
Logical Methods in Computer Science
Vol. 12(4:13)2016, pp. 1–52
www.lmcs-online.org

Submitted May 14, 2014
Published Dec. 31, 2016

ENCODING MONOMORPHIC AND POLYMORPHIC TYPES

JASMIN CHRISTIAN BLANCHETTE a, SASCHA BÖHME b, ANDREI POPESCU c,
AND NICHOLAS SMALLBONE d

a Inria & LORIA, Nancy, France; Max-Planck-Institut für Informatik, Saarbrücken, Germany
e-mail address: jasmin.blanchette@{inria.fr,mpi-inf.mpg.de}

b Fakultät für Informatik, Technische Universität München, Germany
e-mail address: boehmes@in.tum.de

c Department of Computer Science, School of Science and Technology, Middlesex University, UK
e-mail address: a.popescu@mdx.ac.uk

d Dept. of CSE, Chalmers University of Technology, Gothenburg, Sweden
e-mail address: nicsma@chalmers.se

Abstract. Many automatic theorem provers are restricted to untyped logics, and ex-
isting translations from typed logics are bulky or unsound. Recent research proposes
monotonicity as a means to remove some clutter when translating monomorphic to un-
typed first-order logic. Here we pursue this approach systematically, analysing formally
a variety of encodings that further improve on efficiency while retaining soundness and
completeness. We extend the approach to rank-1 polymorphism and present alternative
schemes that lighten the translation of polymorphic symbols based on the novel notion of
“cover”. The new encodings are implemented in Isabelle/HOL as part of the Sledgehammer
tool. We include informal proofs of soundness and correctness, and have formalised the
monomorphic part of this work in Isabelle/HOL. Our evaluation finds the new encodings
vastly superior to previous schemes.

1. Introduction

Specification languages, proof assistants, and other theorem proving applications are typ-
ically based on polymorphism formalisms, but state-of-the-art automatic provers support
only untyped or monomorphic logics. The existing sound (proof-reflecting) and complete
(proof-preserving) translation schemes for polymorphic types, whether they revolve around
functions (tags) or predicates (guards), produce clutter that severely hampers the proof
search [22], and lighter approaches based on type arguments are unsound [22, 29]. As a
result, application authors face a difficult choice between soundness and efficiency when
interfacing with automatic provers.

The fourth author, together with Claessen and Lillieström [16], designed a pair of sound,
complete, and efficient translations from monomorphic many-typed to untyped first-order
logic with equality. The key insight is that monotonic types—types whose domain can be

2012 ACM CCS: [Theory of computation]: Logic—Automated reasoning.

LOGICAL METHODS
l IN COMPUTER SCIENCE DOI:10.2168/LMCS-12(4:13)2016

c© J. C. Blanchette, S. Böhme, A. Popescu, and N. Smallbone
CC© Creative Commons

http://creativecommons.org/about/licenses

2 J. C. BLANCHETTE, S. BÖHME, A. POPESCU, AND N. SMALLBONE

extended with new elements while preserving satisfiability—can be merged. The remaining
types can be made monotonic by introducing suitable protectors.

Example 1.1 (Monkey Village). Imagine a village of monkeys [16] where each monkey
owns at least two bananas. The predicate owns : monkey × banana � o (where o denotes
truth values) associates monkeys with bananas, and the functions b1, b2 : monkey � banana

witness the existence of each monkey’s minimum supply of bananas:

∀M :monkey . owns(M, b1(M)) ∧ owns(M, b2(M))
∀M :monkey . b1(M) 6≈ b2(M)
∀M1, M2 :monkey , B : banana. owns(M1, B) ∧ owns(M2, B) → M1≈ M2

The axioms are clearly satisfiable.

In the monkey village of Example 1.1, the type banana is monotonic, because any model
with b bananas can be extended to a model with b′ > b bananas. In contrast, monkey is
nonmonotonic, because there can live at most ⌊b/2⌋ monkeys in a village with a finite supply
of b bananas. Syntactically, the monotonicity of banana is inferable from the absence of a
positive equality B ≈ t or t ≈ B, where B is a variable of type banana and t is arbitrary; such
a literal would be needed to make the type nonmonotonic.

The example can be encoded as follows, using the predicate gmonkey to guard against
ill-typed instantiations of M, M1, and M2:

∃M. gmonkey(M)

∀M. gmonkey(M) → owns(M, b1(M)) ∧ owns(M, b2(M))
∀M. gmonkey(M) → b1(M) 6≈ b2(M)
∀M1, M2, B. gmonkey(M1) ∧ gmonkey(M2) ∧ owns(M1, B) ∧ owns(M2, B) → M1≈ M2

The first axiom states the existence of a monkey; this is necessary for completeness, since
model carriers are required to be nonempty. Thanks to monotonicity, it is sound to omit all
type information regarding bananas. The intuition behind this is that the gmonkey predicate
makes the problem fully monotonic, and for such problems it it possible to synchronise the
cardinalities of the different types and to merge the types, yielding an equisatisfiable untyped
(or singly typed) problem. For example, a model M of the typed problem with m monkeys
and b bananas will give rise to a model M ′ of the untyped problem with b “bananamonkeys,”
among which m are monkeys according to the interpretation of gmonkey ; conversely, from a
model of the untyped problem with b “bananamonkeys” including m values for which gmonkey

is true (with m > 0 thanks to the first axiom), it is easy to construct a model of the typed
problem with b bananas and m monkeys.

Monotonicity is not decidable, but it can often be inferred using suitable calculi. In
this article, we exploit this idea systematically, analysing a variety of encodings based on
monotonicity: some are minor adaptations of existing ones, while others are novel encodings
that further improve on the size of the translated formulae.

In addition, we generalise the monotonicity approach to a rank-1 polymorphic logic,
as embodied by the typed first-order form TFF1 of the TPTP (Thousand of Problems for
Theorem Provers) [7], a de facto standard implemented by a number of reasoning tools. Un-
fortunately, the presence of a single equality literal X ≈ t or t ≈ X , where X is a polymorphic
variable of type α, will lead the analysis to classify all types as possibly nonmonotonic and
force the use of protectors everywhere, as in the traditional encodings. A typical example
is the list axiom ∀X : α, Xs : list(α). hd(cons(X,Xs)) ≈ X . We solve this issue through a
novel scheme that reduces the clutter associated with nonmonotonic types, based on the

ENCODING MONOMORPHIC AND POLYMORPHIC TYPES 3

Traditional Cover-based Monotonicity-based
(Polymorphic) (Polymorphic) Monomorphic Polymorphic

Full type erasure e (§3.1)

Type arguments a (§3.2)

Type tags t (§3.3) t@ (§4.2) t̃?, t̃?? (§5.4) t?, t?? (§6.5)

Type guards g (§3.4) g@ (§4.1) g̃?, g̃?? (§5.5) g?, g?? (§6.6)

Figure 1: The main encodings

observation that protectors are required only when translating the particular formulae that
prevent a type from being inferred monotonic. This contribution improves the monomorphic
case as well: for the monkey village example, our scheme detects that the first two axioms
are harmless and translates them without the gmonkey guards. (In fact, by appealing to a
more general notion of monotonicity, it is possible to eliminate all type information in the
monkey village problem in a sound fashion.)

Encoding types in an untyped logic is an old problem, and several solutions have been
proposed in the literature. We start by reviewing four main traditional approaches (Sec-
tion 3), which prepare the ground for the more advanced encodings presented in this article.
Next, we present improvements of the traditional encodings that aim at reducing the clutter
associated with polymorphic symbols, based on the novel notion of “cover” (Section 4). Then
we move our attention to monotonicity-based encodings, which try to minimise the number
of added tags or guards. We first present known and novel monotonicity-based schemes that
handle only ground types (Section 5); these are interesting in their own right and serve as
stepping stones for the full-blown polymorphic encodings (Section 6). Proofs of correctness
accompany the descriptions of the new encodings. The proofs explicitly relate models of
unencoded and encoded problems.

Figure 1 presents a brief overview of the main encodings. The traditional encodings are
identified by single letters (e for full type erasure, a for type arguments, t for type tags, g for
type guards). The nontraditional encodings append a suffix to the letter: @ (= cover-based),
? (= monotonicity-based, lightweight), or ?? (= monotonicity-based, featherweight). The
decoration ˜ identifies the monomorphic version of an encoding. Among the nontraditional
schemes, t̃? and g̃? are due to Claessen et al. [16]; the other encodings are novel.

A formalisation [8] of the monomorphic part of our results has been developed in the
proof assistant Isabelle/HOL [24,25]. The encodings have been implemented in Sledgeham-
mer [3, 22], which provides a bridge between Isabelle/HOL and automatic theorem provers
(Section 7). They were evaluated with Alt-Ergo, E, SPASS, Vampire, and Z3 on a bench-
mark suite consisting of proof goals from existing Isabelle formalisations (Section 8). Our
comparisons include the traditional encodings as well as the provers’ native support for
monomorphic types where it is available. Related work is considered at the end (Section 9).

We presented an earlier version of this work at the TACAS 2013 conference [5]. The
current text extends the conference paper with detailed proofs and a discussion of implemen-
tational issues (Section 7). It also corrects the side conditions of two encoding definitions,
which resulted in an unexpected incompleteness.

Convention 1.2. Given a name, such as t, that ranges over a certain domain, such as the
set of terms, its overlined version t̄ ranges over lists (tuples) of items in this domain, and |t̄|
denotes the length of t̄. We also write |A| for the cardinal of a set A. A set is countable if

4 J. C. BLANCHETTE, S. BÖHME, A. POPESCU, AND N. SMALLBONE

it is finite or countably infinite. Given an element u, (u)n or un denotes the list consisting
of n occurrences of u. Given a nonempty set A, we write ε(A) for some arbitrary but fixed
element of A. We use ε(A) in definitions where the choice of the element does not matter,
as long as it belongs to A.

2. Background: Logics

This article involves three versions of classical first-order logic with equality: polymorphic,
monomorphic, and untyped. They correspond to the TPTP syntaxes TFF1 [7], TFF0 [32],
and FOF [30], respectively, excluding interpreted arithmetic.

2.1. Polymorphic First-Order Logic. The source logic is a rank-1 polymorphic logic as
specified by TFF1 [7].

We fix A , a countably infinite set of type variables with typical element α, and V , a
countably infinite set of term variables with typical element X .

Definition 2.1 (Syntax). A polymorphic signature is a triple Σ = (K ,F,P), where K is a
countable set of type constructors k with arities, F is a countable set of function symbols f
with arities, and P is a countable set of predicate symbols p with arities.

For type constructors k ∈ K , the arity is a natural number n. This association is
written k :: n. Types, forming the set TypeK , are then defined inductively starting with type
variables and applying type constructors according to their arities:

Types:

σ ::= k(σ̄) where k :: |σ̄| constructor type

| α type variable

For function symbols f ∈ F , the arity is a triple (ᾱ, σ̄, σ), where ᾱ is a list of distinct
type variables, σ̄ is a list of types, and σ is a type such that all the variables appearing
in σ̄ and σ are among the ones in ᾱ. We write this association as f : ∀ᾱ. σ̄ � σ or
f : ∀ᾱ. σ1 × · · · × σn � σ. Finally, for predicate symbols p ∈ P , the arity is a pair (ᾱ, σ̄),
where ᾱ is a list of distinct type variables and σ̄ is a list of types. We write this association
as p : ∀ᾱ. σ̄ � o or p : ∀ᾱ. σ1 × · · · × σn � o.

Overloading of different arities for the same symbol is excluded by definition. The
symbols ∀, ×, �, and o (omicron) are not type constructors but syntax. The arity decla-
rations for function and predicate symbols can be seen as instances of the general syntax
s : ∀ᾱ. σ̄ � ς, where s ∈ F ⊎ P and ς is either a type or o. An application of s will
require |ᾱ| type arguments (written in angle brackets) and |σ̄| term arguments (written in
parentheses). In examples, we may omit type arguments from ᾱ that are irrelevant or clear
from the context.

A typed (term) variable is a pair of a variable and a type, written X σ. We fix Vtyped,
the set of type variables. The terms and formulae are defined below.

Terms:

t ::= f 〈σ̄〉(t̄) function term

| X σ typed variable

ENCODING MONOMORPHIC AND POLYMORPHIC TYPES 5

Formulae:

ϕ ::= p〈σ̄〉(t̄) | ¬ p〈σ̄〉(t̄) predicate literal

| t1≈ t2 | t1 6≈ t2 equality literal

| ϕ1∧ ϕ2 | ϕ1∨ ϕ2 binary connective

| ∀X :σ. ϕ | ∃X : σ. ϕ term quantification

| ∀α. ϕ type quantification

All type quantification is universal. We also impose the following syntactic restriction,
not captured in the formation rules: type quantifiers may only occur at the top of the
formula, i.e. not underneath a term quantifier or a connective, and formulae are in negation
normal form (NNF), which is most suitable for defining and reasoning about translations.
We sometimes use implication ϕ1 ∧ · · · ∧ ϕm → ψ1 ∨ · · · ∨ ψn as an abbreviation for
¬ϕ1 ∨ · · · ∨ ¬ϕm ∨ ψ1 ∨ · · · ∨ ψn to enhance readability. In examples, we freely nest
quantifiers and connectives.

Definition 2.2 (Free and Fresh Variables, Groundness, and Sentences). TVars(σ), TVars(t),
and FTVars(ϕ) denote the sets of type variables occurring in the type σ, occurring in the
term t, and occurring freely in the formula ϕ, respectively. Similarly, Vars(t) and FVars(ϕ)
denote the sets of typed term variables occurring in the term t and occurring freely in
the formula ϕ, respectively. For example, TVars(X σ) = TVars(σ), Vars(X σ) = {X σ},
FVars(∀X :σ. ϕ) = FVars(∃X :σ. ϕ) = FVars(ϕ)−{X σ}. A type σ is ground if TVars(σ) = ∅.
We let GTypeΣ denote the set of ground types. A term t is ground if TVars(t) = ∅ and
Vars(t) = ∅. A formula ϕ is a sentence if TVars(ϕ) = ∅ and FVars(ϕ) = ∅.

Convention 2.3. We assume that the set of variables V is partitioned in two infinite
sets: V ∀, of universal variables, and V ∃, of existential variables. The former are the only
ones allowed to be universally quantified, and the latter are the only ones allowed to be
existentially quantified. We let V ∀

typed for the set of typed variable X σ with X ∈ V ∀; and

similarly for V ∃
typed. We also assume that each type or term variable is bound only once in a

formula, and that if the typed variable X σ appears in the scope of a quantification ∀X : σ′

or ∃X : σ′, then σ = σ′. The last assumption allows us to omit the superscript σ from X σ

in examples.

The typing rules and semantics of the logic are modelled after those of TFF1. Briefly, the
type arguments completely determine the types of the term arguments and, for functions,
of the result. Polymorphic symbols are interpreted as families of functions or predicates
indexed by domains corresponding to ground types. All types are inhabited (nonempty).

Definition 2.4 (Type Substitution). A type substitution ρ is a function that maps every
type variable α to a type, written αρ. It is extended from type variables to types and type
tuples in the standard way: k(t̄)ρ = k(t̄ρ) and (t1, . . . , tn)ρ = (t1ρ, . . . , tnρ).

Definition 2.5 (Typing Rules). A judgement t : σ expresses that the term t is well typed

and has type σ. A judgement ϕ : o expresses that the formula ϕ is well typed . The typing

rules of polymorphic first-order logic are given below:

X σ : σ

f : ∀ᾱ. σ̄ � σ tj : σj ρ for all j

f 〈ᾱρ〉(t̄) : σρ

6 J. C. BLANCHETTE, S. BÖHME, A. POPESCU, AND N. SMALLBONE

p : ∀ᾱ. σ̄ � o tj : σj ρ for all j

p〈ᾱρ〉(t̄) : o

p : ∀ᾱ. σ̄ � o tj : σj ρ for all j

¬ p〈ᾱρ〉(t̄) : o

t1 : σ t2 : σ

t1 ≈ t2 : o

t1 : σ t2 : σ

t1 6≈ t2 : o

ϕ1 : o ϕ2 : o

ϕ1 ∧ ϕ2 : o

ϕ1 : o ϕ2 : o

ϕ1 ∨ ϕ2 : o

ϕ : o

∀X : σ. ϕ : o

ϕ : o

∃X : σ. ϕ : o

ϕ : o

∀α. ϕ : o

Definition 2.6 (Problem). A problem is a set of (well-typed) sentences.

Lemma 2.7. For all terms t, there exists at most one type σ such that t : σ.

Proof. Immediate by induction on t.

Convention 2.8. We write tσ to indicate that the term t is well typed and its (unique)
type is σ. This convention is consistent with the notation X σ for term variables of type σ.

Definition 2.9 (Semantics). Let Σ = (K ,F,P) be a polymorphic signature. A structure

M for Σ is a tuple of families
(
D, (kM)k∈K , (f M) f∈F , (pM)p∈P

)
, where

• D is a nonempty collection of nonempty sets called the domains;

• if k :: n, then kM : Dn → D. Given a type variable valuation θ : A � D, this induces
an interpretation of types J KM

θ defined by the equations Jk(σ̄)KM
θ = kM (Jσ̄KM

θ) and

JαKM
θ = θ(α);

• if f : ∀α1, . . . , αm. σ1 × · · · × σn � σ, then f M :
∏

D̄∈DmJσ1K
M
θD̄

× · · · × JσnK
M
θD̄

→ JσKM
θD̄

,

where θD̄ is a type variable valuation mapping each αi to Di;

• if p : ∀α1, . . . , αm. σ1 × · · · ×σn � o, then pM ⊆
∏

D̄∈DmJσ1K
M
θD̄

× · · · × JσnK
M
θD̄

, where θD̄ is

as above.

As expected from the arity of f , the interpretation f M is a function first taking m type
arguments and then n data (element) arguments. Similarly, the interpretation pM is a
predicate respecting the arity of p.

Given a type variable valuation θ and a compatible term variable valuation ξ : V �∏
σ∈TypeJσKM

θ , the interpretation of terms and formulae by the structure M is as follows:

J f 〈σ̄〉(t̄)KM
θ,ξ = f M (Jσ̄KM

θ) (Jt̄ KM
θ,ξ) JX σKM

θ,ξ = ξ(X)(σ)

Jp〈σ̄〉(t̄)KM
θ,ξ = pM (Jσ̄KM

θ) (Jt̄ KM
θ,ξ) Jt1 ≈ t2K

M
θ,ξ = (Jt1K

M
θ,ξ = Jt2K

M
θ,ξ)

J¬ p〈σ̄〉(t̄)KM
θ,ξ = ¬ pM (Jσ̄KM

θ) (Jt̄ KM
θ,ξ) Jt1 6≈ t2K

M
θ,ξ = (Jt1K

M
θ,ξ 6= Jt2K

M
θ,ξ)

Jϕ1 ∧ ϕ2K
M
θ,ξ = Jϕ1K

M
θ,ξ ∧ Jϕ2K

M
θ,ξ J∀X : σ. ϕKM

θ,ξ = ∀a ∈ JσKM
θ . JϕKM

θ,ξ[X 7→a]

Jϕ1 ∨ ϕ2K
M
θ,ξ = Jϕ1K

M
θ,ξ ∨ Jϕ2K

M
θ,ξ J∃X : σ. ϕKM

θ,ξ = ∃a ∈ JσKM
θ . JϕKM

θ,ξ[X 7→a]

J∀α. ϕKM
θ,ξ = ∀D ∈ D. JϕKM

θ[α7→D],ξ

We omit irrelevant subscripts to J K, writing JσKM if σ is ground and JϕKM if ϕ is a sentence.

A structure M is a model of a problem Φ if JϕKM is true for every ϕ ∈ Φ. A problem
that has a model is satisfiable.

Example 2.10 (Algebraic Lists). The following axioms induce a minimalistic first-order
theory of algebraic lists that will serve as our main running example:

ENCODING MONOMORPHIC AND POLYMORPHIC TYPES 7

∀α. ∀X : α, Xs : list(α). nil 6≈ cons(X,Xs)
∀α. ∀Xs : list(α). Xs ≈ nil ∨ (∃Y : α, Ys : list(α). Xs ≈ cons(Y,Ys))
∀α. ∀X : α, Xs : list(α). hd(cons(X,Xs)) ≈ X ∧ tl(cons(X,Xs)) ≈ Xs

We conjecture that cons is injective. The conjecture’s negation can be expressed employing
an unknown but fixed Skolem type b:

∃X,Y : b, Xs ,Ys : list(b). cons(X,Xs) ≈ cons(Y,Ys) ∧ (X 6≈ Y ∨ Xs 6≈ Ys)

Because the hd and tl equations force injectivity of cons in both arguments, the problem
consisting of the three axioms and the negated conjecture is unsatisfiable. The conjecture
is a consequence of the axioms.

We are interested in encoding polymorphic problems Φ in a manner that preserves and
reflects their satisfiability. It will be technically convenient to assume that their signatures
have at least one nullary type constructor, so that the set of ground types is nonempty. It is
obvious that this assumption is harmless: if it is not satisfied, we simply extend the signature
with a distinguished nullary type constructor ι :: 0. Since ι does not appear in the formulae of
Φ and since in models the set of domains is assumed to be nonempty, this signature extension
does not affect its satisfiability: given a model of Φ in the original signature, we obtain one
in the extended signature by interpreting ι as an arbitrary domain; given a model in the
extended signature, we obtain one in the original signature by omitting the interpretation
of ι.

Convention 2.11. For all polymorphic signatures Σ = (K ,F ,P) that we consider, we
assume that K contains at least one nullary type constructor.

The following lemma shows that, in structures, the collection of domains can be regarded
as a copy of the ground types.

Lemma 2.12. If a polymorphic Σ-problem Φ has a model, it also has a model M =
(
D,

(kM)k∈K ,_,_
)

such that the following conditions are met :

(1) each kM is injective, and kM (D̄) 6= k′M (Ē) whenever k 6= k′;
(2) D = {JτKM | τ ∈ GTypeΣ};
(3) the type interpretation function J KM is a bijection between GType and D;
(4) D is countable;
(5) D is disjoint from each D ∈ D, and any distinct D1,D2 ∈ D are disjoint.

Proof. Assume Φ has a model M . To prove (1), we construct a model M ′ from M by
tagging the domains with types, i.e. by defining D′ = {D × {σ} | D ∈ D′ ∧ σ ∈ GTypeΣ}

and maintaining types across the application of type constructors: kM ′
(D1 ×{σ1}, . . . ,Dn ×

{σn}) = kM (D1, . . . ,Dn)×{k(σ1, . . . , σn)}. The interpretations of the function and predicate
symbols are adjusted accordingly. It is easy to prove that M and M ′ satisfy the same
polymorphic formulae; in particular, M ′ is a model of Φ. For (2), we define a model M ′′ =

(D′′, (kM ′′
)k∈K ,_,_) from M ′ by taking D′′ ⊆ D′ to be the image of J KM ′

: GTypeΣ → D′

and by taking kM ′′
and sM ′′

to be the restrictions of kM ′
and sM ′

. Thanks to Convention
2.11, D′′ is nonempty, and moreover kM ′′

is well defined on D. Again, it is easy to prove that
M ′′ satisfies all the polymorphic formulae that M ′ satisfies. In particular, M ′′ is a model
of Φ. Points (3) and (4) follow from (1) and (2). Finally, we prove (5) by replacing the
domains with disjoint copies of them.

8 J. C. BLANCHETTE, S. BÖHME, A. POPESCU, AND N. SMALLBONE

2.2. Monomorphic First-Order Logic. Monomorphic first-order logic, more commonly
known as many-sorted first-order logic and corresponding to TPTP TFF0 [32], has signa-
tures Σ = (Type ,F ,P), where Type is a countable set of types (or sorts) ranged over by σ, F

is a countable set of function symbols f : σ̄→ σ with arities, and P is a countable set of pred-
icate symbols p : σ̄ → o with arities. Σ-structures M =

(
(Dσ)σ∈Type , (f M) f∈F , (pM)p∈P

)

interpret the types as sets and the function and predicate symbols as functions and predi-
cates of the suitable arities. Given a model M and a valuation ξ : V →

∏
σ∈Type Dσ, the

interpretations of terms and formulae, JtKM
ξ and JϕKM

ξ , are defined as expected.
Monomorphic first-order logic can be viewed as a special case of polymorphic first-order

logic, with a polymorphic signature considered monomorphic when all its type constructors
are nullary and the arities of its function and predicate symbols contain no type variables.

Example 2.13. A monomorphised version of the algebraic list problem of Example 2.10,
with α instantiated by b, follows:

∀X : b, Xs : list_b. nilb 6≈ consb(X,Xs)
∀Xs : list_b. Xs ≈ nilb ∨ (∃Y : b, Ys : list_b. Xs ≈ consb(Y,Ys))
∀X : b, Xs : list_b. hdb(consb(X,Xs)) ≈ X ∧ tlb(consb(X,Xs)) ≈ Xs

∃X,Y : b, Xs ,Ys : list_b. consb(X,Xs) ≈ consb(Y,Ys) ∧ (X 6≈ Y ∨ Xs 6≈ Ys)

Like the original polymorphic problem, it is unsatisfiable.

2.3. Untyped First-Order Logic. The final target logic for all our encodings, untyped
first-order logic, coincides with the TPTP first-order form FOF [30]. This is the logic
traditionally implemented in automatic theorem provers and finite model finders. An untyped

signature is a pair Σ = (F,P), where F and P are countable sets of function and predicate
symbols with arities, where the arities are natural numbers. The notation sn indicates that
the symbol s has arity n. The untyped syntax is identical to that of the monomorphic logic,
except that variable terms do not contain types and quantification is written ∀X . ϕ and
∃X . ϕ. The structures for Σ = (F,P) are triples M =

(
D, (f M) f∈F , (pM)p∈P

)
, where D

is the domain and f M and p M are n-ary functions and predicates on D, with n being the
symbol’s arity.

2.4. Type Encodings. The type encodings discussed in this article are given by functions
that take problems Φ in a logic L to problems Φ′ in a logic L ′, where L and L ′ are among
the three logics introduced above.

Convention 2.14. Each of the considered encodings will be specified by the following data:

• a function that maps L-signatures Σ to L ′-signatures Σ′;
• for all L-signatures Σ and problems Φ over Σ:

– a (possibly empty) set AxΦ of sentences over Σ, the axioms, added by the translation;
– a function 〈〈 〉〉 between formulae over Σ and formulae over Σ′, the formula translation.

The formula translation is typically based on a term translation 〈〈 〉〉. The encoding 〈〈Φ〉〉 of
a problem Φ is given by the union between the axioms and the componentwise translations:
〈〈Φ〉〉 = Ax Φ ∪ {〈〈ϕ〉〉 | ϕ ∈ Φ}.

Central to this article are the notions of soundness and completeness of an encoding:

ENCODING MONOMORPHIC AND POLYMORPHIC TYPES 9

Definition 2.15 (Correctness). An encoding as above is sound for a class of problems C

if satisfiability of Φ ∈ C implies satisfiability of 〈〈Φ〉〉; it is complete for C if, given Φ ∈ C ,
satisfiability of 〈〈Φ〉〉 implies satisfiability of Φ; it is correct for C if it is both sound and
complete (i.e. Φ and 〈〈Φ〉〉 are equisatisfiable). In case C is the class of all problems, we omit
it and simply call the encoding sound, complete, or correct.

3. Traditional Type Encodings

There are four main traditional approaches to encoding polymorphic types: full type erasure,
type arguments, type tags, and type guards [18,22,29,36]. Before introducing them, we first
establish some conventions that will be useful throughout the article.

Convention 3.1. We will often need to extend signatures Σ with one or more of the
following distinguished symbols. Whenever we employ them, we assume they are fresh with
respect to Σ and have the indicated arities:

• a nullary type constructor ϑ;
• a function symbol t : ∀α. α � α;
• a predicate symbol g : ∀α. α � o.

Terms of type ϑ will be used to represent the types of Σ, t will be used to tag terms with
type information, and g will be used to guard formulae with type information.

Convention 3.2. Since the sets of type and term variables, A and V , are countably infinite,
we can fix a function from A to V , α 7→ V (α), such that

(1) it is injective, i.e. V (α1) = V (α2) implies α1 = α2;
(2) it allows for an infinite supply of term variables that do not correspond to type variables,

i.e. the set of term variables not having the form V (α) is infinite;
(3) each V (α) is a universal variable.

This function can be used to encode types as terms. Thanks to (2), we can safely assume
that the source problems Φ do not contain variables of the form V (α).

3.1. Full Type Erasure. The easiest way to translate a typed problem into an untyped
logic is to erase all its type information, which means omitting all type arguments, type
quantifiers, and types in term quantifiers. We call this encoding e.

Definition 3.3 (Full Erasure e). The full type erasure encoding e translates a polymorphic
problem over Σ = (K ,F ,P) into an untyped problem over Σ′ = (F ′,P ′), where the symbols
in Σ′ have the same term arities as in Σ (but without type arguments). Thus, if f :
∀ᾱ. σ1 × . . . × σn � σ and p : ∀ᾱ. σ1 × . . . × σn � o are in F and P , respectively, then f
and p have arities n in F ′ and P ′, respectively. The encoding adds no axioms, and the term
and formula translations 〈〈 〉〉e are defined as follows:

〈〈 f 〈σ̄〉(t̄)〉〉e = f (〈〈t̄ 〉〉e) 〈〈X σ〉〉e = X

〈〈p〈σ̄〉(t̄)〉〉e = p(〈〈t̄ 〉〉e) 〈〈∀X : σ. ϕ〉〉e = ∀X . 〈〈ϕ〉〉e

〈〈¬ p〈σ̄〉(t̄)〉〉e = ¬ p(〈〈t̄ 〉〉e) 〈〈∃X : σ. ϕ〉〉e = ∃X . 〈〈ϕ〉〉e

〈〈∀α. ϕ〉〉e = 〈〈ϕ〉〉e

10 J. C. BLANCHETTE, S. BÖHME, A. POPESCU, AND N. SMALLBONE

Here and elsewhere, we omit the trivial cases where the function is simply applied to its
subterms or subformulae, as in 〈〈ϕ1 ∧ ϕ2〉〉e = 〈〈ϕ1〉〉e ∧ 〈〈ϕ2〉〉e . Recall that, according to
Section 2.4, the e translation of a problem Φ is simply the componentwise translation of its
formulae: 〈〈Φ〉〉e = {〈〈ϕ〉〉e | ϕ ∈ Φ}.

Example 3.4. Encoded using e, the monkey village axioms of Example 1.1 become

∀M. owns(M, b1(M)) ∧ owns(M, b2(M))
∀M. b1(M) 6≈ b2(M)
∀M1, M2, B. owns(M1, B) ∧ owns(M2, B) → M1≈ M2

Like the original axioms, the encoded axioms are satisfiable: the requirement that each
monkey possesses two bananas of its own can be met by taking an infinite domain (since
2k = k for any infinite cardinal k).

However, full type erasure is generally unsound in the presence of equality because
equality can be used to encode cardinality constraints on domains. For example, the axiom
∀U : unit . U ≈ unity forces the domain of unit to have only one element. Its erasure,
∀U . U ≈ unity, effectively restricts all types to one element; a contradiction is derivable
from any disequality t 6≈ u or any pair of clauses p(t̄) and ¬ p(ū). An expedient proposed
by Meng and Paulson [22, §2.8], which they implemented in Sledgehammer, is to filter out
all axioms of the form ∀X : σ. X ≈ a1 ∨ · · · ∨ X ≈ an, but this makes the translation
incomplete and generally does not suffice to prevent unsound cardinality reasoning.

An additional issue with full type erasure is that it confuses distinct monomorphic
instances of polymorphic symbols. The formula q〈a〉(f〈a〉) ∧ ¬ q〈b〉(f〈b〉) is satisfiable, but its
type erasure q(f) ∧ ¬ q(f) is unsatisfiable. A more intuitive example might be N 6≈ 0 → N > 0,
which we would expect to hold for the natural number versions of 0 and > but not for integers
or real numbers.

Nonetheless, full type erasure is complete, and this property will be useful later.

Theorem 3.5 (Completeness of e). Full type erasure is complete.

Proof. From a model M ′ =
(
D, (f M ′

) f∈F ′ , (pM ′
)p∈P ′

)
of 〈〈Φ〉〉e , we construct a structure

M =
(
D, (kM)k∈K , (f M) f∈F , (pM)p∈P

)
for the signature of Φ by taking the same domain for

all types and interpreting all instances of each polymorphic symbol in the same way as M :

• D = {D}, and kM maps everything to D;

• if s ∈ F ⊎ P , then s M (D̄)(d̄) = s M ′
(d̄).

Given θ : A → D and ξ : V →
∏

σ∈TypeΣ
JσKM

θ , we define ξ′ : V → D by ξ′(X) = ξ(X)(α),

where α is any type variable. (The choice of α is irrelevant because θ maps all type variables
to D, the only element of D.) The next facts follow by structural induction on t and ϕ (for
arbitrary θ and ξ):

• JtKM
θ,ξ = J〈〈t〉〉e KM ′

ξ′ ;

• JϕKM
θ,ξ = J〈〈ϕ〉〉e KM ′

ξ′ .

In particular, for sentences, we have JϕKM = J〈〈ϕ〉〉eKM ′
; and since M ′ is a model of 〈〈Φ〉〉e , it

follows that M is a model of Φ.

By way of composition, the e encoding lies at the heart of all the encodings presented
in this article. Given n encodings x1, . . . , x n, we write 〈〈 〉〉 x1 ;...; xn for the composition 〈〈 〉〉 x n ◦
· · · ◦〈〈 〉〉 x1

. Typically, n will be 2 or 3 and x n will be e. Moreover, x i will be correct and will

ENCODING MONOMORPHIC AND POLYMORPHIC TYPES 11

transform the problem so that it belongs to a fragment for which x i+1 is also correct. This
will ensure that the whole composition is correct. Finally, because x2, . . . , x n will always be
fixed for a given x1, we will call the entire composition 〈〈 〉〉 x1 ;...; xn the “ x1 encoding”.

3.2. Type Arguments. A natural way to prevent the (unsoundness-causing) confusion
arising with full type erasure is to encode types as terms in the untyped logic. Instances of
polymorphic symbols can be distinguished using explicit type arguments, encoded as terms:
n-ary type constructors k become n-ary function symbols k, and type variables α become
term variables A. A polymorphic symbol with m type arguments is passed m additional
term arguments. The example given in the previous subsection is translated to q(a, f (a)) ∧
¬ q(b, f (b)), and a fully polymorphic instance f〈α〉 would be encoded as f(A) (with A a term
variable). We call this encoding a.

We now proceed with first encoding the types in isolation and then the typed terms.

Definition 3.6 (Term Encoding of Types). Let K be a finite set of n-ary type constructors.
The term encoding of a polymorphic type over K is a term over the signature ({ϑ},K ′, ∅),
where K ′ contains a function symbol k : ϑ n � ϑ for each k ∈ K with k :: n. The encoding is
specified by the following equations:

〈〈k(σ̄)〉〉 = k(〈〈σ̄〉〉) 〈〈α〉〉 = V (α)

Definition 3.7 (Traditional Arguments a). We first define the encoding function 〈〈 〉〉a ,
which translates polymorphic problems over Σ = (K ,F ,P) to polymorphic problems over
(K ⊎ {ϑ},F ⊎ K ′,P), where ϑ and K ′ are as in Definition 3.6. It adds no axioms, and its
term and formula translations are defined as follows:

〈〈 f 〈σ̄〉(t̄)〉〉a = f 〈σ̄〉(〈〈σ̄〉〉, 〈〈t̄ 〉〉a)

〈〈p〈σ̄〉(t̄)〉〉a = p〈σ̄〉(〈〈σ̄〉〉, 〈〈t̄ 〉〉a) 〈〈∀α. ϕ〉〉a = ∀α. ∀〈〈α〉〉 : ϑ. 〈〈ϕ〉〉a

〈〈¬ p〈σ̄〉(t̄)〉〉a = ¬ p〈σ̄〉(〈〈σ̄〉〉, 〈〈t̄ 〉〉a)

(Again, we omit the trivial cases, e.g. 〈〈∀X : σ. ϕ〉〉a = ∀X : σ. 〈〈ϕ〉〉a .) The traditional type

arguments encoding a is defined as the composition 〈〈 〉〉a ;e . It follows from the definition
that a translates a polymorphic problem over Σ = (K ,F,P) into an untyped problem over
Σ′ = (F ′ ⊎ K ′,P ′), where the symbols in F ′,P ′ are the same as those in F ,P ; and for each
symbol s : ∀ᾱ. σ̄ � ς ∈ F ⊎ P , the arity of s in Σ′ is |ᾱ|+ |σ̄|.

Example 3.8. The a encoding translates the algebraic list problem of Example 2.10 into
the following untyped problem:

∀A,X,Xs. nil(A) 6≈ cons(A,X,Xs)
∀A,Xs. Xs ≈ nil(A) ∨ (∃Y,Ys . Xs ≈ cons(A,Y,Ys))
∀A,X,Xs. hd(A, cons(A,X,Xs)) ≈ X ∧ tl(A, cons(A,X,Xs)) ≈ Xs

∃X,Y,Xs,Ys . cons(b,X,Xs) ≈ cons(b,Y,Ys) ∧ (X 6≈ Y ∨ Xs 6≈ Ys)

The a encoding coincides with e for monomorphic problems and suffers from the same
unsoundness with respect to equality and cardinality constraints. Nonetheless, a will form
the basis of all the sound polymorphic encodings in a slightly generalised version, called ax ,
for suitable instances of x .

12 J. C. BLANCHETTE, S. BÖHME, A. POPESCU, AND N. SMALLBONE

Definition 3.9 (Type Argument Filter). Given a signature Σ = (K ,F,P), a type argument
filter x maps any s : ∀α1, . . . , αm. σ̄ � ς to a subset x s = {i1, . . . , im′} ⊆ {1, . . . ,m} of
its type argument indices. Given a list z̄ of length m, x s(z̄) denotes the sublist zi1 , . . . , zim′ ,
where i1 < · · · < im′ . Filters are implicitly extended to {1} for the distinguished symbols
t, g /∈ F ⊎ P introduced in Convention 3.1.

Definition 3.10 (Generic Arguments ax). Given a type argument filter x, we first define the
encoding 〈〈 〉〉ax that translates polymorphic problems over Σ = (K ,F ,P) to polymorphic
problems over (K ⊎ {ϑ},F ⊎ K ′,P), where ϑ and K ′ are as in Definition 3.6. It adds no
axioms, and its term and formula translations are defined as follows:

〈〈 f 〈σ̄〉(t̄)〉〉ax = f 〈σ̄〉(〈〈x f (σ̄)〉〉, 〈〈t̄ 〉〉ax)

〈〈p〈σ̄〉(t̄)〉〉ax = p〈σ̄〉(〈〈x p(σ̄)〉〉, 〈〈t̄ 〉〉ax) 〈〈∀α. ϕ〉〉ax = ∀α. ∀〈〈α〉〉 : ϑ. 〈〈ϕ〉〉ax

〈〈¬ p〈σ̄〉(t̄)〉〉ax = ¬ p〈σ̄〉(〈〈x p(σ̄)〉〉, 〈〈t̄ 〉〉ax)

The generic type arguments encoding ax is the composition 〈〈 〉〉ax ;e . It translates a polymor-
phic problem over Σ = (K ,F,P) into an untyped problem over Σ′ = (F ′ ⊎ K ,P ′), where the
symbols in F ′,P ′ are the same as those in F,P ; and for each symbol s : ∀ᾱ. σ̄ � ς ∈ F ⊎ P ,
the arity of s in Σ′ is |x s|+ |σ̄|.

The e and a encodings correspond to the special cases of ax where x returns none or all
of the type arguments, respectively.

Theorem 3.11 (Completeness of ax). The type arguments encoding ax is complete.

Proof. Recall that ax is defined as the composition of 〈〈 〉〉ax and 〈〈 〉〉e . Since 〈〈 〉〉e is complete
by Theorem 3.5, it suffices to show that 〈〈 〉〉ax is complete. Let M ′ =

(
D′, (kM ′

)k∈K ′⊎{ϑ},

(f M ′
) f∈F ⊎K ′ , (pM ′

)p∈P

)
be a model of 〈〈Φ〉〉ax . We will construct a structure M =

(
D,

(kM)k∈K , (f M) f∈F , (pM)p∈P

)
for the signature of Φ by taking the same domains as M ′,

interpreting the type constructors other than ϑ in the same way, and interpreting the function
and predicate symbols s as in M ′, but supplying, for the extra arguments, a suitable tuple
from JϑKM ′

that reflects the type arguments.
To this end, we first apply Lemma 2.12 to obtain that every element of D′ is uniquely

represented as JτKM ′
with τ ∈ GTypeΣ′ . We define

• D = D′ and kM = kM ′
;

• if s ∈ F ⊎ P , then

s M (Jτ̄KM ′

)(d̄) =

{
s M ′

(Jτ̄KM ′
)(J〈〈x s(τ̄)〉〉K

M ′
, d̄) if x s(τ̄) ∈ GTypen

Σ

anything otherwise

where n is the length of x s(τ̄).

Note how the tuple J〈〈x s(τ̄)〉〉K
M ′

reflects the x s-selection from the type arguments Jτ̄KM ′
.

Given θ : A → D and ξ : V →
∏

σ∈TypeΣ
JσKM

θ , we define ξ′ : V →
∏

σ′∈Type
Σ′

Jσ′KM ′

θ by

ξ′(X)(σ′) =





ξ′(X)(σ′) if σ′ ∈ TypeΣ

J〈〈τ〉〉KM ′
if σ′ = ϑ, X = V (α), and θ(α) = JτKM ′

for τ ∈ GTypeΣ

anything otherwise

The next facts follow by structural induction on t and ϕ (for arbitrary θ and ξ):

ENCODING MONOMORPHIC AND POLYMORPHIC TYPES 13

• JtKM
θ,ξ = J〈〈t〉〉ax KM ′

θ,ξ′ ;

• J〈〈ϕ〉〉ax KM ′

θ,ξ′ implies JϕKM
θ,ξ.

(The reason why for formula interpretation we have only implication and not equality is the
∀α case: when encoding a universally quantified formula ∀α. ϕ, the result ∀α.∀〈〈α〉〉 :ϑ. 〈〈ϕ〉〉ax

introduces quantification over two variables, α and 〈〈α〉〉, whose interpretations need not be
synchronised. As a result, ∀α. ∀〈〈α〉〉 : ϑ. 〈〈ϕ〉〉ax could be stronger than ∀α. ϕ.) In particular,

for a sentence ϕ, J〈〈ϕ〉〉ax KM ′
implies JϕKM , and hence M is a model of Φ because M ′ is a

model of 〈〈Φ〉〉ax .

3.3. Type Tags. An intuitive approach to encode type information soundly (and com-
pletely) is to wrap each term and subterm with its type using type tags. For polymorphic
type systems, this scheme relies on a distinguished binary function t(〈〈σ〉〉, t) that “annotates”
each term t with its type σ encoded as a term 〈〈σ〉〉. The tags make most type arguments
superfluous. We call this scheme t, after the tag function of the same name. It is defined
as a two-stage process: the first stage adds tags t〈σ〉(t) while preserving the polymorphism;
the second stage encodes t’s type argument as well as any phantom type arguments.

Definition 3.12 (Phantom Type Argument). Let s : ∀α1, . . . , αm. σ̄ � ς ∈ F ⊎ P . The
ith type argument is a phantom if αi does not occur in σ̄ or ς. Given a list z̄ ≡ z1, . . . , zm,
phns(z̄) denotes the sublist zi1 , . . . , zim′ corresponding to the positions in ᾱ of the phantom
type arguments.

Definition 3.13 (Traditional Tags t). We first define the encoding 〈〈 〉〉t that translates
polymorphic problems over Σ = (K ,F ,P) to polymorphic problems over (K ,F ⊎ {t :
∀α. α → α},P). It adds no axioms, and its term and formula translations are defined as
follows:

〈〈 f 〈σ〉(t̄)〉〉t = ⌊ f 〈σ〉(〈〈t̄ 〉〉t)⌋ 〈〈X σ〉〉t = ⌊〈〈X σ〉〉t⌋ with ⌊tσ⌋ = t〈σ〉(t)

The traditional type tags encoding t is the composition 〈〈 〉〉t ;aphn ;e . It translates a poly-
morphic problem over Σ into an untyped problem over Σ′ = (F ′ ⊎ K ′ ⊎ {t2},P ′), where
K ′,F ′,P ′ are as for aphn (i.e. ax with x = phn).

Example 3.14. The t encoding translates the algebraic list problem of Example 2.10 into
the following equisatisfiable untyped problem:

∀A,X,Xs. t(list(A), nil) 6≈ t(list(A), cons(t(A,X), t(list(A),Xs)))
∀A,Xs. t(list(A),Xs) ≈ t(list(A), nil) ∨

(∃Y,Ys . t(list(A),Xs) ≈ t(list(A), cons(t(A,Y), t(list(A),Ys))))
∀A,X,Xs. t(A, hd(t(list(A), cons(t(A,X), t(list(A),Xs))))) ≈ t(A,X) ∧

t(list(A), tl(t(list(A), cons(t(A,X), t(list(A),Xs))))) ≈ t(list(A),Xs)
∃X,Y,Xs,Ys . t(list(b), cons(t(b,X), t(list(b),Xs))) ≈

t(list(b), cons(t(b,Y), t(list(b),Ys))) ∧
(t(b,X) 6≈ t(b,Y) ∨ t(list(b),Xs) 6≈ t(list(b),Ys))

Since there are no phantoms in this example, aphn adds no extra arguments. All type
information is carried by the t function’s first argument.

Example 3.15. Consider the following formula, with linorder : ∀α.o and less_eq : ∀α. α×α �
o:

14 J. C. BLANCHETTE, S. BÖHME, A. POPESCU, AND N. SMALLBONE

∀α. ∀X : α,Y : α. linorder〈α〉 → less_eq(X , Y) ∨ less_eq(Y,X)

The α variable in linorder’s arity declaration is a phantom. The t encoding preserves it as an
explicit term argument:

∀A,X,Y . linorder(A) → less_eq(t(A,X), t(A, Y)) ∨ less_eq(t(A, Y), t(A,X))

As the formula suggests, phantom type arguments can be used to encode predicates on types,
mimicking type classes [35].

We postpone the proof of the following theorem to Section 4.2, in the context of our
improved encodings:

Theorem 3.16 (Correctness of t). The traditional type tags encoding t is correct.

3.4. Type Guards. Type tags heavily burden the terms. An alternative is to introduce
type guards, which are predicates that restrict the range of variables. They take the form of
a distinguished predicate g(〈〈σ〉〉, t) that checks whether t has type σ. The terms are smaller
than with tags, but the formulae contain more disjuncts.

With the type tags encoding, only phantom type arguments need to be encoded; here,
we must encode any type arguments that cannot be read off the types of the term arguments.
Thus, the type argument is encoded for nil〈α〉 (which has no term arguments) but omitted
for cons〈α〉(X,Xs), hd〈α〉(Xs), and tl〈α〉(Xs).

Definition 3.17 (Inferable Type Argument). Let s : ∀α1, . . . , αm. σ̄ � ς ∈ F ⊎ P . A
type argument α j is inferable if it occurs in some of the term arguments’ types, i.e. if there
exists an index i such that α j occurs in σi. Given a list z̄ ≡ z1, . . . , zm, let infs(z̄) denote the
sublist zi1 , . . . , zim′ corresponding to the positions in ᾱ of the inferable type arguments, and
let ninfs(z̄) denote the sublist for noninferable type arguments.

Observe that a phantom type argument is in particular noninferable, and a noninferable
nonphantom type argument is one that appears in ς but not in σ̄.

Definition 3.18 (Traditional Guards g). We first define the encoding 〈〈 〉〉g , which translates
a polymorphic problem over Σ = (K ,F ,P) into an untyped problem over (K ,F ,P ⊎ {g :
∀α. α → o}). Its term and formula translations are defined as follows:

〈〈∀X : σ. ϕ〉〉g = ∀X : σ. g〈σ〉(X) → 〈〈ϕ〉〉g 〈〈∃X : σ. ϕ〉〉g = ∃X : σ. g〈σ〉(X) ∧ 〈〈ϕ〉〉g

The encoding also adds the following typing axioms:

∀ᾱ. X̄ : σ̄.
(∧

j g〈σj〉(X j)
)
→ g〈σ〉(f 〈ᾱ〉(X̄)) for f : ∀ᾱ. σ̄ � σ ∈ F

∀α. ∃X : α. g〈α〉(X)

(Following Convention 2.14, the translation of a problem is given by 〈〈Φ〉〉g = Ax ∪ {〈〈ϕ〉〉g |
ϕ ∈ Φ}, where Ax are the typing axioms.) The traditional type guards encoding g is defined
as the composition 〈〈 〉〉g ;aninf ;e . It translates a polymorphic problem over Σ into an untyped
problem over Σ′ = (F ′ ⊎ K ′,P ′ ⊎ {g2}), where K ′,F ′,P ′ are as for aninf.

The last typing axiom in the above definition witnesses inhabitation of every type. It
is necessary for completeness, in case some of the types do not appear in the result type of
any function symbol.

ENCODING MONOMORPHIC AND POLYMORPHIC TYPES 15

Example 3.19. The g encoding translates the algebraic list problem of Example 2.10 into
the following:

∀A. g(list(A), nil(A))
∀A,X,Xs. g(A,X) ∧ g(list(A),Xs) → g(list(A), cons(X,Xs))
∀A,Xs. g(list(A),Xs) → g(A, hd(Xs))
∀A,Xs. g(list(A),Xs) → g(list(A), tl(Xs))
∀A. ∃X . g(A,X)

∀A,X,Xs. g(A,X) ∧ g(list(A),Xs) → nil(A) 6≈ cons(X,Xs)
∀A,Xs. g(list(A),Xs) →

Xs ≈ nil(A) ∨ (∃Y,Ys . g(A,Y) ∧ g(list(A),Ys) ∧ Xs ≈ cons(Y,Ys))
∀A,X,Xs. g(A,X) ∧ g(list(A),Xs) → hd(cons(X,Xs)) ≈ X ∧ tl(cons(X,Xs)) ≈ Xs

∃X,Y,Xs,Ys . g(b,X) ∧ g(b,Y) ∧ g(list(b),Xs) ∧ g(list(b),Ys) ∧
cons(X,Xs) ≈ cons(Y,Ys) ∧ (X 6≈ Y ∨ Xs 6≈ Ys)

In this and later examples, we push guards inside past quantifiers and group them in a
conjunction to enhance readability.

The typing axioms must in general be guarded. Without the guards, any cons, hd, or tl

term could be typed with any type, defeating the purpose of the guard predicates.

Example 3.20. Consider the following formula, where inl : ∀α, β. α � sum(α, β) and inr :
∀α, β. β � sum(α, β):

∀α, β. ∀X : α, Y : β. inl〈α, β〉(X) 6≈ inr〈α, β〉(Y)

The β variable in inl’s arity declaration and the α in inr’s are noninferable. The g encoding
preserves them as explicit term arguments:

∀A, B,X,Y. g(A,X) ∧ g(B,Y) → inl(B,X) 6≈ inr(A,Y)

Theorem 3.21 (Correctness of g). The traditional type guards encoding g is correct.

Proof. This will be a consequence of Theorem 4.7 for our parameterised cover-based encoding
g@, since g is a particular case of g@.

Remark 3.22. The above encodings, as well as those discussed in the next sections, all lead
to an untyped problem. An increasing number of automatic provers support monomorphic
types, and it may seem desirable to exploit such support when it is available. With such
provers, we can replace the e encoding with a variant that enforces a basic type discipline by
distinguishing two types, ϑ (for encoded types) and ι (for encoded terms). An incomplete
(non-proof-preserving) alternative is to perform heuristic monomorphisation (Section 5.6).
Hybrid schemes that exploit monomorphic types, including interpreted types, are also pos-
sible and have been studied by other researchers (Section 9).

4. Cover-Based Encodings of Polymorphism

Type tags and guards considerably increase the size of the problems passed to the auto-
matic provers, with a dramatic impact on their performance. A lot of the type information
generated by the traditional encodings t and g is redundant. For example, t translates
cons〈α〉(X,Xs) to t(list(A), cons(t(A,X), t(list(A),Xs))), but intuitively only one of the three
tags is necessary to specify the right type for the expression if we know the arity of cons. The
cover-based encodings capitalise on this, by supplying only a minimum of protectors and

16 J. C. BLANCHETTE, S. BÖHME, A. POPESCU, AND N. SMALLBONE

adding typing axioms that effectively compute the type of function symbols from a selection
of their term arguments’ types—the “cover”.

Let us first rigorously define this notion of term arguments “covering” type arguments.

Definition 4.1 (Cover). Let s : ∀ᾱ. σ̄ � ς ∈ F ⊎ P . A (type argument) cover C ⊆
{1, . . . , |σ̄|} for s is a set of term argument indices such that any inferable type argument
can be inferred from a term argument whose index belongs to C, i.e. for all j, if α j appears in
σ̄, it also appears in some σi such that i ∈ C. A cover C of s is minimal if no proper subset
of C is a cover for s; it is maximal if C = {1, . . . , |σ̄|}. We let Covers denote an arbitrary
but fixed cover for s.

In practice, we would normally take a minimal cover for Cover s to reduce clutter. Ac-
cordingly, {1} and {2} are minimal covers for cons : ∀α. α× list(α) � list(α), whereas {1, 2}
is a maximal cover.

Convention 4.2. As canonical cover, we arbitrarily choose Covercons = {1}.

The cover-based encoding g@ introduced below is a generalisation of the traditional en-
coding g. The two encodings coincide if Covers is chosen to be maximal for all symbols s. In
contrast, the cover-based encoding t@ is not exactly a generalisation of t, although they share
many ideas. For this reason, we momentarily depart from our general policy of considering
tags before guards so that we can present the easier case first.

Intuitively, g@ and t@ ensure that each term argument position that is part of its
enclosing function or predicate symbol’s cover has a unique type associated with it, from
which the omitted type arguments can be inferred. Thus, t@ translates cons〈α〉(X,Xs) to
cons(t(A,X),Xs) with a type tag around X , effectively protecting the term from an ill-typed
instantiation of X that would result in the wrong type argument being inferred for cons.

There is no need to protect the second argument, Xs, since it is not part of the cover.
We call variables that occur in their enclosing symbol’s cover (and hence that “carry” some
type arguments) “undercover variables”. It may seem dangerous to allow ill-typed terms to
instantiate Xs, but this is not an issue because such terms cannot contribute meaningfully
to a proof. At most, they can act as witnesses for the existence of terms of given types, but
even in that capacity they are not necessary.

Definition 4.3 (Undercover Variable). The set of undercover variables UV(ϕ) of a formula ϕ
is defined by the equations

UV(f 〈σ̄〉(t̄)) = ⌊t̄ ⌋ f ∪ UV(t̄) UV(X) = ∅

UV(p〈σ̄〉(t̄)) = ⌊t̄ ⌋p ∪ UV(t̄) UV(t1 ≈ t2) = ({t1, t2} ∩ Vtyped) ∪ UV(t1, t2)

UV(¬ p〈σ̄〉(t̄)) = ⌊t̄ ⌋p ∪ UV(t̄) UV(t1 6≈ t2) = UV(t1, t2)

UV(ϕ1∧ ϕ2) = UV(ϕ1, ϕ2) UV(∀X : σ. ϕ) = UV(ϕ)

UV(ϕ1∨ ϕ2) = UV(ϕ1, ϕ2) UV(∃X : σ. ϕ) = UV(ϕ)− {X σ}

UV(∀α. ϕ) = UV(ϕ)

where ⌊t̄ ⌋s = {tj | j ∈ Cover s} ∩ Vtyped and UV(t̄) =
⋃

j UV(tj).

ENCODING MONOMORPHIC AND POLYMORPHIC TYPES 17

4.1. Cover-Based Type Guards. The cover-based encoding g@ is similar to the tradi-
tional encoding g, except that it guards only undercover occurrences of variables.

Definition 4.4 (Cover Guards g@). The encoding 〈〈 〉〉g@ is defined similarly to the encoding
〈〈 〉〉g (used for the traditional g encoding) except for the ∀ case in its formula translation and
the typing axioms. Namely, the ∀ case adds guards only for universally quantified variables
that are undercover:

〈〈∀X : σ. ϕ〉〉g@ = ∀X : σ.

{
〈〈ϕ〉〉g@ if X /∈ UV(ϕ)

g〈σ〉(X) → 〈〈ϕ〉〉g@ otherwise

Moreover, the typing axioms take the cover into consideration:

∀ᾱ. X̄ : σ̄.
(∧

j∈Cover f
g〈σj〉(X j)

)
→ g〈σ〉(f 〈ᾱ〉(X̄)) for f : ∀ᾱ. σ̄ � σ ∈ F

∀α. ∃X : α. g〈α〉(X)

The cover-based type guards encoding g@ is defined as the composition 〈〈 〉〉g@;aninf ;e . It
translates a polymorphic problem Φ over Σ into an untyped problem 〈〈Φ〉〉g@;aninf ;e over
Σ′ = (F ′ ⊎ K ′,P ′ ⊎ {g2}), where K ′,F ′,P ′ are as for aninf.

Example 4.5. If we choose the cover for cons as in Convention 4.2, the g@ encoding of the
algebraic list problem is identical to the g encoding (Example 3.19), except that the guard
g(list(A),Xs) is omitted in typing axiom and one of the problem axioms:

∀A,X,Xs. g(A,X) → g(list(A), cons(X,Xs))

∀A,X,Xs. g(A,X) → nil(A) 6≈ cons(X,Xs)

By leaving Xs unconstrained, the typing axiom for cons gives a type to some “ill-typed”
terms, such as cons(0nat , 0nat). Intuitively, this is safe because such terms cannot be used
to prove anything useful that could not be proved with a “well-typed” term. What matters
is that “well-typed” terms are associated with their correct type and that “ill-typed” terms
are given at most one type.

Lemma 4.6. Let M =
(
D, (kM)k∈K , (f M) f∈F , (pM)p∈P

)
be such that the domains in D

are mutually disjoint and the type constructors kM are injective. Assume ᾱ = (α1, . . . , αm),
β̄ = (β1, . . . , βn), σ̄ = (σ1, . . . , σu), τ̄ = (τ1, . . . , τv), and s : ∀(ᾱ, β̄). (σ̄, τ̄) → ς in F ⊎ P ,

such that the last n type arguments (corresponding to β̄) are inferable and the first u term

arguments (corresponding to σ̄) constitute a cover for s. Let (d1, . . . , du) ∈ (
⋃

D∈D D)u. Then

there exists at most one tuple Ē = (E1, . . . , En) ∈ Dn such that each di is in JσiK
M
θ for some

θ that maps β̄ to Ē.

Proof. From the inferability and cover assumptions, we have the condition TVars(β̄) ⊆
TVars(σ̄, τ̄) = TVars(σ̄) on type variables. Assume another such tuple Ē′ exists. Let θ′

be its corresponding substitution, and let j ∈ {1, . . . , n}. By the type variable condition,

there exists i ∈ {1, . . . , u} such that β j ∈ TVars(σi); since di ∈ JσiK
M
θ ∩ JσiK

M
θ′ and distinct

domains are disjoint, we have JσiK
M
θ = JσiK

M
θ′ , which, together with β j ∈ TVars(σi) and the

injectivity of the type constructors, implies θ(β j) = θ′(β j), hence E j = E′
j; and since j was

arbitrary, we obtain Ē = Ē′, as desired.

18 J. C. BLANCHETTE, S. BÖHME, A. POPESCU, AND N. SMALLBONE

Theorem 4.7 (Correctness of g@). The cover-based type guards encoding g@ is correct.

Proof. Let Σ = (K ,F ,P) be the signature of a polymorphic problem Φ.

Sound: Let M =
(
D, (kM)k∈K , (f M) f∈F , (pM)p∈P

)
be a model of Φ. By Lemma 2.12, we

may assume that D is disjoint from each of its elements, its elements are mutually disjoint,
and the type constructors kM satisfy distinctness and injectivity.

We define a structure M ′ =
(
D′, (f M ′

) f∈F ′⊎K ′ , (pM ′
)p∈P ′⊎{g2}

)
for the untyped signa-

ture Σ′ = (F ′ ⊎ K ′,P ′ ⊎ {g2}) as follows. D′ is the union of the domains of M and their

elements, gM ′
is the set membership relation, and the symbols of M ′ common to those of

M try to emulate the M interpretation as closely as possible: kM ′
acts like kM on the D

subset of D′, and similarly for function and predicate symbols s whose noninferable type
arguments in M become regular (term) arguments in M ′. The reason why we can omit the
inferable type arguments of s is their recoverability from the type of s and the domains of the
genuine term arguments. Additionally, when applying sM ′

to inputs outside s’s cover that
do not belong to their proper domains in M , we correct these inputs by replacing them with
arbitrary inputs from the proper domains. We do this because, in formulae, these inputs
will not be guarded by the encoding, but we will nevertheless want to infer the encoded
formula holding in M ′ from the original formula holding in M .

Formally, we define the components of M ′ as follows. First, D′ = D ⊎ (
⋃

D∈D D) and

gM ′
(a, b) = (a ∈ D ∧ b ∈ a). Assume k :: n is in K , meaning that k is an n-ary function

symbol in K ′. Then

kM ′

(D̄) =

{
kM (D̄) if D̄ ∈ Dn

ε(D) otherwise

Assume ᾱ = (α1, . . . , αm), β̄ = (β1, . . . , βn), σ̄ = (σ1, . . . , σu), τ̄ = (τ1, . . . , τv), and s :
∀ᾱ, β̄. σ̄ × τ̄ → ς is in F ⊎ P , such that the first m type arguments are noninferable,
the last n type arguments are inferable, and the first u term arguments constitute s’s cover.
(The general case, with arbitrary permutations of noninferable and cover arguments, can be
handled similarly, albeit with heavier notation.) Then s is an (m + u + v)-ary symbol in
F ′ ⊎ P ′. Let D̄ = (D1, . . . ,Dm) ∈ D′m, d̄ = (d1, . . . , du) ∈ D′u and ē = (e1, . . . , ev) ∈ D′v, and
consider the following condition on domains:

(D1, . . . ,Dm) ∈ Dm and there exists Ē = (E1, . . . , En) ∈ Dn such that each di is in JσiK
M
θ ,

where θ maps (ᾱ, β̄) to (D̄, Ē)

Assuming the condition holds, by Lemma 4.6 there exists precisely one tuple Ē satisfying it.
We let ē′ = (e′1, . . . , e

′
v), where

e′i =

{
ei if ei ∈ JτiK

M
θ

ε(JτiK
M
θ) otherwise

Finally, we define

sM ′

(D̄, d̄, ē) =





sM (D̄, Ē)(d̄, ē′) if the domain condition holds

ε(D) if the domain condition fails and s ∈ F

ε(o) if the domain condition fails and s ∈ P

We will show that M ′ is a model of 〈〈Φ〉〉g@;aninf ;e . Let ξ′ : V → D′ be a valuation that
respects types, in the sense that ξ′(V (α)) ∈ D for all α ∈ A . We define θ : A → D by

θ(α) = ξ′(V (α)) and ξ : V →
∏

σ∈TypeΣ
JσKM

θ by ξ(X)(σ) = ξ′(X) if ξ′(X) ∈ JσKM
θ and

ENCODING MONOMORPHIC AND POLYMORPHIC TYPES 19

= ε(JσKM
θ) otherwise. Facts (1)–(3) below follow by induction on σ, t or ϕ (for arbitrary ξ′),

and (1′) is a consequence of (1) and the definition of gM ′
:

(1) J〈〈σ〉〉KM ′

ξ′ = JσKM
θ ;

(1′) Jg(〈〈σ〉〉,X)KM ′

ξ′ = (ξ′(X) ∈ JσKM
θ);

(2) if t /∈ Vtyped and ξ(X) ∈ JσKM
θ for all X σ ∈ UV(t), then J〈〈t〉〉g@;aninf ;eKM ′

ξ′ = JtKM
θ,ξ;

(3) if ξ′(X) ∈ JσKM
θ for all X σ ∈ UV(ϕ), then JϕKM

θ,ξ implies J〈〈ϕ〉〉g@;aninf ;eKM ′

ξ′
.

Let us detail a few interesting cases in these proofs:

Inductive case for (2): Assume t = f 〈τ̄〉(t1, . . . , tn), and let i ∈ {1, . . . , n}.
If ti 6∈ Vtyped, then the induction hypothesis applies to it, yielding

J〈〈ti〉〉g@;aninf ;eKM ′

ξ′ = JtiK
M
θ,ξ

If ti = X σ, then J〈〈ti〉〉g@;aninf ;eKM ′

ξ′ = ξ′(X), JtiKM
θ,ξ = ξ(X)(σ), and we have

two cases:
• If ξ′(X) ∈ JσKM

θ , then ξ′(X)(σ) = ξ(X).
• Otherwise, by the assumptions i /∈ Cover f , and hence the definition of

f M ′
effectively replaces the argument ξ′(X) by ε(JσKM

θ), which also equals
ξ(X)(σ).

The above shows J〈〈t〉〉g@;aninf ;eKM ′

ξ′ = JtKM
θ,ξ.

Disequality case for (3): The subcase when one of the terms is a vari-
able and the other is not. Assume ϕ has the form X σ 6≈ t. If ξ′(X) ∈

JσKM
θ , then ξ′(X)(σ) = ξ(X), hence J〈〈ϕ〉〉g@;aninf ;eKM ′

ξ′ = JϕKM
θ,ξ. Otherwise,

J〈〈ϕ〉〉g@;aninf ;eKM ′

ξ′ since J〈〈t〉〉g@;aninf ;eKM ′

ξ′ ∈ JσKM
θ (and hence is different from

ξ′(X)).

Universal quantifier case for (3): Assume (A) J∀X : σ. ϕKM
θ,ξ. We

must show J〈〈∀X : σ. ϕ〉〉g@;aninf ;eKM ′

ξ′ . Fix d ∈ D and let ξ′1 = ξ′[X → d].

• Assume X ∈ UV(ϕ). Then we assume Jg(〈〈σ〉〉,X)KM ′

ξ′ , i.e. (B) d ∈ JσKM
θ ,

and need to show J〈〈ϕ〉〉g@;aninf ;eKM ′

ξ′
1

. From (B), we have ξ(X)(σ) = ξ′(X),

hence ξ1 = ξ[X 7→ d]; with (A), this implies JϕKM
θ,ξ1

, and hence the desired
fact follows from the induction hypothesis.

• Assume X 6∈ UV(ϕ). We must show J〈〈ϕ〉〉g@;aninf ;eKM ′

ξ′
1

. If d ∈ JσKM
θ ,

then the argument goes the same as above. So assume d 6∈ JσKM
θ . Then

ξ(X)(σ) = ε(JσKM
θ), hence ξ1 = ξ[X 7→ ε(JσKM

θ)]; with (A), this implies

JϕKM
θ,ξ1

, and hence the desired fact follows from the induction hypothesis.

From (1′) and the definition of f M ′
, it follows that M ′ satisfies the necessary axioms, namely,

〈〈ϕ〉〉aninf ;e for each typing axiom ϕ. It remains to show that M ′ satisfies 〈〈ϕ〉〉g@;aninf ;e for each
ϕ ∈ Φ. So let ϕ ∈ Φ. Then JϕKM . We pick any ξ′ that respects types and has the property

that ξ′(X) ∈ JσKM
θ for all X σ ∈ UV(ϕ); by (3) and the fact that ϕ and 〈〈ϕ〉〉g@;aninf ;e are

sentences, it follows that JϕKM
ξ,θ, hence J〈〈ϕ〉〉g@;aninf ;eKM ′

ξ′ , hence J〈〈ϕ〉〉g@;aninf ;eKM ′
.

Complete: This part is easy. By Theorem 3.11, it suffices to show that 〈〈 〉〉g@ is complete.
Let M ′ =

(
D′, (kM ′

)k∈K , (f M ′
) f∈F , (pM ′

)p∈P⊎{g}
)

be a model of 〈〈Φ〉〉g@, for which again we

20 J. C. BLANCHETTE, S. BÖHME, A. POPESCU, AND N. SMALLBONE

may assume that the domains are mutually disjoint. We define M =
(
D, (kM)k∈K , (f M) f∈F ,

(pM)p∈P

)
by restricting the domains according to the guards and restricting the operations

correspondingly. Namely, for each D ∈ D′, let D′ = {d ∈ D | gM ′
(D)(d)}. We take

• D = {D′ | D ∈ D′};

• kM (D̄′) = kM ′
(D̄);

• sM (D̄′)(d̄) = sM ′
(D̄)(d̄).

Thanks to the typing axioms, each D′ is nonempty. Since the domains are disjoint, each
D′ determines its D uniquely; together with the typing axioms, this also ensures that each
kM and sM are well defined. Now, JUKM

θ,ξ = J〈〈U〉〉g@KM ′

θ,ξ , where U is first a term and then a

formula, follows by induction on U (for arbitrary θ and ξ). From this, we obtain that M is
a model of 〈〈Φ〉〉g@ by the usual route.

4.2. Cover-Based Type Tags. The cover-based encoding t@ is similar to the traditional
encoding t, except that it tags only undercover occurrences of variables and requires typing
axioms to add or remove tags around function terms.

Definition 4.8 (Cover Tags t@). The encoding 〈〈 〉〉t@ translates polymorphic problems over
Σ = (K ,F ,P) to polymorphic problems over (K ,F ⊎ {t : ∀α. α → α},P). Its term and
formula translations are the following:

〈〈 f 〈σ̄〉(t̄)〉〉t@ = f 〈σ̄〉(⌊〈〈t̄ 〉〉t@⌋ f)

〈〈p〈σ̄〉(t̄)〉〉t@ = p〈σ̄〉(⌊〈〈t̄ 〉〉t@⌋p) 〈〈t1 ≈ t2〉〉t@ = ⌊〈〈t1〉〉t@⌋≈ ≈ ⌊〈〈t2〉〉t@⌋≈

〈〈¬ p〈σ̄〉(t̄)〉〉t@ = ¬ p〈σ̄〉(⌊〈〈t̄ 〉〉t@⌋p) 〈〈∃X : σ. ϕ〉〉t@ = ∃X : σ. t〈σ〉(X) ≈ X ∧ 〈〈ϕ〉〉t@

The auxiliary function ⌊(tσ1

1 , . . . , tσn
n)⌋s returns a vector (u1, . . . , un) such that

u j =

{
t〈σj〉(tj) if j ∈ Cover s and tj ∈ V ∀

typed

tj otherwise

taking Cover≈ = {1, 2}. The encoding adds the following typing axioms:

∀ᾱ. ∀X̄ : σ̄. t〈σ〉(f 〈ᾱ〉(⌊X̄ ⌋ f)) ≈ f 〈ᾱ〉(⌊X̄ ⌋ f) for f : ∀ᾱ. σ̄ � σ ∈ F

∀α. ∃X : α. t〈α〉(X) ≈ X

The cover-based type tags encoding t is the composition 〈〈 〉〉t@;aninf ;e . It translates a poly-
morphic problem over Σ into an untyped problem over Σ′ = (F ′ ⊎ K ′ ⊎ {t2},P ′), where
K ′,F ′,P ′ are as for aninf.

Example 4.9. The t@ encoding of Example 2.10 is as follows (again, choosing the cover for
cons as in Convention 4.2):

∀A. t(list(A), nil(A)) ≈ nil(A)
∀A,X,Xs. t(list(A), cons(t(A,X),Xs)) ≈ cons(t(A,X),Xs)
∀A,Xs. t(list(A), hd(t(list(A),Xs))) ≈ hd(t(list(A),Xs))
∀A,Xs. t(A, tl(t(list(A),Xs))) ≈ tl(t(list(A),Xs))

∀A,X,Xs. nil(A) 6≈ cons(t(A,X),Xs)
∀A,Xs. t(list(A),Xs) ≈ nil(A) ∨

(∃Y,Ys . t(A,Y) ≈ Y ∧ t(list(A),Ys) ≈ Ys ∧ t(list(A),Xs) ≈ cons(Y,Ys))
∀A,X,Xs. hd(cons(t(A,X),Xs)) ≈ t(A,X) ∧ tl(cons(t(A,X),Xs)) ≈ t(list(A),Xs)

ENCODING MONOMORPHIC AND POLYMORPHIC TYPES 21

∃X,Y,Xs,Ys . t(b,X) ≈ X ∧ t(b,Y) ≈ Y ∧ t(list(b),Xs) ≈ Xs ∧ t(list(b),Ys) ≈ Ys ∧
cons(X,Xs) ≈ cons(Y,Ys) ∧ (X 6≈ Y ∨ Xs 6≈ Ys)

Theorem 4.10 (Correctness of t@). The cover-based type tags encoding t@ is correct.

Proof. Let Σ = (K ,F ,P) be the signature of a polymorphic problem Φ.

Sound: Let M =
(
D, (kM)k∈K , (f M) f∈F , (pM)p∈P

)
be a model of Φ. By Lemma 2.12, we

may assume that D is disjoint from each of its elements, its elements are mutually disjoint,
and the type constructors kM satisfy distinctness and injectivity.

We define a structure M ′ =
(
D′, (f M ′

) f∈F ′⊎K ′⊎{t2}, (pM ′
)p∈P ′

)
for Σ′ = (F ′ ⊎ K ′,P ′ ⊎

{g2}) intended to be a model of 〈〈Φ〉〉t@;aninf ;e . The construction of M ′ proceeds very similarly

to the case of guards from the proof of Theorem 4.7: D′, kM ′
for k ∈ K ′, and sM ′

for s ∈ F ′ ⊎
P ′ are all defined in the same way as in that proof. It remains to define tM

′
: D′ × D′ → D′:

tM
′

(a, b) =





b if a ∈ D and b ∈ a
ε(a) if a ∈ D and b 6∈ a
ε(D) if a 6∈ D

In the proof of Theorem 4.7, gM ′
(a, b) captured the notion that a is a domain of M and

b an element in it. The same can now be expressed by tM
′
(a, b) = b. Additionally, here

tM
′

is useful for redirecting any ill-typed element b (one not in the first argument a) to a
well-typed element ε(a) ∈ a.

To show that M ′ is a model of 〈〈Φ〉〉t@;aninf ;e , we proceed almost identically to the proof
of Theorem 4.7. Starting with a valuation ξ′ : V → D′ that respects types, we define ξ and
θ in the same way and state facts (1)–(3) as for guards, but adding a condition about the
“well-typedness” of the existential variables interpretation, since only universal variables (i.e.
variables in V ∀

typed) are tagged by t@:

(1) J〈〈σ〉〉KM ′

ξ′ = JσKM
θ ;

(2) if t /∈ Vtyped and ξ(X) ∈ JσKM
θ for all X σ ∈ UV(t) ∪ V ∃

typed, then J〈〈t〉〉t@;aninf ;eKM ′

ξ′ = JtKM
θ,ξ;

(3) if ξ′(X) ∈ JσKM
θ for all X σ ∈ UV(ϕ) ∪ V ∃

typed, then JϕKM
θ,ξ implies J〈〈ϕ〉〉g@;aninf ;eKM ′

ξ′ .

Moreover, (1′) from the proof of Theorem 4.7 is replaced with the following two facts:

(1′) (Jt(〈〈σ〉〉,X)KM ′

ξ′ = ξ′(X)) = (ξ′(X) ∈ JσKM
θ);

(1′′) Jt(〈〈σ〉〉,X)KM ′

ξ′ ∈ JσKM
θ .

Again, (1)–(3) follow by induction on the involved type, term, or formula; (1′) and (1′′)

follow from (1) and the definition of tM
′
(and are in turn used to establish (2) and (3)). The

fact that M ′ satisfies 〈〈ϕ〉〉t@;aninf ;e for each ϕ ∈ Φ follows in the same way as in Theorem 4.7.
It remains to show that M ′ satisfies the necessary axioms, namely, the 〈〈 〉〉aninf ;e-translations
of the 〈〈 〉〉t@ typing axioms. This follows from (1′) and the definition of f M ′

.

Complete: This part is again similar to the corresponding one for guards. By Theo-
rem 3.11, it suffices to show 〈〈 〉〉t@ complete. Let M ′ =

(
D′, (kM ′

)k∈K , (f M ′
) f∈F ⊎{t}, (pM ′

)p∈P

)

be a model of 〈〈Φ〉〉t@, for which we may assume that the domains are mutually disjoint. We
define M =

(
D, (kM)k∈K , (f M) f∈F , (pM)p∈P

)
by restricting the domains not according to

the guards as in the proof of Theorem 4.7, but according to the property that tags be iden-
tity: for each D ∈ D′, let D′ = {d ∈ D | tM

′
(D)(d) = d}; we define D = {D′ | D ∈ D′}. The

22 J. C. BLANCHETTE, S. BÖHME, A. POPESCU, AND N. SMALLBONE

other components of M are defined as in Theorem 3.11, and the proof is analogous to that
for guards.

Unlike in the case of guards, the traditional type tag encoding t is not a particular
case of the cover-based encoding t@, since only t@ introduces typing axioms, and also t

further restricts the type arguments to phantom arguments. Nevertheless, we can provide
a somewhat similar argument for t’s correctness. Although the encoding is well known, we
are not aware of any soundness proof in the literature.

Proof of Theorem 3.16 (Correctness of t).

Sound: Let M be as in the proof of Theorem 4.10. We define M ′ similar to there, but
with the following difference: D′ contains not only the domains in D and their elements,
but also the set P of “polymorphic values”, i.e. functions that take a domain D ∈ D and
return an element of D. The reason for the polymorphic values is that, due to the switch
from noninferable arguments to phantom arguments, the domain of the result for f M ′

with
f : ∀ᾱ. σ̄ → σ in F will no longer be completely inferable from the arguments, but will
miss precisely the nonphantom noninfrebale arguments, which correspond to type variables
belonging to the result type σ but not to the argument types σ̄. Consequently, the result
of applying f M ′

to “well-typed” arguments will be polymorphic values that wait for the
result domain D and, if it has the form JσKθ for an appropriate θ, return the result from

JσKθ according to the interpretation of f M ′
. Then the interpretation of the tag applied to

polymorphic values will select the desired element by providing the domain. The reason why
this approach works with t but not with t@ is that in t tags are applied everywhere, thus
resolving immediately any polymorphic value emerging from an application of f M ′

.
Formally, we define the components of M ′ as follows. First, kM ′

and pM ′
are as in

the proofs of Theorems 4.7 and 4.10. (For predicate symbols, the notions of phantom and
noninferable type arguments coincide.) D′ = D ∪ E ∪ P, where E =

⋃
D∈D D (the elements)

and P =
∏

D∈D D (the polymorphic values). Moreover, tM
′
: D′ × D′ → D′ is defined as

follows:

tM
′

(a, b) =





b if a ∈ D and b ∈ a
ε(a) if a ∈ D, b ∈ E and b 6∈ a
b(a) if a ∈ D and b ∈ P
ε(D) otherwise

Assume ᾱ = (α1, . . . , αm), γ̄ = (γ1, . . . , γr), β̄ = (β1, . . . , βn), σ̄ = (σ1, . . . , σu), τ̄ = (τ1, . . . , τv),
and s : ∀(ᾱ, γ̄, β̄). (σ̄, τ̄) → ς is in F ⊎ P , such that the first m type arguments are phan-
tom, the middle r arguments are noninferable nonphantoms, the last n type arguments are
inferable, and the first u term arguments constitute s’s cover. (Again, the general case
with arbitrary permutations of the arguments can be handled similarly.) Then s is an
(m + u + v)-ary symbol in F ′ ⊎ P ′. Let D̄ = (D1, . . . ,Dm) ∈ D′m, d̄ = (d1, . . . , du) ∈ D′u and
ē = (e1, . . . , ev) ∈ D′v, and consider the following condition on domains:

(D1, . . . ,Dm) ∈ Dm and there exists Ē = (E1, . . . , En) ∈ Dn such that each di is in JσiK
M
θ ,

where θ maps (ᾱ, β̄) to (D̄, Ē)

Assuming the condition holds, again by Lemma 4.6 (taking ᾱ from there to be (ᾱ, γ̄)) there
exists precisely one tuple Ē satisfying it, and we define the “correction” vector ē′ from ē as

ENCODING MONOMORPHIC AND POLYMORPHIC TYPES 23

in the proof of Theorems 4.7 and 4.10. We now define

f M ′

(D̄, d̄, ē) =

{
πD̄,d̄,ē if the domain condition holds

ε(D) otherwise

where the polymorphic value πD̄,d̄,ē ∈ P is defined as follows:

πD̄,d̄,ē(D) =

{
sM (D̄, Ḡ, Ē)(d̄, ē′) if D has the form JσKM

θ and θ assigns (ᾱ, γ̄, β̄) to (D̄, Ḡ, Ē)
ε(D) otherwise

To show that M ′ is a model of 〈〈Φ〉〉t ;aphn ;e , we proceed almost identically to the proof
of Theorem 4.10. Starting with a valuation ξ′ : V → D′ that respects types (as in the
proofs of Theorems 4.7 and 4.10). We define θ : A → D by θ(α) = ξ′(V (α)) and ξ : V →∏

σ∈TypeΣ
JσKM

θ by ξ(X)(σ) = tM
′
(JσKM

θ , ξ
′(X)). Facts (1)–(3) below follow by induction on

σ, t, or ϕ (for arbitrary ξ′):

(1) J〈〈σ〉〉KM ′

ξ′ = JσKM
θ ;

(2) J〈〈t〉〉t ;aphn ;eKM ′

ξ′ = JtKM
θ,ξ;

(3) JϕKM
θ,ξ = J〈〈ϕ〉〉t ;aphn ;eKM ′

ξ′ .

It follows by the usual route that M ′ is a model of each 〈〈ϕ〉〉t ;aphn ;e with ϕ ∈ Φ, hence of
〈〈Φ〉〉t ;aphn ;e .

Complete: By Theorem 3.11, it suffices to show 〈〈 〉〉t complete. Let M ′ =
(
D′, (kM ′

)k∈K ,

(f M ′
) f∈F ⊎{t}, (pM ′

)p∈P

)
be a model of 〈〈Φ〉〉t , for which we may assume that the domains are

mutually disjoint. We must construct a model M =
(
D, (kM)k∈K , (f M) f∈F , (pM)p∈P

)
of Φ

by somehow removing the tags from M ′. Unlike for t@, here 〈〈 〉〉t does not contain typing
axioms ensuring that a the restriction of M ′ to elements for which the tag interpretation
is the identity forms a valid submodel; thus M ′ cannot be defined that way. On the other
hand, we know that the formulae in 〈〈 〉〉t are fully tagged; in particular, all variables are
accessed through tags. This means we can take the domains of M by restricting those of
M ′ to the images of the tag interpretations. The result will not be a submodel, so cannot
take the functions and predicates sM of M to be restrictions of those of M ′. Instead, sM

will be defined by applying sM ′
through the tag “interface”.

Formally, let, for each D ∈ D′, let D′ be the image of tM
′
(D) (which is a subset of D).

Each D′ uniquely determines its D. We define the auxiliary function T :
∏

D∈D′ D → D,
which only applies tM

′
if the element is not already in the image:

TD(d) =

{
d if d ∈ D′

tM
′
(D)(d) otherwise

Notice that TD adds no tags around an existing tag: TD(t
M ′

(D)(d)) = tM
′
(D)(d). We

define the components of M as follows: D = {D′ | D ∈ D′}; kM (D̄′) = kM ′
(D̄); if

f : ∀ᾱ. σ̄ → σ is in F , then f M (D̄′)(d1, . . . , dn) = tM
′
(JσKM ′

θ)(f M ′
(D̄)(T

Jσ1KM ′

θ

(d1), . . . ,

T
JσnKM ′

θ

(dn))), where θ maps each αi to Di; if p : ∀ᾱ. σ̄→ o is in P , then pM (D̄′)(d1, . . . , dn) =

pM ′
(D̄)(T

Jσ1KM ′

θ
(d1), . . . , TJσnKM ′

θ
(dn)), where θ maps each αi to Di. The interpretation f M ap-

plies tags tM
′
at the top, whereas the interpretations of f M and pM apply the modified tag

T at the bottom. This is to ensure that the interpretations of terms and atomic formulae
in M do not add several consecutive layers of tags. For example, when interpreted in M

24 J. C. BLANCHETTE, S. BÖHME, A. POPESCU, AND N. SMALLBONE

within f (X σ), f should add a tag around X σ, as well as one around f (X σ); however, when
interpreted in M within f (g(X σ)), f should not add a tag around g(X σ), since g already
adds one.

Given θ : A → D and ξ′ : V →
∏

σ∈Type
Σ′

JσKM ′

θ′ , we define θ′ : A → D′ by letting θ′(α)

be the unique D ∈ D′ such that D′ = θ(α), and ξ : V →
∏

σ∈TypeΣ
JσKM

θ by ξ(X)(σ) =

tM
′
(JσKM ′

θ)(ξ′(X)(σ)). The next facts follow by induction on σ, t, or ϕ (for arbitrary θ and
ξ′):

(1) JσKM
θ is in the image of tM

′
(JσKM ′

θ′);

(2) JtKM
θ,ξ = J〈〈t〉〉t KM ′

θ′,ξ;

(3) JϕKM
θ,ξ = J〈〈ϕ〉〉t K

M ′

θ′,ξ.

Let ϕ ∈ Φ. To show that M is a model of ϕ, let θ : A → D and ξ : V →
∏

σ∈TypeΣ
JσKM

θ . By

(1), there exists ξ′ : V →
∏

σ∈Type
Σ′

JσKM ′

θ′ such that ξ(X)(σ) = tM
′
(JσKM ′

θ)(ξ′(X)(σ)) for all

X and σ—simply take ξ′(X)(σ) to be any element d′ in JσKM ′

θ′ such that tM
′
(JσKM ′

θ′)(d′) =
ξ(X)(σ). Since J〈〈ϕ〉〉t K

M ′

θ′,ξ holds, it follows from (3) that JϕKM
θ,ξ, i.e. JϕKM , also holds, as

desired.

4.3. Polymorphic Löwenheim–Skolem. The previous completeness results can be used
to prove Löwenheim–Skolem-like properties for polymorphic first-order logic by appealing
to the more manageable (and better known) monomorphic first-order logic.

Lemma 4.11. If a polymorphic Σ-problem Φ has a model, it also has a model M =
(
D,

(kM)k∈K ,_,_
)

such that the following conditions are met :1

(1) each D ∈ D is countable;

(2) each kM is injective, and kM (D̄) 6= k′M (Ē) whenever k 6= k′;
(3) D = {JτKM | τ ∈ GTypeΣ};

(4) the type interpretation function J KM is a bijection between GType and D;
(5) D is countable;
(6) D is disjoint from each D ∈ D, and any distinct D1,D2 ∈ D are disjoint.

Proof. Assume Φ has a model, and recall that by definition the polymorphic signatures
that we consider are countable. By the soundness of g@ (Theorem 4.7), 〈〈Φ〉〉g@ also has a
model and its signature is countable; hence by classical Löwenheim–Skolem [19], 〈〈Φ〉〉g@ has
a countable model M ′. It follows from the proof of completeness of g@ that Φ has a model
M = (D,_,_,_) constructed from M ′ in such a way that each D ∈ D is countable—hence
M ′ satisfies (1). Now, (2)–(6) follow by applying the same reasoning as in Lemma 2.12 and
noticing that all the structure modifications from there do not alter the countability of the
domains D ∈ D.

1These correspond to the conditions from Lemma 2.12 plus countability of each D ∈ D.

ENCODING MONOMORPHIC AND POLYMORPHIC TYPES 25

Lemma 4.12. If Φ has a model M = (D,_,_,_) where all JτKM are infinite for all
τ ∈ GType, it also has a model M ′ = (D′,_,_,_) where D′ and all D′ ∈ D′ are countably

infinite.

Proof. Let Φ′ be Φ extended with axioms Ax = {∃X1 : σ, . . . , Xn : σ.
∧

i< j Xi 6≈ X j |

σ ∈ GTypeΣ, n ∈ N} that state that all ground types are infinite. Then M = (D,_,_,_) is

a model of Φ′. By Lemma 4.11, Φ′ also has a model M ′ = (D′,_,_,_) with D′ = {JτKM ′
|

τ ∈ GTypeΣ} (which is, in particular, countably infinite) and each D′ ∈ D′ at most countably

infinite, i.e. due to Ax and the fact that each D′ ∈ D has the form JτKM ′
, actually countably

infinite. M ′ is the desired model of Φ.

5. Monotonicity-Based Type Encodings — The Monomorphic Case

The cover-based encodings of Section 4 removed some of the clutter associated with type
arguments, which are in general necessary to encode polymorphism soundly. Another family
of encodings focuses on the quantifiers and exploit monotonicity. For types that are inferred
monotonic, the translation can omit the type information on term variables of these types.
Informally, a type is monotonic in a problem when, for any model of that problem, we can
increase the size of the domain that interprets the type while preserving satisfiability.

This section focuses on the monomorphic case, where the input problem contains no
type variables or polymorphic symbols. This case is interesting in its own right and serves
as a stepping stone towards polymorphic monotonicity-based encodings (Section 6).

Before we start, we need to define variants of the traditional e, t, and g encodings that
operate on monomorphic problems. Since the monomorphic e is essentially identical to the
polymorphic e restricted to monomorphic signatures, we use the same notation for both. The
monomorphic encodings t̃ and g̃ coincide with t and g except that the polymorphic function
t〈σ〉(t) and predicate g〈σ〉(t) are replaced by type-indexed families of unary functions tσ(t)
and predicates gσ(t), as is customary in the literature [36, §4].

5.1. Monotonicity. The concept of monotonicity used by Claessen et al. [16, §2.2] declares
a type τ monotonic for a finite problem Φ if for any model M =

(
(Dσ)σ∈Type ,_,_

)
of Φ

such that Dτ is finite, there exists another model M ′ =
(
(D′

σ)σ∈Type ,_,_
)

of Φ such that
|D′

τ| = |Dτ|+1 and |D′
σ| = |Dσ| for all σ 6= τ. Their notion, which we call finite monotonicity,

is designed to ensure that it is possible to produce a model having all types interpreted by
countably infinite sets, and finally a model having all types interpreted as the same set, so
that type information can be soundly erased. In this article, we take directly the infinite-
interpretation property as definition of monotonicity and extend the notion to sets of types:

Definition 5.1 (Monotonicity). Let S be a set of types and Φ be a problem. The set S is
monotonic in Φ if for all models M =

(
(Dσ)σ∈Type ,_,_

)
of Φ, there exists a model M ′ =(

(D′
σ)σ∈Type ,_,_

)
of Φ such that for all types σ, D′

σ is infinite if σ ∈ S and |D′
σ| = |Dσ|

otherwise. A type σ is monotonic if {σ} is monotonic. The problem Φ is monotonic if the
set Type of all types is monotonic.

Full type erasure is sound for monotonic monomorphic problems. The intuition is that
a model of such a problem can be extended into a model where all types are interpreted as
sets of the same cardinality, which can be merged to yield an untyped model.

26 J. C. BLANCHETTE, S. BÖHME, A. POPESCU, AND N. SMALLBONE

Example 5.2. The monkey village of Example 1.1 is monotonic because any model with
finitely many bananas can be extended to a model with infinitely many, and any model with
infinitely many bananas and finitely many monkeys can be extended to one where monkeys
and bananas have the same infinite cardinality (cf. Example 3.4). However, the type of
monkeys is not monotonic on its own, as we argued intuitively in Example 1.1, nor is it
finitely monotonic.

Theorem 5.3 (Monotonic Erasure). Full type erasure is sound for monotonic monomorphic

problems.

Proof. Let Φ be such a problem, let Σ = (Type ,F ,P) be its signature, and let Σ′ = (F ′,P ′)
be the target signature of e. If Φ is satisfiable, it has a model where all domains are infinite
by definition of monotonicity. Since Σ is countable, by the downward Löwenheim–Skolem
theorem [19], Φ also has a model where all domains are countably infinite, hence also a model

M =
(
(Dσ)σ∈Type , (f M) f∈F , (pM)p∈P

)
where all domains are interpreted as the same set D,

i.e. each Dσ is D. We define the Σ′-structure M ′ =
(
D, (f M ′

) f∈F ′ , (pM ′
)p∈P ′

)
by taking D

to be D and each sM ′
to be sM . For each ξ′ : V → D, we define ξ : V →

∏
σ∈Type Dσ, i.e.

ξ : V → Type → D, by ξ(X)(σ) = ξ′(X). The next facts follow by induction on t and ϕ (for
arbitrary ξ):

(1) J〈〈t〉〉e KM ′

ξ′ = JtKM
ξ ;

(2) J〈〈ϕ〉〉eKM ′

ξ′ = JϕKM
ξ .

It follows by the usual route that M ′ is a model of 〈〈Φ〉〉e .

Remark 5.4. An alternative to invoking the Löwenheim–Skolem theorem would have been
to require countable infinity in the definition of monotonicity. Although it makes no differ-
ence in this article, the more general definition would also apply in the presence of uncount-
able interpreted types (e.g. for the real numbers). The proof of Theorem 5.3 can be adapted
to go beyond countable infinity if desired.

It is often convenient to determine the monotonicity of single types separately, viewed
as singleton sets. This is enough to make the set of all types, i.e. the problem, monotonic:

Lemma 5.5 (Global Monotonicity from Separate Monotonicity). If σ is monotonic in Φ
for each type σ, then Φ is monotonic.

Proof. Let Σ = (Type ,F ,P) be the signature of Φ, and assume Φ is satisfiable. Let σ1, σ2, . . .

be an enumeration of Type , and let ϕk be a formula stating that for all i ∈ {1, . . . , k}, σi’s
domain has at least k elements. Finally, let Φ′ = {ϕi | i ∈ N}. By the monotonicity of
the individual types, it follows by induction on k that each Φ ∪ {ϕi | i ∈ {1, . . . , k}} is
satisfiable, and hence that each finite subset of Φ ∪ Φ′ is satisfiable. By the compactness
theorem [19], it follows that Φ ∪ Φ′ is itself satisfiable, and hence Φ has a model with only
infinite domains.

5.2. Monotonicity Inference. Claessen et al. introduced a simple calculus to infer finite
monotonicity for monomorphic first-order logic [16, §2.3]. The definition below generalises
it from clause normal form to negation normal form. The generalisation is straightforward;
we present it because we later adapt it to polymorphism. The calculus is based on the
observation that a type σ must be monotonic if the problem expressed in NNF contains

ENCODING MONOMORPHIC AND POLYMORPHIC TYPES 27

no positive literal of the form X σ ≈ t or t ≈ X σ, where X is universal. We call such an
occurrence of X a naked occurrence. Naked variables are unavoidable to express upper
bounds on the cardinality of types in first-order logic.

Definition 5.6 (Naked Variable). The set of naked variables NV(ϕ) of a formula ϕ is defined
as follows:

NV(p(t̄)) = ∅ NV(t1≈ t2) = {t1, t2} ∩ Vtyped

NV(¬ p(t̄)) = ∅ NV(t1 6≈ t2) = ∅

NV(ϕ1∧ ϕ2) = NV(ϕ1) ∪ NV(ϕ2) NV(∀X : σ. ϕ) = NV(ϕ)

NV(ϕ1∨ ϕ2) = NV(ϕ1) ∪ NV(ϕ2) NV(∃X : σ. ϕ) = NV(ϕ)− {X σ}

For a problem Φ, we define NV(Φ) =
⋃
ϕ∈ΦNV(ϕ).

We see from the ∃ case that existential variables never occur naked in sentences.
Variables of types other than σ are irrelevant when inferring whether σ is monotonic; a

variable is problematic only if it occurs naked and has type σ. Annoyingly, a single naked
variable of type σ, such as X on the right-hand side of the equation hdb(consb(X,Xs)) ≈ X

from Example 2.13, will cause us to classify σ as possibly nonmonotonic. We regain some
precision by extending the calculus with an infinity analysis, as suggested by Claessen et al.:
trivially, all types with no finite models are monotonic.

Convention 5.7. Abstracting over the specific analysis used to detect infinite types (e.g.
Infinox [15]), we fix a set Inf(Φ) of types whose interpretations are guaranteed to be infinite
in all models of Φ, More precisely, the following property is assumed to hold: if τ ∈ Inf(Φ)
and M =

(
(Dσ)σ∈Type ,_,_

)
is a model of Φ, then Dτ is infinite.

Our monotonicity calculus takes Inf(Φ) into account:

Definition 5.8 (Monotonicity Calculus ⊲). Let Φ be a monomorphic problem over Σ =
(K ,F ,P). A judgement σ ⊲ Φ indicates that the ground type σ is inferred monotonic in Φ.
The monotonicity calculus consists of the following rules:

σ ∈ Inf(Φ)

σ ⊲ Φ

NV(Φ) ∩ {X σ | X ∈ V } = ∅

σ ⊲ Φ

We write σ ⊲ Φ to indicate that the judgement is derivable and σ 6⊲ Φ otherwise.

Claessen et al. designed a second, more powerful calculus that extends their first calculus
to detect predicates that act as guards for naked variables. Whilst the calculus proved
successful on a subset of the TPTP benchmarks [30], we assessed its suitability on about
1000 problems generated by Sledgehammer and found no improvement on the simple calculus.
For this reason, we restrict our attention to the first calculus.

Theorem 5.9 (Soundness of ⊲). Let Φ be a monomorphic problem. If τ ⊲ Φ, then τ is

monotonic in Φ.

Proof. Let Σ = (Type ,F ,P) be the signature of Φ, and let τ ∈ Type such that τ ⊲ Φ.

Assume Φ has a model M =
(
(Dσ)σ∈Type , (f M) f∈F , (pM)p∈P

)
. We will construct a model

M ′ =
(
(D′

σ)σ∈Type , (f M ′
) f∈F , (pM ′

)p∈P

)
with the same domains as M for σ 6= τ and with

D′
τ infinite. If τ ∈ Inf(Φ), then Dτ is already infinite, so can we take M ′ = M . Otherwise,

28 J. C. BLANCHETTE, S. BÖHME, A. POPESCU, AND N. SMALLBONE

τ 6∈ Inf(Φ), which means the second rule of the calculus must have been applied and no
variables of type τ occur naked, i.e. NV(Φ) ∩ {X τ | X ∈ V } = ∅. We define D′

τ by
extending Dτ with an infinite number of fresh elements e1, e2, . . . and define the functions
and predicates of M ′ to treat these in the same way as ε(Dτ). Intuitively, M ′ also satisfies Φ
because, since no variables of type τ occur naked, the formulae of Φ cannot tell the difference
between a “clone” ei and the original ε(Dτ) except for the case of disequality—and there the
formula instantiated with clones is more likely to be true than the one instantiated with
ε(Dτ) (since clones are mutually disequal and disequal to ε(Dτ)).

Formally, we let E = {e1, e2, . . .} be an infinite set disjoint from Dτ, and define

D′
σ =

{
Dσ ∪ E if σ = τ

Dσ otherwise

Given s : σ̄→ ς, we let sM ′
(d̄) = sM (d̄′), where

d′i =

{
ε(Dτ) if σi = τ and di ∈ E
di otherwise

Given ξ′ : V →
∏

σ∈Type D′
σ, we define ξ : V →

∏
σ∈Type Dσ by

ξ(X)(σ)(d) =

{
ε(Dτ) if σ = τ and d ∈ E
ξ′(X)(σ)(d) otherwise

The next facts follow by induction on t or ϕ (for arbitrary ξ′):

(1) t 6∈ {X τ | X ∈ V } implies JtKM ′

ξ′ = JtKM
ξ ;

(2) NV(ϕ) ∩ {X σ | X ∈ V } = ∅ and JϕKM
ξ imply JϕKM ′

ξ′ .

(Notice that (2) is an implication, not an equivalence. An inductive proof of the converse
would fail for the case of disequalities.) In particular, thanks to the absence of naked
variables of type τ in all ϕ ∈ Φ, M ′ is the desired model of Φ.

In the light of the above soundness result, we will allow ourselves to write that σ is
monotonic if σ ⊲ Φ and possibly nonmonotonic if σ 6⊲ Φ.

5.3. Encoding Nonmonotonic Types. Monotonic types can be soundly erased when
translating to untyped first-order logic, by Theorem 5.3. Nonmonotonic types in general
cannot. Claessen et al. [16, §3.2] point out that adding sufficiently many protectors to a
nonmonotonic problem will make it monotonic, at which point its types can be erased. Thus
the following general two-stage procedure translates monomorphic problems to untyped first-
order logic:

1. Selectively introduce protectors (tags or guards) without erasing any types:

1.1. Infer monotonicity to identify the possibly nonmonotonic types in the problem.

1.2. Introduce protectors for the universal variables of possibly nonmonotonic types.

1.3. If necessary (depending on the encoding), generate typing axioms for any function
symbol whose result type is possibly nonmonotonic, to make it possible to remove
protectors for terms with the right type.

2. Erase all the types.

ENCODING MONOMORPHIC AND POLYMORPHIC TYPES 29

The purpose of stage 1 is to make the problem monotonic while preserving satisfiability.
This paves the way for the sound type erasure of stage 2. The following lemmas will help
us prove such two-stage encodings correct.

Lemma 5.10 (Correctness Conditions). Let Φ be a monomorphic problem, and let x be a

monomorphic encoding. The problems Φ and 〈〈Φ〉〉 x ;e are equisatisfiable provided that the

following conditions hold :

Mono: 〈〈Φ〉〉 x is monotonic.

Sound: If Φ is satisfiable, so is 〈〈Φ〉〉 x .

Complete: If 〈〈Φ〉〉 x is satisfiable, so is Φ.

Proof. Immediate from Theorems 3.5 and 5.3.

5.4. Monotonicity-Based Type Tags. The monotonicity-based encoding t̃? specialises
the above procedure for tags. It is similar to the traditional encoding t̃ (the monomorphic
version of t), except that it omits the tags for types that are inferred monotonic. By wrapping
all naked variables (in fact, all terms) of possibly nonmonotonic types in a function term,
stage 1 yields a monotonic problem.

Definition 5.11 (Lightweight Tags t̃̃t?). The encoding 〈〈 〉〉̃t? translates monomorphic prob-
lems over Σ = (Type ,F ,P) to monomorphic problems over (Type ,F ⊎ {tσ : σ → σ | σ ∈
Type},P). It adds no axioms, and its term and formula translations are defined as follows:

〈〈 f (t̄)〉〉̃t? = ⌊ f (〈〈t̄ 〉〉̃t?)⌋ 〈〈X 〉〉̃t? = ⌊X ⌋ with ⌊tσ⌋ =

{
t if σ ⊲ Φ

tσ(t) otherwise

The monomorphic lightweight type tags encoding t̃? is the composition 〈〈 〉〉̃t?;e . It translates a
monomorphic problem over Σ into an untyped problem over Σ′ = (F ′⊎{t1σ | σ ∈ Type},P ′),
where F ′,P ′ are as for e.

Example 5.12. For the algebraic list problem of Example 2.13, the type list_b is monotonic
by virtue of being infinite, whereas b cannot be inferred monotonic. The t̃? encoding of the
problem follows:

∀X,Xs. nilb 6≈ consb(tb(X),Xs)
∀Xs . Xs ≈ nilb ∨ (∃Y,Ys . Xs ≈ consb(tb(Y),Ys))
∀X,Xs. tb(hdb(consb(tb(X),Xs))) ≈ tb(X) ∧ tlb(consb(tb(X),Xs)) ≈ Xs

∃X,Y,Xs,Ys . consb(tb(X),Xs) ≈ consb(tb(Y),Ys) ∧ (tb(X) 6≈ tb(Y) ∨ Xs 6≈ Ys)

The t̃? encoding treats all variables of the same type uniformly. Hundreds of axioms
can suffer because of one unhappy formula that uses a type nonmonotonically (or in a way
that cannot be inferred monotonic). To address this, we introduce a lighter encoding: if a
universal variable does not occur naked in a formula, its tag can safely be omitted.2

This new encoding, called t̃??, protects only naked variables and introduces equations
tσ(f (X̄)σ) ≈ f (X̄) to add or remove tags around each function symbol f whose result type
σ is possibly nonmonotonic, and similarly for existential variables.

2This is related to the observation that only paramodulation from or into a variable can cause ill-typed
instantiations in a resolution prover [36, §4].

30 J. C. BLANCHETTE, S. BÖHME, A. POPESCU, AND N. SMALLBONE

Definition 5.13 (Featherweight Tags t̃̃t??). The encoding 〈〈 〉〉̃t?? translates monomorphic
problems over Σ = (Type ,F ,P) to monomorphic problems over (Type ,F ⊎ {tσ : σ → σ |
σ ∈ Type},P). Its term and formula translations are defined as follows:

〈〈t1≈ t2〉〉̃t?? = ⌊〈〈t1〉〉̃t??⌋ ≈ ⌊〈〈t2〉〉̃t??⌋

〈〈∃X : σ. ϕ〉〉̃t?? = ∃X : σ.

{
〈〈ϕ〉〉̃t?? if σ ⊲ Φ

tσ(X) ≈ X ∧ 〈〈ϕ〉〉̃t?? otherwise

with

⌊tσ⌋ =

{
t if σ ⊲ Φ or t /∈ V ∀

typed

tσ(t) otherwise

The encoding adds the following typing axioms:

∀X̄ : σ̄. tσ(f (X̄)) ≈ f (X̄) for f : σ̄ � σ ∈ F such that σ 6⊲ Φ

∃X : σ. tσ(X) ≈ X for σ 6⊲ Φ that is not the result type of a symbol in F

The monomorphic featherweight type tags encoding t̃?? is the composition 〈〈 〉〉̃t??;e . The
target signature for t̃?? is the same as for t̃?.

The axioms are necessary for the completeness of t̃??. They would have been harmless
for t̃?: for soundness, we can think of the tσ functions as identities. The side condition of
the last axiom is a minor optimisation: it avoids asserting that σ is inhabited if the symbols
in F already witness σ’s inhabitation.

Example 5.14. The t̃?? encoding of Example 2.13 requires fewer tags than t̃?, at the cost
of a typing axiom for hd and typing equations for the existential variables of type b:

∀Xs . tb(hdb(Xs)) ≈ hdb(Xs)

∀X,Xs. nilb 6≈ consb(X,Xs)
∀Xs . Xs ≈ nilb ∨ (∃Y,Ys . tb(Y) ≈ Y ∧ Xs ≈ consb(Y,Ys))
∀X,Xs. hdb(consb(X,Xs)) ≈ tb(X) ∧ tlb(consb(X,Xs)) ≈ Xs

∃X,Y,Xs,Ys . tb(X) ≈ X ∧ tb(Y) ≈ Y ∧ consb(X,Xs) ≈ consb(Y,Ys) ∧
(X 6≈ Y ∨ Xs 6≈ Ys)

Theorem 5.15 (Correctness of t̃̃t?, t̃̃t??). The monomorphic type tags encodings t̃? and t̃??

are correct.

Proof. It suffices to show the three conditions of Lemma 5.10.

Mono: By induction on ϕ, it follows that

(1) X σ ∈ NV(〈〈ϕ〉〉̃t?) implies σ ∈ Inf(Φ);
(2) X σ ∈ NV(〈〈ϕ〉〉̃t??) implies σ ∈ Inf(Φ).

(Indeed, while transforming ϕ into 〈〈ϕ〉〉̃t??, t̃?? tags precisely the variables that would cause
the condition (1) to fail; and t̃? tags even more.) Moreover, the typing axioms of t̃?? have
no naked variables, and hence σ ⊲ 〈〈ϕ〉〉̃t? and σ ⊲ 〈〈ϕ〉〉̃t?? hold for all types σ. Therefore, by
Theorem 5.9 and Lemma 5.5, σ ⊲ 〈〈ϕ〉〉̃t? and σ ⊲ 〈〈ϕ〉〉̃t?? are monotonic.

Sound: This is immediate for both 〈〈 〉〉̃t? and 〈〈 〉〉̃t??: given a model of Φ, we extend it to a
model of the encoded Φ by interpreting all type tags as the identity.

Complete for 〈〈 〉〉̃t?: The proof is analogous to the corresponding case for t (Theorem 3.16),
the differences being that here we do not face the complication of interpreting polymorphic

ENCODING MONOMORPHIC AND POLYMORPHIC TYPES 31

types, and only terms of certain types are tagged. Let M ′ =
(
(D′

σ)σ∈Type , (f M ′
) f∈F ⊎{tσ|σ6⊲Φ},

(pM ′
)p∈P

)
be a model of 〈〈Φ〉〉̃t?. For each σ ∈ Type , we let

Dσ =

{
D′
σ if σ ⊲ Φ

{d ∈ D′
σ | d is in the image of tM

′

σ } otherwise

We define Tσ : D′
σ → D′

σ so as to apply tM
′

σ only if the element is not already in its image:

Tσ(d) =

{
d if d ∈ Dσ

tM
′

σ (d) otherwise

Let M =
(
(Dσ)σ∈Type , (f M) f∈F , (pM)p∈P

)
, where

• f M (d1, . . . , dn) = tM
′

σ (f M ′
(Tσ1

(d1), . . . , Tσn(dn))) for f : σ̄→ σ is in F ;

• pM (d1, . . . , dn) = pM ′
(Tσ1

(d1), . . . , Tσn(dn)) if p : σ̄→ o is in F .

Given ξ′ : V →
∏

σ∈Type D′
σ, we define ξ : V →

∏
σ∈Type Dσ as follows:

ξ(X)(σ) =

{
ξ′(X)(σ) if σ ⊲ Φ

tσ(ξ
′(X)(σ)) otherwise

The next facts follow by induction on t or ϕ (for arbitrary ξ′):

(1) JtKM
ξ = J〈〈t〉〉t KM ′

ξ′ ;

(2) JϕKM
ξ = J〈〈ϕ〉〉tK

M ′

ξ′ .

Let ϕ ∈ Φ. To show that M is a model of ϕ, let ξ : V →
∏

σ∈Type Dσ. By the definition

of Dσ, there exists ξ′ : V →
∏

σ∈Type D′
σ such that the defining property of ξ holds. Now,

since J〈〈ϕ〉〉̃t?K
M ′

ξ′ holds, it follows from (2) that JϕKM
ξ , i.e. JϕKM also holds, as desired.

Complete for 〈〈 〉〉̃t??: The proof is analogous to the corresponding case for t@ (Theo-

rem 4.10). Starting with a model M ′ =
(
(D′

σ)σ∈Type , (f M ′
) f∈F ⊎{tσ|σ6⊲Φ}, (pM ′

)p∈P

)
of 〈〈Φ〉〉̃t??,

we define a model M of Φ as follows, where the typing axioms ensure that each Dσ is
nonempty and each sM is well defined:

• Dσ =

{
D′
σ if σ ⊲ Φ

{d ∈ D′
σ | tM

′

σ (d) = d} otherwise

• sM is the restriction of sM ′
.

The next facts follow by induction on t or ϕ (for arbitrary ξ : V →
∏

σ∈Type Dσ):

(1) JtKM
ξ = J〈〈t〉〉t KM ′

ξ′ ;

(2) JϕKM
ξ = J〈〈ϕ〉〉tK

M ′

ξ′ .

Then, by the usual route, it follows that M is a model of Φ.

5.5. Monotonicity-Based Type Guards. The g̃? and g̃?? encodings are defined analo-
gously to t̃? and t̃?? but using type guards. The g̃? encoding omits the guards for types
that are inferred monotonic, whereas g̃?? omits more guards that are not needed to make
the intermediate problem monotonic.

32 J. C. BLANCHETTE, S. BÖHME, A. POPESCU, AND N. SMALLBONE

Definition 5.16 (Lightweight Guards g̃̃g?). The encoding 〈〈 〉〉g̃? translates monomorphic
problems over Σ = (Type ,F ,P) to monomorphic problems over (Type ,F ,P ⊎ {gσ : σ→ o |
σ ∈ Type}). Its term and formula translations are defined as follows:

〈〈∀X : σ. ϕ〉〉g̃? = ∀X : σ.

{
〈〈ϕ〉〉g̃? if σ ⊲ Φ

gσ(X
σ) → 〈〈ϕ〉〉g̃? otherwise

〈〈∃X : σ. ϕ〉〉g̃? = ∃X : σ.

{
〈〈ϕ〉〉g̃? if σ ⊲ Φ

gσ(X
σ) ∧ 〈〈ϕ〉〉g̃? otherwise

The encoding adds the following typing axioms:

∀X̄ : σ̄. gσ(f (X̄ σ̄)) for f : σ̄ � σ ∈ F such that σ 6⊲ Φ

∃X : σ. gσ(X
σ) for σ 6⊲ Φ that is not the result type of a symbol in F

The monomorphic lightweight type guards encoding g̃? is the composition 〈〈 〉〉g̃?;e . It trans-
lates a monomorphic problem over Σ into an untyped problem over Σ′ = (F ′,P ′ ⊎ {g1σ |
σ ∈ Type}), where F ′,P ′ are as for e.

Example 5.17. The g̃? encoding of Example 2.13 is as follows:

∀Xs . gb(hdb(Xs))

∀X, Xs . gb(X) → nilb 6≈ consb(X,Xs)
∀Xs . Xs ≈ nilb ∨ (∃Y, Ys . gb(Y) ∧ Xs ≈ consb(Y,Ys))
∀X , Xs . gb(X) → hdb(consb(X,Xs)) ≈ X ∧ tlb(consb(X,Xs)) ≈ Xs

∃X,Y,Xs,Ys . gb(X) ∧ gb(Y) ∧ consb(X,Xs) ≈ consb(Y,Ys) ∧ (X 6≈ Y ∨ Xs 6≈ Ys)

Notice that the tlb equation is needlessly in the scope of the guard. The encoding is more
precise if the problem is clausified.

Our novel encoding g̃?? omits the guards for variables that do not occur naked, regardless
of whether they are of a monotonic type.

Definition 5.18 (Featherweight Guards g̃̃g??). The monomorphic featherweight type guards
encoding g̃?? is identical to the lightweight encoding g̃? except that the condition “if σ ⊲ Φ”
in the ∀ case is weakened to “if σ ⊲ Φ or X /∈ NV(ϕ)”.

Example 5.19. The g̃?? encoding of the algebraic list problem is identical to g̃? except
that the nilb 6≈ consb axiom does not have any guard.

Theorem 5.20 (Correctness of g̃̃g?, g̃̃g??). The monomorphic type guards encodings g̃? and

g̃?? are correct.

Proof. It suffices to show the three conditions of Lemma 5.10.

Mono: By Lemma 5.5, it suffices to show that each type τ such that σ 6⊲ Φ is mono-
tonic in the encoded problem. By Theorem 5.9, types are monotonic unless they are
possibly finite and variables of their types occur naked in the original problem. Both
encodings guard all such variables— g̃?? guards exactly those variables, while g̃? guards
more. The typing axioms contain no naked variables. We cannot use Theorem 5.9 di-
rectly, because guarding a naked variable does not make it less naked—but we can gener-
alise the proof slightly to exploit the guards. Given a model M of the encoded problem
M =

(
(Dσ)σ∈Type , (f M) f∈F , (pM)p∈P⊎{gσ|σ6⊲Φ}

)
, we construct a model M ′ =

(
(D′

σ)σ∈Type ,

ENCODING MONOMORPHIC AND POLYMORPHIC TYPES 33

(f M ′
) f∈F , (pM ′

)p∈P

)
with all types infinite as in the proof of Theorem 5.9, but defining the

τ-guard interpretation to be false on newly added elements (recall that D′
τ = Dτ ⊎ E for

some countably infinite set E):

gM ′

σ (d) =

{
gM
σ (d) if σ 6= τ or σ = τ and d ∈ Dσ

false if σ = τ and d ∈ E

Given ξ′ : V →
∏

σ∈Type D′
σ, we define ξ : V →

∏
σ∈Type Dσ by

ξ(σ)(d) =

{
ε(Dτ) if σ = τ and d ∈ E
ξ′(σ)(d) otherwise

The encoded problem has the form Φ1 ∪ Φ2, where Φ1 are the added axioms and Φ2 are the
formula translations from Φ. It is easy to check that M ′ satisfies Φ1. We say that a formula
is τ-guarded if all its subformulae of the form ∀X : τ. ϕ have ϕ of the form ¬ gτ(X

τ) ∨ χ and
all its subformulae of the form ∃X : τ. ϕ have ϕ of the form gτ(X

τ) ∧ χ. All the formulae in
Φ2 are clearly guarded. The next facts follow by induction on t or ϕ (for arbitrary ξ′):

(1) JtKM ′

ξ′ = JtKM
ξ ;

(2) If ϕ is guarded and gτ (ξ (τ) (X)) is false whenever X τ ∈ NV(ϕ) ∩ FVars(ϕ), then JϕKM
ξ

implies JϕKM ′

ξ′ .

It follows that M ′ satisfies Φ2 as well. Hence it is the desired model of the encoded problem.

Sound: Just like for tags, this is immediate for both 〈〈 〉〉g̃? and 〈〈 〉〉g̃??: given a model of Φ,
we extend it to a model of the encoded Φ by interpreting all type guards as everywhere-true
predicates.

Complete: The proofs for both 〈〈 〉〉g̃? and 〈〈 〉〉g̃?? are very similar to that for t?? (from

Theorem 5.15)—the only change is the replacement of the condition tM
′

σ (d) = d by gM ′

σ (d) in
the definition of the model M . (Just like for t??, the typing axioms ensure that the structure
is well defined.)

A simpler but less instructive way to prove Mono is to observe that the second mono-
tonicity calculus by Claessen et al. [16, §2.4] can infer monotonicity of all problems generated
by g̃, g̃?, and g̃??.

Remark 5.21. The proofs of Theorems 5.15 and 5.20 remain valid as they are even if
the generated problems contain more tags or guards than inferred as unnecessary by the
monotonicity calculus, i.e. if in the definitions of 〈〈 〉〉̃t?, 〈〈 〉〉̃t??, 〈〈 〉〉g̃?, and 〈〈 〉〉g̃?? we replace
the condition “σ ⊲ Φ” by “σ ∈ J ”, where J ⊆ {σ ∈ TypeΣ | σ ⊲ Φ}. (The replacement
should be done everywhere, including in the axioms.)

5.6. Heuristic Monomorphisation. Section 6 will show how to translate polymorphic
types soundly and completely. If we are willing to sacrifice completeness, an easy way to
extend t̃?, t̃??, g̃?, and g̃?? to polymorphism is to perform heuristic monomorphisation on
the polymorphic problem:

1. Heuristically instantiate all type variables with suitable ground types, taking finitely
many copies of each formula if desired.

34 J. C. BLANCHETTE, S. BÖHME, A. POPESCU, AND N. SMALLBONE

2. Map each ground occurrence s〈ᾱρ〉 of a polymorphic symbol s : ∀ᾱ. σ̄ � σ to a fresh
monomorphic symbol sᾱρ : ⌊σ̄ρ⌋ � ⌊σρ⌋, where ρ is a ground type substitution (a func-
tion from type variables to ground types) and ⌊ ⌋ is an injection from ground types to
nullary type constructors (e.g. {b 7→ b, list(b) 7→ list_b}).

Heuristic monomorphisation is generally incomplete [12, §2] and often overlooked in the
literature, but by eliminating type variables it considerably simplifies the generated formulae,
leading to very efficient encodings. It also provides a simple and effective way to exploit the
native support for monomorphic types in some automatic provers.

6. Complete Monotonicity-Based Encodings of Polymorphism

Heuristic monomorphisation is simple and effective, but its incompleteness can be a cause
for worry, and its nonmodular nature makes it unsuitable for some applications that need
to export an entire polymorphic theory independently of any conjecture. Here we adapt the
type encodings to a polymorphic setting.

We start by defining a correct but infinitary translation of a polymorphic into a mono-
morphic problem, called complete monomorphisation. Then we address the genuinely poly-
morphic issue of encoding type arguments, proving conditions under which composition of
an encoding x with the type arguments encoding a is correct: x must be complete and
produce monotonic problems. Finally, we define polymorphic counterparts of the guard and
tag encodings and show that they satisfy the required conditions by reducing (most of) the
problem to the monomorphic case via complete monomorphisation.

6.1. Complete Monomorphisation. The main insight behind complete monomorphisa-
tion is that a polymorphic formula having all its type quantification at the top is equisatis-
fiable to the (generally infinite) set of its monomorphic instances. Complete monomorphi-
sation does not obey our convention about encodings, since it translates each polymorphic
formula not into a single monomorphic formula but into a set of formulae.

Definition 6.1 (Instance Type and Most General Instance). A type τ is an instance of a
type σ if there exists a type substitution ρ such that τ = σρ. If this is the case, we also say
that τ is less general than σ and that σ is more general than τ, and we write τ ≤ σ. Given
two types σ and τ, if they have a common instance (i.e. a unifier), then they also have a
most general common instance, which we denote by mgi(σ, τ).

Definition 6.2 (Complete Monomorphisation ∞). We define the encoding 〈〈 〉〉∞ that trans-
lates polymorphic problems over Σ = (K ,F ,P) to monomorphic problems over Σ′ =
(Type ′,F ′,P ′), where

• Type ′ = GTypeΣ;
• for each s : ∀ᾱ. σ̄→ ς in F ⊎ P and each ρ such that each αi is mapped to a ground type
τi ∈ GTypeΣ, F ′ ⊎ P ′ contains a symbol s τ̄ : σ̄ρ→ σρ.

We first define the translation of terms and formulae that contain no type variables, i.e. that
have no type quantifiers and such that all the occurring types in applications of the function

ENCODING MONOMORPHIC AND POLYMORPHIC TYPES 35

or predicate symbols are ground:

〈〈 f 〈σ̄〉(t̄)〉〉∞ = fσ̄(〈〈t̄ 〉〉∞) 〈〈X σ〉〉∞ = X σ

〈〈p〈σ̄〉(t̄)〉〉∞ = pσ̄(〈〈t̄ 〉〉∞) 〈〈∀X : σ. ϕ〉〉∞ = ∀X : σ. 〈〈ϕ〉〉∞

〈〈¬ p〈σ̄〉(t̄)〉〉∞ = ¬ pσ̄(〈〈t̄ 〉〉∞) 〈〈∃X : σ. ϕ〉〉∞ = ∃X : σ. 〈〈ϕ〉〉∞

Now, given a sentence ∀ᾱ. ϕ where ᾱ indicates all its universally quantified types, we encode
it as the set of encodings of its monomorphic instances (via ground type substitutions ρ):

〈〈∀ᾱ. ϕ〉〉∞ = {〈〈ϕρ〉〉∞ | ρ : A → GType}

Finally, the encoding of a problem is the union of the encoding of its formulae:

〈〈Φ〉〉∞ =
⋃
ϕ∈Φ 〈〈ϕ〉〉∞

Convention 6.3. Whenever we write a polymorphic formula as ∀ᾱ. ϕ, we implicitly assume
that ᾱ indicates all its universally quantified types, so that ϕ has no type quantifiers.

Lemma 6.4 (Correctness of ∞). The complete monomorphisation encoding ∞ is correct.

Proof. First, observe that in any model M of a polymorphic signature, the interpretation
J KM

θ,ξ of a term or formula that does not contain type variables does not depend on θ and,

from ξ, it only depends on the restriction of ξ to ground types, ξ′ : V →
∏

σ∈GType
Σ

JσKM .

We can therefore write J KM
ξ′ instead of J KM

θ,ξ′ .

Sound: Assume Φ is satisfiable and let Σ = (K ,F ,P) be its polymorphic signature. By

Lemma 4.11, Φ also has a model M =
(
D, (f M) f∈F , (pM)p∈P

)
for which J KM : GTypeΣ →

D is a bijection—let v : D → GTypeΣ be its inverse. We define a structure M ′ =(
(D′

τ)τ∈Type′ , (f M ′
) f∈F , (pM ′

)p∈P ′

)
for Σ′ as follows:

• D′
τ = JτKM ;

• if s : ∀ᾱ. σ̄ → ς is in F ⊎ P and τ̄ = (τ1, . . . , τm) are ground instances of ᾱ = (α1, . . . , αm)

via ρ, we define by sM ′

τ̄ (d̄) = sM (v(τ1), . . . , v(τm))(d̄).

The next fact follows by induction on the term or formula δ (for arbitrary ξ : V →∏
τ∈Type

Σ′
D′
τ):

(1) If δ contains no type variables, then J〈〈δ〉〉∞KM ′

ξ′ = JδKM
ξ .

In particular, for a sentence ϕ, we have J〈〈ϕ〉〉∞KM ′
= JϕKM .

Now let ∀ᾱ. ϕ ∈ Φ. Since M is a model of ∀ᾱ. ϕ, M is also a model of all its ground-
type instances ϕρ, and hence, since J〈〈ϕ〉〉∞KM ′

= JϕKM , M ′ is a model of each formula in
〈〈∀ᾱ. ϕ〉〉∞. Thus, M ′ is a model of 〈〈Φ〉〉∞, as desired.

Complete: Let M ′ =
(
(D′

τ)τ∈Type′ , (f M ′
) f∈F , (pM ′

)p∈P ′

)
be a model of 〈〈Φ〉〉∞, for which

we can assume without loss of generality that D′
τ ∩ D′

τ′ = ∅ if τ 6= τ′. We define a structure

M =
(
D, (f M) f∈F , (pM)p∈P

)
for Σ as follows:

• D = {D′
τ | τ ∈ Type ′}—for each D ∈ D, we let v(D) be the unique τ ∈ Type ′ = GTypeΣ

such that D = Dσ;

• if ᾱ = (α1, . . . , αm), s : ∀ᾱ. σ̄→ ς ∈ F ⊎ P , and D̄ ∈ Dm, we define sM (D̄) = sM ′

(v(D1),...,v(Dm))
.

The next fact follows by induction on τ:

(1) τ ∈ GType implies JτKM = D′
τ.

36 J. C. BLANCHETTE, S. BÖHME, A. POPESCU, AND N. SMALLBONE

The next fact follows by induction on the term or formula δ (for arbitrary ξ : V →∏
τ∈GTypeΣ

JτKM):

(2) If δ contains no type variables, then JδKM
ξ = J〈〈δ〉〉∞KM ′

ξ′ .

In particular, for a sentence ϕ, we have JϕKM = J〈〈ϕ〉〉∞KM ′
. Now let ∀ᾱ. ϕ ∈ Φ, and assume

by absurdity that M is not a model of ∀ᾱ. ϕ. Then, since by (1) and the definition of D we

have that J KM : GType → D is surjective, we obtain a ground-type instance ϕρ of ϕ such

that M is not a model of ϕρ. By JϕKM = J〈〈ϕ〉〉∞KM ′
, M ′ is not a model of J〈〈ϕρ〉〉∞KM ′

, hence
not a model of 〈〈∀ᾱ. ϕ〉〉∞, which is a contradiction. Therefore M is a model of ∀ᾱ. ϕ. We
obtain that M is a model Φ, as desired.

6.2. Monotonicity. The definition of monotonicity from Section 5.1 (Definition 5.1) must
be adapted to the polymorphic case.

Definition 6.5 (Monotonicity). Let S be a set of types and Φ be a polymorphic problem.
The set S is monotonic in Φ if for all models M of Φ, there exists a model M ′ of Φ such that
for all ground types σ, JσKM ′

is infinite if σ is an instance of a type in S and |JσKM ′
| = |JσKM |

otherwise. A type σ is monotonic if {σ} is monotonic. The problem Φ is monotonic if the
set Type of all types is monotonic.

Example 6.6. For the algebraic list problem of Example 2.10, S = {list(α)} is monotonic
because all models M of the problem necessarily interpret all of the ground instances of
list(α) (e.g. list(b), list(list(b))) by infinite domains. Monotonicity is trivially witnessed by
taking M ′ = M .

Theorem 6.7 (Monotonic Erasure). The traditional type arguments encoding a is sound

for monotonic polymorphic problems.

Proof. Let Φ be such a problem and Σ = (K ,F ,P) be its signature, and assume Φ is
satisfiable. By monotonicity and Lemma 4.12, it also has a model M where all D ∈ D are
countably infinite. From this model, we construct a model M ′ of 〈〈Φ〉〉a ;e with a countably
infinite domain E that interprets the encoded types as distinct elements of E. The function
and predicate tables for M ′ are based on those from M , with encoded type arguments
corresponding to actual type arguments.

More precisely, let E be an countably infinite set and consider the following functions:

• the mutually inverse bijections u : D → E and v : E → D;
• for each D ∈ D, the mutually inverse bijections uD : D → E and vD : E → D.

Let Σ′ = (F ′ ⊎ K ′,P ′) be the target untyped signature of a. We define the structure M ′

for Σ′ as follows:

• D = E.
• Assume k is an n-ary function in K ′, meaning k :: n is in K . Then kM ′

(ē) = u(kM (v(ē))).
• Assume ᾱ = α1, . . . , αm, σ̄ = σ1, . . . , σn, and s : ∀ᾱ. σ̄ → ς ∈ F ⊎ P , meaning that s is

an (m + n)-ary symbol in F ′ ⊎ P ′. Given c̄ = (c1, . . . , cm) ∈ Em and ē = (e1, . . . , en) ∈ En,

we define sM ′
(c̄, ē) = uJσKM

θ
(sM (v(c̄))(vJσ1KM

θ
(e1), . . . , vJσnKM

θ
(en))), where θ maps each αi to

v(ci).

ENCODING MONOMORPHIC AND POLYMORPHIC TYPES 37

Given ξ′ : V → E, we define θ : A → D by θ(α) = v(ξ′(V (α))) and ξ : V →
∏

σ∈TypeΣ
JσKM

θ

by ξ(X)(σ) = v
J〈〈σ〉〉KM ′

ξ′
(ξ′(X)), where V (α) and 〈〈σ〉〉 are as in Definition 3.6.

The next facts follow by structural induction on σ, t, and ϕ (for arbitrary ξ′):

• J〈〈σ〉〉KM ′

ξ′ = u(JσKM
θ);

• t : σ implies J〈〈t〉〉a ;eKM ′

ξ′ = uJσKM
θ
(JtKM

θ,ξ);

• J〈〈ϕ〉〉a ;eKM ′

ξ′ = JϕKM
θ,ξ.

In particular, for sentences, we have J〈〈ϕ〉〉a ;eKM ′
= JϕKM ; and since M is a model of Φ, it

follows that M ′ is a model of 〈〈Φ〉〉a ;e .

Lemma 6.8 (Correctness Conditions). Let Φ be a polymorphic problem, and let x be a

polymorphic encoding. The problems Φ and 〈〈Φ〉〉 x ;a ;e are equisatisfiable provided that the

following conditions hold :

Mono: 〈〈Φ〉〉 x is monotonic.

Sound: If Φ is satisfiable, so is 〈〈Φ〉〉 x .

Complete: If 〈〈Φ〉〉 x is satisfiable, so is Φ.

Proof. Immediate from Theorems 3.11 and 6.7.

Lemma 6.9 (Monotonicity Preservation and Reflection by ∞). A polymorphic problem Φ
is monotonic iff its monomorphic encoding 〈〈Φ〉〉∞ is monotonic.

Proof. Let ϕk be the polymorphic formula stating that all type domains have at least k
elements, and let Φ′ = {ϕk | k ∈ N}. We note that the following four statements are
equivalent:

(1) Φ has a model with all domains infinite;
(2) Φ ∪ Φ′ has a model;
(3) 〈〈Φ〉〉∞ ∪ 〈〈Φ′〉〉∞ has a model;
(4) 〈〈Φ〉〉∞ has a model with all domains infinite.

The equivalences “(1) iff (2)” and “(3) iff (4)” are obvious, and “(2) iff (3)” follows from the
correctness of ∞ (Lemma 6.4).

6.3. Monotonicity Inference. The monotonicity inference of Section 5.2 must be adapted
to the polymorphic setting. We start by generalising the notion of naked variable.

Definition 6.10 (Polymorphic Naked Variable). The set of naked variables NV(ϕ) of a
polymorphic formula ϕ is defined similarly to the monomorphic case (Definition 5.6). The
following equations are new or slightly different from there:

NV(p〈σ̄〉(t̄)) = ∅ NV(¬ p〈σ̄〉(t̄)) = ∅ NV(∀α. ϕ) = NV(ϕ)

Again, we take NV(Φ) =
⋃
ϕ∈ΦNV(ϕ).

Note from Definitions 5.6 and 6.10 that the naked variables of a polymorphic formula
occur at the same positions as in all its monomorphic instances. Moreover, the types of the
naked variables in the completely monomorphised problem are simply the ground instances
of the types of the naked variables in the original problem:

Lemma 6.11. NV(〈〈Φ〉〉∞) = {X τ | τ ∈GType and there exists σ≥ τ such that X σ∈NV(Φ)}.

38 J. C. BLANCHETTE, S. BÖHME, A. POPESCU, AND N. SMALLBONE

The calculus presented below captures the insight that a polymorphic type is monotonic
if each of its common instances with the type of any naked variable is an instance of an infinite
type. Similarly to its monomorphic counterpart, it is parameterised by a fixed set Inf(Φ) of

(not necessarily ground) types for which any interpretation JσKM
θ (for any type valuation θ)

in any model M of Φ is known to be infinite.

Convention 6.12. It is easy to see that if σ ∈ Inf(Φ) and ρ : A → GTypeΣ, then σρ is
infinite in all models of 〈〈Φ〉〉∞. We fix the “known as infinite” types of 〈〈Φ〉〉∞, Inf(〈〈Φ〉〉∞), to
be {σρ | σ ∈ Inf(Φ) and ρ : A → GTypeΣ}.

Definition 6.13 (Polymorphic Monotonicity Calculus ⊲). A judgement σ ⊲ Φ indicates
that the type σ is inferred monotonic in Φ. The monotonicity calculus consists of the single
rule

for all X σ′
∈NV(Φ), if σ and σ′ have a common instance, then mgi(σ,σ′) ∈ Inf∗(Φ)

σ ⊲ Φ

where Inf∗(Φ) = {σ ∈ TypeΣ | there exists σ′ ∈ Inf(Φ) such that σ ≤ σ′} consists of all
instances of all types in Inf(Φ).

Example 6.14. For the algebraic list problem of Example 2.10, the only naked variables
are X α and Xs list(α), i.e. NV(Φ) = {X α,Xs list(α)}. Assume Inf(Φ) = {list(α)}. Then
Inf∗(Φ) = {list(σ) | σ ∈ TypeΣ}. The type list(α) is inferred monotonic by ⊲ because its
most general common instance with α (the type of X) and list(α) (the type of Xs) is in
both cases list(α), which is known to be infinite. In contrast, α and b cannot be inferred
monotonic: each of them is its most general common instance with α, and neither of them
is among the types that are known to be infinite.

Lemma 6.15. The following properties hold for any polymorphic signature Σ and any Σ-

problem Φ:

(1) If σ ⊲ Φ and τ ∈ GTypeΣ such that τ ≤ σ, then τ ⊲ 〈〈Φ〉〉∞.

(2) If τ ∈ GTypeΣ, then τ ⊲ 〈〈Φ〉〉∞ iff τ ⊲ Φ.

(3) If σ ⊲ Φ and σ′ ≤ σ, then σ′
⊲ Φ.

Proof. (1): Assume σ ⊲ Φ and σ ≥ τ ∈ GTypeΣ. To show τ ⊲ 〈〈Φ〉〉∞, it suffices to let
X τ ∈ NV(〈〈Φ〉〉∞) and prove τ ∈ Inf(〈〈Φ〉〉∞). By Lemma 6.12, we obtain σ′ ≥ τ such that

X σ′
∈ NV(Φ). Since σ and σ′ have a common instance, by the first assumption we have

mgi(σ,σ′) ∈ Inf∗(Φ), and hence, since τ ≤ mgi(σ,σ′), we have τ ∈ Inf∗(Φ)—and since τ is
ground, we obtain τ ∈ Inf(〈〈Φ〉〉∞), as desired.

(2): Let (A) τ ∈ GTypeΣ. One implication follows immediately from (1). For the second,
assume (B) τ ⊲ 〈〈Φ〉〉∞. To prove τ ⊲ Φ, we fix (C) X σ ∈ NV(Φ) such that σ and τ

have a common instance (i.e. by (A), τ ≤ σ) and prove mgi(σ, τ) ∈ Inf∗(Φ), i.e. by (A),
τ ∈ Inf∗(Φ), i.e. again by (A), τ ∈ Inf(〈〈Φ〉〉∞). From (C), τ ≤ σ and Lemma 6.12, we obtain
X τ ∈ NV(〈〈Φ〉〉∞); hence, by (A), we have τ ∈ Inf(〈〈Φ〉〉∞), as desired.

(3): Immediate from the definition.

Note that property (1) of the above lemma states that if a type is inferred monotonic
in the polymorphic calculus, all its ground instances can be inferred monotonic in the mon-
omorphic calculus associated to the completely monomorphised problem. This allows us to
prove soundness of the former from soundness of the latter:

ENCODING MONOMORPHIC AND POLYMORPHIC TYPES 39

Theorem 6.16 (Soundness of ⊲). Let Φ be a polymorphic problem. If σ ⊲ Φ for all
σ ∈ TypeΣ, then Φ is monotonic.

Proof. Assume σ ⊲ Φ for all σ ∈ TypeΣ. By Lemma 6.15, τ ⊲ 〈〈Φ〉〉∞ for all ground instances
τ of types in TypeΣ, i.e. for all τ in the signature of 〈〈Φ〉〉∞. By Theorem 5.9 and Lemma 5.5,
this makes 〈〈Φ〉〉∞ monotonic. Then, by Lemma 6.4, Φ is also monotonic.

6.4. General Strategy. We will define polymorphic versions of the featherweight and light-
weight tags and guard encodings, altogether four encodings: t?, t??, g?, and g??. If x ranges
over the polymorphic encodings, x̃ ∈ {̃t?, t̃??, g̃?, g̃??} denotes its monomorphic counterpart.
We base the correctness of each x on the correctness of x̃ , by proving the problems 〈〈Φ〉〉∞; x̃

and 〈〈Φ〉〉 x ;∞ equisatisfiable in a monotonicity-preserving way. The following lemma implic-
itly assumes that the signatures of 〈〈Φ〉〉∞; x̃ and 〈〈Φ〉〉 x ;∞ coincide, which is easy to check for
each encoding x .

Lemma 6.17 (Correctness Conditions via Complete Monomorphisation). Let Φ be a poly-
morphic problem and let x ∈ {t?, t??, g?, g??}. The problems Φ and 〈〈Φ〉〉 x ;a ;e are equisatis-

fiable provided that the following conditions hold :

Sound: If 〈〈Φ〉〉∞; x̃ has a model, 〈〈Φ〉〉 x ;∞ has a model with the same interpretation of the

type constructors.

Complete: If 〈〈Φ〉〉 x ;∞ has a model, 〈〈Φ〉〉∞; x̃ has a model with the same interpretation

of the type constructors.

Proof. By the correctness of ∞ (Lemma 6.4) and the corresponding correctness theorems for
x̃ (more precisely, from the Sound and Complete statements from the proofs of Theorems
5.15 and 5.20), we have that Φ and 〈〈Φ〉〉∞; x̃ are equisatisfiable. Together with the assump-
tions, this implies that (A) Φ and 〈〈Φ〉〉 x ;∞ are equisatisfiable. Moreover, from Lemma 6.9
and monotonicity of x̃ (more precisely, from the Mono statements from the proofs of The-
orems 5.15 and 5.20), we know that 〈〈Φ〉〉∞; x̃ is monotonic. Hence, by the assumptions, (B)
〈〈Φ〉〉 x ;∞ is also monotonic. The desired fact follows from (A), (B), and Lemma 6.8 (with x

instantiated with x ;∞).

To apply the above lemma, we need to provide an x such that the equation 〈〈Φ〉〉 x ;∞ =
〈〈Φ〉〉∞; x̃ almost holds, in the sense that the two problems are equisatisfiable without changing
the type constructor interpretation, but possibly changing some of the function or predicate
symbol interpretation.

Given x̃ , we will come up with an encoding x in a systematic way. But first we need
to define some relevant sets of types for a polymorphic Σ-problem Φ:

Definition 6.18. Let

• TypeΦ = {σ ∈ TypeΣ | σ is the type of a subterm occurring in Φ};
• SΦ = {τ ∈ GTypeΣ | τ 6⊲ 〈〈Φ〉〉∞ and there exists σ ∈ TypeΦ such that τ ≤ σ};
• TΦ = {τ ∈ GTypeΣ | there exists σ ∈ TypeΦ such that σ 6⊲ Φ and τ ≤ σ}.

Here is how we proceed with the definition of x :

(1) We emulate the definition of x̃ , using the polymorphic monotonicity calculus instead of
the monomorphic one.

40 J. C. BLANCHETTE, S. BÖHME, A. POPESCU, AND N. SMALLBONE

(2) Step (1) will cause 〈〈Φ〉〉 x ;∞ to introduce more protectors than 〈〈Φ〉〉∞; x̃ . This is because
the former protects all ground types τ that are instances of types σ ∈ TypeΦ such that
σ 6⊲ Φ (namely, TΦ), whereas the latter protects all ground types τ that are instances
of types in TypeΦ and satisfy τ 6⊲ 〈〈Φ〉〉∞ (namely, SΦ). We have SΦ ⊆ TΦ but generally
not vice versa. To repair this mismatch, we add axioms that semantically eliminate
the protectors for the types in TΦ but not in SΦ. To achieve this, we must characterise
TΦ−SΦ (which is an infinite set even for finite problems Φ) as the set of ground instances
of a set UΦ of types so that UΦ is finite whenever Φ is.

We define UΦ next:

Definition 6.19 (Cap). Given a set of types S , a cap for it is a set S ′ ⊆ S such that all
types in S are instances of types in S ′. A cap is minimal if it contains no two distinct types
σ and σ′ such that σ ≤ σ′. For each σ, let Uσ be a minimal cap of the set

U ′
σ = {σ′ ≤ σ | σ′ ∈ Inf∗(Φ) or there exists no X σ′′

∈ NV(Φ)

such that σ′ and σ′′ have a common instance}

We let UΦ be an arbitrary cap of
⋃
{Uσ | σ ∈ TypeΦ and σ 6⊲ Φ}.

The set UΦ is both a subset of the monotonic types and a precise characterisation of
the sets of types whose ground instances give our difference of interest, TΦ − SΦ.

Lemma 6.20. The following properties hold :

(1) SΦ ⊆ TΦ;
(2) If σ′ ∈ U ′

σ, then σ′
⊲ Φ;

(3) If σ ∈ UΦ, then σ ⊲ Φ;
(4) If τ ∈ TΦ − SΦ, then τ ⊲ 〈〈Φ〉〉∞;
(5) TΦ − SΦ = {τ ∈ GTypeΣ | there exists σ ∈ UΦ such that τ ≤ σ}.

Proof. (1): Assume τ ∈ SΦ and let σ ≥ τ as in the definition of SΦ. By Lemma 6.15(2), we
have τ 6⊲ Φ, and hence by Lemma 6.15(3) we have σ 6⊲ Φ, ensuring that τ ∈ TΦ.

(2): It is clear that the condition defining U ′
σ is a strengthening of that defining σ ⊲ Φ.

(3): Immediate from (2).

(4): Immediate from the definitions of SΦ and TΦ.

(5): Let τ ∈ TΦ such that (A) τ 6∈ SΦ. There exists σ such that τ ≤ σ ∈ TypeΦ and σ 6⊲ Φ.
From (4), we have τ ⊲ 〈〈Φ〉〉∞; hence, by Lemma 6.15(2), τ ⊲ Φ. Since τ is ground, either

τ ∈ Inf∗(Φ) or there exists no X σ′′
∈ NV(Φ) such that τ ≤ σ′′, implying τ ∈ U ′

σ. It follows
that τ is an instance of an element of Uσ, hence of an element of UΦ, as desired. Now,
assume τ is ground such that τ ≤ σ′ ∈ UΦ. We obtain σ ∈ TypeΦ such that σ 6⊲ Φ and
σ′ ∈ Uσ. In particular, we have σ′ ≤ σ, hence τ ∈ TΦ. Moreover, by σ′ ∈ Uσ and (2), we
have σ′

⊲ Φ; hence by Lemma 6.15(1), we have τ ⊲ 〈〈Φ〉〉∞, implying τ 6∈ SΦ, as desired.

The following results will hold for any choice of set VΦ between UΦ and {σ ∈ TypeΣ |
σ ⊲ Φ}. The smaller the chosen set, the lighter the encoding.

Convention 6.21. We fix VΦ such that UΦ ⊆ Vϕ ⊆ {σ ∈ TypeΣ | σ ⊲ Φ}.

ENCODING MONOMORPHIC AND POLYMORPHIC TYPES 41

6.5. Monotonicity-Based Type Tags. We are now equipped to present the definitions
of the polymorphic monotonicity-based encodings and prove their correctness. The poly-
morphic t? encoding can be seen as a hybrid between traditional tags (t) and monomorphic
lightweight tags (̃t?): as in t, tags take the form of a function t〈σ〉(t); as in t̃?, tags are
omitted for types that are inferred monotonic.

The main novelty concerns the typing axioms. The t̃? encoding omits all typing axioms
for monotonic types. In the polymorphic case, the monotonic type σ might be an instance of
a more general, potentially nonmonotonic type for which tags are generated. For example, if
α is tagged (because it is possibly nonmonotonic) but its instance list(α) is not (because it is
infinite and hence monotonic), there will be mismatches between tagged and untagged terms.
Our solution is to add the typing axiom t〈list(α)〉(Xs) ≈ Xs, which allows the prover to add
or remove a tag for the infinite type list(α). Such an axiom is sound for any monotonic type.

Definition 6.22 (Lightweight Tags t?). The encoding t? translates polymorphic problems
over Σ = (Type ,F ,P) to polymorphic problems over (Type ,F ⊎ {t : ∀α. α → α},P). Its
term and formula translations are defined as follows:

〈〈 f 〈σ〉(t̄)σ〉〉t? = ⌊ f 〈σ〉(〈〈t̄ 〉〉t?)⌋ 〈〈X σ〉〉t? = ⌊X ⌋ with ⌊tσ⌋ =

{
t if σ ⊲ Φ

t〈σ〉(t) otherwise

The encoding adds the following typing axioms:

∀TVars(σ). ∀X : σ. t〈σ〉(X σ) ≈ X σ for σ ∈ VΦ

The polymorphic lightweight type tags encoding t? is the composition 〈〈 〉〉t?;a ;e . It translates
a polymorphic problem over Σ into an untyped problem over Σ′ = (F ′ ⊎ {t2},P ′), where
F ′,P ′ are as for a.

Example 6.23. The t? encoding of of Example 2.10 follows:

∀A,Xs. t(list(A),Xs) ≈ Xs

∀A,X,Xs. nil(A) 6≈ cons(A, t(A,X),Xs)
∀A,Xs. Xs ≈ nil(A) ∨ (∃Y,Ys . Xs ≈ cons(A, t(A,Y),Ys))
∀A,X,Xs. t(A, hd(A, cons(A, t(A,X),Xs))) ≈ t(A,X) ∧

tl(A, cons(A, t(A,X),Xs)) ≈ Xs

∃X,Y,Xs,Ys . cons(b, t(b,X),Xs) ≈ cons(b, t(b,Y),Ys) ∧
(t(b,X) 6≈ t(b,Y) ∨ Xs 6≈ Ys)

The typing axiom allows any term to be typed as list(α), which is sound because list(α)
is infinite. It would have been equally correct to provide separate axioms for nil, cons, and
tl. Either way, the axioms are needed to remove the t(A, X) tags in case the proof requires
reasoning about list(list(α)).

The lighter encoding t?? protects only naked variables and introduces equations of the
form t〈σ〉(f 〈ᾱ〉(X̄)) ≈ f 〈ᾱ〉(X̄) to add or remove tags around each function symbol f of a
possibly nonmonotonic type σ, and similarly for existential variables.

Definition 6.24 (Featherweight Tags t??). The encoding t?? translates polymorphic prob-
lems over Σ = (Type ,F ,P) to polymorphic problems over (Type ,F ⊎ {t : ∀α. α → α},P).

42 J. C. BLANCHETTE, S. BÖHME, A. POPESCU, AND N. SMALLBONE

Its term and formula translations are defined as follows:

〈〈t1≈ t2〉〉t?? = ⌊〈〈t1〉〉t??⌋ ≈ ⌊〈〈t2〉〉t??⌋

〈〈∃X : σ. ϕ〉〉t?? = ∃X : σ.

{
〈〈ϕ〉〉t?? if σ ⊲ Φ

t〈σ〉(X) ≈ X ∧ 〈〈ϕ〉〉t?? otherwise

with

⌊tσ⌋ =

{
t if σ ⊲ Φ or t /∈ V ∀

typed

t〈σ〉(t) otherwise

The encoding adds the typing axioms of t? (from Definition 6.22) and the following:

∀ᾱ. ∀X̄ : σ̄. t〈σ〉(f 〈ᾱ〉(X̄ σ̄)) ≈ f 〈ᾱ〉(X̄ σ̄) for f : ∀ᾱ. σ̄ � σ ∈ F such that σ 6⊲ Φ

∀TVars(σ). ∃X : σ. t〈σ〉(X σ) ≈ X σ for σ ∈ TypeΦ such that σ 6⊲ Φ and σ is not
an instance of the result type of some f ∈ F

The polymorphic featherweight type tags encoding t?? is the composition 〈〈 〉〉t??;a ;e . The
target signature of t?? is the same as that of t?.

Example 6.25. The t?? encoding of Example 2.10 requires fewer tags than t̃?, at the cost
of two additional typing axioms and two typing equations for the existential variables of
type b:

∀A,Xs. t(A, hd(A,Xs)) ≈ hd(A,Xs)
∀A,Xs. t(list(A),Xs) ≈ Xs

∀A. ∃X . t(A,X) ≈ X

∀A,X,Xs. nil(A) 6≈ cons(A,X,Xs)
∀A,Xs. Xs ≈ nil(A) ∨ (∃Y,Ys . t(A,Y) ≈ Y ∧ Xs ≈ cons(A,Y,Ys))
∀A,X,Xs. hd(A, cons(A,X,Xs)) ≈ t(A,X) ∧ tl(A, cons(A,X,Xs)) ≈ Xs

∃X,Y,Xs,Ys . t(b,X) ≈ X ∧ t(b,Y) ≈ Y ∧ cons(b,X,Xs) ≈ cons(b,Y,Ys) ∧
(X 6≈ Y ∨ Xs 6≈ Ys)

Theorem 6.26 (Correctness of t?, t??). The polymorphic type tags encodings t? and t?? are

correct.

Proof. First we discuss the case of t?. The following property can be routinely checked:

(A) 〈〈Φ〉〉t?;∞ = {ϕ# | ϕ ∈ 〈〈Φ〉〉∞; t̃?} ∪ {∀X τ. tτ(X
τ) ≈ X τ | τ ∈ GInst(VΦ)}

where GInst(VΦ) denotes the set of ground instances of types in VΦ and ϕ# denotes the
modification of ϕ obtained by adding, for each τ ∈ TΦ − SΦ, a tag tτ around every term of
type τ. Recall that UΦ ⊆ Vϕ ⊆ {σ ∈ TypeΣ | σ ⊲ Φ}. We have the following:

(1) TΦ − SΦ ⊆ GInst(VΦ);
(2) GInst(VΦ) ⊆ {σ ∈ GTypeΣ | σ ⊲ Φ};
(3) if τ ∈ VΦ, the symbol tτ does not occur in 〈〈 〉〉∞; t̃?.

Property (1) follows from Lemma 6.20(5), (2) from Lemma 6.15(3), and (3) from (2) and
the definition of 〈〈 〉〉̃t?. Now we are ready to check the conditions of Lemma 6.17.

Sound: Given a model M of 〈〈Φ〉〉∞; t̃?, we modify it into a structure M ′ by reinterpreting,
for all τ ∈ GInst(VΦ), the symbols tτ as identity. Thanks to (3), M ′ is still a model of
〈〈Φ〉〉∞; t̃? and, thanks to (A) and (1), it is also a model of 〈〈Φ〉〉t?;∞.

ENCODING MONOMORPHIC AND POLYMORPHIC TYPES 43

Complete: Any model of 〈〈Φ〉〉t?;∞ is also a model of 〈〈Φ〉〉∞; t̃?, since, thanks to (1), in the
presence of {∀X τ. tτ(X

τ) ≈ X τ | τ ∈ GInst(VΦ)} each ϕ# is equivalent to ϕ.

The case of t?? is similar, with the following modifications:

(A) 〈〈Φ〉〉t?;∞ = {ϕ# | ϕ ∈ 〈〈Φ〉〉∞; t̃?} ∪ {∀X τ. tτ(X
τ) ≈ X τ | τ ∈ GInst(VΦ)} ∪ Ax

where Ax consists of all ground instances ϕ ρ of the additional axioms ∀ᾱ. ϕ from Defini-
tion 6.24 where the occurring tτ is such that τ ∈ TΦ − SΦ. What we retain about Ax is that
Ax is satisfied by any structure that interprets as identity each tτ with τ ∈ TΦ − SΦ, and
hence, by (1), we have

(4) Ax is satisfied by any structure that interprets as identity each tτ with τ ∈ GInst(VΦ).

Moreover, ϕ# is modified to add tags to ϕ in fewer places—not to arbitrary terms, but only
to naked universal variables. Then the proof for t? works here too, additionally invoking (4)
in the proof of soundness.

6.6. Monotonicity-Based Type Guards. Analogously to t?, the g? encoding is best
understood as a hybrid between traditional guards (g) and monomorphic lightweight guards
(g̃?): as in g, guards take the form of a predicate g〈σ〉(t); as in g̃?, guards are omitted for
types that are inferred monotonic.

Once again, the main novelty concerns the typing axioms. The g̃? encoding omits all
typing axioms for monotonic types. In the polymorphic case, the monotonic type σ might be
an instance of a more general, potentially nonmonotonic type for which guards are generated.
Our solution is to add the typing axiom g〈σ〉(X), which allows the prover to discharge any
guard for the monotonic type σ.

Definition 6.27 (Lightweight Guards g?). The encoding g? translates polymorphic prob-
lems over Σ = (Type ,F ,P) to polymorphic problems over (Type ,F ,P ⊎ {g : ∀α. α → o}).
Its term and formula translations 〈〈 〉〉g?;a ;e are defined as follows:

〈〈∀X : σ. ϕ〉〉g? = ∀X : σ.

{
〈〈ϕ〉〉g? if σ ⊲ Φ

g〈σ〉(X σ) → 〈〈ϕ〉〉g? otherwise

〈〈∃X : σ. ϕ〉〉g? = ∃X : σ.

{
〈〈ϕ〉〉g? if σ ⊲ Φ

g〈σ〉(X σ) ∧ 〈〈ϕ〉〉g? otherwise

The encoding adds the following typing axioms:

∀TVars(σ). ∀X : σ̄. g〈σ〉(X σ) for σ ∈ VΦ

∀ᾱ. ∀X̄ : σ̄. g〈σ〉(f 〈ᾱ〉(X̄ σ̄)) for f : ∀ᾱ. σ̄ � σ ∈ F such that σ 6⊲ Φ

∀TVars(σ). ∃X : σ. g〈σ〉(X σ) for σ ∈ TypeΦ such that σ 6⊲ Φ and σ is not
an instance of the result type of some f ∈ F

The polymorphic lightweight type guards encoding g? is the composition 〈〈 〉〉g?;a ;e . It trans-
lates a polymorphic problem over Σ into an untyped problem over Σ′ = (F ′,P ′ ⊎ {g2}),
where F ′,P ′ are as for a.

The featherweight cousin is a straightforward generalisation of g? along the lines of the
generalisation of g̃? into g̃??.

44 J. C. BLANCHETTE, S. BÖHME, A. POPESCU, AND N. SMALLBONE

Definition 6.28 (Featherweight Guards g??). The polymorphic featherweight type guards
encoding g?? is identical to the lightweight encoding g? except that the condition “if σ ⊲ Φ”
in the ∀ case is weakened to “if σ ⊲ Φ or X σ /∈ NV(ϕ)”.

Example 6.29. The g?? encoding of Example 2.10 follows:

∀A,Xs. g(A, hd(A,Xs))
∀A,Xs. g(list(A),Xs)

∀A,X,Xs. nil(A) 6≈ cons(A,X,Xs)
∀A,Xs. Xs ≈ nil(A) ∨ (∃Y,Ys . g(A,Y) ∧ Xs ≈ cons(A,Y,Ys))
∀A,X,Xs. g(A,X) → hd(A, cons(A,X,Xs)) ≈ X ∧ tl(A, cons(A,X,Xs)) ≈ Xs

∃X,Y,Xs,Ys . g(b,X) ∧ g(b,Y) ∧ cons(b,X,Xs) ≈ cons(b,Y,Ys) ∧ (X 6≈ Y ∨ Xs 6≈ Ys)

Theorem 6.30 (Correctness of g?, g??). The polymorphic type guards encodings g? and

g?? are correct.

Proof. The argument is very similar to that for tags (Theorem 6.26), with the following
modifications:

(A) 〈〈Φ〉〉t?;∞ = {ϕ# | ϕ ∈ 〈〈Φ〉〉∞; t̃?} ∪ {∀X τ. gτ(X
τ) | τ ∈ GInst(VΦ)} ∪ Ax

where Ax consists of a set of formulae which is satisfied by each structure that interprets as
everywhere-true each gτ with τ ∈ GInst(VΦ) and ϕ# denotes the modification of ϕ obtained
by adding, for each τ ∈ TΦ − SΦ, a guard gτ on several negative positions in ϕ.

Apart from this, the proofs for g? and g?? are identical to that for t??, except that
instead of interpreting tags as identity we interpret guards as everywhere-true.

7. Implementation

Our research on polymorphic type encodings was driven by Sledgehammer, a component of
Isabelle/HOL that harnesses first-order automatic theorem provers to discharge interactive
proof obligations. The tool heuristically selects hundreds of background facts, translates
them to untyped or monomorphic first-order logic, invokes the external provers in parallel,
and reconstructs machine-generated proofs in Isabelle.

All the encodings presented in this article except for the complete monomorphisation
translation from Section 6.1 (which plays only an auxiliary theoretical role in our develop-
ment) enjoy the desirable property that if the source signature and problem are finite, then
the target signature and problem are also finite. All of these encodings, including the tradi-
tional ones, are implemented in Sledgehammer and can be used to target external first-order
provers. The rest of this section considers implementation issues in more detail.

7.1. Heuristic Monomorphisation Algorithm. The monomorphisation algorithm im-
plemented in Sledgehammer translates a polymorphic problem into a monomorphic problem
by heuristically instantiating type variables. It involves three stages:

1. Separate the monomorphic and the polymorphic formulae, and collect all symbols occur-
ring in the monomorphic formulae (the “mono-symbols”).

2. For each polymorphic axiom, stepwise refine a set of substitutions, starting from the
singleton set containing only the empty substitution, by matching known mono-symbols
against their polymorphic counterparts in the axiom. So long as new mono-symbols
emerge, collect them and repeat this stage.

ENCODING MONOMORPHIC AND POLYMORPHIC TYPES 45

3. Apply the substitutions to the corresponding polymorphic formulae. Only keep fully
monomorphic formulae.

To ensure termination, the iterations performed in stage 2 are limited to a configurable
number K. To curb the exponential growth, the algorithm also enforce an upper bound
∆ on the number of new formulae. Sledgehammer operates with K = 3 and ∆ = 200
by default, so that a problem with 500 formulae comprises at most 700 formulae after
monomorphisation. Experiments found these values suitable. Given formulae about b and
list(α), the third iteration already generates list(list(list(b))) instances; adding yet another
layer of list is unlikely to help. Increasing ∆ sometimes helps solve more problems, but its
potential for clutter is real.

7.2. Extension to Higher-Order Logic. Isabelle/HOL’s logic, polymorphic higher-order
logic with axiomatic type classes [35], is not the same as the polymorphic first-order logic
considered in this article. Sledgehammer’s translation is a three-step process, where the
first and last step may be omitted, depending on whether monomorphisation is desired and
whether the target prover supports monomorphic types:

1. Optionally monomorphise the problem.

2. Eliminate the higher-order constructs [22, §2.1]. λ-abstractions are rewritten to SK

combinators or to supercombinators (λ-lifting). Functions are passed varying numbers
of arguments via an apply operator hAPP : ∀α, β. fun(α, β) × α � β (where fun is
uninterpreted). Boolean terms are converted to formulae using a unary predicate hBOOL :
bool � o (where bool is uninterpreted).

3. Encode the type information. Polymorphic types are encoded using the techniques de-
scribed in this article. Type classes are essentially sets of types; they are encoded as
polymorphic predicates ∀α. o (where α is a phantom type variable, Definition 3.12). For
example, a predicate linorder : ∀α. o could be used to restrict the axioms specifying that
less_eq : ∀α. α× α � o is a linear order to those types that satisfy the linorder predicate
(cf. Example 3.15). The type class hierarchy is expressible as Horn clauses [22, §2.3].

The symbol hAPP would hugely burden problems if it were introduced systematically for all
arguments to functions. To reduce clutter, Sledgehammer computes the minimum arity n
needed for each symbol and passes the first n arguments directly, falling back on hAPP for ad-
ditional arguments. In general, more arguments can be passed directly if monomorphisation
is performed before hAPP is introduced, because each monomorphic instance of a polymor-
phic symbol is considered individually. Similar observations can be made for hBOOL.

7.3. Infinite Types and Constructors. The monotonicity calculus ⊲ is parameterised by
a set Inf(Φ) of infinite types. One could employ an approach similar to that implemented in
Infinox [15] to automatically infer finite unsatisfiability of types. This tool relies on various
proof principles to show that a set of untyped first-order formulae only has models with
infinite domains. For example, it can infer that list_b is infinite in Example 2.13 because
consb is injective in its second argument but not surjective. However, in a proof assistant
such as Isabelle, it is simpler to exploit metainformation available through introspection.
Isabelle’s datatypes are registered with their constructors; if some of them are recursive, or
take an argument of an infinite type, the datatype must be infinite and hence monotonic.

46 J. C. BLANCHETTE, S. BÖHME, A. POPESCU, AND N. SMALLBONE

More specifically, the monotonicity inference is run on the entire problem and maintains
two finite sets of polymorphic types: the surely infinite types J and the possibly nonmono-
tonic types N. Every type of a naked variable in the problem is tested for infinity. If the
test succeeds, the type is inserted into J; otherwise, it is inserted into N. Simplifications are
performed: there no need to insert σ to J or N if it is an instance of a type already in the
set; when inserting σ to a set, it is safe to remove any type in the set that is an instance
of σ. The monotonicity check then becomes

σ ⊲ Φ ⇐⇒ (∃τ ∈ J. ∃ρ. σ = τρ) ∨ (∀τ ∈ N. ∄ρ. σρ = τρ)

7.4. Proof Reconstruction. To guard against bugs in the external provers, Sledgehammer
reconstructs machine-generated proofs in Isabelle. This is usually accomplished by the metis

proof method [26], supplying it with the short list of facts referenced in the proof found by the
prover. The proof method is based on the Metis prover [20], a complete resolution prover
for untyped first-order logic. The metis call is all that remains from the Sledgehammer
invocation in the Isabelle theory, which can then be replayed without external provers.
Given only a handful of facts, metis usually succeeds within milliseconds.

Prior to our work, a large share of the reconstruction failures were caused by type-
unsound proofs found by the external provers, due to the use of the unsound encoding a

[13, §4.1]. We now replaced the internals of Sledgehammer and metis so that they use a
translation module supporting all the type encodings described in this article.

Nonetheless, despite the typing information, individual inferences in Metis can be ill-
typed when types are reintroduced, causing the metis proof method to fail. There are two
main failure scenarios.

First, the prover may in principle instantiate variables with “ill-typed” terms at any point
in the proof. Fortunately, this hardly ever arises in practice, because like other resolution
provers Metis heavily restricts paramodulation from and into variables [1].

An issue that is more likely to plague users concerns the infinite types Inf(Φ). In the
theoretical part of the paper, we required infinity to be a consequence of the problem Φ.
The implementation is less rigorous; it will happily treat types that are known to be infinite
in the Isabelle background theories even if Φ itself does not imply infinity of the types. For
example, assuming nat is known to be infinite, the implementation of the monotonicity-
based encodings will not introduce any protectors around the naked variables M and N
when translating the problem

on 6≈ off state ∧ (∀X,Y : nat . X ≈ Y)

(where the second conjunct is presumably the negation of a conjecture stating that there exist
two distinct natural numbers). That problem is satisfiable on its own but unsatisfiable with
respect to the background theory. Untyped provers will instantiate X and Y with on and
off to derive a contradiction; and no “type-sound” proof is possible unless we also provide
characteristic theorems for nat. In general, we would need to provide infinity axioms for
all types in Inf(Φ) to make the encoding sound irrespective of the background theory; for
example:

∀N : nat. zero 6≈ suc(N) ∀M,N : nat. suc(M) ≈ suc(N) → M ≈ N

ENCODING MONOMORPHIC AND POLYMORPHIC TYPES 47

Although this now makes a sound proof possible (by instantiating X and Y with zero and
suc(zero)), it does not prevent the prover from discovering the spurious proof with on and
off, which cannot be reconstructed by metis.

Although the above scenarios rarely occur in practice, it would be more satisfactory if
proof reconstruction were always possible. A solution would be to connect our formalised
soundness proofs with a verified checker for untyped first-order proofs. This remains for
future work.

8. Evaluation

To evaluate the type encodings described in this article, we put together two sets of 1000
polymorphic first-order problems originating from 10 existing Isabelle theories, translated
with Sledgehammer’s help (100 problems per theory).3 Nine of the theories are the same as
in a previous evaluation [3]; the tenth one is an optimality proof for Huffman’s algorithm.
Our test data are publicly available [4].

The problems in the first benchmark set include about 50 heuristically selected facts
(before monomorphisation); that number is increased to 500 for the second set, to reveal
how well the encodings scale with the problem size.

We evaluated each type encoding with five modern automatic theorem provers: the
resolution provers E 1.8 [28], SPASS 3.8ds [9], and Vampire 3.0 (revision 1803) [27] and
the SMT solvers Alt-Ergo 0.95.2 [10] and Z3 4.3.2 (revision 944dfee008) [23]. To make the
evaluation more informative, we also tested the provers’ native support for types where it is
available; it is referred to as ñ (monomorphic) and n (polymorphic). Only Alt-Ergo supports
polymorphic types natively.

Each prover was invoked with the set of options we had previously determined worked
best for Sledgehammer.4 The provers were granted 15 seconds of CPU time per problem on
one core of a 3.06 GHz Dual-Core Intel Xeon processor. Most proofs were found within a few
seconds; a higher time limit would have had a restricted impact on the success rate [13, §4].
To avoid giving the unsound encodings (e and a) an unfair advantage, for these proof search
was followed by a certification phase that attempted to re-find the proof using a combination
of sound encodings, based on its referenced facts. This phase slightly penalises the unsound
encodings by rejecting a few sound proofs, but such is the price of unsoundness in practice.

Figures 2 and 3 give, for each combination of prover and encoding, the number of
solved problems from each problem set. Rows marked with ˜ concern the monomorphic

encodings. The encodings ã, t̃@, and g̃@ are omitted; the first two coincide with ẽ, whereas
t̃@ and g̃@ are identical to degenerate versions of t̃?? and g̃?? that treat all types as possibly
nonmonotonic. We observe the following:

• Among the encodings to untyped first-order logic, the monomorphic monotonicity-based
encodings (especially g̃?? but also t̃??, g̃?, and t̃?) performed best overall. Their perfor-
mance is close to that of the provers’ native support for simple types (ñ). Polymorphic
encodings lag behind; this is likely due in part to the synergy between the monomorphiser
and the translation of higher-order constructs (cf. Section 7.2).

3The TPTP benchmark suite [30], which is customarily used for evaluating theorem provers, has just
begun collecting polymorphic (TFF1) problems.

4The setup for E was suggested by Stephan Schulz and includes the little known “symbol offset” weight
function. We ran Alt-Ergo with the default setup, SPASS in Isabelle mode, Vampire in CASC mode, and
Z3 through the z3_tptp wrapper but otherwise with the default setup.

48 J. C. BLANCHETTE, S. BÖHME, A. POPESCU, AND N. SMALLBONE

e a t t? t?? t@ g g? g?? g@ n

Alt-Ergo 268 275 243 218 296 272 233 291 295 259 301

˜ 293 – 245 293 301 – 296 303 304 – 302

E 319 330 322 311 325 269 268 325 336 288 –

˜ 338 – 337 353 343 – 335 351 352 – –

SPASS 289 316 290 275 319 196 223 302 314 244 –

˜ 322 – 322 328 332 – 317 330 337 – 349

Vampire 328 335 291 304 320 243 281 320 328 301 –

˜ 340 – 331 355 351 – 329 356 354 – 370

Z3 295 323 299 245 317 311 289 301 317 295 –

˜ 326 – 307 320 341 – 342 344 344 – 343

Figure 2: Number of solved problems with 50 facts

e a t t? t?? t@ g g? g?? g@ n

Alt-Ergo 268 218 183 223 273 216 157 240 273 190 260

˜ 285 – 209 302 311 – 251 311 313 – 318

E 170 355 261 271 353 193 205 345 355 237 –

˜ 376 – 331 388 393 – 316 388 390 – –

SPASS 136 321 289 259 299 154 163 278 296 194 –

˜ 333 – 287 323 333 – 229 327 334 – 343

Vampire 318 396 164 286 365 230 219 312 349 259 –

˜ 406 – 231 384 406 – 314 406 405 – 440

Z3 247 358 253 241 362 273 213 305 363 270 –

˜ 363 – 260 358 369 – 349 370 369 – 370

Figure 3: Number of solved problems with 500 facts

e a t t? t?? t@ g g? g?? g@

Clauses 89 99 100 108 140 167 166 139 139 166

˜ 125 – 127 127 141 – 242 141 141 –

Literals per clause 2.3 2.4 2.4 2.3 2.2 2.5 4.3 3.2 2.6 3.8

˜ 2.3 – 2.3 2.3 2.2 – 4.4 2.5 2.4 –

Symbols per atom 6.3 8.0 18.3 16.0 10.3 9.9 5.7 8.0 8.6 5.7

˜ 6.2 – 10.6 7.0 6.2 – 4.3 5.5 5.7 –

Symbols 1276 1870 4339 3924 3235 4070 4051 3609 3103 3610

˜ 1757 – 3060 2040 1935 – 4548 1951 1904 –

Figure 4: Average size of clausified problems with 50 facts

• Among the polymorphic encodings, our novel cover-based and monotonicity-based encod-
ings (t@, t?, t??, g@, g?, and g??), with the exception of t@, constitute a substantial
improvement over the traditional sound schemes (t and g).

ENCODING MONOMORPHIC AND POLYMORPHIC TYPES 49

• As suggested in the literature, there is no clear winner between tags and guards. We
expected monomorphic guards to be especially effective with SPASS, since they are inter-
nally mapped to soft sorts (an optimised representation of unary predicates [34]), but this
is not corroborated by the data.

• Despite the proof reconstruction phase, the unsound encoding a achieved similar results
to the sound polymorphic encodings. In contrast, its monomorphic cousin ẽ is generally
no match for the sound monomorphic schemes.

• Oddly, the polymorphic prover Alt-Ergo performs significantly better on monomorphised
problems than on the corresponding polymorphic ones. This raises serious doubts about
the quality of the prover’s heuristics for instantiating type variables.

For the first benchmark set, Figure 4 presents the average number of clauses, literals per
clause, symbols per atom, and symbols for clausified problems (using E’s clausifier), to give
an idea of each encoding’s overhead. The striking point is the lightness of the monomorphic
encodings, as witnessed by the number of symbols. Because monomorphisation generates
several copies of the same formulae, we could have expected it to lead to larger problems,
but this underestimates the cost of encoding types as terms in the polymorphic encodings.5

The strong correlation between the success rates in Figure 3 and the average number of
symbols in Figure 4 confirms the expectation that clutter (whether type arguments, tags, or
guards) slows down automatic provers.

Independently of these empirical results, the new type encodings made an impact at the
2012 edition of CASC, the annual automatic prover competition [31]. Isabelle’s automatic
proof tools, including Sledgehammer, compete against the automatic provers LEO-II, Satal-
lax, and TPS in the higher-order division. Largely thanks to the new schemes (but also to
improvements in the underlying first-order provers), Isabelle moved from the third place it
had occupied since 2009 to the first place.

9. Related Work

The earliest descriptions of type tags and type guards we are aware of are due to Enderton [18,
§4.3] and Stickel [29, p. 99]. Wick and McCune [36, §4] compare type arguments, tags, and
guards in a monomorphic setting. Type arguments are described by Meng and Paulson [22],
who also consider full type erasure and polymorphic type tags and present a translation of
axiomatic type classes. As part of the MPTP project, Urban [33] extended the untyped
TPTP FOF syntax with dependent types to accommodate Mizar and designed translations
to plain FOF.

The intermediate verification language and tool Boogie 2 [21] supports a restricted
form of higher-rank polymorphism (with polymorphic maps), and Why3 [11] provides rank-
1 polymorphism. Both define translations to a monomorphic logic and rely on proxies to
handle interpreted types [12, 17, 21]. One of the Boogie translations [21, §3.1] uses SMT
triggers to prevent ill-typed instantiations in conjunction with type arguments; however,
this approach is risky in the absence of a semantics for triggers. Bouillaguet et al. [14, §4]

5The increase visible in the e column, from 89 to 125 clauses and from 1276 to 1757 symbols, is due to
the multiple copies arising from monomorphisation. Even though these become identical after type erasure,
they are counted as separate in the statistics, and it is up to the automatic provers to notice that they are
the same.

50 J. C. BLANCHETTE, S. BÖHME, A. POPESCU, AND N. SMALLBONE

showed that full type erasure is sound if all types can be assumed to have the same cardinality
and exploit this in the verification system Jahob.

An alternative to encoding polymorphic types or monomorphising them away is to
support them natively in the prover. This is ubiquitous in interactive theorem provers,
but perhaps the only production-quality automatic prover that supports polymorphism is
Alt-Ergo [10].

Blanchette and Krauss [6] studied monotonicity inferences for higher-order logic without
polymorphism. Claessen et al. [16] were first to apply them to type erasure.

10. Conclusion

This article introduced a family of translations from polymorphic into untyped first-order
logic, with a focus on efficiency. Our monotonicity-based encodings soundly erase all types
that are inferred monotonic, as well as most occurrences of the remaining types. The best
translations outperform the traditional encoding schemes.

We implemented the new translations in the Sledgehammer tool for Isabelle/HOL,
thereby addressing a recurring user complaint. Although Isabelle certifies external proofs,
unsound proofs are annoying and often conceal sound proofs. The same translation mod-
ule forms the core of Isabelle’s TPTP exporter tool, which makes entire theorem libraries
available to first-order reasoners. Our refinements to the monomorphic case have made their
way into the Monotonox translator [16]. Applications such as Boogie [21], LEO-II [2], and
Why3 [11] also stand to gain from lighter encodings.

The TPTP family recently welcomed the addition of TFF1 [7], an extension of the
monomorphic TFF0 logic with rank-1 polymorphism. Equipped with a concrete syntax and
translation tools, we can turn any popular automatic theorem prover into an efficient poly-
morphic prover. Translating the untyped proof back into a typed proof is usually straight-
forward, but there are important corner cases that call for more research. It should also be
possible to extend our approach to interpreted arithmetic.

From both a conceptual and an implementation point of view, the encodings are all
instances of a general framework, in which mostly orthogonal features can be combined in
various ways. Defining such a large number of encodings makes it possible to select the
most appropriate scheme for each automatic prover, based on empirical evidence. In fact,
using strategy scheduling or parallelism, it is advantageous to have each prover employ a
combination of encodings with complementary strengths.

Acknowledgement

Koen Claessen and Tobias Nipkow made this collaboration possible. Lukas Bulwahn, Peter
Lammich, Rustan Leino, Tobias Nipkow, Nir Piterman, Alexander Steen, Mark Summerfield,
Tjark Weber, and several anonymous reviewers suggested dozens of textual improvements; in
particular, the three reviewers of this extended, journal version accomplished a remarkable
work, going well beyond the call of duty. Blanchette was partly supported by the Deutsche
Forschungsgemeinschaft (DFG) projects Quis Custodiet and Hardening the Hammer (grants
NI 491/11-2 and NI 491/14-1). Popescu was partly supported by the DFG project Security
Type Systems and Deduction (grant NI 491/13-2) as part of the program Reliably Secure
Software Systems (RS3, priority program 1496). The authors are listed alphabetically.

ENCODING MONOMORPHIC AND POLYMORPHIC TYPES 51

References

[1] Bachmair, L., Ganzinger, H., Lynch, C., Snyder, W.: Basic paramodulation. Inf. Comput. 121(2),
172–192 (1995)

[2] Benzmüller, C., Paulson, L.C., Theiss, F., Fietzke, A.: LEO-II—A cooperative automatic theorem
prover for higher-order logic. In: A. Armando, P. Baumgartner, G. Dowek (eds.) IJCAR 2008, LNAI,
vol. 5195, pp. 162–170. Springer (2008)

[3] Blanchette, J.C., Böhme, S., Paulson, L.C.: Extending Sledgehammer with SMT solvers. J. Autom.
Reasoning 51(1), 109–128 (2013)

[4] Blanchette, J.C., Böhme, S., Popescu, A., Smallbone, N.: Empirical data associated with this article.
http://www21.in.tum.de/~blanchet/enc_types_data_lmcs.tar.gz (2012)

[5] Blanchette, J.C., Böhme, S., Popescu, A., Smallbone, N.: Encoding monomorphic and polymorphic
types. In: N. Piterman, S. Smolka (eds.) TACAS 2013, LNCS, vol. 7795, pp. 493–507. Springer (2013)

[6] Blanchette, J.C., Krauss, A.: Monotonicity inference for higher-order formulas. J. Autom. Reasoning
47(4), 369–398 (2011)

[7] Blanchette, J.C., Paskevich, A.: TFF1: The TPTP typed first-order form with rank-1 polymorphism.
In: M.P. Bonacina (ed.) CADE-24, LNAI, vol. 7898, pp. 414–420. Springer (2013)

[8] Blanchette, J.C., Popescu, A.: Mechanizing the metatheory of Sledgehammer. In: P. Fontaine,
C. Ringeissen, R.A. Schmidt (eds.) FroCoS 2013, LNCS, vol. 8152, pp. 245–260. Springer (2013)

[9] Blanchette, J.C., Popescu, A., Wand, D., Weidenbach, C.: More SPASS with Isabelle—Superposition
with hard sorts and configurable simplification. In: L. Beringer, A. Felty (eds.) ITP 2012, LNCS, vol.
7406, pp. 345–360. Springer (2012)

[10] Bobot, F., Conchon, S., Contejean, E., Lescuyer, S.: Implementing polymorphism in SMT solvers. In:
C. Barrett, L. de Moura (eds.) SMT 2008 (2008)

[11] Bobot, F., Filliâtre, J.C., Marché, C., Paskevich, A.: Why3: Shepherd your herd of provers. In: K.R.M.
Leino, M. Moskal (eds.) Boogie 2011, pp. 53–64 (2011)

[12] Bobot, F., Paskevich, A.: Expressing polymorphic types in a many-sorted language. In: C. Tinelli,
V. Sofronie-Stokkermans (eds.) FroCoS 2011, LNCS, vol. 6989, pp. 87–102. Springer (2011)

[13] Böhme, S., Nipkow, T.: Sledgehammer: Judgement Day. In: J. Giesl, R. Hähnle (eds.) IJCAR 2010,
LNAI, vol. 6173, pp. 107–121. Springer (2010)

[14] Bouillaguet, C., Kuncak, V., Wies, T., Zee, K., Rinard, M.: Using first-order theorem provers in the
Jahob data structure verification system. In: B. Cook, A. Podelski (eds.) VMCAI 2007, LNCS, vol.
4349, pp. 74–88. Springer (2007)

[15] Claessen, K., Lillieström, A.: Automated inference of finite unsatisfiability. J. Autom. Reasoning 47(2),
111–132 (2011)

[16] Claessen, K., Lillieström, A., Smallbone, N.: Sort it out with monotonicity—Translating between many-
sorted and unsorted first-order logic. In: N. Bjørner, V. Sofronie-Stokkermans (eds.) CADE-23, LNAI,
vol. 6803, pp. 207–221. Springer (2011)

[17] Couchot, J.F., Lescuyer, S.: Handling polymorphism in automated deduction. In: F. Pfenning (ed.)
CADE-21, LNAI, vol. 4603, pp. 263–278. Springer (2007)

[18] Enderton, H.B.: A Mathematical Introduction to Logic. Academic Press (1972)
[19] Hodges, W.: Model Theory. Cambridge University Press (1993)
[20] Hurd, J.: First-order proof tactics in higher-order logic theorem provers. In: M. Archer, B. Di Vito,

C. Muñoz (eds.) Design and Application of Strategies/Tactics in Higher Order Logics, no. CP-2003-
212448 in NASA Tech. Reports, pp. 56–68 (2003)

[21] Leino, K.R.M., Rümmer, P.: A polymorphic intermediate verification language: Design and logical
encoding. In: J. Esparza, R. Majumdar (eds.) TACAS 2010, LNCS, vol. 6015, pp. 312–327. Springer
(2010)

[22] Meng, J., Paulson, L.C.: Translating higher-order clauses to first-order clauses. J. Autom. Reasoning
40(1), 35–60 (2008)

[23] de Moura, L., Bjørner, N.: Z3: An efficient SMT solver. In: C.R. Ramakrishnan, J. Rehof (eds.) TACAS
2008, LNCS, vol. 4963, pp. 337–340. Springer (2008)

[24] Nipkow, T., Klein, G.: Concrete Semantics—with Isabelle/HOL. Springer (2014)
[25] Nipkow, T., Paulson, L.C., Wenzel, M.: Isabelle/HOL: A Proof Assistant for Higher-Order Logic, LNCS,

vol. 2283. Springer (2002)

http://www21.in.tum.de/~blanchet/enc_types_data_lmcs.tar.gz

52 J. C. BLANCHETTE, S. BÖHME, A. POPESCU, AND N. SMALLBONE

[26] Paulson, L.C., Susanto, K.W.: Source-level proof reconstruction for interactive theorem proving. In:
K. Schneider, J. Brandt (eds.) TPHOLs 2007, LNCS, vol. 4732, pp. 232–245. Springer (2007)

[27] Riazanov, A., Voronkov, A.: The design and implementation of Vampire. AI Comm. 15(2-3), 91–110
(2002)

[28] Schulz, S.: System description: E 0.81. In: D. Basin, M. Rusinowitch (eds.) IJCAR 2004, LNAI, vol.
3097, pp. 223–228. Springer (2004)

[29] Stickel, M.E.: Schubert’s steamroller problem: Formulations and solutions. J. Autom. Reasoning 2(1),
89–101 (1986)

[30] Sutcliffe, G.: The TPTP problem library and associated infrastructure—The FOF and CNF parts,
v3.5.0. J. Autom. Reasoning 43(4), 337–362 (2009)

[31] Sutcliffe, G.: Proceedings of the 6th IJCAR ATP system competition (CASC-J6). In: G. Sutcliffe (ed.)
CASC-J6, EPiC, vol. 11, pp. 1–50. EasyChair (2012)

[32] Sutcliffe, G., Schulz, S., Claessen, K., Baumgartner, P.: The TPTP typed first-order form with arith-
metic. In: N. Bjørner, A. Voronkov (eds.) LPAR-18, LNCS, vol. 7180, pp. 406–419. Springer (2012)

[33] Urban, J.: MPTP 0.2: Design, implementation, and initial experiments. J. Autom. Reasoning 37(1-2),
21–43 (2006)

[34] Weidenbach, C.: Combining superposition, sorts and splitting. In: A. Robinson, A. Voronkov (eds.)
Handbook of Automated Reasoning, vol. 2, pp. 1965–2013. Elsevier (2001)

[35] Wenzel, M.: Type classes and overloading in higher-order logic. In: E.L. Gunter, A. Felty (eds.) TPHOLs
1997, LNCS, vol. 1275, pp. 307–322. Springer (1997)

[36] Wick, C.A., McCune, W.W.: Automated reasoning about elementary point-set topology. J. Autom.
Reasoning 5(2), 239–255 (1989)

This work is licensed under the Creative Commons Attribution-NoDerivs License. To view
a copy of this license, visit http://creativecommons.org/licenses/by-nd/2.0/ or send a
letter to Creative Commons, 171 Second St, Suite 300, San Francisco, CA 94105, USA, or
Eisenacher Strasse 2, 10777 Berlin, Germany

	1. Introduction
	2. Background: Logics
	2.1. Polymorphic First-Order Logic
	2.2. Monomorphic First-Order Logic
	2.3. Untyped First-Order Logic
	2.4. Type Encodings

	3. Traditional Type Encodings
	3.1. Full Type Erasure
	3.2. Type Arguments
	3.3. Type Tags
	3.4. Type Guards

	4. Cover-Based Encodings of Polymorphism
	4.1. Cover-Based Type Guards
	4.2. Cover-Based Type Tags
	4.3. Polymorphic Löwenheim–Skolem

	5. Monotonicity-Based Type Encodings — The Monomorphic Case
	5.1. Monotonicity
	5.2. Monotonicity Inference
	5.3. Encoding Nonmonotonic Types
	5.4. Monotonicity-Based Type Tags
	5.5. Monotonicity-Based Type Guards
	5.6. Heuristic Monomorphisation

	6. Complete Monotonicity-Based Encodings of Polymorphism
	6.1. Complete Monomorphisation
	6.2. Monotonicity
	6.3. Monotonicity Inference
	6.4. General Strategy
	6.5. Monotonicity-Based Type Tags
	6.6. Monotonicity-Based Type Guards

	7. Implementation
	7.1. Heuristic Monomorphisation Algorithm
	7.2. Extension to Higher-Order Logic
	7.3. Infinite Types and Constructors
	7.4. Proof Reconstruction

	8. Evaluation
	9. Related Work
	10. Conclusion
	Acknowledgement
	References

