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Abstract. We introduce a new class of (dynamical) systems that inherently capture
cascading effects (viewed as consequential effects) and are naturally amenable to combi-
nations. We develop an axiomatic general theory around those systems, and guide the
endeavor towards an understanding of cascading failure. The theory evolves as an inter-
play of lattices and fixed points, and its results may be instantiated to commonly studied
models of cascade effects.

We characterize the systems through their fixed points, and equip them with two opera-
tors. We uncover properties of the operators, and express global systems through combina-
tions of local systems. We enhance the theory with a notion of failure, and understand the
class of shocks inducing a system to failure. We develop a notion of µ-rank to capture the
energy of a system, and understand the minimal amount of effort required to fail a system,
termed resilience. We deduce a dual notion of fragility and show that the combination of
systems sets a limit on the amount of fragility inherited.

1. Introduction

Cascade effects refer to situations where the expected behavior governing a certain system
appears to be enhanced as this component is embedded into a greater system. The effects
of change in a subsystem may pass through interconnections and enforce an indirect change
on the state of any remote subsystem. As such effects are pervasive—appearing in various
scenarios of ecological systems, communication infrastructures, financial networks, power
grids and societal networks—there is an interest (and rather a need) to understand them.
Models are continually proposed to capture instances of cascading behavior, yet the univer-
sal properties of this phenomenon remain untouched. Our goal is to capture some essence
of cascade effects, and develop an axiomatic theory around it.

A reflection on such a phenomenon reveals two informal aspects of it. The first aspect
uncovers a notion of consequence relation that seemingly drives the phenomenon. Capturing
chains of events seems to be inescapably necessary. The second aspect projects cascade
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effects onto a theory of subsystems, combinations and interaction. We should not expect
any cascading behavior to occur in isolation.

The line of research will be pursued within the context of systemic failure, and set along
a guiding informal question. When handed a system of interlinked subsystems, when would
a small perturbation in some subsystems induce the system to failure? The phenomenon of
cascade effects (envisioned in this paper) restricts the possible systems to those satisfying
posed axioms. The analysis of cascade effects shall be perceived through an analysis on
these systems.

We introduce a new class of (dynamical) systems that inherently capture cascading
effects (viewed as consequential effects) and are naturally amenable to combinations. We
develop a general theory around those systems, and guide the endeavor towards an under-
standing of cascading failure. The theory evolves as an interplay of lattices and fixed points,
and its results may be instantiated to commonly studied models of cascade effects.

Our Systems. The systems, in this introduction, will be motivated through an elementary
example. This example is labeled M.0 and further referred to throughout the paper.

M.0. Let G(V,A) be a digraph, and define N(S) ⊆ V to be the set of nodes j with (i, j) ∈ A
and i ∈ S. A vertex is of one of two colors, either black or white. The vertices are initially
colored, and X0 denotes the set of black colored nodes. The system evolves through discrete
time to yield X1,X2, · · · sets of black colored nodes. Node j is colored black at step m + 1
if any of its neighbors i with j ∈ N(i) is black at step m. Once a node is black it remains
black forever.

Our systems will consist of a collection of states along with internal dynamics. The
collection of states is a finite set P . The dynamics dictate the evolution of the system
through the states and are governed by a class of maps P → P . The state space in M.0 is
the set 2V where each S ⊆ V identifies a subset of black colored nodes; the dynamics are
dictated by g : X 7→ X ∪N(X) as Xm+1 = gXm.

We intuitively consider some states to be worse or less desirable than others. The color
black may be undesirable in M.0, representing a failed state of a node. State S is then
considered to be worse than state T if it includes T . We formalize this notion by equipping
P with a partial order ≤. The order is only partial as not every pair of states may be
comparable. It is natural to read a ≤ b in this paper as b is a worse (or less desirable) state
than a. The state space 2V in M.0 is ordered by set inclusion ⊆.

We expect two properties from the dynamics driving the systems. We require the
dynamics to be progressive. The system may only evolve to a state considered less desirable
than its initial state. We also require undesirability to be preserved during an evolution.
The less desirable the initial state of a system is, the less desirable the final state (that the
system evolves to) will be. We force each map f : P → P governing the dynamics to satisfy
two axioms:

A.1: If a ∈ P , then a ≤ fa.
A.2: If a, b ∈ P and a ≤ b, then fa ≤ fb.

The map X 7→ X ∪ N(X) in M.0 satisfies both A.1 and A.2 as S ⊆ S ∪ N(S), and
S ∪N(S) ⊆ S′ ∪N(S′) if S ⊆ S′.

Our interest lies in the limiting outcome of the dynamics, and the understanding we
wish to develop may be solely based on the asymptotic behavior of the system. In M.0,
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we are interested in the set Xm for m large enough as a function of X0. As V is finite, it
follows that Xm = X|V | for m ≥ |V |. We are thus interested in the map g|V | : X0 7→ X|V |.
More generally, as iterative composition of a map satisfying A.1 and A.2 eventually yields
idempotent maps, we equip the self-maps f on P with a third axiom:

A.3: If a ∈ P , then ffa = fa.

Our class of interest is the (self-)maps (on P ) satisfying the axioms A.1, A.2 and A.3. Each
system will be identified with one such map. The system generated from an instance of M.0
corresponds to the map X0 7→ X|V |.

The axioms A.1, A.2 and A.3 naturally permeate a number of areas of mathematics and
logic. Within metamathematics and (universal) logic, Tarski introduced these three axioms
(along with supplementary axioms) and launched his theory of consequence operator (see
[Tar36] and [Tar56]). He aimed to provide a general characterization of the notion of
deduction. As such, if S represents a set of statements taken to be true (i.e. premises),
and Cn(S) denotes the set of statements that can be deduced to be true from S, then Cn
(as an operator) obeys A.1, A.2 and A.3. Many familiar maps also adhere to the axioms.
As examples, we may consider the function that maps (i) a subset of a topological space
to its topological closure, (ii) a subset of a vector space to its linear span, (iii) a subset
of an algebra (e.g. group) to the subalgebra (e.g. subgroup) it generates, (iv) a subset
of a Euclidean n-space to its convex hull. Such functions may be referred to as closure
operators (see e.g. [Bir36], [Bir67], [Ore43] and [War42]), and are typically objects of study
in universal algebra.

Goal and Contribution of the Paper. This paper has three goals. The first is to
introduce and motivate the class of systems. The second is to present some properties of
the systems, and develop preliminary tools for the analysis. The third is to construct a
setup for cascading failure, and illustrate initial insight into the setup. The paper will not
deliver an exhaustive exposition. It will introduce the concepts and augment them with
enough results to allow further development.

We illustrate the contribution through M.0. We define f and g to be the systems
derived from two instances (V,A) and (V,A′) of M.0.

We establish that our systems are uniquely identified with their set of fixed points. We
can reconstruct f knowing only the sets S containing N(S) (i.e. the fixed points of f) with
no further information on (V,A). We further provide a complete characterization of the
systems through the fixed points. The characterization yields a remarkable conceptual and
analytical simplification in the study.

We equip the systems with a lattice structure, uncover operators (+ and ·) and express
complex systems through formulas built from simpler systems. The + operator combines the
effect of systems, possibly derived from different models. The system f + g, as an example,
is derived from (V,A ∪ A′). The · operator projects systems onto each other allowing, for
instance, the recovery of local evolution rule. We fundamentally aim to extract properties of
f+g and f ·g through properties of f and g separately. We show that + and · lend themselve
to well behaved operations when systems are represented through their fixed-points.

We realize the systems as interlinked components and formalize a notion of cascade
effects. Nodes in V are identified with maps e1, · · · , e|V |. The system f · ei then defines the
evolution of the color of node i as a function of the system state, and is identified with the
set of nodes that reach i in (V,A).
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We draw a connection between shocks and systems, and enhance the theory with a
notion of failure. We show that minimal shocks (that fail a system h) exhibit a unique
property that uncovers complement subsystems in h, termed weaknesses. A system is
shown to be injectively decomposed into its weaknesses, and any weakness in h+ h′ cannot
result but from the combination of weaknesses in h and h′.

We introduce a notion of µ-rank of a system—akin to the (analytic) notion of a norm
as used to capture the energy of a system—and show that such a notion is unique should
it adhere to natural principles. The µ-rank is tied to the number of connected components
in (V,A) when A is symmetric.

We finally set to understand the minimal amount of effort required to fail a system,
termed resilience. Weaknesses reveal a dual (equivalent) quantity, termed fragility, and
further puts resilience and µ-rank on comparable grounds. The fragility is tied to the size
of the largest connected component in (V,A) when A is symmetric. It is thus possible to
formally define high ranked systems that are not necessarily fragile. The combination of
systems sets a limit on the amount of fragility the new system inherits. Combining two
subsystems cannot form a fragile system, unless one of the subsystems is initially fragile.

Outline of the Paper. Section 2 presents mathematical preliminaries. We characterize
the systems in Section 3, and equip them with the operators in Section 4. We discuss
component realization in Section 5, and derive properties of the systems lattice in Section
6. We discuss cascade effects in Section 7, and provide connections to formal methods in
Section 8. We consider cascading failure and resilience in Section 9, and conclude with some
remarks in Section 10.

2. Mathematical Preliminaries

A partially ordered set or poset (P,≤) is a set P equipped with a (binary) relation ≤ that
is reflexive, antisymmetric and transitive. The element b is said to cover a denoted by a ≺ b
if a ≤ b, a 6= b and there is no c distinct from a and b such that a ≤ c and c ≤ b. A poset
P is graded if, and only if, it admits a rank function ρ such that ρ(a) = 0 if a is minimal
and ρ(a′) = ρ(a) + 1 if a ≺ a′. The poset (P,≤) is said to be a lattice if every pair of
elements admits a greatest lower bound (meet) and a least upper bound (join) in P . We
define the operators ∧ and ∨ that sends a pair to their meet and join respectively. The
structures (P,≤) and (P,∧,∨) are then isomorphic. A lattice is distributive if, and only if,
(a∨ b)∧ c = (a∧ c)∨ (b∧ c) for all a, b and c. The pair (a, b) is said to be a modular pair if
c ∨ (a ∧ b) = (c ∨ a) ∧ b whenever c ≤ b. A lattice is modular if all pairs are modular pairs.
Finally, a finite lattice is (upper) semimodular if, and only if, a ∨ b covers both a and b,
whenever a and b cover a ∧ b.

Notation. We denote f(g(a)) by fga, the composite ff by f2, and the inverse map of f
by f−1. We also denote f(i) by fi when convenient.
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3. The Class of Systems

The state space is taken to be a finite lattice (P,≤). We consider in this paper only posets
(P,≤) that are lattices, as opposed to arbitrary posets. It is natural to read a ≤ b in this
paper as b is a worse (or less desirable) state than a. The meet (glb) and join (lub) of a
and b will be denoted by a ∧ b and a ∨ b respectively. A minimum and maximum element
exist in P (by finiteness) and will be denoted by p̌ and p̂ respectively.

A system is taken to be a map f : P → P satisfying:

A.1: If a ∈ P , then a ≤ fa.
A.2: If a, b ∈ P and a ≤ b, then fa ≤ fb.
A.3: If a ∈ P , then ffa = fa.

The set of such maps is denoted by LP or simply by L when P is irrelevant to the context.
This set is necessarily finite as P is finite.

Note on Finiteness. Finiteness is not essential to the development in the paper; complete-
ness can be used to replace finiteness when needed. We restrict the exposition in this paper
to finite cases to ease non-necessary details. As every finite lattice is complete, we will make
no mention of completeness throughout.

3.1. Models and Examples. The axioms A.1 and A.2 hold for typical “models” adopted
for cascade effects. We present three models (in addition to M.0 provided in Section 1)
supported on the Boolean lattice, two of which—M.1 and M.3—are standard examples (see
[Gra78], [Kle07] and [Mor00]). It can be helpful to identify a set 2S with the set of all black
and white colorings on the objects of S. A subset of S then denotes the objects colored
black. The model M.1 generalizes M.0 by assigning thresholds to nodes in the graph. Node
i is colored black when the number of neighbors colored black surpasses its threshold. The
model M.2 is noncomparable to M.0 and M.1, and the model M.3 generalizes all of M.0, M.1
and M.2.

M.1. Given a digraph over a set S or equivalently a map N : S → 2S, a map k : S → N

and a subset X0 of S, let X1,X2, · · · be subsets of S recursively defined such that i ∈ Xm+1

if, and only if, either |Ni ∩Xm| ≥ ki or i ∈ Xm.

M.2. Given a collection C ⊆ 2S for some set S, a map k : C → N and a subset X0 of S,
let X1,X2, · · · be subsets of S recursively defined such that i ∈ Xm+1 if, and only if, either
there is a C ∈ C containing i such that |C ∩Xm| ≥ kc or i ∈ Xm.

M.3. Given a set S, a collection of monotone maps φi (one for each i ∈ S) from 2S into
{0, 1} (with 0 < 1) and a subset X0 of S, let X1,X2, · · · be subsets of S recursively defined
such that i ∈ Xm+1 if, and only if, either φi(Xm) = 1 or i ∈ Xm.

We necessarily have X|S| = X|S|+1 in the three cases above, and the map X0 7→ X|S| is
then in L2S . The dynamics depicted above may be captured in a more general form.

M.4. Given a finite lattice L, an order-preserving map h : L → L, and x0 ∈ L, let
x1, x2, · · · ∈ L be recursively defined such that xm+1 = xm ∨ h(xm).

We have x|L| = x|L|+1 and the map x0 7→ x|L| is in LL.
The axioms allow greater variability if the state space is modified or augmented accord-

ingly. Nevertheless, this paper is only concerned with systems of the above form.
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Note on Realization. Modifications of instances of M.i (e.g. altering values of k in M.1) may
not alter the system function. As the interest lies in understanding universal properties of
final evolution states, the analysis performed should be invariant under such modifications.
However, analyzing the systems directly through their form (as specified through M.0, M.1,
M.2 and M.3) is bound to rely heavily on the representation used. Introducing the axioms
and formalism enables an understanding of systems that is independent of their representa-
tion. It is then a separate question as to whether or not a system may be realized through
some form, or whether or not restrictions on form translate into interesting properties on
systems. Not all systems supported on the Boolean lattice can be realized through the form
M.0, M.1 or M.2. However, every system in L2S may be realized through the form M.3.
Indeed, if f ∈ L2S , then for every i ∈ S define φi : 2

S → {0, 1} where φi(a) = 1 if, and
only if, i ∈ f(a). The map φi is monotone as f satisfies A.2. Realization is further briefly
discussed in Section 5.

3.2. Context, Interpretation and More Examples. A more realistic interpretation
of the models M.i comes from a more realistic interpretation of the state space. This
work began as an endeavor to understand the mathematical structure underlying models of
diffusion of behavior commonly studied in the social sciences. The setup there consists of a
population of interacting agents. In a societal setting, the agents may refer to individuals.
The interaction of the agents affect their behaviors or opinions. The goal is to understand
the spread of a certain behavior among agents given certain interaction patterns. Threshold
models of behaviors (captured by M.0, M.1, M.2 and M.3) have appeared in the work of
Granovetter [Gra78], and more recently in [Mor00]. Such models are key models in the
literature, and have been later considered by computer scientists, see. e.g., [Kle07] for an
overview.

The model described by M.1 is known as the linear threshold model. An individual
adopts a behavior, and does not change it thereafter, if at least a certain number of its
neighbors adopts that behavior. Various variations can also be defined, see e.g. M.2 and
M.3, and again [Kle07] for an overview. The cascading intuition in all the variations however
remains unchanged. These models can generally be motivated through a game theoretic
setup. We will not be discussing such setups in this paper. The no-recovery aspect of the
models considered may be further relaxed by introducing appropriate time stamps. One
such connection is described in [Kle07]. We are however interest in the instances where
no-recovery occurs.

The models may also be given an interpretation in epidemiology. Every agent may either
be healthy or infected. Interaction with an infected individual causes infections. This is in
direct resemblance to M.0. Stochastics can also be added, either for a realistic approach
or often for tractability. There is also a vast literature on processes over graphs, see e.g.,
[Dur07] and [New10]. Our aim is to capture the consequential effects that are induced by
the interaction of several entities. We thus leave out any stochatics for the moment; they
may be added later with technical work.

On a different end, inspired by cascading failure in electrical grids, consider the following
simple resistive circuit. The intent is to guide the reader into a more realistic direction.
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L1 L2

−
+

If line L2 is disconnected from the voltage source, then line L1 will also be disconnected from
the source. Indeed, the current passing through L1 has to pass through L2. The converse
is, of course, not true. This interdependence between L1 and L2 is easily captured by a
system in L2{L1,L2} . More general dependencies (notably failures caused by a redistribution
of currents) can be captured, and concurrency can be taken care of by going to power sets.
Indeed, M.0 also captures general reachability problems, where a node depicts an element of
the state space. Specifically, let S be a set of states of some system, and consider a reflexive
and transitive relation → such that a→ b means that state b is reachable from state a. The
map 2S → 2S where A 7→ {b : a→ b for some a ∈ A} satsfies A.1, A.2, and A.3 when 2S is
ordered by inclusion.

This work abstracts out the essential properties that gives rise to these situations. The
model M.3 depicts the most general form over the boolean lattice. In M.3, the set S can
be interpreted to contain n events, and an element of 2S then depicts which events have
occured. A system is then interpreted as a collection of (monotone) implications: if such
and such event occurs, then such event occurs. The more general model M.4 will be evoked
in Section 8, while treating connections to formal methods and semantics of programming
languages.

On Closure Operators. As mentioned in the introduction, the maps satisfying A.1, A.2
and A.3 are often known as closure operators. On one end, they appeared in the work
of Tarski (see e.g., [Tar36] and [Tar56]). On another end, they appeared in the work of
Birkhoff, Ore and Ward (see e.g., [Bir36], [Ore43] and [War42], respectively). The first
origin reflects the consequential relation in the effects considered. The second origin reflects
the theory of interaction of multiple systems. Closure operators appear as early as [Moo10].
They are intimately related to Moore families or closure systems (i.e., collection of subsets
of S containing S and closed under intersection) and also to Galois connections (see e.g.,
[Bir67] Ch. V and [Eve44]). Every closure operator corresponds to a Moore family (see e.g.,
Subsection 3.3). This connection will be extensively used throughout the paper. Most of
the properties derived in Sections 3 and 4 can be seen to appear in the literature (see e.g.
[Bir67] Ch. V and [CM03] for a recent survey). They are very elementary, and will be easily
and naturally rederived whenever needed. Furthermore, every Galois connection induces
one closure operator, and every closure operator arises from at least one Galois connection.
Galois connection will be briefly discussed in Section 7. They will not however play a major
explicit role in this paper.

3.3. The Fixed Points of the Systems. As each map in L sends each state to a respective
fixed point, a grounded understanding of a system advocates an understanding of its fixed
points. We develop such an understanding in this subsection, and characterize the systems
through their fixed points. Let Φ be the map f 7→ {a : fa = a} that sends a system to its
set of fixed points.
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Proposition 3.1. If f 6= g then Φf 6= Φg.

Proof. If Φf = Φg, then ga ≤ gfa = fa and fa ≤ fga = ga for each a. Therefore f = g.

It is obvious that each state is mapped to a fixed point; it is less obvious that, know-
ing only the fixed points, the system can be reconstructed uniquely. It seems plausible
then to directly define systems via their fixed point, yet doing so inherently supposes an
understanding of the image set of Φ.

Proposition 3.2. If f ∈ LP , then p̂ ∈ Φf .

Proof. Trivially p̂ ≤ f p̂ ≤ p̂.

Furthermore,

Proposition 3.3. If a, b ∈ Φf , then a ∧ b ∈ Φf .

Proof. It follows from A.2 that f(a ∧ b) ≤ fa and f(a ∧ b) ≤ fb. If a, b ∈ Φf , then
f(a ∧ b) ≤ fa ∧ fb = a ∧ b. The result follows as a ∧ b ≤ f(a ∧ b).

In fact, the properties in Propositions 3.2 and 3.3 fully characterize the image set of Φ.

Proposition 3.4. If S ⊆ P is closed under ∧ and contains p̂, then Φf = S for some
f ∈ LP .

Proof. Construct f : a 7→ inf{b ∈ S : a ≤ b}. Such a function is well defined and satisfies
A.1, A.2 and A.3.

It follows from Propositions 3.2 and 3.3 that Φf forms a lattice under the induced
order ≤. This conclusion coincides with that of Tarski’s fixed point theorem (see [Tar55]).
However, one additional structure is gained over arbitrary order-preserving maps. Indeed,
the meet operation of the lattice (Φf,≤) coincides with that of the lattice (P,≤).

Example 3.5. Let f : 2V → 2V be the system derived from an instance (V,A) of M.0. The
fixed points of f are the sets S ⊆ V such that S ⊇ N(S). If S and T are fixed points of f ,
then S ∩T is a fixed point of f . Indeed, the set S ∩T contains N(S ∩T ). The map f sends
each set T to the intersection of all sets S ⊇ T ∪N(S). Although every collection C of sets
in 2V closed under ∩ and containing V can form a system, it will not always be possible to
find a digraph where C coincides with the sets S ⊇ N(S). The model M.0 is not complex
enough to capture all possible systems.

The space L is thus far only a set, with no further mathematical structure. The theory
becomes lively when elements of L become related.

3.4. Overview Through an Example. We illustrate some main ideas of the paper
through an elementary example. The example will run throughout the paper, revisited
in each section to illustrate its corresponding notions and results. The example we consider
is the following (undirected) instance of M.1:

A,2

B,1

C,2
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The nodes are labeled A, B and C. Each node I is tagged with an integer kI that
denotes a threshold. Each node can then be in either one of two colors: black or white.
Node I is colored black (and stays black forever) when at least kI neighbors are black. In
our example, node A (resp. C) is colored black when both B and C (resp. A) are black.
Node B is colored black when either A or C are black. A node remains white otherwise.

The set underlying the state space is the set of possible colorings of nodes. Each coloring
may be identified with a subset of {A,B,C} containing the black colored nodes. The state
space will then be identified with 23, the set of all subsets of {A,B,C}. The set 23 admits
a natural ordering by inclusion (⊆) that turns it into a lattice. It may then be represented
through a Hasse diagram as:

ABC

aBCAbCABc

AbCaBcAbc

abc

Notation: We denote subsets of {A,B,C} as strings of letters. Elements in the set
are written in uppercase, while elements not in the set are written in lowercase. Thus aBC,
Abc and abc denote {B,C}, {A} and {} respectively. The string AC (with b/B absent)
denotes both AbC and ABC.

The system derived from our example is the map f : 23 → 23 satisfying A.1, A.2 and
A.3 such that A 7→ ABC, C 7→ ABC and all remaining states are left unchanged. The
fixed points of f yield the following representation.

×

◦◦◦

◦×◦

×

We indicate, on the diagram, a fixed point by × and a non-fixed point by ◦.

3.5. On the System Maps and their Interaction. As mentioned in the introduction,
the systems of interest consist of a collection of states along with internal dynamics. The
collection of states is a finite set P . The dynamics dictate the evolution of the system
through the states and are governed by a class K of maps P → P . The class K is closed
under composition, contains the identity map and satisfies:

P.1: If a 6= b and fa = b for some f ∈ K, then gb 6= a for every g ∈ K.
P.2: If gfa = b for some f, g ∈ K, then hga = b for some h ∈ K.

The principles P.1 and P.2 naturally induce a partial order ≤ on the set P . The principles
P.1 and P.2 further force the functions to be well adapted to this order.

Proposition 3.6. There exists a partial order ≤ on P such that for each f ∈ K:
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A.1: If a ∈ P , then a ≤ fa.
A.2: If a, b ∈ P and a ≤ b, then fa ≤ fb.

Proof. Define a relation ≤ on P such that a ≤ b if, and only if, b = fa for some f ∈ K.
The relation ≤ is reflexive and transitive as K is closed under composition and contains the
identity map, respectively. Both antisymmetry and A.1 follow from P.1. Finally, if a ≤ b,
then b = ga for some g. It then follows by P.2 that fb = fga = hfa for some h. Therefore,
fa ≤ fb.

We only alluded that the maps in K will govern our dynamics. No law of interaction
is yet specified as to how the maps will govern the dynamics. As the state space is finite,
the interaction may be motivated by iterative (functional) composition. For some map
φ : N → K, the system starts in a state a0 and evolves through a1, a2, · · · with ai+1 = φiai.
We reveal properties of such an interaction.

Let φ : N → S ⊆ K be a surjective map, and define a map Fi recursively as F1 = φ1
and Fi+1 = φi+1Fi.

Proposition 3.7. For some M , we have Fm = FM for m ≥M .

Proof. It follows from A.1 that F1a ≤ F2a ≤ · · · . The result then follows from finiteness of
P .

Proposition 3.8. The map FM is idempotent if φ−1f is a non-finite set for each f ∈ S.

Proof. If φ−1f is non-finite, then fF = F . If φ−1f is non-finite for all f ∈ S, then FF = F
as F is the finite composition of maps in S.

Let ψ : N → S be another surjective map, and define a map Gi recursively as G1 = φ1
and Gi+1 = φi+1Gi. For some N , we necessarily get GN = Gn for n ≥ N .

Proposition 3.9. It follows that FM = GN , if φ−1f and ψ−1f are non-finite sets for each
f ∈ S.

Proof. Define F = FM and G = GN . As F and G are idempotent, then FG = G and
GF = F . Therefore Fa ≤ FGa = Ga and Ga ≤ GFa = Fa.

The maps governing the dynamics are to be considered as intrinsic mechanism wired
into the system. The effect of each map should not die out along the evolution of the system,
but should rather keep on resurging. Such a consideration hints to an interaction insisting
each map to be applied infinitely many times. There is immense variability in the order of
application. However, we only want to care about the limiting outcome of the dynamics.
By Proposition 3.9, such a variability would then make no difference from our standpoint.
We further know, through Proposition 3.8, that iterative composition in this setting cannot
lead but to idempotent maps. We then impose—with no loss in generality—a third principle
(P.3) on K to contain only idempotent maps. This principle gives rise to a third axiom.

A.3: For a ∈ P , ffa = fa.

We define LP to be the set of maps satisfying A.1, A.2 and A.3. The set LP is closed
under composition and contains each element of K with P.3 imposed, including the identity
map. Furthermore, the principles P.1, P.2 and P.3 remain satisfied if K is replaced by
LP . We will then extend K to be equal to LP . This extension offers greater variability
in dynamics, and there is no particular reason to consider any different set. We further
consider only posets (P,≤) that are lattices, as opposed to arbitrary posets.
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4. The Lattice of Systems

The theory of cascade effects presented in this paper is foremost a theory of combinations
and interconnections. As such, functions shall be treated in relation to each other. The
notion of desirability on states introduced by the partial order translates to a notion of
desirability on systems. We envision that systems combined together should form less
desirable systems, i.e. systems that more likely to evolve to less desirable states. Defining
an order on the maps is natural to formalize such an intuition. We define the relation ≤ on
L, where f ≤ g if, and only if, fa ≤ ga for each a.

Proposition 4.1. The relation ≤ is a partial order on L, and the poset (L,≤) is a lattice.

Proof. The reflexivity, antisymmetry and transitivity properties of ≤ follow easily from A.1
and A.2. If f, g ∈ L, then define h : a 7→ fa ∧ ga. It can be checked that h ∈ L. Let h′ be
any lower bound of f and g, then h′a ≤ fa and h′a ≤ ga. Therefore h′a ≤ fa ∧ ga = ha,
and so every pair in L admits a greatest lower bound in L. Furthermore, the map a 7→ p̂ is
a maximal element in L. The set of upper bounds of f and g in L is then non-empty, and
necessarily contains a least element by finiteness. Every pair in L then also admits a least
upper bound in L.

We may then deduce join and meet operations denoted by + (combine) and · (project)
respectively. The meet of a pair of systems was derived in the proof of Proposition 4.1.

Proposition 4.2. If f, g ∈ L, then f · g is a 7→ fa ∧ ga.

On a dual end,

Proposition 4.3. If f, g ∈ L, then f + g is the least fixed point of the map h 7→ (fg)h(fg).

As P is finite, it follows that f + g = (fg)|P |.

Proof. Define h0 = (fg)|P |. Since the map fg satisfies A.1 and A.2, then h0 satisfies A.1 and

A.2. Furthermore, iterative composition yields (fg)|P |+1 = (fg)|P |. Then h0 is idempotent
i.e. satisfies A.3. The map h0 is then a fixed point of h 7→ (fg)h(fg). Moreover, every
upperbound on f and g is a fixed point of h 7→ (fg)h(fg). Let h′ be such an upperbound,
then fh′ = h′ and gh′ = h′. It follows that h0h

′ = h′ i.e. h0 ≤ h′.

The lattice LP has a minimum and a maximum as it is finite. The minimum element
(denoted by 0 or 0p) corresponds to the identity map a 7→ a. The maximum (denoted by 1
or 1p) corresponds to a 7→ p̂.

4.1. Interpretation and Examples. The + operator yields the most desirable system
incorporating the effect of both of its operands. The · operator dually yields the least
desirable system whose effects are contained within both of its operands. Their use and
significance is partially illustrated through the following six examples.

Example 0. Intuitive interpretation of the + operator. The + operation combines the rules
of the systems. If each of f and g is seen to be described by a set of monotone deduction rules,
then f + g is the system that is obtained from the union of these sets of rules. The intuitive
picture of combining rules may also found in the characterization f + g = (fg)|P |. Both
rules of f and g are iteratively applied on an initial state to yield a final state. Furthermore,
the order of composition does not affect the final state, as long as each system is applied
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enough times. This insight follows from the interaction of A.1 and A.2, and is made formal
in Subsection 3.5.

In a societal setting, each agent’ state is governed by a set of local rules. Every such
set only affects the state of its corresponding agent. The aggregate (via +) of all the local
rules then defines the whole system. It allows for an interaction between the rules, and
makes way for cascade effects to emerge. In the context of failures in infrastructure, the
+ operator enables adding new conditions for failure/disconnections in the system. This
direction of aggregating local rules is further pursued in Section 5 on component realization.
The definition of cascade effects is further expounded in Section 7. The five examples to
follow also provide additional insight.

Example 1. Overview on M.0. Let f and f ′ be systems derived from instances (V,A) and
(V,A′) of M.0. If A′ ⊆ A, then f ′ ≤ f . If A′ and A are non-comparable, an inequality may
still hold as different digraphs may give rise to the same system. The system f + f ′ is the
system derived from (V,A∪A′). The system f · f ′ is, however, not necessarily derived from
(V,A∩A′). If (V,A) is a directed cycle and (V,A′) is the same cycle with the arcs reversed,
then f = f ′ while (V,A ∩A′) is the empty graph and yields the 0 system.

Example 2. Combining Update Rules. Given a set S, consider a subset Ni ⊆ S and an
integer ki for each i ∈ S. Construct a map fi that maps X to X ∪ {i} if |X ∩Ni| ≥ ki and
to X otherwise. Finally, define the map f = f1 + · · · + fn. The map f can be realized by
an instance of M.1, and each of the fi corresponds to a local evolution rule.

Example 3. Recovering Update Rules. Given the setting of the previous example, define the
map ei : X 7→ X ∪ {i}. This map enables the extraction of a local evolution rule. Indeed,
i ∈ (f · ei)X0 if, and only if, i ∈ fX0. However, if j 6= i, then j ∈ (f · ei)X0 if, and only if,
j ∈ X0. It will later be proved that f = f · e1 + · · · + f · en. The system f can be realized
as a combination of evolution rules, each governing the behavior of only one element of S.

Example 4. An Instance of Boolean Systems. Consider the following two instances of M.4,
where L is the Boolean lattice. Iteration indices are dropped in the notation.

x1 := x1 ∨ (x2 ∧ x3) x1 = x1

x2 := x2 ∨ x3 x2 = x2 ∨ x3

x3 := x3 x3 = x3 ∨ (x1 ∧ x2)

Let f and g denote the system maps generated by the right and left instances. The maps
f + g (left) and f · g (right) can then be realized as:

x1 := x1 ∨ (x2 ∧ x3) x1 = x1

x2 := x2 ∨ x3 x2 = x2 ∨ x3

x3 := x3 ∨ (x1 ∧ x2) x3 = x3

The map f · g is the identity map.
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Example 5. Closure under Meet and Join. If f and g are derived from instances of M.1,
then neither f + g nor f · g are guaranteed to be realizable as instances of M.1. If they
are derived from instances of M.2, then only f + g is necessarily realizable as an instance
of M.2. As all systems (over the Boolean lattice) can be realized as instances of M.3, both
f + g and f · g can always be realized as instances of M.3.

As an example, we consider the case of M.2. If (Cf , kf ) and (Cg, kg) are realizations of
f and g as M.2, then (Cf ∪ Cg, k) is a realization of f + g, with k being kf on Cf and kg
on Cg. However, let S = {a, b, c} be a set, and consider Cf = {{a, b}} with kf = 1, and
Cg = {{b, c}} with kg = 1. The set {a, c} is not a fixed-point of f · g. Thus, if a realization
(Cf ·g, k) of f · g is possible, then {a, b, c} ∈ Cf ·g with k ≤ 2. However, both {a, b} and {b, c}
are fixed-points of f · g, contradicting such a realization.

4.2. Effect of the Operators on Fixed Points. The fixed point characterization uncov-
ered thus far is independent of the order on LP . The map Φ : f 7→ {a : fa = a} is also well
behaved with respect to the + and · operations. For S, T ⊆ P , we define their set meet
S ∧ T to be {a ∧ b : a ∈ S and b ∈ T}.

Proposition 4.4. If f, g ∈ L, then Φ(f + g) = Φf ∩ Φg and Φ(f · g) = Φf ∧Φg.

Proof. If a ∈ Φf ∩Φg, then ga ∈ Φf . As fga = a, it follows that a ∈ Φ(f + g). Conversely,
as (f + g)g = (f + g), if (f + g)a = a, then (f + g)ga = a and so ga = a. By symmetry,
if (f + g)a = a, then fa = a. Thus if a ∈ Φ(f + g), then a ∈ Φf ∩ Φg. Furthermore,
(f · g)a = a if, and only if, fa ∧ ga = a and the result Φ(f · g) = Φf ∧ Φg follows.

Combination and projection lend themselves to simple operations when the maps are
viewed as a collection of fixed points. Working directly in ΦL will yield a remarkable
conceptual simplification.

4.3. Summary on Fixed Points: The Isomorphism Theorem. Let F be the collection
of all S ⊆ P such that p̂ ∈ S and a ∧ b ∈ S if a, b ∈ S. Ordering F by reverse inclusion ⊇
equips it with a lattice structure. The join and meet of S and T in F are, respectively, set
intersection S ∩ T and set meet S ∧ T = {a∧ b : a ∈ S and b ∈ T}. The set S ∧ T may also
be obtained by taking the union of S and T and closing the set under ∧.

Theorem 4.5. The map Φ : f 7→ {a : fa = a} defines an isomorphism between (L,≤,+, ·)
and (F ,⊇,∩,∧).

Such a result is well known in the study of closure operators, and is relatively simple.
We refer the reader, for instance, to [Bir36], [Ore43] and [War42] for pieces of this theorem,
and to [Bir67] Ch V and [CM03] for a broader overview, more insight and references. Nev-
ertheless, the implications of it on the theory at hand can be remarkable. Our systems will
be interchangeably used as both maps and subsets of P . The isomorphism enables a concep-
tual simplification, that enables emerging objects to be interpreted as systems exhibiting
cascade effects.
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4.4. Overview Through An Example (Continued). We continue the running example.
Our example is realized as a combination of three evolution rules: one pertaining to each
node. For instance, the rule of node A may be realized as:

A,2

B,3

C,3

The threshold 3 is just a large enough integer so that the colors of node B or node C do
not change/evolve, regardless of the coloring on the graph. The system derived from such
a realization is the map fA : 23 → 23 satisfying A.1, A.2 and A.3 such that BC 7→ ABC
and all remaining states are left unchanged. A fixed point representation yields:

×

◦××

×××

×

Similarly the maps fB and fC derived for the rules of B and C are represented (respec-
tively from left to right) through their fixed points as:

×

×◦×

◦×◦

×

×

××◦

×××

×

Our overall descriptive rule of the dynamics is constructed by a descriptive combination
of the evolution rules of A, B and C. With respect to the objects behind those rules,
the overall system is obtained by a + combination of the local systems. Indeed we have
f = fA+ fB + fC , and such a combination is obtained by only keeping the fixed points that
are common to all three systems.

5. Components Realization

The systems derived from instances of “models” forget all the componental structure de-
scribed by the model. Nodes in M.0 and M.1 are bundled together to form the Boolean
lattice, and the system is a monolithic map from 2V to 2V . We have not discussed any
means to recover components and interconnection structures from systems. We might want
such a recovery for at least two reasons. First, we may be interested in understanding
specific subparts of the modeled system. Second, we may want to realize our systems as
instances of other models. In state spaces isomorphic to 2S for some S, components may
often be identified with the elements of S. In the case of M.0 and M.1, the components are
represented as nodes in a graph. Yet, two elements of S might also be tightly coupled as to
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form a single component. It is also less clear what the components can be in non-Boolean
lattices as state spaces. We formalize such a flexibility by considering the set E of all maps
0q × 1q′ in LQ×LQ′ ⊆ LQ×Q′ for Q×Q′ = P . The map 0q × 1q′ sends (q, q′) ∈ Q × Q′ to
(q, q̂′) where q̂′ is the maximum element of Q′. Indeed, the system 0q, being the identity,
keeps q unchanged in Q. The system 1q′ , being the maximum system, sends q′ to the max-
imum element q̂′ of Q′. We refer to the maps of E as elementary functions (or systems). A
component realization of P is a collection of systems eA, · · · , eH in E where:

eA + · · ·+ eH = 1

eI · eJ = 0 for all I 6= J

For a different perspective, we consider a direct decomposition of P into lattices A, · · · ,H
such that A× · · · ×H = P . An element t of P can be written either as a tuple (tA, · · · , tH)
or as a string tA · · · tH . If (tA, · · · , tH) and (t′A, · · · , t

′
H) are elements of P , then:

(tA, · · · , tH) ∨ (t′A, · · · , t
′
H) = (tA ∨ t′A, · · · , tH ∨ t′H) (5.1)

(tA, · · · , tH) ∧ (t′A, · · · , t
′
H) = (tA ∧ t′A, · · · , tH ∧ t′H). (5.2)

Indeed, the join (resp. meet) in the product lattice, is the product of the joins (resp. meets) in

the factor lattices. Maps eA, · · · , eH can be defined as eI : ti 7→ t̂i, that keeps t unchanged
and maps i to the maximum element î of I. These maps belongs to LP , and together
constitute a component realization as defined above. Conversely, each component realization
gives rise to a direct decomposition of P .

Theorem 5.1. Let eA, · · · , eH be a component realization of P . If f ∈ LP , then f =
f · eA + · · · + f · eH .

Proof. It is immediate that f · eA + · · ·+ f · eH ≤ f . To show the other inequality, consider
t /∈ Φf . Then tI 6= (ft)I for some I. Furthermore, if t′ ≥ t with t′I = tI , then t′ /∈ Φf .
Assume t ∈ Φ(f · eI), then t = s ∧ r for some s ∈ Φf and r ∈ ΦeI . It then follows that

rI = î, the maximum element of I. Therefore sI = tI and s ≥ t contradicting the fact that
s ∈ Φf .

The map f · eI may evolve only the I-th component of the state space.

Proposition 5.2. If s ∈ P is written as ti, then (f · eI)s = t(fs)I , where (fs)I is the
projection of fs onto the component I.

Proof. We have (f · eI)s = fs ∧ eIs = f(ti) ∧ t̂i = t(fs)I . The last equality follows from
Equation 5.2.

It is also the evolution rule governing the state of component I as a function of the full
system state.

Proposition 5.3. Let eA, · · · , eH be a component realization of P . If f ∈ LP , then fa =
(f · eA)a ∨ · · · ∨ (f · eH)a for every a ∈ P .

Proof. It is immediate that (f · eA)a ∨ · · · ∨ (f · eH)a ≤ fa. The other inequality follows
from combining Proposition 5.2 and Equation 5.1.
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Example 5.4. Let f be the system derived from an instance (V,A) of M.0. We consider
the maps ei : X 7→ X ∪ {i} for i ∈ V . The collection {ei} forms a component realization
where ei corresponds to node i in the graph. The system f · ei may be identified with the
ancestors of i, namely, nodes j where a directed path from j to i exists. A realization (in
the form of M.0) of f · ei then colors i black whenever any ancestor of it is black, leaving
the color of all other nodes unchanged. Combining the maps f · ei recovers the map f .

Interconnection structures (e.g. digraphs as used in M.1) may be further derived by
defining projection and inclusion maps accordingly and requiring the systems to satisfy
some fixed-point conditions. Such structures can be interpreted as systems in LLP

. They
will not be considered in this paper.

5.1. Defining Cascade Effects. Given a component realization eA, · · · , eH , define a col-
lection of maps fA, · · · , fH where fI ≤ eI dictates the evolution of the state of compo-
nent I as a function of P . These update rules are typically combined to form a system
f = fA + · · · + fH . Cascade effects are said to occur when f · eI 6= fI for some I. The
behavior governing a certain (sub)system I is enhanced as this component is embedded
into the greater system. We should consider the definition provided, in this subsection, as
conceptually illustrative rather than useful and complete. The main goal of the paper is to
define a class of systems exhibiting cascade effects. It is not to define what cascade effects
are. We instead refer the reader to [Ada17] for an actionable definition and a study of these
effects. We will however revisit this definition in Section 7 with more insight.

The conditions under which such effects occurs depend on the properties of the opera-
tions. If · distributes over +, then this behavior is never bound to occur; this will seldom
be the case as will be shown in the next section.

5.2. Overview Through An Example (Continued). We continue the running example.
On a dual end, if we wish to view the nodes A, B and C as distinct entities, we may define
a component realization eA, eB and eC represented (respectively from left to right) as:

×

◦××

◦◦×

◦

×

×◦×

◦×◦

◦

×

××◦

×◦◦

◦

Local evolution rules may be recovered through the systems f · eA, f · eB and f · eC .
Those are likely to be different than fA, fB and fC as they also take into account the effects
resulting from their combination. The systems f · eA, f · eB and f · eC are generated by
considering Φf ∪ΦeI and closing this set under ∩. They are represented (respectively from
left to right) as:
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×

◦××

◦××

×

×

×◦×

◦×◦

×

×

××◦

××◦

×

The system f · eA captures the fact that node A can become black if only C is colored
black. A change in fA would, however, require both B and C to be black. Recombining the
obtained local rules is bound to recover the overall system, and indeed f = f ·eA+f ·eB+f ·eC
as can be checked by keeping only the common fixed points.

6. Properties of the Systems Lattice

Complex systems will be built out of simpler systems through expressions involving + and
·. The power of such an expressiveness will come from the properties exhibited by the
operators. Those are trivially derived from the properties of the lattice L itself.

Proposition 6.1. The following propositions are equivalent. (i) The set P is linearly
ordered. (ii) The lattice LP is distributive. (iii) The lattice LP is modular.

Proof. Property (ii) implies (iii) by definition. If P is linearly ordered, then L is a Boolean
lattice, as any subset of P is closed under ∧. Therefore (i) implies (ii). Finally, it can be
checked that (f, g) is a modular pair if, and only if, Φ(f · g) = Φ(f)∪Φ(g) i.e., Φ(f)∪Φ(g)
is closed under ∧. If LP is modular, then each pair of f and g is modular. In that case,
each pair of states in P are necessarily comparable, and so (iii) implies (i).

The state spaces we are interested in are not linearly ordered. Non-distributivity is
natural within the interpreted context of cascade effects, and has at least two implications.
First, the decomposition of Theorem 5.1 cannot follow from distributivity, and relies on a
more subtle point. Second, cascade effects (as defined in Section 5) are bound to occur in
non-trivial cases.

The loss of modularity is suggested by the asymmetry in the behavior of the operator.
The + operator corresponds to set intersection, whereas the · operator (is less convenient)
corresponds to a set union followed by a closure under ∧. Nevertheless, the lattice will be
half modular.

Proposition 6.2. The lattice LP is (upper) semimodular.

Proof. It is enough to prove that if f · g ≺ f and f · g ≺ g, then f ≺ f + g and g ≺ f + g. If
f · g is covered by f and g, then |Φf −Φg| = |Φg −Φf | = 1. Then necessarily f + g covers
f and g.

Semi-modularity will be fundamental in defining the µ-rank of a system in Section
7. The lattice L is equivalently a graded poset, and admits a rank function ρ such that
ρ(f + g) + ρ(f · g) ≤ ρ(f) + ρ(g). The quantity ρ(f) is equal to the number of non-fixed
points of f i.e. |P −Φf |. More properties may still be extracted, up to full characterization
of the lattice. Yet, such properties are not needed in this paper.
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6.1. Additional Remarks on the Lattice of Systems. This subsection illustrates some
basic lattice theoretic properties on 22, represented through its Hasse diagram below. We
follow the notation of the running example (see e.g., Subsection 3.4).

AB

aBAb

ab

The lattice L22 may be represented as follows. The systems are labeled through their
set of fixed-points.

{AB}

{aB,AB}{ab,AB}{Ab,AB}

{ab, aB,AB}{ab,Ab,AB}

{ab, aB,Ab,AB}

A map f ∈ LP will be called prime if P − Φf is closed under ∧. Those maps will be
extensively used in Section 9.

All the systems are prime (i.e. have the set of non-fixed points closed under ∩) except
for {ab,AB}. The lattice L22 is (upper) semimodular as a pair of systems are covered by
their join (+) whenever they cover their meet (·). All pairs form modular pairs except for
the pair {Ab,AB} and {aB,AB}. The lattice L22 is graded, and the (uniform) rank of a
system is equal to the number of its non-fixed points as can be checked.

On Atoms and Join-irreducible elements. An atom is an element that covers the minimal
element of the lattice. In L22 , those are {ab, aB,AB} and {ab,Ab,AB}. A join-irreducible
element is an element that cannot be written as a join of other elements. An atom is
necessarily a join-irreducible element, however the converse need not be true. The systems
{aB,AB} and {bA,AB} are join-irreducible but are not atoms.

The join-irreducible elements in LP may be identified with the pairs (s, t) ∈ P × P
such that t covers s. They can be identified with the edges in the Hasse diagram of P .
For a covering pair (s, t), define fst to be the least map such that s 7→ t. Then fst is
join-irreducible for each (s, t), and every element of LP is a join of elements in {fst}.

Proposition 6.3. The map fst is prime for every (s, t).

Proof. The map fst is the least map such that s 7→ t. It follows that s is the least non-fixed
point of fst, and that every element greater than t belongs to Φfst. If a, b /∈ Φfst, then
their meet a∧ b is necessarily not greater than t, for otherwise we get a, b ∈ Φfst. If a∧ b is
comparable to t, then a∧ b = s /∈ Φfst. If a∧ b is non-comparable to t, then (a∧ b)∧ t = s,
and so again a ∧ b /∈ Φfst.
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On Coatoms and Meet-irreducible Elements. A coatom is an element that is covered by the
maximal element of the lattice. In L22, those are {ab,AB}, {aB,AB} and {Ab,AB}. In
general, the coatoms of L are exactly the systems f where |Φf | = 2. Note that the maximal
element p̂ of P is always contained in Φf .

Proposition 6.4. Every f ∈ LP is a meet of coatoms.

Proof. For each a ∈ P , let ca ∈ L be such that Φca = {a, p̂}. If Φf = {a, b, · · · , h}, then
f = ca · cb · · · · · ch.

Such lattices are called co-atomistic. The coatoms, in this case, are the only elements
that cannot be written as a meet of other elements.

7. On Least Fixed-Points and Cascade Effects

The systems are defined as maps P → P taking in an input and yielding an output. The
interaction of those systems (via the operator +) however does not depend on functional
composition or application. It is only motivated by them, and the input-ouput functional
structure has been discarded throughout the analysis. It will then also be more insightful
to not view f(a) as functional application. Such a change of viewpoint can be achieved via
a good use of least fixed-points. The change of view will also lead us the a more general
notion of cascade effects.

We may associate to every a ∈ P a system Free(a) : − 7→ − ∨ a in LP . We can then
interpret f(a) differently:

Proposition 7.1. The element f(a) is the least fixed-point of f + Free(a).

Proof. We have f(a) = ∧{p ∈ Φ(f) : a ≤ p} = ∧{p ∈ Φ(f)∩Φ(Free(a))}. The result follows
as Φ(f) ∩ Φ(Free(a)) = Φ(f + Free(a)).

The map Free : P → LP is order-preserving. It also preserves joins. Indeed, if a, b ∈ P ,
then Free(a) + Free(b) = Free(a ∨ b). Conversely, as each map in LP admits a least fixed-
point, we define Eval : LP → P to be the map sending a system to its least fixed-point.
The map Eval is also order-preserving, and we obtain:

Theorem 7.2. If a ∈ P and f ∈ LP , then:

Free(a) ≤ f if, and only if, a ≤ Eval(f)

Proof. If Free(a) ≤ f , then a ≤ b for every fixed-point b of f . Conversely, if a ≤ Eval(f),
then {b ∈ P : a ≤ b} contains Φ(f), the set of fixed points of f .

The pair of maps Free and Eval are said to be adjoints, and form a Galois connection
(see e.g., [Bir67] Ch. V, [Eve44], [Ore44] and [EKMS93] for a treatment on Galois connec-
tions). The intuition of cascading phenomena can be seen to partly emerge from this Galois
connection. By duality, the map Eval preserves meets. Indeed, the least fixed-point of f · g
is the meet of the least fixed-points of f and g. The map Eval does not however always
preserve joins. Such a fact causes cascading intuition to arise. For some pairs f, g ∈ LP , we
get:

Eval(f + g) 6= Eval(f) ∨ Eval(g) (7.1)

Generally, two systems interact to yield, combined, something greater than what they yield
separately, then combined. Specifically, consider f ∈ LP and a ∈ P such that Eval(f) ≤ a.
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If Eval(f + Free(a)) 6= Eval(f) ∨ Eval(Free(a)), then f(a) 6= a. In this case, the point a
expanded under the map f , and cascading effects have thus occured. The paper will not
pursue this line of direction. This direction is extensively pursued in [Ada17]. Also, a
definition of cascade effects was already introduced in Section 5. We thus briefly revisit
it and explain the connection to the inequality presented. The inequality can be further
explained by the semimodularity of the lattice, but such a link will not be pursued.

7.1. Revisiting Component Realization. Given a component realization eA, · · · , eH of
P , we let fA, · · · , fH be a collection of maps where fI ≤ eI dictates the evolution of the
state of component I as a function of P . If f = fA + · · · + fH , then recall from Section 5
that cascade effects are said to occur when f · eI 6= fI for some I.

We will illustrate how this definition links to the inequality obtained from the Galois
connection. For simplicity, we consider only two components A and B. Let eA, eB be a
component realization of P , and consider two maps fA, fB where fI ≤ eI . Define f =
fA + fB. If f · eA 6= fA, then (f · eA)a 6= fAa = a for some fixed point a of fA. We then
have fa 6= fAa ∨ fBa. As fa = (f · eA)a ∨ (f · eB)a by Proposition 5.3, we get:

Eval
(

fA + Free(a) + fB + Free(a)
)

6= Eval
(

fA + Free(a)
)

∨ Eval
(

fB + Free(a)
)

(7.2)

Conversely, if Equation 7.2 holds, then either fAa 6= (f · eA)a or fBa 6= (f · eB)a.

7.2. More on Galois Connections. The inequality in Equation 7.1 gives rise to cascading
phenomena in our situation. It is induced by the Galois connection between Free and Eval,
and the fact that Eval does not preserve joins. The content of the lattices can however be
changed, keeping the phenomenon intact. Both the lattice of systems LP and the lattice
of states P can be replaced by other lattices. If we can setup another such inequality for
the other lattices, then we would have created cascade effects in a different situation. We
refer the reader to [Ada17] for a thorough study along those lines. The particular class
of systems studied in this paper is however somewhat special. Indeed, every system itself
arises from a Galois connection. Thus, if we focus on a particular system f , then we get a
Galois connection induced by the inclusion:

Φ(f) → P

And indeed, cascade effects will emerge whenever a∨Φ(f) b 6= a∨P b. This direction will not
be further discussed in the paper.

This double presence of Galois connections seems to be merely a coincidence. It implies
however that we can recover cascading phenomena in our situation at two levels: either at
the level of systems interacting or at the level of a unique system with its states interacting.

7.3. Higher-Order Systems. For a lattice P , we constructed the lattice LP . By iterating
the construction once, we may form LLP

. Through several iterations, we may recursively

form Lm+1
P = LLm

P
with L0

P = P . Systems in Lm
P take into account nested if-then statements.

The construction induces a map Eval : Lm+1
P → Lm

P , sending a system to its least fixed-point.
We thus recover a sequence:

· · · → L3
P → L2

P → LP → P

The Free map construction induces an inclusion Lm
P → Lm+1

P for every m. We may then
define an infinite lattice L∞

P =
⋃∞

m=1 L
m
P that contains all finite higher-order systems. We
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may also decide to complete L∞
P in a certain sense to take into account infinite recursion.

Such an idea have extensively recurred in denotational semantics and domain theory (see
e.g., [Sco71], [SS71] and [Sco72]) to yield semantics to programming languages, notably the
λ-calculus. This idea will however not be further pursued in this paper.

8. Connections to Formal Methods

The ideas developed in this paper intersect with ideas in formal methods and semantics of
languages. To clarify some intersections, we revisit the axioms. A map f : P → P belongs
to LP if it satisfies:

A.1: If a ∈ P , then a ≤ fa.
A.2: If a, b ∈ P and a ≤ b, then fa ≤ fb.
A.3: If a ∈ P , then ffa = fa.

The axiom A.2 may generally be replaced by one requiring the map to be scott-continuous,
see e.g. [Sco72] for a definition. Every scott-continuous function is order-preserving, and
in the case of finite lattices (as assumed in this paper) the converse is true. The axiom A.3
may then be discarded, and fixed points can generally be recovered by successive iterations
of the map (ref. the Kleene fixed-point theorem). The axiom A.1 equips the systems with
their expansive nature. The more important axiom is A.2 (or potentially scott-continuity)
which is adaptive to the underlying order. Every map satisfying A.2 can be closed into a
map satisfying A.1 and A.2, by sending f(−) to − ∨ f(−). The least fixed-points of both
coincide.

The interplay of A.1 and A.2 ensures that concurrency of update rules in the systems
does not produce any conflicts. The argument is illustrated in Proposition 4.3, and is
further fully refined in Subsection 3.5. The systems can however capture concurrency issues
by considering power sets. As an example, given a Petri net, we may construct a map
sending a set of initial token distribution, to the set of all possible token distributions that
can be caused by such an initial set. This map is easily shown to satisfy the axioms A.1,
A.2 and A.3. A more elaborate interpretation of the state space, potentially along the lines
of event structures as described in [NPW81], may lead to further connections for dealing
with concurrency issues.

The interplay of lattices and least fixed-point appears throughout efforts in formal
methods and semantics of languages. We illustrate the relevance of A.1 and A.2 via the
simple two-line program Prog:

1. while ( x > 5 ) do

2. x := x - 1;

We define a state of this program to be an element of Σ := N × {in1, out1, in2, out2}. A
number in N denotes the value assigned to x, and ini (resp. outi) indicates that the program
is entering (resp. exiting) line i of the program. For instance, (7, out2) denotes the state
where x has value 7 right after executing line 2. We define a finite execution trace of a
program to be a sequence of states that can be reached by some execution of the program
in finite steps. A finite execution trace is then an element of Σ∗, the semigroup of all finite
strings over the alphabet Σ. Two elements s, s′ ∈ Σ∗ can be concatenated via s ◦ s′.
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We then define f : 2Σ
∗
→ 2Σ

∗
such that:

B 7→ f(B) :=
{

(n, in1) : n ∈ N
}

∪
{

tr ◦ (n, out1) : tr ∈ B and tr ∈ Σ∗ ◦ (n, in1)
}

∪
{

tr ◦ (n, in2) : tr ∈ B and tr ∈ Σ∗ ◦ (n, out1) and n > 5
}

(8.1)

∪
{

tr ◦ (n, out2) : tr ∈ B and tr ∈ Σ∗ ◦ (n+ 1, in2)
}

∪
{

tr ◦ (n, in1) : tr ∈ B and tr ∈ Σ∗ ◦ (n, out2)
}

The map f satisfies A.1 and A.2. If Bsol ⊆ Σ∗ is the set of finite excution traces, then
Bsol ⊇ f(Bsol). Furthermore, Bsol is the least fixed of f . This idea is pervasive in obtaining
semantics of programs. The maps f , in deriving semantics, are however typically only
considered to be order-preserving (or Scott-continuous). The connection to using maps
satisfying both A.1 and A.2 somewhat hinges on the fact that for every order-preserving
map h, the least fixed-point of h(−) and −∨ h(−) coincide. The map f may also be closed
under A.3 via successive iterations, without modifying the least fixed-point, to yield a map
in L2Σ∗ . We refer the reader to [NNH15] Ch 1 for an overview of various methods along
the example we provide, the work on abstract interpretation (see e.g., [CC77] and [Cou01])
for more details on traces and semantics, and the works [Sco71], [SS71] and [Sco72] for the
relevance of A.2 (or Scott-continuity) in denotational semantics. In a general poset, non-
necessarily boolean, we recover the form of M.4. Galois connections also appear extensively
in abstract interpretation. The methods of abstract interpretation can be enhanced and
put to use in approximating (and further understanding) the systems in this paper.

Various ideas present in this paper may be further linked to other areas. That ought
not be surprising as the axioms are very minimal and natural. From this perspective, the
goal of this work is partly to guide efforts, and very effective tools, in the formal methods
community into dealing with cascade-like phenomena.

8.1. Cascading Phenomena in this Context. We also illustrate cascade effects, as
described in Section 7, in the context of programs. Consider another program Prog’:

1. while ( x is odd ) do

2. x := x - 1;

Each of Prog and Prog’ ought to be thought of as a partial description of a larger program.
Their interaction yields the simplest program allowing both descriptions, namely:

1. while ( x > 5 ) or ( x is odd ) do

2. x := x - 1;

Let f and g be the maps (satisfying A.1 and A.2) attributed to Prog and Prog’ respectively,
as done along the lines of Equation 8.1. The set of finite execution traces of the combined
program is then the least fixed-point of f∨g, where (f∨g)B = fB∪gB. Note that f∨g then
satisfies both A.1 and A.2. Cascade effects then appear upon interaction. The interaction
of the program descriptions is bound to produce new traces that cannot be accounted for
by the traces of the separate programs. Indeed, every trace containing:

(5, out2) ◦ (5, in1) ◦ (5, out1) ◦ (5, in2)

allowed in the combined program is not allowed in neither of the separate programs. For-
mally, define a map Eval that sends a function 2Σ

∗
→ 2Σ

∗
satisfying A.1 and A.2 to its
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least fixed point. The map Eval is well defined as 2Σ
∗
is a complete lattice. We then get an

inequality:
Eval(f ∨ g) 6= Eval(f) ∪ Eval(g)

We may also link back to systems in L and the cascade effects’ definition provided for them.
If f̄ and ḡ denote the closure of f and g in 2Σ

∗
to satisfy A.3 (e.g. via iterative composition

in the case of scott-continuous functions), then the closure of f ∨ g corresponds to f̄ + ḡ.
Of course, for every h satisfying A.1 and A.2, both h and h̄ have the same least fixed-point.
We then have:

Eval(f̄ + ḡ) 6= Eval(f̄) ∪ Eval(ḡ)

The paper will mostly be concerned with properties of the systems in L. The direction
of directly studying the inequality will not be pursued in the paper. It is extensively pursued
in [Ada17].

9. Shocks, Failure and Resilience

The theory will be interpreted within cascading failure. The informal goal is to derive
conditions and insight determining whether or not a system hit by a shock would fail. Such
a statement requires at least three terms—hit, shock and fail—to be defined.

The situation, in the case of the models M.i, may be interpreted as follows. Some
components (or agents) initially fail (or become infected). The dynamics then lead other
components (or agents) to fail (or become infected) in turn. The goal is to assess the
conditions under which a large fraction of the system’s components fail. Such a state may
be reached even when a very small number of components initially fail. This section aims
to quantify and understand the resilence of the system to initial failures. Not only may
targeted componental failures be inflicted onto the system, but also external (exogenous)
rules may act as shocks providing conditional failures in the systems. A shock in this respect
is to be regarded as a system. This remark is the subject of the next subsection.

9.1. A Notion of Shock. Enforcing a shock on a system would intuitively yield an evolved
system incorporating the effects of the shock. Forcing such an intuition onto the identity
system leads us to consider shocks as systems themselves. Any shock s is then an element
of LP . Two types of shocks may further be considered. Push shocks evolve state p̌ to
some state a. Pull shocks evolve some state a directly to p̂. Allowing arbitrary + and ·
combinations of such systems generates L. The set of shocks is then considered to be the
set L.

Shocks trivially inherit all properties of systems, and can be identified with their fixed
points as subsets of P . Finally, a shock s hits a system f to yield the system f + s.

Example 9.1. One example of shocks (realized through the form of M.i) inserts element
to the initial set X0 to obtain X ′

0. This shock corresponds to the (least) map in L that
sends ∅ to X ′

0. Equivalently, this shock has as a set of fixed points the principal (upper)
order filter of the lattice P generated by the set X ′

0 (i.e. the fixed points are all, and only,
the sets containing X ′

0). Further shocks may be identified with decreasing ki or adding an
element j to Ni for some i.
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Remark. It will often be required to restrict the space of shocks. There is no particular
reason to do so now, as any shock can be well justified, for instance, in the setting of M.3.
We may further wish to keep the generality to preserve symmetry in the problem, just as
we are not restricting the set of systems.

9.2. A Notion of Failure. A shock is considered to fail a system if the mechanisms of
the shock combined with those of the system evolve the most desirable state to the least
desirable state. Shock s fails system f if, and only if, s+ f = 1.

In the context of M.i, failure occurs when X|S| contains all the elements of S. This
notion of failure is not restrictive as it can simulate other notions. As an example, for
C ⊆ P , define uC ∈ L to be the least system that maps a to p̂ if a ∈ C. Suppose shock
s “fails” f if (f + s)a ≥ c for some c ∈ C and all a. Then s “fails” f if, and only if,
f + s + uc = 1. The notion may further simulate notions of failure arising from monotone
propositional sentences. If we suppose that (s1, s2, s3) “fails” (f1, f2, f3) if (s1 fails f1) and
(either s2 fails f2 or s3 fails f3), then there is a map ψ into L such that (s1, s2, s3) “fails”
(f1, f2, f3) if, and only if, ψ(s1, s2, s3) + ψ(f1, f2, f3) = 1. We can generally construct a
monomorphism ψ : LP×LQ → LP×Q such that s+ f = 1 and (or) t+ g = 1 if, and only if,
ψ(s, t) + ψ(f, g) = 1.

9.3. Minimal Shocks and Weaknesses of Systems. We set to understand the class of
shocks that fail a system. We define the collection Sf :

Sf = {s ∈ L : f + s = 1}

As a direct consequence of Theorem 4.5, we get:

Corollary 9.2. Shock s belongs to Sf if, and only if, Φf ∩ Φs = {p̂}

For instances of M.i, it is often a question as to whether or not there is some X0 with
at most k elements, where the final set X|S| contains all the elements of S. Such a set exists
if, and only if, for some set X of size k, all sets containing it are non-fixed points (with the
exception of S).

If s ≤ s′ and s ∈ Sf , then s
′ ∈ Sf . Thus, an understanding of Sf may come from an

understanding of its minimal elements. We then focus on the minimal shocks that fail a
system f , and denote the set of those shocks by Šf :

Šf = {s ∈ Sf : for all t ∈ Sf , if t ≤ s then t = s}

A map f ∈ LP will be called prime if P − Φf is closed under ∧. A prime map f is
naturally complemented in the lattice, and we define ¬f to be (the prime map) such that
Φ(¬f) = P − (Φf − {p̂}). If f is prime, then ¬¬f = f .

Proposition 9.3. The system f admits a unique minimal shock that fails it, i.e. |Šf | = 1
if, and only if, f is prime.

Proof. If f is prime, then ¬f ∈ Sf . The map ¬f is also the unique minimal shock as if
s ∈ Sf , then Φs ⊆ Φ¬f by Proposition 9.2. Conversely, suppose f is not prime. Then
a = b ∧ c for some a ∈ Φf and b, c /∈ Φf . Define b′ = fb and c′ = fc and consider
the least shocks s0, sb′ and sc′ such that s0p̌ = a, sb′b

′ = p̂ and sc′c
′ = p̂. Furthermore,

define sb and sc such that sba = b and sca = c. Then b ∈ Φsb and c ∈ Φsc. Finally,
s0+sb+sb′ and s0+sc+sc′ belong to Sf , but their meet is not in Sf as a is a fixed point of
(s0 + sb + sb′) · (s0 + sc + sc′). This contradicts the existence of a minimal element in Sf .
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As an example, consider an instance of M.1 where “the underlying graph is undirected”
i.e. i ∈ Nj if, and only if, j ∈ Ni. Define f to be the map X0 7→ X|S|. If f(∅) = ∅ and

f(S − {i}) = S for all i, then |Šf | 6= 1 i.e. there are at least two minimal shock that fail
f . Indeed, consider a minimal set X such that fX 6= X. If Y = (X ∪ Ni) − {i} for some
i ∈ X, then fY 6= Y . However, f(X ∩ Y ) = X ∩ Y by minimality of X.

Theorem 9.4. If s belongs to Šf , then s is prime.

Proof. Suppose s is not prime. Then, there exists a minimal element a = b ∧ c such that
a ∈ Φs and b, c /∈ Φs. We consider (b, c) to be minimal in the sense that for (b′, c′) 6= (b, c),
if b′ ∧ c′ = a, b′ ≤ b and c′ ≤ c then either b′ ∈ Φs or c′ ∈ Φs. As a ∈ Φs and s ∈ Sf ,
it follows that a /∈ Φf . Therefore, at least one of b or c is not in Φf . Without loss of
generality, suppose that b /∈ Φf . If for each x ∈ Φs non-comparable to b, we show that
b ∧ x ∈ Φs, then it would follow that s is not minimal as Φs ∪ {b} is closed under ∧ and
would constitute a shock s′ ≤ s that fails f . Consider x ∈ Φs, and suppose b ∧ x /∈ Φs. If
a ≤ x, then we get (b ∧ x) ∧ c = a contradicting the minimality of (b, c). If a and x are not
comparable, then a∧ x 6= a. But a∧ x ∈ Φs and a∧ x = (b∧ x)∧ c with both (b∧ x) and c
not in Φs, contradicting the minimality of a.

Dually, we define the set of prime systems contained in f .

Wf = {w ≤ f : w is prime}

Proposition 9.5. If f ∈ L and Wf = {w1, · · · , wm}, then f = w1 + · · · +wm.

Proof. All join-irreducible elements of L are prime (see Subsection 6.1). Therefore Wf

contains all join-irreducible elements less than f , and f is necessarily the join of those
elements.

Keeping only the maximal elements of Wf is enough to reconstruct f . We define:

Ŵf = {w ∈ Wf : for all v ∈ Wf , if w ≤ v then v = w}

Proposition 9.6. The operator ¬ maps Šf to Ŵf bijectively.

Proof. If f is prime, then ¬¬f = f . It is therefore enough to show that if s ∈ Šf , then

¬s ∈ Ŵf and that if w ∈ Ŵf , then ¬w ∈ Šf . For each s ∈ Šf , as ¬s ≤ f , there is a w ∈ Ŵf

such that ¬s ≤ w. Then ¬w ≤ s, and so s = ¬w as s is minimal. By symmetry we get the
result.

We will term prime functions in Wf as weaknesses of f . Every system can be decom-
posed injectively into its maximal weaknesses, and to each of those weaknesses corresponds
a unique minimal shock that leads a system to failure. A minimal shock fails a system
because it complements one maximal weakness of the system. Furthermore, whenever an
arbitrary shock s fails f that is because a prime subshock s′ of s complements a weakness
w in f .

9.4. µ-ank, Resilience and Fragility. We may wish to quantify the resilience of a system.
One interpretation of it may be the minimal amount of effort required to fail a system. The
word effort presupposes a mapping that assigns to each shock some magnitude (or energy).
As shocks are systems, such a mapping should coincide with one on systems.

Let R
+ denote the non-negative reals. We expect a notion of magnitude r : L → R

+

on the systems to satisfy two properties.
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R.1: r(f) ≤ r(g) if f ≤ g
R.2: r(f + g) = r(f) + r(g)− r(f · g) if (f, g) are modular.

The less desirable a system is, the higher the magnitude the system has. It is helpful to
informally think of a modular pair (f, g) as a pair of systems that do not interfere with
each other. In such a setting, the magnitude of the combined system adds up those of the
subsystems and removes that of the common part.

The rank function ρ of L necessarily satisfies R.1 and R.2 as L is semi-modular. It
can also be checked that, for any additive map µ : 2P → R

+, the map f 7→ µ(P − Φf)
satisfies the two properties. Thus, measures µ on P can prove to be a useful source for
maps capturing magnitude. However, any notion of magnitude satisfying R.1 and R.2 is
necessarily induced by a measure on the state space.

Theorem 9.7. Let r be a map satisfying R.1 and R.2, then there exists an additive map
µ : 2P → R

+ such that r(f) = µ(P − Φf) + r(0).

Proof. A co-atom in L is an element covered by the system 1. For each f , there is a sequence
of co-atoms c1, · · · , cm ∈ L such that if fi = c1 · · · · · ci, then (fi, ci+1) is a modular pair,
fi+ci+1 = 1 and fm = f . It then follows by R.2 that r(fi+ci+1) = r(fi)+r(ci+1)−r(fi ·ci+1).
Therefore r(f) = r(1) −

∑m
i=1 r(1) − r(ci). Let ca be the co-atom with a ∈ Φca, and

define µ({a}) = r(1) − r(ca) and µ({p̂}) = 0. It follows that r(0) = r(1) − µ(P ) and so
r(f) = r(0) + µ(P )− µ(Φf). Equivalently r(f) = µ(P − Φf) + r(0).

As it is natural to provide the identity system 0 with a zero magnitude, we consider
only maps r additionally satisfying:

R.3: r(0) = 0.

Let r be a map satisfying R.1, R.2 and R.3 induced by the measure µ. If µS = |S|,
then r is simply the rank function ρ of L. We thus term r (for a general µ) as a µ-rank on
L. The notion of µ-rank is similar to that of a norm as defined on Banach spaces. Scalar
multiplication is not defined in this setting, and does not translate (directly) to the algebra
presented here. However, the µ-rank does give rise to a metric on L.

Example 9.8. Let f be the system derived from an instance (V,A) in M.0, and let µ be
the counting measure on 2V i.e. µS = |S|. If A is symmetric, then the system f has 2c

fixed points where c is the number of connected components in the graph. The µ-rank of f
is then 2|V | − 2c.

Let r be a µ-rank. The quantity we wish to understand (termed resilience) would be
formalized as follows:

resilience(f) = min
s∈Sf

r(s)

We may dually define the following notion (termed fragility):

fragility(f) = max
w∈Wf

r(w)

Proposition 9.9. We have fragility(f) + resilience(f) = r(1)

Proof. We have mins∈Šf
r(s) = minw∈Ŵf

r(¬w) and r(¬w) = r(1)− r(w) for w ∈ Ŵf .
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Example 9.10. Let f be the system derived from an instance (V,A) in M.0, and let µ be
the counting measure on 2V i.e. µS = |S|. If A is symmetric, then the resilience/fragility of
f is tied to the size of the largest connected component of the graph. Let us define n = |V |.
If (V,A) had one component, then resilience(f) = 2n−1. If (V,A) had m components of

sizes c1 ≥ · · · ≥ cm, then resilience(f) = 2n−1 + 2n−c1−1 + · · · + 2n−(c1+···+cm−1)−1. As
r(1) = 2n − 1, it follows that fragility(f) = 2n − 1− resilience(f).

The quantity we wish to understand may be either one of resilience or fragility. However,
the dual definition fragility puts the quantity of interest on a comparable ground with the µ-
rank of a system. It is always the case that fragility(f) ≤ r(f). Furthermore, equality is not
met unless the system is prime. It becomes essential to quantify the inequality gap. Fragility
arises only from a certain alignment of the non-fixed points of the systems, formalized
through the prime property. Not all high ranked systems are fragile, and combining systems
need not result in fragile systems although rank is increased. It is then a question as to
whether or not it is possible to combine resilient systems to yield a fragile systems. To give
insight into such a question, we note the following:

Proposition 9.11. If w ∈ Wf+g, then w ≤ u+ v for some u ∈ Wf and v ∈ Wg.

Proof. As ¬w + f + g = 1, it follows that f ∈ S¬w+g. Then there is a u ≤ f in Š¬w+g. As

¬w + u + g = 1, it follows that g ∈ S¬w+u. Then is a v ≤ f in Š¬w+u. Finally, we have
¬w + u+ v = 1, therefore w ≤ u+ v.

Thus a weakness can only form when combining systems through a combination of
weaknesses in the systems. The implication is as follows:

Corollary 9.12. We have fragility(f + g) ≤ fragility(f) + fragility(g).

Proof. For every w ∈ Wf+g, we have r(w) ≤ max(u,v)∈Wf×Wg
r(u) + r(v) as w ≤ u+ v for

some u ∈Wf and v ∈Wg.

It is not possible to combine two systems with low fragility and obtain a system with a
significantly higher fragility. Furthermore, we are interested in the gap r(f+g)−fragility(f+
g). If fragility(f) ≥ fragility(g), then r(f)− 2 fragility(f) is a lower bound on the gap. One
should be careful as such a lowerbound may be trivial in some cases. If P is linearly ordered,
then fragility(f) = r(f) for all f . The bound in this case is negative. However, if P is a
Boolean lattice and µS = |S|, then r(f) − fragility(f) may be in the order of |P | = r(1)
with fragility(f) ≤ 2(− log |P |)/2r(f).

Other notions of resilience (eq. fragility) may be introduced. One notion can consider
a convex combination of the µ-rank of the k highest-ranked shocks failing a system. The
notion introduced in the paper primarily serves to illustrate the type of insight our approach
might yield. Any function on the minimal shocks (failing a system) is bound to translate
to a dual function on weaknesses.

Remark. The statement of Corollary 9.12 may be perceived to be counterintuitive. This
may be especially true in the context of cascading failure. The statement however should not
be seen to indicate that the axioms defining a system and the dynamics preclude interesting
phenomena. Indeed, it is the definition of fragility (and specifically the choice of the set of
shocks over which we maximize) that gives rise to such a statement. The statement does
not imply that fragility does not emerge from the combination of resilient systems, but only
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that we have a bound on how much fragility increases through combinations. The statement
should not also diminish the validity of the definition of fragility, as it naturally arises from
the mathematical structure of the problem. Another, potentially more intuitive, statement
on fragility may however be recovered by a modification of the notion of fragility (or dually
the notion of resilience) as follows.

We have considered so far every system to be a possible shock. Variations on the notion
of resilience may be obtained by restricting the set of possible shocks. For instance, let us
suppose that only systems of the form sa : p 7→ p ∨ a with a ∈ P are possible shocks. In
the case of boolean lattices, these shocks can be interpreted as initially marking a subset
of components (or agents) as failed (or infected). These systems correspond, via their set
of fixed-points, to the principal upper order filters of the lattice P . The notion of resilience
then relates to the minimum number of initial failures (on the level of components) that
lead to the failure of the whole system (i.e., all components). It is then rarely the case that
two resilient systems when combined yield a resilient system. Indeed, if a ∨ b = p̂ with a
and b distinct from p̂, the maximum element of P , then both sa and sb have some resilence.
The system sa + sb has however no resilience at all, as it maps every p to the maximum
element p̂.

The space of possible shocks may be modified, changing the precise definition of fragility
and yielding different statements. In case there are no restrictions on shocks, we obtain
Corollary 9.12. We do not restrict shocks in the paper, as a first analysis, due to the lack
of a good reason to destroy symmetry between shocks and systems. The non-restriction
allows us to capture the notion of a prime system and attain a characterization of fragility
in terms of maximal weaknesses.

9.5. Overview Through An Example (Continued). We continue the running example.
The maximal weaknesses of the system f are the maximal subsystems of f where the set of
non-fixed points is closed under ∩. The system f has two maximal weaknesses, represented
as:

×

×◦◦

××◦

×

×

◦◦×

◦××

×

The left (resp. right) weakness corresponds to the system failing when A (resp. C)
is colored black. The left weakness is the map where A 7→ ABC leaving remaining states
unchanged; the right weakness is the map where C 7→ ABC leaving remaining states un-
changed. The system f then admits two corresponding minimal shocks that fail it. Those
are complements to the weaknesses in the lattice.
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×

◦××

◦◦×

◦

◦

××◦

×◦◦

◦

The left (resp. right) minimal shock can be interpreted as initially coloring node A
(resp. node C) black.

For a counting measure µ, the µ-rank of f is 5, whereas the fragility of f is 3. The
resilience of f in that case is 4. For a system with non-trivial rules on the components, the
lowest value of fragility attainable is 1. It is attained when all the nodes have a threshold
of 2. The highest value attainable, however, is actually 3. Indeed, the system would have
required the same amount of effort to fail it if all thresholds where equal to 1. Yet changing
all the thresholds to 1 would necessarily increase the µ-rank to 6.

9.6. Recovery Mechanisms and Kernel Operators. Cascade effects, in this paper,
have been mainly driven by the axioms A.1 and A.2. The axiom A.1 ensures that the
dynamics do not permit recovery. Those axioms however do not hinder us from considering
situations where certain forms of recovery are permitted, e.g., when fault-protection mech-
anisms are built into the systems. Such situations may be achieved by dualizing A.1, and
by considering multiple maps to define our fault-protected system. Specifically, we define a
recovery mechanism k to be map k : P → P satisfying:

K.1: If a ∈ P , then ka ≤ a.
A.2: If a, b ∈ P and a ≤ b, then ka ≤ kb.
A.3: If a ∈ P , then kka = ka.

The axiom K.1 is derived from A.1 by only reversing the order. As such, a recovery mech-
anism k on P is only a system on the dual lattice P op, obtained by reversing the partial
order. The maps satisfying K.1, A.2 and A.3 are typically known as kernel operators, and
inherit (by duality) all the properties of the systems described in this paper.

We may then envision a system equipped with fault-protection mechanisms as a pair
(k, f) where f is system in LP and k is a recovery mechanism, i.e., a system in LP op. The
pair (k, f) is then interpreted as follows. An initial state of failure is inflicted onto the
system. Let a ∈ P be the initial state. Recovery first occurs via the dynamics of k to
yield a more desireable state k(a). The dynamics of f then come into play to yield a state
f(k(a)).

The collection of pairs (k, f) thus introduce a new class of systems, whose properties
build on those developed in this paper. If the axiom A.3 is discarded, iteration of maps in
the form (fk)n may provide a more realistic account of the interplay of failures and recovery
mechanisms. In general, the map fk will satisfy neither A.1 nor K.1. A different type of
analysis might thus be involved to understand these new system.

Several questions may be posed in such a setting. For a design-question example, let
us consider P to be a graded poset. What is the recovery mechanism k of minimum µ-rank,
whereby f(k(a)) has rank (in P ) less than l for every a ∈ P with rank less than l′? Other
design or analysis questions may posed, inspired by the example question. This direction
of recovery however will not be further investigated in this paper.
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Remark. Another form of recovery may be achieved by removing rules from the system.
Such a form may be acheived via the · operator. Indeed, the system f · g is the most
undesireable system that includes the common rules of both f and g. If g is viewed as a
certain complement of some system we want to remove from f , then we recover the required
setting of recovery. The notion of complement systems is well-defined for prime systems.
For systems that are not prime, it may be achieved by complementing the set of fixed-points,
adding the maximum element p̂ and then closing the obtained set under meets.

10. Concluding Remarks

Finiteness is not necessary (as explained in Section 3) for the development. The axioms A.1,
A.2 and A.3 can be satisfied when P is an infinite lattice, and Φf (for every f) is complete
whenever P is complete. Nevertheless, the notion µ-rank should be augmented accordingly,
and non-finite component realizations should be allowed. Furthermore, semimodularity on
infinite lattices (still holds, yet) requires stronger conditions than what is presented in this
paper on finite lattices.

Finally, the choice of the state space and order relation allows a good flexibility in the
modeling exercise. State spaces may be augmented accordingly to capture desired instances.
But order-preserveness is intrinsic to what is developed. This said, hints of negation (at
first sight) might prove not to be integrable in this framework.
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