 1− p. Furthermore, for binary operatorsf we may use the infix notaion and writeθ1 f θ2
for f (θ1, θ2).
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Definition 2.5 (Substitution). A substitutionis a mappingσ : V → T(Σ) ∪ DT(Σ) such thatσ(x) ∈
T(Σ), if x ∈ Vs, andσ(µ) ∈ DT(Σ), if µ ∈ Vd. A substitutionσ extends to a mapping from state
terms to state terms byσ( f (t1, . . . , tn)) = f (σ(t1), . . . , σ(tn)). A substitutionσ extends to a mapping
from distribution terms to distribution terms by

(i) σ(δ(t)) = δ(σ(t)),
(ii) σ(

∑

i∈I piθi) =
∑

i∈I piσ(θi), and
(iii) σ( f (θ1, . . . , θn)) = f (σ(θ1), . . . , σ(θn)).

A substitutionσ is closedif σ(x) ∈ T(Σ) for all x ∈ Vs andσ(µ) ∈ DT(Σ) for all µ ∈ Vd. Notice that
closed distribution terms denote distributions in∆(T(Σ)).

Probabilistic nondeterministic labelled transition systems [Seg95], PTSs for short, extend la-
belled transition systems by allowing for probabilistic choices in the transitions. As state space we
will take the set of all closed termsT(Σ).

Definition 2.6 (PTS, [Seg95]). A probabilistic nondeterministic labeled transition system (PTS)
over the signatureΣ is given by a triple (T(Σ),A,−→), where:

• T(Σ) is the set of all closed terms overΣ,
• A is a countable set ofactions, and
• −→ ⊆ T(Σ) × A× ∆(T(Σ)) is atransition relation.

We call (t, a, π) ∈ −→ a transition from statet to distributionπ labelled by actiona. We write

t
a−→ π for (t, a, π) ∈ −→. Moreover, we writet

a−→ if there exists some distributionπ ∈ ∆(T(Σ)) with
t

a−→ π, andt
a−→6 if there is no distributionπ ∈ ∆(T(Σ)) with t

a−→ π. For a closed termt ∈ T(Σ) and
an actiona ∈ A, let der(t, a) = {π ∈ ∆(T(Σ)) | t a−→ π} denote the set of all distributions reachable
from t by performing ana-labeled transition. We callder(t, a) also thea-derivativesof t.

We say that a PTS isimage-finiteif der(t, a) is finite for each closed termt and actiona. In the
rest of the paper we assume to deal with image finite PTSs.

2.2. Bisimulation metric. Bisimulation metric2 [DGJP04, vBW05, DCPP06] provides a robust
semantics for PTSs. It is the quantitative analogue to bisimulation equivalence and assigns to each
pair of states a distance which measures the proximity of their quantitative properties. The distances
form a pseudometric where bisimilar processes are at distance 0.

Definition 2.7 (Pseudometric overT(Σ)). A function d: T(Σ) × T(Σ) → [0, 1] is a1-bounded pseu-
dometricif

• d(t, t) = 0 for all t ∈ T(Σ),
• d(t, t′) = d(t′, t) for all t, t′ ∈ T(Σ) (symmetry), and
• d(t, t′) ≤ d(t, t′′) + d(t′′, t′) for all t, t′, t′′ ∈ T(Σ) (triangle inequality).

We will define later bisimulation metrics as 1-bounded pseudometrics that measure how much
two states disagree on their reactive behavior and their probabilistic choices. Note that a pseudo-
metricd permits thatd(t, t′) = 0 even ift andt′ are different terms (in contrast to a metricd). This
will allow us to assign distance 0 to different bisimilar states. We will provide two (equivalent)
characterizations of bisimulation metrics in terms of a coinductive definition pattern and in terms of
fixed points.

2A bisimulation metric is in fact a pseudometric. In line withthe literature we use the term bisimulation metric instead
of bisimulation pseudometric.



6 D. GEBLER, K. G. LARSEN, AND S. TINI

Both characterizations require the following lattice structure. Let ([0, 1]T(Σ)×T(Σ),⊑) be the com-
plete lattice of functionsd: T(Σ) × T(Σ) → [0, 1] ordered byd1 ⊑ d2 iff d1(t, t′) ≤ d2(t, t′) for
all t, t′ ∈ T(Σ). Then for eachD ⊆ [0, 1]T(Σ)×T(Σ) the supremum and infinimum are sup(D)(t, t′) =
supd∈D d(t, t′) and inf(D)(t, t′) = infd∈D d(t, t′) for all t, t′ ∈ T(Σ). The bottom element is the constant
zero function0 given by0(t, t′) = 0, and the top element is the constant one function1 given by
1(t, t′) = 1, for all t, t′ ∈ T(Σ).

2.2.1. Metrical lifting. Bisimulation metric is characterized using the quantitative analogous of the
bisimulation game, meaning that two statest, t′ ∈ T(Σ) at some given distance can mimic each
other’s transitions and evolve to distributions that are atdistance not greater than the distance be-
tween the source states. Technically, we need a notion that lifts pseudometrics from states to distri-
butions (to capture probabilistic choices).

A 1-bounded pseudometric on termsT(Σ) is lifted to a 1-bounded pseudometric on distribu-
tions∆(T(Σ)) by means of the Kantorovich pseudometric [DD09]. This lifting is the quantitative
analogous of the lifting of bisimulation equivalence relations on terms to bisimulation equivalence
relations on distributions [vBW01].

A matchingfor a pair of distributions (π, π′) ∈ ∆(T(Σ)) × ∆(T(Σ)) is a distribution over the
product state spaceω ∈ ∆(T(Σ) × T(Σ)) with left marginalπ, i.e.

∑

t′∈T(Σ) ω(t, t′) = π(t) for all
t ∈ T(Σ), and right marginalπ′, i.e.

∑

t∈T(Σ) ω(t, t′) = π′(t′) for all t′ ∈ T(Σ). Let Ω(π, π′) denote
the set of all matchings for (π, π′). Intuitively, a matchingω ∈ Ω(π, π′) may be understood as a
transportation schedule that describes the shipment of probability mass fromπ to π′. Historically
this motivation dates back to the Monge-Kantorovich optimal transport problem [Vil08].

Definition 2.8 (Kantorovich lifting). Let d: T(Σ) × T(Σ) → [0, 1] be a 1-bounded pseudometric.
TheKantorovich liftingof d is a 1-bounded pseudometricK (d) : ∆(T(Σ))×∆(T(Σ))→ [0, 1] defined
by

K (d)(π, π′) = min
ω∈Ω(π,π′)

∑

t,t′∈T(Σ)

d(t, t′) · ω(t, t′)

for all π, π′ ∈ ∆(T(Σ)). We callK (d) theKantorovich pseudometricof d.

In order to capture nondeterministic choices, we need to lift pseudometrics on distributions to
pseudometrics on sets of distributions.

Definition 2.9 (Hausdorff lifting) . Let d̂: ∆(T(Σ))×∆(T(Σ))→ [0, 1] be a 1-bounded pseudometric.
The Hausdorff lifting of d̂ is a 1-bounded pseudometricH(d̂) : P(∆(T(Σ))) × P(∆(T(Σ))) → [0, 1]
defined by

H(d̂)(Π1,Π2) = max

{

sup
π1∈Π1

inf
π2∈Π2

d̂(π1, π2), sup
π2∈Π2

inf
π1∈Π1

d̂(π2, π1)

}

for all Π1,Π2 ⊆ ∆(T(Σ)), with inf ∅ = 1, and sup∅ = 0. We callH(d̂) theHausdorff pseudometric
of d̂.

2.2.2. Coinductive characterization.A 1-bounded pseudometric is a bisimulation metric if for all
pairs of termst andt′ each transition oft can be mimicked by a transition oft′ with the same label
and the distance between the accessible distributions doesnot exceed the distance betweent andt′.
By means of adiscount factorλ ∈ (0, 1], we allow to specify how much the behavioral distance of
future transitions is taken into account [DAHM03, DGJP04].The discount factorλ = 1 expresses
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no discount, meaning that the differences in the behavior betweent andt′ are considered irrespective
of after how many steps they can be observed.

Definition 2.10 (Bisimulation metric [DGJP04]). A 1-bounded pseudometricd: T(Σ) × T(Σ) →
[0, 1] is aλ-bisimulation metricwith λ ∈ (0, 1] if for all terms t, t′ ∈ T(Σ) with d(t, t′) < 1, if t

a−→ π
then there exists a transitiont′

a−→ π′ for a distributionπ′ ∈ ∆(T(Σ)) such thatλ·K (d)(π, π′) ≤ d(t, t′).

We refer toλ · K (d)(π, π′) ≤ d(t, t′) as the bisimulation transfer condition. We call the smallest
(w.r.t.⊑) λ-bisimulation metricλ-bisimilarity metric[DCPP06] and denote it by the symbold. We
mean byλ-bisimulation distancebetweent andt′ the distanced(t, t′). If λ is clear from the context,
we may refer by bisimulation metric, bisimilarity metric and bisimulation distance toλ-bisimulation
metric,λ-bisimilarity metric andλ-bisimulation distance. Moreover, we may call the 1-bisimilarity
metric also non-discounting bisimilarity metric. Bisimilarity equivalence is the kernel of theλ-
bisimilarity metric [DGJP04], namelyd(t, t′) = 0 iff t andt′ are bisimilar.

Example 2.11. Assume a PTS with transitions−→ = {s a−→ πs, t
a−→ πt} wherebyπs = 0.5δ(s) +

0.5δ(0) andπt = (0.5+ǫ)δ(s)+ (0.5−ǫ)δ(0) for some arbitraryǫ ∈ [0, 0.5]. Furthermore, assume a 1-
bounded pseudometricd with d(s, s) = d(0, 0) = 0 andd(s, 0) = d(0, s) = 1. We haveK (d)(πs, πt) =
ǫ, by the matchingω ∈ Ω(πs, πt) defined byω(s, s) = 0.5,ω(0, s) = ǫ andω(0, 0) = 0.5− ǫ. Then,d
is a bisimulation metric if it satisfies the bisimulation transfer conditiond(s, t) ≥ λK (d)(πs, πt) = λǫ.
Moreover, the bisimilarity metric assigns the distanced(t, s) = λǫ.

2.2.3. Fixed point characterization.We provide now an alternative characterization of bisimulation
metric in terms of prefixed points of an appropriate monotonebisimulation functional [DCPP06].
Bisimilarity metric is then the least fixed point of this functional. Moreover, the fixed point approach
allows us also to express up-to-k bisimulation metrics which measure the bisimulation distance for
only the firstk transition steps.

Definition 2.12(Bisimulation metric functional). Let B : [0, 1]T(Σ)×T(Σ) → [0, 1]T(Σ)×T(Σ) be the func-
tion defined by

B(d)(t, t′) = sup
a∈A

{

H(λ · K (d))(der(t, a), der(t′, a))
}

for d: T(Σ) × T(Σ)→ [0, 1] andt, t′ ∈ T(Σ), with (λ · K (d))(π, π′) = λ · K (d)(π, π′).

It is easy to show thatB is a monotone function on ([0, 1]T(Σ)×T(Σ),⊑). The following Proposition
characterizes bisimulation metrics as prefixed points ofB.

Proposition 2.13([DCPP06]). Let d: T(Σ) × T(Σ) → [0, 1] be a1-bounded pseudometric. Then
B(d) ⊑ d iff d is a bisimulation metric.

Proposition 2.13 provides the fixed point characterizationof bisimulation metrics and shows
that it coincides with the coinductive characterization ofDefinition 2.10. SinceB is a monotone
function on the complete lattice ([0, 1]T(Σ)×T(Σ),⊑), we can characterize the bisimilarity metric as
least fixed point ofB.

Proposition 2.14([DCPP06]). The bisimilarity metricd is the least fixed point ofB.

Moreover, the fixed point approach allows us to define a notionof bisimulation distance that
considers only the firstk trasnsition steps.

Definition 2.15(Up-to-k bisimilarity metric). We define theup-to-k bisimilarity metricdk for k ∈ N
by dk = Bk(0).
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We calldk(s, t) the up-to-k bisimulation distance betweensandt.

If the PTS is image-finite and, moreover, for each transitiont
a−→ π we have that the support

of π is finite, thenB is monotone and continuous, which ensures that the closure ordinal of B is
ω [vB12]-Section 3. As a consequence, up-to-k bisimulation distances converge to the bisimulation
distances whenk→ ∞, which opens the door to show properties of the bisimulationmetric by using
a simple inductive argument [vB12].

Proposition 2.16([vB12]). Assume an image-finite PTS s.t. for each transition t
a−→ π we have that

the distributionπ has finite support. Thend = limk→∞ dk.

2.2.4. Properties of bisimulation metrics.We give now an important property of bisimulation met-
rics that will be essential for the argumentation later in the technical sections.

The bisimulation distance between statest andt′ measures the difference of the reactive behav-
ior of t andt′ (i.e. which actions can or cannot be performed) along their evolution. An important
distinction is if two states can perform the same initial actions. In this case, the behavioral distance
is given by the bisimulation game on the derivatives. Otherwise, the two states get the maximal
distance of 1 assigned since there is a transition by one of these states that cannot be mimicked by
the other state.

We say that statest andt′ do not totally disagreeif d(t, t′) < 1. If states do not totally disagree,
then they agree on which actions they can perform immediately.

Proposition 2.17. Let d: T(Σ) × T(Σ)→ [0, 1] be a1-bounded pseudometric. Then

(1) B(d)(t, t′) < 1 implies t
a−→⇔ t′

a−→ for all a ∈ A,

(2) d(t, t′) < 1 implies t
a−→⇔ t′

a−→ for all a ∈ A, if d is a bisimulation metric.

Proof. We start with Proposition 2.17.1 and reason as follows.

B(d)(t, t′) < 1

⇔ ∀a ∈ A.H(λ · K (d))(der(t, a), der(t′, a)) < 1

⇒ ∀a ∈ A.((der(t, a) = ∅ = der(t′, a)) ∨ (der(t, a) , ∅ , der(t′, a)))

⇔ ∀a ∈ A.(t
a−→⇔ t′

a−→).

Now we show Proposition 2.17.2. By Proposition 2.13 we get thatd(t, t′) < 1 impliesB(d)(t, t′) < 1.
The thesis follows now from Proposition 2.17.1.

Moreover, ifλ < 1 the implications in both cases also hold in the other direction.

Remark 2.18. The bisimulation distanced(t, t′) between termst andt′ is in [0, λ]∪{1}. If λ ∈ (0, 1),
then:

(1) d(t, t′) = 1 iff t can perform an action whicht′ cannot (or vice versa), i.e. der(t, a) , ∅ and
der(t′, a) = ∅ for some actiona ∈ A;

(2) d(t, t′) = 0 iff t andt′ have the same reactive behavior (are bisimilar); and
(3) d(t, t′) ∈ (0, λ] iff t andt′ have the same set of initial moves, i.e. der(t, a) = der(t′, a), and have

different reactive behavior after performing the same initial actions.

Notice that in the first case the discountλ does not apply since the different behaviors are observed
immediately. Ifλ = 1 then the first and last case collapse, i.e.d(t, t′) = 0 iff t andt′ have the same
reactive behavior (are bisimilar), andd(t, t′) ∈ (0, 1] iff t andt′ have different reactive behavior.
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2.2.5. Properties of the Kantorovich lifting.The Kantorovich pseudometric satisfies important prop-
erties that will be essential to prove our technical results. In detail, the Kantorovich lifting functional
is monotone, the Dirac operator is an isometric embedding ofthe metric space of states into the met-
ric space of distributions, and probabilistic choice distributes over the Kantorovich lifting.

Proposition 2.19([Pan09]). Let d and d′ be any1-bounded pseudometrics. Then

(1) K (d) ⊑ K (d′) if d ⊑ d′;
(2) K (d)(δ(t), δ(t′)) = d(t, t′) for all t, t′ ∈ T(Σ);
(3) K (d)(

∑

i∈I piπi ,
∑

i∈I piπ
′
i ) ≤

∑

i∈I pi · K (d)(πi , π
′
i ) for all πi , π

′
i ∈ ∆(T(Σ)) and pi ∈ [0, 1] with

∑

i∈I pi = 1.

Now we will show a very important new result stating that the Kantorovich lifting preserves con-
cave moduli of continuity of language operators. In other words, moduli of continuity of language
operators distribute over probabilistic choices.

Theorem 2.20. Let d: T(Σ) × T(Σ) → [0, 1] be any1-bounded pseudometric. Assume an n-ary
operator f ∈ Σ and a concave3 function z: [0, 1]n → [0, 1] with

d( f (t1, . . . , tn), f (t′1, . . . , t
′
n)) ≤ z(d(t1, t

′
1), . . . , d(tn, t

′
n))

for all terms t1, t′1, . . . , tn, t
′
n ∈ T(Σ). Then we have

K (d)( f (π1, . . . , πn), f (π′1, . . . , π
′
n)) ≤ z(K (d)(π1, π

′
1), . . . ,K (d)(πn, π

′
n))

for all probability distributionsπ1, π
′
1, . . . , πn, π

′
n ∈ ∆(T(Σ)).

Proof. We assumeωi ∈ Ω(πi , π
′
i ) to be an optimal matching such thatK (d)(πi , π

′
i ) =
∑

t,t′∈T(Σ) d(t, t′)·
ωi(t, t′), i.e. a matching betweenπi andπ′i which yields the Kantorovich distanceK (d)(πi , π

′
i ). We

define a new distribution over the product spaceω ∈ ∆(T(Σ) × T(Σ)) by

ω( f (t1, . . . , tn), f (t′1, . . . , t
′
n)) =

n
∏

i=1

ωi(ti , t
′
i )

for all t1, t′1, . . . , tn, t
′
n ∈ T(Σ). First, we show thatω is a joint probability distribution with left

marginal f (π1, . . . , πn) and right marginalf (π′1, . . . , π
′
n). The left marginal is

∑

t′∈T(Σ)

ω( f (t1, . . . , tn), t′)

=
∑

t′1,...,t
′
n∈T(Σ)

ω( f (t1, . . . , tn), f (t′1, . . . , t
′
n))

=
∑

t′1,...,t
′
n∈T(Σ)

n
∏

i=1

ωi(ti , t
′
i )

=

n
∏

i=1

∑

t′i ∈T(Σ)

ωi(ti , t
′
i )

=

n
∏

i=1

πi(ti)

= f (π1, . . . , πn)( f (t1, . . . , tn))

3A function z: [0, 1]n → [0,1] is called concave if, for anyx1, . . . , xn, y1, . . . , yn ∈ [0,1] and anyλ ∈ [0,1], z((1 −
λ)x1 + λy1, . . . , (1− λ)xn + λyn) ≥ (1− λ)z(x1, . . . , xn) + λz(y1, . . . , yn).
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with
∑

t′1,...,t
′
n∈T(Σ)

∏n
i=1ωi(ti , t′i ) =

∏n
i=1
∑

t′i ∈T(Σ) ωi(ti , t′i ) by induction overn with induction step

∑

t′1,...,t
′
n+1∈T(Σ)

n+1
∏

i=1

ωi(ti , t
′
i )

=
∑

t′1,...,t
′
n∈T(Σ)

∑

t′n+1∈T(Σ)

ωn+1(tn+1, t
′
n+1)

n
∏

i=1

ωi(ti , t
′
i )

=
∑

t′n+1∈T(Σ)

ωn+1(tn+1, t
′
n+1)

∑

t′1,...,t
′
n∈T(Σ)

n
∏

i=1

ωi(ti , t
′
i )

=
∑

t′n+1∈T(Σ)

ωn+1(tn+1, t
′
n+1)

n
∏

i=1

∑

t′i ∈T(Σ)

ωi(ti , t
′
i )

=

n+1
∏

i=1

∑

t′i ∈T(Σ)

ωi(ti , t
′
i ).

The right marginal is computed analogously. Hence,ω ∈ Ω( f (π1, . . . , πn), f (π′1, . . . , π
′
n)), i.e.ω is a

matching for distributionsf (π1, . . . , πn) and f (π′1, . . . , π
′
n).

The proof obligation can be derived now by

K (d)( f (π1, . . . , πn), f (π′1, . . . , π
′
n))

≤
∑

t1,...,tn
t′1,...,t

′
n
∈T(Σ)

d( f (t1, . . . , tn), f (t′1, . . . , t
′
n)) · ω( f (t1, . . . , tn), f (t′1, . . . , t

′
n))

=
∑

t1,...,tn
t′1,...,t

′
n
∈T(Σ)

d( f (t1, . . . , tn), f (t′1, . . . , t
′
n)) ·

n
∏

i=1

ωi(ti , t
′
i )

≤
∑

t1,...,tn
t′1,...,t

′
n
∈T(Σ)

z(d(t1, t
′
1), . . . , d(tn, t

′
n)) ·

n
∏

i=1

ωi(ti , t
′
i )

≤ z





























∑

t1,...,tn
t′1,...,t

′
n
∈T(Σ)

(d(t1, t
′
1), . . . , d(tn, t

′
n)) ·

n
∏

i=1

ωi(ti , t
′
i )





























= z





























∑

t1,...,tn
t′1,...,t

′
n
∈T(Σ)















d(t1, t
′
1) ·

n
∏

i=1

ωi(ti , t
′
i ), . . . , d(tn, t

′
n) ·

n
∏

i=1

ωi(ti , t
′
i )











































= z

























































∑

t1,...,tn
t′1,...,t

′
n
∈T(Σ)

d(t1, t
′
1) ·

n
∏

i=1

ωi(ti , t
′
i ), . . . ,

∑

t1,...,tn
t′1,...,t

′
n
∈T(Σ)

d(tn, t
′
n) ·

n
∏

i=1

ωi(ti , t
′
i )

























































= z









































∑

t1,t′1∈T(Σ)

d(t1, t
′
1)ω1(t1, t

′
1), . . . ,

∑

tn,t′n∈T(Σ)

d(tn, t
′
n)ωn(tn, t

′
n)











































COMPOSITIONAL BISIMULATION METRIC REASONING WITH PROBABILISTIC PROCESS CALCULI 11

= z(K (d)(π1, π
′
1), . . . ,K (d)(πn, π

′
n))

whereby the reasoning steps are derived as follows: step 1 from the fact thatω is a matching for
distributions f (π1, . . . , πn) and f (π′1, . . . , π

′
n), step 2 by the definition ofω, step 3 by the assumption

d( f (t1, . . . , tn), f (t′1, . . . , t
′
n)) ≤ z(d(t1, t′1), . . . , d(tn, t′n)), step 4 by using Jensen’s inequality for the

concave functionz, step 7 by
∑

t1,...,tn
t′1,...,t

′
n
∈T(Σ) d(t1, t′1) ·∏n

i=1ωi(ti , t′i ) =
∑

t1,t′1∈T(Σ) d(t1, t′1)ω1(t1, t′1), and

step 8 by the definition ofK .

2.3. PGSOS Specifications.We will specify the operational semantics of operators by SOS rules
in the probabilistic GSOS format [Bar04, LGD12, DGL15]. Theprobabilistic GSOS format, PG-
SOS format for short, is the quantitative generalization ofthe classical nondeterministic GSOS for-
mat [BIM95]. It is more general than earlier formats [LT05, LT09] which consider transitions of the

form t
a,q
−−−→ t′ modeling that termt reaches through actiona the termt′ with probabilityq. The prob-

abilistic GSOS format allows us to specify probabilistic nondeterministic process algebras, such as
probabilistic CCS [JLY01, Bar04, DD07], probabilistic CSP[JLY01, Bar04, DvGH+07, DL12] and
probabilistic ACP [And99, And02].

Definition 2.21 (PGSOS rule, [Bar04, LGD12]). A PGSOS rule rhas the form:

{xi
ai,k−−−→ µi,k | i ∈ I , k ∈ Ki} {xi

bi,l−−−→6 | i ∈ I , l ∈ Li}

f (x1, . . . , xn)
a−→ θ

with f ∈ Σ an operator with rankn, I = {1, . . . , n} indices for the arguments off , Ki , Li finite index
sets,ai,k, bi,l , a ∈ A actions,xi ∈ Vs state variables,µi,k ∈ Vd distribution variables, andθ ∈ DT(Σ) a
distribution term. Furthermore, the following constraints need to be satisfied:
(1) all µi,k for i ∈ I , k ∈ Ki are pairwise different;
(2) all x1, . . . , xn are pairwise different;
(3) Var(θ) ⊆ {µi,k | i ∈ I , k ∈ Ki} ∪ {x1 . . . , xn}.

The PGSOS constraints 1–3 are precisely the constraints of the nondeterministic GSOS for-
mat [BIM95] where the variables in the right-hand side of theliterals are replaced by distribution
variables.

Notation 2.22(Notations for rules). Let r be a PGSOS rule. The expressionsxi
ai,k−−−→ µi,k, xi

bi,l−−−→6
and f (x1, . . . , xn)

a−→ θ are called, resp.,positive premises, negative premisesandconclusion. The
set of all premises is denoted by prem(r) and the conclusion by conc(r). The term f (x1, . . . , xn) is
called thesource, the variablesx1, . . . , xn are calledsource variables, and the distribution termθ is
called thetarget.

Given a set of rulesR we denote byRf the rules specifying operatorf , i.e. all rules ofR with
sourcef (x1, . . . , xn), and byRf ,a the rules specifying ana-labelled transition for operatorf , i.e. all
rules ofRf with a conclusion that isa-labelled.

Definition 2.23 (PTSS). A probabilistic transition system specification(PTSS) in PGSOS format
is a tripleP = (Σ,A,R), where

• Σ is a signature,
• A is a countable set of actions,
• R is a countable set of PGSOS rules, and
• Rf ,a is finite for all f ∈ Σ anda ∈ A.
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The last property ensures that the supported model (Defintion 2.25) is image-finite such that the
fixed point characterization of bisimulation metrics coincides with the coinductive characterization
(Proposition 2.14).

The operational semantics of terms is given by inductively applying the respective PGSOS
rules. Then, a supported model of a PTSS describes the operational semantics of all terms. In other
words, a supported model of a PGSOS specificationP is a PTSM with transition relation−→ such
that−→ contains all and only those transitions for which the rules of P offer a justification.

Definition 2.24 (Supported transition). Let P = (Σ,A,R) be a PTSS andr ∈ R be a rule. Given a
PTSM = (T(Σ),A,−→) and a closed substitutionσ, we say that theσ-instance ofr is satisfiedin M

and allows to derivet
a−→ π, formally M |=σr t

a−→ π, if

• σ(xi)
ai,k−−−→ σ(µi,k) ∈ −→ for all xi

ai,k−−−→ µi,k ∈ prem(r),

• σ(xi)
bi,l−−−→ π < −→ for anyπ ∈ ∆(T(Σ)), for all xi

bi,l−−−→6 ∈ prem(r), and

• t
a−→ π ∈ −→ for t

a−→ π = σ(conc(r)).

We call a transitiont
a−→ π in M supportedby P, notationM |=P t

a−→ π, if there is somer ∈ Rand a

closed substitutionσ such thatM |=σr t
a−→ π.

The supported transitions of a PTSSP form the supported model ofP.

Definition 2.25 (Supported model). Let P = (Σ,A,R) be a PTSS. A PTSM = (T(Σ),A,−→) is a
supported modelif

t
a−→ π iff M |=P t

a−→ π
for all t

a−→ π ∈ −→.

Each PTSS in PGSOS format has a supported model which is moreover unique [BIM95, Bar04].
We call the single supported PTS of a PTSSP also theinduced modelof P.

Intuitively, a term f (t1, . . . , tn) represents the composition of termst1, . . . , tn by operatorf . A

rule r specifies some transitionf (t1, . . . , tn)
a−→ π that represents the evolution of the composed term

f (t1, . . . , tn) by actiona to the distributionπ.

Definition 2.26 (Disjoint extension [ABV94]). Let P1 = (Σ1,A,R1) andP2 = (Σ2,A,R2) be two
PGSOS PTSSs.P2 is a disjoint extensionof P1, notationP1 ⊑ P2, iff Σ1 ⊆ Σ2, R1 ⊆ R2 andR2

introduces no new rule for any operator inΣ1.

3. Non-recursive processes

We start by discussing compositional reasoning over probabilistic processes that are composed by
non-recursive process combinators. First we introduce themost common non-recursive process
combinators, then study the distance between processes composed by these combinators, and con-
clude by analyzing their compositionality properties. Ourstudy of compositionality properties gen-
eralizes earlier results of [DGJP04, DCPP06] which considered only a small set of process combina-
tors and only the compositionality property of non-expansiveness. The development of tight bounds
on the distance between composed processes (necessary for effective metric assume-guarantee per-
formance validation) is novel.
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ε

√

−−→ δ(0) a.
n
⊕

i=1

[pi ]xi
a−→

n
∑

i=1

piδ(xi)

x
a−→ µ a ,

√

x; y
a−→ µ; δ(y)

x
√

−−→ µ y
a−→ ν

x; y
a−→ ν

x
a−→ µ

x+ y
a−→ µ

y
a−→ ν

x+ y
a−→ ν

x
a−→ µ y

a−→ ν a ,
√

x | y a−→ µ | ν
x
√

−−→ µ y
√

−−→ ν

x | y
√

−−→ δ(0)

x
a−→ µ a ,

√

x ||| y a−→ µ ||| δ(y)

y
a−→ ν a ,

√

x ||| y a−→ δ(x) ||| ν
x
√

−−→ µ y
√

−−→ ν

x ||| y
√

−−→ δ(0)

x
a−→ µ y

a−→ ν a ∈ B \ {
√
}

x ||B y
a−→ µ ||B ν

x
√

−−→ µ y
√

−−→ ν

x ||B y
√

−−→ δ(0)

x
a−→ µ a < B∪ {

√
}

x ||B y
a−→ µ ||B δ(y)

y
a−→ ν a < B∪ {

√
}

x ||B y
a−→ δ(x) ||B ν

Table 1: Standard non-recursive process combinators

3.1. Non-recursive process combinators.We introduce now a probabilistic process algebra that
comprises many of the probabilistic process combinators from CCS [JLY01, Bar04, DD07] and
CSP [JLY01, Bar04, DvGH+07, DL12]. Assume a set of actionsA, with

√
∈ A denoting the

successful termination action. LetΣPA be the signature with the following operators:

• constants 0 (stop process) andε (skip process);
• a family ofn-ary probabilistic prefix operatorsa.([p1] ⊕. . .⊕[pn] ) with a ∈ A, n ≥ 1, p1, . . . , pn ∈

(0, 1] and
∑n

i=1 pi = 1;
• binary operators

– ; (sequential composition),
– + (alternative composition),
– +p (probabilistic alternative composition), withp ∈ (0, 1),
– | (synchronous parallel composition),
– ||| (asynchronous parallel composition),
– |||p (probabilistic parallel composition), withp ∈ (0, 1), and
– ‖B for each for eachB ⊆ A (CSP-like parallel composition).

The PTSSPPA = (ΣPA,A,RPA) is given by the set of PGSOS rulesRPA in Table 1 and Table 2.
The probabilistic prefix operator expresses that the process a.([p1]t1 ⊕ . . . ⊕ [pn]tn) can per-

form actiona and evolves to processti with probability pi . Sometimes we writea.
⊕n

i=1[pi ]ti for
a.([p1]t1 ⊕ . . . ⊕ [pn]tn) anda.t for a.([1]t) (deterministic prefix operator). The sequential compo-
sition and the alternative composition are as usual. The synchronous parallel compositiont | t′

describes the simultaneous evolution of processest andt′, while the asynchronous parallel compo-
sition t ||| t′ describes the interleaving oft andt′ where both processes can progress by alternating
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x
a−→ µ y

a−→6
x+p y

a−→ µ
x

a−→6 y
a−→ ν

x+p y
a−→ ν

x
a−→ µ y

a−→ ν
x+p y

a−→ µ ⊕p ν

x
a−→ µ y

a−→6 a ,
√

x |||p y
a−→ µ |||p δ(y)

x
a−→6 y

a−→ ν a ,
√

x |||p y
a−→ δ(x) |||p ν

x
a−→ µ y

a−→ ν a ,
√

x |||p y
a−→ µ |||p δ(y) ⊕p δ(x) |||p ν

x
√

−−→ µ y
√

−−→ ν

x |||p y
√

−−→ δ(0)

Table 2: Standard non-recursive probabilistic process combinators

at any rate the execution of their actions. The CSP-like parallel compositiont ‖B t′ describes multi-
party synchronization wheret andt′ synchronize on actions inB and evolve independently for all
other actions.

The probabilistic variants of the alternative compositionand the asynchronous parallel compo-
sition replace the nondeterministic choice of their non-probabilistic variant by a probabilistic choice.
The probabilistic alternative compositiont +p t′ evolves to the probabilistic choice between a distri-
bution reached byt (with probability p) and a distribution reached byt′ (with probability 1− p) for
actions which can be performed by both processes. For actions that can be performed by either only
t or only t′, the probabilistic alternative compositiont +p t′ behaves just like the nondeterministic
alternative compositiont + t′. Similarly, the probabilistic parallel compositiont |||p t′ evolves to a
probabilistic choice (with respectively the probabilityp and 1−p) between the two nondeterministic
choices of the nondeterministic parallel compositiont ||| t′ for actions which can be performed by
both t andt′. For actions that can be performed by either onlyt or only t′, the probabilistic parallel
compositiont |||p t′ behaves just like the nondeterministic parallel composition t ||| t′.

3.2. Distance between processes combined by non-recursive process combinators.We develop
now tight bounds on the distance between processes combinedby the non-recursive process combi-
nators presented in Table 1 and Table 2. This will allow us to derive the compositionality properties
of those operators. As we will discuss two different compositionality properties for non-recursive
process combinators (non-extensiveness, Definition 3.4, and non-expansiveness, Definition 3.7), we
split in this section the discussion on the distance bounds accordingly. We use disjoint extensions
of the specification of the process combinators in order to reason over the composition of arbitrary
processes.

We will express the bound on the distance between composed processesf (s1, . . . , sn) and
f (t1, . . . , tn) in terms of the distance between their respective components si and ti . Intuitively,
given a probabilistic processf (s1, . . . , sn) we provide a bound on the distance to the respective
probabilistic processf (t1, . . . , tn) where each componentsi is replaced by the componentti .

We start with those process combinators that satisfy the later discussed compositionality prop-
erty of non-extensiveness (Definition 3.4).

Proposition 3.1. Let P= (Σ,A,R) be any PTSS with PPA ⊑ P. For all terms si , ti ∈ T(Σ) it holds:

( a ) d(a.
⊕n

i=1[pi ]si , a.
⊕n

i=1[pi ]ti) ≤ λ ·
∑n

i=1 pid(si , ti);
(b) d(s1 + s2, t1 + t2) ≤ max(d(s1, t1), d(s2, t2));
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( c ) d(s1 +p s2, t1 +p t2) ≤ max(d(s1, t1), d(s2, t2)).

Proof. First we consider the probabilistic prefix operator (Proposition 3.1.( a )). The only transi-

tions froma.
⊕n

i=1[pi ]si anda.
⊕n

i=1[pi ]ti area.
⊕n

i=1[pi ]si
a−→
∑n

i=1 piδ(si) anda.
⊕n

i=1[pi ]ti
a−→

∑n
i=1 piδ(ti). Hence we need to show thatλ · K (d)(

∑n
i=1 piδ(si),

∑n
i=1 piδ(ti )) ≤ λ ·

∑n
i=1 pid(si , ti).

This property can be derived by Proposition 2.19 as follows:

K (d)















n
∑

i=1

piδ(si),
n
∑

i=1

piδ(ti )















≤
n
∑

i=1

pi K (d)(δ(si ), δ(ti)) (Proposition 2.19.3)

=

n
∑

i=1

pid(si , ti) (Proposition 2.19.2)

We proceed with the alternative composition operator (Proposition 3.1.(b)). If eitherd(s1, t1) =
1 or d(s2, t2) = 1 then the statement is trivial sinced is a 1-bounded pseudometric. Hence, we
assumed(s1, t1) < 1 andd(s2, t2) < 1. We consider now the two different rules specifying the

alternative composition operator and show that in each casewhenevers1 + s2
a−→ π is derivable by

some of the rules then there is a transitiont1+t2
a−→ π′ derivable by the same rule s.t.λ·K (d)(π, π′) ≤

max(d(s1, t1), d(s2, t2)).

(1) Assume thats1 + s2
a−→ π is derived froms1

a−→ π. Sinced(s1, t1) < 1 andd satisfies the
transfer condition of the bisimulation metrics, there exists a transitiont1

a−→ π′ for a distribution
π′ with λ · K (d)(π, π′) ≤ d(s1, t1) ≤ max(d(s1, t1), d(s2, t2)). Finally, from t1

a−→ π′ we derive

t1 + t2
a−→ π′.

(2) Assume thats1 + s2
a−→ π is derived froms2

a−→ π. The argument is the same of the previous
case.

We conclude with the probabilistic alternative composition operator (Proposition 3.1.( c )). If either
d(s1, t1) = 1 ord(s2, t2) = 1 then the statement is trivial sinced is a 1-bounded pseudometric. Hence,
we assumed(s1, t1) < 1 andd(s2, t2) < 1. We consider now the three different rules specifying the

probabilistic alternative composition operator and show that in each case whenevers1 + s2
a−→ π is

derivable by some of the rules then there is a transitiont1 + t2
a−→ π′ derivable by the same rule s.t.

λ · K (d)(π, π′) ≤ max(d(s1, t1), d(s2, t2)).

(1) Assume thats1 +p s2
a−→ π is derived froms1

a−→ π and s2
a−→6 . Sinced(s1, t1) < 1 andd

satisfies the transfer condition of the bisimulation metrics, there exists a transitiont1
a−→ π′ with

λ · K (d)(π, π′) ≤ d(s1, t1) ≤ max(d(s1, t1), d(s2, t2)). Sinced(s2, t2) < 1, by Proposition 2.17.2

the processess2 andt2 agree on the actions they can perform immediately. Thust2
a−→6 . Hence

we can derive the transitiont1 +p t2
a−→ π′.

(2) Assume thats1 +p s2
a−→ π is derived froms1

a−→6 ands2
a−→ π. The argument is the same of the

previous case.

(3) Assume thats1 +p s2
a−→ π with π = p(π1) + (1 − p)π2 is derived froms1

a−→ π1 and s2
a−→

π2. Then, sinced(s1, t1) < 1 andd(s2, t2) < 1 andd satisfies the transfer condition of the
bisimulation metrics, there exist transitionst1

a−→ π′1 with λ · K (d)(π1, π
′
1) ≤ d(s1, t1) andt2

a−→
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π′2 with λ · K (d)(π2, π
′
2) ≤ d(s2, t2). Therefore we derivet1 +p t2

a−→ pπ′1 + (1− p)π′2, with

λ · K (d)(pπ1 + (1− p)π2, pπ
′
1 + (1− p)π′2)

≤λ · (pK (d)(π1, π
′
1) + (1− p) K (d)(π2, π

′
2)) (Proposition 2.19.3)

≤λ ·max(K (d)(π1, π
′
1),K (d)(π2, π

′
2))

≤max(d(s1, t1), d(s2, t2)).

We note that the distance between action prefixed processes (Proposition 3.1.( a )) is discounted by
λ since the processesa.

⊕n
i=1[pi ]si anda.

⊕n
i=1[pi ]ti perform first the actiona before the processes

si and ti may evolve and their distance is observed. The distances between processes composed
by either the nondeterministic alternative composition operator or by the probabilistic alternative
composition operator are both bounded by the maximum of the distances between their respective
arguments (Propositions 3.1.(b) and 3.1.( c )). The distance bounds for these operators coincide
since the first two rules specifying the probabilistic alternative composition define the same opera-
tional behavior as the nondeterministic alternative composition and the third rule defining a convex
combination of these transitions applies only for those actions that can be performed by both pro-
cessess1 ands2 and resp.t1 andt2. If the probabilistic alternative composition would be defined by
only the third rule of Table 2, thend(s1 +p s2, t1 +p t2) ≤ pd(s1, t1) + (1− p)d(s2, t2).

Finally, we note that the processessi andti in Propositions 3.1 are obtained by using arbitrary
operators inΣ (not necessarily only operators inΣPA).

We proceed with those process combinators that satisfy the later discussed compositionality
property of non-expansiveness (Definition 3.7).

Proposition 3.2. Let P= (Σ,A,R) be any PTSS with PPA ⊑ P. For all terms si , ti ∈ T(Σ) it holds:

( a ) d(s1; s2, t1; t2) ≤














1 if d(s1, t1) = 1

max(d1
1,2, d(s2, t2)) if d(s1, t1) ∈ [0, 1)

(b) d(s1 | s2, t1 | t2) ≤ ds

( c ) d(s1 ||| s2, t1 ||| t2) ≤ da

(d) d(s1 ‖B s2, t1 ‖B t2) ≤














ds if B \ {
√
} , ∅

da otherwise

( e ) d(s1 |||p s2, t1 |||p t2) ≤ da

with

ds =



























1 if d(s1, t1) = 1

1 if d(s2, t2) = 1

d0
1,2 otherwise

da =



























1 if d(s1, t1) = 1

1 if d(s2, t2) = 1

max(d2
1,2 , d

2
2,1) otherwise

dn
1,2 = d(s1, t1) + λn(1− d(s1, t1)/λ)d(s2, t2)

dn
2,1 = d(s2, t2) + λn(1− d(s2, t2)/λ)d(s1, t1)
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Proof. We will prove only Proposition 3.2.(d) (CSP-like parallel composition‖B). The synchro-
nous and asynchronous parallel composition operators (Propositions 3.2.(b) and 3.2.( c )) are special
cases, since| coincides with‖A and||| coincides with‖∅. The proofs for the probabilistic parallel com-
position operator|||p (Proposition 3.2.( e )) and the sequential composition ; (Proposition 3.2.( a )) are
analogous.

We prove the caseB \ {
√
} , ∅ (the caseB \ {

√
} = ∅ is similar). First we need to introduce

the notion of congruence closure forλ-bisimilarity metricd as the quantitative analogue of the well-
known concept of congruence closure of a process equivalence. We define the metric congruence
closure ofd for operator‖B w.r.t. the bound provided in Proposition 3.2.(d) as a function d: T(Σ) ×
T(Σ)→ [0, 1] defined by

d(t, t′) =



















































min(λ[1 − (1− d(t1, t′1)/λ)(1− d(t2, t′2)/λ)], d(t, t′)) if





































t = t1 ‖B t2∧
t′ = t′1 ‖B t′2∧
d(t1, t′1) < 1∧
d(t2, t′2) < 1

d(t, t′) otherwise

We note thatd satisfies by constructiond(s1 ‖B s2, t1 ‖B t2) ≤ ds sinceλ[1− (1−d(s1, t1)/λ)(1−
d(s2, t2)/λ)] = d(s1, t1)+(1−d(s1, t1)/λ)d(s2, t2). We note also thatd satisfies by constructiond ⊑ d.
It remains to show thatd ⊑ d, thus givingd = d, and Proposition 3.2.(d) holds. Sinced is the least
prefixed point ofB, to showd ⊑ d it is enough to prove thatd is a prefixed point ofB.

To prove thatB(d) ⊑ d we need to show thatd satisfies the transfer condition of the bisimulation
metrics, namely

for all t
a−→ π there exists a transitiont′

a−→ π′ with λ · K (d)(π, π′) ≤ d(t, t′) (3.1)

for all termst, t′ ∈ T(Σ) with d(t, t′) < 1.
We prove Equation 3.1 by induction over the overall numberk of occurrences of operator‖B

occurring int andt′.
Consider the base casek = 0. By definition ofd, we have thatd(t, t′) = d(t, t′). Sinced(t, t′) < 1

we are sure that the transitiont
a−→ π is mimicked by some transitiont′

a−→ π′ for some distribution
π′ ∈ ∆(T(Σ)) such thatλ · K (d)(π, π′) ≤ d(t, t′). By Proposition 2.19.1 fromd ⊑ d we infer
K (d) ⊑ K (d). Therefore we conclude

λ · K (d)(π, π′) ≤ λ · K (d)(π, π′) ≤ d(t, t′) = d(t, t′)

which confirms that Equation 3.1 holds fort andt′.
Consider the inductive stepk > 0. If eithert is not of the formt = t1 ‖B t2, or t′ is not of the form

t′ = t′1 ‖B t′2, then by definition ofd we haved(t, t′) = d(t, t′) and Equation 3.1 follows precisely as
in the base casek = 0. If both t = t1 ‖B t2 andt′ = t′1 ‖B t′2, then we distinguish two cases, namely
d(t, t′) = d(t, t′) (eitherd(t1, t′1) = 1 ord(t2, t′2) = 1 ord(t, t′) < λ[1−(1−d(t1, t′1)/λ)(1−d(t2, t′2)/λ)])
andd(t, t′) = λ[1− (1− d(t1, t′1)/λ)(1− d(t2, t′2)/λ)] (both d(t1, t′1) < 1 andd(t2, t′2) < 1 andd(t, t′) ≥
λ[1 − (1 − d(t1, t′1)/λ)(1 − d(t2, t′2)/λ)]). In cased(t, t′) = d(t, t′) Equation 3.1 follows precisely as
in the base casek = 0. Consider the cased(t, t′) = λ[1 − (1− d(t1, t′1)/λ)(1 − d(t2, t′2)/λ)]. We have
four different subcases:

(1) t1
a−→ π1, t2

a−→ π2, a ∈ B \ {
√
} andπ = π1 ‖B π2;

(2) t1
a−→ π1, t2

a−→6 , a < B∪ {
√
} andπ = π1 ‖B δ(t2);

(3) t2
a−→ π2, t1

a−→6 , a < B∪ {
√
} andπ = δ(t1) ‖B π2;

(4) t1
a−→ π1, t2

a−→ π2, a =
√

andπ = δ(0).
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We start with the first case. Byd(t1, t′1) < 1 andd(t2, t′2) < 1 andd ⊑ d, we getd(t1, t′1) < 1 and

d(t2, t′2) < 1. By the inductive hypothesis we get that there are also transitionst′1
a−→ π′1 andt′2

a−→ π′2
with λ · K (d)(π1, π

′
1) ≤ d(t1, t′1) andλ · K (d)(π2, π

′
2) ≤ d(t2, t′2). Hence, there is also the transition

t′1 ‖B t′2
a−→ π′1 ‖B π

′
2. Then

λ · K (d)(π1 ‖B π2, π
′
1 ‖B π

′
2)

≤λ2[1 − (1− K (d)(π1, π
′
1)/λ)(1− K (d)(π2, π

′
2)/λ)]

≤λ2[1 − (1− d(t1, t
′
1)/λ2)(1− d(t2, t

′
2)/λ2)]

≤λ[1 − (1− d(t1, t
′
1)/λ)(1− d(t2, t

′
2)/λ)]

=d(t1 ‖B t2, t
′
1 ‖B t′2)

with the first step by Theorem 2.20 (using the fact that the candidate modulus of continuity of
operator‖B given byz(ǫ1, ǫ2) = λ[1 − (1 − ǫ1/λ)(1 − ǫ2/λ)] is concave) and the second step by
the inductive hypothesisλ · K (d)(πi , π

′
i ) ≤ d(ti , t′i ). Thus, the metric bisimulation transfer condition

(Equation 3.1) is satisfied ford in this case.
Consider now the second case. Byd(t1, t′1) < 1 andd ⊑ d, we getd(t1, t′1) < 1. By the inductive

hypothesis we get that there is also a transitionst′1
a−→ π′1 with λ · K (d)(π1, π

′
1) ≤ d(t1, t′1). By

Proposition 2.17.2 we have thatt′2
a−→6 , therefore we can derive the transitiont′1 ‖B t′2

a−→ π′1 ‖B δ(t
′
2).

Then

λ · K (d)(π1 ‖B δ(t2), π′1 ‖B δ(t
′
2))

≤λ2[1 − (1− K (d)(π1, π
′
1)/λ)(1− K (d)(δ(t2), δ(t′2))/λ)]

≤λ2[1 − (1− d(t1, t
′
1)/λ2)(1− d(t2, t

′
2)/λ)]

≤λ[1 − (1− d(t1, t
′
1)/λ)(1− d(t2, t

′
2)/λ)]

=d(t1 ‖B t2, t
′
1 ‖B t′2)

with step 1 again from Theorem 2.20 like in the first case and the second step by the inductive
hypothesisλ·K (d)(π1, π

′
1) ≤ d(t1, t′1) and Proposition 2.19.2. Hence, the metric bisimulation transfer

condition (Equation 3.1) is satisfied ford in this case.
The third case is analogous to the second one.
Consider now the fourth case. Byd(t1, t′1) < 1 andd(t2, t′2) < 1 andd ⊑ d, we getd(t1, t′1) < 1

andd(t2, t′2) < 1. By the inductive hypothesis we get that there are also transitions t′1

√

−−→ π′1 and

t′2

√

−−→ π′2. Hence, there is also the transitiont′1 ‖B t′2

√

−−→ δ(0). Thenλ ·K (d)(δ(0), δ(0)) = 0 ≤ d(t1 ‖B
t2, t′1 ‖B t′2). Thus, the metric bisimulation transfer condition (Equation 3.1) is satisfied ford also in
this case.

The expressionds in Proposition 3.2 captures the distance bound between the synchronously
evolving processess1 ands2 on the one hand and the synchronously evolving processest1 andt2 on
the other hand. We remark that the distancesd(s1, t1) andd(s2, t2) contribute symmetrically tods

sinced0
1,2 = d(s1, t1) + (1 − d(s1, t1)/λ)d(s2, t2) = d(s2, t2) + (1 − d(s2, t2)/λ)d(s1, t1) = d0

2,1. The
expressionsdn

1,2, d
n
2,1 with n > 0 cover different scenarios of the asynchronous evolution of those

processes. The expressiondn
1,2 (resp.dn

2,1) denotes the distance bound between the asynchronously
evolving processess1 ands2 on the one hand and the asynchronously evolving processest1 andt2
on the other hand, at which the firstn transitions are performed by the processess1 andt1 (resp. the
first n transitions are performed by processess2 andt2).
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If d(s1, t1) = 1 or d(s2, t2) = 1, then the processess1 and t1 and the processess2 and t2 may
disagree on the initial actions they can perform, and also the composed processes may disagree
on their initial actions and have then also the maximal distance of 1 (cf. Proposition 2.17 and Re-
mark 2.18). We analyze the bound for the process combinatorsin details assuming bothd(s1, t1) < 1
andd(s2, t2) < 1.

The distance between the sequentially composed processess1; s2 andt1; t2 (Proposition 3.2.( a ))
is given if d(s1, t1) ∈ [0, 1) as the maximum of

(i) distanced1
1,2 = d(s1, t1) + λ(1 − d(s1, t1)/λ)d(s2, t2), which captures the case that first the

processess1 andt1 evolve followed bys2 andt2, and
(ii) distanced(s2, t2), which captures the case that the processess2 and t2 evolve immediately

because boths1 andt1 terminate successfully at their first computation step.

The distanced1
1,2 weights the distanced(s2, t2) betweens2 andt2 by λ(1−d(s1, t1)/λ). The discount

λ expresses that processess2 and t2 are delayed by at least one transition step whenevers1 and
t1 perform at least one transition step before terminating. Additionally, note that the difference
betweens2 and t2 can only be observed whens1 and t1 agree to terminate. When processess1

and t1 evolve by one step, they disagree byd(s1, t1)/λ on their behavior. Hence they agree by
(1− d(s1, t1)/λ). Thus, the distance between processess2 andt2 needs to be additionally weighted
by (1−d(s1, t1)/λ). In case ((ii)) the distance betweens2 andt2 is not discounted since both processes
start immediately.

The distance bound between synchronous parallel composed processess1 | s2 and t1 | t2
(Proposition 3.2.(b)) is the expressionds, which is d0

1,2 = d(s1, t1) + (1 − d(s1, t1)/λ)d(s2, t2) =

d(s2, t2) + (1− d(s2, t2)/λ)d(s1, t1) = d0
2,1, when bothd(s1, t1) < 1 andd(s2, t2) < 1. Hence the dis-

tance betweens1 | s2 andt1 | t2 is bounded by the sum of the distance betweens1 andt1, which is the
degree of dissimilarity betweens1 andt1, and the distance betweens2 andt2 weighted by the proba-
bility that s1 andt1 agree on their behavior, which is the degree of dissimilarity betweens2 andt2 un-
der equal behavior ofs1 andt1. Alternatively, byd0

1,2 = d0
2,1 = λ(1−(1−d(s1, t1)/λ)(1−d(s2, t2)/λ)),

the bound to the distance betweens1 | s2 and t1 | t2 can be understood as composing processes
on the behavior they agree upon, i.e.s1 | s2 and t1 | t2 agree on their behavior ifs1 and t1
agree (probability of similarity 1− d(s1, t1)/λ) and if s2 and t2 agree (probability of similarity
1 − d(s2, t2)/λ). The resulting distance is then the probability of dissimilarity of the respective
behavior 1− (1− d(s1, t1)/λ)(1− d(s2, t2)/λ) multiplied by the discount factorλ.

The distance bound between asynchronous parallel composedprocessess1 ||| s2 andt1 ||| t2 is
the expressionda (Proposition 3.2.( c )). Hence the distance bound is the maximum ofd2

1,2, namely
the distance observable when first processess1 andt1 evolve by at least two transition steps and then
s2 andt2, andd2

2,1, namely the distance observable when first processess2 andt2 evolve by at least
two transition steps and thens1 andt1. Notice that at least two transition steps by the faster processes
are necessary to observe their distance before the slower processes start. The behaviors where either
s1 and t1 perform the first transition step ands2 and t2 perform the second transition step, ors2

and t2 perform the first transition step ands1 and t1 perform the second transition step, give rise
to a lower distance wrt. that expressed by the maximum between d2

1,2 andd2
2,1. The reason is that

the observation of the different behaviors is delayed by more transition steps and, therefore, more
discounted. Notice that bothd2

1,2 andd2
2,1 differ from the distanceds of the synchronously evolving

processess1 | s2 andt1 | t2 only by the discount factorλ2 that is applied to the distance of the delayed
processes. Moreover,d2

1,2 differs from the distanced1
1,2 of the sequential composed processess1; s2

andt1; t2 by the different discount factor that is applied to the distance of the processess2 andt2. The
discount factor in cased2

1,2 is λ2 sinces2 andt2 are delayed by at least two transition steps after the
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distance betweens1 andt1 is observed, whereas the discount factor in cased1
1,2 isλ since the distance

betweens1 andt1 observed at their second transition step may be realized by the ability/inability of
performing action

√
, which lets2 andt2 start immediately (namely already in this second transition

step).
Processes that are composed by the CSP-like parallel composition operator ‖B evolve syn-

chronously for actions inB\ {
√
}, evolve asynchronously for actions inA \ (B∪ {

√
}), and the action√

leads always to the stop process if both processes can perform
√

. Sinceds ≥ da, the distance
between processess1 ||| s2 and t1 ||| t2 (Proposition 3.2.(d)) is bounded byds if there is at least
one actiona ∈ B with a ,

√
for which the composed processes can evolve synchronously,and

otherwise byda.
The distance between processes composed by the probabilistic parallel composition operator

s1 |||p s2 and t1 |||p t2 (Proposition 3.2.( e )) is bounded by the expressionda since the first two
rules specifying the probabilistic parallel composition define the same operational behavior as the
nondeterministic parallel composition, and the third ruledefining a convex combination of these
transitions applies only for those actions that can be performed by both processess1 ands2 and resp.
t1 andt2.

The distance bounds on the distance between processes composed by non-recursive process
combinators (Proposition 3.1 and 3.2) are tight.

Proposition 3.3. Let ǫi ∈ [0, 1]. There are processes si , ti ∈ T(ΣPA) with d(si , ti) = ǫi such that the
inequalities in Propositions 3.1 and 3.2 become equalities.

Proof. We start with Proposition 3.1. LetA = {a1, . . . , an} ∪ {
√
}. We define now the witness

processes
• si = ti = ai .ε, if ǫi = 0;
• si = ai .([1 − ǫi/λ]ε ⊕ [ǫi/λ]0) andti = ai .ε, if ǫi ∈ (0, λ);
• si = ai .0 andti = ai .ε, if ǫi = λ < 1;
• si = 0 andti = ai .ε, if ǫi = 1.

It is easy to see that these processes yield for all process combinators of Proposition 3.1 exactly the
stated upper bound.

We proceed now with Propositions 3.2.( a ), 3.2.(b) and 3.2.(d), caseB\{
√
} , ∅. Let A = {a,

√
}

with a ∈ B. We define now the witness processes

• si = ti = a.ε, if ǫi = 0;
• si = a.([1 − ǫi/λ]ε ⊕ [ǫi/λ]0) andti = a.ε, if ǫi ∈ (0, λ);
• si = a.0 andti = a.ε, if ǫi = λ < 1;
• si = 0 andti = a.ε if ǫi = 1.

These processes yield for all process combinators of Propositions 3.2.( a ), 3.2.(b) and 3.2.(d), case
B \ {
√
} , ∅, exactly the stated upper bound.

Finally, we conclude with Propositions 3.2.( c ), 3.2.( e ) and 3.2.(d), caseB \ {
√
} = ∅. Let

A = {a1, a2, a} ∪ {
√
}. We define now the witness processes

• si = ti = ai .a.0, if ǫi = 0;
• si = ai .([1 − ǫi/λ]a.0⊕ [ǫi/λ]0) andti = ai .a.0, if ǫi ∈ (0, λ);
• si = ai .0 andti = ai .a.0, if ǫi = λ < 1;
• si = 0 andti = ai .ε, if ǫi = 1.
These processes yield for all process combinators of Propositions 3.2.( c ), 3.2.( e ) and 3.2.(d), case
B \ {
√
} = ∅, exactly the stated upper bound.
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3.3. Compositional reasoning over non-recursive processes.In order to specify and verify sys-
tems in a compositional manner, it is necessary that the behavioral semantics is compatible with
all operators of the language that describe these systems. There are multiple proposals which prop-
erties of process combinators facilitate compositional reasoning. In this section we discuss non-
extensiveness [BBLM13] and non-expansiveness [DJGP02, DGJP04, DCPP06, CGPX14]), which
are compositionality properties based on thep-norm. They allow for compositional reasoning over
probabilistic processes that are built of non-recursive process combinators. Non-extensiveness and
non-expansiveness are very strong forms of uniform continuity. For instance, a non-expansive oper-
ator ensures that the distance between the composed processes is at most the sum of the distances
between their parts. Later in Section 4.3 we will propose uniform continuity as generalization of
these properties that allows also for compositional reasoning over recursive processes.

Definition 3.4 (Non-extensive process combinator). A process combinatorf ∈ Σ is non-extensive
w.r.t. λ-bisimilarity metricd if

d( f (s1, . . . , sn), f (t1, . . . , tn)) ≤ n
max
i=1

d(si , ti)

for all closed process termssi , ti ∈ T(Σ).

Probabilistic action prefix, nondeterministic alternative composition, and probabilistic alterna-
tive composition are non-extensive w.r.t.d.

Theorem 3.5. The process combinators

• probabilistic action prefix a.
⊕n

i=1[pi ]
• nondeterministic alternative composition+
• probabilistic alternative composition+p

are non-extensive w.r.t.λ-bisimilarity metricd for anyλ ∈ (0, 1].

Proof. Follows directly from Proposition 3.1.

All other operators ofΣPA are not non-extensive.

Proposition 3.6. None of the process combinators

• sequential composition;
• synchronous parallel composition|
• asynchronous parallel composition|||
• CSP-like parallel composition‖B
• probabilistic parallel composition |||p
is non-extensive w.r.t.λ-bisimilarity metricd for anyλ ∈ (0, 1].

Proof. Follows directly from Propositions 3.2 and 3.3.

We proceed now with the compositionality property of non-expansiveness.

Definition 3.7 (Non-expansive process combinator). A process combinatorf ∈ Σ is non-expansive
w.r.t. λ-bisimilarity metricd if

d( f (s1, . . . , sn), f (t1, . . . , tn)) ≤
n
∑

i=1

d(si , ti)

for all closed process termssi , ti ∈ T(Σ).

It is clear that if a process combinatorf is non-extensive, thenf is non-expansive. Moreover,
the two notions coincide whenf is unary.
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Theorem 3.8. All non-recursive process combinators ofΣPA

are non-expansive w.r.t.λ-bisimilarity metricd for anyλ ∈ (0, 1].

Proof. Follows directly from Propositions 3.1 and 3.2 and the observation thatda, d1
1,2 ≤ ds ≤

d(s1, t1) + d(s2, t2).

Theorem 3.8 generalizes a similar result of [DGJP04] which considered only PTSs without non-
deterministic branching and only a small set of process combinators. The analysis which operators
are non-extensive (Theorem 3.5) and the tight distance bounds (Propositions 3.1, and 3.2 and 3.3)
are novel.

4. Recursive processes

Recursion is necessary to express infinite (non-terminating) behavior in terms of finite process ex-
pressions. Moreover, recursion allows us to express repetitive finite behavior in a compact way. We
will discuss now compositional reasoning over probabilistic processes that are composed by recur-
sive process combinators. We will see that the compositionality properties of non-extensiveness and
non-expansiveness used for non-recursive process combinators (Section 3.3) fall short for recursive
process combinators. We will propose the more general property of uniform continuity (Section 4.3)
that captures the inherent nature of compositional reasoning over probabilistic processes. In fact, it
allows us to reason compositionally over processes that arecomposed by both recursive and non-
recursive process combinators. In the next section we applythese results to reason compositionally
over a communication protocol and derive its respective performance properties. To the best of
our knowledge this is the first study which explores systematically compositional reasoning over
recursive processes in the context of bisimulation metric semantics. We remark that recursive pro-
cess combinators are indispensable for effective modeling and verification of safety critical systems,
network protocols, and systems biology.

4.1. Recursive process combinators.We definePPA	 as disjoint extension ofPPA with the fol-
lowing operators:

• finite iteration n,
• infinite iteration ω,
• binary Kleene-star iteration∗ ,
• probabilistic Kleene-star iteration∗p ,
• finite replication !n ,
• infinite replication (bang) operator !, and
• probabilistic bang operator !p .

The operational semantics of these operators is specified bythe rules in Table 3.
The finite iterationtn (resp. infinite iterationtω) of processt expresses thatt is performedn times

(resp. infinitely often) in sequel. The binary Kleene-star expresses fort1∗t2 that eithert1 is performed
infinitely often in sequel, ort1 is performed a finite number of times in sequel, followed byt2.
The bang operator expresses for !t (resp. finite replication !nt) that infinitely many copies (resp.n
copies) oft evolve asynchronously. The probabilistic Kleene-star iteration [Bar04, Section 5.2.4(vi)]
expresses thatt1∗pt2 evolves to a probabilistic choice (with respectively the probability p and 1− p)
between the two nondeterministic choices of the Kleene staroperationt1∗t2 for actions which can
be performed by botht1 andt2. For actions that can be performed by either onlyt1 or only t2, t1∗pt2
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x
a−→ µ a ,

√

xn+1 a−→ µ; δ(xn)

x
√

−−→ µ

xn+1
√

−−→ µ x0
√

−−→ δ(0)

x
√

−−→ µ x
a−→ ν a ,

√
n > m

xn a−→ ν; δ(xm)

x
a−→ µ a ,

√

xω
a−→ µ; δ(xω)

x
a−→ µ a ,

√

x∗y
a−→ µ; δ(x∗y)

y
a−→ ν

x∗y
a−→ ν

x
a−→ µ y

a−→ ν a ,
√

x∗py
a−→ ν ⊕p µ; δ(x

∗py)

x
a−→ µ y

a−→6 a ,
√

x∗py
a−→ µ; δ(x∗py)

x
a−→6 y

a−→ ν a ,
√

x∗py
a−→ ν

y
√

−−→ ν

x∗py
√

−−→ ν

x
a−→ µ a ,

√

!n+1x
a−→ µ ||| δ(!nx)

x
√

−−→ µ

!n+1x
√

−−→ µ !0x
√

−−→ δ(0)

x
a−→ µ a ,

√

!x
a−→ µ ||| δ(!x)

x
a−→ µ a ,

√

!px
a−→ µ ⊕p (µ ||| δ(!px))

Table 3: Standard recursive process combinators

behaves just liket1∗t2. The probabilistic bang replication [MS13, Fig. 1] expresses that !pt replicates
the argument processt with probability 1− p and behave just liket with probability p.

4.2. Distance between processes combined by recursive process combinators. We develop now
tight bounds on the distance between processes combined by the recursive process combinators
presented in Table 3.

Proposition 4.1. Let P = (Σ,A,R) be any PTSS with PPA	 ⊑ P. For all terms s, si , t, ti ∈ T(Σ) it
holds:

( a ) d(sn, tn) ≤ dn

(b) d(!ns, !nt) ≤ d!n

( c ) d(sω, tω) ≤ dω

(d) d(!s, !t) ≤ d!

( e ) d(s1
∗s2, t1∗t2) ≤ max(d(s1

ω, t1ω), d(s2, t2))

( f ) d(s1
∗p s2, t1∗pt2) ≤ d(s1

∗s2, t1∗t2)

(g) d(!ps, !pt) ≤














d(s, t) 1
1−(1−p)(λ2−λd(s,t)) if d(s, t) ∈ (0, 1)

d(s, t) if d(s, t) ∈ {0, 1}
with

dn =















d(s, t)1−(λ−d(s,t))n

1−(λ−d(s,t)) if d(s, t) ∈ (0, 1)

d(s, t) if d(s, t) ∈ {0, 1}

d!n
=















d(s, t)1−(λ2−λd(s,t))n

1−(λ2−λd(s,t)) if d(s, t) ∈ (0, 1)

d(s, t) if d(s, t) ∈ {0, 1}



24 D. GEBLER, K. G. LARSEN, AND S. TINI

dω =















d(s, t) 1
1−(λ−d(s,t)) if d(s, t) ∈ (0, 1)

d(s, t) if d(s, t) ∈ {0, 1}

d! =















d(s, t) 1
1−(λ2−λd(s,t)) if d(s, t) ∈ (0, 1)

d(s, t) if d(s, t) ∈ {0, 1}

Proof. First of all we observe that1−(λ−d(s,t))n

1−(λ−d(s,t)) =
∑n−1

k=0(λ − d(s, t))k and 1−(λ2−λd(s,t))n

1−(λ2−λd(s,t)) =
∑n−1

k=0(λ2 −
λd(s, t))k.

Consider first the finite iteration operatorn. The casesd(s, t) = 0 andd(s, t) = 1 are imme-
diate. Consider the case 0< d(s, t) < 1. The proof obligation can be rewritten asd(sn, tn) ≤
d(s, t)

∑n−1
k=0(λ − d(s, t))k. We reason by induction overn. The base casen = 0 is immediate. Let

us consider the inductive stepn + 1. By the rules in Tables 1–3, we infer thatsn+1 is bisimilar to
s; sn (i.e. they are in bisimulation distance 0) and thattn+1 is bisimilar tot; tn. Henced(sn+1, tn+1) =
d(s; sn, t; tn). By Proposition 3.2.( a ) we haved(s; sn, t; tn) ≤ d(s, t) + d(sn, tn)(λ − d(s, t)) = (by the
inductive hypothesis overn) d(s, t)+ (d(s, t)

∑n−1
k=0(λ−d(s, t))k)(λ−d(s, t)) = d(s, t)

∑n
k=0(λ−d(s, t))k.

Summarizing,d(sn+1, tn+1) ≤ d(s, t)
∑n

k=0(λ − d(s, t))k, thus confirming the thesis.
Consider now the finite replication operator !n . The casesd(s, t) = 1 andd(s, t) = 0 are

immediate. Consider the case 0< d(s, t) < 1. The proof obligation can be rewritten asd(!ns, !nt) ≤
d(s, t)

∑n−1
k=0(λ2−λd(s, t))k. We reason by induction overn. The base casen = 0 is immediate. Let us

consider the inductive stepn+1. By the rules in Tables 1–3, we infer that !n+1s is bisimilar tos |||!ns
and that !n+1t is bisimilar tot |||!nt. Henced(!n+1s, !n+1t) = d(s |||!ns, t |||!nt). By Proposition 3.2.( c )
we getd(s |||!ns, t |||!nt) ≤ d(s, t) + (λ2 − λd(s, t))d(!ns, !nt) ≤ (inductive hypothesis overn) d(s, t) +
(λ2 − λd(s, t))d(s, t)(

∑n−1
k=0(λ2 − λd(s, t))k) = d(s, t)

∑n
k=0(λ2 − λd(s, t))k. Summarizing, we have

d(!n+1s, !n+1t) ≤ d(s, t)
∑n

k=0(λ2 − λd(s, t))k. This confirms the thesis.
Consider the infinite iteration operatorω. The casesd(s, t) = 1 andd(s, t) = 0 are immediate.

Consider the case 0< d(s, t) < 1. By the rules in Tables 1–3, we infer thatsω is bisimilar to
s; sω and thattω is bisimilar tot; tω. Henced(sω, tω) = d(s; sω, t; tω). By Proposition 3.2.( a ) we get
d(s; sω, t; tω) ≤ d(s, t)+(λ−d(s, t))d(sω, tω). Hence we haved(sω, tω) ≤ d(s, t)+(λ−d(s, t))d(sω, tω),
from which we inferd(sω, tω) ≤ d(s, t) 1

1−(λ−d(s,t)) = dω.
Consider now the bang operator !. The casesd(s, t) = 1 andd(s, t) = 0 are immediate.

Consider the case 0< d(s, t) < 1. By the rules in Tables 1–3, we infer that !s is bisimilar tos |||!s
and that !t is bisimilar tot |||!t. Henced(!s, !t) = d(s |||!s, t |||!t). By Proposition 3.2.( c ) we getd(s |||
!s, t |||!t) ≤ d(s, t)+ (λ2 − λd(s, t))d(!s, !t). Hence we haved(!s, !t) ≤ d(s, t)+ (λ2− λd(s, t))d(!s, !t),
from which we inferd(!s, !t) ≤ d(s, t) 1

1−(λ2−λd(s,t)) = d! .
Consider the binary Kleene star operator∗ . Observe that the terms1

∗s2 is bisimilar to
(s1; (s1

∗s2)) + s2 and that the termt1∗t2 is bisimilar to (t1; (t1∗t2)) + t2. Proposition 3.1.(b) shows
d(s1

∗s2, t1∗t2) = d((s1; (s1
∗s2)) + s2, (t1; (t1∗t2)) + t2) = max{d((s1; (s1

∗s2)), (t1; (t1∗t2))), d(s2, t2)}.
If max{d((s1; (s1

∗s2)), (t1; (t1∗t2))), d(s2, t2)} = d((s1; (s1
∗s2)), (t1; (t1∗t2)), we getd(s1

∗s2, t1∗t2) =
d((s1; (s1

∗s2)), (t1; (t1∗t2))), where, by Proposition 3.2,( a ),d((s1; (s1
∗s2)), (t1; (t1∗t2))) = d(s1, t1) +

(λ − d(s1, t1))d(s1
∗s2, t1∗t2), thus givingd(s1

∗s2, t1∗t2) = d(s1, t1) 1
1−(λ−d(s1,t1)) . Therefore we con-

clude thatd(s1
∗s2, t1∗t2) = max{d(s1, t1) 1

1−(λ−d(s1,t1)) , d(s2, t2)} = max{d(sω1 , t
ω
1 ), d(s2, t2)}. This con-

firms the thesis.
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Consider now the probabilistic Kleene star operator. The second, third and fourth rule specify-
ing the probabilistic Kleene star operator define the same operational behavior as the nondetermin-
istic Kleene star operator. Since the target of the first rulefor the probabilistic Kleene star operator
is a convex combination of the targets of the second and the third rule, the thesis follows.

Consider now the probabilistic bang operator. The bound on the distance of processes com-
posed by the probabilistic bang operator can be understood by observing that the term !ps be-
haves as !n+1s with probability p(1 − p)n. Hence, by Proposition 4.1.(b) we getd(!ps, !pt) ≤
∑∞

n=0 p(1− p)nd(!n+1s, !n+1t) ≤ ∑∞n=0 p(1− p)nd!n+1
= d(s, t)/(1− (1− p)(λ2 − λd(s, t))).

The bounds for the combinators in Proposition 4.1 are immediate when the distance between
the process arguments is either 0 or 1. We explain those bounds by assuming that the distance
between the process arguments is neither 0 nor 1.

First we explain the distance bounds for the nondeterministic recursive process combinators.
To understand the distance bound between processes that iterate finitely often (Proposition 4.1.( a )),
observe thatsn ands; . . . ; s, with s; . . . ; s denotingn sequentially composed instances ofs, denote
the same PTSs (up to renaming of states). Recursive application of the distance bound for operator

; (Proposition 3.2.( a )) yieldsd(sn, tn) = d(s; . . . ; s, t; . . . ; t) ≤ d(s, t)
∑n−1

k=0(λ−d(s, t))k = dn. The
same reasoning applies to the finite replication operator (Proposition 4.1.(b)) by observing that !ns
ands ||| . . . ||| s, with s ||| . . . ||| s denotingn occurrences ofs that evolve asynchronously, denote
the same PTSs (up to renaming of states), thus givingd(!ns, !nt) = d(s ||| . . . ||| s, t ||| . . . ||| t) ≤
d(s, t)

∑n−1
k=0(λ2 − λd(s, t))k = d!n

.
The distance between processes that may iterate infinitely many times (Proposition 4.1.( c )),

and the distance between processes that may spawn infinitelymany copies that evolve asynchro-
nously (Proposition 4.1.(d)) are the limit of the respective finite iteration and replication bounds.
The distance between the Kleene-star iterated processess1

∗s2 and t1∗t2 (Proposition 4.1.( e )) is
bounded by the maximum of the distanced(s1

ω, t1ω) (infinite iteration ofs1 andt1 s.t.s2 andt2 never
evolve), and the distanced(s2, t2) (s2 andt2 evolve immediately). The case wheres1 andt1 iterate
n-times and thens2 andt2 evolve leads always to a distanced(s1

n, t1n) + (λ − d(s1, t1))nd(s2, t2) ≤
max(d(s1

ω, t1ω), d(s2, t2)).
Now we explain the bounds for the probabilistic recursive process combinators. The distance

between processes composed by the probabilistic Kleene star is bounded by the distance between
those processes composed by the nondeterministic Kleene star (Proposition 4.1.( f )), since the sec-
ond, the third and the fourth rule specifying the probabilistic Kleene star define the same operational
behavior as the nondeterministic Kleene star, and the first rule which defines a convex combina-
tion of these transitions applies only for those actions that both of the combined processes can
perform. In fact,d(s1

∗p s2, t1∗pt2) = d(s1
∗s2, t1∗t2) if the initial actions that can be performed by

processess1, t1 are disjoint from the initial actions that can be performed by processess2, t2 (and
hence the first rule defining∗p cannot be applied). Thus, the distance bound of the probabilistic
Kleene star coincides with the distance bound of the nondeterministic Kleene star. The bound on
the distance of processes composed by the probabilistic bang operator can be understood by ob-
serving that !ps behaves as !n+1s with probability p(1− p)n. Hence, by Proposition 4.1.(b) we get
d(!ps, !pt) ≤

∑∞
n=0 p(1− p)nd(!n+1s, !n+1t) ≤

∑∞
n=0 p(1− p)nd!n+1

= d(s, t)/(1− (1− p)(λ2−λd(s, t))).
The distance bounds on the distance between processes composed by recursive process combi-

nators (Proposition 4.1) are tight.

Proposition 4.2. Let ǫi ∈ [0, 1]. There are processes si , ti ∈ T(ΣPA) with d(si , ti) = ǫi such that the
inequalities in Proposition 4.1 become equalities.
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Proof. The witness processes of Proposition 3.3 that were used to show that the inequality in Propo-
sition 3.2.( a ) becomes an equality, suffice for Propositions 4.1.( a ), 4.1.( c ), 4.1.( e ), 4.1.( f ). The
witness processes of Proposition 3.3 that were used to show that the inequality in Proposition 3.2.( c )
becomes an equality, suffice for Propositions 4.1.(b), 4.1.(d), 4.1.(g).

4.3. Compositional reasoning over recursive processes.From Propositions 4.1 and 4.2 it follows
that none of the recursive process combinators discussed inthis section satisfies the compositionality
property of non-expansiveness.

Proposition 4.3. None of the recursive process combinators ofΣPA	 (unbounded recursion and
bounded recursion with n≥ 2) is non-expansive w.r.t.λ-bisimilarity metricd for anyλ ∈ (0, 1].

Proof. Follows directly from Propositions 4.1 and 4.2 and the observation thatdω ≥ d! , dn ≥ d!n
>

d(s, t) whenever 0< d(s, t) < 1.

However, a weaker property suffices to facilitate compositional reasoning. To reason composi-
tionally over probabilistic processes it is enough if the distance between the composed processes can
be related to the distance between their parts. In essence, compositional reasoning over probabilistic
processes is possible whenever a small variance in the behavior of the parts leads to a bounded small
variance in the behavior of the composed processes.

We introduce uniform continuity as the compositionality property for both recursive and non-
recursive process combinators. Uniform continuity generalizes the properties non-extensiveness
and non-expansiveness for non-recursive process combinators.

Definition 4.4 (Uniformly continuous process combinator). A process combinatorf ∈ Σ is uni-
formly continuousw.r.t. λ-bisimilarity metricd if for all ǫ > 0 there areδ1, . . . , δn > 0 such that

∀i = 1, . . . , n. d(si , ti) < δi =⇒ d( f (s1, . . . , sn), f (t1, . . . , tn)) < ǫ

for all closed process termssi , ti ∈ T(Σ).

Note that by definition each non-expansive operator is also uniformly continuous (byδi =
ǫ/n). A uniformly continuous combinatorf ensures that for any non-zero bisimulation distanceǫ
there are appropriate non-zero bisimulation distancesδi s.t. for any composed processf (s1, . . . , sn)
the distance to the composed process where eachsi is replaced by anyti with d(si , ti) < δi is
d( f (s1, . . . , sn), f (t1, . . . , tn)) < ǫ. We consider the uniform notion of continuity (technically, the
δi depend only onǫ and are independent of the concrete statessi) because we aim at universal
compositionality guarantees.

A particular case of uniform continuity is Lipschitz continuity, which requires that there is a
constantK ∈ R≥0 such thatδi = ǫ/(n · K). Intuitively, this ensures that the distance between the
composed processes is limited in how fast it can change due tothe change of the distance between
the components.

Definition 4.5 (Lipschitz continuous process combinator). A process combinatorf ∈ Σ is Lipschitz
continuousw.r.t. λ-bisimilarity metricd if there exists a constantK ∈ R≥0 with

d( f (s1, . . . , sn), f (t1, . . . , tn)) ≤ K
n
∑

i=1

d(si , ti)

for all closed process termssi , ti ∈ T(Σ).
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We refer to the constantK in Definition 4.5 as theLipschitz factorfor combinator f , and
we may say thatf is K-Lipschitz continuous. Note that by definition a non-expansive operator is
Lipschitz continuous (byK = 1) and a Lipschitz continuous operator is uniformly continuous (by
δi = ǫ/(n · K)).

The distance bounds of Section 4.2 allow us to derive that finitely recursing process combina-
tors are Lipschitz continuous (and therefore also uniformly continuous) w.r.t. both non-discounted
and discounted bisimilarity metric (Theorem 4.6). On the contrary, unbounded recursing process
combinators are Lipschitz continuous and uniformly continuous only w.r.t. discounted bisimilarity
metric (Theorem 4.7 and Proposition 4.8).

Theorem 4.6. The process combinators

• finite iteration n

• finite replication!n

• probabilistic replication (bang)!p

are Lipschitz continuous w.r.t.λ-bisimilarity metricd for anyλ ∈ (0, 1].

Proof. For finite iteration operator, this follows directly from Propositions 4.1.( a ) and the observa-
tion that 1−(λ−d(s,t))n

1−(λ−d(s,t)) ≤ n = K. For finite replication operator, this follows directly from Proposi-

tions 4.1.(b) and the observation that1−(λ2−λd(s,t))n

1−(λ2−λd(s,t)) ≤ n = K. For the probabilistic bang operator it

follows from Proposition 4.1.(g) and the observation that 1
1−(1−p)(λ2−λd(s,t)) ≤

1
1−(1−p)λ2 = K.

Note that the probabilistic bang operator is Lipschitz continuous w.r.t. non-discounted bisimi-
larity metric d with λ = 1 because in each step there is a non-zero probability that the process is
not copied. On the contrary, the processs1

∗p s2 applying the probabilistic Kleene star creates with
probability 1 a copy ofs1 for actions thats1 can ands2 cannot perform. Hence, the probabilistic
Kleene star operator∗p is uniformly continuous only for discounted bisimilarity metric withλ < 1.

Theorem 4.7. The process combinators

• infinite iteration ω

• nondeterministic Kleene-star iteration∗

• probabilistic Kleene-star iteration∗p , and
• infinite replication (bang)!

are Lipschitz continuous w.r.t. discountedλ-bisimilarity metricd for anyλ ∈ (0, 1).

Proof. For infinite iteration, nondeterministic Kleene star iteration and probabilistic Kleene star it-
eration this follows by Proposition 4.1.( c ), 4.1.( e ), 4.1.( f ) and the observation that 1

1−(λ−d(s,t)) ≤
1

1−λ = K. For infinite replication this follows by Proposition 4.1.(d) and the observation that
1

1−(λ2−λd(s,t)) ≤
1

1−λ2 = K.

Proposition 4.8. None of the process combinators

• infinite iteration ω

• nondeterministic Kleene-star iteration∗

• probabilistic Kleene-star iteration∗p , and
• infinite replication (bang)!

is uniformly continuous w.r.t. the non-discountedλ-bisimilarity metricd with λ = 1.

Proof. Follows directly from Propositions 4.1 and 4.2. We will reason in detail for the first case
of infinite iteration operator. Letǫ be any fixed real with 0< ǫ < 1. We will show that there
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is no δ > 0 s.t. for all s, t ∈ T(Σ) with d(s, t) < δ we haved(sω, tω) < ǫ. We will show this by
contradiction. Assume there is someδ > 0. Considers = a.([1 − δ/2]ε ⊕ [δ/2]0) andt = a.ε. We
haved(s, t) = δ/2 < δ andd(sω, tω) = 1 > ǫ. Contradiction. Similar reasoning applies also to the
other process combinators.

Note that the processes used in the proof of Proposition 4.8 are witnesses that these combinators
are not continuous at all.

Given any discount factorλ, all process combinators discussed so far that are uniformly con-
tinuous wrt.λ-bisimilarity metricd are also Lipschitz continuous wrt.d. We conclude this section
by discussing the copy operatorcp of [BIM95, FvGdW12] as an example of an operator being uni-
formly continuous but not Lipschitz continuous wrt. discounted λ-bisimilarity metricd with any
λ ∈ (0, 1).

The copy operatorcp is defined by the rules

x
a−→ µ

cp(x)
a−→ µ

(a < {l, r}) x
l−→ µ x

r−→ ν
cp(x)

s−→ cp(µ) | cp(ν)

The copy operatorcp specifies the fork operation of operating systems. Actionsl andr are the left
and rightforking actions, ands is the resultingsplit action. The fork oft is the processcp(t) evolving
by t to the parallel composition of the left fork (l-derivative oft) and the right fork (r-derivative of
t). For all other actionsa < {l, r} the processcp(t) mimics the behavior oft.

Proposition 4.9. The copy operatorcp is not Lipschitz continuous wrt.λ-bisimilarity metricd for
anyλ ∈ (0, 1].

Proof. Assume any discount factorλ ∈ (0, 1]. For any constantL ∈ R≥0, we provide suitable CCS
processess and t s.t. d(cp(s), cp(t)) > Ld(s, t). Let s1 = l.([1 − ǫ]a ⊕ [ǫ]0) + r.([1 − ǫ]a ⊕ [ǫ]0)
and t1 = l.a + r.a, and sk+1 = l.sk + r.sk and tk+1 = l.tk + r.tk. Clearly d(sk, tk) = λkǫ. Then
d(cp(sk), cp(tk)) = λk(1− (1− ǫ)2k

). Hence, for anyk with 2k > L, d(cp(s), cp(t))/d(s, t) = (1− (1−
ǫ)2k

)/ǫ > L holds fors= sk, t = tk and all 0< ǫ < (2k − L)/(2k−1(2k − 1)). Thus, the copy operator
is not Lipschitz continuous wrt.λ-bisimilarity metricd.

To prove that the copy operatorcp is uniformly continuous wrt. discountedλ-bisimilarity metric
d with anyλ ∈ (0, 1), we need some preliminary results. First we show that the behavioral distance
between two arbitrary termssandt can be divided in the distance observable by the firstk steps and
the distance observable after stepk. The step discountλ allows us to give the upper boundλk on the
distance observable after stepk.

Proposition 4.10. Let P= (Σ,A,R) be a PTSS and s, t ∈ T(Σ) arbitrary closed terms. Then

d(s, t) ≤ dk(s, t) + λ
k

for all k ∈ N.

Proof. By induction. Casek = 0 is trivial sinceλ0 = 1. Let (d − ǫ) : T(Σ) × T(Σ) → [0, ǫ] with
ǫ ∈ [0, 1] be the function defined by (d− ǫ)(s, t) = max(d(s, t)− ǫ, 0). For the induction step, assume
dk ⊒ d − λk. It remains to showdk+1 ⊒ d − λk+1. We reason as follows:

dk+1(s, t)

= sup
a∈A
{H(λ · K (dk))(der(s, a), der(t, a))}

≥ sup
a∈A

{

H(λ · K (d − λk))(der(s, a), der(t, a))
}
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≥ sup
a∈A
{H(λ · K (d))(der(s, a), der(t, a))} − λk+1

=d(s, t) − λk+1

by using the properties

K (d) ⊒ K (d′) if d ⊒ d′

H(d) ⊒ H(d′) if d ⊒ d′

K (d − ǫ)(π, π′) ≥ K (d)(π, π′) − ǫ
H(d − ǫ)(π, π′) ≥ H(d)(π, π′) − ǫ

(4.1)

for any pseudometricsd, d′ and anyǫ ∈ [0, 1], definition of dk+1 applied in step 1, induction
hypothesis applied in step 2, the fixpoint property of bisimulation metricd(s, t) = supa∈A{H(λ ·
K (d))(der(s, a), der(t, a))} applied in step 4, and properties of Equation 4.1 applied in steps 2 and
3.

Now we show that an operator is uniformly continuous w.r.t. the discountedλ-bisimilarity met-
ric d if this operator is Lipschitz continuous wrt. all up-to-k λ-bisimilarity metricsdk.

Theorem 4.11.Let P= (Σ,A,R) be a PTSS andλ < 1. If an operator f∈ Σ is Lipschitz continuous
wrt. dk for each k∈ N, then f is uniformly continuous wrt.d.

Proof. Assume thatf ∈ Σ is anyn-ary operator. We prove that for anyǫ > 0 there existδ1, . . . , δn >
0 such thatd( f (s1, . . . , sn), f (t1, . . . , tn)) < ǫ wheneverd(si , ti) < δi for all i = 1, . . . , n. Let Lk ∈ R≥0

be the Lipschitz factor forf wrt. dk, i.e.

dk( f (s1, . . . , sn), f (t1, . . . , tn)) ≤ Lk

n
∑

i=1

dk(si , ti).

Together with Proposition 4.10 and propertydk ⊑ d we get

d( f (s1, . . . , sn), f (t1, . . . , tn)) ≤ Lk

n
∑

i=1

d(si , ti) + λ
k (4.2)

for all k ∈ N. Sinceλ < 1, there is somem ∈ N s.t.λm < ǫ. Let δi ∈ (0, 1] be such that

δi <
ǫ − λm

n · Lm

If we taked(si , ti) < δi for all i = 1, . . . , n then we get

d( f (s1, . . . , sn), f (t1, . . . , tn))

≤Lm

n
∑

i=1

d(si , ti) + λ
m (Equation 4.2)

<Lm

n
∑

i=1

δi + λ
m

≤Lm

n
∑

i=1

ǫ − λm

n · Lm
+ λm

=ǫ

thus concluding that thatf is uniformly continuous w.r.t.d.
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Now we show that the copy operatorcp is Lipschitz-continuous wrt. the (not necessarily dis-
counted) up-to-kλ-bisimilarity metricdk for anyk ≥ 0 andλ ∈ (0, 1]. Together with Theorem 4.11
this allows us to derive thatcp is uniformly continuous wrt. the discountedλ-bisimilarity metricd
for anyλ ∈ (0, 1).

Proposition 4.12. The copy operatorcp is Lipschitz continuous wrt. the up-to-kλ-bisimilarity met-
ric dk for any k≥ 0 andλ ∈ (0, 1].

Proof. For all k ≥ 0, we show that the operatorcp is 2k-Lipschitz continuous wrt. the up-to-k
λ-bisimilarity metricdk, namely

dk(cp(s), cp(t)) ≤ 2kdk(s, t)

holds for arbitrary termss, t ∈ T(Σ). We proceed by induction overk. The base casek = 0 is
immediate. Consider the inductive stepk + 1. The subcasedk+1(s, t) = 1 is immediate. Consider
the subcasedk+1(s, t) < 1. We consider now the two different rules specifying the copy operator

and show that in each case whenevercp(s)
a−→ π is derivable by some of the rules then there is a

transitioncp(t)
a−→ π′ derivable by the same rule s.t.λ·K (dk)(π, π′) ≤ 2k+1dk+1(s, t), thus confirming

the thesis.

(1) Assume thatcp(s)
a−→ π is derived bys

a−→ π with a ∈ A \ {l, r}. Sincedk+1(s, t) < 1 anddk+1

satisfies the transfer condition of the bisimulation metrics, there exists a transitiont
a−→ π′ for a

distributionsπ′ with λ · K (dk)(π, π′) ≤ dk+1(s, t). Finally, from t
a−→ π′ we derivecp(t)

a−→ π′.
(2) Assume thatcp(s)

a−→ π is derived bys
l−→ π1 ands

r−→ π2 with a = s andπ = cp(π1) | cp(π2).
Sincedk+1(s, t) < 1 anddk+1 satisfies the transfer condition of the bisimulation metrics, there

exist transitionst
l−→ π′1 and t

l−→ π′2 for distributionsπ′1, π
′
2 with λ · K (dk)(π1, π

′
1) ≤ dk+1(s, t)

andλ · K (dk)(π2, π
′
2) ≤ dk+1(s, t). Fromt

l−→ π′1 andt
r−→ π′2 we derivecp(t)

s−→ cp(π′1) | cp(π′2).
Finally we have

λK (dk)(cp(π1) | cp(π2), cp(π′1) | cp(π′2))

≤λ(1− (1− K (dk)(cp(π1), cp(π′1)))(1− K (dk)(cp(π2), cp(π′2))))

≤λ(K (dk)(cp(π1), cp(π′1)) + K (dk)(cp(π2), cp(π′2)))

≤λ(2k K (dk)(π1, π
′
1) + 2k K (dk)(π2, π

′
2))

≤λ(2kdk+1(s, t)/λ + 2kdk+1(s, t)/λ)

=2k+1dk+1(s, t)

with the first step by the inductive hypothesis and Theorem 2.20 (using the fact that the candidate
modulus of continuity of operator| given byz(ǫ1, ǫ2) = λ[1 − (1− ǫ1/λ)(1− ǫ2/λ)] is concave),
the third step again by the inductive hypothesis and by Theorem 2.20 (using the fact that the
candidate modulus of continuity of operatorcp given byz(ǫ) = 2kǫ is concave).

Theorem 4.13. The copy operatorcp is uniformly continuous wrt. the discountedλ-bisimilarity
metricd for anyλ ∈ (0, 1).

Proof. Directly by Proposition 4.12 and Theorem 4.11.
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BRP(N,T, p, q) = RC(N,T, p, q) ‖B TV, whereB = {c(d, b) | d ∈ D, b ∈ {0, 1}} ∪ {ack, lost}

RC(N,T, p, q) =

[

∑

1≤n≤N,n=2k

i(n).
(

CH(0,T, p, q) ; CH(1,T, p, q)
)

n
2

+

∑

1≤n≤N,n=2k+1

i(n).
((

CH(0,T, p, q) ; CH(1,T, p, q)
)

n−1
2

; CH(0,T, p, q)
)

]

;

res(OK).ε

CH(b, t, p, q) =
∑

d∈D
i(d).CH′(d, b, t, p, q)

CH′(d, b, t, p, q) =















(⊥.CH′(d, b, t − 1, p, q)) ⊕p (c(d, b).CH2(d, b, t, p, q)) if t > 0

res(NOK) if t = 0

CH2(d, b, t, p, q) =















(lost.CH′(d, b, t − 1, p, q)) ⊕q (ack.ε) if t > 0

res(NOK) if t = 0

TV =
[((

∑

d∈D
c(d, 1).(ack.ε + lost.ε)

)∗(∑

d∈D
c(d, 0).o(d).(ack.ε + lost.ε)

))

;

((

∑

d∈D
c(d, 0).(ack.ε + lost.ε)

)∗(∑

d∈D
c(d, 1).o(d).(ack.ε + lost.ε)

))]ω

Figure 1: Specification of the Bounded Retransmission Protocol

5. Application

To advocate both uniform continuity as adequate property for compositional reasoning as well as
bisimulation metric semantics as a suitable distance measure for performance validation of commu-
nication protocols, we exemplify the discussed compositional reasoning method by analyzing the
bounded retransmission protocol (BRP) as a case study.

The BRP allows us to transfer streams of data from a sender (e.g. a remote control RC) to a
receiver (e.g. a TV). The RC tries to send to the TV a stream ofn data,d0, . . . , dn−1, with eachdi

a member of the finite data domainD. The lengthn of the stream is bounded by a givenN. Each
datumdi is sent separately and has probabilityp to get lost. When the TV receives a datumdi , it
sends back an acknowledgment message to the RC, which may also get lost, with probabilityq. If
the RC does not receive the acknowledgment for datumdi within a given time bound, it assumes
thatdi got lost and retries to transmit it. However, the maximal number of attempts fordi is a given
T, meaning thatT failures for any datumdi imply the failure of the whole transmission. Since also
the acknowledgment message may get lost, it may happen that the RC sends more than once the
same datumdi notwithstanding that it was correctly received by the TV. Therefore, the RC attaches
a control bitb to each datumdi that it sends to the TV, s.t. the TV can recognize if this datumis



32 D. GEBLER, K. G. LARSEN, AND S. TINI

original or already received. Data items at even positions,i.e. d2k for somek ∈ N, get control bit 0
attached, and data items at odd positions, i.ed2k+1 for somek ∈ N, get control bit 1 attached.

The BRP is specified in Figure 1. Our specification adapts the nondeterministic process alge-
bra specification of [Fok07] by refining the configuration of lossy channels. While in the nonde-
terministic setting a lossy channel (nondeterministically) either successfully transmits a datumdi

or loses it, we attached a success and failure probability tothis choice. The protocol specification
BRP(N,T, p, q) is parametrized by the quadruple (N,T, p, q), with N denoting the maximum length
of the data stream,T denoting how often a single datum may be retransmitted,p the probability that
a single attempt to transmit a datum may fail, andq the probability that the acknowledgment may
fail. The termBRP(N,T, p, q) represents a system consisting of the RC interface to the TVmod-
eled as processRC(N,T, p, q), the TV interface to the RC modeled as processTV, and the channels
CH(b, t, p, q) for data transmission andCH2(d, b, t, p, q) for acknowledgment.

The processesRC(N,T, p, q) andTV synchronize over the actions:

(i) c(d, b), with d ∈ D andb ∈ {0, 1}, modeling the correct transmission of datumd ∈ D and
control bitb ∈ {0, 1} from the RC to the TV;

(ii) ack, modeling the correct transmission of the acknowledgment message from the TV to the
RC, and

(iii) lost, used to model the timeout due to loss of the acknowledgment message.

Timeout due to the loss of pair (d, b) is modeled by action⊥ by the RC.
The processRC(N,T, p, q) starts by receiving the sizen ≤ N of the data stream by some other

RC component, by means of actioni(n). Then, forn times it reads the datumdi from some other RC
components by means of actioni(d) and tries to send it to theTV. If all n data are sent successfully,
then the other RC components are notified by means of actionres(OK). In case ofT failures for one
datum, the whole transmission fails and the other RC components are notified by means of action
res(NOK). If the processTV receives a pair (d, b) from RC(N,T, p, q) by actionc(d, b), then, if the
datumd is original, namelyb is the expected control bit, thend is sent to the other TV components
by means of actiono(d), otherwise (d, b) is ignored.

To advocate bisimulation metric semantics as a suitable distance measure for performance val-
idation of communication protocols we translate performance properties of a BRP implementation
with lossy channelsBRP(N,T, p, q) to the bisimulation distance between such an implementation
and the specification with perfect channelsBRP(N,T, 0, 0). In the following we assume thatλ = 1,
namely no discount.

Proposition 5.1. Let N,T ∈ N and p, q ∈ [0, 1].

(1) The bisimulation distanced(BRP(N,T, 0, 0),BRP(N,T, p, q)) = ǫ relates as follows to the pro-
tocol performance properties:
( a ) The likelihood that N data items are sent and acknowledged without any retry (this means

BRP(N,T, p, q) behaves as BRP(N,T, 0, 0)) is 1− ǫ.
(b) The likelihood that N data items are sent and acknowledged with exactly k retries, for some

0 ≤ k ≤ N · T, is (1− ǫ)(1− (1− ǫ)1/N)k.
( c ) The likelihood that N data items are sent and acknowledged with at most k≤ N · T retries

is (1− ǫ)1−(1−(1−ǫ)1/N )k+1

(1−ǫ)1/N .
(d) The likelihood that at least n≤ N of the N data items are sent and acknowledged is

(1− ǫ)1−(1−(1−ǫ)1/n)nT+1

(1−ǫ)1/n .

( e ) The likelihood that all N items are sent and acknowledged is(1− ǫ)1−(1−(1−ǫ)1/N )N·T+1

(1−ǫ)1/N .
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(2) The bisimulation distanced(CH(b,T, 0, 0),CH(b,T, p, q)) = δ relates as follows to the channel
performance properties:
( a ) The likelihood that one datum is sent and acknowledged without any retry is1− δ.
(b) The likelihood that one datum is sent and acknowledged with exactly k retries, for some

k ≤ T, is (1− δ) · δk.
( c ) The likelihood that one datum is sent and acknowledged with at most k retries, for some

k ≤ T, is1− δk+1.
(d) The likelihood that one datum is sent and acknowledged is1− δT+1.

Proof. (1) First we note that ((1− p)(1 − q))N is the likelihood thatN data items are sent and
acknowledged without any retry.
( a ) The result can be understood by observing thatǫ = 1− ((1 − p)(1 − q))N is the likelihood

that at least one retry is needed to transmit the stream ofN data.
(b) The result can be understood by observing that (1− ǫ)(1 − (1 − ǫ)1/N)k is the conjunct

probability to have exactlyk failures in sending or acknowledging a datum (probability
(1− (1− ǫ)1/N)k), and to haveN successes (probability (1− ǫ)).

( c ) The result can be understood by observing that (1− ǫ)1−(1−(1−ǫ)1/N )k+1

(1−ǫ)1/N =
∑k

i=0(1 − ǫ)(1 −
(1− ǫ)1/N)i , where (1− ǫ)(1− (1− ǫ)1/N)i is the likelihood to send theN data with exactly
i retries (see item (b)).

(d) This is item ( c ) withN instantiated withn andk instantiated withn · T.
( e ) This is item ( c ) withk instantiated withN · T.

(2) First we note that the likelihood that a single datum requires no retry is (1− p)(1− q).
( a ) The result can be understood by observing thatδ = 1− (1− p)(1− q) is the likelihood that

a single datum requires at least one retry to be successfullytransmitted and acknowledged.
(b) The result can be understood by observing that (1−δ)·δk = (1−p)(1−q)·(1−(1−p)(1−q))k

is the conjunct probability to havek failures (probability (1− (1− p)(1− q))k) followed by
a successful transmission (probability (1− p)(1− q)).

( c ) The result can be understood by observing that 1− δk+1 =
∑k

i=0(1− δ) · δi , where (1− δ) · δi
is the likelihood that one datum is sent and acknowledged with exactlyi retries (see item
(b)).

(d) This is item ( c ) istantiated withk = T.

Now we show that by applying the compositionality results given in the previous sections
(Propositions 3.1, 3.2, 4.1) we can relate the bisimulationdistance between the specification with
perfect channelsBRP(N,T, 0, 0) and some implementation with lossy channelBRP(N,T, p, q) of the
entire protocol with the distances between the specification and some implementation of its respec-
tive components. On the one hand, this allows us to derive from specified performance properties
of the entire protocol individual performance requirements of its components (compositional ver-
ification). On the other hand, this allows us to infer from performance properties of the protocol
components suitable performance guarantees on the entire protocol (compositional specification).
We show also that the same compositionality results allow usto relate the distance between the
specification and some implementation with lossy channel ofthe entire protocol or some compo-
nents to the parameters of the system.

Proposition 5.2. Let N,T ∈ N and p, q ∈ [0, 1]. For all b ∈ {0, 1} it holds:

(alph*) d(BRP(N,T, 0, 0),BRP(N,T, p, q)) ≤ 1− (1− d(CH(b,T, 0, 0),CH(b,T, p, q)))N;
(alph*) d(CH(b,T, 0, 0),CH(b,T, p, q)) ≤ 1− (1− p)(1− q).
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(alph*) d(BRP(N,T, p, q),BRP(N,T, 0, 0)) ≤ 1− ((1− p)(1− q))N

Proof. Consider case ((alph*)). By Proposition 3.2.(d) we obtaind(BRP(N,T, 0, 0),BRP(N,T, p, q)) ≤
d(RC(N,T, 0, 0),RC(N,T, p, q))+ (1−d(RC(N,T, 0, 0),RC(N,T, p, q)))d(TV,TV). By d(TV,TV) =
0 we getd(BRP(N,T, 0, 0),BRP(N,T, p, q)) ≤ d(RC(N,T, 0, 0),RC(N,T, p, q)). Then, by applying
Propositions 3.1.( a ), 3.1.(b), 3.2.( a ), and 4.1.( a ) we infer d(RC(N,T, 0, 0),RC(N,T, p, q)) ≤ 1 −
(1− d(CH(b,T, 0, 0),CH(b,T, p, q)))N.

Case ((alph*)) follows directly from Proposition 3.1. Moreprecisely, by Proposition 3.1.( a ) we in-
fer both inequalitiesd(CH(b, t, p, q),CH(b, t, 0, 0)) ≤ p+(1−p)d(CH2(d, b, t, p, q),CH2(d, b, t, 0, 0))
andd(CH2(d, b, t, p, q),CH2(d, b, t, 0, 0)) ≤ q, which gived(CH(b,T, 0, 0),CH(b,T, p, q)) ≤ p+(1−
p)q = 1− (1− p)(1− q).

Case ((alph*)) follows directly from cases ((alph*)) and ((alph*)).

To advocate uniform continuity as adequate property for compositional reasoning, we show that
the uniform continuity of process combinators inBRP(N,T, p, q) allows us to relate the distance be-
tween this implementation and the specificationBRP(N,T, 0, 0) (which relates by Proposition 5.1
to performance properties of the entire protocol) to the concrete parametersp, q andN of the sys-
tem. In detail, by Theorems 3.5, 3.8, 4.6 we can derive thatd(BRP(N,T, p, q),BRP(N,T, 0, 0)) ≤
N/2 · (d(CH(0,T, p, q),CH(0,T, 0, 0))+ d(CH(1,T, p, q),CH(1,T, 0, 0))) (see the proof of Proposi-
tion 5.3 below). Then, by Proposition 5.2 we can deriveN/2 · (d(CH(0,T, p, q),CH(0,T, 0, 0)) +
d(CH(1,T, p, q),CH(1,T, 0, 0))) ≤ N(1 − (1 − p)(1 − q)). Summarizing, we can conclude that
d(BRP(N,T, p, q),BRP(N,T, 0, 0)) ≤ N(1− (1− p)(1−q)), which allows us to infer an upper bound
to d(BRP(N,T, p, q),BRP(N,T, 0, 0)) from suitable constraints forp and q, as formalized in the
following result.

Proposition 5.3. Let N,T ∈ N and p, q ∈ [0, 1]. For all ǫ ≥ 0, p+ q− pq< ǫ/N ensures

d(BRP(N,T, p, q),BRP(N,T, 0, 0)) < ǫ

Proof. AssumeN is even. Then:

d(BRP(N,T, p, q),BRP(N,T, 0, 0))

≤d(RC(N,T, p, q),RC(N,T, 0, 0)) + d(TV,TV) (Theorem 3.8)

=d(RC(N,T, p, q),RC(N,T, 0, 0))

≤d((CH(0,T, p, q); CH(1,T, p, q))N/2, (CH(0,T, 0, 0);CH(1,T, 0, 0))N/2) (Theorem 3.5)

≤N/2 · d(CH(0,T, p, q); CH(1,T, p, q),CH(0,T, 0, 0);CH(1,T, 0, 0)) (Theorem 4.6)

≤N/2 · (d(CH(0,T, p, q),CH(0,T, 0, 0))+ d(CH(1,T, p, q),CH(1,T, 0, 0))) (Theorem 3.8)

=N(1− (1− p)(1− q))

where in the third inequality we use the Lipschitz factorn for the operatorn that we obtained in the
proof of Theorem 4.6. Fromd(BRP(N,T, p, q),BRP(N,T, 0, 0)) ≤ N(1− (1 − p)(1 − q)) the thesis
follows. The case thatN is odd is analogous.

Combining Propositions 5.1 – 5.3 allows us now to reason compositionally over a concrete
scenario. We derive from a given performance requirement totransmit a stream of data the necessary
performance properties of the channel components.

Example 5.4. Consider the following scenario. We want to transmit a data stream ofN = 20
data items with at mostT = 1 retry per data item. We want to build an implementation that
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should satisfy the performance property ‘The likelihood that all 20 data items are successfully
transmitted is at least 99%’. By applying Proposition 5.1.1we translate this performance prop-
erty to the bisimulation distanced(BRP(N,T, 0, 0),BRP(N,T, p, q)) ≤ 0.01052 on the entire system.
By applying Proposition 5.2.(alph*) we derive the bisimulation distance for its channel component
d(CH(b,T, 0, 0),CH(b,T, p, q) ≤ 0.00053. By Proposition 5.2.(alph*) this distance can be translated to
appropriate parameters of the channel component, e.g.p = 0.0002 andq = 0.00032 or equivalently
p = 0.020% andq = 0.032%. Finally, Proposition 5.1.2 allows to translate the distance between
the specification and implementation of the channel component back to an appropriate performance
requirement, e.g. ‘The likelihood that one datum is successfully transmitted is at least 99.95%’.

6. Conclusions

We argued that the notion of uniform continuity (Definition 4.4, generalizing the notions of non-
expansiveness and non-extensiveness discussed by other researchers) is an appropriate property
of process combinators to facilitate compositional reasoning w.r.t. bisimulation metric semantics.
We showed that all standard (non-recursive and recursive) process algebra operators are uniformly
continuous (Theorems 3.5, 3.8, 4.6, 4.7). In addition, we provided for all standard process algebra
operators tight bounds on the distance between the composedprocesses (Propositions 3.1, 3.2, 4.1).
We exemplified how these results can be used to reason compositionally over protocols. In fact, they
allow us to derive from performance requirements on the entire system appropriate performance
properties of the respective components, and in reverse to induce from performance assumptions on
the system components performance guarantees on the entiresystem.

We remark that the abstraction operator of probabilistic process algebras (that hides actions
and makes them observable as non-distinguishableτ-actions) is non-extensive. However, the power
of abstraction and hiding can only be utilized by using also abehavioral semantics that treats the
τ-actions respectively as internal actions. We leave the development of weak and branching bisim-
ulation metrics and the analysis of process algebra operators for those metrics as future work. A
first analysis for weak bisimulation metric and observational congruence weak bisimulation metric
(weak bisimulation metric with kernel equivalence being the largest congruence w.r.t. CSS operators
contained in weak bisimulation equivalence) may be found in[DJGP02].

The metric reasoning approach exemplified in Section 5 is a sound method to reason compo-
sitionally over systems. However, the distance between composed systems might not be tight. Let
C[x] be an open term describing a composed system withx the placeholder for a subsystem. Given
subsystemss and s′, the distanced(C[s],C[s′]) might be below the composition of the composi-
tionality properties of the operators inC if some of the differences in the behaviors betweens and
s′ do not induce different behaviors betweenC[s] andC[s′]. To exemplify this effect, consider the
contextC[x] = x | b.0 and subsystemss= a.0 ands′ = a.([1− ǫ/λ]ε⊕ [ǫi/λ]0) . Clearlyd(s, s′) = ǫ.
Then the compositional analysis givesd(C[s],C[s′]) ≤ ǫ. However,d(C[s],C[s′]) = 0 because the
behavioral distance betweens ands′ (observable only after executing actiona) cannot be observed
in the contextC[x] (which can only perform an action if the instances ofx perform actionb). Thus,
d(C[s],C[s′]) = 0 sinces ands′ agree on the inability to perform actionb. One idea to tackle this
problem is to develop the notion of context bisimulation. Given a contextC, theC-bisimulation
distance (bisimulation distance w.r.t. contextC) betweens ands′ would measure only that degree
of the bisimulation distance betweensands′ that would induce different behavior betweenx instan-
tiated bysandx instantiated bys′. Using the notationdC for theC-bisimulation distance this would
give the behavioral distancedC(s, s′) = 0 (sinceC derives only behavior from an initialb-move and
s and s′ agree on their inability to performb-moves), whiledC(b.0, b.([1 − ǫ/λ]ε ⊕ [ǫi/λ]0) = ǫ.
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It is clear that the context bisimulation distance is bounded by the bisimulation distance. While it
still allows for sound compositional metric reasoning it may lead to tighter bounds. We leave the
detailed technical development and analysis as future work.

Another research direction is to generalize the analysis ofconcrete process algebra operators
as discussed in this paper to general SOS rule and specification formats. The basic observation
is that the compositionality results for the concrete probabilistic process algebra operators depend
only on the specification rules of those operators, hence thequestion boils down to develop SOS
meta-theoretical results and appropriate rule and specification formats that guarantee that the spec-
ified operators are uniformly continuous. In essence, we aimto develop the quantitative analo-
gous of the well-established meta-theory for behavioral equivalence semantics [AFV01, MRG07].
This approach has been already developed for notions of approximate probabilistic bisimulation
[Tin08, Tin10, GT13]. Preliminary results show that in essence, a process combinator is uni-
formly continuous if the combined processes are copied onlyfinitely many times along their evolu-
tion [GT14, GT15, Geb15], and more restrictive constraintsguarantee the stronger compositional
properties of Lipschitz continuity, non-expansiveness and non-extensiveness. By following thedi-
vide and congruenceaproach [FvGdW06, FvGdW12, GF12, FvG16, CGT16b], formats for com-
positional properties can be obtained also through a suitable logical characterization of bisimilarity
metric, like that in [CGT16a].

Finally, we intend to explore further (as initiated in Section 5) the relation between various
behavioral distance measures, e.g. convex bisimulation metric [DAMRS07], trace metric [FL14],
and total-variation distance based metrics [Mio14] with performance properties of communication
and security protocols. This will provide further practical means to apply process algebraic methods
and compositional metric reasoning w.r.t. uniformly continuous process combinators.

References

[ABV94] Luca Aceto, Bard Bloom, and Frits Vaandrager. Turning SOS rules into equations.Information and Com-
putation, 111(1):1–52, 1994.

[AFV01] Luca Aceto, Wan J. Fokkink, and Chris Verhoef. Structural operational semantics. InHandbook of Process
Algebra, pages 197–292. Elsevier, 2001.

[And99] Suzana Andova. Process algebra with probabilisticchoice. InProc. ARTS’99, volume 1601 ofLNCS, pages
111–129. Springer, 1999.

[And02] Suzana Andova.Probabilistic process algebra. PhD thesis, Eindhoven University of Technology, 2002.
[Bar04] Falk Bartels.On generalised coinduction and probabilistic specification formats. PhD thesis, VU Univer-

sity Amsterdam, 2004.
[BBLM13] Giorgio Bacci, Giovanni Bacci, Kim G. Larsen, and Radu Mardare. Computing behavioral distances, com-

positionally. InProc. MFCS’13, volume 8087 ofLNCS, pages 74–85. Springer, 2013.
[BIM95] Bard Bloom, Sorin Istrail, and Albert R. Meyer. Bisimulation can’t be traced.Journal of ACM, 42:232–268,

1995.
[CGPX14] Konstantinos Chatzikokolakis, Daniel Gebler, Catuscia Palamidessi, and Lili Xu. Generalized bisimulation

metrics. InProc. CONCUR’14, volume 8704 ofLNCS, pages 32–46. Springer, 2014.
[CGT16a] Valentina Castiglioni, Daniel Gebler, and SimoneTini. Logical characterization of bisimulation metrics. In

Proc. QAPL 2016, EPTCS, 2016.
[CGT16b] Valentina Castiglioni, Daniel Gebler, and SimoneTini. Modal decomposition on nondeterministic proba-

bilistic processes. InProc. CONCUR’16, volume 59 ofLIPIcs. Schloss Dagstuhl - Leibniz-Zentrum fuer
Informatik, 2016.

[DAHM03] Luca De Alfaro, Thomas A. Henzinger, and Rupak Majumdar. Discounting the Future in Systems Theory.
In Proc. ICALP’03, volume 2719 ofLNCS, pages 1022–1037. Springer, 2003.

[DAMRS07] Luca De Alfaro, Rupak Majumdar, Vishwanath Raman, and Mariëlle Stoelinga. Game relations and metrics.
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