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Abstract. The notion of Schnorr randomness refers to computable reals or computable
functions. We propose a version of Schnorr randomness for subcomputable classes and
characterize it in different ways: by Martin-Löf tests, martingales or measure computable
machines.

1. Introduction

Martin-Löf randomness [Mar66] is the standard notion of randomness for infinite binary
sequences. Its original definition appeals to measure but there exist different characteriza-
tions based on Kolmogorov-Chaitin theory of information [Cha75], [Lev74] or on the theory
of martingales [Sch71a, Sch73].

A Martin-Löf test (written ML test) is a sequence (Gn)n∈N of uniformly computably
enumerable open subsets of {0, 1}N such that, for each n ∈ N, the measure µ(Gn) is ≤ 2−n.
An infinite binary sequence ξ ∈ {0, 1}N is Martin-Löf random if for every ML test (Gn)n∈N,
ξ /∈

⋂

n∈NGn (ξ avoids all “effectively null set”).
Schnorr viewed this notion as too restrictive and proposed to consider only ML tests

(Gn)n∈N such that the sequence (µ(Gn))n∈N is uniformly computable. He also obtained
a characterization in terms of martingales and orders. More recently Downey and Grif-
fiths [DG04] characterized Schnorr’s notion using Kolmogorov complexity for “computable
measure machines” (a prefix-free machine is measure computable if the measure ΩM of the
open set generated by the domain of M is computable).

One thus has (by Schnorr, Downey, Griffiths): for any ξ ∈ {0, 1}N,
ξ is Schnorr random iff for any ML test (Gn)n∈N with

(µ(Gn))n∈N uniformly computable,
ξ /∈

⋂

n∈NGn.
iff for any computable martingale d

and any computable order h,
d(ξ ↾ i) < h(i) almost everywhere.

iff for any computable measure machine M,
there is b ∈ N such that for any i ∈ N

KM (ξ ↾ i) > i− b.
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Our work originated from the following question: “can one recast these results in the
primitive recursive framework or in an even weaker one”?
Schnorr showed that one can restrict to ML tests (Gn)n∈N such that for any n ∈ N, µ(Gn) =
2−n, to define Schnorr’s randomness. Similarly Downey and Griffiths proved that one can
restrict to machines M such that ΩM = 1. Hence the natural amendments do not work
(requiring (µ(Gn))n∈N to be “uniformly primitive recursive” or ΩM to be a “primitive
recursive real”). But for a subcomputable class CCC of functions, one can nevertheless define
a notion of ML-CCC -S(chnorr) test and a notion of measure CCC computable machine (one
focuses on the pace of obtention of the measure).
If in the martingale formulation, we allow all martingales and orders in CCC, the notion will
be too strong and we shall not obtain equivalence with the other characterizations. Let h
be a computable order. Then its inverse Invh (defined as Invh(n) = least k h(k) ≥ n) is
also computable. It is not true anymore for primitive recursive functions. Hence, relatively
to a class CCC of functions, we shall call an order h a true CCC -order if both h and Invh belong
to CCC.

In this article, we shall study the relations between the three following notions: for
ξ ∈ {0, 1}N,

• ξ is ML-CCC -S random iff ξ passes all ML-CCC -S tests.
• ξ is Kolmogorov-CCC -S random iff for any measure CCC computable machine M , there is
b ∈ N such that for any n ∈ N, KM (ξ ↾ n) > n− b.

• ξ is martingale-CCC -S random iff

(

for any martingale d : {0, 1}∗ → Q2 in CCC,

and any true CCC - order h, d(ξ ↾ i) < 2h(i) a.e.

We show that if CCC is the class of primitive recursive functions or the class PSPACEPSPACEPSPACE,
then these three notions coincide.

One can check by using ML-CCC -S tests that (ML) PRIMPRIMPRIM-RECRECREC-S randomness is strictly
weaker than Schnorr randomness. But the martingale approach is better suited to separate
the different notions of randomness as CCC varies among time-complexity classes. We shall
thus rely on the important amount of work centered around the martingale tool and the
associated notions of subcomputable randomness. This is the field of Resource Bounded
Randomness initiated by Lutz and developed by Ambos-Spies, Lutz, Mayodormo, Wang
and other people.
We shall compare our notion of martingale-CCC-S randomness with Lutz [Lut92, Lut90] no-
tion of p-randomness, with Wang’s (PPP,PPP)-S randomness and with Buss, Cenzer and rem-
mel [BCR14] weaker notion of BP-randomness ( [BCR14] results about primitive recursive-
ness have been a strong motivation to us). Wang’s notion is a version of Schnorr randomness
for the class of polynomial time computable functions, the martingales are required to be
in PPP and all orders in PPP are allowed. (By a delaying computation argument) this is the
same as allowing all computable orders. Our concern with the status of the inverse of the
order weakens the notion and enables more variety inside the set of computable sequences.
Building on techniques of Wang and results of Schnorr, we show that one can obtain a
whole hierarchy.

The two following tableaux summarize the situation: CCC randomness is the analog for
the class CCC of computable randomness, martingale-CCC-S randomness is abbreviated to CCC-S
randomness, and CCC-W randomness stands fo weak (Kurz) randomness with regard to the
class CCC. Implications in the tableaux cannot be reversed and in the second tableau, this
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holds even when restricting to the class of computable infinite sequences.

Computable randomness⇒ Schnorr randomness ⇒ weak randomness

⇓ ⇓ ⇓

PRIMPRIMPRIM-RECRECREC randomness⇒PRIMPRIMPRIM-RECRECREC -S randomness⇒PRIMPRIMPRIM-RECRECREC -W randomness

Tableau 1
PRIMPRIMPRIM-RECRECREC randomness ⇒ PRIMPRIMPRIM-RECRECREC -S randomness⇒PRIMPRIMPRIM-RECRECREC -W randomness

⇓ ⇓ ⇓
EXPEXPEXP randomness ⇒ EXPEXPEXP -S randomness ⇒ EXPEXPEXP -W randomness

⇓ ⇓ ⇓

PPP randomness ⇒ PPP -S randomness ⇒ PPP -W randomness

Tableau 2

2. A few classical definitions.

2.1. Some notation. N, Q, Q2, R denote respectively the set of natural, rational, dyadic
rational and real numbers (dyadic rational numbers are of the form m2−n, for m ∈ Z and
n ∈ N).

{0, 1}∗ is the set of finite binary sequences (or strings on {0, 1}) and {0, 1}N is the set
of infinite binary sequences.

• If x is a finite sequence, then |x| represents its length. For an integer i ∈ N, x ↾ i is the
restriction of x onto the set {0, 1, . . . , i− 1}.
We consider the (prefix) partial ordering 4 defined on finite binary sequences by

x 4 y iff x is a prefix of y (that is iff |x| ≤ |y| and y ↾ |x| = x) .

We shall also use the well-ordering 4llex (length-lexicographic ordering):

x 4llex y iff

{

|x| < |y| or

|x| = |y| and x is before y in lexicographic order.

≺ (respectively ≺llex) denotes the corresponding strict ordering.
• Now for α ∈ {0, 1}N and i ∈ N, we also write α ↾ i for the restriction of α onto the set
{0, 1, · · · , i− 1}. If x ∈ {0, 1}∗, the notation x 4 α means α ↾ |x| = x.
If x, y ∈ {0, 1}∗, i ∈ {0, 1}, α ∈ {0, 1}N, we write xy, xi, xα for the corresponding
concatenation.

• Given a finite set X, |X| is the number of elements of X. To avoid confusion, for r ∈ R,
we shall write ‖r‖ to mean the absolute value of r.
The function 〈 , 〉 : N× N → N is the classical polynomial time bijection defined as

〈m,n〉 = m+ (m+ n)(m+ n+ 1)/2, for m,n ∈ N .

Let ( )0, ( )1 : N → N denote the (polynomial time) inverse functions: for i ∈ N,
〈(i)0, (i)1〉 = i.

• Our references in Recursion Theory are [Odi92, Odi99], and in Algorithmic Randomness,
we rely on [DH10] and [Nie09]. We thus write KM for Kolmogorov complexity when
considering a prefix-free Turing machine M (see [DH10, Ch.3.5]).
The terms “recursive” and “computable” have similar meanings.
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• Concerning topology and measure, we consider the classical product topology on {0, 1}N

(see [DH10, Nie09]). If x ∈ {0, 1}∗, then we denote by [x] the basic open set {xα : α ∈
{0, 1}N} and if X ⊆ {0, 1}∗, [X] is the open subset of {0, 1}N generated by X, that is

[X] = {xα : x ∈ X, α ∈ {0, 1}N} .

µ is the uniform measure on {0, 1}N: if x ∈ {0, 1}∗, then µ([x]) = 2−|x|. When computing
measure, we shall always deal with open (and hence measurable) sets.

• Generally, we use lowcase greek letters α, ξ... for infinite binary sequences and lowcase
roman letters x, y... for finite sequences.

2.2. Schnorr Randomness. We recall here the definition of Schnorr randomness and give
three different characterizations (due to Schnorr, Downey and Griffiths). For the definitions
of a “computable real” or of a “computable (real valued) function”, we refer to [DH10, 5.1
and 5.2.1].

Definition 2.1.

(a) A sequence (Gn)n∈N of open subsets of {0, 1}N is a Martin-Löf test (abbreviated as ML
test) if there is a recursively enumerable set X ⊆ N × {0, 1}∗ such that setting, for
n ∈ N, Xn = {x ∈ {0, 1}∗ : (n, x) ∈ X}, one has Gn = [Xn] and µ(Gn) ≤ 2−n.

(b) A sequence ξ ∈ {0, 1}N passes the ML test (Gn)n∈N if ξ /∈
⋂

n∈N Gn (otherwise it fails
the test).

(c) A sequence ξ ∈ {0, 1}N is random if it passes all ML tests.

Schnorr viewed this notion of randomness as too strong and proposed the following:

Definition 2.2 ( Schnorr).

− A Schnorr test is an ML test (Gn)n∈N such that µ(Gn) is uniformly computable in n.
− A sequence ξ ∈ {0, 1}N is Schnorr random if it passes all Schnorr tests.

There is a characterization of Schnorr randomness in terms of martingales. We recall:

Definition 2.3.

(a) A function d : {0, 1}∗ → R+ is a martingale if for any x ∈ {0, 1}∗, d(x0)+d(x1) = 2d(x).
(b) A function h : N → N is an order if it is nondecreasing and unbounded.

Theorem 2.4 ( [Sch71b]). A sequence ξ ∈ {0, 1}N is Schnorr random iff for any computable
martingale d and any computable order h, d(ξ ↾ n) < h(n) a.e. (a.e. stands for “almost
everywhere”).

The last characterization we shall consider in this article is more recent and due to
Downey and Griffiths.

Definition 2.5.

− If M is a Turing machine, then ΩM is the measure µ([dom(M)]).
− A prefix-free machine M is called a computable measure machine if ΩM is a computable

real.

Theorem 2.6 ( [DG04]). A sequence ξ ∈ {0, 1}N is Schnorr random iff for each computable
measure machine M , there is b ∈ N such that for any n, KM (ξ ↾ n) > n− b.
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When trying to extend these definitions to subcomputable classes, one must be cautious.
For instance, the notion of “primitive recursive real” is problematic (see [CSZ07]). We shall
consider Cauchy style definitions (rather than left cut ones) and all the definitions which
have been omitted in this review paragraph, will be provided.

3. Notions of Resource bounded Schnorr randomness.

An important body of concepts and results (now classical) has been obtained by Ambos-
Spies, Ko, Lutz, Mayodormo, Wang and others (see [AM97] for a survey). Our original
motivation came from primitive recursiveness and the article of Buss, Cenzer and Rem-
mel [BCR14]. We shall thus build on all these works to propose here, relatively to a class of
functions, three possible characterizations (inspired from the previous section) of Schnorr
resource bounded randomness: in terms of Martin-Löf tests, Kolmogorov complexity and
martingales. (Depending on the chosen class) we shall study when these different approaches
lead to the same notion. Later in the paper, we shall also compare these definitions with a
different concept proposed by Wang [Wan00].

To motivate our definitions, let us note that some properties are given for free when
dealing with recursive functions. For instance, if f : N → N is recursive and unbounded, its
inverse Inv f (defined by Inv f (n) = least k f(k) ≥ n) is also recursive. It is not true anymore
for primitive recursive functions: there exists a primitive recursive function whose inverse is
the Ackermann function n 7→ A(n, n). Hence our definitions will have to incorporate new
conditions.

3.1. Definitions. We shall consider time-complexity classes CCC of functions of the form:

CCC =
⋃

f∈FC

FDTIME(f(n)) ,

for FC a class with appropriate closure properties of time-constructible functions.
Such classes CCC are:

Definition 3.1.

(1) PPP =
⋃

k∈N FDTIME(nk),

(2) EXPEXPEXP =
⋃

k∈N FDTIME(2n
k
),

(3) Let T : N× N → N be the function recursively defined by

T (0, n) = n

T (k + 1, n) = 2T (k,n).

Then TOWERTOWERTOWER-EXPEXPEXP =
⋃

k∈N FDTIME(T (k, n)).
(4) PRIMPRIMPRIM-RECRECREC is the class or recursively primitive functions.

To view PRIMPRIMPRIM-RECRECREC as a time-complexity class may require some justification: an easy
modification of [Odi99, Thm VIII 8.8]) gives:

Lemma 3.2. A (total) function f is primitive recursive iff it can be computed by a Turing
machine in time O(g(n)), for g primitive recursive and time-constructible.

For example, if CCC=PPP, then we take for FC the class of polynomial functions with
coefficients in N; if CCC=PRIMPRIMPRIM-RECRECREC, then we consider for FC the class of primitive recursive
functions which are time-constructible.
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Definition 3.3. If CCC =
⋃

f∈FC
FDTIME(f(n)), with FC as above, then let EXP(C)EXP(C)EXP(C)

=
⋃

f∈FC
FDTIME(2f(n)).

For instance, EXPEXPEXP = EXPEXPEXP(PPP) and CCC = EXPEXPEXP(CCC) when CCC is TOWERTOWERTOWER-EXPEXPEXP or
PRIMPRIMPRIM-RECRECREC (all this will allow us to state our results in a unified way). We shall also
consider the classical space related class:

Definition 3.4. PSPACEPSPACEPSPACE =
⋃

k∈N FSPACE(nk).

When dealing with functions f : N → N, martingales d : {0, 1}∗ → Q2 or approxi-
mations of R valued martingales g : {0, 1}∗ × N → Q2, to decide whether these functions
belong to one of the above classes CCC, we must fix a representation of the different inputs
and outputs, and hence a measurement of their size.

• integers will be under unary representation: n ∈ N is thus viewed as 1n and its size is n,
• strings x ∈ {0, 1}∗ have classically size |x|,
• there is a constant θ ∈ N such that dyadic rational numbers of the form m2−n, for m ∈ N

and n ∈ N, are (reasonably) coded by a string in {0, 1}∗ of length ≤ θ(log(m) + n)

To introduce subcomputable Martin-Löf tests, let us state a few definitions. We often
identify a Turing machine M with the (partial) recursive function it computes. We write
M(x) ↓ to mean that the machine M halts on input x (yielding as output whatever is
written on a dedicated tape).

Definition 3.5.

(a) Let M be a Turing machine. Then for t ∈ N, x, y ∈ {0, 1}∗, we set

− Mt(x) = y iff (
M(x) ↓ and on input x, M
outputs y in at most t steps.

− M space
t (x) = y iff (

M(x) ↓ and on input x, M
outputs y having used at most t cells (t ≥ |x|, |y|).

(b) Given a recursively enumerable set X ⊆ N × {0, 1}∗ and a machine M such that
X = dom(M), we set for m, t ∈ N,
− Xm = {x ∈ {0, 1}∗ : (m,x) ∈ X} = {x ∈ {0, 1}∗ : M(m,x) ↓}
− XM

m,t = {x ∈ {0, 1}∗ : (m,x) ∈ dom(Mt)},

− XM,space
m,t = {x ∈ {0, 1}∗ : (m,x) ∈ dom(M space

t )}.

Let (Gn)n∈N be a Schnorr test (Definition 2.2): the sequence (µ(Gn))n∈N is thus uniformly
computable. This implies the existence of a computable function F : N×N → Q2 such that
for any i, n ∈ N, ‖µ(Gn)− F (n, i)‖ ≤ 2−i.

Hence a natural attempt to extend the notion of ML Schnorr test to the primitive
recursive context would be to require F to be primitive recursive and to consider as random,
infinite sequences which pass all such tests . This is doomed:

Theorem 3.6 ( [Sch71b]). Let (Gn)n∈N be a Schnorr test. Then there exists a Schnorr
test (On)n∈N such that for any n, µ(On) = 2−n and

⋂

n∈NGn ⊆
⋂

n∈NOn.

Hence ML tests (Gn)n∈N with µ(On) = 2−n, for n ∈ N, suffice to define Schnorr randomness.
Another try consists in noting (it is implicit in several classical proofs) that if (Gn)n∈N

is a Schnorr test - associated with X ⊆ N × {0, 1}∗ and a machine M - then using the
approximating function F above, one can check the existence of a computable function
f : N× N → N such that
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• for any n, i ∈ N, µ([Xn])− µ([XM
n,f(n,i)]) ≤ 2−i.

We could thus require f to be primitive recursive and consider the following definition:

Definition 3.7.

− Let CCC be one of our time-complexity classes. An ML test (Gn)n∈N is called an ML-CCC -S
test if there exist a recursively enumerable set X ⊆ N×{0, 1}∗ associated with a machine
M such that X = dom(M) and a function f : N → N in CCC , called the controlling
function, such that for any m, i ∈ N,
◦ Gm = [Xm],
◦ µ([Xm])− µ([XM

m,f(m+i))]) ≤ 2−i

− For CCC = PSPACEPSPACEPSPACE, we require f : N → N to be in PSPACEPSPACEPSPACE and to satisfy for any

m, i ∈ N, µ([Xm])− µ([XM,space
m,f(m+i)]) ≤ 2−i

(The “S” in ML-CCC -S-test stands for “Schnorr”)
Concerning an extension of the Downey-Griffiths characterization, we could restrict to

prefix-free machines M such that ΩM is a primitive recursive real. But again, this does
not produce a new notion since by [DG04], to characterize Schnorr randomness, one can
restrict to machines N with ΩN = 1. Hence we proceed as in the previous definition.

Definition 3.8. Given a prefix-free machine M and t ∈ N, we set
ΩMt = µ([dom(Mt)]) and ΩMspace

t
= µ([dom(M space

t )])).

− For CCC one of our time-complexity classes, a prefix-free machine M is termed “measure
CCC computable” if there is a function g : N → N in CCC, (also) called the controlling
function, such that for any i ∈ N, ΩM − ΩMg(i)

≤ 2−i.

− If CCC =PSPACEPSPACEPSPACE, we require the existence of g in PSPACEPSPACEPSPACE such that ΩM−ΩMspace
g(i)

≤ 2−i.

Remark 3.9.

− Given CCC a time complexity-class, since integers are under unary representation, one
gets the same notion of test or of measure CCC -computability by requiring the controlling
function to be in CCC or in FC .

− Similarly for PSPACEPSPACEPSPACE , one can indifferently require the controlling function to be a
polynomial function (with coefficients in N), a function in PPP or a function in PSPACEPSPACEPSPACE.

As mentioned earlier, part(ii) of the following definition is redundant in the recursive case:

Definition 3.10.

( i ) Given an unbounded function f : N → N, one defines the “inverse” of f as follows: for
n ∈ N, Invf (n) = least k s.t. f(k) ≥ n.

(ii) Let CCC be one of our complexity classes, an order h is a true CCC -order if both h and
Invh belong to CCC.

In the subcomputable framework, to define martingale related randomness, we shall re-
strict to Q2-valued martingales (this is not absolutely necessary, one can consider R-valued
martingales which are CCC - approximable, as does Lutz [Lut92] for CCC=PPP ).

We now state the respective definitions of CCC -Schnorr randomness.
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Definition 3.11. Let CCC be one of our complexity classes and let ξ ∈ {0, 1}N.

(a) ξ is ML-CCC -S random iff ξ passes all ML-CCC -S tests.
(b) ξ is Kolmogorov-CCC -S random iff for any measure CCC computable machine M , there

is b ∈ N such that for any n ∈ N, KM (ξ ↾ n) > n− b.

(c) ξ is martingale-CCC -S random iff

(

for any martingale d : {0, 1}∗ → Q2 in CCC,

and any true CCC -order h, d(ξ ↾ i) < 2h(i) a.e.

Remark 3.12. If CCC is TOWERTOWERTOWER-EXPEXPEXP or PRIMPRIMPRIM-RECRECREC, then the condition “d(ξ ↾ i) <
2h(i) a.e.” gives the same notion of randomness as the usual one “d(ξ ↾ i) < h(i) a.e.”.

We shall first study the relation between Martin-Löf and Kolmogorov complexity notions of
randomness, and later the link between Martin-Löf and martingale notions of randomness.

3.2. The relation between the Martin-Löf and the Kolmogorov complexity no-
tions. In our definition of ML-CCC - S tests, we did not require the generating sets to be
prefix-free. To obtain this in a uniform way, we shall resort to the classical argument show-
ing that a recursively enumerable generating set can be replaced by a recursive prefix-free
one (see [Nie09, 1.8.26]). We propose here a quadratic time algorithm (or linear space)
algorithm yielding the new generating set.

Claim 3.13. Let X ⊆ N×{0, 1}∗ and let M be a machine such that dom(M) = X. Then
one can define a set Y ⊆ N× {0, 1}∗ and a machine N such that:

(a) Y = {(n, x) ∈ N× {0, 1}∗ : N(n, x) ↓} and there is a constant d ∈ N such that
for any (n, x), N(n, x) ↓ ⇔ N on input (n, x) halts in at most d(n+ |x|)2 steps.

(b) Setting for n, t ∈ N,

(

Yn =
{

x ∈ {0, 1}∗ : N(n, x) ↓
}

and
Yn(t) =

{

x ∈ {0, 1}∗ : |x| = t and x ∈ Yn

}

,

one has [XM
n,t] = [Yn(t)].

(c) Yn =
⋃

s∈N Yn(s) is prefix free.

(d) For any n, s ∈ N, [Xn] = [Yn] and [XM
n,s] ⊆ [Y N

n,d(n+s)2 ].

Proof. (Sketch)

(a) Let us consider the following algorithm for the machine N : on input (n, x)
(1) if there is y 4 x such that y ∈ XM

n,|x|−1, then N rejects the input (may loop

indefinitely),
(2) otherwise (2.1) if there is y 4 x such that y ∈ XM

n,|x|, then N halts.

(2.2) otherwise, N rejects (n, x).
If N halts on an input, it does so in quadratic time. Let us set Y = dom(N).

(b) One can check by induction on s ∈ N, [XM
n,s] ⊆ [Y N

n (s)].

The rest follows.

Concerning the class PSPACEPSPACEPSPACE , we note that if we replace XM
n,t in the above algorithm by

XM,space
n,t , the algorithm requires linear space. We thus get:

Claim 3.14. Under the same hypotheses as in the previous claim, we obtain Y ⊆ N×{0, 1}∗

and a constant d ∈ N such that for any n, s ∈ N and

• [Xn] = [Yn], Yn prefix-free and

• [XM,space
n,s ] ⊆ [Y N,space

n,d(n+s)].
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Remark 3.15.

(1) As a consequence of these two claims, when considering our complexity class CCC, in
the definition of ML-CCC -S tests (Gn)n∈N (def 3.7), we shall assume the generating sets
Xn ⊆ {0, 1}∗, for n ∈ N, to be prefix-free.

(2) Let us also note that if the controlling function f : N → N is in CCC, then the function

g : N → N defined recursively by

{

- g(0) = f(0),
- g(n + 1) = max{g(n) + 1, f(n+ 1)}

is also in CCC (for any n ∈ N, g(n) ≤ max{f(m) : m ≤ n}+ n) and since f ≤ g, it also
satisfies for any n, i ∈ N, µ([Xn]) − µ([XM

n,g(n+i)]) ≤ 2−i. Hence we shall assume the

controlling function to be strictly increasing.
(3) This also applies to the controlling function in the definition of the measure CCC com-

putable machine.

Following the notation in [Nie09, 3.2.6], we recall:

Definition 3.16. Given a prefix-free Turing machine M and b ∈ N, one considers the
subset RM

b of {0, 1}N defined as:

RM
b = [{x ∈ {0, 1}∗ : KM (x) ≤ |x| − b}] = {α ∈ {0, 1}N : ∃k KM (α ↾ k) ≤ k − b}.

We shall show:

Proposition 3.17.

(a) Let CCC be one of our time-complexity classes and let (Gm)m∈N be an ML-CCC -S test.
Then there exists a measure EXPEXPEXP(CCC) -computable machine M such that

⋂

m∈N

Gm ⊆
⋂

b∈N

RM
b

(b) If (Gm)m∈N is an ML-PSPACEPSPACEPSPACE -S test, then there is a measure PSPACEPSPACEPSPACE computable
machine M such that the above inclusion holds.

We shall push classical arguments as far as possible (see [Nie09, 3.5.18]). But a blind
application of the Kraft-Chaitin theorem will not suffice to produce the adequate measure
machine M (we would only get ΩM rightly approximable and we need more control than
that). Hence after this exploration, we shall define a new goal and a strategy to reach it.

Proof.

(a) Let CCC be one of our time-complexity classes and let (Gn)n∈N be an ML-CCC -S test.
(By replacing (Gn)n∈N by (G2n)n∈N, the controlling function f by n 7→ f(2n), and using
the inclusion

⋂

n∈NGn ⊆
⋂

n∈NG2n) we can assume there exist X ⊆ N × {0, 1}∗

associated with a machine N , and a strictly increasing function f in CCC such that for
any n, i ∈ N,
( i ) Xn = {x ∈ {0, 1}∗ : (n, x) ∈ X} = {x ∈ {0, 1}∗ : N(n, x) ↓} is prefix-free
(ii) Gn = [Xn] and µ(Gn) ≤ 2−2n

(iii) µ([Xn])− µ([XN
n,f(n+i)]) ≤ 2−i.

Let us consider the bounded request set

L = {(|x| −m+ 1, x) : x ∈ Xm}. (3.1)

Its weight γL =
∑

(m,x)∈X 2−(|x|−m+1) is ≤ 1 by (ii).

Let us apply the Kraft-Chaitin theorem (see [Nie09, 2.2.17], [DH10, 3.6.1]) to L (start-
ing with an effective enumeration of X and hence of L) to see how far it can bring us:
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there is machine M such that the following properties hold:






















- M is prefix-free,
- ΩM = γL,
- for every (m,x) ∈ X, there is a unique w(m,x) ∈ {0, 1}∗ such that

M(w(m,x)) = x and |w(m,x)| = |x| −m+ 1,
- dom(M) = {w(m,x) : x ∈ Xm}.

(3.2)

Let us check that ΩM can be approximated by a sequence s : N → Q2 in EXPEXPEXP(CCC),
that is, for any r ∈ N, one has ‖ΩM − s(r)‖ ≤ 2−r. This will not suffice, but it may
give us some insight on how to replace s(r) by ΩMh(r)

, for h in EXPEXPEXP(CCC).

One has γL = ΩM =
∑

(m,x)∈X 2−(|x|−m+1) =
∑

m

∑

x∈Xm
2−(|x|−m+1).

For r ∈ N, let us set γr =
∑

m≤r

∑

x∈XN
m,f(3r+1)

2−(|x|−m+1). Let r be fixed.

• If m ≤ r, then f(m+ 2r + 1) ≤ f(3r + 1). Hence for m ≤ r
µ([Xm \XN

m,f(3r+1)]) = µ([Xm])− µ([XN
m,f(3r+1)]) ≤ 2−(2r+1).

The first equality holds because Xm is prefix-free.
• We deduce:

γL − γr =
∑

m

∑

x∈Xm

2−(|x|−m+1) −
∑

m≤r

∑

x∈Xm,f(3r+1)

2−(|x|−m+1)

≤
∑

m≤r

∑

x∈Xm\Xm,f(3r+1)

2−(|x|−m+1) +
∑

m>r

∑

x∈Xm

2−(|x|−m+1)

≤
∑

m≤r

2m−12−(2r+1) +
∑

m>r

2m−1µ(Gm)

≤ 2−r.

(3.3)

We note that the function ϕ : N → Q2
r 7→ γr

belongs to EXPEXPEXP(CCC) (for all z such that

|z| ≤ f(3r + 1), we have to check whether z ∈ XN
m,f(3r+1)).

Also by the properties of (3.2), for r ∈ N, one has:

γr =
∑

m≤r

∑

x∈Xm,f(3r+1)

2−|w(m,x)|. (3.4)

This suggests the following claim (inside the proof of Proposition 3.17, we use a local
numbering with letters of definitions and claims):

Claim A. Let M be a machine satisfying the properties of (3.2) and let h : N → N be a
function such that for any r ∈ N,

{

w(m,x) : m ≤ r, x ∈ XN
m,f(3r+1)

}

⊆ dom(Mh(r)).

Then for any r ∈ N, ΩM − ΩMh(r)
≤ 2−r.

Proof. For r ∈ N, the inclusion
{

w(m,x) : m ≤ r, x ∈ XN
m,f(3r+1)

}

⊆ dom(Mh(r)) and

( 3.4) imply
γr ≤ µ([dom(Mh(r))]) ≤ ΩM = γL.

Hence by ( 3.3), ΩM − ΩMh(r)
≤ γL − γr ≤ 2−r.
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The strategy to obtain Proposition 3.17(a) (induced by the previous claim):
(a.1) We define a (c.e) well-ordering ⊑X on X.
(a.2) We then develop a proof of Kraft-Chaitin theorem by ⊑X-induction, in order to
obtain a function w : X → {0, 1}∗ and a machine M as in (3.2) (sending w(m,x) to
x).
(a.3) A sufficient condition to satisfy the hypotheses of Claim A, is that M works in
EXPEXPEXP(CCC) time (on successful computations). To define such an algorithm forM , the idea
is to stratify X as

⋃

r∈NX(r) so that X(r) is a finite initial segment of X for ⊑X and
such that for any
(m,x) ∈ X, if |w(m,x)| ≤ r, then (m,x) ∈ X(r). Hence for any w ∈ {0, 1}∗ such
that |w| ≤ r, to check whether w = w(m,x) for some (m,x) ∈ X (and thus to send w
to x), we shall only have to carry out the ⊑X-induction process on X(r).
(a.4) We finally define an algorithm for M based on the previous remark which satisfies
the time bounds.

(a.1) The definition of the well-ordering:

Definition B.
• Let ⊑ be the ordering on N×{0, 1}∗ defined as follows: for m,m′ ∈ N, x, x′ ∈ {0, 1}∗

(m,x) ⊑ (m′, x′) iff

{

x ≺llex x′ or

x = x′ and m ≤ m′.

• Let ⊑X denote the restriction of ⊑ on X.

Claim C. For any (m,x) ∈ X, the set {(m′, x′) ∈ X : (m′, x′) ⊑X (m,x)} is finite.
Hence every element of X - except the least one - admits an immediate predecessor for
⊑X .

Proof. Let (m,x), (m′, x′) ∈ X be such that (m′, x′) ⊑ (m,x).

Necessarily |x′| ≤ |x|. Since x′ ∈ Xm′ , we have [x′] ⊆ [Xm′ ]. Hence 2−|x′| ≤
µ([Xm′ ]) ≤ 2−2m′

.
Therefore 2m′ ≤ |x′| ≤ |x|.

We then set:

Definition D.
• For (m,x) ∈ N× {0, 1}∗, let rm,x = |x| −m+ 1.
• For (m,x) ∈ X, let pred(m,x) be the immediate predecessor of (m,x) for ⊑X ; if
(m0, x0) is the least element of X for ⊑X , we set pred(m0, x0) = (∅,−1).

• For a set Z, let Pfinite(Z) be the collection of finite subsets of Z.

(a.2) The inductive construction ( [Nie09, 2.2.17] of Kraft-Chaitin Theorem
based on ⊑X :
We define by induction on ⊑X the following functions:





R : X → Pfinite({0, 1}
∗)

w : X → {0, 1}∗

z : X → {0, 1}∗.

− R(∅,−1) = {∅}.
− At step (m,x) ∈ X, we suppose R(pred(m,x)) is known and define z(m,x), w(m,x)

and R(m,x):
( i ) Let z(m,x) be the longest string in R(pred(m,x)) of length ≤ rm,x.



12 C. SURESON

(ii) Let w(m,x) be the leftmost string (least for lexicographic order) of length rm,x

extending z(m,x) (i.e. w(m,x) = z(m,x)0rm,x−|z(m,x)|)
(iii) One sets R(m,x) = (R(pred(m,x)) \{z(m,x)})

⋃

{z(m,x)0i1 : 0 ≤ i < rm,x−
|z(m,x)|}.

By classical arguments [Nie09, 2.2.17], the construction can be carried out and is ef-
fective (by the proof of Claim C and by Claim F, there exists an effective increasing -
with respect to ⊑X - enumeration of X). Hence with w : X → {0, 1}∗ defined as above,
there is a machine M satisfying Properties (3.2) which for (m,x) ∈ X sends w(m,x)
to x.
Instead of justifying the assertion about the existence of an effective increasing enumer-
ation of X, let us define now the stratification of X which will allow us to exhibit an
algorithm for M with the appropriate time bounds.

(a.3) The stratification of X:

Definition E. For r ∈ N, let X(r) =
{

(m,x) : x ∈ XN
m,f(3r+1), |x| ≤ 2r, m ≤ r

}

.

The last requirement “m ≤ r” is redundant, we left it to stress the fact that X(r) is
finite. Let us note the following:

Claim F. If (m,x) ∈ X, then
(a) |x| ≤ 2rm,x, 2m ≤ |x| and m ≤ rm,x,
(b) x ∈ XN

m,f(3rm,x+1).

Proof. Let (m,x) ∈ X.
(a) As we noted in the proof of Claim C, x ∈ Xm implies |x| ≥ 2m. Hence we deduce

rm,x = |x| −m+ 1 ≥ m+ 1 and rm,x ≥ |x| − (|x|/2) + 1 ≥ |x|/2.

(b) Since µ([Xm]) − µ([XN
m,f(m+|x|+1)]) ≤ 2−(|x|+1), necessarily x ∈ XN

m,f(m+|x|+1).

Now by (a), m ≤ rm,x, |x| ≤ 2rm,x, hence since f increasing, x ∈ XN
m,f(3rm,x+1).

The interest of the stratification of X appears in the following:

Claim G.
(a) Let r ∈ N. Then (X(r),⊑X ) is a finite initial segment of (X,⊑).
(b) If r ∈ N, (m,x) ∈ X and rm,x ≤ r, then (m,x) ∈ X(r).

Proof.
(a) Let (m′, x′), (m,x) be both in X, (m′, x′) ⊑ (m,x) and (m,x) ∈ X(r).

Necessarily |x′| ≤ |x|. Hence |x′| ≤ 2r. Also

(m′, x′) ∈ X ⇒

(

2m′ ≤ |x′|
x′ ∈ Xm′,f(m′+|x′|+1)

We deduce m′ ≤ r and x′ ∈ Xm′,f(3r+1). Therefore (m′, x′) ∈ X(r).

(b) Let (m,x) ∈ X and rm,x ≤ r. Then by Claim F(b), x ∈ XN
m,f(3r+1).

(a.4) The algorithm for M :
The proof of the Kraft-Chaitin theorem yields the following:

Claim H. Let r ≥ 1.
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(a) For any (m,x) ∈ X(r), R(m,x) contains at most 2r+2 strings which are of length
≤ 2r + 1. Hence there is a constant d ∈ N such that R(m,x) can be coded
(according to increasing length) by a string ρ(m,x) of length ≤ dr2.

(b) Also if (m′, x′) = pred(m,x) with (m′, x′), (m,x) ∈ X(r), there is an algorithm
requiring O(r2) steps which produces ρ(m,x) from ρ(m′, x′).

Proof. We use the classical fact that all strings have different length, adding the bound
information.
(a) Let r ∈ N be fixed. One argues by ⊑X - induction: let (m,x) ∈ X(r). We assume

that all strings in R(pred(m,x)) have different length ≤ 2r + 1.
By construction (requirements (i),(iii)), we obtain:
• R(m,x) \R(pred(m,x)) ⊆

{

z ∈ {0, 1}∗ : |z(m,x)| < |z| ≤ rm,x

}

,

• R(pred(m,x)) ∩
{

z ∈ {0, 1}∗ : |z(m,x)| < |z| ≤ rm,x

}

= ∅,
• All strings in R(m,x) \R(pred(m,x)) have different length ≤ rm,x.
Now rm,x = |x| −m+ 1 ≤ |x|+ 1 ≤ 2r + 1.
Hence by induction hypothesis, all elements in R(m,x) have different length ≤
2r + 1.

(b) Also if the elements of R(pred(m,x)) are enumerated according to increasing
length, it takes O(r2) steps to build R(m,x) enumerating its elements according
to increasing length.

By Claim G, we can replace the induction on ⊑X by an induction on ⊑X(r):

An algorithm for M .
• For r ∈ N, let A(r) =

{

(m,x) ∈ N × {0, 1}∗ : m ≤ r, |x| ≤ 2r
}

. We shall
enumerate A(r) according to ⊑. Let ρ0 code the set {∅}; ρ will be a variable whose
value is ρ(m,x) where (m,x) is the last element of X(r) which has been treated.

• On input w ∈ {0, 1}∗ such that |w| = r,
− set ρ := ρ0,
− (m,x) ∈ A(r).

Case 1 : if x ∈ XN
m,f(3r+1), then from ρ (playing the role of R(pred(m,x))), compute

the values w(m,x) and ρ(m,x), and set ρ := ρ(m,x).
Case 1.1 : if w(m,x) = w, then output x and stop the machine.
Case 1.2 : otherwise
Case 1.2.1 : if (m,x) = (r, 12r−1) (the maximum of A(r)), then loop for ever,
Case 1.2.2 : otherwise compute the successor (m′, x′) of (m,x) for ⊑ in A(r) and
go to step (m′, x′).
Case 2 : if x /∈ XN

m,f(3r+1),

Case 2.1 : if (m,x) = (r, 12r−1), then loop for ever,
Case 2.2 : otherwise, compute the successor (m′, x′) of (m,x) for ⊑ in A(r) and
go to step (m′, x′).

Let CCC =
⋃

g∈FC
FDTIME(g(n)) be one of our time-complexity classes. Since the integers

are under unary representation, f(n) = O(f ′(n)) for some f ′ ∈ FC . Using Claim H,
one can then show the existence of a constant c0 and of a function g ∈ FC so that, for
any |w| = r, any (m,x) ∈ A(r), if step (m,x) is finite, it takes at most c0g(r) steps to
be completed.

Now, for r ∈ N, |A(r)| ≤ 22r+1(r + 1).
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The time bound: hence there exists l ∈ CCC such that any successful computation
of M on a finite sequence w with |w| = r, takes at most l(r)23r steps. Therefore

dom(M) ∩ {w ∈ {0, 1}∗ : |w| ≤ r} =
{

w(m,x) : (m,x) ∈ X and rm,x ≤ r
}

⊆ dom(Ml(r)23r ). (3.5)

Our goal is to fulfill the conditions of Claim A, that is to obtain a function h in EXPEXPEXP(CCC)
so that:

{

w(m,x) : m ≤ r, x ∈ Xm,f(3r+1)

}

⊆ dom(Mh(r)).

If x ∈ Xm,f(3r+1), then |x| ≤ f(3r + 1). Hence rm,x = |x| − m + 1 ≤ f(3r + 1) + 1.
Therefore
{

w(m,x) : m ≤ r, x ∈ XN
m,f(3r+1)

}

⊆
{

w(m,x) :(m,x)∈X and rm,x≤f(3r + 1)+1
}

⊆ dom(Ml(f(3r+1)+1)23(f(3r+1)+1)

}

(by ( 3.5)).

Let us define h by h(r) = l(f(3r + 1) + 1)23(f(3r+1)+1) , for r ∈ N. Then h belongs
to EXPEXPEXP(CCC), and by Claim A, ΩM − ΩMh(r)

≤ 2−r. Hence M is a measure EXPEXPEXP(CCC)
computable machine.

One finally concludes the proof of Proposition 3.17(a) by classical arguments:
Let m ∈ N . If x ∈ Xm, then M(w(m,x)) = x. Hence KM (x) ≤ |w(m,x)| =
|x| −m+ 1.
Therefore, for m ≥ 1, Gm = [Xm] ⊆ RM

m−1.

(b) Let now CCC = PSPACEPSPACEPSPACE.
We assume ([Xn])n∈N is an ML- PSPACEPSPACEPSPACE -S test (defined from a set X associated
with a machine N). By Remark 3.9, let f be a polynomial function such that for any

n, i ∈ N, Xn is prefix-free, µ([Xn]) ≤ 2−2n and µ([Xn])− µ([XN,space
n,f(n+i)]) ≤ 2−i.

Let us start from the bounded request set defined as above, our goal is to define a
machine M satisfying properties (3.2) and a polynomial function h such that, for any
r ∈ N,

{

w(m,x) : m ≤ r, x ∈ XN,space
m,f(3r+1)

}

⊆ dom(M space
h(r) ). (3.6)

If we replace XN
m,t by XN,space

m,t and Mt by M space
t in the previous definitions and

claims, the transposed definitions and claims remain valid. Now we must define an

algorithm for M with “x ∈ XN,space
m,f(3r+1)” in place of “x ∈ XN

m,f(3r+1)”.

- We use the fact that there is a constant d ∈ N such that for any m, t ∈ N, XN,space
m,t ⊆

XN
m,2dt

. Hence using 2df(3r+1) (under binary representation) as a time-counter, we can

check in space k(f(3r + 1)), for some constant k, whether “x ∈ XN,space
m,f(3r+1)”.

- Also we note that in the previous algorithm, in checking successively for all (m,x) ∈
A(r) whether w(m,x) = w, we needed only to keep track of the value ρ(m,x), for the
last browsed (m,x).

Hence we can define an algorithm for M such that for some polynomial function g,
any successful computation of M on w with |w| = r requires at most g(r) cells. Let us
set, for r ∈ N, h(r) = g(f(3r + 1) + 1), h satisfies ( 3.6).

One concludes by the equivalent of Claim A for space, that M is a measure PSPACEPSPACEPSPACE
computable machine, and as above that for m ≥ 1, Gm = [Xm] ⊆ RM

m−1.
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This concludes the proof of Proposition 3.17.

One obtains the opposite direction as an easy generalization of the classical case.

Proposition 3.18.

(a) Let CCC be one of our time-complexity classes. If M is a measure CCC computable machine,
then (RM

b )b∈N (Definition 3.16) is an ML- EXPEXPEXP(CCC) -S test.

(b) If M is a measure PSPACEPSPACEPSPACE computable machine, then (RM
b )b∈N is an ML- PSPACEPSPACEPSPACE

-S test.

Proof. We refer here to [Nie09, 3.5.14, 3.5.18].

(a) Let M be a prefix-free machine and let g ∈ CCC be strictly increasing and such that, for
any i ∈ N, ΩM − ΩMg(i)

≤ 2−i. As in [Nie09, 3.5.15], one shows:

Claim 3.19. For any x ∈ {0, 1}∗, b ∈ N, KM (x) ≤ |x| − b ⇔ KMg(|x|)
(x) ≤ |x| − b.

Let X =
{

(b, x) ∈ N×{0, 1}∗ : KM (x) ≤ |x| − b
}

. We consider the machine N which
on input (b, x) tests for each y ∈ {0, 1}∗ such that |y| ≤ |x| − b whether Mg(|x|)(y) = x.
If there is such a y, N halts, otherwise it diverges.
Then by Claim 3.19, N(b, x) ↓ ⇔ (b, x) ∈ X. For b ∈ N, one has RM

b = [Xb] and

classically µ([Xb]) ≤ 2−b.

Claim 3.20. ([Xb])b∈N is an ML-EXPEXPEXP(CCC)-S test

Proof. (Sketch refering to [Nie09, 3.5.18]).
By definition of the machine N , there exists an increasing function f in CCC such that if
N halts on (b, x), it does so in at most 2|x|f(|x|+ b) steps. Hence

Xb ∩
{

x ∈ {0, 1}∗ : |x| ≤ m
}

⊆ XN
b,2mf(m+b).

Let h ∈ EXPEXPEXP(CCC) be such that h(r) = 2g(r)f(g(r) + r). Then
Xb ∩

{

x ∈ {0, 1}∗ : |x| ≤ g(m)
}

⊆ XN
b,h(m+b).

Since M(σ) = x and |x| > g(m) imply σ /∈ dom(Mg(m)), one then argues classically
to deduce

µ([Xb])− µ([XN
b,h(m+b)]) ≤ 2−b(ΩM − ΩMg(m)

) ≤ 2−m .

Let now CCC be PSPACEPSPACEPSPACE. We suppose M is a prefix-free machine, g is a polynomial
function such that for any i ∈ N, ΩM − ΩMspace

g(i)
≤ 2−i.

The set X is defined as in the time-complexity case, but in the rest of the argument,
we replace Mt by M space

t . Claim 3.19 can be transposed. On input (b, x), using a time-
counter as previously, the machine N tests in space p(|x|+b), for a polynomial function
p, whether there exists |y| ≤ |x|−b such that M space

g(|x|)(y) = x. Setting h(r) = p(g(r)+r),

one concludes as above that µ([Xb])−µ([XN,space
b,h(b+m)]) ≤ 2−m. This concludes the proof

of Proposition 3.18.

From Propositions 3.17 and 3.18, we deduce:

Theorem 3.21.

(a) Let CCC be one of our time complexity classes. Then for any ξ ∈ {0, 1}N,
• ξ is ML-EXPEXPEXP(CCC) -S random ⇒ ξ is Kolmogorov-CCC -S random.
• ξ is Kolmogorov-EXPEXPEXP(CCC) -S random ⇒ ξ is ML-CCC -S random.
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(b) Let CCC be the class PSPACEPSPACEPSPACE, TOWERTOWERTOWER-EXPEXPEXP or PRIMPRIMPRIM-RECRECREC. Then for any ξ ∈ {0, 1}N,
ξ is ML-CCC -S random ⇔ ξ is Kolmogorov-CCC -S random.

3.3. The relation between the Martin-Löf and the martingale notions. Let us deal
now with the notion of randomness associated with martingales and orders. We refer to the
notion of “inverse” given in Definition 3.10. As a way to obtain true CCC orders, let us note:

Claim 3.22.

(a) If f is an order, then Invf is also an order and for i ≥ 1, InvInvf (i) = f(i− 1) + 1.
(b) If f is a strictly increasing function in the class CCC , where CCC is one of our complexity

classes, then Invf is a true CCC order.

Proof.

(a) Let f be an order. Then for n ∈ N, Invf (n + 1) =
(

least k f(k) ≥ n + 1
)

≥
(

least k f(k) ≥ n)
)

= Invf (n).
For i ∈ N, f(i) < f(i) + 1, hence Invf (f(i) + 1) > i. Therefore Invf is unbounded.
We deduce that Invf is an order.
Now if h = Invf , let us compute Invh(i), for i ≥ 1. We have the equivalences:

h(k) ≥ i ⇔ (least n f(n) ≥ k) ≥ i

⇔ f(i− 1) < k.

Therefore, if i ≥ 1, then Invh(i) = f(i− 1) + 1.

(b) Let f be strictly increasing in CCC. We deduce that for n ∈ N, f(n) ≥ n. Hence
Invf (n) = least k ≤ n f(k) ≥ n. This implies that given our choice of classes CCC, Invf
is also in CCC. By (a), Invf is an order, and InvInvf is in CCC. Hence Invf is a true CCC
order.

We propose now a result which will be useful in the next section. As an immediate conse-
quence, it shows that when CCC is PSPACEPSPACEPSPACE, requiring the functions from N to N - especially
orders - to be in PPP or in PSPACEPSPACEPSPACE yields the same notion of randomness.

Claim 3.23.

(a) Let CCC be one of our classes and let f be a true CCC order. Then there exists a strictly
increasing function g in CCC such that Invg(n) ≤ f(n) a.e.

(b) Let now f be a true PSPACEPSPACEPSPACE order. Then there is a true PPP order h such that for any
n ∈ N, h(n) ≤ f(n).

Proof.

(a) Let f be a true CCC order. We consider the function f ′ defined by f ′(i) = f(i+ 1) .− 1.
Then f ′ is an order in CCC. Also for n > 0, we have:

Invf ′(n) = least k (f(k + 1)− 1 ≥ n) = Invf (n+ 1) .− 1.
Hence Invf ′ is a true CCC order.

Let us define inductively the function g:
(

g(0) = invf ′(0) = 0
g(n + 1) = max{Invf ′(n+ 1), g(n) + 1}.

For all our classes CCC, g is in CCC, it is strictly increasing and satisfies g ≥ Invf ′ . Hence
by definition of Inv, Invg ≤ InvInvf ′ .
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Now by Claim 3.22, for i ≥ 1, Invg(i) ≤ f ′(i− 1) + 1 = (f(i) .− 1) + 1.
Let i0 be least such that i0 ≥ 1 and f(i0) > 0. Then for any i ≥ i0, Invg(i) ≤ f(i).

(b) Let f be a true PSPACEPSPACEPSPACE order.
We define f ′ and g from f as in (a). The function g is thus in PSPACEPSPACEPSPACE and g ≥ Invf ′ .
Now since integers are under unary representation, there must exist d, b, k ∈ N∗ such
that for any n ∈ N, g(n) ≤ dnk + b. Let p(n) = dnk + b. Then p is strictly increasing
and p ≥ g ≥ Invf ′ . We deduce as above Invp(n) ≤ f(n) a.e.
By Claim 3.22(b), Invp is a true PPP order.

Following the terminology of [Lut92] in the polynomial time context, we set:

Definition 3.24. Let D be some class of functions. A martingale d : {0, 1}∗ → R+ is
D-approximable if there exists F : {0, 1}∗ ×N → Q2 in D such that for any i ∈ N, ‖d(x)−
F (x, i)‖ ≤ 2−i.

The following type of results has already been obtained ( [ATZ94, JL95, May94]...).

Lemma 3.25. Let g be some time-constructible function. If V : {0, 1}∗ → R+ is a martin-
gale which is FDTIME(g(n))-approximable, then there exists a Q2-valued martingale d in
FDTIME(ng(2n+4)) such that for any x ∈ {0, 1}∗, V (x) ≤ d(x) ≤ V (x) + 2.

We omit the argument (one can adapt [Nie09, 7.3.8] or look up the above references).
To study the relations between ML tests and the martingale - order conditions in the Schnorr
subrecursive framework, we shall resort to the following notion from measure theory:

Definition 3.26. Given a measurable subset A of {0, 1}N and x ∈ {0, 1}∗, the conditional

measure µ(A|x) is the quotient µ(A∩[x])
µ([x]) = 2|x|µ(A ∩ [x]).

Classically, the function d : x 7→ µ(A|x) is a martingale.

Proposition 3.27.

(a) Let CCC be one of our time-complexity classes. If (Gn)n∈N is an ML-CCC -S test, then
there exist an EXPEXPEXP(CCC) -approximable martingale B and a true CCC order h such that

for any ξ ∈ {0, 1}N, ξ ∈
⋂

n∈NGn ⇒ B(ξ ↾ i) ≥ 2h(i) i.o.
(b) Given an ML-PSPACEPSPACEPSPACE -S test (Gn)n∈N, there exist a PSPACEPSPACEPSPACE -approximable martin-

gale B and a true PSPACEPSPACEPSPACE order h satisfying the above implication for any ξ ∈ {0, 1}N.

Proof.

(a) Let CCC be one of our time-complexity class and let (Gn)n∈N be an ML-CCC -S test. We
can assume there are X ⊆ N×{0, 1}∗, a machine M and a function f : N → N strictly
increasing in CCC such that
− X =

{

(n, x) ∈ N× {0, 1}∗ : M(n, x) ↓
}

,

− for n ∈ N, Xn =
{

x ∈ {0, 1}∗ : (n, x) ∈ X
}

is prefix-free,Gn = [Xn] and µ(Gn) ≤
2−2n,

− for n, i ∈ N, µ([Xn])− µ([XM
n,f(n+i)]) ≤ 2−i.

Definition 3.28.
• let g : N → N be such that, for i ∈ N, g(i) = f(5i).
• For n, k ∈ N, let Ck

n = [Xn \XM
n,g(k)].

• Define B : {0, 1}∗ → R+ as follows: for x ∈ {0, 1}∗, B(x) =
∑

n,k 2
kµ(Ck

n|x).
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For n, k ∈ N, since Xn is prefix-free, we have [Xn \XM
n,g(k)] = [Xn] \ [X

M
n,g(k)]. Let us

note that for n ≤ 2k,

µ(Ck
n) = µ([Xn])− µ([XM

n,g(k)]) ≤ µ([Xn])− µ([XM
n,f(n+3k)]) ≤ 2−3k. (3.7)

Hence for any n ∈ N,

µ(Ck
n) ≤ µ(Gn) ≤ 2−2n. (3.8)

Claim 3.29. B is a martingale.

Proof. We only need to check that B(∅) is finite. One has

B(∅) =
∑

k

∑

n≤2k

2kµ(Ck
n) +

∑

k

∑

n>2k

2kµ(Ck
n)

≤
∑

k

∑

n≤2k

2k2−3k +
∑

k

∑

n>2k

2k2−n (by( 3.7) and ( 3.8))

≤
∑

k

2k2−2k +
∑

k

2k2−2k

≤ 6 (by k ≤ 2k).

Now let us show the following:

Claim 3.30. The function h = Invg
.− 1 is a true CCC order, and for any ξ ∈ {0, 1}N,

ξ ∈
⋂

n∈NGn ⇒ B(ξ ↾ i) ≥ 2h(i) i.o.

Proof. If h = Invg
.−1, then for n ≥ 1, Invh(n) = InvInvg(n+1). Hence by Claim 3.22(b),

h is a true CCC order. Now for the second statement, we provide an argument for our
precise definition of the martingale B, but the line of proof should be as in Schnorr’s
original demonstration.

Let ξ ∈
⋂

n∈NGn. For any n ∈ N, there must exist in ∈ N such that ξ ↾ in ∈ Xn.

The inclusion [ξ ↾ in] ⊆ Gn implies 2−in ≤ µ(Gn) ≤ 2−2n. Hence for any n ∈ N, in ≥ n.
We check

for any n > g(0), B(ξ ↾ in) ≥ 2h(in). (3.9)

We now assume n > g(0), then also in > g(0) and hence Invg(in) ≥ 1. By definition of
Inv, g(Invg(in) − 1) < in. Let kn = h(in) = Invg(in) − 1. Since g(kn) < in, necessarily
ξ ↾ in /∈ XM

n,g(kn)
. We know ξ ↾ in ∈ Xn, hence necessarily ξ ↾ in ∈ Xn \XM

n,g(kn)
. This

gives µ(Ckn
n |ξ ↾ in) = 1.

Therefore B(ξ ↾ in) =
∑

k,n 2
kµ(Ck

n|ξ ↾ in) ≥ 2kn = 2h(in).

Our goal now is to find a function F : {0, 1}∗ ×N → Q2 which EXPEXPEXP(CCC) -approximates
B. Before developing the whole proof, we summarize the argument:
• for x ∈ {0, 1}∗, B(x) is an infinite sum of real terms 2kµ(Ck

n|x). We first truncate
B(x) to obtain a finite sum B2(x, i) = Σ(n,k)∈A(|x|,i)2

kµ(Ck
n|x), for A(|x|, i) finite ⊆

N× N appropriately bounded so that B2(x, i) approximates B(x) within 2−(i−1).
• The second step consists in replacing, in the finite sum B2(x, i) , each term
2kµ(Ck

n|x) = 2k2|x|µ([Xn\X
M
n,g(k)]∩[x]) by the term 2k2|x|µ([XM

n,ḡ(|x|,i)\X
M
n,g(k)]∩[x])

for an adequate function ḡ in CCC.
By switching from measures of open sets [Xn\X

M
n,g(k)]∩[x] to measures of clopen sets
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[XM
n,ḡ(|x|,i)\X

M
n,g(k)]∩[x], we shall obtain a sum F (x, i) = Σ(n,k)∈A(|x|,i)2

kµ([XM
n,ḡ(|x|,i)\

XM
n,g(k)] ∩ [x]) in Q2 with the expected approximation properties.

• Moreover the bounds on A(|x|, i) (polynomial in (|x|, i)) and the fact that ḡ belongs
to CCC will imply that F : {0, 1}∗ × N → Q2 belongs to EXPEXPEXP(CCC).

Hence let B(x) =
∑

k,n 2
kµ(Ck

n|x).
(i) We first bind the integer n in the sum. Having set N(r, i, k) = r+ i+2k+3, we

consider
B1(x, i) =

∑

k

∑

n≤N(|x|,i,k) 2
kµ(Ck

n|x).
Then

0 ≤ B(x)−B1(x, i) =
∑

k

∑

n

2kµ(Ck
n|x)−

∑

k

∑

n≤N(|x|,i,k)

2kµ(Ck
n|x),

=
∑

k

∑

n>N(|x|,i,k)

2kµ(Ck
n|x),

≤
∑

k

2k2|x|
∑

n>N(|x|,i,k)

µ(Gn),

≤ 2|x|
∑

k

2k2−N(|x|,i,k) (by µ(Gn) ≤ 2−n)

≤ 2−i−2.

(3.10)

(ii) Let us deal now with k. We set K(r, i) = r + i+ 4 and consider
B2(x, i) =

∑

k≤K(|x|,i)

∑

n≤N(|x|,i,k) 2
kµ(Ck

n|x).

Our goal is to show 0 ≤ B1(x, i)−B2(x, i) ≤ 2−i−2.
Let us set εk(x, i) =

∑

n≤N(|x|,i,k) 2
kµ(Ck

n|x).

Claim 3.31. If k > |x|+ i+ 4, then εk(x, i) ≤ 2|x|−k+2.

Proof.
− If n ≤ 2k, then by ( 3.7), µ(Ck

n ∩ [x]) ≤ 2−3k.
− If n > 2k, then by ( 3.8), µ(Ck

n ∩ [x]) ≤ 2−2n < 2−4k.
Hence for all k, n ∈ N, µ(Ck

n ∩ [x]) ≤ 2−3k.
The hypothesis k > |x|+i+4 implies N(|x|, i, k) = |x|+i+2k+3 ≤ 3k. Hence

we deduce that for any k ∈ N, εk(x, i) ≤ N(|x|, i, k) 2k2−3k2|x| ≤ 3k2−2k+|x| ≤
22+|x|−k.

Therefore

0 ≤ B1(x, i) −B2(x, i) =
∑

k>|x|+i+4

εk(x, i) ≤
∑

k>|x|+i+4

22+|x|−k ≤ 2−i−2. (3.11)

(iii) We now define the function ḡ : N×N → N used to switch from the open sets Ck
n

to clopen sets.

Definition 3.32. Let ḡ(r, i) = f(9r + 9i+ 32) and Dk,i,r
n = [Xn,ḡ(r,i) \Xn,g(k)].

We set
F (x, i) =

∑

k≤K(|x|,i)

∑

n≤N(|x|,i,k) 2
kµ(D

k,i,|x|
n |x).

Our goal is to obtain 0 ≤ B2(x, i) − F (x, i) ≤ 2−i−1.
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• We first check that for k ≤ K(r, i), ḡ(r, i) ≥ g(k):
ḡ(r, i) = f(9r + 9i+ 32) ≥ f(5(r + i+ 4)) = f(5K(r, i)) ≥ f(5k) = g(k).

• Let us check that for k ≤ K(r, i) and n ≤ N(r, i, k), ḡ(r, i) ≥ f(n+(2r+2i+
4k + 6)). One computes N(r, i,K(r, i)) = 3r + 3i+ 11. Hence
(

k ≤ K(r, i)
n ≤ N(r, i, k)

⇒

(

k ≤ r + i+ 4
n ≤ 3r + 3i+ 11

⇒ n + (2r + 2i + 4k + 5) ≤ 9r +

9i+ 32.
One deduces

f(n+ (2r + 2i+ 4k + 5)) ≤ f(9r + 9i+ 32) ≤ ḡ(r, i). (3.12)

• For k ≤ K(|x|, i) and n ≤ N(|x|, i, k), let us set ∆(n, k, x, i) = µ(Ck
n ∩ [x])−

µ(D
k,i,|x|
n ∩ [x]). One obtains:

∆(n, k, x, i) = µ((Ck
n \Dk,i,|x|

n ) ∩ [x])

≤ µ(Ck
n \Dk,i,|x|

n )

≤ µ([(Xn \XM
n,g(k)) \ (X

M
n,ḡ(|x|,i) \X

M
n,g(k))])

≤ µ([Xn \XM
n,ḡ(|x|,i)])

≤ µ([Xn \XM
n,f(n+(2|x|+2i+4k+5))])(by ( 3.12))

≤ 2−(2|x|+2i+4k+5)

(3.13)

We derive:

0 ≤ B2(x, i)− F (x, i) =
∑

k≤K(|x|,i)

∑

n≤N(|x|,i,k)

2k2|x|µ((Ck
n \Dk,i,|x|

n ) ∩ [x])

=
∑

k≤K(|x|,i)

∑

n≤N(|x|,i,k)

2k+|x|∆(n, k, x, i)

≤
∑

k≤K(|x|,i)

∑

n≤N(|x|,i,k)

2k+|x|2−(2|x|+2i+4k+5) (by ( 3.13))

≤
∑

k≤K(|x|,i)

N(|x|, i, k)2−(|x|+2i+3k+5)

≤
∑

k

2|x|+i+2k+32−(|x|+2i+3k+5)

≤ 2−i−1.
(3.14)

Combining ( 3.10), ( 3.11) and ( 3.14), we deduce:

Claim 3.33. For any x ∈ {0, 1}∗ and i ∈ N, 0 ≤ B(x)− F (x, i) ≤ 2−i.

It now remains to evaluate the complexity of F . Clearly if f is in CCC, then ḡ is also in

CCC . Given k, n, i, x, to compute µ(D
k,i,|x|
n ∩ [x]), one has to check for each finite sequence

z of length ≤ ḡ(|x|, i) compatible with x whether it belongs to XM
n,ḡ(|x|,i) \X

M
n,g(k) and

to compare it with x.

− If there is z ∈ XM
n,ḡ(|x|,i) \X

M
n,g(k) such that z 4 x, then µ(D

k,i,|x|
n ∩ [x]) is 2−|x|.
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− Otherwise one adds all 2−|z|, for x ≺ z with z in XM
n,ḡ(|x|,i) \X

M
n,g(k) to obtain the

measure. All intermediate (and the final) sums can be coded, for some constant d,
by strings of length ≤ d(ḡ(|x|, i) (the total measure is ≤ 1).
Hence the function ϕ : N3 × {0, 1}∗ → Q2

(k, n, i, x) 7→ µ(D
k,i,|x|
n ∩ [x])

is in EXPEXPEXP(CCC).

Since for some constant c, our bounds K(|x|, i) and N(|x|, i, k) are ≤ c(|x| + i), we
deduce

Claim 3.34. F belongs to the class EXPEXPEXP(CCC).

We can now conclude the proof of (a) by Claims 3.29, 3.30, 3.33 and 3.34.

Let now CCC be the class PSPACEPSPACEPSPACE.
We assume the sequence ([Xn])n∈N associated with a machine M , satisfies for some
(strictly increasing) polynomial function f :
− µ([Xn]) ≤ 2−2n,

− µ([Xn])− µ([XM,space
n,f(n+i)]) ≤ 2−i.

One defines g, h and ḡ from f as in (a). They are all polynomial functions. Ck
n is now the

open set [Xn\X
M,space
n,g(k) ] and one also considers the martingale B(x) =

∑

n,k 2
kµ(Ck

n |x).

(Since |x| > s implies x /∈ XM,space
n,s ) one obtains the equivalent of Claim 3.30: h is a

true PSPACEPSPACEPSPACE order and for for any ξ ∈ {0, 1}N,
ξ ∈

⋂

n∈NGn ⇒ B(ξ ↾ i) ≥ 2h(i) i.o.

We set Dk,i,r
n = [XM,space

n,ḡ(r,i) \XM,space
n,g(k) ] and define the approximating function F as in (a)

with the Dk,i,r
n ’s.

To compute µ(D
k,i,|x|
n ∩ [x]), we also enumerate all sequences z of length ≤ ḡ(|x|, i)

according to 4llex, and (using counters) we test whether z ∈ D
k,i,|x|
n . But this time we

only keep track of the last browsed sequence z and of the partial measure µ([(Xn,ḡ(|x|,i)\
Xn,g(k)) ∩ {t : t 4llex s}] ∩ [x]). As in (a), we know this partial measure is coded by a
string of length O(ḡ(|x|, i))).
Hence ϕ : N3 × {0, 1}∗ → Q2

(k, n, i, x) 7→ µ(D
k,i,|x|
n ∩ [x])

is in PSPACEPSPACEPSPACE.

We deduce that F is in PSPACEPSPACEPSPACE and conclude the proof of (b) as above.

By Proposition 3.27 and lemma 3.25 about approximation, we derive:

Proposition 3.35.

(a) Let CCC be one of our time-complexity classes. If (Gn)n∈N is an ML-CCC -S test, then
there exist a martingale d : {0, 1}∗ → Q2 in EXPEXPEXP(CCC) and a true CCC order h such that

for any ξ ∈ {0, 1}N, ξ ∈
⋂

n∈NGn ⇒ B(ξ ↾ i) ≥ 2h(i) i.o.
(b) Given an ML-PSPACEPSPACEPSPACE -S test (Gn)n∈N, there exist a martingale d : {0, 1}∗ → Q2

in PSPACEPSPACEPSPACE and a true PSPACEPSPACEPSPACE order h satisfying the above implication for any
ξ ∈ {0, 1}N.

The opposite direction - from martingales to Martin-Löf tests - is easier and can be obtained
through a simple adaptation of existing arguments.

Proposition 3.36.
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(a) Let CCC be one of our time-complexity classes. From a martingale d : {0, 1}∗ → Q2 in
CCC and a true CCC order g, one can define an ML-CCC -S test (Gn)n∈N such that

for any ξ ∈ {0, 1}N, d(ξ ↾ i) ≥ 2g(i) i.o. ⇒ ξ ∈
⋂

n∈NGn.
(b) Given a PSPACEPSPACEPSPACE martingale d and a true PSPACEPSPACEPSPACE order g, one can construct an

ML-PSPACEPSPACEPSPACE -S test (Gn)n∈N, satisfying for any ξ ∈ {0, 1}N, the above implication.

Proof. Let d and g be respectively the martingale and the order. We can assume d(∅) ≤ 1.

Let us consider the set X =
{

(n, x) ∈ N×{0, 1}∗ : d(x) ≥ 2g(|x|) ≥ 2n
}

, and for n ∈ N,

the associated set Xn =
{

x ∈ {0, 1}∗ : (n, x) ∈ X
}

.
Setting for n ∈ N, Gn = [Xn], one obtains by classical arguments ( [DH10, 7.1.7], [Nie09,

7.3.3]) that (Gn)n∈N is an ML test and that for any ξ ∈ {0, 1}N,
d(ξ ↾ i) ≥ 2g(i) i.o. ⇒ ξ ∈

⋂

n∈NGn.
We must now check that (Gn)n∈N is an ML-CCC -S test. We shall make explicit the use

of Inv in Schnorr’s original proof and add a few lines to define the controlling function.

(a) Let CCC be one of our time-complexity classes. To deal with prefix-free sets, we consider
minimal strings for 4:

Let Y =
{

(n, x) ∈ X : ∀y ≺ x (n, y) /∈ X
}

=
{

(n, x) ∈ N× {0, 1}∗ : d(x) ≥ 2g(|x|) ≥ 2n ∧ ∀y ≺ x ¬(d(y) ≥ 2g(|y|) ≥ 2n)
}

.

For some constant d and some function f ′ ∈ FC , membership of (n, x) in Y can be
checked in time ≤ f ′(|x| + n). Hence one can define a machine M and a strictly
increasing function f ∈ CCC such that for any (n, x) ∈ N× {0, 1}∗,

(n, x) ∈ Y ⇔ M(n, x) ↓

⇔ (n, x) ∈ dom(Mf(|x|+n)).

Setting, for n ∈ N, Yn = {x ∈ {0, 1}∗ : (n, x) ∈ Y }. Then [Xn] = [Yn] and we get, for
n ∈ N,
x ∈ {0, 1}∗,

x ∈ Yn ⇔ x ∈ Y M
n,f(|x|+n).

For all n, k ∈ N, one has:

Yn ∩ {x ∈ {0, 1}∗ : |x| ≤ Invg(k)} ⊆ Yn,f(Invg(k)+n). (3.15)

For any m ∈ N, g(Invg(m)) ≥ m, hence

Yn ∩
{

x ∈ {0, 1}∗ : |x| > Invg(k)
}

⊆ {x ∈ {0, 1}∗ : d(x) ≥ 2g(|x|) ≥ 2g(Invg(k))}

⊆
{

x ∈ {0, 1}∗ : d(x) ≥ 2k
}

.
(3.16)

Now by [DH10, 6.3.3], [Nie09, 7.1.9], since d(∅) ≤ 1,

µ([{x ∈ {0, 1}∗ : d(x) ≥ 2k}]) ≤ 2−k. (3.17)

Let us set ḡ(r) = f(Invg(r) + r), for r ∈ N. Since g is a true CCC order, ḡ is in CCC. For
any k, n ∈ N, ḡ(k + n) ≥ f(Invg(k) + n), we thus deduce:

µ([Yn])− µ([Yn,ḡ(k+n)]) = µ([Yn \ Yn,ḡ(k+n)]

≤ µ([Yn ∩
{

x ∈ {0, 1}∗ : |x| > Invg(k)
}

])(by ( 3.15))

≤ 2−k (by ( 3.16) and ( 3.17)).
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Therefore (Gn)n∈N = ([Xn])n∈N = ([Yn])n∈N is an ML-CCC -S test.

(b) Let now CCC be PSPACEPSPACEPSPACE and let d in PSPACEPSPACEPSPACE and g a true PSPACEPSPACEPSPACE order satisfy
the implication. The set Y being defined as above, membership in Y can be tested in
polynomial space (either by using a time-counter in binary or by Claim 3.23). Hence
there exist a machineM and a polynomial function f so that for any (n, x) ∈ N×{0, 1}∗,

(n, x) ∈ Y ⇔ M(n, x) ↓

⇔ (n, x) ∈ dom(M space
f(|x|+n)).

One then concludes as above (with M space
s and Y M,space

n,s instead of Ms and Y M
n,s).

Remark 3.37. Replacing the classical requirement “d(ξ ↾i) ≥ g(i) i.o” by “d(ξ ↾i) ≥
2g(i) i.o” allowed us to consider the function ḡ(r) = f(Invg(r)+ r) instead of the function
f(Invg(2

r) + r). This was essential to get Proposition 3.36 for CCC=PPP, EXPEXPEXP or PSPACEPSPACEPSPACE.

Combining Propositions 3.35 and 3.36, we deduce:

Theorem 3.38.

(a) Let CCC be one of our time-complexity classes. Then for any ξ ∈ {0, 1}N,
ξ ismartingale-EXPEXPEXP(CCC)-S random⇒ ξ isML-CCC-S random⇒ ξ ismartingale-CCC -S ran-
dom.

(b) Let CCC be the class PSPACEPSPACEPSPACE, TOWERTOWERTOWER-EXPEXPEXP or PRIMPRIMPRIM-RECRECREC. Then for any sequence
ξ ∈ {0, 1}N,

ξ is martingale-CCC -S random ⇔ ξ is ML-CCC -S random.

Finally merging theorems 3.21 and 3.38, we obtain:

Theorem 3.39. Let CCC be the class PSPACEPSPACEPSPACE, TOWERTOWERTOWER-EXPEXPEXP or PRIMPRIMPRIM-RECRECREC. Then for
any ξ ∈ {0, 1}N,
ξ is ML-CCC -S random ⇔ ξ is Kolmogorov -CCC -S random ⇔ ξ is martingale-CCC -S random.

4. Separation.

To justify our previous work, we now differentiate Schnorr randomness from (martingale)-
PRIMPRIMPRIM-RECRECREC-S randomness by appealing to the following notion:

Definition 4.1. Let CCC be a class of functions. An infinite binary sequence ξ is CCC random
if any martingale d : {0, 1}∗ → Q2 in CCC fails on ξ (i.e. the set

{

d(ξ ↾ i) : i ∈ N
}

is bounded
in N).

If CCC is the class of computable functions, then the above notion is “computable ran-
domness” (Schnorr). When CCC is PPP, this is “p-randomness” (Lutz).

The following argument was suggested by one of the (anonymous) referees: let A : N →
N be a computable function dominating all primitive recursive functions. Then by classical
results (see [AM97, 3.9.7] for a precise statement), there exists a computable sequence
ξ ∈ {0, 1}N which is FDTIME(A(n)) random. ξ is thus PRIMPRIMPRIM-RECRECREC -random and hence
(martingale)-PRIMPRIMPRIM-RECRECREC-S random. Therefore Schnorr’s randomness is strictly stronger
than (martingale)PRIMPRIMPRIM-RECRECREC-S randomness.

Our original argument was based on the notion of ML-PRIMPRIMPRIM-RECRECREC-S randomness. The
method - though laborious - could be extended to prove the assertions:
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− ML-PRIMPRIMPRIM-RECRECREC-S randomness>ML-TOWERTOWERTOWER-EXPEXPEXP -S randomness and
− ML-TOWERTOWERTOWER-EXPEXPEXP -S randomness>ML-EXPEXPEXP-S randomness.

But we could not deduce that ML-EXPEXPEXP -S randomness is strictly stronger than ML-PPP -S
randomness whereas this can be done for the martingale corresponding notion of S random-
ness. The martingale approach seems better suited to low time-complexity classes, we shall
thus build on the important amount of work developed around the notion of martingale in
the field of Resource Bounded Randomness.

In this section, we shall restrict ourselves to time-complexity classes and we shall fo-
cus on the martingale definition of S-randomness. For such a class CCC, the expression
“martingale-CCC -S random” will be abbreviated to “CCC -S random”. As CCC rises among our
time-complexity classes, the notion of CCC -S randomness gets strictly stronger. We shall com-
pare our notion of PPP -S randomness with Lutz notion of p-randomness, Wang’s notion of
(PPP,PPP)-S randomness and and we shall also contrast the notion of PRIMPRIMPRIM-RECRECREC -S randomness
with the notion of BP-randomness developed by Buss, Cenzer and Remmel.

4.1. CCC -S randomness and CCC randomness. Let us mention first the work of Wang
[Wan99, Wan00] who studied a version of Schnorr randomness for the class PPP (termed
(PPP,PPP)-S randomness) and proved it to be weaker than the notion of p-randomness [Wan00,
Thm 8].

Definition 4.2 ( [Wan00]). Let CCC be a class of functions. An infinite sequence ξ is (CCC,CCC)-S
random iff for any martingale F and any order h both in CCC, F (ξ ↾ i) < h(i) a.e.

His notion is stronger than ours because he allows all orders in CCC, not restricting to true
CCC orders. (If one is not concerned with the status of the inverse of the order, our condition

“d(ξ ↾ i) < 2h(i) a.e.” and the classical one “d(ξ ↾ i) < h(i) a.e.” yield the same notion
of randomness for our classes CCC). A consequence of his definition is that for computable
infinite sequences, p-randomness and (PPP,PPP)-S randomness coincide [Wan00, Cor. 17].

Building on his results and techniques, we shall show that our definition allows more
variety inside the set of computable infinite sequences.

Let CCC be one of our time-complexity classes. To separate CCC randomness from CCC -
S randomness inside the set of computable sequences (and to obtain the tableau of the
introduction) we shall rely on part (i) of the following proposition; the remaining cases
(ii)-(iv) add precision, showing that the sequence which is CCC-S random but not CCC random
can be taken “right above CCC”.

For ξ ∈ {0, 1}N and g ∈ NN time-constructible, we say that ξ belongs to FDTIME (g(n))
if the function n 7→ ξ(n) belongs to FDTIME (g(n)) (n under unary representation).

Proposition 4.3.

( i ) There is a computable ξ ∈ {0, 1}N which is PRIMPRIMPRIM-RECRECREC -S random but not PPP random.

(ii) There exists ξ ∈ {0, 1}N in FDTIME(n⌈log n⌉) which is PPP -S random but not PPP ran-
dom.

(iii) There is ξ ∈ {0, 1}N in FDTIME(2n
⌈log n⌉

) which is EXPEXPEXP -S random but not PPP random.
(iv) There is ξ ∈ {0, 1}N in FDTIME(T (⌈log n⌉, n)) which is TOWERTOWERTOWER-EXPEXPEXP -S random

but not PPP random.
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Our proof will be based on enumerations of martingales and of true PRIMPRIMPRIM-RECRECREC orders.
We thus propose without proof a few definitions and classical (or easy) facts:

Definition 4.4. Let CCC be one of our time-complexity classes. We assume GC : N ×
{0, 1}∗ → Q2 enumerates all functions f : {0, 1}∗ → Q2 in CCC , and gc : N → N strictly
increasing is such that GC ∈ FDTIME(gC(n)).

(a) Then there is dC : N×{0, 1}∗ → Q2 enumerating all martingales d in CCC with d(∅) ≤ 1
which is such that dC ∈ FDTIME(ngC(n)) (see for example [ATZ94]).

(b) Let us define the martingale ΦC(x) =
∑

e∈N 2−edC((e)0, x). It can be approximated
by fC : {0, 1}∗ ×N → Q2 defined by fC(x, i) =

∑

e≤i+|x| 2
−edC((e)0, x) which belongs

to FDTIME(n2gC(2n)).
(c) By Lemma 3.25, there is a Q2-valued martingale δC in FDTIME(n3gC(5n)) such that

for any x ∈ {0, 1}∗, ΦC(x) ≤ δC(x) ≤ ΦC(x) + 2.

The notation (e)0 or (e)1 refers to the inverses of the polynomial time bijection from N×N

onto N. If CCC is PRIMPRIMPRIM-RECRECREC, then both GC and gC can be taken recursive. Hence in (c),
we only assert that δPRIMPRIMPRIM-RECRECREC is recursive. In all cases, gC will be time-constructible. Here
are some possible choices for (GC and) gC :

Fact 4.5. One can take

(i) gPRIMPRIMPRIM-RECRECREC recursive

(ii) gPPP(n) = n⌈(2/3)log n⌉

(iii) gEXPEXPEXP(n) = 2⌈(1/2)log n⌉

(iv) gTOWERTOWERTOWER-EXPEXPEXP(n) = T (⌈(1/2)log n⌉, n).

Proof. We give a few details for (ii), the other cases are very similar.
We want to define GPPP : N× {0, 1}∗ → Q2 enumerating all polynomial time functions from
{0, 1}∗ into Q2. Let M be a universal machine which for some constant c ∈ N, simulates the
computation of t(n) steps of the machineMe (with program e ∈ N) in ce t(n)⌈log t(n)⌉ steps.
We define an algorithm for GPPP: On input (e, x), one computes (e)0, (e)1 and ⌊(1/2) log(e)1⌋.
Then M simulates M(e)0 on x during |x|⌊(1/2) log(e)1⌋ steps. If M(e)0 halts, then GPPP outputs
the result of the computation, otherwise it outputs 0.
One can check that GPPP enumerates all polynomial time functions and that the function
GPPP belongs to FDTIME(n⌈(2/3) logn⌉) (the input (e, x) has size n = e+ |x|).

Refering to the martingale δCCC in Definition 4.4, one derives from the previous values:

Fact 4.6.

(i) δPRIMPRIMPRIM-RECRECREC is recursive

(ii) δPPP ∈ FDTIME(n⌈(3/4) log n⌉)

(iii) δEXPEXPEXP ∈ FDTIME(2n
⌈(3/4) log n⌉

)
(iv) δTOWERTOWERTOWER-EXPEXPEXP ∈ FDTIME(T (⌈(3/4) log n⌉, n)

Let (ϕe)e∈N be the usual effective enumeration of partial recursive functions from (a
subset of) N into N. We obtain the following:

Lemma 4.7. There exists a (total) recursive function l ∈ NN such that (ϕl(e))e∈N is an

enumeration of all inverses of strictly increasing primitive recursive functions in NN.
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Proof. Let (ϕf(e))e∈N be an enumeration of all primitive recursive functions, with f recur-
sive.

We define the partial recursive function λ by

{

λ(e, 0) = ϕe(0)

λ(e, n + 1) = max(ϕe(n+ 1), λ(e, n) + 1).

(if one of the two arguments of max is undefined, max is undefined)
There is g recursive such that for any e, n ∈ N, λ(e, n) = ϕg(e)(n).
Hence (ϕg(f(e)))e∈N is an enumeration of all strictly increasing primitive recursive func-
tions.
We now define the partial recursive function λ′ by λ′(e, n) = least k ϕe(k) ≥ n.
Then again there is g′ recursive such that for any e, n ∈ N, λ′(e, n) = ϕg′(e)(n). Setting

l(e) = g′(g(f(e)), we obtain that (ϕl(e))e∈N is an enumeration of inverses of strictly increas-
ing primitive recursive functions.
Fact 4.8. For CCC one of our time-complexity classes and e ∈ N, let dC,e be the martingale
defined by dC,e(x) = dC((e)0, x), for x ∈ {0, 1}∗ (dC was defined in 4.4), and let he be the
order ϕl((e)1).
Then (dC,e, he)e∈N is an enumeration of all couples (d, h) where d is a martingale in CCC
such that d(∅) ≤ 1 and h is the inverse of a strictly increasing primitive recursive function.

Proof. (Of Proposition 4.3) We adapt and simplify Wang’s arguments (see [Wan99, Thm
5]): there is no need to encode non-recursive information into the sequence ξ which separates
the notions of CCC -S randomness and of CCC randomness (being an order is a non effective
notion whereas - as we saw - being the inverse of a strictly increasing primitive recursive
function is an effective one).

We shall thus define by induction two functions F and T both in PPP, with F : {0, 1}∗ →
Q2 a martingale and T : {0, 1}∗ → N monotone (i.e. if x 4 y, then T (x) ≤ T (y)).
Let L be a machine which computes the (total) function l of Lemma 4.7, and let Mu be
a universal machine.

- Level 0. Let F (∅) = 1
T (∅) = 0.

- Level s+ 1s+ 1s+ 1. We assume F (x), T (x) are defined for |x| ≤ s and T (x) ≤ |x|. As
in [Wan99], one distinguishes two cases:

Case 1: For each e ≤ T (x), L on input (e)1 stops in ≤ |x| + 1 steps and there
is me ≤ |x| such that Mu on input (L((e)1),me) stops in ≤ |x| + 1 steps (outputting
ϕl((e)1)(me) = he(me)), and such that e+ T (x) + 3 < he(me).

Then one sets

(

F (x0) = 2F (x)
F (x1) = 0

and

(

T (x0) = T (x) + 1
T (x1) = T (x).

Case 2: Otherwise one sets F (x0) = F (x1) = F (x) and T (x0) = T (x1) = T (x).
Let us note that T (x) is simply the number of times case 1 has occured along x. We also
notice that F and T are computable in polynomial time.
The inductive definition of the infinite sequence ξC is as follows:

Definition 4.9. Let s ∈ N. We assume ξC ↾ s is defined.

(a) If ξC ↾ s is in case 1, then one sets ξC(s) = 0.
(b) Otherwise, one sets ξC(s) = i where i ∈ {0, 1} is such that

δC((ξC ↾ s)i) ≤ δC((ξC ↾ s)(1− i)).

From this definition and Fact 4.6, one deduces:
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Fact 4.10.

• If CCC = PPP, then ξC ∈ FDTIME(n⌈log n⌉).

• If CCC = EXPEXPEXP, then ξC ∈ FDTIME(2n
⌈log n⌉

).
• If CCC = TOWERTOWERTOWER-EXPEXPEXP, then ξC ∈ FDTIME(T (⌈log n⌉, n)).
• If CCC is PRIMPRIMPRIM-RECRECREC, then ξC is recursive.

The great lines of the proof are essentially Wang’s ones. A trustful reader can skip our
proof. However since we simplified the argument (for instance, deleting mention of F (x) in
the definition of case 1) and added the machine L, we provide some arguments.

Claim 4.11. Let α ∈ {0, 1}N. Thenα ↾ s is in case 1 infinitely often.

Proof. Let α ∈ {0, 1}N and s0 ∈ N be fixed.
Since L defines a total function, there must exist s1 ≥ s0 such that for all e ≤ T (α ↾ s0), L
on input (e)1 stops in ≤ s1 + 1 steps.
Also since for e ∈ N, he (= ϕL((e)1)) is an order, there must exist s2 ≥ s1 such that for
every e ≤ T (α ↾ s0), there is me ≤ s2 such that he(me) > e+ T (α ↾ s0) + 3.
Hence there is s ≥ s0 such that P (s) holds where

P (s) =







for each e ≤ T (α ↾ s0), L on input (e)1 stops in ≤ s+ 1 steps,
there is me ≤ s such that Mu on input (L((e)1),me) stops in ≤ s+ 1
steps outputting oe (= he(me)) which satisfies e+ T (α ↾ s0) + 3 < oe.

Let s3 = min{s ≥ s0 : P (s)}. Then by construction T (α ↾ s3) = T (α ↾ s0). Hence α ↾ s3
is in case 1.

Claim 4.12. lim
s→∞

F (ξC ↾ s) = lim
s→∞

T (ξC ↾ s) = +∞. Hence ξC is not PPP random.

Proof. By definition of F, T and ξC , for s ∈ N,

− ξC ↾ s is in case 1, F (ξC ↾ s+ 1) = 2F (ξC ↾ s) and T (ξC ↾ s+ 1) = T (ξC ↾ s) + 1,
− when ξC ↾ s is in case 2, F (ξC ↾ s+ 1) = F (ξC ↾ s) and T (ξC ↾ s+ 1) = T (ξC ↾ s).

Hence we can conclude by the previous claim.

Claim 4.13. For any s ∈ N, δC(ξC ↾ s) < 2T (ξC ↾s)+2.

Proof. (Sketch) Note that ΦC(∅) ≤ 2. Hence δC(∅) ≤ 2 + 2 = 22.
Now δC is a martingale, hence for x ∈ {0, 1}∗, i ∈ {0, 1}, δC(xi) ≤ 2δC(x). By clause (b)
in definition 4.9, there is an increase of δC(x) (≤ than mutiplication by 2) only when case
1 occurs, and case 1 has occured T (ξC ↾ s) times along ξ ↾ s.

Claim 4.14. For any e ∈ N, e+ T (ξC ↾ s) + 2 < he(s) a.e. (relatively to s)

Proof. (Sketch)
Let e ∈ N be fixed. By Claim 4.12, there is s0 such that T (ξC ↾ s0) > e. By Claim 4.11,
there is s1 ≥ s0 such that ξC ↾ s1 is in case 1.
One then checks by induction on s ≥ s1 + 1 that e+ T (ξC ↾ s) + 2 < he(s).

− If ξC ↾ s is in case 1, then there is me ≤ s such that e+T (ξC ↾ s)+ 3 < he(me) ≤ he(s).
Hence e+ T (ξC ↾ s+ 1) + 2 = e+ T (ξC ↾ s) + 3 < he(s) ≤ he(s+ 1).

− If ξC ↾ s is in case 2, this follows directly from the induction hypothesis.

One derives from the previous claims:

Claim 4.15. For any e ∈ N, dC,e(ξC ↾ s) < 2he(s) a.e.

Proof. For any e, s ∈ N, dC,e(ξC ↾ s) ≤ 2eΦC(ξC ↾ s) ≤ 2eδC(ξC ↾ s) ≤ 2e2T (ξC↾s)+2.

Since e+ T (ξC ↾ s) + 2 < he(s) a.e, we deduce dC,e(ξC ↾ s) < 2he(s) a.e.
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One can now conclude: for our classes CCC, any true CCC order is a true PRIMPRIMPRIM-RECRECREC order,
hence by Claim 3.23(a) and fact 4.8, given any couple (d, h) such that d is a martingale in
CCC, with d(∅) ≤ 1 and h is a true CCC order, there is e ∈ N such that d = dC,e and he ≤ h .
Hence ξC is CCC -S random. By claim 4.12, ξC is not PPP random. Finally Fact 4.10 gives the
complexity of ξC .

4.2. Subcomputable weak randomness. We compared the notion of CCC -S randomness
with the stronger notion of CCC randomness. In this subsection, we shall study the relation of
CCC -S randomness with the weaker notion of “Kurz CCC randomness”. There are two candidates
for the notion. Wang [Wan00, Definition 5] proposed a notion in terms of martingales and
orders:

Definition 4.16 (Wang). Let CCC be a class of functions and let ξ ∈ {0, 1}N.

− If d, h are respectively a martingale and an order, then ξ fails the Kurz test (d, h)
if d(ξ ↾ i) ≥ h(i) a.e.

− ξ is (CCC,CCC)-W random if ξ passes all Kurz tests for d, h both in CCC.

Restricting to the classes PRIMPRIMPRIM-RECRECREC or PSPACEPSPACEPSPACE, Buss, Cenzer and Remmel [BCR14]
proposed a different notion (called BP-randomness) and gave three different characteriza-
tions in terms of ML-tests, Kolmogorov complexity and martingale property. We give here
the martingale and the ML test characterization in the primitive recursive context:

Theorem 4.17 (Buss, Cenzer, Remmel). Let ξ ∈ {0, 1}N.

ξ is BP-random iff

{

for no primitive recursive sequence (Un)n∈N of clopen sets
such that µ(Un) ≤ 2−n, ξ ∈

⋂

n∈N Un.

iff

{

for no primitive recursive martingale d and for no primitive
recursive function f ∈ NN, d(ξ ↾ f(n)) ≥ 2n a.e.

Remark 4.18. In the theorem, one can replace “no primitive recursive function f” by
“no primitive recursive strictly increasing function f”: in the proof of [BCR14, Thm 2.8
(2)⇒(1)], the function f can clearly be chosen strictly increasing.

Our notion of CCC -S randomness cannot be compared with Wang’s notion of (CCC,CCC)-W
randomness since by [Wan00, Cor 17], for computable sequences, (PPP,PPP)-W randomness
and p-randomness coincide. [BCR14] notion is the right weakening of our notion of CCC -S
randomness:

Fact 4.19. Let ξ ∈ {0, 1}N.

ξ is BP-random ⇔

{

for no martingale d in PRIMPRIMPRIM-RECRECREC and for no true

PRIMPRIMPRIM-RECRECREC order h, d(ξ ↾ n) ≥ 2h(n) a.e.

Proof.
⇒⇒⇒ : It is possible to derive this result from the ML characterization (see [DH10, 7.2.13] for
a similar situation), but it can also be deduced from the above martingale characterization
by the method of saving accounts ( [DH10, 6.3.8]).
Let ξ ∈ {0, 1}N and let d, f be primitive recursive such that f is strictly increasing
(Remark 4.18) and for n ≥ n0, d(ξ ↾ f(n)) ≥ 2n.
By considering the function n 7→ f(2n+1), we can assume for n ≥ n0, d(ξ ↾ f(n)) ≥ 22n+1.
let us define inductively the primitive recursive Q-valued martingale δ:

− For |x| ≤ f(n0), let δ(x) = d(x).
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− We assume now that |x| ≥ f(n0) and for any y 4 x, δ(y) is defined.
Let n0 ≤ n ≤ |x| be such that f(n) ≤ |x| < f(n + 1). For i ∈ {0, 1}, one sets

δ(xi) = δ(x ↾f(n))
2 + (δ(x) − δ(x ↾f(n))

2 )d(xi)d(x) .

This defines a primitive recursive martingale and one checks by induction on n ≥ n0, that

for any x ∈ {0, 1}∗, if |x| = f(n), then δ(x)
d(x) ≥ 2−(n−n0).

By definition of δ, for any x such that f(n) ≤ |x| ≤ f(n+ 1), δ(x) ≥ (1/2)δ(x ↾ f(n)).
Hence one deduces for any m,n such that f(n) ≤ m < f(n+ 1),

δ(ξ ↾ m) ≥ (1/2)δ(ξ ↾ f(n)) ≥ 2−(n−n0+1)d(ξ ↾ f(n)) ≥ 2−(n−n0+1)22n+1 ≥ 2n.
Let us define h = Invf

.− 1. Then h is a true PRIMPRIMPRIM-RECRECREC order because f is strictly
increasing. If m > f(n0) and f(n) ≤ m < f(n + 1), then 0 < Invf (m) ≤ n + 1 and

hence h(m) ≤ n. Therefore δ(ξ ↾ m) ≥ 2n ≥ 2h(m), for any m > f(n0). (Rigorously δ is
Q-valued and not Q2-valued, but we can approximate it in Q2 and apply Lemma 3.25).

⇐⇐⇐ : Let us assume d(ξ ↾ n) ≥ 2h(n) a.e. for h a true PRIMPRIMPRIM-RECRECREC order. Then Invh is
primitive recursive. For k ∈ N, if nk = Invh(k), then h(nk) ≥ k. Hence for any k ∈ N,

d(ξ ↾ Invh(k)) = d(ξ ↾ nk) ≥ 2h(nk) ≥ 2k.

Hence by the previous fact, PRIMPRIMPRIM-RECRECREC -S randomness implies the BP-randomness
of [BCR14].

Schnorr [Sch71b] showed that any p-random sequence ξ satisfies the law of Large Num-
bers (that is if sn(ξ) =

∑

k≤n ξ(k), then lim
n

sn(ξ)/n = 1/2). As noted in [Wan96, Thm

5.1.8], his argument applies to (PPP,PPP)-S random sequences. This is also the case for PPP-S
random sequences:

Theorem 4.20 (Schnorr).
Every PPP -S random sequence satisfies the law of Large Numbers.

Proof. We refer to the exposition of Schnorr’s theorem in [Wan96, Thm 5.2.12] and mention
here only the small modification at the end. Let us suppose ξ ∈ {0, 1}N does not satisfy the
law of Large numbers. One can assume w.l.o.g. lim supn sn(ξ)/n > 1/2.
Let a = (lim supn sn(ξ)/n) − (1/2) > 0 and let q in Q2 ∩ (0, 1) be so that

1
2(log(1 + q) + log(1− q)) + a(log(1 + q)− log(1− q)) = c > 0.

Defining the Q2-valued martingale F in PPP as in [Wan96] by:
F (∅) = 1
F (x1) = (1 + q)F (x)
F (x0) = (1− q)F (x),

one checks that lim supn log(F (ξ ↾n))/n = c. Hence log(F (ξ ↾n))/n ≥ c/2 i.o. Taking
k0 ∈ N such that 1/k0 ≤ c/2 and setting h(n) = ⌊n/k0⌋, for n ∈ N, one obtains that

F (ξ ↾ n) ≥ 2h(n) i.o. Since h is a true PPP-order, ξ cannot be PPP-S random.

On the opposite, it is known [kur81] that weak randomness does not imply satisfaction
of the law of Large Numbers. In the context of primitive recursiveness, Buss, Cenzer and
Remmel obtained the following:

Theorem 4.21 ( [BCR14, Thm 2.16]). There exists a computable BP-random sequence
which does not satisfy the law of Large Numbers.

Hence PRIMPRIMPRIM-RECRECREC-S randomness is strictly stronger than BP-randomness (even for
computable sequences).
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4.3. A summary. In order to summarize all results (some already known, some obtained
here) in two tableaux, we agree on the following definitions (only the third one is new):

Definition 4.22. For a class CCC and ξ ∈ {0, 1}N (the martingales are Q2-valued).
• ξ is CCC random iff for no martingale d in CCC, lim supn∈N d(ξ ↾ n) = +∞.
• ξ is CCC -S random iff for no martingale d in CCC and no true CCC order h,

d(ξ ↾ n) ≥ 2h(n) i.o
• ξ is CCC -W random iff for no martingale d in CCC and no true CCC order h,

d(ξ ↾ n) ≥ 2h(n) a.e.

If CCC is the class of computable functions, then this corresponds to the classical notions of
computable randomness, Schnorr randomness and weak randomness.

Remark 4.23. If an infinite binary sequence ξ is in the class C , then ξ is not CCC -W
random.

To see this is true, we cannot simply say ξ ∈
⋂

n∈N[ξ ↾ n]. The equivalence between the
ML definition and the martingale definition has only been shown for the class PRIMPRIMPRIM-RECRECREC
(Theorem 4.17) and may be problematic for low time-complexity classes.
To justify the remark, let us note that if ξ is in the class C , then one can consider the
martingale d defined as d(x) =

∑

i∈N 2iµ([ξ ↾ 2i]|x). d is a Q2-valued martingale in CCC and

for any j ∈ N, d(ξ ↾ j) ≥ 2⌊j/2⌋. The function j 7→ ⌊j/2⌋ is a true PPP order, hence ξ is
not CCC -W random.

In the following tableau, no implication can be reversed:

Computable randomness⇒ Schnorr randomness ⇒ weak randomness

(1) ⇓ (1) ⇓ (1) ⇓

PRIMPRIMPRIM-RECRECREC randomness⇒
(2)

PRIMPRIMPRIM-RECRECREC -S randomness ⇒
(3)

PRIMPRIMPRIM-RECRECREC -W randomness

The impossibility of reversing the implications in the first line is classical (Schnorr,
Wang). Concerning the other implications:

(1) let CCC ⊆/ CCC’ be two classes in our collection of time-complexity classes, or let C be in our
collection and let CCC’ be the class of recursive functions. It is known that there is a se-
quence ξ in CCC’ which is CCC random (One can use the martingale ΨC(x) =

∑

e 2
−edC(e, x),

with dC given in Definition 4.4). By Remark 4.23, ξ is not CCC’-W random,
(2) is by Proposition 4.3(i),
(3) is by Proposition 4.20 and Theorem 4.21.

In the next tableau, the non-reversibility of the implication holds also when the notion
is restricted to the class of computable sequences. (1), (2) and (3) refer to the above justifi-
cations (we abbreviate TOWERTOWERTOWER-EXPEXPEXP to TOTOTO-EXPEXPEXP to be able to insert the tableau).
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PRIMPRIMPRIM-RECRECREC randomness ⇒
(2)

PRIMPRIMPRIM-RECRECREC -S randomness ⇒
(3)

PRIMPRIMPRIM-RECRECREC -W randomness

(1) ⇓ (1) ⇓ (1) ⇓

TOTOTO-EXPEXPEXP randomness ⇒
(2)

TOTOTO-EXPEXPEXP -S randomness ⇒
(3)

TOTOTO-EXPEXPEXP -W randomness.

(1) ⇓ (1) ⇓ (1) ⇓

EXPEXPEXP randomness ⇒
(2)

EXPEXPEXP -S randomness ⇒
(3)

EXPEXPEXP -W randomness

(1) ⇓ (1) ⇓ (1) ⇓

PPP randomness ⇒
(2)

PPP -S randomness ⇒
(3)

PPP -W randomness
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