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Abstract. We consider the problem of minimising the number of states in a multiplicity
tree automaton over the field of rational numbers. We give a minimisation algorithm that
runs in polynomial time assuming unit-cost arithmetic. We also show that a polynomial
bound in the standard Turing model would require a breakthrough in the complexity of
polynomial identity testing by proving that the latter problem is logspace equivalent to the
decision version of minimisation. The developed techniques also improve the state of the
art in multiplicity word automata: we give an NC algorithm for minimising multiplicity
word automata. Finally, we consider the minimal consistency problem: does there exist
an automaton with a given number of states that is consistent with a given finite sample
of weight-labelled words or trees? We show that, over both words and trees, this decision
problem is interreducible with the problem of deciding the truth of existential first-order
sentences over the field of rationals—whose decidability is a longstanding open problem.

1. Introduction

Minimisation is a fundamental problem in automata theory that is closely related to both
learning and equivalence testing. In this work we analyse the complexity of minimisation
for multiplicity automata, i.e., weighted automata over a field. Minimisation of multiplicity
and weighted automata has numerous applications including image compression [1] and
reducing the space complexity of speech recognition tasks [29, 19].

We take a comprehensive view, looking at multiplicity automata over both words and
trees and considering both function and decision problems. We also look at the closely-
related problem of obtaining a minimal automaton consistent with a given finite set of
observations. We characterise the complexity of these problems in terms of arithmetic and
Boolean circuit classes. In particular, we give relationships to longstanding open problems
in arithmetic complexity theory.

Multiplicity tree automata were first introduced by Berstel and Reutenauer [4] under
the terminology of linear representations of a tree series. They generalise multiplicity word
automata, introduced by Schützenberger [32], which can be viewed as multiplicity tree
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automata on unary trees. The minimisation problem for multiplicity word automata has
long been known to be solvable in polynomial time (in the Turing model) [32, 35].

In this work, we give a new procedure for computing minimal multiplicity word au-
tomata and thereby place minimisation in NC, improving also on a randomised NC pro-
cedure in [25]. (Recall that NL ⊆ NC ⊆ P, where NC comprises those languages having
L-uniform Boolean circuits of polylogarithmic depth and polynomial size, or, equivalently,
those problems solvable in polylogarithmic time on parallel random-access machines with
polynomially many processors.) By comparison, it is known that minimising deterministic
word automata is NL-complete [14], while minimising non-deterministic word automata is
PSPACE-complete [24]. The latter result shows, in particular, that the bounds obtained
in this paper over Q do not apply to weighted automata over an arbitrary semi-ring, be-
cause non-deterministic automata can be viewed as weighted automata over the Boolean
semi-ring.

Over trees, we give what is (to the best of our knowledge) the first complexity analysis of
the problem of minimising multiplicity automata. We present an algorithm that minimises
a given multiplicity tree automaton A in time O

(
|A|2 · r

)
, where |A| is the size of A and r is

the maximum alphabet rank, assuming unit-cost arithmetic. This procedure can be viewed
as a concrete version of the construction of a syntactic algebra of a recognisable tree series
by Bozapalidis [6]. We thus place the problem within PSPACE in the conventional Turing
model, since a polynomial-time decidable problem in the unit-cost model lies in PSPACE

(see, e.g., [2]). We are moreover able to precisely characterise the complexity of the decision
version of the minimisation problem, showing that it is logspace equivalent to the arithmetic
circuit identity testing (ACIT) problem, commonly also called the polynomial identity test-
ing problem. As far as we can tell, obtaining this complexity bound requires departing
from the framework of Bozapalidis [6]. The ACIT problem is very well studied, with a
variety of randomised polynomial-time algorithms [18, 33, 36], but, as yet, no deterministic
polynomial-time procedure (see [3]). In previous work we have reduced equivalence testing
of multiplicity tree automata to ACIT [28]; the advance here is to reduce the more general
problem of minimisation also to ACIT.

Lastly, we consider the problem of computing a minimal multiplicity automaton consis-
tent with a finite set of input-output behaviours. This is a natural learning problem whose
complexity for deterministic finite automata was studied by Gold [21], who showed that
the problem of exactly identifying the smallest deterministic finite automaton consistent
with a set of accepted and rejected words is NP-hard. For multiplicity word automata over
the field Q, we show that the decision version of this problem, which we call the minimal
consistency problem, is logspace equivalent to the problem of deciding the truth of exis-
tential first-order sentences over the structure (Q,+, ·, 0, 1), a longstanding open problem
(see [31]). We observe that, by contrast, the minimal consistency problem for multiplicity
word automata over the field R is in PSPACE, and likewise for multiplicity tree automata
over R that have a fixed alphabet rank.

Further Related Work. Based on a generalisation of the Myhill-Nerode theorem to
trees, one obtains a procedure for minimising deterministic tree automata that runs in time
quadratic in the size of the input automaton [9, 13]. There have also been several works
on minimising deterministic tree automata with weights in a semi-field (i.e., a semi-ring
with multiplicative inverses). In particular, Maletti [27] gives a polynomial-time algorithm
in this setting, assuming unit cost for arithmetic in the semi-field.
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In the non-deterministic case, Carme et al. [12] define the subclass of residual finite
non-deterministic tree automata. They show that this class expresses the class of regular
tree languages and admits a polynomial-space minimisation procedure.

2. Preliminaries

Let N and N0 denote the set of all positive and nonnegative integers, respectively. For
every n ∈ N, we write [n] for the set {1, 2, . . . , n} and write In for the identity matrix of
order n. For every i ∈ [n], we write ei for the ith n-dimensional coordinate row vector. We
write 0n for the n-dimensional zero row vector.

For any matrix A, we write Ai for its i
th row, Aj for its jth column, and Ai,j for its (i, j)

th

entry. Given nonempty subsets I and J of the rows and columns of A, respectively, we
write AI,J for the submatrix (Ai,j)i∈I,j∈J of A.

Given a field F and a set S ⊆ Fn, we use 〈S〉 to denote the vector subspace of Fn that
is spanned by S, where we often omit the braces when denoting S.

2.1. Row and Column Spaces. Let F be either the field of rationals Q or the field of
reals R. Let A be an m×n matrix with entries in F. The row space of A, written as RS (A),
is the subspace of Fn spanned by the rows of A. The column space of A, written as CS (A),
is the subspace of Fm spanned by the columns of A. That is, RS (A) = 〈v ·A : v ∈ Fm〉 and
CS (A) = 〈A · v⊤ : v ∈ Fn〉.

The following Lemmas 2.1-2.3 contain some basic results about row and column spaces
that we will use in this paper.

Lemma 2.1. Let A1, A2 be matrices such that RS (A1) ⊆ RS (A2). For any matrix B such
that A1 ·B (and thus also A2 ·B) is defined, we have that

RS (A1 · B) ⊆ RS (A2 · B).

Proof. Suppose A1 ∈ Fm1×n and A2 ∈ Fm2×n. For every vector v1 ∈ Fm1 , it holds that
v1 ·A1 ∈ RS (A1) ⊆ RS (A2). Hence, there exists a vector v2 ∈ Fm2 such that v1 ·A1 = v2 ·A2.
Thus

RS (A1 ·B) = 〈v1 ·A1 ·B : v1 ∈ Fm1〉

⊆ 〈v2 ·A2 ·B : v2 ∈ Fm2〉 = RS (A2 ·B),

which completes the proof.

Lemma 2.2. For any matrix A ∈ Fm×n, it holds that RS (A⊤A) = RS (A).

Proof. For any x ∈ Fn such that (A⊤A)x⊤ = 0⊤n we have

(Ax⊤)⊤Ax⊤ = xA⊤Ax⊤ = x0⊤n = 0 ,

and hence Ax⊤ = 0⊤m. Conversely, for any x ∈ Fn with Ax⊤ = 0⊤m we have (A⊤A)x⊤ = 0⊤n .
Therefore, matrices A and A⊤A have the same null space and hence the same row space.
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Lemma 2.3. Let A1, A2, B1, B2 be matrices of dimension n1×m, n2×m, m×n3, m×n4,
respectively. If RS (A1) = RS (A2) and CS (B1) = CS (B2), then

rank(A1 ·B1) = rank (A2 ·B2).

Proof. By definition of rank as the dimension of row or column space, we have

rank(A1 ·B1) = dim 〈x · A1 ·B1 : x ∈ Fn1〉

= dim 〈x · A2 ·B1 : x ∈ Fn2〉 (using RS (A1) = RS (A2))

= dim 〈A2 · B1 · x
⊤ : x ∈ Fn3〉

= dim 〈A2 · B2 · x
⊤ : x ∈ Fn4〉 (using CS (B1) = CS (B2))

= rank (A2 ·B2).

This completes the proof.

2.2. Kronecker Product. Let A be an m1 × n1 matrix and B an m2 × n2 matrix. The
Kronecker product of A by B, written as A⊗B, is an m1m2 × n1n2 matrix where

(A⊗B)(i1−1)m2+i2,(j1−1)n2+j2 = Ai1,j1 · Bi2,j2

for every i1 ∈ [m1], i2 ∈ [m2], j1 ∈ [n1], j2 ∈ [n2].
The Kronecker product is bilinear, associative, and has the following mixed-product

property : For any matrices A, B, C, D such that products A · C and B ·D are defined, it
holds that (A⊗B) · (C ⊗D) = (A · C)⊗ (B ·D).

For every k ∈ N0 we define the k-fold Kronecker power of a matrix A, written as A⊗k,
inductively by A⊗0 = I1 and A⊗k = A⊗(k−1) ⊗A for k ≥ 1.

Let k ∈ N, and let n1, . . . , nk ∈ N. Suppose A is a matrix with n1 ·. . .·nk rows. For every

(i1, . . . , ik) ∈ [n1]×· · ·×[nk], we use A(i1,...,ik) to denote the (
∑k−1

l=1 (il−1)·(
∏k

p=l+1 np)+ik)
th

row of A. Let A1, . . . , Ak be matrices such that for every l ∈ [k], Al has nl rows. It can
easily be shown using induction on k that for every (i1, . . . , ik) ∈ [n1]× · · · × [nk],

(A1 ⊗ · · · ⊗Ak)(i1,...,ik) = (A1)i1 ⊗ · · · ⊗ (Ak)ik . (2.1)

We write
⊗k

l=1Al := A1 ⊗ · · · ⊗Ak.
For any k ∈ N0 and matrices A1, . . . , Ak and B1, . . . , Bk where product Al ·Bl is defined

for every l ∈ [k], we have

(A1 ⊗ · · · ⊗Ak) · (B1 ⊗ · · · ⊗Bk) = (A1 · B1)⊗ · · · ⊗ (Ak · Bk). (2.2)

This follows easily from the mixed-product property by induction on k.

2.3. Multiplicity Word Automata. Let Σ be a finite alphabet and ε be the empty word.
The set of all words over Σ is denoted by Σ∗, and the length of a word w ∈ Σ∗ is denoted
by |w|. For any n ∈ N0 we write Σn := {w ∈ Σ∗ : |w| = n}, Σ≤n :=

⋃n
l=0Σ

l, and
Σ<n := Σ≤n \ Σn. Given two words x, y ∈ Σ∗, we denote by xy the concatenation of x
and y. Given two sets X,Y ⊆ Σ∗, we define XY := {xy : x ∈ X, y ∈ Y }.

Let F be a field. A word series over Σ with coefficients in F is a mapping f : Σ∗ → F.
The Hankel matrix of f is matrix H : Σ∗×Σ∗ → F such that Hx,y = f(xy) for all x, y ∈ Σ∗.

An F-multiplicity word automaton (F-MWA) is a 5-tuple A = (n,Σ, µ, α, γ) which
consists of the dimension n ∈ N0 representing the number of states, a finite alphabet Σ, a
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function µ : Σ → Fn×n assigning a transition matrix µ(σ) to each σ ∈ Σ, the initial weight
vector α ∈ F1×n, and the final weight vector γ ∈ Fn×1. We extend the function µ from Σ
to Σ∗ by defining µ(ε) := In, and µ(σ1 · · · σk) := µ(σ1) · . . . · µ(σk) for any σ1, . . . , σk ∈ Σ.
It is easy to see that µ(xy) = µ(x) · µ(y) for any x, y ∈ Σ∗. Automaton A recognises the
word series ‖A‖ : Σ∗ → F where ‖A‖(w) = α · µ(w) · γ for every w ∈ Σ∗.

2.4. Finite Trees. A ranked alphabet is a tuple (Σ, rk ) where Σ is a nonempty finite set
of symbols and rk : Σ → N0 is a function. Ranked alphabet (Σ, rk) is often written Σ for
short. For every k ∈ N0, we define the set of all k-ary symbols Σk := rk−1({k}). We say
that Σ has rank r if r = max{rk (σ) : σ ∈ Σ}.

The set of Σ-trees (trees for short), written as TΣ, is the smallest set T satisfying
the following two conditions: (i) Σ0 ⊆ T ; and (ii) if k ≥ 1, σ ∈ Σk, t1, . . . , tk ∈ T then
σ(t1, . . . , tk) ∈ T . The height of a tree t, written as height(t), is defined by height(t) = 0 if
t ∈ Σ0, and height(t) = 1 + maxi∈[k] height(ti) if t = σ(t1, . . . , tk) for some k ≥ 1, σ ∈ Σk,

t1, . . . , tk ∈ TΣ. For any n ∈ N0 we write T n
Σ := {t ∈ TΣ : height(t) = n}, T≤n

Σ :=
⋃n

l=0 T
l
Σ,

and T<n
Σ := T≤n

Σ \ T n
Σ .

Let ✷ be a nullary symbol not contained in Σ. The set CΣ of Σ-contexts (contexts for
short) is the set of all ({✷} ∪ Σ)-trees in which ✷ occurs exactly once. Let n ∈ N0. We
denote by Cn

Σ the set of all contexts c ∈ CΣ where the distance between the root and the ✷-

labelled node of c is equal to n. Moreover, we write C≤n
Σ :=

⋃n
l=0C

l
Σ and C<n

Σ := C≤n
Σ \Cn

Σ.
A subtree of c ∈ CΣ is a Σ-tree consisting of a node in c and all of its descendants. Given a
set S ⊆ TΣ, we denote by Cn

Σ,S the set of all contexts c ∈ Cn
Σ where every subtree of c is an

element of S. Moreover, we write C
≤n
Σ,S :=

⋃n
l=0C

l
Σ,S and C<n

Σ,S := C
≤n
Σ,S \ Cn

Σ,S .

Given c ∈ CΣ and t ∈ TΣ ∪̇CΣ, we write c[t] for the tree obtained by substituting t for
✷ in c. Let F be a field. A tree series over Σ with coefficients in F is a mapping f : TΣ → F.
The Hankel matrix of f : TΣ → F is the matrix H : TΣ × CΣ → F such that Ht,c = f(c[t])
for every t ∈ TΣ and c ∈ CΣ.

2.5. Multiplicity Tree Automata. Let F be a field. An F-multiplicity tree automaton
(F-MTA) is a 4-tuple A = (n,Σ, µ, γ) which consists of the dimension n ∈ N0 representing
the number of states, a ranked alphabet Σ, the tree representation µ = {µ(σ) : σ ∈ Σ}

where for every symbol σ ∈ Σ, µ(σ) ∈ Fnrk(σ)×n represents the transition matrix associated
to σ, and the final weight vector γ ∈ Fn×1. We speak of an MTA if the field F is clear from
the context or irrelevant. The size of A, written as |A|, is the total number of entries in all

transition matrices and the final weight vector of A, i.e., |A| :=
∑

σ∈Σ nrk(σ)+1 + n.
We extend the tree representation µ from Σ to TΣ by defining

µ(σ(t1, . . . , tk)) := (µ(t1)⊗ · · · ⊗ µ(tk)) · µ(σ)

for every σ ∈ Σk and t1, . . . , tk ∈ TΣ. Automaton A recognises the tree series ‖A‖ : TΣ → F

where ‖A‖(t) = µ(t) · γ for every t ∈ TΣ.
We further extend µ from TΣ to CΣ by treating ✷ as a unary symbol and defining

µ(✷) := In. This allows to define µ(c) ∈ Fn×n for every c = σ(t1, . . . , tk) ∈ CΣ inductively
as µ(c) := (µ(t1)⊗ · · · ⊗ µ(tk)) · µ(σ). It is easy to see that for every t ∈ TΣ ∪̇CΣ and
c ∈ CΣ, µ(c[t]) = µ(t) · µ(c).

MWAs can be seen as a special case of MTAs: An MWA (n,Σ, µ, α, γ) “is” the MTA
(n,Σ ∪̇{σ0}, µ, γ) where the symbols in Σ are unary, symbol σ0 is nullary, and µ(σ0) = α.
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That is, we view (Σ ∪̇{σ0})-trees as words over Σ by omitting the leaf symbol σ0. Hence if
a result holds for MTAs, it also holds for MWAs. Some concepts, such as contexts, would
formally need adaptation, however we omit such adaptations as they are straightforward.
Therefore, we freely view MWAs as MTAs whenever convenient.

Two MTAs A1, A2 are said to be equivalent if ‖A1‖ = ‖A2‖. An MTA is said to be
minimal if no equivalent automaton has strictly smaller dimension. The following result
was first shown by Habrard and Oncina [22], although a closely-related result was given by
Bozapalidis and Louscou-Bozapalidou [8].

Theorem 2.4 ([8, 22]). Let Σ be a ranked alphabet, F be a field, and f : TΣ → F. Let H be
the Hankel matrix of f . Then, f is recognised by some MTA if and only if H has finite rank
over F. In case H has finite rank over F, the dimension of a minimal MTA recognising f

is rank (H) over F.

It follows from Theorem 2.4 that an F-MTA A of dimension n is minimal if and only if
the Hankel matrix of ‖A‖ has rank n over F.

Remark 2.5. Theorem 2.4 specialised to word automata was proved by Carlyle and Paz [11]
and Fliess [20]. Their proofs show that if X,Y ⊆ Σ∗ are such that rank (HX,Y ) = rank (H),
then f is uniquely determined by HX,Y and HXΣ,Y .

In the remainder of this section, we prove some closure properties for MTAs. First, we
give two definitions: the product and the difference of two F-MTAs. Let A1 = (n1,Σ, µ1, γ1)
and A2 = (n2,Σ, µ2, γ2) be two F-multiplicity tree automata. The difference of A1 and A2,
written as A1 −A2, is the F-multiplicity tree automaton (n,Σ, µ, γ) where:

• n = n1 + n2;
• For every σ ∈ Σ and any i ∈ [(n1 + n2)

rk (σ)], j ∈ [n1 + n2],

µ(σ)i,j =





µ1(σ)i,j if i ≤ n
rk(σ)
1 and j ≤ n1

µ2(σ)i,j if i > (n1 + n2)
rk(σ) − n

rk(σ)
2 and j > n1

0 otherwise;

• γ =

[
γ1
−γ2

]
.

The product of A1 by A2, written as A1×A2, is the F-multiplicity tree automaton (n,Σ, µ, γ)
where:

• n = n1 · n2;
• For every σ ∈ Σk, µ(σ) = Pk · (µ1(σ)⊗ µ2(σ)) where Pk is a permutation matrix of order
(n1 · n2)

k uniquely defined (see Remark 2.6 below) by

(u1 ⊗ · · · ⊗ uk)⊗ (v1 ⊗ · · · ⊗ vk) = ((u1 ⊗ v1)⊗ · · · ⊗ (uk ⊗ vk)) · Pk (2.3)

for all u1, . . . , uk ∈ F1×n1 and v1, . . . , vk ∈ F1×n2 ;
• γ = γ1 ⊗ γ2.

Remark 2.6. In the following we argue that for every k, matrix Pk is well-defined by
Equation (2.3). To do this, it suffices to show that Pk is well-defined on a set of basis vectors
of F1×n1 and F1×n2 and then extend linearly. To that end, let (e1i )i∈[n1] and (e2j )j∈[n2] be

bases of F1×n1 and F1×n2 , respectively. Then

E1 := {(e1i1 ⊗ · · · ⊗ e1ik)⊗ (e2j1 ⊗ · · · ⊗ e2jk) : i1, . . . , ik ∈ [n1], j1, . . . , jk ∈ [n2]}
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and

E2 := {(e1i1 ⊗ e2j1)⊗ · · · ⊗ (e1ik ⊗ e2jk) : i1, . . . , ik ∈ [n1], j1, . . . , jk ∈ [n2]}

are two bases of the vector space F1×n1n2 . Therefore, Pk is well-defined as an invertible
matrix mapping basis E1 to basis E2.

We now turn to the closure properties for MTAs:

Proposition 2.7. Let A1 = (n1,Σ, µ1, γ1) and A2 = (n2,Σ, µ2, γ2) be two F-MTAs. For
their difference A1 − A2, it holds that ‖A1 − A2‖ = ‖A1‖ − ‖A2‖. For their product
A1 ×A2 = (n,Σ, µ, γ), the following properties hold:

(i) for every t ∈ TΣ, µ(t) = µ1(t)⊗ µ2(t);
(ii) for every c ∈ CΣ, µ(c) = µ1(c)⊗ µ2(c);
(iii) ‖A1 ×A2‖ = ‖A1‖ · ‖A2‖.

When F = Q, both automata A1 − A2 and A1 × A2 can be computed from A1 and A2 in
logarithmic space.

Proof. The result for the difference automaton is shown in [4, Proposition 3.1]. Results (i)
and (iii) for the product automaton are shown in [4, Proposition 5.1]; see also [5]. In the
following we prove the remainder of the proposition.

We prove result (ii) using induction on the distance between the root and the ✷-labelled
node of c. The base case is c = ✷. Here by definition we have that

µ(c) = µ(✷) = In1·n2 = In1 ⊗ In2 = µ1(✷)⊗ µ2(✷) = µ1(c)⊗ µ2(c).

For the induction step, let h ∈ N0 and assume that (ii) holds for every context c ∈ Ch
Σ.

Take any c ∈ Ch+1
Σ . Without loss of generality we can assume that c = σ(c1, t2, . . . , tk) for

some k ≥ 1, σ ∈ Σk, c1 ∈ Ch
Σ, and t2, . . . , tk ∈ TΣ. By the induction hypothesis, result (i),

Equation (2.3), and the mixed-product property of Kronecker product, we now have

µ(c) =


µ(c1)⊗

k⊗

j=2

µ(tj)


 · µ(σ)

=


(µ1(c1)⊗ µ2(c1))⊗

k⊗

j=2

(µ1(tj)⊗ µ2(tj))


 · Pk · (µ1(σ)⊗ µ2(σ))

=




µ1(c1)⊗

k⊗

j=2

µ1(tj)


⊗


µ2(c1)⊗

k⊗

j=2

µ2(tj)




 · (µ1(σ)⊗ µ2(σ))

=




µ1(c1)⊗

k⊗

j=2

µ1(tj)


 · µ1(σ)


 ⊗




µ2(c1)⊗

k⊗

j=2

µ2(tj)


 · µ2(σ)




= µ1(c)⊗ µ2(c).

This completes the proof of result (ii) by induction.
Now let F = Q. The Q-MTA A1 ×A2 can be computed using a deterministic Turing

machine which scans the transition matrices and the final weight vectors of A1 and A2,
and then writes down the entries of the transition matrices and the final weight vector
of their product A1 × A2 onto the output tape. This computation requires maintaining
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only a constant number of pointers, which takes logarithmic space in the representation of
automata A1 and A2. Hence, the Turing machine computing the automaton A1 ×A2 uses
logarithmic space in the work tape. Analogously, the Q-MTA A1 − A2 can be computed
from A1 and A2 in logarithmic space.

3. Fundamentals of Minimisation

In this section, we prepare the ground for minimisation algorithms. Let us fix a field F

for the rest of this section and assume that all automata are over F. We also fix an MTA
A = (n,Σ, µ, γ) for the rest of the section. We will construct from A another MTA Ã which
we show to be equivalent to A and minimal. A crucial ingredient for this construction are
special vector spaces induced by A, called the forward space and the backward space.

3.1. Forward and Backward Space. The forward space F of A is the (row) vector space
F := 〈µ(t) : t ∈ TΣ〉 over F. The backward space B of A is the (column) vector space
B := 〈µ(c) ·γ : c ∈ CΣ〉 over F. The following Propositions 3.1 and 3.2 provide fundamental
characterisations of F and B, respectively.

Proposition 3.1. The forward space F has the following properties:

(a) The forward space F is the smallest vector space V over F such that for all k ∈ N0,
v1, . . . , vk ∈ V , and σ ∈ Σk it holds that (v1 ⊗ · · · ⊗ vk) · µ(σ) ∈ V .

(b) The set of row vectors {µ(t) : t ∈ T<n
Σ } spans F .

Proof. We start by proving result (a). Here we first show that F has the closure property
stated in (a). To this end, let us take any k ∈ N0, v1, . . . , vk ∈ F , and σ ∈ Σk. By definition
of the forward space F , for every i ∈ [k] we can express vector vi ∈ F as

vi =

mi∑

ji=1

αi
ji
µ(tiji)

for some integer mi ∈ N, scalars αi
1, . . . , α

i
mi

∈ F, and trees ti1, . . . , t
i
mi

∈ TΣ. From here,
using bilinearity of Kronecker product we get that

(v1 ⊗ · · · ⊗ vk) · µ(σ) =






m1∑

j1=1

α1
j1
µ(t1j1)


⊗ · · · ⊗




mk∑

jk=1

αk
jk
µ(tkjk)




 · µ(σ)

=

m1∑

j1=1

· · ·

mk∑

jk=1

α1
j1
· · ·αk

jk

(
µ(t1j1)⊗ · · · ⊗ µ(tkjk)

)
· µ(σ)

=

m1∑

j1=1

· · ·

mk∑

jk=1

α1
j1
· · ·αk

jk
· µ(σ(t1j1 , . . . , t

k
jk
)).

Since F is a vector space, the above equation implies that (v1 ⊗ · · · ⊗ vk) · µ(σ) ∈ F .
Let V be any vector space over F such that for all k ∈ N0, v1, . . . , vk ∈ V , and σ ∈ Σk

it holds that (v1 ⊗ · · · ⊗ vk) · µ(σ) ∈ V . We claim that F ⊆ V . To prove this, it suffices to
show that µ(t) ∈ V for every t ∈ TΣ. Here we give a proof by induction on height(t). The
base case t ∈ Σ0 is trivial. For the induction step, let h ∈ N0 and assume that µ(t) ∈ V

for all t ∈ T
≤h
Σ . Take any t ∈ T h+1

Σ . Then, t = σ(t1, . . . , tk) for some k ≥ 1, σ ∈ Σk, and
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t1, . . . , tk ∈ T
≤h
Σ . The induction hypothesis now implies that µ(t1), . . . , µ(tk) ∈ V . By the

choice of V , we therefore have that µ(t) = (µ(t1)⊗ · · · ⊗ µ(tk)) · µ(σ) ∈ V . This completes
the proof by induction.

The proof of result (b) follows from [34, Main Lemma 4.1].

Proposition 3.2. Let S ⊆ TΣ be a set of trees such that {µ(t) : t ∈ S} spans F . Then, the
following properties hold:

(a) The backward space B is the smallest vector space V over F such that:
(1) γ ∈ V .
(2) For every v ∈ V and c ∈ C1

Σ,S it holds that µ(c) · v ∈ V .

(b) The set of column vectors {µ(c) · γ : c ∈ C<n
Σ,S} spans B.

Proof. First, we prove result (a). We have that γ = µ(✷)·γ ∈ B, hence B satisfies property 1.
To see that B satisfies property 2, let us take any v ∈ B and c ∈ C1

Σ,S . By definition of B,
the vector v can be expressed as

v =
m∑

i=1

αi · µ(ci) · γ

for some integer m ∈ N, scalars α1, . . . , αm ∈ F, and contexts c1, . . . , cm ∈ CΣ. Thus by
bilinearity of matrix multiplication we have

µ(c) · v = µ(c) ·

(
m∑

i=1

αi · µ(ci) · γ

)

=

m∑

i=1

αi · (µ(c) · µ(ci) · γ) =

m∑

i=1

αi · µ(ci[c]) · γ,

which implies that µ(c) · v ∈ B since B is a vector space. Therefore, B satisfies properties 1
and 2.

Let now V be any vector space over F satisfying properties 1 and 2. In order to show
that B ⊆ V , it suffices to show that µ(c) · γ ∈ V for every c ∈ CΣ. We prove the latter
result using induction on the distance between the root and the ✷-labelled node of c. For
the induction basis, let the distance be 0, i.e., c = ✷. Then we have µ(c) · γ = γ ∈ V

by property 1. For the induction step, let h ∈ N0 and assume that µ(c) · γ ∈ V for all

c ∈ C
≤h
Σ . Take any c ∈ Ch+1

Σ . Let c′ ∈ C1
Σ and c′′ ∈ Ch

Σ be such that c = c′′[c′]. Without
loss of generality we can assume that c′ = σ(✷, τ2, . . . , τk) where k ≥ 1, σ ∈ Σk, and
τ2, . . . , τk ∈ TΣ. Since F = 〈µ(t) : t ∈ S〉, for every i ∈ {2, . . . , k} there is an integer mi ∈ N,
scalars αi

1, . . . , α
i
mi

∈ F, and trees ti1, . . . , t
i
mi

∈ S such that

µ(τi) =

mi∑

ji=1

αi
ji
µ(tiji).

From here, using bilinearity of Kronecker product, it follows that

µ(c) · γ = µ(c′) · µ(c′′) · γ

= (In ⊗ µ(τ2)⊗ · · · ⊗ µ(τk))µ(σ) · µ(c
′′) · γ

=


In ⊗




m2∑

j2=1

α2
j2
µ(t2j2)


⊗ · · · ⊗




mk∑

jk=1

αk
jk
µ(tkjk)




µ(σ) · µ(c′′) · γ
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=

m2∑

j2=1

· · ·

mk∑

jk=1

α2
j2
· · ·αk

jk
·
(
In ⊗ µ(t2j2)⊗ · · · ⊗ µ(tkjk)

)
µ(σ) · µ(c′′) · γ

=

m2∑

j2=1

· · ·

mk∑

jk=1

α2
j2
· · ·αk

jk
· µ(σ(✷, t2j2 , . . . , t

k
jk
)) · µ(c′′) · γ ,

where we note that σ(✷, t2j2 , . . . , t
k
jk
) ∈ C1

Σ,S for every j2 ∈ [m2], . . . , jk ∈ [mk]. More-

over, we have µ(c′′) · γ ∈ V by the induction hypothesis. Thus by property 2 we have
µ(σ(✷, t2j2 , . . . , t

k
jk
)) · µ(c′′) · γ ∈ V for every j2 ∈ [m2], . . . , jk ∈ [mk]. Since V is a vector

space, we conclude that µ(c) · γ ∈ V . This completes the proof of result (a) by induction.
We denote by CΣ,S the set of all c ∈ CΣ where every subtree of c is an element of S.

It follows easily from part (a) that 〈µ(c) · γ : c ∈ CΣ,S〉 = B since 〈µ(c) · γ : c ∈ CΣ,S〉
satisfies properties 1 and 2. Thus in order to prove result (b), it suffices to show that the set
{µ(c) · γ : c ∈ C<n

Σ,S} spans 〈µ(c) · γ : c ∈ CΣ,S〉. We show this using an argument that was

similarly given, e.g., in [30]. If γ is the zero vector 0⊤n , the statement is trivial. Let us now
assume that γ 6= 0⊤n . For every i ∈ N, we define the vector space Bi := 〈µ(c) · γ : c ∈ C<i

Σ,S〉

over F. Since Bi is a subspace of Bi+1 for every i ∈ N, we have

1 ≤ dim(B1) ≤ dim(B2) ≤ · · · ≤ dim(Bn+1) ≤ n , (3.1)

where the first inequality holds because γ 6= 0⊤n , and the last inequality holds because
Bi ⊆ Fn for all i ∈ N. Not all inequalities in the inequality chain (3.1) can be strict, so we
must have Bi0 = Bi0+1 for some i0 ∈ [n]. We claim that Bi = Bi+1 for all i ≥ i0. We give
a proof by induction on i. The base case i = i0 holds by definition of i0. For the induction
step, let i ≥ i0 and assume that Bi = Bi+1. Note that, by definition, for all j ∈ N we have
Bj+1 = 〈γ, µ(c) · Bj : c ∈ C1

Σ,S〉. Using this result for j ∈ {i, i + 1}, we obtain:

Bi+1 = 〈γ, µ(c) · Bi : c ∈ C1
Σ,S〉 = 〈γ, µ(c) · Bi+1 : c ∈ C1

Σ,S〉 = Bi+2

where the middle equation holds by the induction hypothesis. This completes the proof
by induction, and we thus conclude that Bi = Bi+1 for all i ≥ i0. Since n ≥ i0, it follows
that Bn =

⋃
i≥n B

i. Since (Bi)i∈N is an increasing sequence of vector spaces, we have

Bn =
⋃

i∈N Bi = 〈µ(c) · γ : c ∈ CΣ,S〉 as required.

3.2. A Minimal Automaton. Let F and B be matrices whose rows and columns, respec-
tively, span F and B. That is, RS (F ) = F and CS (B) = B. We discuss later (Section 4.1)
how to efficiently compute F and B. The following lemma states that rank (F · B) is the
dimension of a minimal automaton equivalent to A.

Lemma 3.3. A minimal automaton equivalent to A has m := rank (F · B) states.

Proof. Let H be the Hankel matrix of ‖A‖. Define the matrix F ∈ FTΣ×[n] where F t = µ(t)

for every t ∈ TΣ. Define the matrix B ∈ F[n]×CΣ where B
c
= µ(c) · γ for every c ∈ CΣ. For

every t ∈ TΣ and c ∈ CΣ we have by the definitions that

Ht,c = ‖A‖(c[t]) = µ(c[t]) · γ = µ(t) · µ(c) · γ = F t · B
c
,

hence H = F ·B. Note that

RS (F ) = F = RS (F ) and CS (B) = B = CS (B) . (3.2)
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We now have m = rank (H) = rank (F · B) = rank (F ·B), where the first equality holds by
Theorem 2.4 and the last equality holds by (3.2) and Lemma 2.3.

Since m = rank (F · B), there exist m rows of F · B that span RS (F · B). The corre-

sponding m rows of F form a matrix F̃ ∈ Fm×n with RS (F̃ · B) = RS (F · B). Define a

multiplicity tree automaton Ã = (m,Σ, µ̃, γ̃) with γ̃ = F̃ · γ and

µ̃(σ) · F̃ · B = F̃⊗k · µ(σ) ·B for every σ ∈ Σk. (3.3)

We show that Ã minimises A:

Proposition 3.4. The MTA Ã is well-defined and is a minimal automaton equivalent to A.

Before giving a full proof of Proposition 3.4 later in this subsection, we now prove this
result for multiplicity word automata, stated as Proposition 3.5 below, which will be used
in Section 4.2. The main arguments are similar for the tree case, but slightly more involved.

Let A = (n,Σ, µ, α, γ) be an MWA. The forward and backward space can then be

written as F = 〈α · µ(w) : w ∈ Σ∗〉 and B = 〈µ(w) · γ : w ∈ Σ∗〉, respectively. The MWA Ã

can be written as Ã = (m,Σ, µ̃, α̃, γ̃) with γ̃ = F̃ · γ,

α̃ · F̃ ·B = α ·B, and (3.4)

µ̃(σ) · F̃ ·B = F̃ · µ(σ) · B for every σ ∈ Σ. (3.5)

Proposition 3.5. The MWA Ã is well-defined and is a minimal automaton equivalent
to A.

First, we show that Ã is a well-defined multiplicity word automaton:

Lemma 3.6. There exists a unique vector α̃ satisfying Equation (3.4). For every σ ∈ Σ,
there exists a unique matrix µ̃(σ) satisfying Equation (3.5).

Proof. Since the rows of F̃ · B form a basis of RS (F · B), it suffices to prove that α · B ∈

RS (F · B) and RS (F̃ · µ(σ) · B) ⊆ RS (F · B) for every σ ∈ Σ. By Lemma 2.1, it further

suffices to prove that α ∈ RS (F ) and RS (F̃ · µ(σ)) ⊆ RS (F ) for every σ ∈ Σ.

We have α = α · µ(ε) ∈ F = RS (F ). Let i ∈ [m]. Since F̃i ∈ RS (F ) = F , it follows

from Proposition 3.1 (a) that (F̃ · µ(σ))i = F̃i · µ(σ) ∈ F for all σ ∈ Σ.

We complete the proof of Proposition 3.5 by showing that MWA Ã minimises A:

Lemma 3.7. The automaton Ã is a minimal MWA equivalent to A.

Proof. We claim that for every w ∈ Σ∗,

α̃ · µ̃(w) · F̃ · B = α · µ(w) ·B. (3.6)

Our proof is by induction on |w|. For the base case w = ε, we have

α̃ · µ̃(ε) · F̃ ·B = α̃ · F̃ · B
Eq. (3.4)

= α ·B = α · µ(ε) · B.

For the induction step, let l ∈ N0 and assume that (3.6) holds for every w ∈ Σl. Take
any w ∈ Σl and σ ∈ Σ. For every b ∈ B = CS (B) we have by Proposition 3.2 (a) that
µ(σ) · b ∈ B, and thus by the induction hypothesis for w ∈ Σl it follows

α̃ · µ̃(wσ) · F̃ · b = α̃ · µ̃(w) · µ̃(σ) · F̃ · b
Eq. (3.5)

= α̃ · µ̃(w) · F̃ · µ(σ) · b

= α · µ(w) · µ(σ) · b = α · µ(wσ) · b
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which completes the proof by induction.
Now for any w ∈ Σ∗, since γ ∈ B we have

‖Ã‖(w) = α̃ · µ̃(w) · γ̃ = α̃ · µ̃(w) · F̃ · γ
Eq. (3.6)

= α · µ(w) · γ = ‖A‖(w).

Hence, MWAs Ã and A are equivalent. Minimality of Ã follows from Lemma 3.3.

We are now ready to prove Proposition 3.4 in its full generality. The proof is split in
two lemmas, Lemmas 3.8 and 3.9, which together imply Proposition 3.4. First, we show
that Ã is a well-defined multiplicity tree automaton:

Lemma 3.8. For every σ ∈ Σk, there exists a unique matrix µ̃(σ) satisfying Equation (3.3).

Proof. Since the rows of F̃ ·B form a basis of RS (F ·B), it suffices to prove that

RS (F̃⊗k · µ(σ) · B) ⊆ RS (F ·B).

By Lemma 2.1, to do this it suffices to prove that RS (F̃⊗k · µ(σ)) ⊆ RS (F ). Let us therefore

take an arbitrary row (F̃⊗k · µ(σ))(i1,...,ik) of F̃
⊗k · µ(σ), where (i1, . . . , ik) ∈ [m]k. We have

(F̃⊗k · µ(σ))(i1,...,ik) = (F̃⊗k)(i1,...,ik) · µ(σ)
Eq. (2.1)

= (F̃i1 ⊗ · · · ⊗ F̃ik) · µ(σ).

Since F̃i1 , . . . , F̃ik ∈ RS (F̃ ) ⊆ RS (F ) = F , we have that (F̃i1 ⊗ · · · ⊗ F̃ik) · µ(σ) ∈ F by

Proposition 3.1 (a). Therefore, (F̃⊗k · µ(σ))(i1,...,ik) ∈ F = RS (F ).

Next, we show that MTA Ã minimises A:

Lemma 3.9. The automaton Ã is a minimal MTA equivalent to A.

Proof. First we show that for every t ∈ TΣ,

µ̃(t) · F̃ · B = µ(t) ·B. (3.7)

Our proof is by induction on height(t). The base case t = σ ∈ Σ0 follows immediately from
Equation (3.3). For the induction step, let h ∈ N0 and assume that (3.7) holds for every

t ∈ T≤h
Σ . Take any tree t ∈ T h+1

Σ . Then t = σ(t1, . . . , tk) for some k ≥ 1, σ ∈ Σk, and

t1, . . . , tk ∈ T
≤h
Σ . Using bilinearity of Kronecker product we get that

µ̃(t) · F̃ · B = (µ̃(t1)⊗ · · · ⊗ µ̃(tk)) · µ̃(σ) · F̃ · B

= (µ̃(t1)⊗ · · · ⊗ µ̃(tk)) · F̃
⊗k · µ(σ) ·B by Eq. (3.3)

= ((µ̃(t1)F̃ )⊗ · · · ⊗ (µ̃(tk)F̃ )) · µ(σ) · B by Eq. (2.2)

= (µ̃(t1)F̃ ) · (In ⊗ (µ̃(t2)F̃ )⊗ · · · ⊗ (µ̃(tk)F̃ )) · µ(σ) · B.

Since RS (F̃ ) ⊆ F , for every i ∈ {2, . . . , k} it holds that µ̃(ti)F̃ ∈ F . Since In = µ(✷) ∈ F ,

we now have that (In ⊗ (µ̃(t2)F̃ ) ⊗ · · · ⊗ (µ̃(tk)F̃ )) · µ(σ) · B ∈ B by Proposition 3.2 (a).

Thus by the induction hypothesis for t1 ∈ T≤h
Σ , we have

µ̃(t) · F̃ · B = µ(t1) · (In ⊗ (µ̃(t2)F̃ )⊗ · · · ⊗ (µ̃(tk)F̃ )) · µ(σ) ·B

= (µ(t1)⊗ (µ̃(t2)F̃ )⊗ · · · ⊗ (µ̃(tk)F̃ )) · µ(σ) · B.

From here we argue inductively as follows: Assume that for some l ∈ [k − 1],

µ̃(t) · F̃ · B = (µ(t1)⊗ · · · ⊗ µ(tl)⊗ (µ̃(tl+1)F̃ )⊗ · · · ⊗ (µ̃(tk)F̃ )) · µ(σ) ·B.
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Then by bilinearity of Kronecker product, we get that µ̃(t) · F̃ ·B is equal to

(µ̃(tl+1)F̃ ) · (µ(t1)⊗ · · · ⊗ µ(tl)⊗ In ⊗ (µ̃(tl+2)F̃ )⊗ · · · ⊗ (µ̃(tk)F̃ )) · µ(σ) ·B.

Here (µ(t1) ⊗ · · · ⊗ µ(tl) ⊗ In ⊗ (µ̃(tl+2)F̃ ) ⊗ · · · ⊗ (µ̃(tk)F̃ )) · µ(σ) · B ∈ B by the same

reasoning as above. The induction hypothesis for tl+1 ∈ T≤h
Σ now implies

µ̃(t) · F̃ · B

= µ(tl+1) · (µ(t1)⊗ · · · ⊗ µ(tl)⊗ In ⊗ (µ̃(tl+2)F̃ )⊗ · · · ⊗ (µ̃(tk)F̃ )) · µ(σ) · B

= (µ(t1)⊗ · · · ⊗ µ(tl)⊗ µ(tl+1)⊗ (µ̃(tl+2)F̃ )⊗ · · · ⊗ (µ̃(tk)F̃ )) · µ(σ) ·B.

Continuing our inductive argument, for l = k − 1 we get that

µ̃(t) · F̃ ·B = (µ(t1)⊗ · · · ⊗ µ(tk)) · µ(σ) · B = µ(t) · B.

This completes the proof of (3.7) by induction.
Now since γ ∈ B, for every t ∈ TΣ we have

‖Ã‖(t) = µ̃(t) · γ̃ = µ̃(t) · F̃ · γ
Eq. (3.7)

= µ(t) · γ = ‖A‖(t).

Hence, MTAs Ã and A are equivalent. Minimality follows from Lemma 3.3.

By a result of Bozapalidis and Alexandrakis [7, Proposition 4], all equivalent minimal

multiplicity tree automata are equal up to a change of basis. Thus the MTA Ã is “canonical”
in the sense that any minimal MTA equivalent toA can be obtained from Ã via a linear trans-
formation: any m-dimensional MTA Ã′ = (m,Σ, µ̃′, γ̃′) is equivalent to A if and only if there

exists an invertible matrix U ∈ Fm×m such that γ̃′ = U · γ̃ and µ̃′(σ) = U⊗rk(σ) · µ̃(σ) · U−1

for every σ ∈ Σ.

3.3. Spanning Sets for the Forward and Backward Spaces. The minimal automa-
ton Ã from Section 3.2 is defined in terms of matrices F and B whose rows and columns
span the forward space F and the backward space B, respectively. In fact, the central
algorithmic challenge for minimisation lies in the efficient computation of such matrices. In
this section we prove a key result, Proposition 3.10 below, suggesting a way to compute
F and B, which we exploit in Sections 4.2 and 5.

Propositions 3.1 and 3.2 and their proofs already suggest an efficient algorithm for
iteratively computing bases of F and B. We make this algorithm more explicit and analyse
its unit-cost complexity in Section 4.1. The drawback of the resulting algorithm will be the
use of “if-conditionals”: the algorithm branches according to whether certain sets of vectors
are linearly independent. Such conditionals are ill-suited for efficient parallel algorithms and
also for many-one reductions. Thus it cannot be used for an NC-algorithm in Section 4.2
nor for a reduction to ACIT in Section 5.

The following proposition exhibits polynomial-size sets of spanning vectors for F and B,
which, as we will see later, can be computed efficiently without branching. The proposition
is based on the product automaton A × A defined in Section 2.5. It defines a sequence
(f(l))l∈N of row vectors and a sequence (b(l))l∈N of square matrices. Part (a) states that
the vector f(n) and the matrix b(n) determine matrices F and B, whose rows and columns
span F and B, respectively. Part (b) gives a recursive characterisation of the sequences
(f(l))l∈N and (b(l))l∈N. This allows for an efficient computation of f(n) and b(n).
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Proposition 3.10. Let Σ have rank r. Let A × A = (n2,Σ, µ′, γ⊗2) be the product of
A by A. For every l ∈ N, define

f(l) :=
∑

t∈T<l
Σ

µ′(t) ∈ F1×n2
and b(l) :=

∑

c∈C<l

Σ,T<n
Σ

µ′(c) ∈ Fn2×n2
.

(a) Let F ∈ Fn×n be the matrix with Fi,j = f(n) · (ei ⊗ ej)
⊤ for all i, j ∈ [n]. Let B ∈ Fn×n

be the matrix with Bi,j = (ei ⊗ ej) · b(n) · γ
⊗2 for all i, j ∈ [n]. Then, RS (F ) = F and

CS (B) = B.
(b) We have f(1) =

∑
σ∈Σ0

µ′(σ) and b(1) = In2 . For all l ∈ N, it holds that

f(l + 1) =
r∑

k=0

f(l)⊗k
∑

σ∈Σk

µ′(σ), and

b(l + 1) = In2 +

r∑

k=1

k∑

j=1

(
f(n)⊗(j−1) ⊗ b(l)⊗ f(n)⊗(k−j)

) ∑

σ∈Σk

µ′(σ).

Proof. First, we prove that RS (F ) = F in part (a). Let F̂ ∈ FT<n
Σ ×[n] be a matrix such

that F̂t = µ(t) for every t ∈ T<n
Σ . From Proposition 3.1 (b) it follows that RS (F̂ ) = F . By

Lemma 2.2 we now have RS (F̂⊤F̂ ) = RS (F̂ ) = F . Thus in order to prove that RS (F ) = F ,

it suffices to show that F̂⊤F̂ = F . Indeed, using the mixed-product property of Kronecker
product, we have for all i, j ∈ [n]:

(F̂⊤F̂ )i,j = (F̂⊤)i · (F̂ )j =
∑

t∈T<n
Σ

µ(t)i · µ(t)j

=
∑

t∈T<n
Σ

(µ(t) · e⊤i )⊗ (µ(t) · e⊤j )

=


 ∑

t∈T<n
Σ

(µ(t)⊗ µ(t))


 · (ei ⊗ ej)

⊤

Prop. 2.7
=


 ∑

t∈T<n
Σ

µ′(t)


 · (ei ⊗ ej)

⊤ = f(n) · (ei ⊗ ej)
⊤.

Next, we complete the proof of part (a) by proving that CS (B) = B. To avoid notational
clutter, in the following we write

C := C<n

Σ,T<n
Σ

.

Define a matrix B̂ ∈ F[n]×C such that B̂c = µ(c)·γ for all c ∈ C . From Proposition 3.2 (b) it

follows that CS (B̂) = B. By Lemma 2.2 we now have CS (B̂B̂⊤) = CS (B̂) = B. Therefore

in order to prove that CS (B) = B, it suffices to show that B̂B̂⊤ = B. Indeed, using the
mixed-product property of Kronecker product, we have for all i, j ∈ [n]:

(B̂ · B̂⊤)i,j = (B̂)i · (B̂
⊤)j

=
∑

c∈C

(µ(c)i · γ) · (µ(c)j · γ)



MINIMISATION OF MULTIPLICITY TREE AUTOMATA 15

=
∑

c∈C

(ei · µ(c) · γ)⊗ (ej · µ(c) · γ)

=
∑

c∈C

(ei ⊗ ej) · (µ(c)⊗ µ(c)) · (γ ⊗ γ)

= (ei ⊗ ej) ·

(
∑

c∈C

(µ(c)⊗ µ(c))

)
· (γ ⊗ γ)

= (ei ⊗ ej) ·

(
∑

c∈C

µ′(c)

)
· γ⊗2 (by Proposition 2.7 (ii))

= (ei ⊗ ej) · b(n) · γ
⊗2 (definition of b(n))

= Bi,j.

We turn to the proof of part (b). Here we do not use the fact that we are dealing with a
product automaton. We first prove the statement on f(l). The equality f(1) =

∑
σ∈Σ0

µ′(σ)
follows directly from the definition. For all l ∈ N,

T<l+1
Σ = {σ(t1, . . . , tk) : 0 ≤ k ≤ r, σ ∈ Σk, t1, . . . , tk ∈ T<l

Σ } .

Thus, by bilinearity of Kronecker product, it holds that

f(l+ 1) =
∑

t∈T<l+1
Σ

µ′(t)

=

r∑

k=0

∑

σ∈Σk

∑

t1∈T
<l
Σ

· · ·
∑

tk∈T
<l
Σ

(
µ′(t1)⊗ · · · ⊗ µ′(tk)

)
· µ′(σ)

=

r∑

k=0






∑

t1∈T
<l
Σ

µ′(t1)


⊗ · · · ⊗



∑

tk∈T
<l
Σ

µ′(tk)





 ·

∑

σ∈Σk

µ′(σ)

=

r∑

k=0



∑

t∈T<l
Σ

µ′(t)




⊗k

∑

σ∈Σk

µ′(σ)

=

r∑

k=0

f(l)⊗k
∑

σ∈Σk

µ′(σ) .

Finally, we prove the statement on b(l). The equality b(1) = In2 follows from the
definition. To avoid notational clutter we write T := T<n

Σ in the following. Recall that
f(n) =

∑
t∈T µ′(t). We have for all l ∈ N:

C<l+1
Σ,T = {✷} ∪ {σ(t1, . . . , tj−1, cj , tj+1, . . . , tk) : k ∈ [r], j ∈ [k], σ ∈ Σk,

cj ∈ C<l
Σ,T , t1, . . . , tj−1, tj+1, . . . , tk ∈ T

}
.

Thus, using bilinearity of Kronecker product, we get that

b(l + 1)
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=
∑

c∈C<l+1
Σ,T

µ′(c)

= µ′(✷) +

r∑

k=1

k∑

j=1

∑

σ∈Σk

∑

t1,...,tj−1∈T

∑

cj∈C
<l
Σ,T

∑

tj+1,...,tk∈T

(µ′(t1)⊗ · · · ⊗ µ′(cj)

⊗ · · · ⊗ µ′(tk)) · µ
′(σ)

= In2 +
r∑

k=1

k∑

j=1

((
∑

t1∈T

µ′(t1)

)
⊗ · · · ⊗

(
∑

cj∈C
<l
Σ,T

µ′(cj)

)

⊗ · · · ⊗

(
∑

tk∈T

µ′(tk)

))
·
∑

σ∈Σk

µ′(σ)

= In2 +
r∑

k=1

k∑

j=1

(
f(n)⊗(j−1) ⊗ b(l)⊗ f(n)⊗(k−j)

) ∑

σ∈Σk

µ′(σ) .

This completes the proof.

Loosely speaking, Proposition 3.10 says that the sum over a small subset of the forward
space of the product automaton encodes a spanning set of the whole forward space of the
original automaton, and similarly for the backward space.

4. Minimisation Algorithms

In this section we devise algorithms for minimising a given multiplicity automaton: Sec-
tion 4.1 considers general MTAs, while Section 4.2 considers MWAs. For the sake of a
complexity analysis in standard models, we fix the field F = Q.

4.1. Minimisation of Multiplicity Tree Automata. In this subsection we describe
an implementation of the algorithm implicit in Section 3.2, and analyse the number of
operations. We consider a multiplicity tree automaton A = (n,Σ, µ, γ). We denote by r

the rank of Σ. The algorithm has three steps, as follows:

4.1.1. Step 1 “Forward”. The first step is to compute a matrix F such that RS (F ) = F .
Seidl [34] outlines a saturation-based algorithm for this, and proves that the algorithm takes
polynomial time assuming unit-cost arithmetic. Based on Proposition 3.1 (a) we now give
in Table 1 an explicit version of Seidl’s algorithm.

Our algorithm satisfies the following properties:

Lemma 4.1. The algorithm in Table 1 returns a matrix F ∈ Q
−→n×n whose rows form a basis

of the forward space F . Each row of F equals µ(t) for some tree t ∈ T<n
Σ . The algorithm

executes O
(∑r

k=0 |Σk| · n
2k+1

)
operations.

Proof. The fact that the rows of F span F follows from Proposition 3.1 (a). Moreover, it
is clear from the algorithm that the rows of F are linearly independent.
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Input: Q-multiplicity tree automaton (n,Σ, µ, γ)
Output: matrix F whose rows form a basis of the forward space F

i := 0, j := 0
while i ≤ j do

forall σ ∈ Σ do
forall (l1, . . . , lrk(σ)) ∈ [i]rk(σ) \ [i− 1]rk(σ) do

v := (Fl1 ⊗ · · · ⊗ Flrk(σ)
) · µ(σ)

if v 6∈ 〈F1, . . . , Fj〉
j := j + 1
Fj := v

i := i+ 1
return matrix F ∈ Qj×n

Table 1: Algorithm for computing a matrix F

A straightforward induction shows that for each row index j ≥ 1, the row Fj equals µ(t)

for some tree t ∈ T
<j
Σ . The returned matrix F ∈ Q

−→n×n has full row rank, and therefore
−→n ≤ n. Hence, each row of F equals µ(t) for some tree t ∈ T<n

Σ .
It remains to analyse the number of operations. Let us consider an iteration of the

innermost “for” loop. The computation of Fl1 ⊗ · · · ⊗ Flrk(σ)
requires O(nrk(σ)) operations

(by iteratively computing partial products). The vector

v = (Fl1 ⊗ · · · ⊗ Flrk(σ)
) · µ(σ)

is the product of a 1 × nrk(σ) vector with an nrk(σ) × n matrix. Thus, computing v takes
O(nrk(σ)+1) operations. For the purpose of checking membership of v in the vector space
F ′ := 〈F1, . . . , Fj〉 it is useful to maintain a matrix F ′, which is upper triangular (up to a
permutation of its columns) and whose rows form a basis of F ′. To check whether v ∈ F ′

we compute a vector v′ as the result of performing a Gaussian elimination of v against F ′,
which requires O(j ·n) operations. If this membership test fails, we extend the matrix F ′ at
the bottom by row v′. This preserves the upper-triangular shape of F ′. Thus, an iteration
of the innermost “for” loop takes O(nrk(σ)+1) operations. For every σ ∈ Σ, this “for”

loop is executed O(nrk(σ)) times. Therefore, the algorithm executes O
(∑r

k=0 |Σk| · n
2k+1

)

operations.

4.1.2. Step 2 “Backward”. The next step suggested in Section 3.2 is to compute a matrix B

such that CS (B) = B. By Lemma 4.1, each row of the matrix F computed by the algorithm
in Table 1 equals µ(t) for some tree t ∈ T<n

Σ . Let S denote the set of those trees. Since
RS (F ) = F , set {µ(t) : t ∈ S} spans F . Thus by Proposition 3.2 (a), B is the smallest
vector space V ⊆ Qn such that γ ∈ V and M · v ∈ V for all M ∈ M := {µ(c) : c ∈ C1

Σ,S}

and v ∈ V . Tzeng [35] shows, for an arbitrary column vector γ ∈ Qn and an arbitrary finite
set of matrices M ⊆ Qn×n, how to compute a basis of V in time O(|M| · n4). This can be
improved to O(|M| · n3) (see, e.g., [16]). This leads to the following lemma:

Lemma 4.2. Given the matrix F ∈ Q
−→n×n which is the output of the algorithm in Table 1,

a matrix B whose columns form a basis of the backward space B can be computed with
O
(∑r

k=1 |Σk| · (kn
2k + knk+2)

)
operations.
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Proof. Consider the computation of an arbitrary M ∈ M := {µ(c) : c ∈ C1
Σ,S}. We have:

M = G · µ(σ) , where (4.1)

G = Fl1 ⊗ · · · ⊗ Fli−1
⊗ In ⊗ Fli+1

⊗ · · · ⊗ Flrk(σ)
∈ Qn×nrk(σ)

(4.2)

is such that σ ∈ Σ \Σ0, i ∈ [rk (σ)], l1, . . . , li−1, li+1, . . . , lrk(σ) ∈ [−→n ].
Exploiting the sparsity pattern in the matrix G as in (4.2), the computation of the non-

zero entries of G takes O(nrk(σ)) operations. Exploiting sparsity again, the computation of
matrix M as in (4.1) then takes O(nrk(σ)+1) operations. Since −→n ≤ n, it follows from (4.1)
and (4.2) that

|M| ∈ O

(
r∑

k=1

|Σk| · k · nk−1

)
.

Thus, the number of operations required to computeM is O
(∑r

k=1 |Σk| · k · n2k
)
. Given M,

computing a basis of B takes

O(|M| · n3) = O

(
r∑

k=1

|Σk| · k · nk−1 · n3

)

operations, using, e.g., the method from [16] that was mentioned above. Therefore, the
total operation count for computing a matrix B is O

(∑r
k=1 |Σk| · (kn

2k + knk+2)
)
.

4.1.3. Step 3 “Solve”. The final step suggested in Section 3.2 has two substeps. The first
substep is to compute a matrix F̃ ∈ Qm×n with m = rank(F ·B) and RS (F̃ ·B) = RS (F ·B).

Such a matrix F̃ can be computed from F by going through the rows of F one by one and
including only those rows that are linearly independent of the previous rows when multiplied
by B. This can be done in timeO(n3), e.g., by transforming the matrix F ·B into a triangular
form using Gaussian elimination.

The second substep is to compute the minimal MTA Ã = (m,Σ, µ̃, γ̃). The vector

γ̃ = F̃ ·γ is easy to compute. Solving Equation (3.3) for each µ̃(σ) can be done via Gaussian

elimination in time O(n3); however, the bottleneck is the computation of F̃⊗k ·µ(σ) for every
σ ∈ Σk, which takes

O

(
r∑

k=0

|Σk| · n
k · nk · n

)
= O

(
r∑

k=0

|Σk| · n
2k+1

)

operations. Putting together the results of this subsection, we get:

Theorem 4.3. There is an algorithm that transforms a given Q-MTA A = (n,Σ, µ, γ) into
an equivalent minimal Q-MTA. Assuming unit-cost arithmetic, the algorithm takes time

O

(
r∑

k=0

|Σk| · (n
2k+1 + kn2k + knk+2)

)
,

which is O
(
|A|2 · r

)
.
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4.2. Minimisation of Multiplicity Word Automata in NC. In this subsection, we
consider the problem of minimising a given Q-multiplicity word automaton. We prove the
following result:

Theorem 4.4. There is an NC algorithm that transforms a given Q-MWA into an equiva-
lent minimal Q-MWA. In particular, given a Q-MWA and a number d ∈ N0, one can decide
in NC whether there exists an equivalent Q-MWA of dimension at most d.

Theorem 4.4 improves on two results of [25]. First, [25, Theorem 4.2] states that
deciding whether a Q-MWA is minimal is in NC. Second, [25, Theorem 4.5] states the same
thing as our Theorem 4.4, but with NC replaced with randomised NC.

Proof of Theorem 4.4. The algorithm relies on Propositions 3.5 and 3.10. Let the given
Q-MWA be A = (n,Σ, µ, α, γ). In the notation of Proposition 3.10, we have for all l ∈ N

that
b(l + 1) = In2 + b(l) ·

∑

σ∈Σ

µ′(σ).

From here one can easily show, using an induction on l, that for all l ∈ N:

b(l) =
l−1∑

k=0

(
∑

σ∈Σ

µ′(σ)

)k

.

It follows for the matrix B ∈ Qn×n from Proposition 3.10 that for all i, j ∈ [n]:

Bi,j = (ei ⊗ ej) · b(n) · γ
⊗2 = (ei ⊗ ej) ·

(
n−1∑

k=0

(∑

σ∈Σ

µ′(σ)
)k
)

· γ⊗2.

Note that, since A is an MWA, we have f(l) = b(l) for all l ∈ N. We now have for the
matrix F ∈ Qn×n from Proposition 3.10 and all i, j ∈ [n]:

Fi,j = α⊗2 ·

(
n−1∑

k=0

(∑

σ∈Σ

µ′(σ)
)k
)

· (ei ⊗ ej)
⊤.

The matrices F and B can be computed in NC since sums and matrix powers can be
computed in NC [15]. Next we show how to compute in NC the matrix F̃ , which is needed

to compute the minimal Q-MWA Ã from Section 3.2. Our NC algorithm includes the ith

row of F (i.e., Fi) in F̃ if and only if

rank (F[i],[n] · B) > rank (F[i−1],[n] ·B).

This can be done in NC since the rank of a matrix can be determined in NC [23]. It remains

to compute γ̃ := F̃ γ and solve Equations (3.4) and (3.5) for α̃ and µ̃(σ), respectively. Both
are easily done in NC.
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5. Decision Problem

In this section we characterise the complexity of the following decision problem: Given
a Q-MTA and a number d ∈ N0, the minimisation problem asks whether there is an
equivalent Q-MTA of dimension at most d. We show, in Theorem 5.1 below, that this
problem is interreducible with the arithmetic circuit identity testing (ACIT) problem.

The latter problem can be defined as follows. An arithmetic circuit is a finite directed
acyclic vertex-labelled multigraph whose vertices, called gates, have indegree 0 or 2. Vertices
of indegree 0, called input gates, are labelled with a nonnegative integer or a variable from
the set {xi : i ∈ N}. Vertices of indegree 2 are labelled with one of the arithmetic operations
+, ×, or −. One can associate, in a straightforward inductive way, each gate with the
polynomial it computes. The arithmetic circuit identity testing (ACIT) problem asks,
given an arithmetic circuit and a gate, whether the polynomial computed by the gate is
equal to the zero polynomial. We show:

Theorem 5.1. Minimisation is logspace interreducible with ACIT.

We consider the lower and the upper bound separately.

5.1. Lower Bound. Given a Q-MTA A, the zeroness problem asks whether ‖A‖(t) = 0
for all trees t. Observe that ‖A‖(t) = 0 for all trees t if and only if there exists an equivalent
automaton of dimension 0. Therefore, zeroness is a special case of minimisation.

We observe that there is a logspace reduction from ACIT to zeroness. Indeed, it is
shown in [28] that the equivalence problem for Q-MTAs is logspace equivalent to ACIT.
This problems asks, given two Q-MTAs A1 and A2, whether ‖A1‖(t) = ‖A2‖(t) for all
trees t. By Proposition 2.7, one can reduce this problem to zeroness in logarithmic space.
This implies ACIT-hardness of minimisation.

5.2. Upper Bound. We prove:

Proposition 5.2. There is a logspace reduction from minimisation to ACIT.

Proof. Let A = (n,Σ, µ, γ) be the given Q-MTA, and let d ∈ N0 be the given number. In
our reduction to ACIT, we allow input gates with rational labels as well as division gates.
Rational numbers and division gates can be eliminated in a standard way by constructing
separate gates for the numerators and denominators of the rational numbers computed by
the original gates.

By Lemma 3.3, the dimension of a minimal MTA equivalent to A is m := rank (F · B)
where F and B are matrices such that RS (F ) = F and CS (B) = B. Therefore, we have
m ≤ d if and only if rank (F · B) ≤ d. The recursive characterisation of F and B from
Proposition 3.10 allows us to compute in logarithmic space an arithmetic circuit for F · B.
Thus, the result follows from Lemma 5.3 below.

The following lemma follows easily from the well-known NC procedure for computing
matrix rank [17].

Lemma 5.3. Let M ∈ Qm×n and d ∈ N0. The problem of deciding whether rank (M) ≤ d

is logspace reducible to ACIT.
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Proof. By the rank-nullity theorem, we have that rank (M) ≤ d if and only if dim(ker(M)) ≥
n − d. Since ker(M) = ker(M⊤M), this is equivalent to dim(ker(M⊤M)) ≥ n − d. The
matrix M⊤M is Hermitian, therefore dim(ker(M⊤M)) ≥ n − d if and only if the n − d

lowest-order coefficients of the characteristic polynomial of M⊤M are all zero [23]. But
these coefficients are representable by arithmetic circuits with inputs from M (see [17]).

We emphasise that our reduction to ACIT is a many-one reduction, thanks to Propo-
sition 3.10: our reduction computes only a single instance of ACIT; there are no if-
conditionals.

6. Minimal Consistent Multiplicity Automaton

Let F be an arbitrary field. A natural computational problem is to compute an F-MWA
A of minimal dimension that is consistent with a given finite set of F-weighted words
S = {(w1, r1), . . . , (wm, rm)}, where wi ∈ Σ∗ and ri ∈ F for every i ∈ [m]. Here consistency
means that ‖A‖(wi) = ri for every i ∈ [m].

The main result of this section concerns the computability of the above consistency
problem for the field of rational numbers. More specifically, we consider a decision version
of this problem, which we call minimal consistency problem, which asks whether there
exists a Q-MWA consistent with a set of input-output behaviours S ⊆ Σ∗×Q and that has
dimension at most some nonnegative integer bound n.

We show that the minimal consistency problem is logspace equivalent to the problem of
deciding the truth of existential first-order sentences over the structure (Q,+, ·, 0, 1). The
decidability of the latter is a longstanding open problem [31]. This should be compared with
the result that the problem of finding the smallest deterministic finite automaton consistent
with a set of accepted or rejected words is NP-complete [21].

The reduction of the minimal consistency problem to the decision problem for existential
first-order sentences over the structure (Q,+, ·, 0, 1) is immediate. The idea is to represent a
Q-MWA A = (n,Σ, µ, α, γ) “symbolically” by introducing separate variables for each entry
of the initial weight vector α, final weight vector γ, and each transition matrix µ(σ), σ ∈ Σ.
Then, the consistency of automaton A with a given finite sample S ⊆ Σ∗ × Q can directly
be written as an existential sentence.

We note in passing that the minimal consistency problem for weighted word and tree
automata over the field R is in like manner reducible to the problem of deciding the truth
of existential first-order sentences over the structure (R,+, ·, 0, 1), which is well known to
be decidable in PSPACE [10].1

Conversely, we reduce the decision problem for existential first-order sentences over the
structure (Q,+, ·, 0, 1) to the minimal consistency problem for Q-MWA. In fact it suffices
to consider sentences in the restricted form

∃x1 · · · ∃xn

m∧

i=1

fi(x1, . . . , xn) = 0 , (6.1)

where fi(x1, . . . , xn) =
∑li

j=1 ci,jx
ki,j,1
1 · · · x

ki,j,n
n is a polynomial with rational coefficients.

We can make this simplification without loss of generality since a disjunction of atomic

1To consider this problem within the conventional Turing model, we assume that the set S of input-output
behaviours is still a subset of Σ∗×Q. Of course, the dimension of the smallest MWA consistent with a given
finite set of behaviours S depends on the weight field of the output automaton.
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st t ε

ε 1 0 0
s 0 1 0
st 0 0 1
#i 1 1 0
s#i 0 0 1
st#i 0 0 1
c̄i,j 1 0 0
sc̄i,j 0 ci,j 0
stc̄i,j 0 0 1
x̄k 1 0 0
sx̄k 0 ak 0
stx̄k 0 0 1
t 0 0 0
stt 0 0 0
ss 0 0 0
sts 0 0 0

1

(#i,1)

(c̄i,j ,1)
(x̄k,1)

(#i,1)

(s,1)

(c̄i,j ,ci,j)
(x̄k,ak)

(#i,1)

(t,1)

(#i,1)

(c̄i,j ,1)
(x̄k,1)

(a) (b)

Figure 1: The left figure (a) shows a Hankel-matrix fragment H̃, where i ∈ [m], j ∈ [li],
k ∈ [n]. The right figure (b) shows a graph representation of the automaton A.

formulas f = 0 ∨ g = 0, where f and g are polynomials, can be rewritten to

∃x (x2 − x = 0 ∧ x · f = 0 ∧ (1− x) · g = 0) .

Moreover, the negation of an atomic formula f 6= 0 is equivalent to ∃x (x · f = 1).
Define an alphabet

Σ := {s, t} ∪ {#i, c̄i,j , x̄k : i ∈ [m], j ∈ [li], k ∈ [n]},

including symbols c̄i,j and x̄k for each coefficient ci,j and variable xk, respectively. Over
the alphabet Σ we consider the 3-dimensional Q-MWA A, depicted in Figure 1 (b). The
transitions in this automaton are annotated by label-weight pairs in Σ×Q. Recall that the
weights ci,j are coefficients of the polynomial fi. For each k ∈ [n], the weight ak is a fixed
but arbitrary element of Q.

Define X,Y ⊆ Σ∗ by X = {ε, s, st} and Y = {st, t, ε}. Consider the fragment

H̃ := HX∪XΣ,Y , shown in Figure 1 (a), of the Hankel matrix H of ‖A‖. We know from The-
orem 2.4 that rank (H) ≤ 3. Since rank(HX,Y ) = 3, we have rank (HX,Y ) = rank (H) = 3.
Now, from Remark 2.5 it follows that any 3-dimensional Q-MWA A′ that is consistent with
HX,Y and HXΣ,Y (i.e., consistent with H̃) is equivalent to A.

Now for every i ∈ [m], we encode polynomial fi by the word

wi := #ic̄i,1x̄
ki,1,1
1 · · · x̄

ki,1,n
n #i · · ·#ic̄i,li x̄

ki,li,1
1 · · · x̄

ki,li,n
n #i

over alphabet Σ. Note that wi comprises li ‘blocks’ of symbols, corresponding to the li mono-
mials in fi, with each block enclosed by two #i symbols. From the definition of wi it follows
that ‖A‖(wi) = fi(a1, . . . , an); the details are given below in the proof of Proposition 6.1.

We define a set of weighted words S ⊆ Σ∗ × Q as S := S1 ∪ S2, where S1 is the
set of all pairs (uv, H̃u,v) with u ∈ X ∪ XΣ, v ∈ Y , and uv 6∈ {sx̄kt : k ∈ [n]}, and
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S2 := {(wi, 0) : i ∈ [m]}. That is, S1 specifies all entries in the matrix H̃ except those that
are in row sx̄k and column t.

Any 3-dimensional Q-MWA A′ consistent with S1 is equivalent to an automaton of the
form A for some a1, . . . , an ∈ Q. If A′ is moreover consistent with S2, then fi(a1, . . . , an) = 0
for every i ∈ [m]. From this observation we have the following proposition:

Proposition 6.1. The sample S is consistent with a 3-dimensional Q-MWA if and only if
the sentence (6.1) is true in (Q,+, ·, 0, 1).

Proof. We have already noted that any 3-dimensional Q-MWA consistent with S must be
equivalent to an automaton of the form A in Figure 1 (b) for some a1, . . . , an ∈ Q. However,
such an automaton is consistent with S if and only if it assigns weight 0 to each word wi,
i ∈ [m]. Now, we claim that this is the case if and only if (a1, . . . , an) is a root of fi for
every i ∈ [m], where ak is the weight of the x̄k-labelled self-loop in the middle state, for
every k ∈ [n].

For every i ∈ [m], the word wi has li different accepting runs inA, one for each monomial

in fi. The jth such run, in which the block c̄i,jx̄
ki,j,1
1 · · · x̄

ki,j,n
n is read in the middle state,

has weight ci,ja
ki,j,1
1 · · · a

ki,j,n
n , i.e., the value of monomial ci,jx

ki,j,1
1 · · · x

ki,j,n
n evaluated at

(a1, . . . , an). Thus ‖A‖(wi) = fi(a1, . . . , an).

From Proposition 6.1 we derive the main result of this section:

Theorem 6.2. The minimal consistency problem for Q-MWAs is logspace equivalent to the
decision problem for existential first-order sentences over (Q,+, ·, 0, 1).

7. Conclusions and Future Work

We have looked at the computational complexity of computing minimal multiplicity word
and tree automata from several angles. Specifically, we have analysed the complexity of com-
puting a minimal automaton equivalent to a given input automaton A. We have considered
also the corresponding decision problem, which asks whether there exists an automaton
equivalent to A with a given number of states. Finally, we have considered the minimal
consistency problem, in which the input is a finite set of word-weight pairs rather than a
complete automaton.

Our complexity bounds have drawn connections between automaton minimisation and
longstanding open questions in arithmetic complexity, including the complexity of polyno-
mial identity testing and the decidability of Hilbert’s tenth problem over the rationals, i.e.,
the problem of deciding the truth of existential sentences over the structure (Q,+, ·, 0, 1).

Our algorithmic results exclusively concern automata over the fields of rational or real
numbers, in which weights are allowed to be negative. The minimisation problems consid-
ered here all have natural analogues for the class of probabilistic automata over words and
trees, in which the transition weights are probabilities. Recently, minimisation of proba-
bilistic word automata was shown to be NP-hard [26]. A natural question is whether this
minimisation problem lies in NP, and whether the corresponding problem for tree automata
is even harder. Related to this is the following question: Given a multiplicity (word or tree)
automaton with rational transition weights, need there always be a minimal equivalent
automaton also with rational transition weights?
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We have observed that the minimal consistency problem for word automata over the
reals is in PSPACE, since it is directly reducible to the problem of deciding the truth of
existential first-order sentences over the structure (R,+, ·, 0, 1). For tree automata this re-
duction is exponential in the alphabet rank, and we leave as an open question the complexity
of the minimal consistency problem for tree automata over the reals.

In all cases, we have considered minimising automata with respect to the number of
states. Another natural question is minimisation with respect to the number of transitions.
This is particularly pertinent to the case of tree automata, where the number of transitions
is potentially exponential in the number of states.
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[28] I. Marušić and J. Worrell. Complexity of equivalence and learning for multiplicity tree automata. In
Proceedings of the 39th International Symposium on Mathematical Foundations of Computer Science
(MFCS), Part I, pages 414–425, 2014.

[29] M. Mohri, F. Pereira, and M. Riley. Weighted automata in text and speech processing. In European
Conference on Artificial Intelligence (ECAI), Workshop on Extended Finite State Models of Language,
1996.

[30] A. Paz. Introduction to Probabilistic Automata. Academic Press, 1971.
[31] T. Pheidas. Hilbert’s tenth problem for fields of rational functions over finite fields. Inventiones mathe-

maticae, 103(1):1–8, 1991.
[32] M. P. Schützenberger. On the definition of a family of automata. Information and Control, 4(2–3):245–

270, 1961.
[33] J. T. Schwartz. Fast probabilistic algorithms for verification of polynomial identities. Journal of the

ACM, 27(4):701–717, 1980.
[34] H. Seidl. Deciding equivalence of finite tree automata. SIAM Journal on Computing, 19(3):424–437,

1990.
[35] W.-G. Tzeng. A polynomial-time algorithm for the equivalence of probabilistic automata. SIAM Journal

on Computing, 21(2):216–227, 1992.
[36] R. E. Zippel. Probabilistic algorithms for sparse polynominals. In Proceedings of the International

Symposium on Symbolic and Algebraic Computation (EUROSAM), volume 72 of LNCS, pages 216–226.
Springer, 1979.

This work is licensed under the Creative Commons Attribution-NoDerivs License. To view
a copy of this license, visit http://creativecommons.org/licenses/by-nd/2.0/ or send a
letter to Creative Commons, 171 Second St, Suite 300, San Francisco, CA 94105, USA, or
Eisenacher Strasse 2, 10777 Berlin, Germany


	1. Introduction
	2. Preliminaries
	2.1. Row and Column Spaces
	2.2. Kronecker Product
	2.3. Multiplicity Word Automata
	2.4. Finite Trees
	2.5. Multiplicity Tree Automata

	3. Fundamentals of Minimisation
	3.1. Forward and Backward Space
	3.2. A Minimal Automaton
	3.3. Spanning Sets for the Forward and Backward Spaces

	4. Minimisation Algorithms
	4.1. Minimisation of Multiplicity Tree Automata
	4.2. Minimisation of Multiplicity Word Automata in NC

	5. Decision Problem
	5.1. Lower Bound.
	5.2. Upper Bound.

	6. Minimal Consistent Multiplicity Automaton
	7. Conclusions and Future Work
	Acknowledgements.
	References

