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Abstract. Random resolution, defined by Buss, Kolodziejczyk and Thapen (JSL, 2014),
is a sound propositional proof system that extends the resolution proof system by the
possibility to augment any set of initial clauses by a set of randomly chosen clauses (modulo
a technical condition). We show how to apply the general feasible interpolation theorem
for semantic derivations of Kraj́ıček (JSL, 1997) to random resolution. As a consequence
we get a lower bound for random resolution refutations of the clique-coloring formulas.

1. Introduction

Assume A1, . . . , Am, B1, . . . , Bℓ is an unsatisfiable set of clauses in variables partitioned into
three disjoint sets p, q and r, with clauses Ai containing only variables from p and q while
clauses Bj contain only variables from p or r.

Feasible interpolation for resolution [6, Thm.6.1] says that if the set has a resolution

refutation with k clauses then there is a circuit of size1 knO(1), where n is the number of
variables p, with inputs p that outputs 1 on all p := a ∈ {0, 1}n for which

∧

iAi(a,q) is
satisfiable and 0 on all a for which

∧

j Bj(a, r) is satisfiable. Moreover, if variables p occur
only positively in clauses Ai then the interpolating circuit can be required to be monotone.

The monotone version can then be applied to the clique-coloring clauses [6, Def.7.1]
where there are

(n
2

)

variables p indexed by unordered pairs i, j of different elements from
[n] := {1, . . . , n}, ω · n variables q indexed by elements of [ω] × [n] and n · ξ variables r

indexed by elements of [n]× [ξ], with n ≥ ω > ξ ≥ 1:

(1) {qu1, . . . , qun}, for each u ∈ [ω]
(2) {¬qui,¬qvi}, for u 6= v ∈ [ω] and i ∈ [n]
(3) {¬qui,¬qvj , pij}, for u 6= v ∈ [ω] and i 6= j ∈ [n]
(4) {ri1, . . . , riξ}, for each i ∈ [n]
(5) {¬riu,¬riv}, for each u 6= v ∈ [ξ] and i ∈ [n]
(6) {¬riv,¬rjv,¬pij}, for v ∈ [ξ] and i 6= j ∈ [n]

2012 ACM CCS: [Theory of computation]: ???
1The bound kn

O(1) is derived from a general interpolation theorem for semantic derivations whose frame-
work we also use below; a bit better bound (proportional to the size of the refutation and hence O(kn)) can
be proved by resolution specific arguments.
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The clauses in the first three items comprise the set Cliquen,ω and the clauses in the last
three items comprise the set Colorn,ξ, They have only variables p in common and these
occur only positively in Cliquen,ω. The assignments a to p for which Cliquen, ω(a,q)
is satisfiable can be identified with undirected graphs on [n] without loops and having a
clique of size at least ω while those a for which Colorn,ξ(a, r) is satisfiable are ξ-colorable
graphs. Hence Cliquen,ω ∪ Colorn,ξ is unsatisfiable as ξ < ω and the monotone feasible
interpolation combined with the Alon-Boppana [1] exponential lower for monotone circuits
separating the two classes of graphs implies that all resolution refutations of the set must
have an exponential number of clauses, cf.[6, Sec.7].

Buss, Kolodziejczyk and Thapen [3, Sec.5.2] defined the notion of δ-random resolution
(the definition is attributed in [3] to S. Dantchev). The motivation for introducing the proof
system came from bounded arithmetic; the proof system simulates an interesting theory. A
δ-random resolution refutation distribution of a set of clauses Ψ ([3] considers only narrow
clauses because of the specific problem studied there) is a random distribution (πs,∆s)s such
that πs is a resolution refutation of Ψ ∪∆s, and where the following technical condition is
satisfied:

• any fixed truth assignment to all variables satisfies the set of clauses ∆s with probability
at least 1− δ.

The number of clauses in such a random refutation is the maximal number of clauses among
all πs. Note that it is a sound proof system in the sense that any refutable set Ψ is indeed
unsatisfiable: if a would be a satisfying assignment for Ψ then, by the condition above, a
would satisfy also some ∆s and hence πs would be a resolution refutation of a satisfiable
set of clauses which is impossible. Variants of the definition of this proof system and its
properties are studied in [10].

The presence of the clauses ∆s spoils the separation of the q and r variables in initial
clauses and this seems to prohibit any application of the feasible interpolation method.
The point of this note is to show that, in fact, the construction behind the general feasible
interpolation theorem [6] for semantic derivations based on communication complexity does
apply here fairly straightforwardly.

We recall some feasible interpolation preliminaries from [6] in Section 2. In Section
3 we prove monotone feasible interpolation for random resolution and this will yield the
following lower bound for random resolution refutations of the clique-coloring clauses.

Theorem 1.1. Let n ≥ ω > ξ ≥ 1 and ξ1/2ω ≤ 8n/ log n. Assume δ < 1 and let (πs,∆s)s
be a δ-random resolution refutation distribution of Cliquen,ω ∪Colorn,ξ with k clauses. Put

d := maxs |∆s|.
Then:

(1) If dδ < 1 then k ≥ (1− dδ1/2)nΩ(ξ1/2).

(2) k ≥ min(1/(2δ1/2), nΩ(ξ1/2)).

The proof of this theorem will be given at the end of Section 3. We only remark that for
tree-like refutations a feasible interpolation via ordinary randomized Karchmer-Wigderson
protocols follows from [6] immediately and it yields an exponential lower bound for formulas
formalizing Hall’s theorem as described in [7, Sec.4].

We will give below a detailed formulation of constructions from [6] needed here but
we will not repeat the arguments from that paper. For more general background on proof
complexity the reader may consult [5, 9].
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2. Feasible interpolation via protocols

We review the needed material from [6] just for the case of monotone interpolation and the
clique-coloring clauses (but it is quite representative). Identify undirected graphs without

loops on [n] with strings from {0, 1}(
n
2). Note that indices of p variables correspond to

pairs of different vertices and hence the truth value an assignment a gives to a particular
p-variable indicates whether or not the edge corresponding to the variable is in the graph
a.

Let U ⊆ {0, 1}(
n
2) be the set of graphs having a clique of size at least ω and let V ⊆

{0, 1}(
n
2) be the set of ξ-colorable graphs. Let the monotone Karchmer- Wigderson function

KWm(u, v) be a multi-function defined on U×V whose valid value on a pair (u, v) ∈ U×V
is any edge (i.e. unordered pair i 6= j ∈ [n]) that is present in u but not in v.

The method in [6] extracts from a resolution refutation of Cliquen,ω∪Colorn,ξ a protocol
for a communication between two players, one holding u and the other one v, who want to
find a valid value for KWm(u, v). The protocols in [6] are, however, more complex than
just binary trees as in the ordinary communication complexity set-up of [4].

A monotone protocol for computing KWm in the sense of [6, Def.2.2] is a 4-tuple
(G, lab, F, S) satisfying the following conditions:

(1) G is a directed acyclic graph that has one root (the in-degree 0 node) denoted ∅.
(2) The nodes with the out-degree 0 are leaves and they are labelled by the mapping lab.

The mapping lab assigns an element of [
(

n
2

)

] (i.e., a potential edge) to each leaf in G.
(3) S(u, v, x) is a function (called the strategy) that assigns to a node x ∈ G and a pair

u ∈ U and v ∈ V a node S(u, v, x) reachable from the node x by one edge.
(4) For every u ∈ U and v ∈ V , F (u, v) ⊆ G is a set (called the consistency condition)

satisfying:
(a) ∅ ∈ F (u, v),
(b) x ∈ F (u, v) −→ S(u, v, x) ∈ F (u, v),
(c) if x ∈ F (u, v) is a leaf and lab(x) = {i, j}, then ui,j = 1 ∧ vi,j = 0 holds.

The size of (G, lab, F, S) is the cardinality of G and its communication complexity is the
minimal t such that for every x ∈ G the communication complexity for the players (one
knowing u and x, the other one v and x) to decide x ∈? F (u, v) or to compute S(u, v, x) is
at most t.

Put s := n · ω and identify strings from {0, 1}s with assignments to q-variables, and
similarly put t := n · ξ and identify strings from {0, 1}t with assignments to r-variables. For
any u ∈ U fix qu ∈ {0, 1}s such that (u, qu) satisfies all clauses from Cliquen,ω and for v ∈ V
fix rv ∈ {0, 1}t such that (v, rv) satisfies all clauses of Colorn,ξ.

The protocol (G, lab, F, S) for KWm constructed in [6, Thm.5.1 and Thm.6.1] from a
resolution refutation π of Cliquen,ω ∪ Colorn,ξ having k steps has k +

(

n
2

)

nodes: k nodes

corresponding to the clauses of π are the inner nodes and
(n
2

)

other nodes are the leaves and

these are labelled by the
(n
2

)

possible values of the multi-function KWm. The consistency
condition x ∈ F (u, v) for a node x corresponding to a clause C of π is defined by the
condition that the assignment (v, qu, rv) falsifies C, and for a leaf by the condition that the
label is a valid value of KWm for the pair (u, v). The strategy S (whose exact definition
we do not need) navigates from the root (the end-clause of π) through π towards the initial
clauses and the construction shows that sooner or later it encounters a situation that allows
it to compute a valid value of KWm and move to the leaf with the appropriate label.
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The construction is fairly general and we shall formulate in Theorem 2.1 its one particular
feature.

For a set ∆ of clauses in variables p,q and r define a multifunction F∆ on U ×V whose
valid value on a pair (u, v) is any valid value of KWm(u, v) and also a new value ⊥ provided

that (v, qu, rv) falsifies some clause in ∆. Note the similarity of the condition permitting
the value ⊥ with the consistency condition in the protocol just discussed.

Now we recall a particular fact about the existence of protocols provided by the con-
structions in the proofs of [6, Thm.5.1 and Thm.6.1] (again we restrict ourselves to the
clique-coloring formulas and the monotone case).

Theorem 2.1 ([6]). Assume that ∆ is a set of clauses in variables p,q and r and that π
is a resolution refutation of the set Cliquen,ω ∪ Colorn,ξ ∪∆ and that π has k steps.

Then there is a protocol (G, lab, F, S) for F∆ of size k +
(

n
2

)

whose strategy has the

communication complexity at most 2 + 2 log n and whose consistency condition has the

communication complexity 2.
Further, the existence of a protocol for KWm on U ′ × V ′ ⊆ U × V of size k′ and

monotone communication complexity O(log n) implies the existence of a monotone circuit

of size at most k′ · nO(1) separating U ′ from V ′.

The part about the existence of a circuit is in [6] proved using a result from [11]; a
stand alone proof can be found in [8, Sec.2.4].

3. The lower bound

For (u, v) ∈ U×V define w(u, v) := (v, qu, rv) and for X ⊆ U and Y ⊆ V define W (X,Y ) ⊆

{0, 1}(
n
2) × {0, 1}s × {0, 1}t to be the set of all tuples w(u, v) for (u, v) ∈ X × Y .

Assume (πs,∆s)s is a δ-random resolution refutation distribution of clauses Cliquen,ω∪
Colorn,ξ having k steps. For a sample s define the set Bads ⊆ U×V to be the set of all pairs
(u, v) ∈ U × V such that the assignment w(u, v) falsifies some clause in ∆s. An averaging
argument implies the following statement.

Lemma 3.1. There exists sample s such that |Bads| < δ|U × V |.

Fix for the rest of the paper one such s. Denote by (G, lab, F, S) the protocol for F∆s

constructed from πs as described in Theorem 2.1. Put d := |∆s|.

Lemma 3.2. There exists U ′ ⊆ U and V ′ ⊆ V such that:

(1) (U ′ × V ′) ∩Bads = ∅.
(2) |U ′| ≥ (1− dδ1/2)|U | and |V ′| ≥ (1− dδ1/2)|V |.

Proof. Claim 1: The set Bads is a union of at most d′ rectangles Ui × Vi ⊆ U × V , for

1 ≤ d′ ≤ d.

For a clause D let False(D) is the set of all (u, v) ∈ U × V such that w(u, v) falsifies
D. We have that

Bads =
⋃

D∈∆s

False(D) .

But for each of at most d possible D the set False(D) is a combinatorial rectangle as it
consists of all pairs (u, v) ∈ U × V satisfying two separate conditions for u and v: that qu

makes all q-literals in D false and that v, rv makes all p- and r-literals in D false.
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Let µi be the measure of Ui × Vi in U × V (and so µi < δ). The following is obvious.

Claim 2: For each i ≤ d′, either |Ui| ≤ µ
1/2
i |U | or |Vi| ≤ µ

1/2
i |V |.

We are now ready to prove the lemma. Consider the following process. For i = 1, . . . , d′

delete from U all elements in Ui, if |Ui| ≤ µ
1/2
i |U |, otherwise delete from V all elements of

Vi. Let U ′ and V ′ be what remains of U and V , respectively. Because we deleted one side
of every rectangle Ui × Vi, all of them have the empty intersection with U ′ × V ′.

The measure of U \ U ′ in U , as well as the measure of V \ V ′ in V , is bounded above

by
∑

i≤d′ µ
1/2
i < dδ1/2.

Lemma 3.3. There exists a monotone protocol for KWm on U ′×V ′ of size at most k+
(n
2

)

and of communication complexity at most O(log n).

Proof. Take the protocol (G, lab, F, S) for F∆s
described before Lemma 3.2. By the defini-

tion of the sets U ′ and V ′ the multifunction F∆s
restricted to U ′ × V ′ is just KWm (the

condition permitting the extra value ⊥ is never satisfied).

Proof of Theorem 1.1:

The proof of the nΩ(ξ1/2) lower bound from [1] for monotone circuits separating U from
V culminates by comparing two quantities with the sizes of U and V , respectively (see the
elementary presentation in [2, Sec.4.3]). The same argument applies also to separations of
any U ′ ⊆ U from any V ′ ⊆ V and the resulting lower bound just gets multiplied by the
smaller of the two measures |U ′|/|U | and |V ′|/|V |.

By Lemmas 3.2 and 3.3 we have two sets U ′, V ′ of relative measures at least (1− dδ1/2)
and a monotone protocol for KWm on them of the size at most k+

(n
2

)

and communication
complexity O(log n). By Theorem 2.1 this yields a monotone circuit separating U ′ from V ′

of size knO(1). Hence it must hold:

knO(1) ≥ (1− dδ1/2)nΩ(ξ1/2)

which entails the first inequality in Theorem 1.1. The second follows from the first one by
estimating d ≤ k: if k ≤ 1/(2δ1/2) then the factor (1 − dδ1/2) is at least 1/2 and the lower

bound nΩ(ξ1/2) follows.

Acknowledgements: I thank E. Jeřábek, P. Pudlák and N. Thapen for comments on early
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