Logical Methods in Computer Science
Vol. 13(1:6)2017, pp. 1-56 Submitted Oct. 16, 2015
www.lmcs-online.org Published Feb. 6,2016

COMPLEXITY OF CONDITIONAL TERM REWRITING*

CYNTHIA KOP *, AART MIDDELDORP ®, AND THOMAS STERNAGEL®

@ Department of Computer Science, University of Copenhagen, Denmark
e-mail address: kop@di.ku.dk

b¢ Department of Computer Science
University of Innsbruck, Austria
e-mail address: {aart.middeldorp, thomas.sternagel }@Quibk.ac.at

ABSTRACT. We propose a notion of complexity for oriented conditional rewrite systems
satisfying certain restrictions. This notion is realistic in the sense that it measures not
only successful computations, but also partial computations that result in a failed rule
application. A transformation to unconditional context-sensitive rewrite systems is pre-
sented which reflects this complexity notion, as well as a technique to derive runtime and
derivational complexity bounds for the result of this transformation.

1. INTRODUCTION

Conditional term rewriting [31, Chapter 7] is a well-known computational paradigm. First
studied in the eighties and early nineties of the previous century, in more recent years
transformation techniques have received a lot of attention. Various automatic tools for
(operational) termination [12], 22| [32] as well as confluence [34] have been developed.

In this paper we consider the following question: What is the greatest number of steps
that can be done when evaluating terms, for starting terms of a given size? For unconditional
rewrite systems this question has been investigated extensively and numerous techniques
have been developed that give an upper bound on the resulting notions of derivational and
runtime complexity (e.g. [6l 15l 16l 25] 26]). Tools that support complexity methods ([4} 29,
39]) are under active development and compete annually in the complexity competitionﬂ

We are not aware of any techniques or tools for conditional (derivational and runtime)
complexity—or indeed, even of a definition for conditional complexity. This may be for
a good reason, as it is not obvious what such a definition should be. Of course, simply

2012 ACM CCS: [Theory of computation]: Logic—Equational logic and rewriting.
Key words and phrases: conditional term rewriting, complexity.
* This article is an extended version of [I7], with a more elegant transformation including a completeness
proof in Section [5| and a drastic extension of the interpretation-based methods in Sections
This research was supported by the Austrian Science Fund (FWF) project 1963 and partially supported
by the Marie Sklodowska-Curie action “HORIP”, program H2020-MSCA-IF-2014, 658162.
¢ Cynthia Kop’s former affiliation: Department of Computer Science, University of Insbruck, Austria.

"http://cbr.uibk.ac.at/competition/

|IEE| LOGICAL METHODS © C. Kop, A. Middeldorp, and T. Sternagel
IN COMPUTER SCIENCE DOI:10.23638/LMCS-13(1:6)2017 © Creative Commons

http://cbr.uibk.ac.at/competition/
http://creativecommons.org/about/licenses

2 C. KOP, A. MIDDELDORP, AND T. STERNAGEL

counting steps without taking the conditions into account will not do. Counting successful
rewrite steps both in the reduction and in the evaluation of conditions is a natural idea. This
two-dimensional view is seen for instance in studies of (operational) termination [21} 22]
and certain transformations from conditional rewrite systems to unconditional ones (e.g.,
unravelings [23] 31]). However, we will argue that this approach—considering only the
successful evaluation steps—still gives rise to an unrealistic notion of complexity. Modern
rewrite engines like Maude [7] that support conditional rewriting can spend significant
resources on evaluating conditions that in the end prove to be useless for rewriting the term
at hand. This should be taken into account when defining complexity.

Contribution. We propose a new notion of conditional complexity for a relatively large
class of reasonably well-behaved conditional rewrite systems. This notion aims to capture
the maximal number of rewrite steps that can be performed when reducing a term to nor-
mal form, including the steps that were computed but turned out to be ultimately not
useful. In order to reuse existing methodology for deriving complexity bounds, we present
a transformation into unconditional rewrite systems that can be used to estimate the con-
ditional complexity, building on the ideas of structure-preserving transformations [II, 8] but
including several new ideas. The transformed system is context-sensitive (Lucas [19, 20]),
which is not yet supported by current complexity tools; however, ignoring the corresponding
restrictions, we still obtain an upper bound on the conditional complexity.

Organization. The remainder of the paper is organized as follows. In the next section
we recall some preliminaries. Based on the analysis of conditional complexity in Section
we introduce our new notion formally in Section Section [5| presents a transformation
to context-sensitive rewrite systems, and in Section we present an interpretation-based
method targeting the resulting systems, as well as two optimizations of the technique to
demonstrate that we can obtain tight bounds on realistic systems. Section [J] concludes with
initial experiments, related work, and suggestions for future work.

2. PRELIMINARIES

We assume familiarity with (conditional) term rewriting and all that (e.g., [5, 31 [36]) and
only shortly recall important notions that are used in the following.

In this paper we consider oriented conditional (term) rewrite systems (CTRSs for short).
Conditional rewrite rules have the form ¢ — r <= ¢, where cis a sequence a1 = by, ..., a; = by
of equations. An oriented CTRS is a set R of conditional rules. The rewrite relation —g
associated with R is formally defined as the union of a series of approximations —,, where
e Ry =0,

e Rijn={loc—ro|l—=r<ceRandac —5 boforalla=bec}

In the sequel we will primarily use the observation that s —5 ¢ if and only if there exist a
position p in s, a rule £ — r <= ¢ in R, and a substitution ¢ such that s|, = lo, t = s[ro],,
and R = co, where the latter denotes that ac —% bo for all a = b € c. We may write s St
for a rewrite step at the root position and s =5t for a non-root step.

Given a (C)TRS R over a signature F, the root symbols of left-hand sides of rules in
R are called defined symbols and every other symbol in F is a constructor symbol. These
sets are denoted by Fp and F¢, respectively. For a given symbol f, we write R[f for the
set of rules in R whose left-hand sides have root symbol f. A constructor term consists of

COMPLEXITY OF CONDITIONAL TERM REWRITING 3

constructor symbols and variables. A basic term is a term f(t1,...,t,) where f € Fp and
t1,...,t, are constructor terms. We call R semi-finite if R|f is finite for every f € Fp.
Let 3(F,V) be the set of substitutions mapping to 7 (F,V). For substitutions o and 7 we
write 0 =% 7 to denote o(x) =% 7(x) for all variables x € V. A term s is terminating if
there is no infinite reduction s - s1 =R S2 =g ---. A normal form is a term s such that
there is no term ¢ with s —x t. We say that ¢ is a normal form of s if s =7 ¢ and ¢ is a
normal form. Note that it is possible for a normal form to instantiate the left-hand side of
a rule, which is not true for TRSs.

A (C)TRS is finitely branching if there are only finitely many distinct terms reachable
in one rewrite step from any given term. All semi-finite (C)TRSs are finitely branching,
but they may have an infinite signature. Given a terminating and finitely branching TRS
R over a signature F, the derivation height of a term t is defined as dh(t) = max{n |
t —™ u for some term w}. This leads to the notion of derivational complexity deg(n) =
max {dh(t) | |t| < n}, where |¢| is the number of symbols occurring in ¢. If we restrict the
definition to basic terms ¢ we get the notion of runtime complezity rcg(n) [14].

Rewrite rules £ — r < ¢ of CTRSs are classified according to the distribution of
variables among ¢, r, and c¢. In this paper we consider 3-CTRSs, where the rules satisfy
Var(r) C Var({,c). A CTRS R is deterministic if for every rule { — r <= a1 = by, ..., a; = by
in R we have Var(a;) C Var({,by,...,bi—1) for 1 <i < k.

We write s = ¢ if there exist a position pin s, arule £ — r < a; ~ by, ..., a; ~ by, a
substitution o, and an index 1 < i < k such that s|, = (o, ajo —* bjo forall 1 < j <1, and
t = ajo. A CTRS is quasi-decreasing if there exists a well-founded order > with the subterm
property (i.e., > C > where si>t if t is a proper subterm of s) such that both — and 2> are
included in > [9]. We additionally define here that a term s is quasi-decreasing if there is no
infinite sequence s = ug (— U =) ug (= U 2) ---. Clearly, a CTRS is quasi-decreasing if
and only if all its terms are, but individual terms may be quasi-decreasing even if the CTRS
is not. Quasi-decreasingness ensures termination and, for finite CTRSs, computability of the
rewrite relation. Quasi-decreasingness coincides with operational termination [21]. We call
a CTRS constructor-based if the right-hand sides of conditions as well as proper subterms
of the left-hand sides of rules are constructor terms.

Limitations. We restrict ourselves to constructor-based deterministic 3-CTRSs, where the
right-hand sides of conditions use only variables not occurring in the left-hand side or in

earlier conditions. That is, for every rule f(¢1,...,0,) > 1< a1 = by,...,a = by € R:

e (1,...,0,,b1,..., b, are constructor terms without common variables,

e Var(r) CVar(ly,...,ln,b1,...,br) and Var(a;) C Var(ly, ..., 0y, b1,...,bi—1) for 1 <i <
k.

We will call such systems CCTRSs. Furthermore, we will focus on strong CCTRSs: semi-
finite CCTRSs such that, for every rule f(¢1,...,4,) = 1r<ay = by,...,ap = by € R,

o f(l1,...,4,) and by,..., by are linear terms: no variable occurs more than once in them.

Note that, even in strong CCTRSs, the left-hand sides of conditions are not required to be
linear. We will develop a complexity notion for the general case of CCTRSs, but limit the
work on transformations (in Section [5{and beyond) to strong CCTRSs. We will particularly
consider confluent CCTRSs. While confluence is not needed for the formal development
in this paper, without it the complexity notion we define is not meaningful, as discussed
below.

4 C. KOP, A. MIDDELDORP, AND T. STERNAGEL

To appreciate the limitations, note that in CTRSs which are not deterministic 3-CTRSs,
the rewrite relation is undecidable in general, which makes it hard to define what complexity
means. The restrictions with regards to variables and constructors in strong CCTRSs are the
natural extension of the common restriction to left-linear constructor TRSs in unconditional
rewriting. They closely correspond to pattern guards [10], a language extension of Haskell.
Semi-finiteness actually weakens the standard restriction that R must be finite.

The limitation to CCTRSs is important because, in confluent CCTRSs, the approach to
computation is unambiguous: To evaluate whether a term ¢o reduces with a rule ¢/ — r <
a1 ~ by,...,a; = b, of a CCTRS, we start by reducing a;o and, finding an instance of by,
extend o to the new variables in by resulting in ¢/, continue with aso’, and so on. Assuming
confluence, if there is an extension of ¢ which satisfies all conditions then, no matter how
we reduce, this procedure will either find it or—if o is not quasi-decreasing—enter into
an infinite reduction, a possibility which is also interesting from a complexity standpoint.
However, if confluence or any of the restrictions on the conditions were dropped, this would
no longer be the case and we might be unable to verify the applicability of a rule without
enumerating all possible reducts of its conditions. The restrictions are needed to obtain
Lemma which will be essential to justify the way we handle failure.

We do not limit interest to quasi-decreasing CCTRSs—which would correspond to the
usual approach of limiting interest to terminating TRSs in the unconditional setting—but
will rather define the complexity of non-quasi-decreasing terms to be infinite. This is done
in order to unify proof efforts, especially for Theorem [5.12

Example 2.1. The CTRS Ry, consisting of the rewrite rules

O+y—uy (2.1) fib(0) — (0,s(0)) (2.3)
s(x)+y—s(z+y) (2.2) fib(s(z)) — (z,w) < fib(z) = (y,2), y+z~w (2.4)
is a quasi-decreasing and confluent strong CCTRS. The requirements for quasi-decreasingness
are satisfied (e.g.) by the lexicographic path order with precedence fib > (-,-) > + >s. Be-

cause the 3-CTRS Ry is orthogonal, right-stable, and properly oriented, confluence follows
from the result of [35].

Notation. To simplify the notation and shorten proofs, we will use the following convention
throughout the paper. Given a rule p: £ — r < ¢,

e the conditional part ¢ consists of the conditions a; ~ by, ..., ax = by for some & > 0
(which depends on p),

e for all 0 < j <k, cf denotes the sequence a1 ~ by, ..., a; = b;.
In addition, we will sometimes refer to ¢ as by and to r as aj41.
With these conventions, the limitations on rules can be reformulated as follows. For
every rule £ — r < ¢:
e b1,...,b; and the proper subterms of by are constructor terms,

e Var(b;) N Var(b;) = @ for all 0 < 4,5 < k with ¢ # j and, in a strong CCTRS, the terms
bg, ..., by are linear,

e Var(a;) C Var(bg,...,bi—1) forall 1 <i < k+ 1.

COMPLEXITY OF CONDITIONAL TERM REWRITING 5

3. ANALYSIS

Before we can define a notion of complexity, we must consider a model of computation.
Unlike unconditional term rewriting, it is not obvious how a term in a CTRS is reduced to
normal form. Even taking the approach for confluent CCTRSs sketched in Section [2] as a
basis, some unresolved questions remain. In this section, we will study both computation
and complexity by an appeal to intuition. In the next section we will formalize the results.

We start our analysis with a deceivingly simple CCTRS to illustrate that the notion of
complexity for conditional systems is not obvious.

Example 3.1. The CCTRS Reyen consists of the following six rewrite rules:

even(0) — true (3.1) odd(0) — false (3.4)
even(s(z)) — true < odd(x) ~ true (3.2) odd(s(z)) — true < even(x) ~ true (3.5)
even(s(z)) — false < even(x) ~ true (3.3) odd(s(z)) — false < odd(x) ~ true (3.6)

If, like in the unconditional case, we count the number of steps needed to normalize a
term, then a term ¢, = even(s™(0)) has derivation height 1, since t,, — false or t,, — true in
a single step. To reflect actual computation, the rewrite steps to verify the condition should
be taken into account. Viewed like this, normalizing ¢, takes n + 1 rewrite steps.

However, this still seems unrealistic as a rewriting engine cannot know in advance which
rule to attempt first. For example, when rewriting tg, rule may be tried first, which
requires normalizing odd(s®(0)) to verify the condition. After finding that the condition fails,
rule is attempted. Thus, for Reyen, & tool implementing conditional term rewriting
with a random rule selection strategy would select a rule with a failing condition about half
the time. If we assume a worst possible selection and count all rewrite steps performed
during the computation, we need 2"+! — 1 steps to normalize t,,.

Although this exponential upper bound may come as a surprise, a powerful rewrite
engine like Maude [7] does not perform much better, as can be seen from the data in
Table |1} Unlike term rewriting (which is non-deterministic by nature), Maude employs a
top-down rule selection strategy, so the order in which the rules are presented makes a
difference in the outcome—although, as it turns out, not a substantial one for Example [3.]]
or other examples in this paper. For rows three and four we presented the rules to Maude
in the order given in Example If we change the order to , , , , ,
(3.2) we obtain the last two rows, showing an exponential number of steps in all cases.
Regardless of the order on the rules, we never obtain the optimal linear bound for all tested
terms.

n 012 3 4 5 6 7 8 9 10 11 12
ontl _1 |1 3 7 15 31 63 127 255 511 1023 2047 4095 8191
even(s"(0)) |1 3 3 11 5 37 7 135 9 521 11 2059 13
odd(s"(0)) |1 2 6 20 6 70 8 264 10 1034 12 4108
even(s"(0)) |1 2 7 8 31 32 127 128 511 512 2047 2048 8191
odd(s"(0)) |1 3 4 15 16 63 64 255 256 1023 1024 4095 4096

Table 1: Number of steps required to normalize even(s™(0)) and odd(s™(0)) in Maude.

6 C. KOP, A. MIDDELDORP, AND T. STERNAGEL

From the above we conclude that a realistic definition of conditional complexity should
take failed computations into account. This conclusion opens new questions, however; most
pertinently, the question of how to handle repeated failed attempts. It is obvious that
we cannot allow repeatedly trying (and failing) the same rule at the same position. For
instance, it would be foolish to attempt to reduce even(s(0)) with rule (3.2)), fail, then try
the same rule again ten more times before turning to and count the steps for all the
failed attempts in the reduction cost. Thus, we must impose some restrictions on duplicated
attempts. To this end, let us consider what constitutes a duplicated attempt.

Example 3.2. The CCTRS Ry consists of the following two rewrite rules:
f(z) —» =z (3.7) glx) va<=ax=b (3.8)

Consider t,,,, = f"(g(f™(a))). As we have not imposed an evaluation strategy, one approach
to evaluate this term could be as follows. We try using on the subterm g(f™(a)). This
fails in m steps. With at the root position we obtain ¢,,_1 ,,. We again attempt ,
failing in m steps. Repeating this results in n - m rewrite steps before we reach g .

In this example we repeatedly attempt—and fail—to rewrite an unmodified copy of a
subterm we tried before, with the same rule. Although the position of the subterm g(f™(a))
changes, we already know that this reduction will fail. Hence, once we fail a conditional
rule on given subterms, it is reasonable not to try the same rule again on (copies of) the
same subterms, even after a successful step. In our model of computation we therefore wish
to keep track of previous failed attempts. This will be formalized in Section [d

Example 3.3. Continuing with #g ,, from the preceding example, we could try to use ,
which fails in m steps. Next, is applied on a subterm, and we obtain ¢ ,,—1. Again we
try , failing after executing m — 1 steps. Repeating this alternation results eventually
in the normal form ¢y, but not before computing %(m2 + 3m) rewrite steps in total.

As in Example [3.2] we keep returning to a subterm which we have already tried before
in an unsuccessful attempt. The difference is that the subterm has been rewritten between
successive attempts. According to the following general result, we need not reconsider a
failed attempt to apply a conditional rewrite rule if only the arguments were changed.

Lemma 3.4. Given a CCTRS R, suppose s Z5% ¢ and let p: L — r < c be a rule such that

s is an instance of £. If t i>p u then there exists a term v such that s i>p v and v =% u.
So if we can rewrite a term at the root position eventually, and the term already matches

the left-hand side of the rule with which we can do so, then we can rewrite the term with

this rule immediately and obtain the same result. Note that this lemma does not assume
confluence, quasi-decreasingness or left-linearity, and so is broadly applicable.

Proof. Suppose s = o with dom(o) C Var(¢), and let T be a substitution such that t = /7,
u = r7,and R I c7, which exists since p applies to t at the root position. Because £ is a basic
. >€ * . . . *
term, all steps in s =™ ¢ take place in the substitution part o of o and thus o(x) —* 7(x)
for all x € Var({). Defining the substitution ¢’ as follows, we have s = o = fo’ and ¢’ —* 7:

o (z) = {0’(1‘) if z € Var({)
T(x) if z ¢ Var({)

Let a =~ b be a condition in ¢. From Var(b) N Var({) = @ we infer ao’ —* ar —* br = bo’.
It follows that R F co’ and thus s i>p ro’. Hence we can take v = ro’ as ro’ —* r7 = u.[

COMPLEXITY OF CONDITIONAL TERM REWRITING 7

n /012 3 4 5 6 7 8 9 10 11 12
012 3 4 5 6 7 8 9 10 11 12

n-m 0 1 4 9 16 25 36 49 64 81 100 121 144
$(m?>+3m) |0 2 5 9 14 20 27 35 44 54 65 77 90
f*(g(f™(a))) |0 3 8 16 28 45 68 98 136 183 240 308 388
g(f™@) |0 2 6 13 24 40 62 91 128 174 230 297 376

Table 2: Number of steps required to normalize f"(g(f™(a))) and g(f™(a)) in Maude.

From the above observations we conclude that, to avoid unnecessary repetitions, we can
simply mark occurrences of defined symbols with the rules we have already tried without
success—or, symmetrically, with the rules we have yet to try, as we will do in Section

Table [2| compares these theoretical considerations to actual computations of R in
Maude. Interestingly, Maude seems to perform worse on evaluating g(f™(a)) than the
realistic m + 1 bound. Thus, it seems that Maude could benefit from incorporating the
implications of Lemma However, it should be remarked that when presenting R¢; as
a functional module [7, Chapter 6], Maude will switch to an innermost evaluation strategy
and compute the normal form g(a) of f"(g(f™(a))) in m + n steps.

In this paper, we will assume that rewriting takes Lemma into account, and thus
avoids repeatedly reevaluating the same term. Also unlike Maude, we will not impose an
evaluation order on the rules, nor a strategy for the position in a term that must be rewritten
first, but allow free choice as is common in term rewriting.

Another important aspect to consider is how to define a “failed” reduction. Intuitively,
a rule £ — r <= ¢ should be considered not applicable on a term fo if there is no extension
o’ of o such that R co’. Yet in Example we already concluded that the second rule
was not applicable to tg simply after reducing odd(s®(0)) to its normal form false, because
false does not match the right-hand side true of the condition. As remarked in Section [2]
this is possible due to our restrictions. The following lemma makes this observation formal.

Lemma 3.5. Let p: £ = r < ¢ be a rule in a confluent CCTRS R and o a substitution
such that dom(o) C Var({) and lo is quasi-decreasing. Then p is not applicable to lo if and
only if there is an extension o’ of o, and some 1 < i < k such that R - cf_la and a;o0’ —* u
for some normal form w which is not an instance of b;.

Proof. (Recall that ¢ is a1 =~ by, ..., a; ~ by and cf_l denotes a; ~ by, ..., aj—1 ~ bj_1.)
We first prove the “only if” direction. So suppose that p is not applicable to fo. We
define extensions oy, ...,0;—1 of o such that o;(z) = o(z) for all € Var({), dom(c;) C
Var(£,by,...,b;) for all 0 < j < i, R - cfaj, and a;o;_1 —* u for some normal form u
which is not an instance of b;. Then ¢’ = ¢;_; satisfies the requirements of the lemma. Let
oo = o and suppose o1, ...,0j_1 have been defined. We have lo = lo;_ b, ajoj—1 and
hence ajo;_ is terminating by quasi-decreasingness. Let u be a normal form of ajo;_1. If
u is an instance of bj, say u = b;7 with dom(7) C Var(b;), then we let 0; = 0j_; U 7. Note
that o; is well-defined as dom(o;—1)NVar(b;) = @. In this case o; clearly satisfies the above
conditions. If u is not an instance of b; then we are done by letting 7 = j. Note that the
latter must happen for some j since we assumed that p is not applicable.

8 C. KOP, A. MIDDELDORP, AND T. STERNAGEL

Next we prove the “if” direction. Suppose ¢, i, and u exist with the stated properties.
For a proof by contradiction, also suppose that the rule is applicable, so there is an extension
7 of o such that R F ¢7. Define the substitution 7| as {z — 7(z)|{r | z € dom(7)}, where
7(z){r denotes the unique normal form of 7(x). (This is well-defined because {7 = fo
is quasi-decreasing and thus a;7 and b;7 are quasi-decreasing for all 1 < j < k. There-
fore, all subterms of ¢7, bi7, ..., byT are terminating. Since we may assume dom(7) C
Var({,b,...,by)—as each a; uses only variables in Var(¢,by,...,bj_1)—confluence ensures
that 7(z) has a unique normal form for every x € dom(r).) Fix 1 < j < k. We have
a;T —* byt —* bj(7]) and a;7 —* a;j(7]). Since b; is a constructor term, b;(7]) is a
normal form and thus a;j(7]) —* b;j(7)) by confluence. We claim that o'(z) —* 7/(z)
for all x € Var(¢,by,...,bi—1). If x € Var({) then ¢'(z) = o(z) = 7(x). Hence also
o'(z) —* 7)(x). Suppose the claim holds for z € Var(¢,b1,...,bj—1) with 1 < j < 4.
From Var(a;) C Var(¢,b1,...,bj—1) we infer ajo’ —* a;(rl) —=* bj(7]). Also ajo’ —* bjo’
and thus bjo’ —* b;(7]) by confluence. As b; is a constructor term, o'(z) —* 7l(z)
for all z € Var(b;). This completes the proof of the claim. From the claim we find
a;oc’ —=* a;(t)) =* bi(r]). Using a;0’ —* u and confluence, we obtain b;(7]) = u, con-
tradicting the assumption that u is not an instance of b;. L]

Thus, if we reduce the conditions of a rule and find a normal form that does not
instantiate the required right-hand side, we can safely conclude that the rule does not
apply.

A final aspect to consider is when to stop reducing a condition. Should we stop once we
obtain the right shape? Or should we allow—or even enforce—reductions to normal form?

Example 3.6. Consider the following CCTRS implementing addition:
plus(z,y) -y < z~0 plus(z,y) — s(plus(z,y)) < = ~s(z)

Let t = plus(plus(s®(0),0),s(0)). To reduce t at the root with the second rule, we must
evalu- ate the condition plus(s®(0),0) —* s(z). This is satisfied in a single step, reducing to
s(2){z + plus(s®(0),0)}. Should we therefore reduce to s(plus(plus(s®(0),0),s(0))) immedi-
ately? Or should we continue reducing the condition until we obtain a normal form s®(0)
and then reduce to s(plus(s®(0),s(0)))? Similarly, if we try to reduce t at the root with the
first rule, we obtain in one step an instance of s(z), which does not unify with 0. Since
every reduct of s(z)o’ is still an instance of s(z), we could immediately conclude that the
condition will fail.

Both questions are a matter of strategy, and different approaches might adopt different
choices. Omne could argue that it makes little sense to continue reducing a term for a
condition when we already know that it is satisfied, much like we said it makes no sense to
keep reevaluating the same failing condition. However, since we aim for a general definition,
we have decided not to pursue this. That is, in Example|3.6{we may choose to stop evaluating
the conditions and reduce with the rule (resp. conclude failure) once we obtain an instance
of the desired pattern (resp. a term for which we can easily see that it will never reduce to
such an instance), but this is not compulsory. Specific evaluation strategies can easily be
added to the corresponding definitions and transformations later.

Although a large part of our complexity notion deals with failed reductions, there are
many CCTRSs where this is not relevant. Consider for instance Example in which the
conditions of the one conditional rule are not expected to fail; they merely evaluate the
result of a smaller term to a normal form (or at least a constructor instance), and use its

COMPLEXITY OF CONDITIONAL TERM REWRITING 9

n \0123456 7 8 9 10 11 12
fib(s"(0)) [1 3 7 13 23 40 69 119 205 353 607 1042 1785

Table 3: Number of steps required to normalize fib(s™(0)) in Maude.

subterms. Correspondingly, as can be seen in Table (3| the time needed to normalize terms
in the Fibonacci CCTRS grows roughly as fast as the Fibonacci sequence itself, with no
additional exponential growth for failed attempts.

4. CONDITIONAL COMPLEXITY

In Section [3| we have come to an intuitive understanding of how a term s in a (confluent)
CTRS can be reduced, and what the corresponding complexity should be:

e In every step we select a position p and a rule £ — r < ¢ matching the corresponding
subterm (i.e., s|, = fo for some o).

e We then start evaluating the conditions in c¢ from left to right, extending o as we go, until
we have either confirmed all conditions or obtain a failing condition.

e In the former case, we reduce s, by this rule (obtaining s[ro’], for the extension o’ of o
found by evaluating the conditions in ¢). In the latter case, we mark the subterm s, to
indicate that we should not try the rule £ — r <= ¢ on this subterm again.

e The complexity of a conditional reduction is then obtained by counting all rewrite steps,
including those in successful and failed condition evaluations.

In this section, we will formalize this intuition. A key aspect is the ability to mark terms,

so as to avoid continuously repeating the same reduction attempt. To achieve this, we will

label defined function symbols by subsets of the rules used to define them. Then, we define

a variation — of the rewrite relation — which explicitly includes failed computations. This

relation is used as the basis to define a complexity measure in a natural way.

We begin by defining labeled terms and the labeled rewrite relation — (Section .

Then we analyze how — relates to the unlabeled conditional rewrite relation — (Section |4.2))

and define derivation height and complexity (Section .

4.1. Labeled Terms and Reduction.

Definition 4.1. Let R be a CCTRS over a signature F. The labeled signature G is defined
as FeU{fr| f € Fpand R C R|f}. A labeled term is a term in 7(G, V).

Intuitively, the label R in fgr records the defining rules for f which have not yet been
tried. In examples we will generally conflate the rules in R with labels identifying them.

Definition 4.2. Let R be a CCTRS over a signature F. The mapping label: T(F,V) —
T(G,V) labels every defined symbol f with R|f. The mapping erase: 7(G,V) — T(F,V)
removes the labels from defined symbols.

We obviously have erase(label(t)) = t for every ¢ € T(F,V) and erase(t) = label(t) = ¢
for constructor terms ¢. The identity label(erase(t)) = t does not hold for arbitrary ¢t €
TG, V).

Definition 4.3. A labeled normal form is a term in T(Fe U{fz | f € Fp}, V).

10 C. KOP, A. MIDDELDORP, AND T. STERNAGEL

Example 4.4. In Ry from Example the labeled signature G consists of 0, s, (-), +r
for every subset R of {(2.1)), (2.2)}, and fibr for every subset R of {(2.3)), (2.4)}. We have

label(fib(s(0) + 0)) = fib{@z), @)} (s(0) +{E1).@2} 0)
Examples of labeled normal forms are s(0) and fibgz (0 44 s(s(0))).
The relation — will be designed so that a ground labeled term can be reduced if and

only if it is not a labeled normal form (see Lemma [4.11)). First, with Definition we can
remove rules from a label if they will never apply due to an impossible matching problem.

Definition 4.5. Let R be a CCTRS. For labeled terms s and ¢ we write s — ¢ if there
exist a position p € Pos(s) and a rewrite rule p: £ — r <= ¢ in R such that

(1) slp = fr(s1,...,sn) with p € R,

(2) t = s[fr\(p}(515---,5n)]p, and

(3) there exist linear labeled normal forms wus, .. ., u, with fresh variables and a substitution
o such that s|, = fr(u1,...,up)o and f(uq,...,u,) does not unify with .

The last item ensures that rewriting (using —) strictly below position p cannot give a reduct

that matches ¢, since all such reducts will still be instances of fg(u1,...,u,). Furthermore,
if s is ground and s|, = fr(s1,...,S,) where R is non-empty and all s1,...,s, are labeled
normal forms, then either f(si,...,sy) is an instance of ¢, or — applies to s|,.

Example 4.6. In Example [£.4 we have

: L.

b3 @2y 0 +Em.e 0 — fitied &2 (0 +@2) 0)
because s(0) + 0 does not unify with 0 + y, and both s(0) and 0 are linear labeled normal
forms. Also

. 1 .
fibiz3), @@} (50 +{Em10) +1En.e21 0 — fibies), &9 (50 +(En) 0) +{z: 0)

since s(z) and 0 are linear labeled normal forms and s(z) + 0 does not unify with 0 4 y.

Second, Definition [£.7] describes how to “reduce” labeled terms in general. This defini-
tion is designed to reduce ground terms in the way roughly described in Section [3| Labeled
terms are reduced without any strategy, but subterms keep track of which rules have not
yet been attempted, thus implicitly avoiding duplication.

Definition 4.7. A labeled reduction is a sequence t; — to — --- — t,, of labeled
terms where s — ¢ if either s — t, or there exist a position p € Pos(s), a rewrite rule
p: f(li,... ly) =1 <=a1 =by,...,a = by, a substitution o, and an index 0 < j < k with
(1) slp = fr(s1,...,5n) with p € R and s; = {;0 for all 1 <i < n,

(2) label(a;)o —* bjo for all 1 < i < j,

and either

(3) j =k and t = s[label(r)o],

in which case we speak of a successful step, or

(4) j < k and there exist a linear labeled normal form u and a substitution 7 such that
(a) label(ajy1)o —* ur and u does not unify with b, and

(b) = s[fR\{p}(slv) Sn)]pa
which is a failed step.

COMPLEXITY OF CONDITIONAL TERM REWRITING 11

A complexity-conscious reduction is a labeled reduction complete with proofs of the
sub-requirements, i.e., a sequence (t; — t2),...,(tm—1 — tm) of complexity-conscious
steps, where each complexity-conscious step s — ¢ is a tuple combining s, t, p, p, j
and the complexity-conscious reductions label(a;)0 —* bjo for 1 < i < j and possibly
label(aj+1)0 —* ur. We will denote complexity-conscious reductions as labeled reductions,
and simply assume the underlying condition evaluations given.

It is easy to see that for all ground labeled terms s which are not labeled normal
forms, either s L.t for some term t or there are p, p, o such that s|, “matches” p in
the sense that the first requirement in Definition [4.7] is satisfied. In the latter case, the
conditions are evaluated left-to-right; as all b; are linear constructor terms on fresh variables,
label(a;)0 —* bjo simply indicates that a;jo—with labels added to allow reducing defined
symbols in a;—reduces to an instance of b;. A successful reduction occurs when we manage
to reduce each label(a;)o to bjo. A failed reduction occurs when we start reducing label(a;)o
and obtain a term that will never reduce to an instance of b;.

Example 4.8. Continuing Example we have the following complexity-conscious reduc-
tion:

. 1 .

fibigm), @) (s(0) +gn.e2) 0 — fibiea).m)(s(0) +(@2) 0) (Example
— fib{,}(s(O +{E1).@2)} 0)) (successful step)
— (s(0),s(0)) (successtul step)

The first successful step uses the unconditional rule (2.2)). The second successful step uses
rule (2.4) and the complexity-conscious reductions

fiby@3). 2 0 +En.e2y 0 — fibiEs.eay(0) — (0,5(0)
and

0+ED.g21s(0) — s0)
for the evaluation of the conditions, all by successful steps without conditions.

Example 4.9. In the CCTRS of Example we have the following complexity-conscious
reduction:

even(@1),{2).G3)} (s(0)) — evenzm) E3);(s(0)) (failed step)
EN even3)}(s(0)) (matching failure)
— false (successful step)

The first step fails with j = 0 because

1L
label(odd(0)) = odd{@Fa)),33).E8)(0) — odd(Ea),Ez);(0) — false
and false is a linear labeled normal form which does not unify with true. The third step
succeeds because label(even(0)) = even(@T)),E7),E3)1(0) — true.
There is one possibility remaining which is not covered by Definition 4.7} in a non-

quasi-decreasing setting, a condition may give rise to an infinite reduction, neither failing
nor succeeding. To handle this case we introduce a third definition.

Definition 4.10. We write s =~ ¢ if there exist a position p € Pos(s), a rewrite rule
p: f(l1,... b)) =1 <=a1 =by,...,a = by, a substitution o and 1 < j < k such that

12 C. KOP, A. MIDDELDORP, AND T. STERNAGEL

(1) slp = fr(s1,...,5n) with p € R and s; = {0 for all 1 <i < n,

(2) label(a;)o —=* bjo for all 1 <i < j, and

(3) t = label(aj+1)o

We write s =~ if there is an infinite sequence s = sg (= U £22) 51 (= U 22) -+

Definition completes labeled reduction; all ground labeled terms s are either labeled
normal forms, or can be reduced using — or =~. This is verified in the following lemma.

Lemma 4.11. For every ground labeled term s one of the following alternatives holds:
(1) s N

(2) s =t for some term t, or

(3) s is a labeled normal form.

Proof. We non-deterministically construct a (finite or infinite) sequence s = sg, s1, s2, ...
of ground terms as follows. Assuming s; has been defined, if there is some w such that
s; — u then we take any such u as s;+1. Otherwise, if there is some v with s; £ v then we
take s;11 = v. If there are multiple such v, we choose one with the largest possible number
J (cf. in Definition of successful conditions with respect to a rule p satisfying in
Definition [£.10] If no s;+1 has been defined, we terminate the construction and let N = .

If the constructed sequence is infinite then s — and thus statement holds. So
suppose the sequence is finite.

We claim that sy is a labeled normal form. For a proof by contradiction, assume
that sy is not a labeled normal form, so it has a subterm whose root symbol has a non-
empty label. Choosing a minimal such subterm, we find a position p € Pos(sy) such

that sy|p, = fr(ui,...,u,) where uy,...,u, are labeled normal forms and R # @, say
p: flly,....0,) — r < ¢ € R. Now, if f(uy,...,u,) does not instantiate f(¢1,...,%,),
then sy — sn[fr\{p} (U1, ..., us)]p because ui, ..., u, are ground labeled normal forms,

contradicting the fact that sy is the last element of the sequence. It follows that a substi-
tution o exists such that u; = ;0 for 1 < i < n. If K = 0 then sy — sy[ro],, otherwise
sy 2= label(a1)o. In both cases we obtain a contradiction to the choice of N.

Next we prove s; — s;41 for 0 < i < N. Aiming for a contradiction, consider the
largest ¢ such that s; — s;41 does not hold. Then we have s; RN Si+1, SO there exist a
position p, a rule p: f(¢1,...,4,) = r < c € R, an index 1 < j < k, and a substitution o
such that s;|, = fr(u1,...,u,) with f(u1,...,un) = f(l1,...,4,)0, label(a;)c —* bjo for
all 1 <1 < j, and s;41 = label(aj+1)o0. We have s;41 —* sy by the choice of i. If sy is
not an instance of b; 41 then, since sy is a ground labeled normal form, the condition has
failed and we have s; — s;[fp\ () (U1, .., un)]p, contradicting the choice for s;11. So sy
does instantiate b;j;1. But then, if j + 1 < k, we should have chosen s;;1 = label(aji2)0
according to the construction of s;;1, and if j+ 1 = k then s;1 = s;[ro], should have been
chosen instead.

Now, if N = 0 then s = sy is a labeled normal form and thus statement holds. If
N > 0 statement holds as s = sg — s1. L]

Note that the three alternatives in Lemma are not exclusive: It is possible to have
s —t as well as s — for a term s.

COMPLEXITY OF CONDITIONAL TERM REWRITING 13

4.2. Labeled versus Unlabeled Reduction.

The relation — provides an alternative approach to evaluation which keeps track of failed
rule application attempts, whereas — is the counterpart of non-quasi-decreasingness. As
may be expected, there is a strong connection between the relations — and —. This
connection is made formal in Theorem and the subsequent lemmata.

Definition 4.12. Let R be semi-finite and ¢ € T (G, V). We write ||t|| for the total number
of rules occurring in all labels in t.

Semi-finiteness ensures that ||t|| is a well-defined natural number.

Theorem 4.13. Let R be a CCTRS.
(1) Let s,t € T(F,V).
(a) If s — t then label(s) — label(t).
(b) If s =* t then label(s) —* label(t).
(2) Let s,t € T(G,V).
(a) If s — t then either erase(s) — erase(t) or both erase(s) = erase(t) and, if R is
semi-finite, ||s|| > ||t]|.
(b) If s —* t then erase(s) —* erase(t).

Proof. We use induction on the total number of rewrite steps of — and —, respectively.
This is the number of steps used both directly in the reduction, and those needed to verify
the conditions a;o —* b;o or label(a;)oc —* b;o.
(1) We derive cases and by simultaneous induction on the total number of rewrite
steps needed to derive s — t and s —* ¢.
(a) There exist a position p € Pos(s), a rule p: £ — r < ¢, and a substitution o such
that s|, = lo, t = s[rol,, and R I co. Let o’ be the (labeled) substitution labeloo.
Fix 1 < i < k. We have label(a;o) = label(a;)o’ and label(b;o) = b;o’ (as b; is a con-
structor term). Because a;o —* b;o is used in the derivation of s — ¢t we can apply
the induction hypothesis for part (b), resulting in label(a;o) —* label(b;c). Fur-
thermore, writing ¢ = f(¢1,...,¢,), we obtain label(¢) = fr;¢(¢1,...,¢n). Hence
label(s) = label(s)[label(¢)o’], — label(s)[label(r)o’], = label(t) because conditions
(1)—(3) in Definition are satisfied.
(b) If s =t then the result is obvious. If s — u —* ¢ then label(s) — label(u) follows
by case (1a), and the induction hypothesis yields label(u) — label(t).

(2) We prove both statements by simultaneous induction on the total number of steps
required to derive s — ¢t and s —* ¢. For part (a) we distinguish two cases.

o Suppose s =t or s — ¢ by a failed step. In either case we have erase(s) = erase(t).

Moreover, if all labels have finite size, also ||s|| = ||| + 1.
e Suppose s — t by a successful step. So there exist a position p € Pos(s), a rule
p: £ — r <= cin R, a substitution o, and terms ¢, a}, ..., a} such that s|, = ¢'o with

erase(!') = {, alo —* bjo with erase(a,) = a; for all 1 < i < k, and ¢ = s[label(r)o],.
Let o’ be the (unlabeled) substitution eraseoo. We have erase(s) = erase(s)[¢o’], and
erase(u) = erase(s)[ro’],. Since the sequence ajo —* b;o is used as a strict subpart
of the derivation of s — ¢, we obtain a;0’ = erase(ajo) —* erase(b;o) = b;o’ from the
induction hypothesis, for all 1 <14 < k. Hence R - co’, so indeed erase(s) — erase(t).
Again, part (b) easily follows from part (a). O

14 C. KOP, A. MIDDELDORP, AND T. STERNAGEL

Example 4.14. In Examples [3.2] and [3.3 we encountered the reduction
tnm = "(g(f"(a))) =7 g(a) = too

By Theorem [4.13] we immediately obtain a labeled reduction

label(t,m) = f?}(g{}(fgn}(a))) —* g{}(a) = label(to0)

Note that we can reduce this term further to gz(a) and obtain a labeled normal form.

Lemma 4.15. Let R be a CCTRS.
(1) If s,t € T(F,V) and s 2> t then label(s) =~ label(t).
(2) If s,t € T(G,V) and s 2~ t then erase(s) => erase(t).

Proof.

(1) There exist a position p € Pos(s), a rule p: £ — r < ¢, a substitution o, and an index
1 < ¢ < k such that s, = lo, t = a;0 and ajo —* bjo for all 1 < j < i. Write
o' = label o 0. By Theorem [.13((I]), label(a;)o’ = label(a;o) —* label(bjo) = bjo’ for
all 1 < j < i. Let £ = f(ly,...,¢,) and R = R[f. Clearly, p € R and therefore
label(s)|, = fr(label(sy), ..., label(s,)) = fr(f10, ..., lno’") B> label(a;)o’ = label(t) as

required.
(2) There exists position p € Pos(s), a rule p: f(l1,...,4,) = r < ¢, a substitution o, and
an index 1 < ¢ < k such that s|, = fr(s1,...,s,) with p € R and s; = {jo for all

1 < j < n, label(aj)o —* bjo for all 1 < j < ¢, and t = label(a;)o. Write ¢’ = erase o 0.
By Theorem [4.13|[2), erase(label(a;)o) = ajo —* bjo’ = erase(bjo) for 1 < j <i. We
obtain erase(s) = erase(s)[f ({1, ..., {n)0"], = ajo’ = erase(t). L]

Lemma 4.16. A term s € T(F,V) in a semi-finite CCTRS R is non-quasi-decreasing if
and only if label(s) =~

Proof. 1f s is not quasi-decreasing then there exists an infinite sequence s = uy (— U =)

up (= UZ) ... We obtain label(ug) (= U £>) label(u;) (—= U £2~) -+ from Theo-
rem [4.13 u and Lemma [£.15{(1). Thus label(s) = label(ug) <. Conversely, if label(s) -
then there is an infinite sequence label(s) = ug (— U £22) u; (— U 2~) From The-
orem and Lemma we obtain erase(u;) —= erase(u;y;) or erase(u;) —»
erase(u;+1) for every i > 0. Since erase(u;) = erase(uit+1) implies ||u;|| > ||wit1]|, this

gives an infinite sequence of — and > steps starting from erase(ug) = s.

Example 4.17. Consider the CCTRS consisting of the single rule p: a -+ b < a~b. We
have label(a) = a;,; 2 label(a). Hence label(a) =~ and thus a is non-quasi-decreasing.

We have now transposed conditional rewriting to an essentially equivalent relation on
labeled terms, which enables us to keep track of failed computations.

COMPLEXITY OF CONDITIONAL TERM REWRITING 15

4.3. Derivation Height and Complexity.

Now we show how labeled—or rather, complexity-conscious—reduction gives rise to
conditional complexity. With failures now explicitly included in the reduction relation,
the only hurdle to defining derivation height is the question of how exactly to handle the
evaluation of conditions. To this end, we assign an evaluation cost to individual steps.

Definition 4.18. The cost cost(s —* t) of a complexity-conscious reduction s —* ¢ is the

sum of the costs of its steps. The cost of a step s =t is 0if s LN t,

k
1+ Z cost(label(a;)o —* b;o)
i=1
in case of a successful step s — t, and
J

Z cost(label(a;)o —* b;o) + cost(label(a;y1)o =" ur)

i=1
in case of a failed step s — t.

Intuitively, the cost of a reduction measures the number of successful rewrite steps,
both direct and in condition evaluations, but does not count the mere removal of a rule
from a label. This is why the cost of a failed step is the cost to evaluate its conditions and
conclude failure, while for successful steps we add one for the step itself.

Example 4.19. The cost of the reduction in Example is 04+ 1+ 4 = 5, where the
4 = 143 includes the three steps in the conditions. The cost of the reduction in Example[4.9|
is 14+0+42 = 3. Note that in both cases, the cost is simply obtained by counting the number
of successful rewrite steps, including those occurring in a condition evaluation.

Definition 4.20. The derivation height dh(s) of a labeled term s in a semi-finite CCTRS
is defined as

max ({cost(s —=*t) |t € T(G,V)} U {c | s ==})
where oo > n for all n € N.

That is, a labeled term s has infinite derivation height if s =, and the maximum
cost of any reduction starting in s otherwise. Since R is semi-finite, the set of possible
values cost(s —* t) can only be unbounded if s —~, in which case dh(s) = max((some
infinite set) U{oo}) = co. In other cases, the set of costs is necessarily finite, and hence the
derivation height is well-defined, and in N. Note that for ¢ € T(F), the derivation height
of label(t) is infinite if and only if ¢ is quasi-decreasing, by Lemma

We have limited interest to semi-finite CCTRSs primarily to follow the standard in
complexity for unconditional term rewriting, where TRSs are assumed to be finite. It is cer-
tainly possible to extend the definition towards non-semi-finite CCTRSs, simply by taking
the infimum instead of the mazimum of the set in Definition in which case we might
obtain an infinite derivation height even for the labeled version of a quasi-decreasing term.
This would happen both if there are reductions of arbitrarily high cost startin§ in label(s),
or if we obtain an infinite reduction of rule-removal steps, e.g. label(s) N N
One might argue that this is justified, as finding an appropriate rule to apply may take
arbitrarily long. However, in the unconditional setting, it seems unnatural to assign an

16 C. KOP, A. MIDDELDORP, AND T. STERNAGEL

infinite derivation height to, for instance, a normal form. Given that non-semi-finite TRSs
are of very little practical interest, we prefer to leave this discussion to another work.

Definition 4.21. The conditional derivational complezity of a semi-finite CCTRS R is
defined as cdcg (n) = max {dh(label(t)) | |t| < n}. If we restrict ¢ to basic terms we arrive
at the conditional runtime complezity crcg(n).

Arguably, the case where the CCTRS R is not quasi-decreasing is not very interesting
for complexity (unless perhaps all terms of interest, e.g. all basic terms, are quasi-decreasing).
The main reason why we consider systems without this restriction is to show that the
transformation methods we use preserve the fundamental properties of a CCTRS. Thus,
we can for instance guarantee that the TRS obtained in the next section is terminating if
and only if the original CCTRS is quasi-decreasing. This allows us to obtain completeness
results, and to use complexity methods to prove quasi-decreasingness as well.

Continuing the discussion in Section [3] we claim that for a ground term s € T (F), the
derivation height dh(label(s)) gives a realistic and (in the absence of a reduction strategy)
narrow bound on the time needed to normalize s. That is, we can always find a normal
form of s in O(dh(label(s))) steps (by rewriting label(s) using —). A worst-case derivation
following the intuition laid out at the start of this section requires Q(dh(label(s)) steps.

5. COMPLEXITY TRANSFORMATION

The notion of complexity introduced in the preceding section has the downside that we
cannot easily reuse existing complexity results and tools. Therefore, we will consider a
transformation to unconditional rewriting where, rather than tracking rules in the labels of
the defined function symbols, we will keep track of them in separate arguments, but restrict
reduction by adopting a suitable context-sensitive replacement map. This transformation
is based directly on the CCTRS (F,R), but in Section we will see how it relates to
the labeled system and the labeled rewrite relation —. In particular, we will see that the
unconditional rewrite relation defined in Section both preserves and reflects complexity.
To this end, however, we will have to limit interest to strong CCTRSs, as defined in Section 2]
since we rely on (e.g.) left-linearity to be able to test when rules do not apply.

Our transformation builds on the ideas of the structure-preserving transformations in [,
8], but differs in particular by its use of context-sensitivity, by forcing that the conditions
for different rules are evaluated separately, and by using additional symbols f/ to mark
when the evaluation of a condition is in progress—a change which significantly simplifies for
instance the method of polynomial interpretations we shall employ in Section [6] Structure-
preserving transformations are discussed in Section [9.2

Context-sensitive rewriting restricts the positions in a term where rewriting is allowed.
A (C)TRS is combined with a replacement map p, which assigns to every n-ary symbol
f € F asubset u(f) C {1,...,n}. A position p is active in a term t if either p = ¢, or
p=iq, t= f(tr,...,tn), i € u(f), and ¢ is active in ¢;. The set of active positions in a
term ¢ is denoted by Pos,(t), and ¢t may only be reduced at active positions.

COMPLEXITY OF CONDITIONAL TERM REWRITING 17

5.1. The Unconditional TRS Z(R).

Definition 5.1. Let R be a strong CCTRS over a signature F. For f € F, let my
be the number of rules in R[f (so ms = 0 for constructor symbols f) and fix an order

RIf = {p{ b ,pfn ;+}- The context-sensitive signature (#, i) is defined as follows:

e H contains two constants 1 and T,
e for every symbol f € F of arity n, H contains a symbol f of arity n + my with u(f) =

{1,...,n},
o for every defined symbol f € Fp of arity n, rule plfz t—r<a =b,...,a=b,inR[f,
and 1 < j < k, H contains a symbol f7 of arity n+my+j—1 with u(f/) = {n+i+j—1}.
Terms in 7 (H,V) that are involved in reducing f(s1,...,s,) € T(F,V) will have one of
two forms: f(s1,...,8n,t1,...,tm,) with each ¢; € {T, L}, indicating that rule plf has been
attempted (and failed) if and only if ¢; = L, and

fij(sl, ey Spytl, .y tis1, Doy ,bj,la, Uy tig1y .- ,tmf)
indicating that rule plf is currently being evaluated and the first j — 1 conditions of pzf have
succeeded; u records the current progress on the condition a; ~ b;.
In the following we drop the superscript f from plf if no confusion arises.
Definition 5.2. The maps &: T(F,V) — T(H,V) with x € { L, T} are inductively defined
as follows:
t if t is a variable,
E(t) = f(&(tr), ..., &(tn)) if t = f(t1,...,ty) and f is a constructor symbol,
F&(t1), o &ul(tn), %, ..oy %) ift = f(t1,...,t,) and f is a defined symbol.

Linear terms in the set {£{, (t) |t € T(F,V)} are called L-patterns.

In the transformed system that we will define, a ground term is in normal form if and
only if it is a | -pattern. This allows for syntactic “normal form” tests. Most importantly, it
allows for purely syntactic anti-matching tests: If s does not reduce to an instance of some
linear constructor term ¢, then s —* uo for some substitution o and L-pattern u that does
not unify with ¢. What is more, we only need to consider a finite number of |-patterns w.

Definition 5.3. Let ¢ be a linear constructor term. The set of anti-patterns AP(t) is
inductively defined as follows. If ¢ is a variable then AP(t) = @. If t = f(t1,...,t,) then
AP(t) consists of the following | -patterns:

e g(x1,...,xy) for every m-ary constructor symbol g different from f,
e g(x1,...,xm,L,..., L) for every defined symbol g of arity m in F, and
o f(xy,...,%i—1,U,Tit1,...,2y) for all 1 <i < n and u e AP(t;).

Here the z; are fresh and pairwise distinct variables.

Example 5.4. Consider the CCTRS of Example The set AP((z,w)) consists of the
L -patterns 0, s(x), fib(x, L, 1), and +(z,y, L, L).

Lemma 5.5. Let s be a L-pattern and t a linear constructor term with Var(s)NVar(t) = &.
If s and t are not unifiable then s is an instance of an anti-pattern in AP(t).

18 C. KOP, A. MIDDELDORP, AND T. STERNAGEL

Proof. We use induction on the size of t. If s and ¢ are not unifiable, neither can be a
variable. So let ¢t = f(t1,...,t,). If s = g(s1,...,8,) or s = g(s1,...,8n,L,...,L) for
some g # f then s instantiates g(z1,...,x,) or g(z1,...,2n, L,..., L) in AP(¢). Otherwise,
s= f(s1,...,5n). If s; and ¢; are not unifiable for some 7, then by the induction hypothesis
s; is an instance of some u € AP(¢;), so s instantiates f(x1,...,2Zi—1,u, Tit1,...,Tn) € AP(t).
If no such 7 exists, there are substitutions o1, ..., o, such that s;0; = t;0; for all 1 <i < n.
Since s and t are linear terms without common variables, this implies that s and ¢ are
unifiable by the substitution ¢ = o1 U - - - U 0y, contradicting the assumption. 0]

We are now ready to define the transformation from a CCTRS (F,R) to a context-
sensitive TRS (#, 1, 2(R)). Here, we will use the notation (t1,...,t,)[u1, ..., u;]; to denote
the sequence t1,...,t;—1,u1,...,u;,tit1,...,t, and we occasionally write t for a sequence
toeo st

Definition 5.6. Let R be a strong CCTRS over a signature F. The TRS ZE(R) is
defined over the context-sensitive signature (H,p) from Definition as follows. Let
pi f(l1,... . 4y) = 1< a1 = by,...,a; = b, be the i-th rule in R[f (where 1 <1i < my).

o If £ =0 then Z(R) contains the rule

FUl, o lny (1, @) [T]i) = €7 (7) (1,)

e If k£ > 0 then Z(R) contains the rules
PO @) [Th) = FHE (s) 67 (an)):) (20)
fzk(g_; <$17"'7$mf>[b17"'7bk]i) _>€T(T)7 (30)

the rules
A,z b1, b)) —

fz’j—’_l(g: <(L‘1, .- '7xmf>[b17 s 7bj7§T(aj+1)]i) (4,0)
for all 1 < j < k, and the rules

FI - wmbrs - b1, v]) = (G (@, 2) [L]:) (5,)

for all 1 < j <k and v € AP(b;) (where Var(v) N Var(f(,b, 7)) = 2).
e Regardless of k, =(R) contains the rules

FQyis -yl (@1, m) [Th) = F(yns - yn) 0], (21,) [L]2) (65)
for all 1 < j <n and v € AP(¢;) (where Var(v) N Var(f(y, 7)) = @).

Here @1, ..., Zm;, Y1, ..., Yn are fresh and pairwise distinct variables. A step using rule
or rule has cost 1; other rules—also called administrative rules—have cost 0.

Rule simply adds the T labels to the right-hand sides of unconditional rules. To
apply a conditional rule p;, we mark the current function symbol as “in progress for p;”
with rule and start evaluating the first condition of p; by steps inside the argument
for this condition. With rules we move to the next condition and, after all conditions
have succeeded, an application of rule results in the right-hand side with T labels. If
a condition fails or the left-hand side of the rule does not match and will never match
, then we replace the label for p; by L, indicating that we do not need to try it again.

Note that the rules that do not produce the right-hand side of the originating condi-
tional rewrite rule are considered administrative and hence do not contribute to the cost

COMPLEXITY OF CONDITIONAL TERM REWRITING 19

of a reduction. The anti-pattern sets result in many rules (and (| . but all of these
are simple. We could generalize the system by replacing each v € AP(¢;) by a fresh vari-
able; the complexity of the resulting (smaller) TRS gives an upper bound for the original
complexity. Indeed, all methods proposed in Sections [6H8] also apply to the transformation
using variables instead. The primary purpose of anti-patterns is to ensure completeness
(Theorem ; by using anti-patterns instead of variables, we guarantee that a rule is
only marked as unsuccessful (by replacing its parameter by 1) if it truly cannot succeed
anymore.

Note also that the resulting system =Z(R) is left-linear, which is advantageous for the
potential applicability of various termination and complexity techniques.

Example 5.7. The (context-sensitive) TRS Z(Reven) consists of the rules below, with the
numbers in square brackets indicating the cost of the rule: 0 for administrative rules and 1
for the others.

[1] even(0, T,y, z) — true (17)
[0] even(x1, T,y,2) — even(*1, L,y, z) (61)
0] even(s(z),y, T, z) — evend(s(x),y,odd(z, T, T, T), 2) (22)
[1] even(s(z), y, true, z) — true (32)
0] evenl(s(z),y, xo, 2) — even(s(z),y, L, 2) (52)
0] even(xs,y, T,2) — even(xs,y, L, 2) (62)
[0] even(s(z),y, z, T) — eveni(s(z),y, z,even(z, T, T, T)) (23)
1] even3(s(x),y, 2, true) — false (33)
0] eveni(s(z),y, 2, %) — even(s(z),y, 2, L) (53)
[0] even(xs,y, z,) — even(*s,y, z, L) (63)
1] odd(0, T, y, z) — false (14)
[0] odd(*1, T,y,2) — odd(x1, L,y, 2) (64)
[0] odd(s(x),y, T, z) — odd3(s(z),y, odd(x, T, T, T), 2) (25)
1] odd3(s(x), y, true, z) — false (35)
[0] oddj(s(z), y, %2, z) — odd(s(z),y, L, z) (55)
[0] odd(*s,y, T,2) — odd(x3,y, L, 2) (65)
[0] odd(s(x),y, 2z, T) — odd3(s(z), v, z,even(z, T, T, T)) (26)
[1] oddi(s(x),y, z, true) — true (36)
[0] odd(s(x),y, z,%2) — odd(s(z),y, 2, L) (56)
[0] odd(*s,y, 2, T) — odd(x3,y, 2, L) (66)

for all
*1 € AP(0) = {true, false,s(z),even(x, L, L, 1),odd(z, L, L, 1)}
*9 € AP(true) = {false, 0,s(z),even(x, L, L, 1),odd(z, L, L, 1)}
*x3 € AP(s(x)) = {true, false, 0,even(x, L, 1, 1),odd(z, L, L, 1)}

20 C. KOP, A. MIDDELDORP, AND T. STERNAGEL

Following Definition this TRS is equipped with the following replacement map u:
pleven) = plodd) = {1} plevend) = p(oddd) = {3} pu(s) = {1}
plevend) = j(oddd) = {4} p(0) = ju(false) = pu(true) = &

Instead of the current rules, which pass along the various ¢; and b; unmodified through-
out condition evaluation, we could have opted for a more fine-grained approach where we
pass on their variables, and then only those which are needed later on, similar to what is
done in the optimized unraveling [30]. Doing so, the example above would for instance have
rules

even(s(z),y, T,2) — even%(x,y,odd(x, T,T,T),2) (122))
and
even%(x,y,*g, z) — even(s(x),y, L, z) (52)

However, this would complicate the presentation for no easily discernible gain.

In an early version of this work [17], we employed a slightly different transformation in
which the symbols f; were constructor symbols, used in subterms corresponding to the rule
whose conditions they evaluated. For instance, the above rules were rendered as

even(s(z),y, T,2) — evenacive (7, y, eveny(s(z),odd(z, T, T, T)),2) (22
and

evenactive(s(x), Y, even%(ua *2)7 Z) - even(s(m), Y, La Z) "
We simplifed this to our current definition because it is easier to work with when looking
for interpretations to establish termination as in Section [6}

Definition 5.8. We define the derivation height of a terminating term s in the context-
sensitive TRS (H,Z(R)) as the greatest number of non-administrative steps in any reduction
starting in s, taking the replacement map into account:

dh(s) = max ({cost(s =%, t) |t € T(H,V)})

Letting dh(s) = oo if s is non-terminating, the derivation and runtime complexities are
defined accordingly:

dez(gr)(n) = max {dh(s) | s € T(H) and |s| < n}
rcz(r)(n) = max {dh(s) | s € T(H), |s| < n, and s is basic}

5.2. Labeled reduction versus Z(R).

In order to use the translated TRS Z(R), we must understand how the conditional com-
plexity of the original CCTRS relates to the unconditional complexity of Z(R). To this end,
we will define a translation ¢ from labeled terms to terms over H, which has the following
properties:

(1) if s has (conditional) derivation height N then ((s) has (unconditional) derivation height

at least N (Theorem ,

(2) if ¢(s) has (unconditional) derivation height N then s has (conditional) derivation height
at least N (Theorem [5.12)).

COMPLEXITY OF CONDITIONAL TERM REWRITING 21

Thus, we will be able to use the transformed system =Z(R) to obtain both upper and lower
bounds for conditional complexity.

While —z(R),, and — were designed to be intuitively equivalent, the proofs are rather
technical. Before proving the first result, we define the mapping ¢ from terms in 7(G,V)
to terms in T (#H,V). It resembles the earlier definition of &, but also handles the labels.

Definition 5.9. For t € T(G,V) we define

t iftey,
C(t) =< flL(tr), ..., C(tn)) if t = f(t1,...,t,) with f a constructor symbol,
f(C(tl)u s 7§(tn)7cla s 7Cmf) ift= fR(tlv s 7tn) with R - er

where ¢; = T if p; belongs to R and ¢; = L otherwise, for 1 <@ < my. For a substitution
o € ¥(G,V) we denote the substitution ¢ o o by o¢.

It is easy to see that p € Pos,(((t)) if and only if p € Pos(t), if and only if p € Pos({(t))
and ((t)|, ¢ {L, T}, for any t € T(G,V).

Lemma 5.10. Ift € T(F,V) then ((label(t)) = &1(t). Ift € T(G,V) and o € X(G,V) then
((to) = ((t)o¢. Moreover, if t is a linear labeled normal form then ((t) = & (erase(t)) is a
L -pattern, and if ((t) is a L-pattern then t is a linear labeled normal form.

Proof. All four properties are easily proved by induction on the size of t. []
We are now ready for the first main result, which states that = reflects complexity.

Theorem 5.11. Let R be a strong CCTRS.

(1) If s =* t is a complexity-conscious reduction with cost N then there exists a context-

sensitive reduction ((s) LR ¢(t) with cost N.

(2) If s == then there is an infinite (E(R), p) reduction starting from ((s).

Proof. We prove the first statement by induction on the number of steps in s —* t. The
result is obvious when this number is zero, so suppose s — u —* ¢ and let M be the cost of
the step s = uw and N — M the cost of u —* t. The induction hypothesis yields a context-
sensitive reduction ¢(u) LRy S (t) of cost N — M and so it remains to show that there
exists a context-sensitive reduction ((s) LR C(u)of cost M. Let p: f(ly,...,0,) = 1<
¢ be the rule in R that gives rise to the step s — w and let ¢ be its index in R[f. There exist
a position p € Pos(s), terms sy, ..., sy, and a subset R C R[f such that s|, = fr(s1,...,5n)
and p € R. We have ((s)|, = ((slp) = fr(C(51),---,¢(Sn), 15 -, Cm,;) Where ¢; = T if the
j-th rule of R|f belongs to R and ¢; = L otherwise, for 1 < j < my. In particular, ¢; = T.
Note that p is an active position in ((s). We distinguish three cases.

e First suppose that s Iow So M = 0, u = s[fr\{p}(51;---,8n)]p, and—Dby linear-
ity of f(f1,...,¢,)—there exist a linear labeled normal form v, a substitution o, and
an index 1 < j < n such that s; = vo and erase(v) does not unify with ¢;. By
Lemma, C(s5) = C(va) = ((v)or = &) (erase(v))oc. By definition, &, (erase(v)) is
a L-pattern, which cannot unify with ¢; because erase(v) does not. From Lemma
we obtain an anti-pattern v’ € AP(¢;) such that £ (erase(v)) is an instance of v'. Hence
C(s) = C(S)[f(C(s1)s---5C(8n) €15+ -+ s Cmy)]p with ((s;) an instance of v' € AP({;) and
c; = T. Consequently, ((s) reduces to ((s)[f(¢C(s1),.--,((sn), (1, cms)[L]i)]p by an

22 C. KOP, A. MIDDELDORP, AND T. STERNAGEL

application of rule , which has cost zero. The latter term equals
C(s[fr\fp1(515- -5 8n)]p) = C(u)

and hence we are done.
e Next suppose that s — u is a successful step. So there exists a substitution ¢ such that
label(a;)o —* bjo with cost M; forall 1 < i < k,and M = 1+M;+- - -+Mp. The induction

hypothesis yields reductions ((label(a;)o) —LR)u ¢(bjo) with cost M;. By Lemma
((label(a;)o) = ((label(a;))o¢ = &7(as)o¢ and ((bjo) = bjo¢c. Moreover, ((s)|, = ((s]p) =

—

fll{er, .. emy)[Tli)oe and ((u) = ((s)[¢(label(r)o)], with ((label(r))oe = &1 (r)o¢ by
Lemma [5.10, So it suffices if f(¢,{c1,...,cm;)[T]i)o¢ —LR)u &1(r)oe with cost M. If
k = 0, we can use rule . Otherwise, we use the reductions &1 (a;)o¢ —>*E(R) i bioe,

rules and , and k — 1 times a rule of type to obtain

F er . em)T)oc —amyu fiE (e, emp)ET(ar)li)oe
=Ly fi (G (er, s emp)[bili)oe
—zwyu FEE e, em,)bi, €7 (a2)]i)oc

“ER)

E(R),u fzk(gv <Cla R Cmf>[b17 S bk]i)UC

TIE(R),u &r(r)og
Note that all steps take place at active positions, and that the steps with rules 2 | and @
are administrative. Therefore, the cost of this reduction equals M.

e The remaining case is a failed step s — u. So there exist substitutions ¢ and 7, an index
1 < j <k, and a linear labeled normal form v which does not unify with b;;; such that
label(a;)o —* bjo with cost M; for all 1 < ¢ < j and label(aj1)0 —* v7 with cost M.

We obtain ((label(a;)o) = & (ai)oc, ((bio) = biog, and ((s)|p = f(4,(c1, ..., emp)[Tli)o¢
like in the preceding case. Moreover, like in the first case, we obtain an anti-pattern
v' € AP(bj41) such that £, (erase(v)) is an instance of v'. We have ((vr) = ((v)1¢ =
& (erase(v))7¢ by Lemma Hence ((vT) is an instance of v'. Consequently,

f(l: <Cla .. 7cmf>[T]i)JC %E(R),/L fz]—’—l(g: <Cl, ey Cmf>[b17 ey b]7 gT(aj-‘rl)]i)o_C
=y e, emp) b, - by, C(uT)i)oe

TE(R),u f(f’ <Clv s 7Cmf>[J—]l')O-C
where the last step uses an administrative rule of type . Again, all steps take place

at active positions. Note that f(, (ci, .. cemp) [Li)oc = (R} (515- -5 8n)) = Clulp).

Hence ((s) LR ((u) as desired. The cost of this reduction is My + - - - 4+ Mj41, which

coincides with the cost M of the step s — wu.
This concludes the proof of the first statement. As for the second statement, suppose
s =+, so there exists an infinite sequence (s)i0 of terms such that s = sg and s; — sj41
or 5 =» Sit1 for all 4 > 0. Fix i > 0. If s; — s;41 then ((s;) —>JEF(R)’H ((si+1) follows
from the first statement. Suppose s; — si;1. We show that ((s;) _%(RM C[¢(sit1)]
for some context C' whose hole is at an active position. there exist an active position
p € Pos(s;), arule p: f(¢1,...,¢,) — r < cin R, a substitution o, and an index j such that
Si’p = fR(ﬂla, e ,éna), Iabel(a1)0 —* bla, cey Iabel(aj)a — bjU, and Si+1 = Iabel(ajH)a,
s0 ((Si+1) = &r(ajy1)oc. Let [be the index of p in R[f. We obtain ((s;)|, = ((si|p) =

COMPLEXITY OF CONDITIONAL TERM REWRITING 23

fllhoe, ... tnog,cry. .. cmy) where ¢ = T, and {1 (aq)o¢ = ((label(ag)o) LR C(bgo) =
bgo¢ for 1 < d < j, by the first statement. Hence

si = silf (L, (c1, - sem M Tlocy 25wy silfi T, (c1yeeosemp)1, -5 05,67 (a+1)])oclp
and thus we can take the context

C = si[fljﬂ(fla, oo knoyer, o 01,01, 000,05, 0, ¢4, .,cmf)]
The hole is at an active position, since p is active in s; and n + 1+ j in u(fﬁl).]

Theorem [5.11] E provides a way to establish conditional complexity: If Z(R) has com-
plexity O(¢(n)) then the conditional complexity of R is at O(p(n)). This is the important
direction as it allows us to obtain an upper bound for complexity by transforming the con-
ditional system into an unconditional one. However, we have more. The following result
shows that complexity bounds thus obtained can be sharp.

Theorem 5.12. Let R be a strong CCTRS and s € T(G).
(1) If ((s) is terminating and there exists a context-sensitive reduction ((s) —ZR)u b for

some t with cost N, then there exists a complexity-conscious reduction s —* t' for some
t" with cost at least N.
(2) If there exists an infinite (2(R), u) reduction starting from ((s) then s =,

Proof Idea. First of all, we may safely assume that ¢ is in normal form; if it is not, we simply
extend the reduction (which can only increase the cost). Due to the context-sensitivity
restrictions and the form of the rules Z(R), any such normal form ¢ must be a L-pattern.
Next we transform the reduction ((s) LRy b (resp. ((s) —z() ---) to a reduction
with at least the same cost (resp. an infinite reduction) which is well-behaved in the sense
that for any rule application u[lo], — u[ro],, the substitution o can be written as ¢ o 7.
This is done by a reordering argument, either postponing steps in subterms (if the result of
the step is used later), or eagerly evaluating the Corresponding subterm to normal form.

Having a well-behaved reduction, steps using rules can be translated directly to
unconditional — steps, and (6,)) translates to L. Comblned steps (2,) followed by some
applications and ending with (3,)) or (5,) correspond to successful or falled applications; the
restrictions of context-sensitivity guarantee that any reduction steps in between these rule
applications are either at independent positions—in which case they can be postponed—or
inside the argument for the condition in progress. Since t is assumed to be in normal form,
all such combinations are either completed—in which case they can be transformed—or give
rise to an infinite reductlon inside the accessible argument of a f] symbol—in which case
we can reduce with a =~ step to a non-terminating term ((a;). Either way we are done.[]]

We refer to Appendix[A]for the full and rather intricate proof. Note that Theorems[5.11
and together with Lemma tell us that for terms s in 7 (F,V), the “conditional
complexity cost” of label(s) is the same as the derivation height of {1(s). Consequently,
complexity notions between the original CTRS and the resulting context-sensitive TRS are
interchangeable, but only so long as we limit interest to starting terms where the additional
my arguments of every defined symbol f are set to T:

cde(n) = max {dn(&r (8)) |] < n}
crc(n) = max {dh(&7(t)) | [t| < n and t is basic}

NN

24 C. KOP, A. MIDDELDORP, AND T. STERNAGEL

What is more, we have gained an additional result: The transformation does not merely
relate complexity notions, but conservatively translates quasi-decreasingness to termination.

Corollary 5.13. A strong CCTRS R is quasi-decreasing if and only if the corresponding
context-sensitive TRS Z(R) is terminating on all terms in the set {{(s) | s € T(G,V)}.

Thus, we can use the same transformation to prove quasi-decreasingness of CCTRSs.
Although there are no complexity tools yet which take context-sensitivity into account, we
can obtain an upper bound by simply ignoring the replacement map. Similarly, although
existing tools do not accommodate administrative rules we can count all rule applications
equally. Since for every non-administrative step reducing a term fr(---) at a position p,
at most (number of rules) x (greatest number of conditions + 1) administrative steps at
position p can be done, the difference is only a constant factor. Moreover, these rules are
an instance of relative rewriting, for which advanced complexity methods do exist. Thus, it
is likely that there will be direct tool support in the future.

6. INTERPRETATIONS IN N

A common method to derive complexity bounds for a TRS is the use of interpretations in N.
Such an interpretation Z maps function symbols of arity n to functions from N" to N, giving
a value [t]; for every ground term ¢, which is shown to decrease in each reduction step. The
method is easily adapted to support context-sensitive rewriting and administrative rules.
As we will consider interpretations on different domains later on, we define interpre-
tations in a general way. Let A be a set (such as N) and let > be a well-founded order
on this set, and > a quasi-order compatible with > (i.e., >-> C >and >-> C >). A

function f from A" to A is strictly monotone in its i-th argument, if f(s1,...,8;,...,8,) >
f(s1,-..,8},...,8,) whenever s; > s, and weakly monotone in its i-th argument, provided
that f(s1,...,8i,...,80) = f(s1,...,8},...,8,) whenever s; > s/.

Definition 6.1. A context-sensitive interpretation over A is a function Z mapping each
symbol f € F of arity n to a function Zy from A" to A, such that Z; is strictly monotone in
its i-th argument for all i € p(f). Given a valuation o mapping each variable to an element
of A, the value [t]7 € A of a term t is defined as usual:

o [z]§ = a(x) for x €V,

o [f(s1,---»8n)|F =Ts([51]F, ..., [sn]§) for f e F.

We say 7 is compatible with a set of unconditional rules R if for all rules { — r € R and
valuations o, [(]F > [r]$ if ¢ — r € R is non-administrative and (|7 > [r]$ otherwise.

We easily see that if s - , t then [s]$ > [t]7, and [s]$ > [t]|F if the employed rule is
non-administrative. Consequently, if A = N, then dh(s, =z) < [s]7 for any valuation «.
Having a derivation height for all terms, we can obtain the derivational and runtime com-
plexity of the original system. To take advantage of the fact that we only need to consider
terms £7(s), we can limit interest to “T-terms”: ground terms which have the property that
tp = =tm, =T and s1,...,8, & {L, T} for all subterms f(s1,...,8n,t1,...,tm,). For
runtime complexity, we only have to consider basic T-terms. We let |s| denote the number
of function symbols in s not counting T. Then |s| = [{7(s)].

COMPLEXITY OF CONDITIONAL TERM REWRITING 25

Example 6.2. Continuing Example we define the following interpretation over N:
Ir=1 ZIi=Twe=Trase=Z0=0 Is(x)=z+1
Zeven(,u, v, w) = Logd(z, u,v,w) =1+ +v-3° +w- 3"

Leveny (@, u,v,w) = Togqr(z, u,0,w) =1+ 2 +v+w-3°
Zevené(l‘,u,v,w) = Zoddé(x’uvv7w) =l4+z+v- 37 +w

One easily checks that Z satisfies the required monotonicity constraints: Zs is monotone

in its only argument, Zeven and Zogq are monotone in x, while Ieven%, odd} are monotone

in v and Zgent; Zoggl in w. Moreover, all rules in Z(Reven) are oriented as required. For

example, the rules generated by the unconditional rule give the following obligations:

(1,) [even(0, T,4,2)];=1+0+1y-3°+ 2-3° > 0 = [true],

(6,) leven(x1, T,y,2)]l; =14+¢+y-39+2-3° > 1+p+y-394+2-37 = [even(x1, L,y, 2)|1
with ¢ = [x1]7.

The rules corresponding to the unconditional odd rule give the same inequalities. As

for the other four rules, their translations and interpretations are all very similar, so we will

show only the interpretations and proof obligations for rule :

(2,) [even(s(z),y, T,2)]y =2+2+3" T+ 2.3 > 240+ (1+2+2-37) +2-377! =
[evenl(s(z),y,0dd(z, T, T, T), 2)]7, which follows from 3! = 3%+42.3% > (14x)+2-3%,

(3,) [evenl(s(x),y,true, 2)]; =2+ 2+ 0+ 2321 > 0 = [true,,

(5,) [evend(s(z),y,x2,2)7 =2+ +¢@+2-3"T > 24 24+0+42-3°T! = [even}(s(z),y, L, 2)];
with ¢ = [x2]; > 0,

(6,) [even(x3,y, T,2)]; =14+ ¢ +39°+2-39 21+ ¢+ 239 = [even(xs,y, L, 2)]7.

Now, towards runtime complexity, we observe that for all ground constructor terms s with
|s| < n we also have [s|; < n as Zg(x1,...,%Zm) < @1 + -+ + 2y + 1 for all constructor
symbols f. Therefore, the conditional runtime complexity crcg,,.,(n) is bounded by O(3"):

max({[f(s1,--+ySm, Ty..., D]z | f € Fp and s1,..., s, are ground constructor
terms with |s1| 4+ -+ 4 |s;| < n})
< max({Zf(x1,...,xm,1,...,1) | f € Fp and x1 + 22 + 23 + x4 < n})
=max({14+2+2-3"|z<n})=n+2-3""1<3" forn>1

As to derivational complexity, we observe that [t]; < "3 (tetrationﬂ or 3™ n in Knuth’s
up-arrow notation) when ¢ is an arbitrary ground T-term of size n.

To obtain a more elementary bound we will need more sophisticated methods, for
instance assigning a compatible sort system and using the fact that all terms of sort int are
necessarily constructor terms. A method based on separating size and space complexity is
discussed in Section [8l

The interpretations in Example [6.2] may appear somewhat arbitrary, but in fact there
is a recipe that we can most likely apply to many TRSs obtained from CCTRSs using
Definitions [5.1] and The idea is to define the interpretation Z as an extension of a
“basic” interpretation J over N with a fixed way of handling the additional arguments.

2Tetration is the next hyperoperation after exponentiation, defined as iterated exponentiation.

26 C. KOP, A. MIDDELDORP, AND T. STERNAGEL

Definition 6.3 (Recipe A). Given

e a strictly monotone interpretation function J J9: N — N for every symbol f of arity n in
the original signature F,

e weakly monotone interpretation functions J. fl, e J]:n 7 N" — N for every f € Fp,
e interpretation functions jfli, cees j}“i with j}i: N"+J — N that are strictly monotone in
their last argument position (n + j), for each rule p; € R[f with k& > 0 conditions,

we construct an interpretation Z for H as follows: It = 1 and Z| = 0, Zy(x1,...,2,) =
j]?(xl, ..., xy) for every f € F¢ of arity n,

Zy(®15- -3 Tny Cly v v o5 Cyp) :jﬁ(xl,...,xn)—i—ch-(]f(xl,...,mn)

k=1
for every f € Fp of arity n, and finally
Ifij(xl,'"axnacl,"'7Ci717y1>"'7yjac’i+la"'7Cmf) =
my
j})(xla"'vxn)+\7Jz’i($1>'"7xn7y1a"'7yj)+ Z Ck'j}{:(xlv"'vxn)
k=1, ki

for every symbol fij .

Using the interpretation of Recipe [A] for the rules in Definition the inequalities we
obtain can be greatly simplified, and in many cases removed.

Definition 6.4. The compatibility constraints for J comprise the following inequalities, for
every rule p;: f(l1,...,0,) = r < ay; = by,...,a, = by in the original system R:

(1,) 7 <m%>+Jf<W > [er(n)g itk =0,
(2,) TH02) > T} ({08, [er(an)]g) ik >0,

Se

lﬁl

(30) TP + TE g 0l2) >)

1,
(4p) ([19, b1)g. - [b5]9) = 7T (0L, 1) - [b)8 (67 (ag40)]9) for 1< < k.
Here @ denotes the sequence [(1]%, ..., [(y]F.

Lemma 6.5. The interpretation I from Recipe [4] is a context-sensitive interpretation for
(H,). If its interpretation functions satisfy the compatibility constraints then T is compat-
ible with H, so

cdeg(n) = max{[(T(t)]7 |t € T(F) and |t| < n}
creg(n) = max{[(T(t)]z |t € T(F), |t| < n, and t is basic}

Moreover,
mpy
Er(flt - ta)F =D THET IS, [Er(t0)])
i=0

Proof. It is not hard to see that Z satisfies the monotonicity requirements of Definition
Hence it is a context-sensitive interpretation for (#,). The statements on cdcg and creg
follow by compatibility and the observations at the end of Section[5] because of the inequality
dh(s, —=z(Rr),u) < [slz- The final equality claim is obtained by writing out definitions. For

COMPLEXITY OF CONDITIONAL TERM REWRITING 27

the compatibility claim, note that rules obtained from clause are obviously oriented as
[L]; = 0. Compatibility is also satisfied for rules obtained from clause (5,)), as

TLs1se e sty ty) = [LF - Ti(s1,. 0 80) = 0

always holds. The requirements for the other rules follow from the compatibility constraints,
a

by expanding the inequality ([(]7 > [r|7 or [{]7 > [r]}) and removing unhelpful terms on
the left. For instance, rules obtained from impose the inequality

my

@+ T@H+ S - THED) > r (g

k=1,ki

which follows from clause (1,) in Definition we omitted the summation because the x;
do not appear on the right, and could well be 0.]

By the final part of Lemma which recursively defines [£1(f(t1,...,tn))]7 purely
in terms of J, we can obtain bounds on derivation heights without ever calculating & (¢).
Thus, we do not even need to consider the labeled or translated systems.

Example 6.6. To demonstrate the use of the recipe, recall the CCTRS from Example
f(z) > x glx) a<=zxb
The recipe gives the following proof obligations:
TP (@) + T (x) > x T (@) = Tg(2,2)
Tg (@) + Tg1 (2, Tp) > Ta

Here, jf and J, 9 must be strictly monotone in their first argument, jf and Jg | weakly

monotone, and jgll must be strictly monotone in its second argument. These monotonicity
requirements are satisfied by choosing

Ja=0 T (z) = x Jg(x) = Te1(,y) =y
Fo=1 T) =1 Ti@)=a
With these interpretations, the proof obligations are simplified to
r+1>zx r>x
z+1>0

and obviously satisfied.

In order to bound the derivational complexity in Example we make the following
general observation.

Lemma 6.7. If for every symbol h of arity n in some strong CCTRS we have
Ty,) + ---+j,;”h(x1,...,xn) SK-(v14-+x)+M
then [61(s)]; < M - (K° + - + KI5I=1) for all ground terms s.

Recall that mjp = 0 for constructor symbols, so the above requirement is well-defined.

28 C. KOP, A. MIDDELDORP, AND T. STERNAGEL

Proof. We use induction on |s|. If |s| =1 then s is a constant and
Tz =T+ + T < K0+ M=M=M-K°
If |s| = m + 1 then s = h(t1,...,t,) with [t;| + -+ + |t,| = m and

my
Er(s)z =Y Ti(Ert)lz, .- (€T (ta)lz)

i=0

K- ([grt)lz +--+ [Er(ta)ln) + M
K M- (K'+---+K™+M
M -
M -

NN

(K0+---+Km+1) 0

Since, for K > 2, we have K* +--. 4+ K™ < K™%! a linear interpretation satisfying the
premise of Lemma gives cdeg(n) = O(K™) by Lemma With this understanding,
we can complete the example.

Example (continued). We thus obtain an exponential O(2") bound. This may not
seem like an impressive result, but in fact, this bound is tight! Consider a term g"(b). To
evaluate this term to normal form, we obtain a cost of 2”1 if we simply evaluate outside-in:

* g(Eg)}(b) = a with cost 1 = 211

. g{}(g?}(b)) - gg(g?}(b)) with cost 2"~ ! (the cost to reduce the left-hand
side of the condition, g?}a, to normal form), and gg(g?}(b)) reduces to normal
form with cost 2"~! (the cost to evaluate the subterm), amounting to a total cost of
on—1 + gn—1 _ on_

However, we do have

dh(&r(f"(g(f™(2))))) < [&7(F*(e(f™(2))))]z
= &7 (g(f™(a))]z + 7
=2-[r(f" @)z +n
=2-m+n

which gives the expected linear bound for the collection of terms considered in Example

7. USING CONTEXT-SENSITIVITY TO IMPROVE RUNTIME COMPLEXITY BOUNDS

As observed before, the actual runtime complexity for the system in Example is O(2™).
In order to obtain this more realistic bound, we will need more sophisticated methods than
simply polynomial interpretations. This is not a problem specific to our transformed systems
Z(R); rather, giving tight complexity bounds is a hard problem, which has been studied
extensively in the literature. Consequently, many different complexity methods have been
developed (e.g. matrix interpretations [27, B8, 25], arctic interpretations [I§], polynomial
path orders [2, 3], match bounds [I1], dependency tuples [29]) and it seems likely that most
of these methods can easily be adapted to context-sensitive and relative rewriting.

In order to demonstrate that the systems we obtain using our transformation are not
inherently problematic, we will show two improvements which allow us to obtain better
bounds. The first one, which is treated in this section, employs a technique from [I5].

COMPLEXITY OF CONDITIONAL TERM REWRITING 29

Definition 7.1. A replacement map v is usable for a strong CCTRS (F,R) if for every
rewrite rule by — agy1 <= a1 = by,...,ar by in R and all 1 < ¢ < k+ 1 and p € Pos(a;)
we have p € Pos,(a;) if either p € Posz,(a;), or p is a variable position in a; and there
exist 0 < j < i and ¢ € Pos,(b;) such that (a;)|, = (b;)|q-

Note that the requirement on p € Pos,(a;) is a sufficient condition only; it is allowed
for Pos, (a;) to contain also p which satisfy neither premise. Therefore, the full replacement
map, with v(f) = {1,...,n} for f of arity n, is always usable.

Example 7.2. We derive a usable replacement map v for the CCTRS Ry of Example
O+y—y fib(0) — (0,s(0))
s(z)+y —s(z+y) fib(s(x)) = (z,w) < fib(z) = (y,2), y+2z~w
From the rule s(z) + y — s(z + y) we obtain 1 € v(s). The other constraints are obtained
from the conditional rule for fib. The variable w appears at an active (root) position in the
right-hand side of a condition and also at position 2 in (z,w). Hence we obtain 2 € v((-,-)),
which causes the variable z to appear at an active position in (y, z) and thus 2 € v(+) and
1 € v({,-)). The latter activates the variable y in (y,z) and thus we also need 1 € v(+).

There are no other demands and hence the replacement map v defined by v(s) = {1},
v(+) = v((-,-)) = {1,2}, and v(fib) = @ is usable.

Definition 7.3. Let v be a usable replacement map for a strong CCTRS (F,R). Let u
be the replacement map defined in Definition for the signature H. We define a new
replacement map pov for H as follows: pv(f) = v(f) for every f € HNF and pv(f) = u(f)
for every f e H\ F.

N

Theorem 7.4. Ifv is a usable replacement map for a strong CCTRS (F,R) then crcg(n) <
rC(R),uv () for allm > 0.

Proof. We define an intermediate replacement map v’ as follows: o'(f) = v(f) for every
feHNFand v'(f])=v(f)U{n+i,....,n+i+j—1} for every f} € H\ F such that the
arity of f in F is n. It is not difficult to prove that pv(f) = o'(f) N p(f) for every f € H.
We prove that Posy, (t) C Pos,(t) whenever s —Z(R), t and s is basic, by induction
on the length. Since Pos,/(t) N Pos,(t) = Pos,,(t), this implies that any (£(R), u) reduc-
tion sequence starting from a basic term is a reduction sequence in (2(R), uv), and hence
the statement of the theorem follows from Theorem (.11l The base case is obvious since

Posy,, (t) = {e} C Pos,(s) if t is basic. For the induction step we consider
/
5 _>*5(73),u § 2ER)u

We obtain Posy,,(s") C Pos,(s’) from the induction hypothesis. Suppose the step from s’
to ¢ employs the rule v — v from Z(R) at position p € Pos,(s’) with substitution 0. We
have p € Posy,, (s') and thus also p € Pos,/(s"). Since §'|, = uo we also have

Posyy,, (uo) C Pos, (uo) (7.1)

Furthermore, because t = s'[vo],, Posy, (t) C Pos,(t) follows from Posy, (vo) C Pos, (vo).

The latter inclusion we prove by a case analysis on u — v. Let ¢ € Posy, (vo).

We have u = f(/, (1, T,)[T]i) and v = & (r) with £ = f(6) = 7 a rule of R.
If ¢ € Posy,(E7(r)) then ¢ € Posr,(r) and thus ¢ € Pos,(r) = Pos, ({1(r)) C
Pos, (&7(r)o) since v is a usable replacement map. Otherwise ¢ = q1g2 with g1 €

30 C. KOP, A. MIDDELDORP, AND T. STERNAGEL

Posy({7(r)) = Posy(r) and gz € Posy,, (z0) where z = &1(r)|q, . Since z € Var(r) C
Var({), there exists a position g3 € Posy(¢) C Posy(u) such that ¢|,, = u|s, = 2. We
have g3qa € Posy, (uo) and thus gzgs € Pos, (uo) by (7.1). Hence both g3 € Pos,(u)
and g2 € Posy(zo). Since gz € Pos,(u) = Pos,(f), we obtain g1 € Pos,(r) =
Pos,/ (1) = Pos,(v) from the usability of v. Hence ¢ € Pos,/(vo) as desired.

—

(2.) We have u = f(£,(w1,...,2m,)[T];) and v = fl-l(l: (x1,.. ., m;)[E7(a1)]i). Comparing
uo and vo and observing that v/(f) and v'(f}) agree on {1, ..., n+ms}\{n-+i}, the only
interesting case is ¢ = (n+1) ¢’ with ¢’ € Posy,, (£1(a1)o). We distinguish two subcases.
If ¢ € Posy,(E7(ar)) = Posy,(ar) then ¢ € Pos,(ar) = Posy(E1(ar1)) and, since
n+i€v'(f}), ¢ € Posy(vo). Otherwise ¢ = q1g2 with ¢ € Posy (&7 (ar)) = Posy(ar)

and ¢2 € Posy,(z0) where z = (a1)|q,. Sinze z must occur in Var(¢) = Var(by), we
conclude as in case .

(13,) We have u = fi’“(z (1, Ty) [b1, .., bgi) and v = {7(r). Like in case we
distinguish two cases. The case ¢ € Posy,({7(r)) is dealt with as before. Suppose
q = qi1q2 with ¢ € Posy(&7(r)) = Posy(r) and let z = r|y,. The variable z occurs
in 4y,...,0, or by,...,bg. The former is treated as before. Suppose z = (b;)|g3 with
1 <1 < k. Wehave (n+i+1—1)g3qa € Pos,(uo) according to (|7.1). Hence
g3 € Posy (b)) = Pos,(by) and thus ¢ € Pos,(r) by the usability of v. We obtain
q € Pos,(vo) as before.

[@,) We have u = f/(¢,(x1,...,2m,)[b1,...,bj];) and v = fiJ+1(€, <x‘1, oy T) b1, by,
&7(ajt1)i). Comparing uo and vo as well as v'(f]) and v’(ff“) allows us to focus
on the interesting case: ¢ = (n+ i+ j)¢ with ¢’ € Posy, ({1(aj+1)0). We obtain
q' € Posy(&{1(aj1)o) and thus ¢ € Pos,(vo) by repeating the reasoning performed
in the preceding cases. .

(Bo) We have u = f/(¢,(x1,...,2m)[b1,...,bj—1,0'];) and v = f({,(z1,..., 2m,)[L];). We
distinguish three cases. If ¢ = e then obviously q € Pos,(vo). Let ¢ = i'q’. If
i’ € {1,...,n} then ¢ € Posy,(uo) and thus ¢ € Pos,(uc) by (7.1). Hence also
q € Pos,(vo) since V'(f) = v(f) =v'(f})N{1,...,n}. In the remaining case we have
i"e{n+1,...,n+ms}\ {n+i} and thus vo|, = o(xi_y)|y. However, this subterm
appears in uo at a position not in Pos,s(uo) and thus cannot contain defined symbols
according to , contradicting the assumption g € Posy, (vo).

6,) We have w = f((y1,...,yn)[V']j, (z1,.. ., 2m,)[T]i) for some v' € AP({;) and v =

FUyrs - un) V'], (21, oy 2m,) [L]i). In this case we obviously have Posy, (uo) =
Posy,, (vo) and Pos, (uc) = Pos,(vo). Hence ¢ € Pos,(vo) is a consequence of
7). O

Using Theorem the inequality in Theorem [7.4] becomes an equality if we restrict the
terms to consider for rcz(g) (1) to those that correspond to labeled basic terms.

Theorem is highly relevant when using interpretations since the (strong or weak)
monotonicity requirements are only imposed on the active arguments of the interpretation
functions.

Example 7.5. For the CCTRS Reven we can take the (empty) usable replacement map
v(f) = @ for all function symbols because even and odd do not appear below the root in
the right-hand side or left-hand side of a condition of any rule. This implies that Zeyen
and Zoqq do not need to be monotone in their first arguments. Hence we can simplify the

COMPLEXITY OF CONDITIONAL TERM REWRITING 31

interpretation of Example [6.2] to
It=1 I, =Twe=Trse =20=0 Iy(x)=x+1
Zeven(x, u, v, w) = Logd(z, u,v,w) =1+v- (2 = 1) +w- (2 — 1)
Leveny (@, u, v, w) = Togqi (@, u,v,w) =1+ v+ w- (2° = 1)
7 é(l‘,u,v,w) =7 ddé(x,ujv,w) =14v-(2*=-1)+w

even [e]

The rules are still oriented; for example, rule (22) gives rise to the inequality
1427 14z (2 - D) > 14+(14+2-(2°—1)+2- (221 -1)

which holds because 27! —1 = 1+42- (2% —1). The above interpretation induces a runtime

complexity of O(2"). This is a tight bound, as we observed earlier.

Definition 7.6 (Recipe B: Extension for Runtime Complexity). Recipe |A|is altered as
follows, assuming we are given a usable replacement map v for (F,R). Rather than de-
manding (strict or weak) monotonicity of the functions .7]3 in all arguments, we merely
demand that

o J J? is strictly monotone in the arguments in v(f), for all f € F,
° j} is weakly monotone in the arguments in v(f), for all f € Fp and 1 <i < my,

e as before, J]‘Z ; is strictly monotone in argument n + i + j — 1, where n is the arity of
fe Fp.
Given J, the definition of Z remains the same.

Recipe [B] can be used like Recipe [A] but only for runtime complexity.

Lemma 7.7. The interpretation T from Recipe B is a context-sensitive interpretation for
(H,pv). If its interpretation functions satisfy the compatibility constraints from Defini-
tion[6.4], then T is compatible with H and

crer(n) = max{[&T(t)]z | t € T(F), |t| < n, and t is basic} .

Moreover,

my
T (f(trs oo ta))]g =D THET IS, -, [67(E)]F)
i=0
Proof. 1t is not hard to see that if the restrictions in the recipe are satisfied, then indeed all
interpretation functions Zy are strictly monotone in all arguments i € pv(f). The result for
crcr follows by Theorem Compatibility and equivalence are obtained from Lemma [6.5
as changing the monotonicity requirements does not affect either property. []

Example 7.8. We use Recipe [B] to derive an upper bound for the runtime complexity of

Rip. From Example we know that the replacement map v, defined by v (s) = {1},

Ure(+) = vre((,) = {1, 2}, and v, (fib) = & is usable. For the interpretations, we assign:
Jo=0 R@=z+1 Jlyxy)=z+y+1 Jzy)=20+y+1

Te(z,y) = THwy) =0 Tp(@) =3 Tp(x) =0 Fgpla) =5-(3" - 1)
‘-7fi1b,2(x7a) =3a ‘7fi2b,2(xv a, b) =a+b

32 C. KOP, A. MIDDELDORP, AND T. STERNAGEL

One easily verifies that these interpretations are strictly monotone in the required argument

positions, and weakly monotone in all argument positions. Omitting the (automatically
satisfied) proof obligations for rules and , this leaves

[+(0,y, T, 2)]z = y+1l>y = [ylz
[+(s(z)y,z MNy= 20+y+3>20+y+2 =[s(+(z,y, T,T))l
[fib(0, T,u)ly = 34u-5-0>2 = [(0,s(0))]7
fib(s(z),u, T)]y = 5-3°T1—-2>5.3°F1 -3 = [fibd (s(z), u, fib(x, T s)1
[fiby (s(x), u, (y, >ﬂz= 3y+32+6 > 3y+2%+5—ﬁl(ﬂ@v Ay, 20, +(y, 2, T, T))lz
]

[fib2(s(z),u, (y,2),w)]; =y +2z+w+4d>z+w+1 =[(zw);
which holds for all values of z, y, z, u, and w. From this we conclude O(3™) runtime
complexity by Lemma [7.7]
Note that Recipe |Bl may not be used for derivational complexity.

Example 7.9. The system Roq4q is a variation of Reyen defined by the following rules:
odd(0) — false not(true) — false
odd(s(z)) — not(y) < odd(x) =~y not(false) — true

We will use Recipe [B| to derive an upper bound for the runtime complexity of this CCTRS,
giving a bit more detail as to how the interpretations are chosen. The replacement map v
with v(odd) = v(s) = @ and v(not) = {1} is usable. Since the unconditional rules will be
taken care of by the choice of J%, and Jo,, we let JL,(z) = JL(z) = J2(x) = 0. For
clarity, we assign different names to the remaining interpretation functions:
0 0 1
‘jcrue:T ‘-70 =7 jodd - joddQZC
0 0 2
L7false =F ‘-75 =5 L7odd =D jnot
Here T, F', and Z are (unknown) constants, C', D, N, O, and S are (unknown) unary func-
tions, and N must be strictly monotone. The recipe gives rise to the following constraints:

O(Z)>F N(T) > F N(F)>T
for the unconditional rules and
D(5(x)) = C(5(z),0(z) + D(x))
O(5(z)) + C(S(x),y) > N(y)
for the conditional rule. The constraints N(T") > F' and N(F) > T are satisfied by setting
F =T =0 and N(z) = x + 1 (recall that N must be strictly monotone). As O is not
required to be (strictly) monotone, and the constraints give little reason for O to regard its

argument, we let O(x) = A for some constant A. Hence the remaining constraints reduce
to

A>0
D(S(x)) = C(S(x), A+ D(x))
A+C(S(z),y) >y+1

COMPLEXITY OF CONDITIONAL TERM REWRITING 33

By taking A =2 and C(z,y) = y we are left with
D(S(z)) =22+ D(x)

which is easily satisfied by choosing D(z) = x and S(x) = x + 2. With these choices, we
have [s]; < 2 - |s| for all terms s, so we obtain linear runtime complexity by Lemma

Note that the use of the replacement map v was essential to obtain linear runtime
complexity; if Jc?dd = O was required to be monotone in its first argument, we would have
had to choose O(x) = x + 1 or worse. While this would allow us to choose the tighter
interpretation S(xz) = x+ 1, it would have produced the constraint D(x+1) > D(x)+x+1,
which can be satisfied with a quadratic interpretation D(y) = 2, but not with a linear one.

8. SPLITTING TIME AND SPACE COMPLEXITY

Another method to improve interpretations is to separate time and space complexity. To
understand the motivation, consider Example Since the rules for addition had to be
oriented strictly, the interpretation jﬂ(w,y) = 2x 4+ y + 1 was chosen rather than the
simpler jﬂ(x,y) = x + y. However, this does not accurately reflect the number of steps
it takes to evaluate an addition. Rather, it reflects the sum of the number of steps plus
the size of the result. This high value for the interpretation also affects the interpretations
for other symbols. And while the difference is only a constant factor, which is not an
issue in polynomial interpretations, it is a cause for concern when considering exzponential
complexities; compare O(2") and O(2*)) = O((2%)").

Thus, as an alternative, let us consider interpretations not in N, but rather in N?:
pairs (n,m), where n records the number of steps to evaluate a term to constructor normal
form, and m the size of the result. These pairs are equipped with the following orders:
(n1,m1) > (ng,me) if ny > ng and my > me, and (ni,m1) = (n2,m2) if n; > ng and
my = mgy. We suggestively write cost((n,m)) = n and size((n,m)) = m, and note that
cost(x) > cost(y) if x > y. Consequently, dh(s, —zr)) < cost([s]F) for any valuation «
over N2,

Example 8.1. We revisit Example and define
It =(0,1) T, = Zirue = Zratse = Lo = (0,0) Zs((c,8)) = (¢,s + 1)
Zeven(x, u, v, w) = Zogd(x, u, v, w) = (1 + cost(z) + (size(v) + SZZ@()) A(x),0)
Leveny (T u, v, w) = Tog 1 (@, u, v, w) = (1 + cost(x) + cost(v) + size(w) - A(x),0)
Leveny (T u, v, w) = Togq1 (@, u, v, w) = (1 + cost(x) + size(v) - A(z) + cost(w), 0)

1
evens

where

A(z) = (cost(z) + 1) - (2576 1)
All interpretations are weakly monotone in all arguments because x > y implies both
cost(z) = cost(y) and size(x) > size(y), and in all interpretation functions cost(-) and
size(-) are only used positively. If x > 2/ then Zeyen(x,u,v,w) > Zeyen(z', u, v, w) since
cost(Zeyen(x, u,v,w)) has a cost(x) summand. The same holds for Zyqq(z, u, v, w) and Zs(x).

Both Zgyeni (7, u, v, w) and Zygq1 (#,u, v, w) have a cost(v) summand and hence are strictly

monotone in their third arguments, and T en1 (%, u, v, w) and Z,y4q1 (2, u, v, w) have a cost(w)

summand. Hence Z satisfies the monotomclty requirements.

34 C. KOP, A. MIDDELDORP, AND T. STERNAGEL

Furthermore, all rules of Z(Reyen) are oriented as required. For the size component this
is clear as size([(]$) = 0 = size([r]%) for all rules £ — r. For the cost component, we see
that rules of the form are oriented because cost(v) > 0 = size([L]F) - A(x), and rules
of the form (6,)) are oriented by monotonicity since [T]§ = (0,1) > (0,0) = [L]¢. Rules

, , (132), , , and are strictly oriented since their left-hand sides evaluate

to 1 whereas the right-hand sides evaluate to 0. The only rules where the orientation is
non-trivial are , , , and . We consider :
1+ cost(x) + (1 + size(w)) - A((cost(x), size(z) + 1))
> 1+ cost(x) + (1 + cost(x) + 2 - A(x)) + size(w) - A((cost(x), size(z) + 1))
Removing equal parts from both sides and inserting the definition of A yields
(cost(x) +1) - (2°2¢@H _ 1) > 1 + cost(x) + 2 - (cost(z) + 1) - (25%¢@) — 1)
and one easily checks that both sides are equal.

Now, towards runtime complexity, an easy induction proof shows that cost([s];) = 0
and size([s];) < n for all ground constructor terms s with |s| < n. Therefore, the conditional
runtime complexity crcg,,.,(n) is bounded by

max{ cost([f(s1,..-ySm, T5..., 1)]z) | f € Fp and s1,..., s, are ground constructor

terms with |si| + -+ [s,,| < n}
= max{ cost(Z¢((0,21),...,(0,2m),(0,1),...,(0,1))) | f € Fp and x1 + 22 + 23 + x4 < n}
=max{14+0+2-1-(2"-1) |z <n}=2"-1<2"
This is the same bound that we obtained in Example but without employing context-
sensitivity.

Interestingly, we can obtain the same tight bound for derivational complexity.
Example 8.2. We prove by induction that for all ground T-terms s there exist K, N >0
with K + N < |s| such that cost([s];) < 2V — 1 and size([s];) < K.

o If 5is 0, true, or false then cost([s];) = 0 = size([s];), so we can take K = N = 0.
e If s = s(t) and ¢ is bounded by (K,N), then cost([s]y) = cost([t];) < 2V — 1 and
size([s]7)) = 1 + size([t];) < K + 1, so we can take (K + 1, N).
o If s=even(t, T, T, T)ors=odd(t, T, T, T) with ¢ bounded by (K, N) then size([s];) =0
and
cost([s]7) = 1+ cost([t]7) + 2 - (cost([t]7) + 1) - (2°%¢lz) — 1)
<1+@2V —1) 422V (28 - 1)
_ 9N 4 gN+E+1 _ 9N+l
— 2N+K+1 _ 2N
< oN+E+L

and so we can take (0, N + K + 1).
It follows that cdcg,,.,(n) = O(2™).
Separating the “cost” and “size” component made it possible to obtain an exponential

bound for the derivational complexity of Reven. However, the derivation of this bound is ad-
hoc, and it would require a more systematic analysis of various systems with the separated

COMPLEXITY OF CONDITIONAL TERM REWRITING 35

cost/size approach to obtain a strategy to find such bounds. For runtime complexity, the
approach is more straightforward. If for all f € F¢ the result Zy(x1,...,x,) has the form
(c(cost(xy), ..., cost(xy)), s(size(xy), ..., size(xy,)))

where ¢ is a linear polynomial with coefficients in {0,1} and constant part 0, and s is a
linear polynomial with coefficients in {0, 1} and a constant part at most K, then all ground
constructor terms s have cost 0 and size at most K - |s|, so crcg(n) is bounded by the
maximum value of Z¢((0, s1),...,(0,8m),(0,1),...,(0,1)) where f € Fp and s1+---+5p, <
K -n. This mirrors the corresponding notion of “strongly linear polynomials” in the setting
with interpretations over N, and is what we used in Example (with K =1).

As before, we will use a standard recipe to find such interpretations. To this end, we
adapt the ideas from Recipes[A] and [B]

Definition 8.3 (Recipe C: Cost/Size Version). Given a usable replacement map v, we
consider the replacement map pv where, for f of arity n in the original signature JF,
uou(f) = v(f) when considering runtime complexity and pv(f) = {1,...,n} otherwise.
Given interpretation functions

e §;: N*" = Nand C?, . ,C}nf: N?" — N for every symbol f of arity n in F such that R|f
consists of my rules,

o wa . sz with Sj Nt/ — N and wa : ,C’;}i with C},i: N2("+7) — N for every rule
pi € R[f with £ > O condltlons

such that the following monotonicity constraints are satisfied:

e Sy is weakly monotone in all arguments in pv(f),

° C? is strictly monotone in all arguments in pv(f) and weakly monotone in all arguments
in {n+7j€polf)},

e Cj is weakly monotone in all arguments in {j,n+j | j € pv(f)},

) S}Z is weakly monotone in its last argument n + 7,

. C}Z is strictly monotone in argument n + j and weakly monotone in argument 2(n + j),

we construct an interpretation Z for H as follows: ZT = (0,1) and Z, = (0,0),
ms

Ty(15- -y Tns Cly v v vy Cmy) = (C?(cost(T), size(—i—Zszze k) - Cf(cost(X), size(T)),

k=1
Sy(size(T)))
for every f € F¢ U Fp of arity n, and finally
Ifij(xla ey Ty Cly e 3 C—15 Y1y - - 7yj7ci+17 .. ‘7C’mf) -
(C?(cost(r), size(Z)) + C] ;(cost(Z), cost(y)), size(T), size(y)))
my
+ Z size(c) -Cl]?(cost(a_:’), size(T)), max(Sy(size(T)), S] ((size(E), size(Y))))
k=1, ki

Here cost(Z) and size(¥) stand for cost(z1),..., cost(zy,) and size(xy),..., size(x,), and

similar for cost(y) and size(¥).

The following remarks are helpful to understand the intuition behind the interpretations
defined in the above recipe.

36 C. KOP, A. MIDDELDORP, AND T. STERNAGEL

e The “size” of a term s is intended to reflect—or at least bound—how large a normal form
of s may be, where different constructor symbols count differently towards the size. In
a term f(s1,...,8n,t1,..,tm;), the size is only affected by the sizes of s1,...,sp; the
additional arguments merely indicate our progress in trying to reduce the term. In a
term of the shape f/(s1,...,sp, (t1, ... stmy)[Y1, ..., y;]i) the size should similarly not be
affected by the progress on testing the applicability of the rule p; € R[f. However, here a
rule-specific size function is included in a max expression for technical reasons; in practice,
we will always have S¢(---) > Sju(-+), but the latter will have more variables that can
be used to orient rules of the form .

e The “cost” of f(s1,...,8n,t1,... ,tmf) reflects how many steps we may take to reach a
normal form. This is affected by the cost of evaluating each of the rule conditions where
t; = (0,1) is the value of T, as well as the cost of evaluating whatever we may reduce
to; the sizes of the arguments may affect both those costs (since it will take longer to
evaluate even(s!%’(0)) than even(0), for instance).

As before, using this interpretation for the rules in Definition the obtained inequalities
can be greatly simplified.

Definition 8.4. The compatibility constraints for C and S comprise the following inequali-
ties, for every rule p;: f(l1,...,0n) = 1< a1 = by,...,a; ~ b in R:

(1 mewl
(2,) S(il1s) > S} ,({0s, [e7(an)]s),

fi

(3) St (s, bals, - [bels) = [()]s,
(4p) 3},2»(@5)7 [bis, ..., [bjls) = Sﬁl(@; [bils; .-, [bjls, [€T(a41)]s)
and
(1,) CO[dle, [039) + Ci({dle, [09) > [er (e,
(2,) Ci([e, [03) > €L ([, [67(an)le, s, [er(an)]s),
(35) CE({es bales -, Bules s, ls, - - -+ bls) + CU[Hle, [3) > [(r)le,
(4) CL (e, [ules - [b]le 105, Bils, - - [byls)

N ([es ey - byles [€7(az4)es 8 s - il [€7(az1)]s)
for tlﬁ}same cases of k and j as in Definition Here [s]s = size([s]$), [s]c = cost([s]),
and [{|s and [¢]¢c denotes the sequences [{1]s, ..., [(n]s and [¢1]c, ..., [ln]c.

Lemma 8.5. The interpretation Z from Recipe[(is a context-sensitive interpretation for
(H, pv). If the corresponding functions C and S satisfy the compatibility constraints from
Definition [8), then

[Er(f(tr, - tn))ls = Sp([Er ()]s, - -5 [Er(tn)]s)
ms

Er(f(tr, - ta))le =D ChEr(t)les - - [Er(ta)le, (6T (E)]s -, (67 (En)]s)
1=0

COMPLEXITY OF CONDITIONAL TERM REWRITING 37

Moreover, I is compatible with H. Therefore

cdeg (n) = max{cost([{T(t)]7) | t € T(F) and |t| < n}

creg(n) = max{cost([(T(t)]7) | t € T(F), |t| < n, and t is basic}
Proof. For the first part of the claim, it is not hard to see that Z satisfies the monotonicity
requirements: Every interpretation function Zy is strictly monotone in each argument posi-
tion belonging to pv(f) = v(f) (or {1,...,n} for derivational complexity), and every Z 1
is strictly monotone in argument position n + i + j — 1. The second part of the claim is
obtained by writing out definitions. As for compatibility, minimality of [L]$ ensures that
all constraints obtained from clause are satisfied, while those obtained from clause
are oriented because

Cli(+) = 0=[Ls-Ch(--)
and
max{Sy (size(E)), S} (-)} = Sy(size(F))

always hold. The requirements for the other rules follow from the compatibility constraints,
by expanding the inequalities [¢]s > [r]|s and [¢]¢c = [r]c or [¢]¢ > [r]c depending on the cost
of the rule. For instance, the actual size constraint for is
— —
max(Sy([)s), Sfi([ls. [bils, - - [brls)) > [€7(r)]s
while for (4, we obtain

max(Sy([]s), St (s, [bils, - -, [bsls)) =
max(Sy([ls), S5 (s, bils, - - bjls, [€1(aj41)]s))
Both constraints are clearly implied by the compatibility constraints of Definition The
claims on cdcr and crcg hold because dh(s, —=(R),u0) < cost([s]7). L]

As with Lemma we can find bounds on derivation heights without calculating &1 (¢).

Example 8.6. We derive an upper bound for the runtime complexity of R, detailing how
we arrive at the chosen interpretation. Recall the rules:

O+y—vy fib(0) — (0,s(0))
s(x)+y —s(z+y) fib(s(z)) — (z,w) < fib(z) = (y,2), y+z~w
We take the same usable replacement map v as in Example v(s) = {1}, v(+) =
v({-,+)) = {1,2}, and v(fib) = @. To facilitate understanding of the following constraints,

we present the rules in Z(Ryp) that derive from the conditional rule (but note that they are
not necessary to apply the recipe):

fib(s(x),c1, T) — fib(s(z), c1, fib(z, T, T))
fib (s(x), 1, (y, 2)) — fib3(s(x), c1, (y, 2), +(y, 2, T, T))
fib3(s(x), c1, (y, 2), w) = (z,w)
Following the recipe, let N = Sy, S = &, P = Sy, A = 84, F = Sp, B = Sflib,Z

.y

and C' = S]?ib’Q. The interpretation functions S, P and A must be weakly monotone in all

38 C. KOP, A. MIDDELDORP, AND T. STERNAGEL

arguments, B and C only in the last argument, and F' does not need to be weakly monotone
due to v. The requirements on the size component give rise to the constraints

AN, y) > (8.1)
A(S(),y) > S<A<)
F(N) > P(N,S(N))
for the unconditional rules and
F(S(x)) = B(S(x), F(x)) (8.4)
B(S(x), P(y,2)) = C(5(z), Py, 2), Ay, 2)) (8.5)
C(S(x), P(y,z2),w) = P(z,w) (8.6)

for the conditional rule of Rfp. For the cost component we will follow the guiding principle
that C?(:Ul, e Ty Yl -5 Yn) < X1 + - + @y for all constructor symbols f € Fe, which
gives cost 0 for ground constructor terms. As C? must be strictly monotone in the first
n arguments for f € Fe, we fix Co = 0, Cs(z,y) = z and C. (cz,cy, sz,sy) = cx +
cy. We also fix C}r(ca;,cy,sx,sy) = Ci(ca:,cy, sz, sy) = Cflib(ca:,sm) = 0 since these are
the “conditional evaluation” components for the unconditional rules. For the remaining
interpretation functions, write Q = C%, G = Cﬁb, H = CfQib, D= Cflibz, and F = C]?ibg, which
yields

Q(0,cy, N, sy) > cy (8.7)
Q(cx, cy, S(sw), sy) > Q(cw, cy, sz, sy) :
G(0,N) >0 (8.9)

for the unconditional rules and
H(cx,S(sx)) > D(cx,G(cx, sx) +
H(cx,sx),S(sx), F(sz)) (8.10)
D(cx,cy + cz,S(sx), P(sy, sz)) =

E(cx,cy + cz,Q(cy, cz, sy, s2), S(sx),P(sy, s2), A(sy, s2)) (8.11)
G(cx,S(sx)) + E(cx, cy + cz, cw, S(sx), P(sy, sz), sw) > ¢z + cw (8.12)
for the conditional rule. Here, @) is strictly monotone in its first two arguments and weakly
in the last two, D is strictly monotone in argument 2 and weakly in 4, while F is strictly
monotone in argument 3 and weakly in 6. There is no monotonicity constraint for G or H.
Choosing minimal polynomials to satisfy the constraints deriving from the rules for +,
weset N =0, S(x) =z+1, A(x,y) = z+vy, and Q(cz, cy, sz, sy) = cx + cy + sz + 1. Since
G need not be monotone, we simply take G(z,y) = 1 to satisfy . Further choosing

P(x,y) = = + y, the constraints simplify to

F(0
Flz+1

) =
) =

Bz +1,y+2) > (x—i—l Y+ z,y+2)
) >z
) =

|
Bl +1,F(x))
¢
Clz+1,y+zw

H(cx,sx+1 (ca: H(cx,sx)+1,sz+1,F(sx)) (8.10)

COMPLEXITY OF CONDITIONAL TERM REWRITING 39

D(cx,cy+cz,sx+ 1,8y + sz) >
E(cx,cy+cz,cy+cz+sy+1,sx+ 1,sy + sz,sy + sz) (8.11))
1+ E(cx,cy+ cz,cw, sz + 1,5y + sz, sw) > cz + cw (18.12))

The size constraints are satisfied if we choose C(z,y, z) = y+2z, B(z,y) = 2y, and F(x) = 2%.
Choosing E(cz, cy, cz, sz, sy, sz) = cy + cz and D(cx, cy, sx,sy) = 2cy + sy + 1 takes care
of (8.11) and (8.12), leaving only

H(c,s+1)>2-(H(c,s)+1)+2°+1 (8.10)
This final constraint is satisfied for H(c,s) = (s + 1) - (25! — 2) since
H(c,s+1)=(54+2)- (272 —2)=5-272 +8.2° 25 — 4
=5-22 1 5.2 25— 443.2>5-2°T2 4 5.25 4s—4+3
=2-(s+1)- 2" 4. (s+1)+2°+3=2-(s+1)- (25T —2) +2°+3
=2 -H(e,s)+2°4+3=2-(H(c,s)+1)+2°+1

Since all ground constructor terms s have cost 0 and size at most |s|, for ground basic terms
s with |s| < n, cost([s];) is bounded by G(0,n — 1) + H(0,n —1) = 1+n-2" —2n. We
conclude a runtime complexity of O(n - 2") by Lemma

9. CONCLUSIONS

In this paper we have improved and extended the notion of complexity for conditional term
rewriting first introduced in [I7]. This notion takes failed calculations into account as any
automatic rewriting engine would. We have defined a transformation to unconditional left-
linear context-sensitive TRSs whose complexity is the same as the conditional complexity
of the original system, and shown how this transformation can be used to find bounds for
conditional complexity using traditional interpretation-based methods.

9.1. Implementation and Experiments. At present, we have not implemented the re-
sults of Sections|[6] [7} and [8] However, we did implement the transformation from Section
The resulting (context-sensitive) TRSs can be used as input to a conventional TRS complex-
ity tool, which by Theorem [5.11] gives an upper bound for conditional complexity. Although
existing tools do not take advantage of either information regarding the replacement map,
nor of the specific shape of the rules or the fact that only terms of the form £(s) need to
be considered, the results are often tight bounds.

We have used this approach with TCT [4] as the underlying complexity o) 16
tool, to analyze the runtime complexity of the 57 strong CCTRSs in the | o(p) 10
current version of the termination problem database (TPDB 10.3)E| along | O(n?2) 3
with 5 examples in this paper. The results are summarized to the right. | MAYBE | 33

A full evaluation page is available at
http://cl-informatik.uibk.ac.at/experiments/2016/cc

3See http://termination-portal.org/wiki/TPDB| for more details.

http://cl-informatik.uibk.ac.at/experiments/2016/cc
http://termination-portal.org/wiki/TPDB

40 C. KOP, A. MIDDELDORP, AND T. STERNAGEL

About half of the systems in our example set could not be handled. This is largely due
to the presence of non-terminating CCTRSs as well as systems with exponential runtime
complexity, which existing complexity tools do not support. Many benchmarks of condi-
tional rewriting have rules similar to our Example[3.I] which lead to exponential complexity
due to failed evaluations, and consequently cannot be handled. We do, however, obtain a
constant upper bound for Example a quadratic upper bound for Example as well
as the tight bound O(n) for Example

9.2. Related Work. We are not aware of any other attempt to study the complexity
of conditional rewriting, but numerous transformations from CTRSs to TRSs have been
proposed in the literature. They can roughly be divided into so-called unravelings and
structure-preserving transformations. The former were coined by Marchiori [23] and have
been extensively investigated (e.g. [24], 28|, B0, B1l [33]), mainly to establish (operational)
termination and confluence of the input CTRS. The latter originate from Viry [37] and
improved versions were proposed in [I], 8} [13].

The transformations that are known to transform CTRSs into TRSs such that (simple)
termination of the latter implies quasi-decreasingness of the former, are natural candidates
for study from a complexity perspective. We observe that unravelings are not suitable
in this regard, since they do not take the cost for failed computations into account. For
instance, the unraveling from [24] transforms the CCTRS Reyen into

even(0) — true even(s(z)) — Ui (odd(z), z) Ui (true, x) — true
even(s(z)) — Uz (even(z), x) Us(true, x) — false
odd(0) — false odd(s(z)) — Uz(odd(x), x) Us(true, x) — false
odd(s(z)) — Ua(even(zx),x) Ua(true, x) — true

This TRS has a linear runtime complexity, which is readily confirmed by TCI. As the condi-
tional runtime complexity is exponential, the transformation is not suitable for measuring
conditional complexity. The same holds for the transformation in [30].
Structure-preserving transformations are better suited for studying conditional com-
plexity since they keep track of the conditions in all applicable rules.
However, existing transformations of this kind are also unsuitable for measuring condi-
tional runtime complexity. For instance, the CCTRS Reyen is transformed into the TRS

even(0, z,y) — m(true) odd(0, z,y) — m(false)
even(s(z), L, z) — even(s(z),c(m(odd(z, L, 1))),2z) even(s(x),c(m(true)),z) — m(true)
even(s(z),y, L) — even(s(z),y,c(m(even(z, L, 1)))) even(s(z),y,c(m(true))) — m(false)
odd(s(z), L, z) — odd(s(x),c(m(even(z, L, 1))),z) odd(s(z),c(m(true)), z) — m(true)
odd(s(z),y, L) — odd(s(z),y,c(m(odd(z, L, 1)))) odd(s(z),y,c(m(true))) — m(false)
even(m(x),y,z) — m(even(x, L, 1)) s(m(z)) = m(s(z))
odd(m(z),y, z) — m(odd(x, L, 1)) m(m(z)) = m(z)

by the transformation of Serbanuta and Rosu [8]. TCTreports a constant runtime complexity,
which is explained by the fact that the symbol s is turned into a defined symbol. Hence
a term like even(s(0), T, T) is not basic and thus disregarded for runtime complexity. The
derivational complexity of the transformed TRS is harder to confirm automatically, as it

COMPLEXITY OF CONDITIONAL TERM REWRITING 41

is exponential, but likely not to differ much from the conditional derivational complexity
of Reven. However, in general, we may well obtain much greater bounds due to the forced
reevaluation of conditions when a subterm is reduced. Consider for instance a term even(s(t))
with ¢ = s?1(0) + s2(0) in an extension of Reyen With rules for 4. This term is encoded as
even(s(t), L, L), the Ls indicating that no condition has been evaluated yet, and might be
reduced as follows:

), c(m(odd(t,
—" even(s(t),c(m(false)), L)

), c(m(false)),c(m(even(t, L, 1))))
—* even(s(t), c(m(false)), c(m(true)))

((
— even(m(s*3(0)), c(m(false)), c(m
)

— m(even(s*3(0), L, 1))

We observe that an evaluation in the instance s(t) of the pattern s(z) forces a reevaluation
of ¢ when checking the second condition. The fundamental difference with our approach is
that we have used Lemma [3.4] to avoid such reevaluations.

Less recent, the transformation of Antoy et al. [I] operates in a more restrictive setting:
weakly orthogonal constructor-based CTRSs without extra variables in the conditions. Like
the transformation in [8], it blocks conditions when their evaluation fails; however, condi-
tions are not reevaluated when arguments are modified. A crucial difference with our
transformation = is that different conditions in the same conditional rule are not evaluated
from left to right but combined into a single condition, which has a negative impact on
complexity. As an extreme example, consider the CCTRS R consisting of the four rules

f(z) »>a < c~d, g(z) = a, g(z)~b g(s(z)) — f(x)
flx) > b < cme c—e
The conditional runtime complexity of R is linear, which is confirmed by running TCI on
Z(R). The transformation of [I] produces the TRS
f(o, 1, 1) = f(z, (c.g(x), g(2),) flz,(da,b),2) a gls(x)) =z, L, 1)
f(x,y,e) = b c—e
whose runtime complexity is at least exponential due of the rules f(z, L, 1) — f(z, (c, g(x),
g(x)),c) and g(s(z)) — f(x, L, L). If the (undecidable) weak orthogonality restriction in [1]
is not imposed, the same phenomenon may occur if rules have at most one condition.
However, it is worth noting also the similarities to our method, especially when there is
at most one condition. Consider for example the result of transforming our CCTRS Reven:
even(0,y, z) — true even(s(x),true,y) — true even(s(x),y, true) — false
0dd(0,y, z) — false odd(s(x), true, y) — true odd(s(x), y, true) — false
) — even(s(x),odd(z, L, L), even(x, L, 1))
)

even(s(x), L,
), L — odd(s(x),even(z, L, 1), odd(x, L, 1))

1L
odd(s(x), L, L

)

42 C. KOP, A. MIDDELDORP, AND T. STERNAGEL

This does not look too different from the result of our transformation = if the set AP is not
used. In addition, the method used could be generalised with some of the ideas from [§],
for instance by evaluating multiple conditions sequentially rather than in parallel.

Even ignoring the issue of multiple conditions—or, for [§], the issue of reevaluation—
there are some fundamental differences between our transformation = and the structure-
preserving transformations of [I, 8]. In both of these, the conditions for different rules
may be evaluated in parallel, which we do not permit. Moreover, neither transformation
separates defined symbols (e.g. even) from “active” symbols used to evaluate conditions (e.g.
even%). This separation is necessary to impose a context-sensitive replacement map as we
have done here, and makes it much easier to use traditional techniques such as polynomial
interpretations. Most importantly, neither transformation defines—or is based on a formal
definition of—conditional complexity; rather, they define upper bounds for a reasonable
evaluation strategy.

9.3. Avenues for Future Work. There are several possibilities to continue our research.

Weakening restrictions. An obvious direction for future research is to broaden the class
of CTRSs we consider. While it would make little sense to consider CTRSs that are not de-
terministic or of type 3—as the rewrite relation in these systems is undecidable in general—it
may be possible to drop the variable and constructor requirements.

The linearity requirements in strong CCTRSs are an obvious target for improvement.
These requirements were not needed in the definition or justification of our primary com-
plexity notion, but essential for the correctness of the way we use the anti-pattern set AP.
However, if we are willing to lose completeness, we may drop the anti-pattern set, replacing
the use of v in AP(¢;) or AP(b;) in Definition [5.6| by a fresh variable; doing so, the transfor-
mation would not preserve derivation heights, but we would retain the possibility to obtain
upper bounds. Alternatively, we might consider an infinite set of transformed rules Z/'(R)
instead.

As for the restrictions in general CCTRSs, the proof of the important locality Lemma|3.4
requires only that the left-hand side ¢ of every rule £ — r < ¢ is a basic term such
that Var(¢) N Var(c) = @. This can always be satisfied by altering the system without
changing the rewrite relation in an essential way, replacing for instance f(g(x),y) — r by
f(z,y) > r < z =~ g(x). However, in such cases, the definition of conditional complexity
needs to be revisited, as the restrictions on the conditions are needed for Lemma, which
is important to justify our complexity notion. For example, if the right-hand sides of
conditions were allowed to be arbitrary terms, it would be possible to define a system with
rules

glz) = x h(z) — g(x) h(z) »x f(z,y) > a < z=g(x)

In this CTRS, a term f(h(0),0) can be reduced by the last rule, but we would only find
this out if we reduced h(0) with the second rule, rather than with the third. Thus, to
accurately analyze such a system, we would likely need a backtracking mechanism. To drop
the restriction that the right-hand sides of conditions may not repeat variables, we would
need the same, or alternatively a strategy which enforces that left-hand sides of conditions
must always be reduced to normal form. Similar revisions could be used to extend the
definition to take non-confluence into account, as discussed at the end of Section

COMPLEXITY OF CONDITIONAL TERM REWRITING 43

Alternatively, we could weaken the restrictions only partially, allowing for instance
irreducible patterns—terms b such that for no instance by, a reduction step is possible at a
position in Pos(b)— as right-hand sides of conditions rather than only constructor terms.

Rules with branching conditions. Consider the following variant of Reyen:

even(0) — true (9.1) odd(0) — false (9.4)
even(s(z)) — true < odd(x) ~ true (9.2) odd(s(x)) — true < even(z) ~ true (9.5)
even(s(z)) — false < odd(x) ~ false (9.3) odd(s(x)) — false <= even(z) =~ false (9.6)

Unlike Example rules (9.2)) and (9.3)), and rules (9.5) and have very similar condi-

tions. Currently, we do not exploit this. Evaluating even(s”(0)) with rule causes the
calculation of the normal form false of odd(s®(0)), before concluding that the rule does not
apply. In our definitions (of — and Z), and in line with the behavior of Maude, we would
dismiss the result and continue trying the next rule. In this case, that means recalculating
the normal form of odd(s®(0)), but now to verify whether rule applies.

This is wasteful, as there is clearly no benefit in recalculating this normal form. The
rules are defined in a branching manner: If the condition evaluation gives one result, we
should apply rule ; if it gives another, we should use rule . A clever rewriting
engine could use this branching, and avoid recalculating obviously unnecessary results. Thus,
future extensions of the complexity notion might take such groupings of rules into account.

Improving the transformation. With regard to the transformation =, it is would be
easy to obtain smaller resulting systems using various optimizations, such as reducing the
set AP of anti-patterns using typing considerations, or leaving defined symbols untouched
when they are only defined by unconditional rules.

Implementation and further complexity methods. The strength of our implementa-
tion—which relies simply on a transformation to unconditional complexity—is necessarily
limited by the possibilities of existing complexity tools. Thus, we hope that, in the future,
developers of complexity tools will branch out towards context-sensitive rewriting. More-
over, we encourage developers to add support for exponential upper bounds.

To take full advantage of the initial conditional setting, it would be ideal for complexity
tools to directly support conditional rewriting. This would enable tools to use methods
like Recipe [C] which uses a max-interpretation to immediately eliminate a large number of
rules—an interpretation which an automatic tool is unlikely to find by itself. It is likely
that other, non-interpretation-based methods, can be optimized for the conditional setting
as well.

ACKNOWLEDGEMENT

We thank the reviewers for their detailed comments, which led to many improvements.

44

[

C. KOP, A. MIDDELDORP, AND T. STERNAGEL

REFERENCES

S. Antoy, B. Brassel, and M. Hanus. Conditional narrowing without conditions. In Proc. 5th PPDP,
pages 20-31, 2003. doi:10.1145/888251 .888255

M. Avanzini and G. Moser. Complexity analysis by rewriting. In Proc. 9th FLOPS, volume 4989 of
LNCS, pages 130146, 2008. doi:10.1007/978-3-540-78969-7_11!

M. Avanzini and G. Moser. Polynomial path orders. Logical Methods in Computer Science, 9(4), 2013.
doi:10.2168/LMCS-9(4:9)2013.

M. Avanzini and G. Moser. Tyrolean complexity tool: Features and usage. In Proc. 24th RTA, volume 21
of LIPIcs, pages 71-80, 2013.|d0i:10.4230/LIPIcs.RTA.2013.71.

F. Baader and T. Nipkow. Term Rewriting and All That. Cambridge University Press, 1998.

G. Bonfante, A. Cichon, J.-Y. Marion, and H. Touzet. Algorithms with polynomial interpretation
termination proof. Journal of Functional Programming, 11(1):33-53, 2001.

M. Clavel, F. Durén, S. Eker, P. Lincoln, N. Marti-Oliet, J. Meseguer, and C. Talcott. All About Maude —
A High-Performance Logical Framework, volume 4350 of LNCS. 2007. d0i:10.1007/978-3-540-71999-1.
T.F. Serbanuta and G. Rogu. Computationally equivalent elimination of conditions. In Proc. 17th RTA,
volume 4098 of LNCS, pages 19-34, 2006. doi:10.1007/11805618_3.

N. Dershowitz and M. Okada. A rationale for conditional equational programming. Theoretical Com-
puter Science, 75(1-2):111-138, 1990. |d0i:10.1016/0304-3975(90) 90064-0.

M. Erwig and S. Peyton Jones. Pattern guards and transformational patterns. In Proc. 2000 ACM
SIGPLAN Haskell Workshop, volume 41(1) of ENTCS, 2001.|doi:10.1016/S1571-0661(05)80540-7.
A. Geser, D. Hofbauer, J. Waldmann, and H. Zantema. On tree automata that certify termination of
left-linear term rewriting systems. Information and Computation, 205(4):512-534, 2007. doi:10.1016/3 |
1c.2006.08.007.

J. Giesl, M. Brockschmidt, F. Emmes, F. Frohn, C. Fuhs, C. Otto, M. Pliicker, P. Schneider-Kamp,
S. Swiderski, and R. Thiemann. Proving termination of programs automatically with AProVE. In Proc.
7th IJCAR, volume 8562 of LNCS, pages 184-191, 2014. |doi:10.1007/978-3-319-08587-6_13.

K. Gmeiner and N. Nishida. Notes on structure-preserving transformations of conditional term rewrite
systems. In Proc. 1st WPTE, volume 40 of OASICS, pages 3—14, 2014. d0i:10.4230/0ASIcs.WPTE.2014,
3.

N. Hirokawa and G. Moser. Automated complexity analysis based on the dependency pair method. In
Proc. 4th IJCAR, volume 5195 of LNAI pages 364—380, 2008. |doi:10.1007/978-3-540-71070-7_32.
N. Hirokawa and G. Moser. Automated complexity analysis based on context-sensitive rewriting. In
Proc. Joint 25th RTA and 12th TLCA, volume 8560 of LNCS, pages 257271, 2014. |doi:10.1007/
978-3-319-08918-8_18.

D. Hofbauer and C. Lautemann. Termination proofs and the length of derivations (preliminary version).
In Proc. 8rd RTA, volume 355 of LNCS, pages 167-177, 1989. |doi:10.1007/3-540-51081-8_107k

C. Kop, A. Middeldorp, and T. Sternagel. Conditional complexity. In Proc. 26th RTA, volume 36 of
LIPIcs, pages 223-240, 2015. do0i:10.4230/LIPIcs.RTA.2015.223.

A. Koprowski and J. Waldmann. Max/plus tree automata for termination of term rewriting. Acta
Cybernetica, 19(2):357-392, 2009.

S. Lucas. Context-sensitive computations in functional and functional logic programs. Journal of Func-
tional and Logic Programming, 1998(1), 1998.

S. Lucas. Context-sensitive rewriting strategies. Information and Computation, 178(1):294-343, 2002.
doi:10.1006/inco.2002.3176.

S. Lucas, C. Marché, and J. Meseguer. Operational termination of conditional term rewriting systems.
Information Processing Letters, 95(4):446-453, 2005. |d0i:10.1016/j.ipl.2005.05.002.

S. Lucas and J. Meseguer. 2D dependency pairs for proving operational termination of CTRSs. In Proc.
10th WRLA, volume 8663 of LNCS, pages 195-212, 2014. d0i:10.1007/978-3-319-12904-4_11.

M. Marchiori. Unravelings and ultra-properties. In Proc. 5th ICALP, volume 1139 of LNCS, pages
107-121, 1996. |doi:10.1007/3-540-61735-3_7.

M. Marchiori. On deterministic conditional rewriting. Computation Structures Group Memo 405, MIT
Laboratory for Computer Science, 1997.

A. Middeldorp, G. Moser, F. Neurauter, J. Waldmann, and H. Zankl. Joint spectral radius theory for
automated complexity analysis of rewrite systems. In Proc. 4th CAI, volume 6742 of LNCS, pages 1-20,
2011.|do1:10.1007/978-3-642-21493-6_1.

http://dx.doi.org/10.1145/888251.888255
http://dx.doi.org/10.1007/978-3-540-78969-7_11
http://dx.doi.org/10.2168/LMCS-9(4:9)2013
http://dx.doi.org/10.4230/LIPIcs.RTA.2013.71
http://dx.doi.org/10.1007/978-3-540-71999-1
http://dx.doi.org/10.1007/11805618_3
http://dx.doi.org/10.1016/0304-3975(90)90064-O
http://dx.doi.org/10.1016/S1571-0661(05)80540-7
http://dx.doi.org/10.1016/j.ic.2006.08.007
http://dx.doi.org/10.1016/j.ic.2006.08.007
http://dx.doi.org/10.1007/978-3-319-08587-6_13
http://dx.doi.org/10.4230/OASIcs.WPTE.2014.3
http://dx.doi.org/10.4230/OASIcs.WPTE.2014.3
http://dx.doi.org/10.1007/978-3-540-71070-7_32
http://dx.doi.org/10.1007/978-3-319-08918-8_18
http://dx.doi.org/10.1007/978-3-319-08918-8_18
http://dx.doi.org/10.1007/3-540-51081-8_107
http://dx.doi.org/10.4230/LIPIcs.RTA.2015.223
http://dx.doi.org/10.1006/inco.2002.3176
http://dx.doi.org/10.1016/j.ipl.2005.05.002
http://dx.doi.org/10.1007/978-3-319-12904-4_11
http://dx.doi.org/10.1007/3-540-61735-3_7
http://dx.doi.org/10.1007/978-3-642-21493-6_1

[26]

27]

(28]

COMPLEXITY OF CONDITIONAL TERM REWRITING 45

G. Moser and A. Schnabl. The derivational complexity induced by the dependency pair method. Logical
Methods in Computer Science, 7(3), 2011. doi:10.2168/LMCS-7(3:1)2011,

G. Moser, A. Schnabl, and J. Waldmann. Complexity analysis of term rewriting based on matrix and
context dependent interpretations. In Proc. 28th FSTTCS, volume 2 of LIPIcs, pages 304-315, 2008.
d0i:10.4230/LIPIcs.FSTTCS.2008.1762.

N. Nishida, M. Sakai, and T. Sakabe. Soundness of unravelings for conditional term rewriting systems
via ultra-properties related to linearity. Logical Methods in Computer Science, 8:1-49, 2012. doi:10,
2168/LMCS-8(3:4)2012.

L. Noschinski, F. Emmes, and J. Giesl. Analyzing innermost runtime complexity of term rewriting by de-
pendency pairs. Journal of Automated Reasoning, 51(1):27-56, 2013. |d0i:10.1007/s10817-013-9277-6.
E. Ohlebusch. Transforming conditional rewrite systems with extra variables into unconditional systems.
In Proc. 6th LPAR, volume 1705 of LNCS, pages 111-130, 1999. doi:10.1007/3-540-48242-3_8.

E. Ohlebusch. Advanced Topics in Term Rewriting. Springer, 2002. doi:10.1007/978-1-4757-3661-8
F. Schernhammer and B. Gramlich. VMTL — a modular termination laboratory. In Proc. 20th RTA,
volume 5595 of LNCS, pages 285-294, 2009. |doi:10.1007/978-3-642-02348-4_20.

F. Schernhammer and B. Gramlich. Characterizing and proving operational termination of deterministic
conditional term rewriting systems. Journal of Logic and Algebraic Programming, 79(7):659-688, 2010.
doi:10.1016/3 . j1ap.2009.08.001.

T. Sternagel and A. Middeldorp. Conditional confluence (system description). In Proc. Joint 25th RTA
and 12th TLCA, volume 8560 of LNCS, pages 456—465, 2014. doi:10.1007/978-3-319-08918-8_31.

T. Suzuki, A. Middeldorp, and T. Ida. Level-confluence of conditional rewrite systems with extra
variables in right-hand sides. In Proc. 6th RTA, volume 914 of LNCS, pages 179-193, 1995. doi:10,
1007/3-540-59200-8_56.

Terese. Term Rewriting Systems, volume 55 of Cambridge Tracts in Theoretical Computer Science.
Cambridge University Press, 2003.

P. Viry. Elimination of conditions. Journal of Symbolic Computation, 28(3):381-401, 1999. doi:10.1006/
jsco.1999.0288.

J. Waldmann. Polynomially bounded matrix interpretations. In Proc. 21st RTA, volume 6 of LIPIcs,
pages 357-372, 2010. |doi:10.4230/LIPIcs.RTA.2010.357.

H. Zankl and M. Korp. Modular complexity analysis for term rewriting. Logical Methods in Computer
Science, 10(1:19):1-33, 2014. |doi:10.2168/LMCS-10(1:19)2014.

APPENDIX A. PROOF OF THEOREM [5.12]

Recall the statement of Theorem [5.12

Let R be a strong CCTRS and s € T(G). If ((s) is terminating and there
exists a context-sensitive reduction ((s) _%(R) ut for some t with cost N,

then there exists a complexity-conscious reduction s —* ¢’ with cost at least

—_

N. If there exists an infinite (£(R), 1) reduction starting from ((s) then

S&.

In this appendix we present the proof. We fix a strong CCTRS R, and corresponding
signatures F, G and H. In order to relate certain reduction sequences in (Z(R),u) to
complexity-conscious reductions with —, we start by defining an inverse of (.

Definition A.1. A term s € T(H,V) is proper if

L)
L)
L)

is a variable, or
= f(s1,...,8,) with f a constructor symbol and proper subterms s, ..., sy, or
= f(sl,...,sn,cl,...,cmf) with f a defined symbol, proper subterms si,...,s,, and

1y emy € {L, T}

http://dx.doi.org/10.2168/LMCS-7(3:1)2011
http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2008.1762
http://dx.doi.org/10.2168/LMCS-8(3:4)2012
http://dx.doi.org/10.2168/LMCS-8(3:4)2012
http://dx.doi.org/10.1007/s10817-013-9277-6
http://dx.doi.org/10.1007/3-540-48242-3_8
http://dx.doi.org/10.1007/978-1-4757-3661-8
http://dx.doi.org/10.1007/978-3-642-02348-4_20
http://dx.doi.org/10.1016/j.jlap.2009.08.001
http://dx.doi.org/10.1007/978-3-319-08918-8_31
http://dx.doi.org/10.1007/3-540-59200-8_56
http://dx.doi.org/10.1007/3-540-59200-8_56
http://dx.doi.org/10.1006/jsco.1999.0288
http://dx.doi.org/10.1006/jsco.1999.0288
http://dx.doi.org/10.4230/LIPIcs.RTA.2010.357
http://dx.doi.org/10.2168/LMCS-10(1:19)2014

46 C. KOP, A. MIDDELDORP, AND T. STERNAGEL

We denote the set of all proper (ground) terms by T,(H,V) (Tp(#H)). For proper terms s we
define (7 (s) € T(G,V) as follows. If s is a variable then (7 (s) = s, if s = f(s1,..., S,) With
[a constructor then (7 (s) = f((7(s1),.--,¢ (sn)), and if s = f(s1,...,8n,C1,. .., Cm;)
with f a defined symbol then (7 (s) = fr(¢"(s1),...,{ " (s,)) for R = {pic i =Th

Note that L-patterns (Definition [5.2]) are proper. The following lemma collects some
easy properties of (.

Lemma A.2. (1) If s € T(G,V) then ((s) € To(H,V) and (~({(s)) = s.
(2) If t € To(H,V) then C(t)) =t.

(3) Ift € To(H,V) and T: To(H, V) then tt € To(H,V) and ¢~ (t7) = ()7~ (where
Te- =(oT).

(4) I]C"u € T(F,V) and 7:V — To(H,V) then &r(u)r € To(H,V) and ¢ (Er(u)T) =
label(u) 7.

(5) Ifv € AP(u) for some linear constructor term u then v € T,(H,V) and (™ (v) is a linear
labeled normal form which does not unify with u.

Proof. The first three statements are proved by an obvious induction argument.

(4) We have &7(u) = ((label(u)) by Lemma From statements and we infer
C(label(u))T € To(H, V) and ¢~ ({(label(u))7) = ¢~ (¢(label(u))) 7.~ = label(u)7,-.

(5) From the definition of AP it follows that v is a L-pattern and thus proper. By structural

induction on v we easily obtain that (~(v) is a linear labeled normal form which does
not unify with u. L]

An important preliminary result is that terminating proper ground terms have a -
pattern as normal form. This allows us to eliminate f symbols in selected (sub)terms, which
is crucial for transforming a (Z(R), 1) reduction into a complexity-conscious reduction.

Lemma A.3. If s € To(H) then any (E(R), 1) normal form of s is a L-pattern.

Proof. For the purpose of this proof, a ground term w in 7 (H) is said to be an intermediate
term if
e u= f(uy,...,u,) with f a constructor symbol and intermediate arguments u1, . .., Uy, or
o u= f(ur,...,Un,C1,...,Cm;) with f a defined symbol, c1,...,¢n, € {1, T}, and inter-
media‘pe arguments uq, ..., Uy, O
o u=fl(li,.... 0y {c1,... sCmy) b1, bj—1,v])o with e, ... e, € {L T} and intermedi-
ate terms v and o(y) for all y € Var(¢y,...,0,,b1,...,bj—1), whenever pl flly, ... b)) —
r<cand 1 < j < k. (Note that vo = v since intermediate terms are ground.)
We use Ti(H) to denote the set of intermediate terms. The following properties are easily
established:
(a) proper ground terms are intermediate terms,
(b) if u is proper and the domain of o: V — Ti(H) includes Var(u) then uc is an interme-
diate term,
(c¢) if w is proper and uo an intermediate term then o(x) is an intermediate term for every
x € Var(u).
Next we prove that intermediate terms are closed under (£(R), u) reduction. So let u €
Ti(H) and u —g(R),, v'. We use induction on the size of u.

COMPLEXITY OF CONDITIONAL TERM REWRITING 47

e Suppose u = f(uy,...,u,) with f a constructor symbol and intermediate arguments
u,...,u,. The reduction step from u to v must take place in one of the arguments, so
u' = f(ur, ... U1, U, Uit - - uy) for some 1 < i < n with w; =gy, u;- The term

u, is intermediate according to the induction hypothesis. Hence v’ is intermediate by

definition.

e Suppose u = f(u1,...,Un,C1,...,Cm,) With f a defined symbol, c1,...,cn, € {1, T},
and intermediate arguments uq, ..., u,. If the reduction step takes place in one of the
arguments u1, ..., Uy, We reason as in the case above. Suppose the step takes place at the
root. We distinguish three subcases, depending on which kind of rule of Z(R) is used.
(1) If a rule of type is used then v’ = &1 (r)o for some right-hand side of an uncon-

ditional rule £ — r in R f such that fo = f(u,...,u,). From property (c) we infer
that o(y) is intermediate for all y € Var(¢). Since Var(r) C Var(¢) and &7 (r) is proper
by Lemma , u’ is intermediate by property (b).

(2) If a rule of type is used then u = f({10,...,0p0,c1,...,Cp,) such that ¢; = T
for some 1 < i < n with p;: f(f1,...,4,) — 7 <= ¢ in R]f. We have ' =
I, {et, ..o emy) €7 (a1)]i)o and from property (c) we infer that o (y) is inter-
mediate for all y € Var(¢). Since Var(a;) C Var(¢), the term &1 (a1)o is intermediate by
property (b) and thus also ground. Hence v’ = f/(f1,...,ln, (c1,. .., cm,)[ET(a1)0]i)o,
which is of the required shape to be intermediate.

(3) The final possibility is that a rule of type is used. In this case we have v’ =
fur, ... up, {c1, ..oy ey) [L]i) for some 1 <@ < my. Since the arguments ug, ..., up
are intermediate, u’ is intermediate by definition.

e Suppose u = f/(l1,.... 0y, {c1,... sCmy)[b1, ..., bj—1,0];)o. If the reduction step from u
to u’ takes place below the root, it must take place in vo = v, due to restrictions on the
replacement map u. Hence the result follows from the induction hypothesis. Suppose the
step takes place at the root. Note that the rule pzf: flly,...,0,) — r < c must exist in
RI|f. We again distinguish three subcases, depending on which kind of rule of Z(R) is
used.

(1) If a rule of type is used then u = f/(¢1,..., 0y, (c1,. ., cmp)[b1, ..., bili)T, and
v = &1 (r)T for some substitution 7 with dom(7) C Var(¢y,...,£0,,b1,...,b;). Hence
b =foforalll <l < n, byt =boforalll <[l < j=k,and v = bg7. From property
(¢) we infer that o(y) = 7(y) is intermediate for all y € Var(¢1,..., 4y, b1,...,bg) 2
Var(r). Hence «’ is intermediate by (b) since &1(r) is proper by Lemma [A.2][4]).

(2) If a rule of type is used then u = f7(1,..., 4y, {(c1,. .. sCmp) (b1, bl T, 5 < K,
and v = fg“(ﬂl, coosny ety emp)b, -5 05,67 (ag41)]i) T for some substitution 7
with dom(7) C Var({y,...,4n,b1,...,b;). Hence ;7 = {0 for all 1 <1 < n, b7 = bo
for all 1 <1 < j, and v = b;7. Therefore,

u’ = fg+1(£1, Ce. ,én, <Cl, e 7Cmf>[bl7 ey bj,fT(aj_;,_l))T]iJ
and this suffices, if £&1(aj41)7 is an intermediate term. This follows from Var(aj41) C
Var(ly,...,0n,b1,...,b;) together with Lemma and properties (b) and (c).
(3) The final possibility is that a rule of type is used. In this case we have v’ =
fij(fl, R S (T .,cmf>[J_]Z-)a for some 1 <i < my. As ly0,...,0,0 are intermedi-
ate, v’ is intermediate by definition.

48 C. KOP, A. MIDDELDORP, AND T. STERNAGEL

Now suppose that s has a normal form ¢ in (£(R),pn). We already know that ¢ is an
intermediate term. So it suffices to show that intermediate terms in normal form are
L-patterns. We show instead that any intermediate term ¢ which is not a |-pattern is
reducible, by induction on its size.

e Suppose t = f(t1,...,t,) with f a constructor symbol. One of the arguments, say t;, is
not a L-pattern. The induction hypothesis yields the reducibility of ;. Since i € u(f), t
is reducible as well.

e Supposet = f(t1,...,tn,C1,...,Cm,) with f adefined symboland ¢, ..., cpm, € {L, T}. If

one of the terms ¢y, ..., 1, is not a L-pattern, we reason as in the previous case. Otherwise,
¢; = T for some 1 < 7 < my. Consider p{: fllr,....0,) = r<c If f(t1,...,t,) is an
instance of f(¢1,...,¥,) then t is reducible by rule or . If f(t1,...,t,) is not an
instance of f(¢1,...,¥,) then, using the linearity of f(l1,...,l,), there exists an argument

position 1 < j < n such that ¢; is not an instance of ¢;. According to Lemma tj is an
instance of an anti-pattern in AP(¢;). Consequently, ¢ is reducible by rule (6,).

e The final case is t = f (7, (c1, . .. sCmp) (b1, bjo1,v]i)o with er, .. e, € {1, T}, Con-
sider the intermediate subterm v. If v is not a L -pattern we reason as in the first case. If
v is an instance of b; then rule is applicable. Otherwise, again using Lemma v
must be an instance of an anti-pattern in AP(¢;) and thus ¢ is reducible by rule (5,)). [

The restriction to proper terms in Lemma is essential. For instance, even(0, L, L,0)
and even%(O, L, true, 1) are ground normal forms (w.r.t. Example but not _L-patterns.
We have reached the point where we can prove the main result, for terminating proper
terms. Since a term whose subterms contain symbols f/ has no parallel in the labeled
setting, the proof will require a fair bit of reshuffling; some steps must be postponed, while
other subterms must be eagerly evaluated. This is all done in Lemma
In the following, s —* t [N] or s —* ¢ [IN] indicates a reduction of cost N.

Lemma A.4. Let s € To(H) be a terminating term, t a L-pattern, and o: Var(t) — T (H).
If s 2Lpy . to [N] then there exist a substitution T: Var(t) — Tpo(H) and numbers K and

M with K + M > N such that (~(s) =* (~(t7) [K] and tT LRy b0 [M].

Proof. We use induction on s with respect to > = (—grg), U >,) ", which is a well-
founded order on terminating terms. (Here s>, t if ¢ is a subterm of s occuring at an
active position.) We distinguish a number of cases. First of all, if ¢ is a variable then we
can simply take 7 = {t — s}, K = 0, and M = N. Next suppose s = f(s1,...,S,) with
f a constructor symbol. We have (~(s) = f(¢"(s1),...,((sn)) and t = f(t1,...,t,) with
S; —%(R)’# tio [N;] for all 1 < ¢ < n, such that N = N1 +--- N,. Fix i. Since st>, s;, we can
apply the induction hypothesis, resulting in a substitution 7;: Var(t;) — 7Tp(H) and numbers
K; and M; with K; + M; > N; such that g_(Si) —x C_(tiTi) [Kl] and ¢;7; AE(R),M t,o [Mz]
Since |-patterns are linear by definition, the substitution 7 := 7 U --- U 7, is well-defined.
Let K =K1+ ---+K,and M = My+---+ M,. We clearly have K+ M > N. Furthermore,
¢ (s) =* f(C(t17)y..., ¢ (tnT)) = ¢ (t7) with cost K and t1 LRy b0 [M].

The remaining case for s is s = f(s1,...,8n,¢1,... ,cmf) with f a defined symbol. Let
R = {p{ | ¢ = T} We have (7 (s) = fr(¢"(s1),...,((sp)). If there is no root step in

the reduction s —%(R) i to then the result is obtained exactly as in the preceding case. So

suppose the reduction contains a root step. We prove the following claim (x):

COMPLEXITY OF CONDITIONAL TERM REWRITING 49

There exist a term u € T,(H) different from s and numbers A and B with
A+ B > N such that ¢~ (s) =1 ¢~ (u) [4] and u —ER)u to 1Bl

The statement of the lemma follows from (%), as can be seen as follows. We have s =
C(C(s) LR ¢(¢"(u)) = u by Lemma and Theorem Since s # u we
must have s > u and thus we can apply the induction hypothesis to u %*E(R),u to. This
yields a substitution 7: Var(t) — Tp(#H) and numbers K and M with K + M > B such
that ¢~ (u) —* (" (t7) [K] and tr LRy O [M]. Hence (~(s) =* (~(tr) [A + K] and
A+ K)+M=A+(K+M)>A+B>N.

To prove the claim, we distinguish a few subcases depending on which rule of Z(R) is
applied in the first root step.

(a) Suppose the first root step uses a rule of type and let p;: £ = f(l1,...,4,) — 7 be
the originating rule in R[f. (So ¢; = T and i € R.) The reduction from s to to has
the shape

s Z5* ftly, .o lnyscry e Cmy) S &r(r)yy =* to

for some substitution v with dom(y) C Var(¢). Fix 1 < j < n and let C; be the cost
of s; =* £;y. Let C = Cy + --- 4+ C,. From the induction hypothesis we obtain a
substitution d;: Var(¢;) — Tp(H) and numbers K; and M; with K; + M; > C; such
that (7 (s;) =* (7 (¢;0;) [K;] and €;6; —* £;y [M;]. Because f({1,...,£y) is linear, the
substitution ¢ := d; U --- U §,, is well-defined. With help of Lemma we obtain
¢ (s) =" fr(l10¢—, .-, £ndc-) [K]. As {y,..., £, are constructor terms, the reductions
0;0; —* £jv[M;] take place in the substitution part. Hence for every x € Var(¢) we have
xd —* xy [M,] such that M := My +---+ M, =) {M, |z € Var({)} and K+ M > C,
where K = K1 + --- + K,,.

After these preliminaries, we proceed as follows. Let V = Var(¢) \ Var(r). For every
x € V we fix a L-pattern u, such that y(xz) —* u,. The existence of u, is guaranteed by
Lemma and the termination of y(x), which follows because s —* - >, y(x). Define
the substitution n: Var(¢) — T,(H) as follows:

(z) = Uy ifreV
= o0(z) ifzxgV

We divide M into My =) {M, |z € V}and My => {M, |2 ¢V} =M — My. We
have ¢§ —* ¢n. Applying the induction hypothesis to this reduction (with ¢ = ¢4 and
empty substitution o) yields ¢~ (£6) —* ¢~ (¢n) [L] for some L > My . Let u = &1 (r)n.
Lemma @ yields ¢~ (u) = label(r)n.-. Hence (~(s) —=* (7 (u) [A] with A = K+ L +1.
We clearly have s # u. In order to conclude (%), it remains to show that u —* to [B]
for some B > N — A. We have u = £1(7)d due to the definitions of V' and 7. Hence
u —* &1 (r)y[D] for some D > My and thus v —* to [B] with B:= D+ N—(C+1) >
My+N—(C+1) > Mg+N—(K+M+1) = N—(K+My+1) > N—(K+L+1) > N—A.

(b) Suppose the first root step uses a rule of type and let f(¢1,...,4,) be the left-hand
side of the rule in R that gave rise to this rule. The reduction from s to to has the
following shape:

s Z5* flut, ... up,c1,. . emy) S futy .o, (1, . . sCmy)[L]i) =7 to

with u; an instance of an anti-pattern v € AP(¢;), so u; = v~y for some substitution ~y
and fixed j. We have s; —* u; for all 1 < i < n. By postponing the steps in arguments

50

C. KOP, A. MIDDELDORP, AND T. STERNAGEL

different from j, we obtain

/]*f(sl,..., ree s SnyCly s Cimy) [A]
— f(sl,...,uj,...,sn,<cl,...,cmf>[J_]i) [0]
TS fwrs e gt (et e V[L) 2 to [N — A]

Since s >, s; —* vy, we can apply the induction hypothesis to obtain a substitution
d: Var(v) = Tp(H) and numbers K and M with K + M > A such that (7 (s;) —=*
¢~ (vd) [K] and v6 —* vy [M]. Lemma [A.2 m. 5) yields ¢~ (vd) = ¢~ (v)d¢- and from
Lemma we know that ¢~ (v) is a linear labeled normal form which does not unify
with ¢;. Therefore

¢ (s) =" fr(C(s1),- -, ¢ (V)05 -, (T (5n)) [K]
L i€ e C s (sa)) [0)
The latter term equals ¢~ (u) where u = f(s1,...,v0,...,8n,(C1,...,Cm,)[L];). Fur-
thermore,
u =" f(s1,0 0780, (el - s ey) L) [M]
—* to [N —A]

Hence ¢~ (s) =1 (" (u) [K] and u —* to [M + N — Al with M + N - A > M + N —
(K+ M)= N — K. Since s # u, this proves ().

In the remaining case, the first root step in reduction from s to to uses a rule of type
. Let p = pi: £ = f(l1,...,¢,) — r < ¢ Since t is a non-variable L-pattern, to
cannot have some f; as root symbol. Hence the application of will be followed by
(possibly zero) root steps of type , for j =1,...,m — 1, until either a step of type
with cost @ = 1 (when m = k) or a step of type with cost @ = 0 is used at

the root position. We have

[C] s 25" f(lro o lu e em)Tl

[0] S fH e, e ET (@))y
[D1] S SR,y (e, ey) D))y

[0] >—> F200, o, (e1, - emp) (b1, €7 (a2)]i)y (4,

[0] — [,y (e, -7Cmf>[blv'--abm—lafT(am)]i)’Y (E)
(D] e £ (2 T A (O || U SO)

Q] - w or
[E] —* to

for some substitution v, L-pattern v, ground term w, and numbers C, D1,...,D,,, F

such that N = C + Dy +--- + D, + £+ Q. (Here we use the fact that b; does
not share variables with ¢1,...,£0,,b1,...,b;_1, for 1 < j < m. Moreover, b,, as well
as members of AP(b,,) are L-patterns.) Like in case (a), we obtain a substitution
d: Var({) — T,(H) and numbers K; and M; such that (7 (s;) —=* ¢~ (¢;0) [K;] and
0;0 —* £;y[M;]. Moreover, K+M>C’whereK K1+ +K and M = M1+ +M,.
We now distinguish two cases, depending on whether (3,)) or is used in the step to
w.

COMPLEXITY OF CONDITIONAL TERM REWRITING 51

e Suppose the step to w uses . In this case we have @ = 1, v = by, and w = {1(7)7y.
Let V' = Var(bo,...,by) \ Var(ai,...,am+1). (Recall that by = ¢ and ag41 =).
For every x € V we fix a L-pattern u, such that v(x) —* u,. The existence of
ug is guaranteed by Lemma and the termination of 7(z), which follows from
s =" >, &1(aj)y for all 1 < j < m. We inductively define substitutions no, ..., 7m,
with n;: Var(bg,...,b;) = T,(H) as well as numbers Ly, ..., Ly, and G, for all z €
Var(bo, . ..,by) \ V such that
(a) mj(x) =% y(x) [G;] for all 0 < j < m and x € Var(b;) \ V,

(1) ¢(68) = ¢~ (m) [Lo] with Lo > M — Y2{Ge | 2 € Var(bo) \ V}, and
(¢) ¢ (&rlaz)mj—1) = ¢~ (bjn;) [L;] with Lj = Dj+ 3 {Go | @ € Var(a;)} =2 {Gx |
x € Var(b;) \ V} forall 0 < j < m.

A\AV/AN

— Let j = 0. We define

ugy if x € Var(bg) NV
no(z) = { (o) i
() if x € Var(by) \ V
We obtain ng(z) —* ~(x) for all x € Var(bg) \ V from ¢6 —* fv, and define
G, as the cost of this reduction. This establishes property (a). Applying the
induction hypothesis to the reduction £6 —* fng (with t = ¢ny and o the empty
substitution) yields ¢~ (€0) —=* ¢~ (¢no)[Lo] for some Lo > > {cost(d(z) —=* no(z)) |
x € Var(bp) N V'}. Note that Lo + > {G, | € Var(by) \ V} > M. Hence property
(b) holds. Property (c¢) holds vacuously.

— Consider 0 < j < m. Since Var(a;) C Var(b,...,bj—1)\V we obtain &1 (aj)nj—1 —*
&t(aj)y [Gy) for some G > Y {G, | € Var(a;)}. (Equality need not hold if
aj is a non-linear term.) We apply the induction hypothesis to &t(aj)ni—1 —*
&t(aj)y —=* bjy [G + D], yielding a substitution d;: Var(b;) — Tp(#H) and num-
bers L’ and N' with L' + N’ > G + D; such that (™ ({1 (aj)n-1) =% ¢ (b;6;) [L']
and bj0; —* bjy [N']. We divide N’ into X +Y where

X = {cost(5;(x) =" v(x)) | x € Var(b;) NV}
Y = {cost(5;(z) =" v(x)) | = € Var(b;) \ V'}

and define the substitution 7; as follows:

77]‘_1(1I) ifx e Var(bg, ce ,bj_l)
ni(z) = < uy if z € Var(b;) NV

5]($) ifxe Var(bj) \ V
Since b; is a constructor term, from b;0; —* bjy we infer n;(x) —* ~(x) for
all z € Var(bj) \ V, at a cost we can safely define as G,. Hence property (a)
holds. Property (b) holds vacuously. Note that Y = > {G, | z € Var(b;) \ V}.
Applying the induction hypothesis to b;0; —* b;n; (with t = bjn; and o the empty
substitution) yields (7~ (b;6;) —=* (7 (b;n;) [Z] for some number

Z > Z{cost(éj(x) =" y(z) =" ug) |z €Var(b;) NV} > X

52

C. KOP, A. MIDDELDORP, AND T. STERNAGEL

Let L]:L/-f-Z So C_(f-r(aj)nj 1) =" ¢ (]nj) [L] We have
LiL'+X=L+N-Y>G;+D;-Y
>

Dj+ Y {Gy |z €Var(a;)} — Y {Gy |z € Var(bj)\V}
establishing property (c).
Let 1 = 1. Since 1 coincides with n; on Var(by, ..., b;) for all 0 < j < m, we obtain
label(a;)ne- = ¢ (§1(az)n) =" ¢ (bn) = binc- [Lj]
for 1 < 7 < m. Hence
¢ (s) =" fr(ane—, ..) — label(r)n.— [A]

with A = (K + Lo) + L1+ -+ Ly, + 1. Let u = &{(r)n. Lemma yields
¢~ (u) = label(r)n,-. To establish the claim (x), it remains to show u —* to [B] for
some B such that A+ B > N. Because Var(r) C Var(bo,...,by) \ V, we obtain

u=&r(r)n =" &r(r)y =w =" to [B]
with B > > {G, | x € Var(r)} + E. We have

A+B2K+Lo+Li+ -+ Ln+ Y {Go|z€Var(r)} +E+1
>(C—M)+ (M= {Gy|xeVar(bg) \V}) + D1+ + Dy,
+3 {Ga |2 € Var(ar, ..., am41)}
= {Ga |z €Var(by,....bp) \V}+E+1
>C+Di++Dp+ > {Go|x€Var(ar, ... am1)}

=Y {Ga |z €Var(by,....bm) \V}+ E+1
>C+Di+-+Dn+E+1=N

where the last inequality follows from (Var(bg,...,bm)\ V) C Va (al, ey A1)
Suppose the step to w uses . In this case we have Q =0, v € AP(b,,) and
w=f(ly,..., 0, {c1,.. cmf>[]) Let V- =Var(by,...,bpm—1,v) \ Var(ai,...,anm).
For every x € V we ﬁx a L-pattern u, such that vy(x) —* wu,. The existence of
ug is guaranteed by Lemma and the termination of 7(z), which follows from
s = >, &1(aj)y for all 1 < j < m. We inductively define substitutions ng, ..., 7m
with n;: Var(bg,...,b;) = To(H) for 1 < j <m and Nm: Var(v) = To(H) as well as
numbers Ly, ..., L, and G, for all z € Var(bg,...,bpn—1) \ V such that

(a) mj(x) =% y(x) [Gy] for all 0 < j < m and x € Var(i)\ V,

(b) ¢ (&r(az)mi—1) =" ¢ (bjmj) [L] with Lj > Dj+ 5 {Ge | © € Var(a;)} = > {GC |
xz € Var(b;) \ V} for all 0 < j < m.

(¢) ¢ (&r(am)mm—1) =" ¢ (vnm) [Lin] with Ly, > 3 {Gy | © € Var(am)} + Dp.

— We define 19 = 6. We obtain ny(z) —=* y(x) for all x € Var(¢) = Var(bp) \ V from
£y —* f~, and define G, as the cost of this reduction. This establishes property
(a). Note that Y {G, | x € Var(by)} = M.

— The case 0 < j < m is exactly the same as for , establishing properties (a) and

(b).

COMPLEXITY OF CONDITIONAL TERM REWRITING 53

— For j = m we have {1(am)nm—1 —* &r(am)y —* vy. Let Gy, be the cost of
Et(am)nm—1 —* &1(am)y, so G = > {Gz | * € Var(ap)}. The induction hy-
pothesis yields a substitution d,,: Var(v) — T5(#H) and numbers L’ and N’ with
L'+N'" > G+ Dy, such that ¢~ (&7 (am)nm—1) =" ¢~ (vy) [L'] and vd,, —* vy[N'].
We define the substitution 7, as follows:

() = {nm_l(:r) ?f x € Var(bg,...,bm—1)
Uy if x € Var(v)
Applying the induction hypothesis to vd,, —* vn,, (with ¢ = vn, and o the
empty substitution) yields (= (vd,,) =* (~(vny,) [Z] for some number Z > N'. Let
Lo = I+ Z. Thus, ¢ (7 (am)ih) = ¢~ (0n) (L] We have Loy > I/ + N >
Gm + Dy 2 > {Gy | © € Var(am)} + Dp,. Hence property (c) holds.

Let 1 = 1. Since 1 coincides with n; on Var(by, ..., b;) for all 0 < j < m, we obtain
— ¢ (s) = fr(C (s1),- -, ¢ (sn)) =" fr(ly, ... fn)ne- [K]
— label(a;)nc- = ¢~ (§r(az)n) =" ¢ (bjn) = ¢ (bj)ne- [L;] for 1 < j<m

— label(an)e- = ¢ (Er(am)n) = ¢~ (vn) = ¢ ()n— (L], with ¢~ (v) a L-pattern
that does not unify with v according to Lemma

Let u = f(l1,...,ln,{c1,- .. cm;)[L]i)n. We have

¢ (8) = ¢ (fr\pip (€ (51),..-,¢ (s0))) = ¢ (u) [K + L]
for L =Ly+---+ Ly,. Furthermore, u —* w —* to [M + EJ]. It remains to show that
K+L+M+FE > N. Since K+ M > C, this amounts to showing L > D1+ -+ Dp,.
We have

m—1

L> i(—i—Z{GHxEVar a;)} — Z{GHQ@EVar()\V})—I—Lm

J=1

> D+ Y {Go |z €Var(ar,... am)}

J=1

_ Z{Gx | x € Var(b,...,bpm—1)\V}

> Dy,
j=1
where the last inequality follows from Var(by,...,bn-1)\V C Var(aq,...,an). Since
s # u, we established (x).]

Thus, we proved the main part of Theorem for terminating terms. For non-terminating
terms, we can use this result, as we will see in the proof of Lemmal[A5] The following lemma
handles the main step.

Lemma A.5. For every minimal non-terminating term s € To(H) there exists a non-
terminating term t € Tp(H) such that (= (s) =+ () or ((s) =* - =~ ((b).

Here a minimal non-terminating term is a non-terminating term with the property that
every proper subterm at an active position is terminating.

54 C. KOP, A. MIDDELDORP, AND T. STERNAGEL

Proof. We must have s = f(s1,...,8n,¢1,...,¢n,) for some defined function symbol f. Let
R= {p | i = T}. We have (~ (s) fr(C(s1),...,C (spn)). Since the terms s1,...,s, are

terminating by minimality, any infinite reduction starting at s must contain a root step. So
s 5% uy S vy

for some rule u — v of Z(R) and substitution v such that vy is non-terminating. Inspecting
the applicable rules in Z(R), it follows that u is a linear basic term of the form u =
flur, .. un, (y1, .-, ym,)[T]i). Let & be the restriction of v to {y1,...,Ym,} We have
d(yj) = ¢j for all 1 < j < my. Let v/ = ud and v/ = vé. Clearly v’y = wy and v'y = vy,
while v’ is a proper linear term. Because the terms sq,..., s, are terminating by minimality,
Lemmaprovides substitutions 71, ..., 7, with 7;: Var(u;) — T,(H) such that (7 (s;) —=*
¢~ (uj7;) and u;T; —* ujy. Since w is linear, the substitution 7 = 7 U- - - U7, is well-defined.
We obtain
¢ (s) =" ¢ (') = ¢ (W)= = fR(C (wr), -, ¢ (un))7e-

with 7(z) —=* y(z) for all z € Var(u'). We now distinguish three cases, depending on the
nature of the rule u — v. Let p;: f(¢1,...,¢,) — 7 be the rule in R that give rise to u — v.
(1) Suppose u — v is a rule of type . There exists 1 < j < n such that u; € AP(¢;).

We have v = f(u1,...,un, (T1,...,Zm;)[L];). According to Lemma ¢ (uj) is a

linear labeled normal form which does not unify with ¢;. Hence

_ 1 _ _ _
C(u'T) = fRr\(py (¢ (uaT), ..., ¢ (unT)) = ¢ (v'7)
Since all variables in v’ are at active positions, we have v'T —* v/ = vy. It follows that

v'7 is non-terminating and thus we can take v/t for ¢ to satisfy the first possibility of
the statement of the lemma.

(2) Suppose u — v is a rule of type (1,)). Sou; =¢; for all 1 < j < n and v’ = &7 (r). Using
Lemmawe obtain (" (u;7) = u]TC for 1 < j<nas Well as ¢~ (v'1) = label(r).-.
Hence ¢~ (u'7) = fr(u17¢—, ..., unTe-) = ¢ (v'7) and we conclude as in the preceding
case.

(3) Suppose u — v is a rule of type . Sou; = ¢ forall 1 < j < nand v =
i (A VR S (P semy)§7(a1)]i). We have (7(s) =" fr(f1,...,0n)7c~. We will

define a number 1 < m < k, substitutions 71,71, ..., Tm, Ym, and terms 71, ..., 7, such
that
(a) 7 Var(bo, -1) = Tp(H),

) = fl(t,. <01,-- Cmf>[b17--wbj—l?gT(aj)]i)a
) |abe|(al)(7'j)<— =" by(75)¢- forall 1 <1< j,
) Tj(x) =* vj(x) for all x € Var(by, ... ,bj_l),
) 75 is non—termlnatmg, and
) ¢ (s) = fr(b,. .. by)(TJ)C*
for all 1 < j < m. By defining 71 = 7, 71 = v, and r; = v/, the above properties
are Clearly satisfied for j = 1. Consider {7 (a;)7;, which is a ground proper term by
Lemma m. If &1(aj)7j is non-terminating then we let m = j and define ¢t =
{1(aj)7j. In this case we have (7 (t) = label(a;)(7;).~ by the same lemma and thus
fr(f1, ... 6,)(1j) ¢~ == ((t) by property (c), establishing the second possibility of the
statement of the lemma.

So assume that &1(aj)7; is terminating. We have &1 (aj)m; —* £7(a;)y;, so the lat-
ter term is terminating as well. Since &1(aj)v; is the only active argument in r;vy;,

COMPLEXITY OF CONDITIONAL TERM REWRITING 55

the infinite reduction starting from the latter term must contain a root step. So

T EAN O'yj41 = r'yj41 for some rule ¢ — 1’ € Z(R) and substitution 7;1 with

dom(vyj+1) = Var(¢') such that 7’vj41 is non-terminating. Since root(r;vy;) = f/,

U= fl(l,... 0, (1, Tmy)[b1, . .., bj—1,w];) for some L-pattern w (w = b; when

¢ — 1’ is a rule of type or and w € AP(b;) when ¢ — 1’ is a rule of type (5,))

which has no variables in common with ¢1,...,0,,b1,...,b;—1. We have &1(aj)m; —*

&1(aj)v; =" wyjqr1. From Lemma we obtain a substitution 7: Var(w) — Tp(H)

such that (7 ({1(aj)m5) —* ¢ (wr) and wr —* wyjy1. Let 7541 = 7, UT. We

have Tj4+1°: Val’(bo, .. .,bj_l,w) — 7;(7'[) as well as C_(fT(aj)Tj) = C‘({T(aj)7j+1) =
label(a;)(7j41)c~ by Lemma . Furthermore, 7j11(z) —* 7j41(x) for all z €

Var(bg, ...,bj—1,w). We distinguish three subcases, depending of the type of the rule

¢ — o', In the first and third case, we obtain the statement of the lemma. In the

second case, we establish the properties (a)—(f) for j + 1. Since rules of type can
be used only finitely many times, this concludes the proof.

In this case we have j = k, w = bj, and ' = &1(r). So label(a;)(7j41)c- —*
bi(Tjs1)¢- for all 1 <1 < k. Since all variables in {1(r) occur at active positions,
' Tjy1 —=* r'yj41 and thus 7741 is non-terminating. According to Lemma
r'7j11 is proper and (7 (r'7j41) = label(r)(7j41)c-. So we choose t = 7'7j41 to
obtain a successful reduction step fr(¢1, ..., 4n)(Tj41)c- — ¢ (t). Hence (~(s) =T
¢~ (t) and thus the first possibility of the statement of the lemma holds.

(4,) In this case, w = b; and r’ = ff“(ﬁl,...,ﬁn,<y1,...,ymf>[b1,...,bj,ﬁr(ajﬂ)]i)
with j < k. We have label(a;)(7j41)c- — bi(7j11)¢- forall 1 <1 < j+ 1. Let
rj+1 = r'd. One easily checks that the properties (a)-(f) are satisfied for j + 1.

(5p) In this case, w € AP(b;) and " = f(l1,...,4n, (Y1, Ym,)[L]i). According to
Lemma ¢~ (w) is a L-pattern which does not unify with b; and (= (w)(7j41)¢- =
Cf(w’i'j_H). Since Iabel(aj)(TjH)cf —* Cf(w)(Tj_H)gf and |abe|(al)(7'j+1)<f —*
bi(Tjs1)¢c- for all 1 < I < j, the conditions for a failing step are satisfied and
thus fR(l1, .-) (Tj+1)c~ — FR\{pi} (€15 - - s €n)(Tj41)c—- The term ¢t = r'07)41 is
proper and since all variables in r'¢ occur at active positions, t —* r/d~y;1 and thus
t is non-terminating. Since (7 () = ¢~ () (Tj+1)c- = fr\{pi} (01, > €n) (Tj41)
we obtain ¢~ (s) =T (7 (t) to satisfy the first possibility of the statement of the
lemma. []

Lemma A.6. If s € T,(H) is non-terminating then ¢~ (s) ~.

Proof. We construct an infinite sequence of non-terminating proper ground terms sg, S1, So,
. with so = s such that ¢~ (s;) (= U 23" ¢~(s;41) for all i > 0. Suppose s; has been

defined. Since s; is non-terminating, it contains a minimal non-terminating subterm u, say

at position p € Pos,(s;). According to Lemma there exists a non-terminating term

v € Tp(H) such that ¢~ (u) =1 ¢ (v) or ¢~ (u) =* - (™ (v). We distinguish three cases.

o If (" (u) = ¢ (v) then ¢~ (s;) = ¢ (s4[ulp) = ¢ (s:)[¢” (u)]p by Lemma and thus
C(s:) =T ¢ (8)[¢ (v)]p = ¢ (s4[v]p). Note that s;[v], is non-terminating. Hence we
can take s;11 = 5;[v]p.

e Suppose (~(u) £ (~(v). We have ¢~(s;) = ¢~(sifuly) = ¢~ (50~ (w)]p and thus
¢~ (s;) 2= ¢~ (v) by the definition of Z~. Hence we define 5,41 = v.

e Suppose (" (u) =T w 2> ¢~ (v). We have ¢~ (s;) =% ¢~ (s;)[w], = ¢(~(v) and hence
also in this case we take s;11 = v. O

56 C. KOP, A. MIDDELDORP, AND T. STERNAGEL

Proof of Theorem [5.13 Let R be a strong CCTRS and s € T(G). We have ((s) € Tp(H) by
Lemma . First suppose that ((s) is terminating and there exists a context-sensitive
reduction ((s) —“ZR)ut [N]. Let u be a normal form of . Obviously, ((s) —ER)u U [M]
for some M > N. According to Lemma the term v is a |-pattern. Lemma yields
s=¢"(¢(s)) =* ¢~ (u)[K] with K > M. Next suppose the existence of an infinite (Z2(R), u)
reduction starting from ¢(s). In this case s = ¢~ (¢(s)) — by Lemma [

This work is licensed under the Creative Commons Attribution-NoDerivs License. To view
a copy of this license, visit http://creativecommons.org/licenses/by-nd/2.0/ or send a
letter to Creative Commons, 171 Second St, Suite 300, San Francisco, CA 94105, USA, or
Eisenacher Strasse 2, 10777 Berlin, Germany

	1. Introduction
	2. Preliminaries
	3. Analysis
	4. Conditional Complexity
	4.1. Labeled Terms and Reduction
	4.2. Labeled versus Unlabeled Reduction
	4.3. Derivation Height and Complexity

	5. Complexity Transformation
	5.1. The Unconditional TRS (R).
	5.2. Labeled reduction versus (R)

	6. Interpretations in N
	7. Using Context-Sensitivity to Improve Runtime Complexity Bounds
	8. Splitting Time and Space Complexity
	9. Conclusions
	9.1. Implementation and Experiments
	9.2. Related Work
	9.3. Avenues for Future Work

	Acknowledgement
	References
	Appendix A. Proof of Theorem 5.12

