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AsstracT. We study which standard operators of probabilistic preagaiculi allow for composi-
tional reasoning with respect to bisimulation metric setican We argue that uniform continuity
(generalizing the earlier proposed property of non-exiwangss) captures the essential nature of
compositional reasoning and allows now also to reason ceitiqaally about recursive processes.
We characterize the distance between probabilistic psesesomposed by standard process algebra
operators. Combining these results, we demonstrate hovpasitional reasoning about systems
specified by continuous process algebra operators allonvmétric assume-guarantee like perfor-
mance validation.

1. INTRODUCTION

Probabilistic process algebras, such as probabilistic (JC$¥01, [Bar04, DDOY], CSPL[JLY01,
Bar04,DvGH07,[DL12] and ACP[[And99, And02], are languages that are eygul to describe
probabilistic concurrent communicating systems, or pbilstic processes for short. Nondeter-
ministic probabilistic transition systems [Se(95] congblabeled transition systems [Kel76] and
discrete time Markov chains [Ste94, HJ94]. They allow us tmel separately the reactive system
behavior, nondeterministic choices and probabilisticicts

Behavioral semantics provide formal notions to comparéesys. Behavioral equivalences are
behavioral semantics that allow us to determine the obSena equivalence of systems by ab-
stracting from behavioral details that may be not relevaiat given application context. In essence,
behavioral equivalences equate processes that are mgisthable to any external observer. The
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most prominent example is bisimulation equivalerice [L$195, Seg95], which provides a well-
established theory of the behavior of probabilistic noedatnistic transition systems.

Recently it became clear that the notion of behavioral edence is too strict in the context
of probabilistic models. The probability values in thosed®ls originate either from observations
(statistical sampling) or from requirements (probabdispecification). Behavioral equivalences
such as bisimulation equivalence are binary notions thatordy answer the question if two sys-
tems behave precisely the same way or not. However, a tingtiar of the probabilities, which
may be due to a measurement error or limitations how precsgeeeified probabilistic choice can
be realized in a concrete system, will make these systemavioehlly inequivalent without any
further information. In practice, many systems are appnaxely correct. This leads immediately
to the question of what is an appropriate notion to measwetiality of the approximation. The
most prominent notion is behavioral metric semantics [D@JRBWO05, DCPPQO6] which provides
a behavioral distance that characterizes how far the behaf/two systems is apart. Bisimulation
metrics are the quantitative analogue to bisimulation edences and assign to each pair of pro-
cesses a distance which measures the proximity of theirtitgtare properties. The distances form
a pseudometlﬂ}:with bisimilar processes at distance 0.

In order to specify and verify systems in a compositional neginit is necessary that the be-
havioral semantics is compatible with all operators of #reguage that describe these systems. For
behavioral equivalence semantics there is common agreehaticompositional reasoning requires
that the considered behavioral equivalence is a congrueitheespect to all language operators.
For example, consider a terifi{s;, Sp) which describes a system consisting of subcompongnts
ands, that are composed by the binary operatoWhen replacings; with a behaviorally equiva-
lent s, ands, with a behaviorally equivalers,, congruence of the operatérguarantees that the
composed systerfi(s;, ) is behaviorally equivalent to the resulting replacemgsteam f(s,, s,).
This implies that equivalent systems are inter-substtata\WWhenever a systemin a language
contextC[ 5] is replaced by an equivalent systegnthe obtained contexi[s'] is equivalent taC[ ).
The congruence property is important since it is usually megsier to model and study (a set of)
small systems and then combine them together rather thaortowith a large monolithic system.

However, for behavioral metric semantics there is no satisfy understanding of which prop-
erty an operator should satisfy in order to facilitate cosiponal reasoning. Intuitively, what is
needed is a formalization of the idea that systems closecto @ier should be approximately inter-
substitutable: Whenever a systesin a language context[s] is replaced by a close systes,
the obtained context[s] should be close t€[s]. In other words, there should be some relation
between the behavioral distance betwesemnd s’ and the behavioral distance betwegfs] and
C[S]. This ensures that any limited change in the behavior of@@mponents implies a smooth
and limited change in the behavior of the composed sy&fgh(absence of chaotic behavior when
system components and parameters are modified in a codtrobener). Earlier proposals such
as non-expansiveness [DGJP04] and non-extensivenessMB8|Lare only partially satisfactory
for non-recursive operators and even worse, they do navatall to reason compositionally over
recursive processes. More fundamentally, those propasalkind of ‘ad hoc’ and do not capture
systematically the essential nature of compositional imetasoning.

In this paper we consider uniform continuity as a propergt tieneralizes non-extensiveness
and non-expansiveness and captures the essential natar@pdsitional reasoning w.r.t. behavioral
metric semantics. A uniformly continuous binary processraforf ensures that for any non-zero

IA bisimulation metric is in fact a pseudometric. For conegrtie we use the term bisimulation metric instead of
bisimulation pseudometric.
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bisimulation distance (understood as the admissible tolerance from the opeerdti@mhavior of the
composed process;, $)) there are non-zero bisimulation distanéesndd, (understood as the
admissible tolerances from the operational behavior gptheesses; ands,) such that the distance
between the composed processgs;, ;) and f(s;, ) is at moste whenever the componers{
(resp.s,) is in distance of at mosh from s; (resp. at mosé; from s;). Uniform continuity ensures
that a small variance in the behavior of the parts leads tauaded small variance in the behavior
of the composed processes. Since uniformly continuousatgsr preserve the convergence of
sequences, this allows us to approximate composed systerygpboximating its subsystems. In
summary, uniform continuity allows us to investigate thbdgor of systems by disassembling them
into their components, analyze at the component level, lagad derive properties of the composed
system. We consider the uniform notion of continuity (techty, thed; depend only ok and are
independent of the concrete systegisbecause we aim at universal compositionality guarantees.
As important notion of uniform continuity we consider Lipsz continuity which ensures that the
ratio between the distance of composed processes and theagidetween its parts is bounded.
Our main contributions are as follows:

(1) We develop for many non-recursive and recursive proopssators used in various probabilis-
tic process algebras tight upper bounds on the distancesbatprocesses combined by those
operators (Sectioris 3.2 and4.2).

(2) We show that non-recursive process operators, espdéterministic and probabilistic variants
of) sequential, alternative and parallel compositiorpwaifor compositional reasoning w.r.t. the
compositionality criteria of non-expansiveness and hedeew.r.t. both Lipschitz and uniform
continuity (Sectiom ).

(3) We show that recursive process operators, e.g. (namaigistic and probabilistic variants of)
Kleene-star iteration ang-calculus bang replication, allow for compositional ra@ag w.r.t.
the compositionality criterion of Lipschitz continuity @mence also w.r.t. uniform continuity,
but not w.r.t. non-expansiveness and non-extensivenessi¢s[4).

(4) We discuss the copy operator proposed_in [BIM95, FvGdWa Zpecify the fork operation
of operating systems as an example of operator allowingdomwositional reasoning w.r.t. the
compositionality criterion of uniform continuity, but netr.t. Lipschitz continuity.

(5) We demonstrate the practical relevance of our methode&goning compositionally over a
network protocol built from uniformly continuous operatoin detail, we show how to derive
performance guarantees for the entire system from perficenassumptions about individual
components. In reverse, we show also how to derive perfaeagguirements on individual
components from performance requirements of the compysters (Sectiofil5).

2. PRELIMINARIES

2.1. Probabilistic Transition Systems. We consider transition systems with process terms as states
and labeled transitions taking states to distributions st@tes. Process terms are inductively de-
fined by process combinators.

Definition 2.1 (Signature) A signatureis a structure = (F, r), where

(1) F is a countable set afperators and
(2) r: F — Nis arank function
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The rank function gives by(f) the arity of operatof. We call operators with arity Gonstants
If the rank of f is clear from the context we will use the symtolor r(f). We may writef € X as
shorthand fox = (F,r) with f € F.

Terms are defined by structural recursion over the signatfeeassume an infinite set state
variablesVs disjoint fromF.

Definition 2.2 (State terms) The set ofstate termsver a signatur& and a selv C Vs of state
variables, notatioff (%, V), is the least set satisfying:

e VCT(Z,V),and

o f(ty,..., 1) € T(Z, V) wheneverf € X andty,...,t, € T(Z, V).

We write ¢ for ¢() if cis a constant. The set alosed state term$(Z, 0) is abbreviated as
T(X). The set obpen state term$(Z, Vs) is abbreviated a$(X). We may refer to operators bas
process combinatoydo state variables ifis asprocess variablesand to closed state termsTiX)
asprocesses

A probability distribution over the set of closed state tefi{X) is a mappingr: T(X) — [0, 1]
with Ytz 7(t) = 1 that assigns to each closed tetrra T(X) its respective probabilityt(t). The
probability mass of a set of closed terisC T(X) in some probability distributiomr is given by
(T) = et (). We denote bW (T(X)) the set of all probability distributions ovarx). We let
7, 7’ range over\(T(X)).

Notation 2.3 (Notations for probability distributions)We denote bys(t) with t € T(X) the Dirac
distribution defined by §(t))(t) = 1 and 6(t))(t') = 0 for allt’” € T(X) with t # t’. The convex
combination} ., pimi of a family {r;}ic; of probability distributionst; € A(T(X)) with p; € (0, 1]
and g pi = 1is defined by Y| pizi)(t) = X (piz(t)) for all termst € T(X). The expression
f(r1,...,m) with f € ¥ andn; € A(T(X)) denotes the product distribution of, . . ., 7, defined by
(f(re, ..., m))(f(te, ..., t)) = TTL, mi(t) and (f (me, . . ., 7mn))(t) = O for all termst € T(Z) not in the
formt = f(ty,...,ty). For binary operators we may use the infix notation and writg f 7, for
f (e, 72).

Next, we introduce a language to describe probability iistions. We assume an infinite
set ofdistribution variablesVy and lety, v range overVy. We denote byV the set of state and
distribution variablesV = Vs U Vy and let{, ' range overy.

Definition 2.4 (Distribution terms) The set ofdistribution termsover a signatur&, a set of state
variablesVs C V5 and a set of distribution variablég C Vg, notationDT(Z, Vs, V), is the least set
satisfying:

(1) Vq € DT(Z, Vs, V4g),

(2) {6(t) I t € T(Z, Vs)} € DT(Z, Vs, Va),

(3) Xic pifi € DT(Z, Vs, Vq) Wwhenevew; € DT(Z, Vs, Vg) andp; € (0, 1] with X i) pi = 1, and

(4) f(6,...,6n) € DT(Z, Vs, Vg) Wheneverf € ¥ andfy,...,0, € DT(Z, Vs, Vqg).

Distribution terms have the following meaning. distribution variableu € Vjy is a variable
that takes values from(T(X)). An instantiable Dirac distributions(t) is an expression that takes
as value the Dirac distributiofi(t’) when state variables inare substituted such thabecomes
the closed ternt’. Casd B allows us to construct convex combinations of Higions. CasEl4 lifts
structural recursion from state terms to distribution term

The set oftlosed distribution termBT(Z, 0, 0) is abbreviated aBT(X). The set oopen distri-
bution termsDT(Z, Vs, Vg) is abbreviated a®T(X). We write 61 @ 6, for Zizzl pig; with p; = p
andpz = 1 - p. Furthermore, for binary operatofswe may use the infix notaion and wriig f 6,
for f(01, 62).
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Definition 2.5 (Substitution) A substitutionis a mappingr: <V — T(X) U DT(X) such thatr(X) €
T(), if x € Vs, ando (1) € DT(E), if u € V4. A substitutiono extends to a mapping from state
terms to state terms ky(f(t,...,tn)) = f(o(t1),..., o(ty)). A substitutiono extends to a mapping
from distribution terms to distribution terms by

(i) o(6(t) = s(co (1)),
(i) o(Zicl Pi6i) = Ziel Pio(6), and
(i) o(F(6u,....60) = F(o(O0), ..., (On)-

A substitutione is closedif o(x) € T(X) for all x € Vs ando (1) € DT(Z) for all u € V4. Notice that
closed distribution terms denote distributionsAifT (X)).

Probabilistic nondeterministic labelled transition gyst [Seg95], PTSs for short, extend la-
belled transition systems by allowing for probabilistimaes in the transitions. As state space we
will take the set of all closed termgX).

Definition 2.6 (PTS, [Seg95]) A probabilistic nondeterministic labeled transition systéPTS
over the signatur& is given by a triple T(X), A,—), where:

e T(X) is the set of all closed terms ovEy
e Ais a countable set @fctions and
e > C T(Z) x AX A(T(X)) is atransition relation

We call ¢, a, r) € — atransition from statet to distributions labelled by actiora. We write
t 2 x for (t,a, ) € ». Moreover, we writd 2, if there exists some distribution A(T(Z)) with
t 3 7, andt —?—» if there is no distributionr € A(T(X)) with t 2, x. For a closed terme T(X) and

an actiona € A, letder(t,a) = {r € A(T(X)) | t 2 n} denote the set of all distributions reachable
fromt by performing are-labeled transition. We catler(t, a) also thea-derivativesof t.

We say that a PTS isnage-finiteif der(t, a) is finite for each closed tertnand actiora. In the
rest of the paper we assume to deal with image finite PTSs.

2.2. Bisimulation metric. Bisimulation metrig [DGJPO04, vBWO5, DCPPO06] provides a robust
semantics for PTSs. It is the quantitative analogue to hikition equivalence and assigns to each
pair of states a distance which measures the proximity af tluantitative properties. The distances
form a pseudometric where bisimilar processes are at distan

Definition 2.7 (Pseudometric over(X)). A functiond: T(Z) x T(ZX) — [0, 1] is al-bounded pseu-
dometricif

e d(t,t) =0forallte T(Y),

e d(t,t) =d(t’,t) for all t,t’ € T(X) (symmetry), and

o d(t,t)) < d(t,t") +d(t”,t) for all t,t’,t” € T(X) (triangle inequality).

We will define later bisimulation metrics as 1-bounded psaoekrics that measure how much
two states disagree on their reactive behavior and thebvgimitistic choices. Note that a pseudo-
metricd permits thatd(t,t’) = O even ift andt’ are diferent terms (in contrast to a metd}y. This
will allow us to assign distance 0 toftirent bisimilar states. We will provide two (equivalent)
characterizations of bisimulation metrics in terms of andaictive definition pattern and in terms of
fixed points.

2A bisimulation metric is in fact a pseudometric. In line wilte literature we use the term bisimulation metric instead
of bisimulation pseudometric.
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Both characterizations require the following lattice stuse. Let ([01]T®*T®), £) be the com-
plete lattice of functionsd: T(X) x T(X) — [0, 1] ordered byd; C dy iff di(t,t) < dy(t,t') for
all t,t’ € T(X). Then for eactD c [0, 1]T®*T®) the supremum and infinimum are sm)(t,t’) =
SURyep d(t, t') and infO)(t, t') = infgep d(t, t) for all t,t” € T(Z). The bottom element is the constant
zero functionO given byO(t,t") = 0, and the top element is the constant one funcligiven by
LUt t') =1, forallt, t’ € T(X).

2.2.1. Metrical lifting. Bisimulation metric is characterized using the quantiainalogous of the
bisimulation game, meaning that two states € T(X) at some given distance can mimic each
other’s transitions and evolve to distributions that ardistance not greater than the distance be-
tween the source states. Technically, we need a notioniftsgp$eudometrics from states to distri-
butions (to capture probabilistic choices).

A 1-bounded pseudometric on termg) is lifted to a 1-bounded pseudometric on distribu-
tions A(T(X)) by means of the Kantorovich pseudometfic [DD09]. Thisrd is the quantitative
analogous of the lifting of bisimulation equivalence riedas on terms to bisimulation equivalence
relations on distributions [vBWO01].

A matchingfor a pair of distributions /£, 7’) € A(T(Z)) x A(T(X)) is a distribution over the
product state space € A(T(Z) x T(X)) with left marginalr, i.e. Yy w(t,t) = =(t) for all
t € T(X), and right marginak’, i.e. Y1) w(t, 1) = 2'(t') for all t’ € T(X). Let Q(x,n’) denote
the set of all matchings forr(z’). Intuitively, a matchingw € Q(r, n’) may be understood as a
transportation schedule that describes the shipment dipitity mass fromr to . Historically
this motivation dates back to the Monge-Kantorovich optitremsport problem [Vil08].

Definition 2.8 (Kantorovich lifting). Let d: T(Z) x T(X) — [0, 1] be a 1-bounded pseudometric.
TheKantorovich liftingof d is a 1-bounded pseudometKidd): A(T(X)) x A(T(X)) — [0, 1] defined
by
K(d)(r,7’) = min Z dit,t) - w(t,t)
wer ) | T
for all r, 7/ € A(T(X)). We callK (d) the Kantorovich pseudometriof d.

In order to capture nondeterministic choices, we need tp$i€udometrics on distributions to
pseudometrics on sets of distributions.

Definition 2.9 (Hausdoff lifting). Letd: A(T(Z)) X A(T(Z)) — [0, 1] be a 1-bounded pseudometric.
The Hausdoyf lifting of d is a 1-bounded pseudomettit(d): P(A(T(X))) x P(A(T(Z))) — [0, 1]
defined by
H(d) (I3, TTp) = max{ sup inf d(ry,72), sup inf d(r, 711)}
nielly mo€elly noellp n1€lly
for all Ty, TT; € A(T(Z)), with inf @ = 1, and su = 0. We callH(d) the Hausdoyf pseudometric
of d.

2.2.2. Coinductive characterizationA 1-bounded pseudometric is a bisimulation metric if for all
pairs of termd andt’ each transition of can be mimicked by a transition tfwith the same label
and the distance between the accessible distributionsrdies<ceed the distance betwdendt’.

By means of aliscount factort € (0, 1], we allow to specify how much the behavioral distance of
future transitions is taken into account [DAHM(03, DGJPO®%he discount facton = 1 expresses
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no discount, meaning that thefidirences in the behavior betweemdt’ are considered irrespective
of after how many steps they can be observed.

Definition 2.10 (Bisimulation metric [DGJP04])A 1-bounded pseudometrit: T(X) x T(X) —
[0, 1] is aA-bisimulation metriowith A € (0, 1] if for all termst,t’ € T(X) with d(t,t") < 1, if t N
then there exists a transitioh— =’ for a distributions’ e A(T(X)) such thatt-K (d)(rr, 7’) < d(t, t).

We refer tod - K(d)(rr, n’) < d(t,t") as the bisimulation transfer condition. We call the sndlle
(w.r.t. ©) A-bisimulation metrica-bisimilarity metric[DCPPO06] and denote it by the symizbl We
mean bya-bisimulation distancédetweert andt’ the distancel(t, t’). If A is clear from the context,
we may refer by bisimulation metric, bisimilarity metricdabisimulation distance té-bisimulation
metric, A-bisimilarity metric andi-bisimulation distance. Moreover, we may call the 1-biamity
metric also non-discounting bisimilarity metric. Bisimuilty equivalence is the kernel of the
bisimilarity metric [DGJP04], namelgi(t,t’) = 0 iff t andt’ are bisimilar.

Example 2.11. Assume a PTS with transitions = {si> e, t N nt} wherebyrs = 0.56(s) +
0.56(0) andr; = (0.5+€)5(s) + (0.5—€)5(0) for some arbitrary € [0, 0.5]. Furthermore, assume a 1-
bounded pseudometritwith d(s, s) = d(0,0) = 0 andd(s, 0) = d(0, s) = 1. We haveK (d)(rs, 71t) =

€, by the matchingv € Q(ns, ) defined byw(s, s) = 0.5, w(0, s) = € andw(0, 0) = 0.5-¢€. Then,d

is a bisimulation metric if it satisfies the bisimulationrisder conditiord(s, t) > A K (d)(rs, 7)) = Ae.
Moreover, the bisimilarity metric assigns the distad¢e s) = Ae.

2.2.3. Fixed point characterizationWe provide now an alternative characterization of bisiroila
metric in terms of prefixed points of an appropriate monotoisanulation functional[[DCPP06].
Bisimilarity metric is then the least fixed point of this fuimmal. Moreover, the fixed point approach
allows us also to express up-tdisimulation metrics which measure the bisimulation distafor
only the firstk transition steps.

Definition 2.12 (Bisimulation metric functional)LetB: [0, 1]T®*T®) — [0, 1]T®*TE) pe the func-
tion defined by
B(d)(t,t') = sup{H(a - K(d))(der(t, a), der(t’, a))}
acA

for d: T(Z) x T(X) — [0, 1] andt, t’ € T(X), with (1 - K (d))(x, 7’) = A - K(d)(r, ')

Itis easy to show tha is a monotone function on ([a]T®*T®) ). The following Proposition
characterizes bisimulation metrics as prefixed point3.of

Proposition 2.13([DCPPO06]) Let d: T(X) x T(X) — [0,1] be al-bounded pseudometric. Then
B(d) C d iff d is a bisimulation metric.

Proposition 2.113 provides the fixed point characterizabbbisimulation metrics and shows
that it coincides with the coinductive characterizationDaffinition[2.10. SinceB is a monotone
function on the complete lattice ([0]"®*T®) C), we can characterize the bisimilarity metric as
least fixed point oB.

Proposition 2.14([DCPPO06]) The bisimilarity metrial is the least fixed point d.

Moreover, the fixed point approach allows us to define a natiolpisimulation distance that
considers only the firdt trasnsition steps.

Definition 2.15 (Up-tok bisimilarity metric) We define theup-to-k bisimilarity metriay fork e N
by dy = BX(0).
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We calldg(s, t) the up-tok bisimulation distance betweerandt.

.. .. ..o a
If the PTS is image-finite and, moreover, for each transities 7 we have that the support
of x is finite, thenB is monotone and continuous, which ensures that the closdieab of B is
w [VvB12]-Section 3. As a consequence, upktbisimulation distances converge to the bisimulation
distances whek — oo, which opens the door to show properties of the bisimulatietric by using
a simple inductive argumerit [vB[12].

Proposition 2.16([vB12]). Assume an image-finite PTS s.t. for each transitien tr we have that
the distributions has finite support. Theth = limy_,., dk.

2.2.4. Properties of bisimulation metricaMe give now an important property of bisimulation met-
rics that will be essential for the argumentation later i tixchnical sections.

The bisimulation distance between statasdt’ measures the fierence of the reactive behav-
ior of t andt’ (i.e. which actions can or cannot be performed) along thailudion. An important
distinction is if two states can perform the same initialaw. In this case, the behavioral distance
is given by the bisimulation game on the derivatives. Otlimawthe two states get the maximal
distance of 1 assigned since there is a transition by oneegkthtates that cannot be mimicked by
the other state.

We say that statesandt’ do not totally disagredf d(t,t’) < 1. If states do not totally disagree,
then they agree on which actions they can perform immegliatel

Proposition 2.17. Let d: T(X) x T(X) — [0, 1] be al-bounded pseudometric. Then
(1) B()(t, V) < Limplies t=> o t' = foralla € A,
(2) d(t,t') < Limplies t—> & t = forall a € A, if d is a bisimulation metric.
Proof. We start with Proposition Z.14.1 and reason as follows.
B(d)(t,t') <1

& VYae A H(A-K(d))(der(t, a), der(t’,a)) < 1

= Yae A((der(t,a) = 0 = der(t’,a)) v (der(t,a) # 0 # der(t’, a)))

& Yae At Lot i).
Now we show Proposition 2.17.2. By Proposition 2.13 we gatd(t, t’) < 1 impliesB(d)(t,t’) < 1.
The thesis follows now from Proposition 2]17.1. ]

Moreover, ifA < 1 the implications in both cases also hold in the other doact

Remark 2.18. The bisimulation distancé(t, t') between termsandt’ is in [0, 2] U{1}. If 2 € (0, 1),

then:

(1) d(t,t’) = 1 iff t can perform an action whicti cannot (or vice versa), i.e. dérd) # 0 and
dert’,a) = 0 for some actiora € A;

(2) d(t,t") = 0iff t andt’ have the same reactive behavior (are bisimilar); and

(3) d(t,t") € (0, 1] iff t andt’ have the same set of initial moves, i.e. dea) = der{’, a), and have
different reactive behavior after performing the same init#bas.

Notice that in the first case the discountloes not apply since theftirent behaviors are observed

immediately. IfA = 1 then the first and last case collapse, d@,t") = 0 iff t andt’ have the same

reactive behavior (are bisimilar), andt, t’) € (0, 1] iff t andt’ have diferent reactive behavior.



COMPOSITIONAL BISIMULATION METRIC REASONING WITH PROBABLISTIC PROCESS CALCULI 9

2.2.5. Properties of the Kantorovich liftingThe Kantorovich pseudometric satisfies important prop-
erties that will be essential to prove our technical resiittgletail, the Kantorovich lifting functional
is monotone, the Dirac operator is an isometric embeddinigeometric space of states into the met-
ric space of distributions, and probabilistic choice dlistres over the Kantorovich lifting.
Proposition 2.19([Pan09]) Let d and d be anyl-bounded pseudometrics. Then
(1) K(d) c K(d)ifd c d;
(2) K(d)(a(t),8(t)) = d(t, t) for all t,t" € T(Z);
) K(d)(Zier pimi, Zierl Pim]) < Xier bi - K(d)(mi, 7)) for all zj, x{ € A(T(Z)) and p € [0, 1] with

Ziel pi = 1
Now we will show a very important new result stating that thenkorovich lifting preserves con-

cave moduli of continuity of language operators. In otherdgpmoduli of continuity of language
operators distribute over probabilistic choices.

Theorem 2.20. Let d: T(X) x T(X) — [0, 1] be anyl-bounded pseudometric. Assume an n-ary
operator fe ¥ and a conca\®function z [0,1]" — [0, 1] with

d(f(te, ..., tn), f(ty,....t5)) < Z(d(t1, 1), ..., d(tn, 1))
for all terms ¢, t, ..., t, t;, € T(X). Then we have

K()(f(ra,....mm), f(rl,...,7R)) < ZK(d)(ra, 7)), . . ., K(d)(n, 7))
for all probability distributionszy, 77, . .., 7, 1y, € A(T(Z)).
Proof. We assume; € Q(rj, 7{) to be an optimal matching such theéd)(ri, 7j) = X ver(y) d(t, ')

wi(t,t'), i.e. a matching between ands; which yields the Kantorovich distand€(d)(r;, 7{). We
define a new distribution over the product space A(T(X) x T(X)) by

W(f(t, o), T, t) = [ Jwilt, 1)
i=1

for all ty,t],...,t,t) € T(X). First, we show that is a joint probability distribution with left
marginalf (z1, ..., my) and right marginaf (z3, . .., 7). The left marginal is

D ot t)t)

veT(z)

- Z o(f(te, ... tn), (..., 1)

), theT(E)

n
= Z l_[wi(ti,ti')
), tpeT () i=1
n

=[] 2] «t.®)

i=1 teT(®)

=1—[7Ti(ti)
i=1
:f(ﬂ'l,. . .,ﬂn)(f(tl,- . -,tn))

3A function z: [0,1]" — [0,1] is called concave if, for anyq,..., Xns Yo+« - s Vn € [0,1] and anya € [0,1], (1 -
)Xy + Ay, ..., (1 - D)X+ AYn) = (1 - D)X, ..., Xn) + A2Z(y1, .. ., Yn)-
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.....

The right marginal is computed analogously. Henee, Q(f (71, ...,m), f(7],...,77)), i.e.wisa
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n+1

[ Jeitt. )

n
= Z Z wn+1(thsts t;]+1) l_[ wi(t;, t|’)
t, T U, €T(E) i=1

n+1
n
= Z wn+1(tn+1,t;]+1) Z l_[wi(ti,ti’)
v, €T() ¥, GeT(®) i=1
n
= Z wn+1(tn+1,t;]+1)l_[ Z wi(ti,ti,)
tr,,€TE) i=1 teT(2)
n+1
=1_[ Z wi(ti, t)).
i=1 UeT(2)

matching for distributiond (71, ..., 7n) and f(z7, .. ., 7).
The proof obligation can be derived now by

K@)(f(r1,...,m), f(7],....70)

IA

i
’
K1

t
’
Y

IA

5t
’
4

DAt t), T ) @(f(ts o ta), TG )

,,,,, t? ET(Z)
tn

Z d(f(tl,...,tn),f(t'l,...,t'n))-]_[wi(ti,t;)
i=1

HETE)
n
D1 Adt, 1), ditn, ) - [ [ it 1)
heTe) =
n
D, ). A ) - | | it §)
T =
n n
D, [d(tl,t'l)-]‘[wi(ti,to,...,d(tn,t.q)-]‘[wiai,t;)]
) = =
n n
>odtwt) | Jwit ). > dtaty) | [witt.t)
L eT(s) i=1 e eT(z) i=1
.....

> dit, Benlts,B), ... Y d(tn,tg)wn(tn,t;)]]

1.4 eT(S) tn teT(D)
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= ZK(d)(r, 77), ..., K(d)(mrn, 7))

whereby the reasoning steps are derived as follows: stepni tine fact thatv is a matching for
distributionsf (74, ...,m) and f(x7, ..., 77), step 2 by the definition ab, step 3 by the assumption
d(f(ts,....tn), f(t],.... 1) < Z(d(ts,t}),...,d(tn, 1)), step 4 by using Jensen’s inequality for the

concave functiorz, step 7 by}, bt () d(ts, t}) - [T, wi(t,t) = Ztl,t'leT(z) d(ts, t))wa(ts, t7), and
1N

step 8 by the definition of. ]

2.3. PGSOS SpecificationsWe will specify the operational semantics of operators bys3@es

in the probabilistic GSOS formalt [Bar04, LGD12, DGL 15]. Timbabilistic GSOS format, PG-
SOS format for short, is the quantitative generalizatiothefclassical nondeterministic GSOS for-
mat [BIM95]. It is more general than earlier forméts [LT03.09] which consider transitions of the

formt 22, ¢ modeling that terni reaches through actiathe termt” with probability . The prob-
abilistic GSOS format allows us to specify probabilistimdeterministic process algebras, such as
probabilistic CCS[[JLY01, Bar04, DD07], probabilistic CEIRY01,Bar04, DvGHO07,/DL12] and
probabilistic ACP[[And98, And(2].

Definition 2.21 (PGSOS rule/[Bar04, LGD12])A PGSOS rule has the form:

(6 5 pplie ke Kl  {x—p liellel)
a
f(Xg,..., %) — 6
with f € X an operator with rank, | = {1,..., n} indices for the arguments df, K;, L; finite index
sets,a k, bi |, a € Aactions,x € Vs state variablegy; x € V4 distribution variables, ané € DT(X) a
distribution term. Furthermore, the following constraimied to be satisfied:
(1) allyjx fori €1,k € K; are pairwise dterent;
(2) all xq,..., X, are pairwise dferent;
(3) Var(®) C{uikliel, ke Kiju{xs..., X}

The PGSOS constraints [1-3 are precisely the constraintseofidndeterministic GSOS for-
mat [BIM95] where the variables in the right-hand side of literals are replaced by distribution
variables.

Notation 2.22 (Notations for rules) Letr be a PGSOS rule. The expressioms& Hiks Xi ﬁ,‘@
and f(xg, ..., Xn) 2 gare called, resppositive premisesegative premiseandconclusion The
set of all premises is denoted by pre)ndnd the conclusion by cong( The termf(xy, ..., Xy) is
called thesource the variables«, .. ., X, are calledsource variablesand the distribution terré is
called thetarget

Given a set of rule® we denote byR; the rules specifying operatdt, i.e. all rules ofR with
sourcef(xy, ..., X)), and byRs 4 the rules specifying aa-labelled transition for operatdr, i.e. all
rules ofRs with a conclusion that ia-labelled.

Definition 2.23 (PTSS) A probabilistic transition system specificatigRTSS) in PGSOS format
is atripleP = (Z, A R), where

¥ is a signature,

Ais a countable set of actions,

Ris a countable set of PGSOS rules, and

R 4 is finite for all f € £ anda € A.
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The last property ensures that the supported model (Defi@th) is image-finite such that the
fixed point characterization of bisimulation metrics cadtes with the coinductive characterization
(Proposition 2.14).

The operational semantics of terms is given by inductivedplgng the respective PGSOS
rules. Then, a supported model of a PTSS describes the mpedademantics of all terms. In other
words, a supported model of a PGSOS specificalas a PTSM with transition relatior» such
that— contains all and only those transitions for which the rulieB offer a justification.

Definition 2.24 (Supported transition)Let P = (£, A,R) be a PTSS and € R be arule. Given a
PTSM = (T(X), A,—) and a closed substitutian, we say that the-instance of is satisfiedin M

and allows to derivé N r, formally M =7 t N m, if

o (%) —%5 o (uix) € — for all X —% 1 € prem¢),

o (%) 25 1 ¢ for anyx € A(T(R)), for all x — € prem¢), and

o t 5 e fort > x = o(conce)).

We call a transitiort — 7z in M supportedby P, notationM Ep t i n, if there is some € Rand a
closed substitutionr such thatM ;" t NS

The supported transitions of a PT83orm the supported model &f.

Definition 2.25 (Supported model)Let P = (Z, A/R) be a PTSS. A PT31 = (T(X),A,—) is a
supported modef

t S aifMEpt o n
forallt - 7 € —.

Each PTSS in PGSOS format has a supported model which is weosnainique[BIM95, Bar04].
We call the single supported PTS of a PTB8Iso theinduced modebf P.
Intuitively, a termf(t,...,t,) represents the composition of terms.. ., t, by operatorf. A

ruler specifies some transitiof(ty, . . ., t,) 2, nthat represents the evolution of the composed term
f(t1,...,tn) by actionato the distributionn.

Definition 2.26 (Disjoint extension[[ABV94]) Let P; = (£1, A,Ry) andP, = (2, A,Ry) be two
PGSOS PTSSsP; is adisjoint extensiorof Py, notationP; C Py, iff ¥1 C %5, Ry € Ry, andR»
introduces no new rule for any operatordn

3. NON-RECURSIVE PROCESSES

We start by discussing compositional reasoning over pribstéd processes that are composed by
non-recursive process combinators. First we introducentbet common non-recursive process
combinators, then study the distance between processgsosenh by these combinators, and con-
clude by analyzing their compositionality properties. Gudy of compositionality properties gen-

eralizes earlier results af [DGJF04, DCPPO06] which comsuienly a small set of process combina-
tors and only the compositionality property of non-expaasess. The development of tight bounds
on the distance between composed processes (necessalfgftive metric assume-guarantee per-
formance validation) is novel.
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\/ n a n
¢=00)  aPlplx — ), pox)
i=1 i=1

a v a a a
X—u a;&\/ X—u y—v X—u y—v

a a a
X,y — u; 6(y) Xy — v X+Yy—u X+y—>v

a a v v
X—pu y—v azd X—u y—v

a v
X|ly—pulv x|y — 6(0)

Xi,u a#+/ yi>v a#+/ le yin/

XMy = ullsty) — xly=800v iy -5 s0)

X—>pu Yoy aeB\{v) xSy y Ly

a v
Xllgy—pullsv X'y — 6(0)

X agBUY) Y5y agBU)
X llg Y~ llg 6(y) X llg Y — 603 Ils v

Table 1: Standard non-recursive process combinators

3.1. Non-recursive process combinatorsWe introduce now a probabilistic process algebra that
comprises many of the probabilistic process combinatam fCCS [[JLYO1/ Bar04, DD07] and
CSP [JLYOQ1,/Bar04, DvGHO7,[DL12]. Assume a set of actios with 4/ € A denoting the
successful termination action. LEBsa be the signature with the following operators:

e constants 0 (stop process) an(skip process);
o afamily ofn-ary probabilistic prefix operatoes([p1]-&. . .®[pn] ) Withae A,n>1,p1,...,pn €
(0,1 andxf, pi = 1;
e binary operators
— _;_(sequential composition),
— _+ _(alternative composition),
— _+p - (probabilistic alternative composition), wihe (0, 1),
— _| - (synchronous parallel composition),
— _|Il - (asynchronous parallel composition),
— _lllp - (probabilistic parallel composition), with € (0, 1), and
— _|lg _ for each for eaclB C A (CSP-like parallel composition).
The PTSSPpa = (Zpa, A, Rpa) is given by the set of PGSOS rulBs, in Tableld and Tablel 2.

The probabilistic prefix operator expresses that the psoadf]t1 @ ... ® [pn]tn) can per-
form actiona and evolves to procedswith probability p;. Sometimes we write. EBi”:l[pi]ti for
a(pitr @ ... @ [pn]tn) andat for a.([1]t) (deterministic prefix operator). The sequential compo-
sition and the alternative composition are as usual. Thetsgnous parallel composition| t’
describes the simultaneous evolution of processeslt’, while the asynchronous parallel compo-
sitiont ||| t’ describes the interleaving bfandt” where both processes can progress by alternating
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Xpu yb o XD yov xou y>v

xiﬂ y—7-> a#+ X yiw a#+
Xllp Y = 1 lllp 5(y) Xllp y = 6(X) lllp v

a a v v
X—u y—v az#+ X—u y—v

a
Xlllpy = wllp 6) @30 v x 1,y s 5(0)
Table 2: Standard non-recursive probabilistic processbiaators

at any rate the execution of their actions. The CSP-likellgdu@mpositiont ||g t’ describes multi-
party synchronization wherteandt’ synchronize on actions iB and evolve independently for all
other actions.

The probabilistic variants of the alternative compositeomd the asynchronous parallel compo-
sition replace the nondeterministic choice of their noobailistic variant by a probabilistic choice.
The probabilistic alternative compositidr-, t” evolves to the probabilistic choice between a distri-
bution reached by (with probability p) and a distribution reached by (with probability 1— p) for
actions which can be performed by both processes. For adtiah can be performed by either only
t or only t’, the probabilistic alternative compositidr-, t’ behaves just like the nondeterministic
alternative composition+ t’. Similarly, the probabilistic parallel compositidrj||, t" evolves to a
probabilistic choice (with respectively the probabilfiyand 1- p) between the two nondeterministic
choices of the nondeterministic parallel compositidi t’ for actions which can be performed by
botht andt’. For actions that can be performed by either drdy only t’, the probabilistic parallel
compositiont |||, t” behaves just like the nondeterministic parallel compoisitil|| t'.

3.2. Distance between processes combined by non-recursive pess combinators.We develop
now tight bounds on the distance between processes comijribe non-recursive process combi-
nators presented in Talile 1 and TdBle 2. This will allow usetive the compositionality properties
of those operators. As we will discuss twdtdrent compositionality properties for non-recursive
process combinators (non-extensiveness, Defirifidn Bdinan-expansiveness, Definitionl3.7), we
split in this section the discussion on the distance boundsrdingly. We use disjoint extensions
of the specification of the process combinators in order&sar over the composition of arbitrary
processes.

We will express the bound on the distance between composmxbgsesf(s,...,s,) and
f(t1,...,ty) In terms of the distance between their respective compgergrandt;. Intuitively,
given a probabilistic process(sy, ..., S,) we provide a bound on the distance to the respective
probabilistic proces$(ts, ..., ty) where each componestis replaced by the componetat

We start with those process combinators that satisfy tlee thscussed compositionality prop-
erty of non-extensiveness (Definitibn 3.4).

Proposition 3.1. Let P= (£, A,R) be any PTSS withg2 C P. For all terms g§t; € T(X) it holds:

(a) d@a P [pls.a P [plt) < 1- I, pd(s,t);
(b) d(s1 + s, t1 + t2) < max@d(sy, tr), d(sp, t2));
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(C) d(s1 +p S2, 11 +p t2) < max@d(sy, ta), d(s, t2)).

Proof. First we consider the probabilistic prefix operator (Priagms 3.I[(a)). The only transi-

. a a

tions froma. P, [pls anda BL,[plt area DL, [pls — X, pio(s) anda DL [plt —
", pid(t). Hence we need to show that K(d)(XiL; pid(s), XL, pio(t)) < 4- XL, pid(s, ti).

This property can be derived by Proposition 2.19 as follows:

K(d) (Z pio(s), pia(ti))
i=1 i=1
<> pK@)(6(s), o(t) (Propositior 2.1913)
i=1
= Z pid(s, t) (Propositiori 2.1912)

I
=

We proceed with the alternative composition operator (Bstjon[3.1[.(B]). If eithed(s, t1) =
1 ord(s,t) = 1 then the statement is trivial sinckis a 1-bounded pseudometric. Hence, we
assumed(si, t1) < 1 andd(s,t2) < 1. We consider now the two fiierent rules specifying the

alternative composition operator and show that in each wasmevers; + s, 2, ris derivable by

some of the rules then there is a transitipnt, 2, 7’ derivable by the same rule sa:K (d)(r, 7’) <

max((sy, tz), d(sz, t2))-

(1) Assume that, + S, — x is derived froms; — x. Sinced(sy,t;) < 1 andd satisfies the
transfer condition of the bisimulation metrics, there ex&transitiort; 2, 7 for a distribution
7’ with A - K(d)(mr, ") < d(sg,t1) < max@d(sy, t1), d(s, t2)). Finally, fromty 2, ' we derive
t1+1 i> .

(2) Assume that; + s 2, ris derived froms, 2, 1. The argument is the same of the previous
case.

We conclude with the probabilistic alternative compositaperator (Propositidn_3[1.(c)). If either
d(s1,t1) = L ord(s, tp) = 1 then the statement is trivial sindes a 1-bounded pseudometric. Hence,
we assumael(sy, t1) < 1 andd(s, t2) < 1. We consider now the threefiiirent rules specifying the

probabilistic alternative composition operator and shioat tn each case whenevar+ s, 2 ris

derivable by some of the rules then there is a transitiont, 2, & derivable by the same rule s.t.

A-K(d)(m, ') < max@(sy, ta), d(sz, t2)).

(1) Assume that; +p S 2, ris derived froms; S and s, —7—> . Sinced(s;, t1) < 1 andd
satisfies the transfer condition of the bisimulation metribere exists a transitidn 2, 7 with
A-K(d)(m, 7") < d(s1,t1) < max@d(sy, t1), d(s, t2)). Sinced(s, t2) < 1, by Proposition 2.1[712
the processes, andt, agree on the actions they can perform immediately. Tbu%. Hence
we can derive the transitidn +, t, 2.

(2) Assume thas; +p S 2, ris derived froms; —7—> ands, 2 1 The argument is the same of the
previous case.

(3) Assume that; +p S 2 7 with 7 = p(m1) + (1 — p)m2 is derived froms; 2 m ands 2
m. Then, sinced(s;,t1) < 1 andd(s,t2) < 1 andd satisfies the transfer condition of the
bisimulation metrics, there exist transitionsi m) with A - K(d)(rg, 77) < d(sg, 1) andt; 2
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n, with 4 - K(d)(rr2, 75) < d(s, t2). Therefore we derive, +p t2 2 pry + (1 = p)ry, with
A-K(d)(pry + (1 = p)mz, pry + (1 = p)m3)
<A - (pK(d)(my, 1) + (1 - p) K(d)(7r2, 75)) (Propositiori 2.71913)
<A - maxK (d)(m1, 77), K(d) (2, 75))
<max@(sy, ta), d(se, t2)). Ll

We note that the distance between action prefixed proceBsegadsitior 3.[.(8)) is discounted by
Asince the processes@;, [pi]s anda. ;[ pilti perform first the actiom before the processes
s andt; may evolve and their distance is observed. The distancegebatprocesses composed
by either the nondeterministic alternative compositioerapor or by the probabilistic alternative
composition operator are both bounded by the maximum of idtarttes between their respective
arguments (Propositiois §.1.(b) &dnd|3.T}(c)). The distdraunds for these operators coincide
since the first two rules specifying the probabilistic altgive composition define the same opera-
tional behavior as the nondeterministic alternative casitfum and the third rule defining a convex
combination of these transitions applies only for thoséastthat can be performed by both pro-
cesses; ands, and respt; andt,. If the probabilistic alternative composition would be defil by
only the third rule of Tablel2, thetl(s; +p Sy, t1 +p t2) < pd(si, t1) + (1 - p)d(s, to).

Finally, we note that the processgsandt; in Proposition$ 3]1 are obtained by using arbitrary
operators irE (not necessarily only operatorsia).

We proceed with those process combinators that satisfyatiee discussed compositionality
property of non-expansiveness (Definition]|3.7).

Proposition 3.2. Let P= (£, A R) be any PTSS withf C P. For all terms §tj € T(Z) it holds:
1 if d(sg,t2) =1

(a) d(si; &, ta; 1) < ) (s, )
max(d; ,, d(sz,t2)) if d(s1,ta) € [0, 1)

(b) d(s1 | s2,ta | ) < d®

(c) d(sulll sp.ta lll t2) < 0

(d) d(s1 lls 5.t lls t2) < {ds 1B\ (V) %0

d® otherwise

(e) d(stlllp 2, talllp t2) < d?

with

1 ifd(sut) =1
=1 ifd(st)=1
d), otherwise

1 if d(sy,ty) = 1
=11 if d(sp, 1) = 1
max@?,, d5,) otherwise

di, = d(sg, tg) + 2"(1 - d(s1, t1)/)d(S2, t2)
df; = d(sz. t2) + A"(1 - d(s2. t2)/A)d(s1. 1)
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Proof. We will prove only Propositiofi 3I2.(#l) (CSP-like parall@nposition||g). The synchro-
nous and asynchronous parallel composition operatorp@8itions 3.2.(H) and 3[2.(fc)) are special
cases, sincgcoincides with|a and||| coincides with|y. The proofs for the probabilistic parallel com-
position operatof|, (Propositior 3.2.(€ )) and the sequential compositionggBsitior 3.7.(d)) are
analogous.

We prove the cas8 \ {+/} # 0 (the caseB \ {4/} = 0 is similar). First we need to introduce
the notion of congruence closure fohisimilarity metricd as the quantitative analogue of the well-
known concept of congruence closure of a process equivaléie define the metric congruence
closure ofd for operator|g w.r.t. the bound provided in Propositibn 18.2.[ d) as a fuoret: T(Z) x
T(X) — [0, 1] defined by
t=11lgt2A
=t llgthA
d(t, t)) < 1A
d(tz, 1)) <1
d(t,t) otherwise

We note that satisfies by constructiod(s; ||g S, t1 ||g t2) < d®sinced[1—(1—d(s,t1)/2)(1—-
d(sp,t2)/2)] = d(s1,t1) +(1—d(s1, 11)/2)d(s2, t2). We note also that satisfies by constructiothC d.

It remains to show that C d, thus givingd = d, and Propositiof 3|2.(d) holds. Sindés the least
prefixed point oB, to showd C d it is enough to prove that is a prefixed point oB.

To prove thaB(d) C d we need to show thatsatisfies the transfer condition of the bisimulation
metrics, namely

dt.t) = min(A[1 - (1 - d(ty, t7)/A)(1 - d(tz, t}) /)], d(t, ') if

for all t = 7 there exists a transitioli — 7’ with A - K(d)(r,7") < d(t, 1) (3.1)

for all termst, t’ € T(Z) with d(t,t") < 1.

We prove Equatiof 311 by induction over the overall nunmibef occurrences of operatdlg
occurring int andt’.

Consider the base cake- 0. By definition ofd, we have thatl(t,t’) = d(t,t’). Sinced(t,t’) < 1
we are sure that the transition= = is mimicked by some transitiot 2, #’ for some distribution
' € A(T(Z)) such thatt - K(d)(r, #’) < d(t,t"). By Proposition 2. 1811 frond C d we infer
K(d) C K(d). Therefore we conclude

A-K(d)(m, ') < A-Kd)(x, ') < d(t, t') = d(t, t')

which confirms that Equatidn_3.1 holds foandt’.

Consider the inductive stdp> 0. If eithert is not of the formt = t; || t2, ort’ is not of the form
" =t ||g t5, then by definition ofi we haved(t,t’) = d(t,t") and Equatiof 3]1 follows precisely as
in the base case= 0. If botht = t; [|g tz andt’ = t; ||g t}, then we distinguish two cases, namely
d(t,t’) = d(t, t') (eitherd(ts, t]) = L ord(tz, t5)) = Lord(t, ') < A[1-(1-d(ts, t])/A)(1-d(t2, 1)/ 2)])
andd(t, t’) = A[1 - (1 -d(tg, t7)/)(1 - d(t2, t5)/2)] (both d(ty, t]) < 1 andd(tz, t}) < 1 andd(t,t’) >
A[1 = (1 = d(t1, 1))/ )(1 = d(tz2, t5)/A)]). In cased(t,t’) = d(t,t") Equation 3.1 follows precisely as
in the base casle= 0. Consider the cagi{t,t’) = A[1 - (1 - d(ts, t])/4)(1 - d(t2, t})/1)]. We have
four different subcases:
(1) t1 — 71, tp — 72,2 € B\ {y} andz = 71 [|g 72;
(2) t1 5 11, t, b, a¢ BU (v) andr = 1y [|g 6(t2);
(3) t — 72, ty >, a¢ BU {v) andr = §(ty) llp 72;
(4) ti = 711, th — 712, @ = v andr = 6(0).
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We start with the first case. By(t,t7) < 1 andd(tz, t;) < 1 andd C d, we getd(ts, t;) < 1 and
. . . . a a
d(tz, t;) < 1. By the inductive hypothesis we get that there are alsgitianst; — 7} andt, —
with 4 - K(d)(m1, 77) < d(t1,t]) and A - K(d)(m2, 75) < d(tz, t)). Hence, there is also the transition
t, lls t) = 7 |l 75 Then
A-K(d)(r1 llg 72, 77 |l 715)
<AP[1 - (1 - K(d)(ro, m5) /(L - K(d) (72, 75)/ )]
<AL - (1 - dts, t))/4%)(L - d(t2, 1)/ 4%)]
<A1 - (1 - d(ta, 17)/)(1 - d(tz, t5) /)]
=d(ty1 llg t2, 17 [l 15)
with the first step by Theorein 220 (using the fact that thedickate modulus of continuity of
operator||g given by z(e1,e2) = A[1 — (1 — e1/2)(1 — e2/2)] is concave) and the second step by
the inductive hypothesis - K (d)(ri, 7{) < d(t, t/). Thus, the metric bisimulation transfer condition
(Equatior3.11) is satisfied fatin this case.
Consider now the second case. @i, t]) < 1 andd C d, we getd(t;, t;) < 1. By the inductive
hypothesis we get that there is also a transitiqnsa—> 7y with 4 - K(d)(m1,77) < d(ty,t). By

Propositior 2.1I712 we have thét—?’e, therefore we can derive the transititjri|g t; 2 ) g 6(t).
Then

A-K(d)(m1 lIs 6(t2), 77 lIs (1))

<AP[1 — (1 - K(d)(ry, 1) /A)(1 = K (d)(8(t2). 5(t5)) /)]

<A1 - (1 - d(ts, t)/22)(1 - d(tz, t5) /)]

<A[1 - (1 - d(tz, 1)/)(1 - d(tz. 1)/ )]

=d(ty lg t2. 1] [l 15)
with step 1 again from Theorem_ 2120 like in the first case amdsicond step by the inductive
hypothesist-K (d)(r1, 77) < d(t1,t;) and Proposition 2.19.2. Hence, the metric bisimulatiansfer
condition (Equatioin_3]1) is satisfied fdrin this case.

The third case is analogous to the second one.
Consider now the fourth case. Byt;,t7) < 1 andd(tz,t;) < 1 andd C d, we getd(t;, t]) <1

andd(tz,t};) < 1. By the inductive hypothesis we get that there are alsitianst; i> m, and

t i> n,. Hence, there is also the transititjn|s t/, i> 6(0). Thena-K(d)(6(0),5(0)) =0 < d(t1 |Is
t2,t] Il t5). Thus, the metric bisimulation transfer condition (Edo=i3.1) is satisfied fod also in
this case. []

The expressiom® in Propositior 3.2 captures the distance bound betweenytihsonously
evolving processes; ands, on the one hand and the synchronously evolving proceésseslt, on
the other hand. We remark that the distand€s, t;) andd(sp, tp) contribute symmetrically tal®
sinced}, = d(s, t1) + (1 - d(s1,t1)/A)d(s2, t2) = d(S2, t2) + (1 - d(S, t2)/A)d(s1, 1) = dY . The
expressionsiiz,dg’l with n > 0 cover diferent scenarios of the asynchronous evolution of those
processes. The expressidfi‘]2 (resp.dg’l) denotes the distance bound between the asynchronously
evolving processes; ands, on the one hand and the asynchronously evolving procésseslt,
on the other hand, at which the firstransitions are performed by the processeandt; (resp. the

first n transitions are performed by processgandty).
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If d(s,t1) = 1 ord(sy,to) = 1, then the processes andt; and the processes andt, may
disagree on the initial actions they can perform, and alsocttmposed processes may disagree
on their initial actions and have then also the maximal distaof 1 (cf. Propositioh 2.17 and Re-
marklZ.18). We analyze the bound for the process combingtdetails assuming bot(s;, t;) < 1
andd(s,, t) < 1.

The distance between the sequentially composed procgssesindt;; t, (Proposition 3.2.(4))
is given ifd(sy, t1) € [0, 1) as the maximum of

0] distancedi2 = d(s,t1) + A1 - d(s1,t1)/2)d(s, t2), which captures the case that first the
processes; andt; evolve followed bys, andt,, and

(i) distanced(sp, t2), which captures the case that the processesndt, evolve immediately
because botk; andt; terminate successfully at their first computation step.

The distancea;li2 weights the distance(s,, t;) betweens, andt, by A(1-d(sz,t1)/4). The discount

A expresses that processgsandt, are delayed by at least one transition step whensyend

t; perform at least one transition step before terminating.di#ahally, note that the dierence
betweens, andt, can only be observed whesy andt; agree to terminate. When processgs
andt; evolve by one step, they disagree thfs;,t1)/2 on their behavior. Hence they agree by
(1 -d(s1,t1)/2). Thus, the distance between processesndt, needs to be additionally weighted
by (1-d(s1, t1)/4). In case[((il)) the distance betwesnandt; is not discounted since both processes
start immediately.

The distance bound between synchronous parallel composeggsess; | S andt; | to
(Proposition_3.2.(R)) is the expressidf, which is d(1),2 = d(sp,t1) + (1 — d(s1,t1)/)d(sp, 1) =
d(sp,12) + (1 — d(s, t2)/D)d(s1, 11) = dg’l, when bothd(sg, t1) < 1 andd(s, t2) < 1. Hence the dis-
tance betwees; | s andt; | to is bounded by the sum of the distance betwgeandt;, which is the
degree of dissimilarity betweesj andt;, and the distance betwespnandt, weighted by the proba-
bility that s; andt; agree on their behavior, which is the degree of dissimyldrétweers, andt, un-
der equal behavior g andt;. Alternatively, byd?, = d9, = A(1-(1-d(st, tz)/)(1-d(sz. t2)/2)),
the bound to the distance betwesn| s, andt; | to can be understood as composing processes
on the behavior they agree upon, i®.| s andt; | t, agree on their behavior i§; andt;
agree (probability of similarity + d(s;,t1)/1) and if s, andt, agree (probability of similarity
1 - d(sp,t2)/1). The resulting distance is then the probability of distaniy of the respective
behavior 1- (1 — d(sg,t1)/4)(1 — d(s, t2) /) multiplied by the discount factot.

The distance bound between asynchronous parallel composedsses; ||| s, andty ||| tz is
the expression? (Propositior:32.(d)). Hence the distance bound is the maxi ofdiz, namely
the distance observable when first processesdt; evolve by at least two transition steps and then
s, andty, anddil, namely the distance observable when first processandt, evolve by at least
two transition steps and thespandt;. Notice that at least two transition steps by the fastergsses
are necessary to observe their distance before the sloaezgses start. The behaviors where either
s; andt; perform the first transition step arsgd andt, perform the second transition step, &r
andt, perform the first transition step arsl andt; perform the second transition step, give rise
to a lower distance wrt. that expressed by the maximum betefgeandds ,. The reason is that
the observation of the fierent behaviors is delayed by more transition steps anceftre, more
discounted. Notice that botif , andd? , differ from the distance® of the synchronously evolving
processes; | $ andt; | t> only by the discount factot? that is applied to the distance of the delayed
processes. Moreoventi2 differs from the distancéi2 of the sequential composed processes,
andts; t; by the diferent discount factor that is applied to the distance of tbegsses, andt,. The
discount factor in case , is A% sinces; andt; are delayed by at least two transition steps after the
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distance betwees, andt; is observed, whereas the discount factor in «:i%%és/l since the distance
betweens; andt; observed at their second transition step may be realiieﬂdaahilityinability of
performing actiony/, which lets, andt, start immediately (namely already in this second transitio
step).

Processes that are composed by the CSP-like parallel catropagperator_ ||z - evolve syn-
chronously for actions iB \ {+/}, evolve asynchronously for actionsAn\ (BuU {+/}), and the action
+/ leads always to the stop process if both processes can petforSinced® > d?, the distance
between processes ||| s, andt; ||| t; (Proposition3.2.(d)) is bounded l} if there is at least
one actiona € B with a # +/ for which the composed processes can evolve synchroncarstly,
otherwise byd?@.

The distance between processes composed by the probalghsallel composition operator
st lllp S andty ||, t2 (Proposition 3.2.(€)) is bounded by the expressidrsince the first two
rules specifying the probabilistic parallel compositicefide the same operational behavior as the
nondeterministic parallel composition, and the third rdédining a convex combination of these
transitions applies only for those actions that can be padd by both processes ands, and resp.
t; andt,.

The distance bounds on the distance between processes sauhipp non-recursive process
combinators (Propositidn 3.1 ahd3.2) are tight.

Proposition 3.3. Letg € [0, 1]. There are processes, € T(Zpa) With d(s, ;) = g such that the
inequalities in Propositions 3.1 and 3.2 become equalities

Proof. We start with Propositioh 3l1. Leh = {ai,...,a,} U {y/}. We define now the witness
processes
e 5=t=g.5ifg=0;
s = &.([1 - a/Ae@[a/1]0) andt; = a.¢, if & € (0, 2);
e s=g.0andtj=a.¢5,if g =2<1;
e s=0andt=a.¢ if g = 1.
It is easy to see that these processes yield for all procesbinators of Proposition 3.1 exactly the
stated upper bound.
We proceed now with Propositions 8.2.[&).J3.2} (b)anfl @ €aseB\{/} # 0. LetA = {a, v/}
with a € B. We define now the witness processes
s=ti=aegif=0;
s =a(l-g/e®[g/10) andt; = a.g, if g € (0, 2);
s=alandt=asg ifg=1<1;
s =0andtj = acif g = 1.
These processes yield for all process combinators of Pitapts3.2.(a)[3.1P.(B) arld 3[2.(|d), case
B\ {+/} # 0, exactly the stated upper bound.
Finally, we conclude with Propositions 8.2.{ ¢),18.2](e ¥ &h2[(d), caseB \ {v/} = 0. Let
A = {a, a, a} U {~/}. We define now the witness processes
s=t=a.a0,ifg =0;
s =&.([1-¢/1a0a[/1]0) andt; = &.a.0, if g € (0, 2);
s =g.0andt =a.a0,ifg =1<1;
s =0andtj = g.¢,if g = 1.
These processes yield for all process combinators of Pitapts3.2.(¢c)[3.P.(§) ard 3[2.(|d), case
B\ {+/} = 0, exactly the stated upper bound. L]
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3.3. Compositional reasoning over non-recursive processesn order to specify and verify sys-
tems in a compositional manner, it is necessary that thevimh semantics is compatible with
all operators of the language that describe these systeinese fre multiple proposals which prop-
erties of process combinators facilitate compositionakoging. In this section we discuss non-
extensiveness [BBLM13] and non-expansiveness [DJGPOJADG, DCPP06, CGPX14]), which
are compositionality properties based on gaeorm. They allow for compositional reasoning over
probabilistic processes that are built of non-recursive@ss combinators. Non-extensiveness and
non-expansiveness are very strong forms of uniform coityinkor instance, a non-expansive oper-
ator ensures that the distance between the composed @edsess most the sum of the distances
between their parts. Later in Section]4.3 we will proposdaum continuity as generalization of
these properties that allows also for compositional reilagoover recursive processes.

Definition 3.4 (Non-extensive process combinato process combinatof € X is non-extensive
w.r.t. A-bisimilarity metricd if
n

d(f(sy,...,s), f(ty,...,th) < Fiflbile(S,ti)

for all closed process ternss t; € T(X).
Probabilistic action prefix, nondeterministic alternatsomposition, and probabilistic alterna-
tive composition are non-extensive w.dt.
Theorem 3.5. The process combinators
o probabilistic action prefix adP;", [pi]-
e nondeterministic alternative compositior- _
e probabilistic alternative composition+p, _

are non-extensive w.r.-bisimilarity metricd for anyA € (0, 1].
Proof. Follows directly from Proposition 3/.1. ]
All other operators oEpa are not non-extensive.

Proposition 3.6. None of the process combinators

sequential composition; _
synchronous parallel compositiar _
asynchronous parallel compositian|| -
CSP-like parallel composition||g -
probabilistic parallel composition |||, -

is non-extensive w.r.2-bisimilarity metricd for anyAa € (0, 1].

Proof. Follows directly from Propositioris 3.2 ahd B.3. ]
We proceed now with the compositionality property of nopamsiveness.

Definition 3.7 (Non-expansive process combinatod) process combinatof € X is non-expansive
w.r.t. A-bisimilarity metricd if

d(f(sp,...» ) F(t, ..o t) < Y d(s, 1)
i=1

for all closed process ternss tj € T(X).

It is clear that if a process combinatbris non-extensive, thef is non-expansive. Moreover,
the two notions coincide whehis unary.
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Theorem 3.8. All non-recursive process combinatorsX
are non-expansive w.ri-bisimilarity metricd for anya € (0, 1].

Proof. Follows directly from Propositions 3.1 and B.2 and the oletisn thatd?, diz < dd <

Theoreni 3.8 generalizes a similar resulf of [DGJP04] wharts@ered only PTSs without non-
deterministic branching and only a small set of process @oatdrs. The analysis which operators
are non-extensive (Theordm 13.5) and the tight distancedso(fPropositions 311, aid 8.2 dnd]3.3)
are novel.

4. RECURSIVE PROCESSES

Recursion is necessary to express infinite (non-termigptiehavior in terms of finite process ex-
pressions. Moreover, recursion allows us to express tiygetinite behavior in a compact way. We
will discuss now compositional reasoning over probalidigrocesses that are composed by recur-
sive process combinators. We will see that the composiitgmaoperties of non-extensiveness and
non-expansiveness used for non-recursive process comisr{&ection 3]3) fall short for recursive
process combinators. We will propose the more general propeuniform continuity (Section 4]3)
that captures the inherent nature of compositional reagomver probabilistic processes. In fact, it
allows us to reason compositionally over processes that@rgosed by both recursive and non-
recursive process combinators. In the next section we dppbe results to reason compositionally
over a communication protocol and derive its respectivdop@rance properties. To the best of
our knowledge this is the first study which explores systeraby compositional reasoning over
recursive processes in the context of bisimulation me&mantics. We remark that recursive pro-
cess combinators are indispensable féeaive modeling and verification of safety critical systems
network protocols, and systems biology.

4.1. Recursive process combinatorsWe definePp,0 as disjoint extension oPpa with the fol-
lowing operators:

e finite iteration_",

e infinite iteration_*,

e binary Kleene-star iteratiori _,

e probabilistic Kleene-star iteratiarir_,

e finite replication !_,

infinite replication (bang) operator,'and

e probabilistic bang operatop..

The operational semantics of these operators is specifitiiehyles in Tablel3.

The finite iterationt” (resp. infinite iteration®) of process expresses thais performechtimes
(resp. infinitely often) in sequel. The binary Kleene-stasresses fot; *t, that eithett; is performed
infinitely often in sequel, ot; is performed a finite number of times in sequel, followedthy
The bang operator expresses fofresp. finite replication") that infinitely many copies (resp.
copies) oft evolve asynchronously. The probabilistic Kleene-staatien [Bar04, Section 5.2.4(vi)]
expresses that*rt, evolves to a probabilistic choice (with respectively thelability p and 1- p)
between the two nondeterministic choices of the Kleeneaggiarationt; *t, for actions which can
be performed by both andt,. For actions that can be performed by either dalgr only tp, t1*rt;
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X — a# xiw Xi>,u X =y a#+y n>m
XL 2 s o+t Y u O Y 5(0) X sy 5(x™)
Xi),u a#+ Xi,u a#+ yiv

X 2 u; 6(x*) X'y N u;6(Xy) X'y 2y

Xou yov azy  xou yph ary  xp yov azy yiw
XY = v @p 15 5(XY) xvy 2 1 6(x7y) xvy 25y xoy sy
a v
X—u a#+ X — [
a
M=l 0™ e Y 00 Y s00)
a a
X—pu a#+ X—u a#+
a a
XSl 60X x> p@p (u ll 6(px)

Table 3: Standard recursive process combinators

behaves just liké; *to. The probabilistic bang replication [MS13, Fig. 1] expesthat bt replicates
the argument processvith probability 1— p and behave just likewith probability p.

4.2. Distance between processes combined by recursive processnbinators. We develop now
tight bounds on the distance between processes combineaeledursive process combinators
presented in Tablg 3.

Proposition 4.1. Let P = (X, A,R) be any PTSS with s C P. For all terms ss,t,tj € T(X) it
holds:
(a) d(s"t")y < d"
(b) d(!"s,I"t) < d"
(c) d(s¥,t¥) < av
(d) d(!s !t) < d'
(e) d(s1"s, t1"t2) < max@(s:”, 1), d(se, t2))
(f) d(strsp, t1rt) < d(S1* S, t]i*tz)
(9) d(1ps 15t) < d(s ) —rpzmmay 148D €(0,1)
d(s 1) ifd(s,t) € {0,1}
with
—(1—d noo.
g [AEOT Ry ifdshe©.1)
d(st) if d(s t) € {0,1}

1-(2—d(si)

OI!n__ol(s,t)l—‘(—ﬂ:%—t”—” if d(st) € (0, 1)
“ld(st) if d(s t) € {0, 1}
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o A6 )y fdsye@)
d(s t) if d(s,t) € {0, 1)

d = d(&t)m ifd(s,t) € (0,1)
d(s 1) if d(s.1) € {0, 1)

. _(1_ n _ 2 n -
Proof. First of all we observe th _%_‘j}fsft)))) = Yl - d(s )k and% TRda? -
Ad(s, D).

Consider first the finite iteration operatdt. The casesl(s,t) = 0 andd(s t) = 1 are imme-
diate. Consider the case 9 d(s,t) < 1. The proof obligation can be rewritten d¢s",t") <
d(s,t) Zp-5(4 — d(s 1))*. We reason by induction over The base case = 0 is immediate. Let
us consider the inductive step+ 1. By the rules in Tables| [1-3, we infer thgit? is bisimilar to
s, 5 (i.e. they are in bisimulation distance 0) and tt#4t is bisimilar tot; t". Henced(s™?, t"™1) =
d(s; 8", t;t"). By Proposition 31.(3) we haws, s", t;1") < d(s t) + d(s",t")(2 — d(s 1)) = (by the
inductive hypothesis ovet) d(s,t)+(d(s, t) Zﬂ;é(/l—d(s, 1)) (-d(s 1) =d(s 1) Yro(d—d(s, t))k.
Summarizingd(s™1,t™1) < d(s t) Yp_o(4 — d(s )X, thus confirming the thesis.

Consider now the finite replication operatdr.! The casesl(s,t) = 1 andd(s,t) = 0 are
immediate. Consider the case<(s,t) < 1. The proof obligation can be rewritten @g"s, !"t) <
d(s t) Zp-5(42—d(s 1))X. We reason by induction over The base case= 0 is immediate. Let us
consider the inductive stap+ 1. By the rules in Tablds [3-3, we infer th&t!sis bisimilar tos|||!"s
and that ™t is bisimilar tot |||'"t. Henced(!"1s I"*1t) = d(s|[|!"s,t |||'"t). By Propositiori 3.2.(¢)
we getd(s|[[!"s,t [||'"t) < d(s t) + (42 — Ad(s 1))d(I"s, I"t) < (inductive hypothesis over) d(s,t) +
(22 - 2d(s 1)d(s )(ZP5(2% — Ad(s ) = d(st) TR 4(42 — Ad(s 1), Summarizing, we have
d(I™1s IM1t) < d(st) Xp_o(42 — Ad(s t)¥. This confirms the thesis.

Consider the infinite iteration operatdt. The casesl(s t) = 1 andd(s,t) = 0 are immediate.
Consider the case @ d(s;t) < 1. By the rules in Tables] [}-3, we infer thstt is bisimilar to
s, s¥ and that® is bisimilar tot; t“. Henced(s”,t*) = d(s; s*, t; t). By Propositiod 3.£.(3) we get
d(s s, t;t%) < d(s t)+(2-d(s 1))d(s¥, t*). Hence we havd(s®,t*) < d(s,t)+(1-d(s t))d(s¥,1%),
from which we inferd(s¥, t*) < d(st)m =dv,

Consider now the bang operatar ! The casesl(s,t) = 1 andd(s,t) = 0 are immediate.
Consider the case @ d(s,t) < 1. By the rules in Tablds [}-3, we infer thati$ bisimilar tos |||'s
and thattis bisimilar tot |||'t. Henced(!s, !t) = d(s|lI's t [||'t). By Proposition 3.2.(d) we gel(s |||
IS t|'t) < d(s t) + (22 — ad(s 1)d('s, It). Hence we have(!s, !t) < d(s t) + (1% — Ad(s, t))d(!s 1),
from which we inferd(!s, It) < d(st)m d'.

Consider the binary Kleene star operatér. Observe that the terms;*s, is bisimilar to
(s1;(s1"s)) + s and that the ternty*t, is bisimilar to ¢1; (t1*t2)) + t2. Propositior3JL.(B) shows
d(si"sp, t2"tp) = d((s1; (s17"%)) + 2, (ta; (12712)) + t2) = maxd((sy; (s1"sp)), (ta; (t1°12))), d(s2, t2)}.
If max{d((sy; (s172)), (t1; (t1"12))), d(s2, t2)} = d((s1; (S172)), (t1; (t1"t2)), we getd(s1" s, t1"t2) =
d((s1; (s1"2)), (t1; (t2"t2))), where, by Proposition 3[2,(jadl((sy; (s1"s2)). (ta; (t1"t2))) = d(sp, ta) +
(A — d(s1, t1))d(s1* S, t1*t2), thus givingd(si* S, tr*t) = d(sl,tl)m. Therefore we con-
clude thatd(s;*s,. t1"tp) = max{d(sl,tl)m,d(&,tg)} = maxd(s?, 1), d(sz. t2)}. This con-
firms the thesis.
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Consider now the probabilistic Kleene star operator. Tioersa, third and fourth rule specify-
ing the probabilistic Kleene star operator define the saneeatipnal behavior as the nondetermin-
istic Kleene star operator. Since the target of the firstimi¢he probabilistic Kleene star operator
is a convex combination of the targets of the second and tieertiie, the thesis follows.

Consider now the probabilistic bang operator. The boundhendistance of processes com-
posed by the probabilistic bang operator can be understgoobberving that the termy$ be-
haves as™!s with probability p(1 — p)". Hence, by Propositioh 4[I.(b) we geéf!ps,!pt) <
T P — PNd(™ s 1M ) < 3 0 p(1 - p)d™ = d(s 1)/(1 - (1- p)(42 - ad(s 1)). [

The bounds for the combinators in Proposition 4.1 are imatedivhen the distance between
the process arguments is either 0 or 1. We explain those Booywagssuming that the distance
between the process arguments is neither 0 nor 1.

First we explain the distance bounds for the nondeterniénistursive process combinators.
To understand the distance bound between processes th# fiaitely often (Proposition 4[1.(Ja)),
observe that" ands;...;s, with s;...; sdenotingn sequentially composed instancesspfienote
the same PTSs (up to renaming of states). Recursive appticatthe distance bound for operator
_; _(Propositio 31.(3)) yieldd(s", t") = d(s;...; s t;...;1) < d(s 1) Tg(A-d(s 1)k = d". The
same reasoning applies to the finite replication operatap@sition 4.1.(0)) by observing thdtd
ands||| ... |l s, with s||| ... |l sdenotingn occurrences o$ that evolve asynchronously, denote
the same PTSs (up to renaming of states), thus gidiies, !"t) = d(s ||| ... Il st ... lllt) <
d(s.t) Zpg(4% - ad(s. 1)< = d"”.

The distance between processes that may iterate infinitatyyrtimes (Proposition_4[1.(lc)),
and the distance between processes that may spawn infimtaty copies that evolve asynchro-
nously (Proposition 4J1.(¢)) are the limit of the respeetiinite iteration and replication bounds.
The distance between the Kleene-star iterated processgsandt;*t; (Proposition[4.I[.(&)) is
bounded by the maximum of the distard{s;“, t;“’) (infinite iteration ofs; andt; s.t.s, andt, never
evolve), and the distanal{s,, to) (s, andt, evolve immediately). The case whesgandt; iterate
n-times and thers, andt, evolve leads always to a distand€s;,", t;") + (1 — d(s, 11))"d(sp, 12) <
max@(s1“, 1¢), d(sz, 12)).

Now we explain the bounds for the probabilistic recursivecpss combinators. The distance
between processes composed by the probabilistic Kleenésdtaunded by the distance between
those processes composed by the nondeterministic KleanéPsopositio 4][.(1)), since the sec-
ond, the third and the fourth rule specifying the probatilikleene star define the same operational
behavior as the nondeterministic Kleene star, and the fitstwhich defines a convex combina-
tion of these transitions applies only for those actiong Hwth of the combined processes can
perform. In fact,d(s;*r s, t1Pty) = d(s1" S, t1*t2) if the initial actions that can be performed by
processes, t; are disjoint from the initial actions that can be performgdpbocesses;, t, (and
hence the first rule definingr_ cannot be applied). Thus, the distance bound of the prosbil
Kleene star coincides with the distance bound of the nonaiétestic Kleene star. The bound on
the distance of processes composed by the probabilistig bperator can be understood by ob-
serving that }s behaves as't'swith probability p(1 — p)". Hence, by Proposition 4[1.(b) we get
d(1ps 1pt) < X0 p(L- pnd(™ s 1M < 3 p(1-p)"d™ = d(s 1)/(1- (1~ p)(a% - 2d(s 1))).

The distance bounds on the distance between processes senporecursive process combi-
nators (Proposition 41.1) are tight.

Proposition 4.2. Letg € [0, 1]. There are processes, € T(Zpa) With d(s, ;) = g such that the
inequalities in Proposition 4]1 become equalities.
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Proof. The witness processes of Proposifiod 3.3 that were usedwotsiat the inequality in Propo-

sition[3:2/(a]) becomes an equalityffsze for Propositions ZIT.(R), 4. I.(¢). W T ELI4T.(f)eTh
witness processes of Proposition] 3.3 that were used to stathie inequality in Proposition 3.2.(c)

becomes an equality, Sice for Propositions 4I[1.(bl), 4.1.(d). #. 1. 9). L]

4.3. Compositional reasoning over recursive processedzrom Propositions 411 and 4.2 it follows
that none of the recursive process combinators discussbis isection satisfies the compositionality
property of non-expansiveness.

Proposition 4.3. None of the recursive process combinatorsEgfo (unbounded recursion and
bounded recursion with g 2) is non-expansive w.r.f-bisimilarity metricd for anyA € (0, 1].

Proof. Follows directly from Propositioris 4.1 ahd ¥.2 and the okestion thatd” > d',d" > d" >
d(s t) whenever O< d(s,t) < 1. ]

However, a weaker property ffices to facilitate compositional reasoning. To reason c@Rpo
tionally over probabilistic processes it is enough if thetance between the composed processes can
be related to the distance between their parts. In essemrogasitional reasoning over probabilistic
processes is possible whenever a small variance in the ioelofthe parts leads to a bounded small
variance in the behavior of the composed processes.

We introduce uniform continuity as the compositionalityperty for both recursive and non-
recursive process combinators. Uniform continuity gelimga the properties non-extensiveness
and non-expansiveness for non-recursive process corotsnat

Definition 4.4 (Uniformly continuous process combinato process combinatof € X is uni-
formly continuousw.r.t. A-bisimilarity metricd if for all € > O there ar&, ...,y > 0 such that

Yi=1....,nd(s,t) <6 = d(f(s,...,s), f(ts,....tn)) <€
for all closed process ternss t; € T(X).

Note that by definition each non-expansive operator is algtoumly continuous (bys; =
€/n). A uniformly continuous combinatof ensures that for any non-zero bisimulation distance
there are appropriate non-zero bisimulation distadced. for any composed procesés,, ..., Sn)
the distance to the composed process where sachreplaced by any;, with d(s,t) < & is
d(f(s,...,S), f(t1,...,tn)) < e. We consider the uniform notion of continuity (technicaltiie
6; depend only ore and are independent of the concrete stagdecause we aim at universal
compositionality guarantees.

A particular case of uniform continuity is Lipschitz coniity, which requires that there is a
constantk € Ryp such thats; = ¢/(n - K). Intuitively, this ensures that the distance between the
composed processes is limited in how fast it can change diiie tchange of the distance between
the components.

Definition 4.5 (Lipschitz continuous process combinataf) process combinatof € X is Lipschitz
continuousw.r.t. 2-bisimilarity metricd if there exists a constamt € R.q with

d(f(sp, o ) Fltn, o t) <K ) d(s, )
i=1

for all closed process ternss t; € T(X).
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We refer to the constarit in Definition[4.5 as thelLipschitz factorfor combinator f, and
we may say thaf is K-Lipschitz continuousNote that by definition a non-expansive operator is
Lipschitz continuous (b = 1) and a Lipschitz continuous operator is uniformly contins (by
6i = €/(n- K)).

The distance bounds of Sectionl4.2 allow us to derive thaefiniecursing process combina-
tors are Lipschitz continuous (and therefore also unifgrogntinuous) w.r.t. both non-discounted
and discounted bisimilarity metric (Theorém14.6). On thatcary, unbounded recursing process
combinators are Lipschitz continuous and uniformly camins only w.r.t. discounted bisimilarity
metric (Theoren 4]7 and Proposition14.8).

Theorem 4.6. The process combinators

o finite iteration "

e finite replication!"_

e probabilistic replication (bang),-

are Lipschitz continuous w.r.g-bisimilarity metricd for any 1 € (0, 1].

Proof. For finite iteration operator, this follows directly fromdpositiong 4.1[.(g) and the observa-

tion thatll__%__—‘fj((‘z%); < n = K. For finite replication operator, this follows directly froProposi-

tions[4.7[.(b]) and the observation t ‘_&22‘_%(22)))” < n = K. For the probabilistic bang operator it

. . e 1 1
follows from Propositio 4]L.(§) and the observation theg—ro—g— < =752 = K- ]

Note that the probabilistic bang operator is Lipschitz cardus w.r.t. non-discounted bisimi-
larity metricd with 2 = 1 because in each step there is a non-zero probability tegtribcess is
not copied. On the contrary, the proces®s, applying the probabilistic Kleene star creates with
probability 1 a copy ofs; for actions thats; can ands, cannot perform. Hence, the probabilistic
Kleene star operatafr_is uniformly continuous only for discounted bisimilarityetnic withA < 1.

Theorem 4.7. The process combinators

infinite iteration_“

nondeterministic Kleene-star iteration_

probabilistic Kleene-star iteration*_, and

infinite replication (bang)_

are Lipschitz continuous w.r.t. discounte¢bisimilarity metricd for any A € (0, 1).

Proof. For infinite iteration, nondeterministic Kleene star iteya and probabilistic Kleene star it-
eration this follows by Proposition 4[T.(d), ¥.1.] £).J@f)}and the observation thqt_u_lw <
L = K. For infinite replication this follows by Propositidn #.@) and the observation that

o
1 _
ToeadEy S e - K 4

Proposition 4.8. None of the process combinators

infinite iteration_*

nondeterministic Kleene-star iteratiaf_

probabilistic Kleene-star iteration*r_, and

infinite replication (bang)_

is uniformly continuous w.r.t. the non-discountetisimilarity metricd with A = 1.

Proof. Follows directly from Propositions 4.1 ahd %4.2. We will reasn detail for the first case
of infinite iteration operator. Let be any fixed real with O< ¢ < 1. We will show that there
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isnod > 0 s.t. for allst € T(X) with d(s;t) < 6 we haved(s”,t*) < e. We will show this by
contradiction. Assume there is soie- 0. Considers = a.([1 — §/2]e @ [6/2]0) andt = a.e. We
haved(s t) = 6/2 < § andd(s”,t“) = 1 > €. Contradiction. Similar reasoning applies also to the
other process combinators. L]

Note that the processes used in the proof of Propositidnrd &itnesses that these combinators
are not continuous at all.

Given any discount factat, all process combinators discussed so far that are unijocon-
tinuous wrt.A-bisimilarity metricd are also Lipschitz continuous wd. We conclude this section
by discussing the copy operatgy of [BIM95| [FvGdW12] as an example of an operator being uni-
formly continuous but not Lipschitz continuous wrt. disoted A-bisimilarity metricd with any
1€ (0,1).

The copy operatoep is defined by the rules

a | r
X_:;u @e{l.r}) X—;u X—v
cp(X) — p cp(X) — cp(u) | cp(v)

The copy operatoecp specifies the fork operation of operating systems. Actlardr are the left
and rightforking actions andsis the resultingsplit action The fork oft is the processp(t) evolving
by t to the parallel composition of the left fork-@erivative oft) and the right fork (-derivative of
t). For all other actions ¢ {l, r} the processp(t) mimics the behavior df.

Proposition 4.9. The copy operatocp is not Lipschitz continuous wrii-bisimilarity metricd for
anyA € (0, 1].

Proof. Assume any discount factare (0, 1]. For any constant € R, we provide suitable CCS
processes andt s.t. d(cp(s),cp(t)) > Ld(s,t). Lets = I.([1 — €]la® [€]0) + r.([1 — e]a® [€]0)
andt; = la+r.a andsq: = .5+ r.s andte = Lt + r.te. Clearlyd(setc) = A%e. Then
d(cp(s), cp(tk)) = A4(1- (1 - e)zk). Hence, for ank with 2¢ > L, d(cp(s), cp(t))/d(s.t) = (1— (1 -
€2)/e > L holds fors = s, t =ty and all 0< € < (2 — L)/(2<1(2X - 1)). Thus, the copy operator
is not Lipschitz continuous wril-bisimilarity metricd. L]

To prove that the copy operatap is uniformly continuous wrt. discountedbisimilarity metric
d with any 1 € (0, 1), we need some preliminary results. First we show that ghatioral distance
between two arbitrary termsandt can be divided in the distance observable by theKisteps and
the distance observable after steflhe step discount allows us to give the upper boun on the
distance observable after stiep

Proposition 4.10. Let P= (X, A,R) be a PTSS and s T(X) arbitrary closed terms. Then
d(st) < d(s )+

forallk e N.

Proof. By induction. Casé = 0 is trivial sinced® = 1. Let d — €): T(Z) x T(Z) — [0, €] with

€ € [0, 1] be the function defined byl €)(s, t) = max@(s,t) —e, 0). For the induction step, assume
dx 2 d — A%, It remains to showdy,1 2 d — 21, We reason as follows:

dk+l(sa t)
=sup{H (1 - K(dy))(der(s, @), der(t, a))}
acA

> sup{H (4 - K(d — 24)(der(s a). der(t, a))}

acA
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>sup{H(1 - K (d))(der(s, a), der(t, a))} — 2<*1

acA
=d(s, t) _ /lk+1
by using the properties

K(d) 2 K(d) ifdad
H(d) 2 H(d") ifdad
K- €)(m, ") > K(d)(r,7") — €
H(d - €)(m, 7") > H(d)(r,7") — €
for any pseudometrice,d’ and anye € [0, 1], definition of dy,1 applied in step 1, induction
hypothesis applied in step 2, the fixpoint property of bidatian metricd(s;t) = supcafH(A -
K (d))(der(s, a), der(t, a))} applied in step 4, and properties of Equation 4.1 applieddpss2 and
3. L]

Now we show that an operator is uniformly continuous wingé. discounted-bisimilarity met-
ric d if this operator is Lipschitz continuous wrt. all up-kot-bisimilarity metricsdy.

(4.1)

Theorem 4.11.LetP= (£,A,R) be aPTSS and < 1. If an operator fe X is Lipschitz continuous
wrt. dx for each ke N, then f is uniformly continuous wid.

Proof. Assume thaff € X is anyn-ary operator. We prove that for amy> 0 there exisby, ..., o, >
0 such that(f(sg,..., ), f(t1,...,t)) < ewheneved(s,t) < d;jforalli =1,...,n. LetLx € Ryg
be the Lipschitz factor fof wrt. dy, i.e.

d(f(st,..» ), F(tn,. 1) < L ) di(s, b).
i=1

Together with Proposition 4.1.0 and propediyC d we get

n
d(f(st - S0). Flta,- o ) < Li Y (s 1) + 2 (42)
i=1
for all k € N. Sinced < 1, there is somene N s.t. ™ < €. Let; € (0, 1] be such that
e—A"
0j < .

If we taked(s, tj) < §; foralli = 1,...,nthen we get
d(f(S]_,...,Sr]), f(t15'~~atn))

<Lm Y d(s,t) + A" (Equatior Z.R)

i=1

thus concluding that thdt is uniformly continuous w.r.t. L]
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Now we show that the copy operatop is Lipschitz-continuous wrt. the (not necessarily dis-
counted) up-to-Ki-bisimilarity metricdx for anyk > 0 anda € (0, 1]. Together with Theorein 4.1.1
this allows us to derive thaip is uniformly continuous wrt. the discount@dbisimilarity metricd
foranya € (0,1).

Proposition 4.12. The copy operatocp is Lipschitz continuous wrt. the up-toikbisimilarity met-
ric dx for any k> 0anda € (0,1].

Proof. For allk > 0, we show that the operatap is 2-Lipschitz continuous wrt. the up-ti-
A-bisimilarity metricdy, namely
di(cp(9), cp(t)) < 2“di(s 1)

holds for arbitrary terms, t € T(X). We proceed by induction ovée: The base cask = 0 is
immediate. Consider the inductive stiep- 1. The subcasdy.1(s,t) = 1 is immediate. Consider
the subcaseélk.1(s,t) < 1. We consider now the two flierent rules specifying the copy operator

and show that in each case whenewg(fs) 2, xis derivable by some of the rules then there is a

transitioncp(t) 2, 7’ derivable by the same rule s&:K (dy)(r, 7’) < 2¢1dy,1(s t), thus confirming
the thesis.

(1) Assume thatp(s) 2, nis derived bys 2, rwithae A\ {l,r}. Sincedy;1(s t) < 1 anddy;1
satisfies the transfer condition of the bisimulation metrtbere exists a transitidn-o 7’ for a
distributionsz’ with A - K (d)(x, ') < dis1(S. t). Finally, fromt = z’ we derivecp(t) — 7.

(2) Assume thatp(s) = r is derived bys — 1 ands - 7, with a = sandx = cp(r1) | cp(ra).
Sincedy,1(s,t) < 1 anddy, satisfies the transfer condition of the bisimulation metribere

. " | | o :
exist transitionsd — 77 andt — 7, for distributionsz’, 7, with A - K(d) (1, 7}) < dsa(S 1)

and - K (di)(w2, 1) < dis1(s 1). Fromt AR 7, andt 5 7, we derivecp(t) — cp(x}) | cp(r}).
Finally we have

AK(dw)(cp(m) | ep(r2), cp(ny) | cp(rs))
<A(1 - (1 - K(di)(ep(ma), ep(r)))(1 - K(dw)(cp(r2), cp(r?))))
<A(K(dk)(cp(m), cp(r)) + K(di)(cp(r2), cp(?)))
<A K (di)(r1, 75) + 2K (di) (2. 75))
<A(2%dis1(S, 1)/ + i1 (s, 1)/2)
=21, 1(s 1)

with the first step by the inductive hypothesis and Thedrédd @ising the fact that the candidate
modulus of continuity of operatgrgiven byz(ei, e2) = A1 — (1 — €1/1)(1 — e2/1)] is concave),
the third step again by the inductive hypothesis and by T#ma@2.20 (using the fact that the
candidate modulus of continuity of operatgr given byz(e) = 2Xe is concave).

[

Theorem 4.13. The copy operatocp is uniformly continuous wrt. the discountgebisimilarity
metricd for anya € (0, 1).

Proof. Directly by Propositiolt 4.12 and Theorém 4.11. O
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BRAN, T, p,q) = RN, T, p,q) lls TV, whereB = {c(d,b) | d € D, b € {0, 1}} U {ack lost}

_ 3
RQN.T.p.0) = [ >, i (CHO.T.p.a); CHAL.T.p.q))
1<n<N,n=2k
+

n-1
i(n).((CH(O, T.p.g); CH(LT, p, q)) *;CH(O,T.p, q))];
1<n<N,n=2k+1

reJOK).e

CH(b,t, p.0) = >_i(d).CH'(d,b,t, p,0)
deD

CH’(d, b, t, D, q) _ (J-. CH (d, b,t -1, P, Q)) @p (C(d, b)CHz(d, b, t, p, q)) |f t>0
reYNOK) ift=0
reyNOK) ift=0

TV = [(( > o(d. 1).(acke + Iostg))*( " o(d. 0).0(d).(ackes + Iostg))) :

deD deD
(( " o(d. 0).(acke + Iosts))*( > o(d. 1).0(d).(acke + Iosts))) :
deD deD

Figure 1: Specification of the Bounded Retransmission obto

5. APPLICATION

To advocate both uniform continuity as adequate propemtydonpositional reasoning as well as
bisimulation metric semantics as a suitable distance medsuperformance validation of commu-
nication protocols, we exemplify the discussed compasdioeasoning method by analyzing the
bounded retransmission protocol (BRP) as a case study.

The BRP allows us to transfer streams of data from a sendgrgegemote control RC) to a
receiver (e.g. a TV). The RC tries to send to the TV a streamasta,dp, . . ., d,_1, With eachd;
a member of the finite data domdih The lengthn of the stream is bounded by a givéh Each
datumd; is sent separately and has probabilityo get lost. When the TV receives a datuam it
sends back an acknowledgment message to the RC, which noagedlbost, with probabilityg. If
the RC does not receive the acknowledgment for dadumithin a given time bound, it assumes
thatd; got lost and retries to transmit it. However, the maximal benof attempts fod; is a given
T, meaning thaT failures for any datundl; imply the failure of the whole transmission. Since also
the acknowledgment message may get lost, it may happenhh®E sends more than once the
same datundl; notwithstanding that it was correctly received by the T\eidfore, the RC attaches
a control bitb to each datund; that it sends to the TV, s.t. the TV can recognize if this datsm
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original or already received. Data items at even positidasgy for somek € N, get control bit O
attached, and data items at odd positionsgie; for somek € N, get control bit 1 attached.

The BRP is specified in Figuté 1. Our specification adapts tmel@terministic process alge-
bra specification of_ [Fok07] by refining the configuration o$dy channels. While in the nonde-
terministic setting a lossy channel (nondeterministigaflither successfully transmits a datwin
or loses it, we attached a success and failure probabilititisochoice. The protocol specification
BRRAN,T, p, g) is parametrized by the quadruphs,{T, p, g), with N denoting the maximum length
of the data streand, denoting how often a single datum may be retransmitpetie probability that
a single attempt to transmit a datum may fail, antthe probability that the acknowledgment may
fail. The termBRRN,T, p, Q) represents a system consisting of the RC interface to thendul-
eled as proceRC(N, T, p, q), the TV interface to the RC modeled as proc€¥sand the channels
CH(b, t, p, g) for data transmission ar@H»(d, b, t, p, ) for acknowledgment.

The processeRC(N, T, p, q) andTV synchronize over the actions:

() c(d,b), withd € D andb € {0, 1}, modeling the correct transmission of datahe D and
control bitb € {0, 1} from the RC to the TV,
(i) ack modeling the correct transmission of the acknowledgmesdgsage from the TV to the
RC, and
(i) lost, used to model the timeout due to loss of the acknowledgmestage.

Timeout due to the loss of paid,(b) is modeled by action_ by the RC.

The proces®RC(N, T, p, g) starts by receiving the size< N of the data stream by some other
RC component, by means of actiign). Then, forn times it reads the datudh from some other RC
components by means of actigid) and tries to send it to thEV. If all n data are sent successfully,
then the other RC components are notified by means of ag#&@K). In case ofT failures for one
datum, the whole transmission fails and the other RC commgsrare notified by means of action
regNOK). If the processTV receives a paird, b) from RC(N, T, p, ) by actionc(d, b), then, if the
datumd is original, namelyb is the expected control bit, thehis sent to the other TV components
by means of action(d), otherwise ¢, b) is ignored.

To advocate bisimulation metric semantics as a suitabtartie measure for performance val-
idation of communication protocols we translate perforogaproperties of a BRP implementation
with lossy channel8RRN, T, p, g) to the bisimulation distance between such an implememtati
and the specification with perfect channBRRN, T, 0, 0). In the following we assume that= 1,
namely no discount.

Proposition 5.1. Let N T e Nand pq € [0, 1].

(1) The bisimulation distancd(BRRN, T,0,0), BRRN, T, p,q)) = € relates as follows to the pro-
tocol performance properties:
(a) The likelihood that N data items are sent and acknowledgddowi any retry (this means
BRRAN, T, p,q) behaves as BRR, T,0,0)) is1 - e.
(b) The likelihood that N data items are sent and acknowledgédexactly k retries, for some
O0<k<N-T,is(1-e€)(1-(1-eYN)k
(c) The likelihood that N data items are sent and acknowledgda atimost k< N - T retries

is (1 — ) L9
1-€ '
(d) The likelihood that at least i< N of the N data items are sent and acknowledged is
(1 _ )1_(1_(1_E)l/n)nT+l
© (1—5)1/” 1/NYN-T+1
. . . . —(1—(1—€)1/ T+
(e) The likelihood that all N items are sent and acknowledggd Be)%
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(2) The bisimulation distancé(CH(b, T, 0,0), CH(b, T, p, q)) = 6 relates as follows to the channel

performance properties:

(a) The likelihood that one datum is sent and acknowledged withioy retry isl — 6.

(b) The likelihood that one datum is sent and acknowledged wilctly k retries, for some
k<T,is(1-9¢)-6

(c) The likelihood that one datum is sent and acknowledged wiithast Kk retries, for some
k<T,isl-gs<t.

(d) The likelihood that one datum is sent and acknowledgdd-is ' 1.

Proof. (1) First we note that ((+ p)(1 — )N is the likelihood thatN data items are sent and
acknowledged without any retry.
(a) The result can be understood by observing ¢hatl — ((1 - p)(1 — )N is the likelihood
that at least one retry is needed to transmit the streafhdsta.
(b) The result can be understood by observing that (1 — (1 — €)¥N)¥ is the conjunct
probability to have exactlk failures in sending or acknowledging a datum (probability
(1- (1 - e)¥N)X), and to haveN successes (probability (e)).

(c) The result can be understood by observing that G- _ vk 1 _ o1 -
y 9 1o 2izo €

(1 - &)™), where (1- €)(1 - (1 — €)N)i is the likelihood to send thi data with exactly
i retries (see itern (b)).
(d) Thisis itenf (c]) withN instantiated witim andk instantiated witm - T.
(e) This is itemj (c]) withk instantiated witiN - T.
(2) First we note that the likelihood that a single datum nexguno retry is (- p)(1 - q).

(a) The result can be understood by observingdhatl — (1 — p)(1 — q) is the likelihood that
a single datum requires at least one retry to be successfatigmitted and acknowledged.

(b) The result can be understood by observing thavjls® = (1-p)(1-q)-(1-(1- p)(L-q))¥
is the conjunct probability to havefailures (probability (1- (1 - p)(1 — q))¥) followed by
a successful transmission (probability{3)(1 — q)).

(c) The result can be understood by observing that't! = 3'¥ (1~ 6) - &', where (1-6) - 6'
is the likelihood that one datum is sent and acknowledgel extctlyi retries (see item
(b)).

(d) Thisis itenf (c]) istantiated witk = T.

L]

Now we show that by applying the compositionality resultgegi in the previous sections
(Propositions 3]1, 312, 4.1) we can relate the bisimulatistance between the specification with
perfect channelBRRN, T, 0, 0) and some implementation with lossy charBBIRN, T, p, g) of the
entire protocol with the distances between the specificatial some implementation of its respec-
tive components. On the one hand, this allows us to deriva pecified performance properties
of the entire protocol individual performance requirenseat its components (compositional ver-
ification). On the other hand, this allows us to infer fromfpenance properties of the protocol
components suitable performance guarantees on the entit@cpl (compositional specification).
We show also that the same compositionality results allotou®late the distance between the
specification and some implementation with lossy chann¢hefentire protocol or some compo-
nents to the parameters of the system.

Proposition 5.2. Let N T e Nand pq € [0, 1]. For all b € {0, 1} it holds:
a(ph*d(BRRN, T,0,0),BRRAN, T, p,0)) < 1 - (1 - d(CH(b, T,0,0), CH(b, T, p,)))";
alph*d(CH(b, T,0,0), CH(b, T, p,q)) < 1 - (1 - p)(1 - Q).
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dph*d(BRF(N’ T’ P, q)’ BRF(N’ T’ O’ 0)) <1l- ((1 - p)(l - q))N

Proof. Consider cas¢ &ph¥. By Propositibn18.2.(d) we obiBRRN, T, 0,0), BRRN, T, p, g)) <
d(RC(N, T,0,0),RC(N, T, p,q)) + (1-d(RC(N, T,0,0), RC(N, T, p,@)))d(TV, TV). By d(TV, TV) =
0 we getd(BRRN, T,0,0),BRAN, T, p,q)) < d(RC(N, T, 0,0), RC(N, T, p,q)). Then, by applying
Proposition$ 3]L.(a), 3[1.(H). §.2.(a), and[4.7.(a) weridfRC(N, T, 0,0), RC(N, T, p,q)) < 1 -
(1-d(CH(b,T,0,0), CH(b, T, p, )))N.

Case[@pDhy follows directly from Proposition 8.1. Mqueecisely, by Propositidn 3[1.(Ja) we in-
fer both inequalitiesi(CH(b, t, p, ), CH(b, t, 0, 0)) < p+(1-p)d(CHx(d, b, t, p, g), CH»(d, b, t, 0, 0))
andd(CHx(d, b, t, p, ), CHz(d, b, t, 0, 0)) < g, which gived(CH(b, T, 0,0), CH(b, T, p,g)) < p+(1-
Pa=1-(1-pa-0q.

Case[@{phJ follows directly from cases §|phy adighj. ]

To advocate uniform continuity as adequate property formasitional reasoning, we show that
the uniform continuity of process combinatorsBRRN, T, p, ) allows us to relate the distance be-
tween this implementation and the specificat®iRRN, T, 0, 0) (which relates by Propositidn 5.1
to performance properties of the entire protocol) to thecoste parameterp, q andN of the sys-
tem. In detail, by Theorenis 3.5, B[8,14.6 we can derive d¢@RRN, T, p,q), BRRN, T,0,0)) <
N/2-(d(CH(O, T, p,q), CH(O, T,0,0)) + d(CH(L, T, p,qg), CH(1, T, 0,0))) (see the proof of Proposi-
tion[5.3 below). Then, by Propositién 5.2 we can defg - (d(CH(0, T, p,q), CH(0, T, 0,0)) +
d(CH(1, T, p,g),CH(1,T,0,0))) < N1 - (1 - p)(1-0q). Summarizing, we can conclude that
d(BRRN, T, p,q),BRAN, T,0,0)) < N(1- (1- p)(1-q)), which allows us to infer an upper bound
to d(BRRN, T, p,q), BRRAN, T, 0,0)) from suitable constraints fgqo and g, as formalized in the
following result.

Proposition 5.3. Let NT e Nand pge[0,1]. Foralle >0, p+ q- pq< €/N ensures
d(BRRN, T, p,q), BRRAN, T,0,0)) < €
Proof. AssumeN is even. Then:
d(BRRN, T, p,q), BRRN, T, 0,0))

<d(RQN, T, p,q), RC(N, T,0,0)) + d(TV, TV) (Theoreni 3.8)
=d(RQN, T, p,qg), RC(N, T, 0, 0))
<d((CH(0, T, p,q); CH(L, T, p.q))/2, (CH(0, T, 0,0); CH(1, T, 0, 0))V/?) (Theoreni35)
<N/2-d(CH(O, T, p,q); CH(1, T, p,q), CH(O, T, 0,0); CH(1, T, 0,0)) (Theoreni 416)
<N/2-(d(CH(0, T, p,q), CH(0, T,0,0)) + d(CH(L, T, p,g),CH(1,T,0,0))) (Theoreni.38)
=N(1-(1-p)(1-0q)

where in the third inequality we use the Lipschitz faatdor the operator” that we obtained in the

proof of Theoreni 4]6. Frod(BRRN, T, p,g), BRAN, T,0,0)) < N(1 - (1 - p)(1 - q)) the thesis
follows. The case thall is odd is analogous. L]

Combining Propositions 5.1 [=5%.3 allows us now to reason acmitipnally over a concrete
scenario. We derive from a given performance requirememnatsmit a stream of data the necessary
performance properties of the channel components.

Example 5.4. Consider the following scenario. We want to transmit a dateasn of N = 20
data items with at most = 1 retry per data item. We want to build an implementation that
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should satisfy the performance property ‘The likelihoodtthll 20 data items are successfully
transmitted is at least 99%'. By applying Proposition|[3.W4 translate this performance prop-
erty to the bisimulation distan@{BRRN, T, 0,0), BRRAN, T, p, g)) < 0.01052 on the entire system.
By applying Propositio_SIPafph*we derive the bisintida distance for its channel component
d(CH(b, T,0,0), CH(b, T, p, q) < 0.00053. By Proposition 5l[2afphthis distance can bedi@ted to
appropriate parameters of the channel componentpe=¢0.0002 andy = 0.00032 or equivalently

p = 0.020% andg = 0.032%. Finally, Proposition 5[1.2 allows to translate thetatice between
the specification and implementation of the channel compidpeck to an appropriate performance
requirement, e.g. ‘The likelihood that one datum is sudodgdransmitted is at least 99.95%’.

6. CONCLUSIONS

We argued that the notion of uniform continuity (Definitiol4generalizing the notions of non-
expansiveness and non-extensiveness discussed by oflearaleers) is an appropriate property
of process combinators to facilitate compositional reaspnv.r.t. bisimulation metric semantics.
We showed that all standard (non-recursive and recursioeleps algebra operators are uniformly
continuous (Theorenis 3/5, B[8,14.6,14.7). In addition, vewigeed for all standard process algebra
operators tight bounds on the distance between the composeésses (Propositions 1.1,13.2] 4.1).
We exemplified how these results can be used to reason cdinpaBy over protocols. In fact, they
allow us to derive from performance requirements on theemslystem appropriate performance
properties of the respective components, and in reverseltwe from performance assumptions on
the system components performance guarantees on the y#iesn.

We remark that the abstraction operator of probabilistmcpss algebras (that hides actions
and makes them observable as non-distinguishahblgtions) is non-extensive. However, the power
of abstraction and hiding can only be utilized by using aldmehavioral semantics that treats the
T-actions respectively as internal actions. We leave theldpwment of weak and branching bisim-
ulation metrics and the analysis of process algebra oper&io those metrics as future work. A
first analysis for weak bisimulation metric and observalaongruence weak bisimulation metric
(weak bisimulation metric with kernel equivalence being ldrgest congruence w.r.t. CSS operators
contained in weak bisimulation equivalence) may be fourfFGP02].

The metric reasoning approach exemplified in Sedtion 5 isuadonethod to reason compo-
sitionally over systems. However, the distance betweerposed systems might not be tight. Let
C[X] be an open term describing a composed system witte placeholder for a subsystem. Given
subsystems and s, the distancad(C[g], C[S]) might be below the composition of the composi-
tionality properties of the operators @if some of the diferences in the behaviors betwesand
s do not induce dterent behaviors betwedls] andC[s]. To exemplify this &ect, consider the
contextC[x] = x| b.0 and subsystens= a.0 ands = a.([1 —¢/1]e®[¢/1]0) . Clearlyd(s, ) = e.
Then the compositional analysis give&C[s], C[S]) < e. However,d(C[s], C[S]) = O because the
behavioral distance betwesrands' (observable only after executing actiapcannot be observed
in the contextC[X] (which can only perform an action if the instancesxgderform actiorb). Thus,
d(C[9],C[S]) = 0 sincesands agree on the inability to perform actidn One idea to tackle this
problem is to develop the notion of context bisimulation.vési a contextC, the C-bisimulation
distance (bisimulation distance w.r.t. cont€tbetweens and s’ would measure only that degree
of the bisimulation distance betwesiands' that would induce dferent behavior betweeninstan-
tiated bysandx instantiated bys'. Using the notatiomlc for theC-bisimulation distance this would
give the behavioral distanak: (s, §') = 0 (sinceC derives only behavior from an initi#dmove and
sands agree on their inability to perforra-moves), whiledc(b.0, b.([1 — €/1]c & [6/1]0) = e.
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It is clear that the context bisimulation distance is bouhtg the bisimulation distance. While it
still allows for sound compositional metric reasoning ityre@ad to tighter bounds. We leave the
detailed technical development and analysis as future work

Another research direction is to generalize the analysisontrete process algebra operators
as discussed in this paper to general SOS rule and speafidatimats. The basic observation
is that the compaositionality results for the concrete philisic process algebra operators depend
only on the specification rules of those operators, henceuiestion boils down to develop SOS
meta-theoretical results and appropriate rule and spatdic formats that guarantee that the spec-
ified operators are uniformly continuous. In essence, wetaimdevelop the quantitative analo-
gous of the well-established meta-theory for behavioraiv@ence semantics [AFVOL, MRGO7].
This approach has been already developed for notions obzippaite probabilistic bisimulation
[Tin08, [Tin10,[GT13]. Preliminary results show that in ess® a process combinator is uni-
formly continuous if the combined processes are copied famitgly many times along their evolu-
tion [GT14,/GT15] Gebl5], and more restrictive constraguarantee the stronger compositional
properties of Lipschitz continuity, non-expansivenesg aon-extensiveness. By following tlg
vide and congruencaproach([FvGdWQ0e, FvGdWI12, GFE12, FvGl6, CGT16b], formatscom-
positional properties can be obtained also through a deitagical characterization of bisimilarity
metric, like that in[CGT16a].

Finally, we intend to explore further (as initiated in Senti3) the relation between various
behavioral distance measures, e.g. convex bisimulatiana{PAMRSO07], trace metric[[FL14],
and total-variation distance based metrics [Mio1l4] withf@enance properties of communication
and security protocols. This will provide further practinseans to apply process algebraic methods
and compositional metric reasoning w.r.t. uniformly cootius process combinators.
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