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Abstract. The class of uniformly computable real functions with respect to a small
subrecursive class of operators computes the elementary functions of calculus, restricted to
compact subsets of their domains. The class of conditionally computable real functions
with respect to the same class of operators is a proper extension of the class of uniformly
computable real functions and it computes the elementary functions of calculus on their
whole domains. The definition of both classes relies on certain transformations of infinitistic
names of real numbers. In the present paper, the conditional computability of real functions
is characterized in the spirit of Tent and Ziegler, avoiding the use of infinitistic names.

Introduction

This paper is in the field of computable analysis, where mathematical analysis meets classical
computability theory. Some of the basic objects, which are studied in computable analysis
are those real numbers and real functions, which can be computed using algorithms.

Alan Turing gave in [12] the first definition for the notion of computable real number –
this is a real number, whose decimal representation can be computed by a Turing machine.
It is well-known that several other representations of real numbers lead to an equivalent
notion, although the use of fast converging Cauchy sequences of rational numbers seems
most natural when developing computable analysis.

Concerning computability of real functions, the most popular approach is TTE (type-2
theory of effectivity), which is built upon ideas from Grzegorczyk [2] and Lacombe [4]. A
naming system for the real numbers is chosen and then the real function is modelled as
transforming arbitrary names of the arguments into a name of the value. This transformation
can be realized, for example, by using Type-2 machines (a natural extension of Turing
machines), as is described in Weihrauch’s book [13], which is a popular introductory book
on the subject.

The motivating question for our research is the following:
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How does the restriction of the generality of the computable processes affect computable
analysis?

In other words, we are interested in studying the connection between computable
analysis and complexity theory. This question is posed as an open problem number 1 in the
monography [5] of Pour-El and Richards. The restriction to the popular classes P,NP,EXP,
etc. from discrete complexity theory is relatively well-studied (for example, in Ko’s book
[3]). But this is not the case with subrecursive hierarchies, such as Grzegorczyk’s hierarchy
of primitive recursive functions.

In the present paper we consider two notions for relative computability of real functions,
which arose in the study of the subrecursive complexity of the elementary functions of
calculus. The motivation behind their definition is to find a small subrecursive class of
operators, such that all elementary functions of calculus are uniformly or conditionally
computable with respect to this class.

The first notion is uniform computability of real functions with respect to a class of
operators, which is a relativized version of Grzegorczyk’s notion from [2]. These operators
model the action of the real function through a properly chosen naming system for the real
numbers. Theorem 2 from Section 4 in [2] shows that any real function, which is uniformly
computable with respect to a class of computable operators, is uniformly continuous on
the bounded subsets of its domain. It follows that this uniform notion is not suitable for
computing the reciprocal and the logarithmic function on their whole domains.

This is the reason to consider the second notion, which is conditional computability of
real functions with respect to a class of operators. The additional feature, compared to the
uniform computability, is that we allow the computation of the name of the real function’s
value to depend on a natural parameter s. The value of s can be found by means of a search
until some unary total function in the natural numbers reaches value 0 for argument s. This
function depends on the names of the arguments of the real function in a way that can be
expressed through the class of operators.

In the paper [11], the authors Tent and Ziegler follow a similar line of research and also
consider two kinds of relative computability of real functions. But their approach does not
rely on operators and names of real numbers and they work more directly with rational
approximations of the arguments and the value of the real function.

For a class F of total functions in the natural numbers, satisfying certain natural
properties, Tent and Ziegler define in [11] what it means for a real function with an open
domain to be in F and to be uniformly in F . The first notion is more general than the
second one. The difference between these two notions is similar to the difference between
the uniform and the conditional computability – for the broader notion, the approximation
process can utilize an additional natural parameter, but its description uses the distance
to the complement of the domain of the real function and does not use the class F . Thus
the means, provided by the class F , might not be sufficient for computing the value of the
parameter, if the domain of the real function is too complicated. As we note below, this is
indicated by the fact that there exist incomputable real functions, which are in the class of
all recursive functions.

It turns out that for the above classes of functions F , the property of a real function
to be uniformly in F is equivalent to the uniform computability of the real function with
respect to a very natural class of operators – the class of F -substitutional operators, defined
in Section 2.2 of [10]. This is the characterization theorem of Skordev, proven in [7], and its
more general version from [8].
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But this resemblance does not generalize for the broader notions. For example, let
L2 be the class of lower elementary functions (this is the smallest class of total functions
in the natural numbers, which contains the initial functions defined below and is closed
under substitution and bounded summation). As noted in the end of the last section of
[9], the class of real functions in L2 is not closed under composition, it does not contain all
elementary functions of calculus and it also contains incomputable real functions. On the
other hand, none of these three unnatural properties is possessed by the class of conditionally
computable real functions with respect to the L2-substitutional operators.

Our main purpose is to present another definition for conditional computability, in the
style of Tent and Ziegler, for which we can generalize the characterization theorem. Of
course, this definition will not possess the above-mentioned unwanted features. The proof of
the generalization will use substantially the ideas from [8].

On notation. Throughout the paper N is the set of all natural numbers (the non-negative
integers) and R is the set of all real numbers. For m ∈ N we denote by Tm the set
{f | f : Nm → N} of all m-argument total functions in N. Let T be the set of all total
functions in N, T =

⋃
m Tm. Unless otherwise specified, a function means a function from

T . We make distinction between two sorts of variables: a, b, e, f, g, h (possibly with indices)
range over functions from T1 and x, y, z, s, t, k,m, n, p, q, r (possibly with indices) range over

numbers from N. We also use shorthand notation ~f,~g,~h for tuples of functions from T1 and
~x, ~y, ~z,~s for tuples of numbers from N. The size of the tuples will always be clear from the
context.

For any s ∈ N, we denote by ŝ the unary constant function with value s, ŝ = λx.s.
The initial functions are the projections λx1 . . . xn.xk for all n, k with 1 ≤ k ≤ n, the

successor function λx.x+ 1, the multiplication function λxy.xy, the modified subtraction

function λxy.x .− y = λxy.max(x− y, 0) and the quotient function λxy.
⌊

x
y+1

⌋
.

For any k and any function f ∈ Tk+1, we define the function g ∈ Tk+1 by

g(~x, y) =

{
z if z ≤ y, f(~x, z) = 0 and ∀t < z[f(~x, t) 6= 0],

y + 1 if ∀t ≤ y[f(~x, t) 6= 0].

We denote g(~x, y) = µz≤y[f(~x, z) = 0] and we say that g is produced from f by bounded
minimization.

The function g ∈ Tm majorizes the function f ∈ Tm (or f is majorized by g) if for all
~x ∈ Nm we have f(~x) ≤ g(~x).

For natural numbers n, the mappings F : T n1 → T1 will be called n-operators. An
operator is an n-operator for some n. We generally denote operators by capital letters
E,F,G,H (possibly with indices).

A triple of functions (f, g, h) ∈ T 3
1 will be said to name a real number ξ, if∣∣∣∣f(n)− g(n)

h(n) + 1
− ξ
∣∣∣∣ < 1

n+ 1

for all n ∈ N.
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1. Acceptable pairs

A central notion in [8] is the notion of acceptable pair. For our purposes we need to use a
definition, which is a little stronger.

Definition 1.1. Let F ⊆ T be a class of functions and O be a class of operators. The pair
(F ,O) will be called acceptable, if the following conditions hold:

(1) The initial functions belong to F .
(2) The class F is closed under substitution and bounded minimization.
(3) All operators in O are continuous, that is for any n-operator F ∈ O, functions

f1, . . . , fn ∈ T1 and x, there exists a natural number z, such that

F (~g)(x) = F (~f)(x),

whenever g1, . . . , gn ∈ T1 and g1(t) = f1(t), . . . , gn(t) = fn(t) for all t ≤ z.
(4) For any n, the n-operator F defined by F (~f)(x) = x belongs to O.
(5) For any n and k ∈ {1, . . . , n}, if the n-operator F0 belongs to O, then so does the

n-operator F defined by

F (~f)(x) = fk(F0(~f)(x)).

(6) For any m,n and function a ∈ Tm ∩ F , if F1, . . . , Fm are n-operators belonging to O,
then so is the n-operator F defined by

F (~f)(x) = a(F1(~f)(x), . . . , Fm(~f)(x)).

(7) The class O is closed under composition of operators, that is if F is a k-operator from
O and G1, . . . , Gk are n-operators all belonging to O, then the n-operator H defined by

H(~f) = F (G1(~f), . . . , Gk(~f))

also belongs to O.
(8) For any m,n, whenever f1, . . . , fn ∈ Tm+1 ∩ F and F is an n-operator from O, the

function a ∈ Tm+1 defined by

a(~s, x) = F (λt.f1(~s, t), . . . , λt.fn(~s, t))(x)

belongs to F .
(9) (uniformity condition) For any n and n-operator F ∈ O, there exists a 1-operator Ω ∈ O,

such that for any x ∈ N and any monotonically increasing g ∈ T1, if the unary functions
f1, . . . , fn, f

′
1, . . . , f

′
n are majorized by g and

f1(t) = f ′1(t), . . . , fn(t) = f ′n(t)

for all t ≤ Ω(g)(x), then

F (f1, . . . , fn)(x) = F (f ′1, . . . , f
′
n)(x).

The differences from the definition in [8] are the following: we assume additionally that the
class of functions F is closed under bounded minimization, the class O consists of continuous
operators only and it is closed under composition of operators. The important thing is that
if (F ,O) is acceptable according to 1.1, then (F ,O) is also acceptable in the sense of the
definition from [8]. This allows us to use the results from [8].

The least class of functions that satisfies conditions (1) and (2) from Definition 1.1 is
the class M2. It is not hard to see that a function f belongs to M2 if and only if the graph
of f is ∆0-definable and f is majorized by a polynomial. It is known that M2 ⊆ L2, but
whether this inclusion is proper is an open problem.
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Let F be a class, satisfying (1) and (2) from Definition 1.1. Of course, M2 ⊆ F . It is
easy to see that F is closed under bounded minimum and bounded maximum operators,
that is for any function f ∈ Tk+1 ∩ F , the functions

λ~xy.min
z≤y

f(~x, z), λ~xy.max
z≤y

f(~x, z)

also belong to F .
For an arbitrary class of functions F , we denote by OF the least class of operators,

which satisfies conditions (4), (5) and (6) from Definition 1.1. This class coincides with the
class of F-substitutional operators, defined in [10]. An n-operator F is F-substitutional if
and only if there exists a term for F (f1, . . . , fn)(x), built from the variable x, the function
symbols f1, . . . , fn and some function symbols for functions from F . Of course, if (F ,O) is
an acceptable pair, then OF ⊆ O.

Examples for acceptable pairs are given in [8] (it is easy to see that they satisfy the
stronger Definition 1.1). These are the pairs (F ,O), where:

• F is the class of all recursive functions and O is the class of all computable operators;
• F is the class of all primitive recursive functions and O is the class of all primitive recursive

operators;
• F is the class of all functions, which are elementary in Kalmár’s sense and O is the class

of all elementary operators.

Another family of acceptable pairs with least possible second component is given by the
following proposition.

Proposition 1.2. Let F be a class of functions, which satisfies conditions (1) and (2) from
Definition 1.1. Then the pair (F ,OF ) is acceptable.

Proof. Since F is closed under bounded maximum, every function in F is majorized by a
function in F , which is increasing with respect to all of its arguments. From Theorem 1 in
[8], the pair (F ,OF ) is acceptable in the sense of [8]. It remains to note that straightforward
proofs by induction on F show that every operator F ∈ OF is continuous and that condition
(7) from 1.1 holds for the class OF .

As noted in [8], for the three examples above we have OF ⊆ O, but OF 6= O. Thus the
class F in these examples is the first component of at least two different acceptable pairs.
On the other hand, a remark in the end of Section 3 in [8] shows that if (F1,O) and (F2,O)
are acceptable pairs, then F1 = F2.

2. Uniform computability of real functions

The formal notion for computability of real functions is based on operators, acting on names
of real numbers. We use the definition for computing system from [10].

Definition 2.1. Let k ∈ N and θ : D → R, where D ⊆ Rk, be a real function. The
triple (F,G,H), where F,G,H are 3k-operators, is called a computing system for θ if for all
(ξ1, ξ2, . . . , ξk) ∈ D and triples (fi, gi, hi) that name ξi for i = 1, 2, . . . , k, the triple

(F (f1, g1, h1, f2, g2, h2, . . . , fk, gk, hk),

G(f1, g1, h1, f2, g2, h2, . . . , fk, gk, hk),

H(f1, g1, h1, f2, g2, h2, . . . , fk, gk, hk))

names the real number θ(ξ1, ξ2, . . . , ξk).
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Definition 2.2. Let O be a class of operators. A real function θ will be called uniformly
O-computable, if there exists a computing system (F,G,H) for θ, such that F,G,H ∈ O.

If O is the class of all computable operators, then a real function θ is uniformly O-
computable if and only if it is computable in the sense of Grzegorczyk from [2]. But this is
not the most general notion for a computable real function. In order for Definition 2.1 to
make sense, the operators F,G,H must be defined only on tuples of names for the arguments
of the real function θ. By allowing partial operators we obtain the generally accepted notion
for a computable real function, which we will call computability in the extended sense.

Let F be a class of recursive functions. Then it is easy to see that all operators in
OF are computable and it follows that the uniformly OF -computable real functions are
computable in Grzegorczyk’s sense. In fact, these are exactly the uniformly F-computable
real functions, considered in [10].

The results from [10] imply that all elementary functions of calculus are uniformly
OM2-computable, but restricted to compact subsets of their domains. One general reason
for this restriction was already noted in the introduction – the reciprocal and the logarithmic
functions cannot be computable in Grzegorczyk’s sense on (0, 1), since they are not uniformly
continuous there. Another reason is indicated in Section 2.2 in [10] – namely that any
uniformly OM2-computable real function is bounded by some polynomial (this is due to
the fact that the functions in M2 have polynomial growth). Thus the exponential function
cannot be uniformly OM2-computable on its whole domain.

Next we present the definition for uniform computability in the style of Tent and Ziegler
from [11].

Definition 2.3. Let F ⊆ T be a class of functions. The real function θ : D → R, where
D ⊆ Rk for some k ∈ N, will be called TZ-style uniformly F-computable, if there exist
functions d ∈ T1 ∩ F and f, g, h ∈ T3k+1 ∩ F , such that for all (ξ1, . . . , ξk) ∈ D and
p1, q1, r1, . . . , pk, qk, rk, t ∈ N, the inequalities

|ξi| ≤ t+ 1,

∣∣∣∣pi − qiri + 1
− ξi

∣∣∣∣ < 1

d(t) + 1
(i = 1, . . . , k)

imply that the numbers

p = f(p1, q1, r1, . . . , pk, qk, rk, t), q = g(p1, q1, r1, . . . , pk, qk, rk, t),

r = h(p1, q1, r1, . . . , pk, qk, rk, t)

satisfy the inequality ∣∣∣∣p− qr + 1
− θ(ξ1, . . . , ξk)

∣∣∣∣ < 1

t+ 1
.

If F is a good class in the sense of [11] and θ : D → R is a real function with an open
domain D, then θ is TZ-style uniformly F -computable if and only if it is uniformly in F in
the sense of [11].

We are now ready to formulate the general characterization theorem of Skordev.

Theorem 2.4 (Skordev, [8]). Let (F ,O) be an acceptable pair, k be a natural number and
θ : D → R, where D ⊆ Rk be a real function. Then θ is uniformly O-computable if and only
if θ is TZ-style uniformly F-computable.

Corollary 2.5 (Skordev, [7]). Let F be a class of functions, satisfying conditions (1) and
(2) from Definition 1.1. Then a real function is uniformly OF -computable if and only if it is
TZ-style uniformly F-computable.
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Proof. We apply Proposition 1.2.

Corollary 2.6. For an acceptable pair (F ,O) and a real function θ, the following are
equivalent:

• θ is uniformly O-computable,
• θ is TZ-style uniformly F-computable,
• θ is uniformly OF -computable.

3. Conditional computability of real functions

In this section we present the notion of conditionally computable real function.

Definition 3.1. Let O be a class of operators, k be a natural number and θ : D → R
be a real function, where D ⊆ Rk. Then θ will be called conditionally O-computable, if
there exist 3k-operator E and (3k + 1)-operators F,G,H, all belonging to O, such that
whenever (ξ1, . . . , ξk) ∈ D and (f1, g1, h1), . . . , (fk, gk, hk) are triples that name ξ1, . . . , ξk,
respectively, the following holds:

(1) There exists a natural number s, satisfying the equality

E(f1, g1, h1, . . . , fk, gk, hk)(s) = 0. (3.1)

(2) For any natural number s, which satisfies (3.1), the triple

(F (f1, g1, h1, . . . , fk, gk, hk, ŝ),

G(f1, g1, h1, . . . , fk, gk, hk, ŝ),

H(f1, g1, h1, . . . , fk, gk, hk, ŝ))

names the real number θ(ξ1, . . . , ξk).

This is not the exact form of the original notion, that is used in Definition 2 in [9]. The
dependence on the value of s in the approximation process in [9] is realized by adding s
as a natural argument of the functions, which are the values of the operators F,G,H. In
the present definition, we use the approach from Definition 3.2 in [1], where the constant
function ŝ is added to the arguments of F,G,H. This is the reason why the operators
F,G,H have one argument more than the operator E, which is indicated in the definitions
below by denoting this extra argument as a.

If O consists of computable operators, then the conditionally O-computable real functions
are computable in the extended sense, but generally not in Grzegorczyk’s sense. The search
for a value of s, which satisfies equality (3.1) might not be successful, if the arguments of E
are not tuples of names for real numbers from the domain D of θ.

Let F be a class of recursive functions. Then the operators in OF are computable and
therefore the conditionally OF -computable real functions are computable in the extended
sense. In fact, these are exactly the conditionally F-computable real functions, firstly
considered in [9], as follows from the m = 1 case of Lemma 2.4 in [1].

Example 3.2. Let O be a class of operators, which is the second component of some
acceptable pair (F ,O). Then all uniformly O-computable real functions are conditionally
O-computable. Indeed, let θ be a real function, θ : D → R, D ⊆ Rk, k ∈ N and (F ◦, G◦, H◦)
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be a computing system for θ, which consists of operators, belonging to O. Then we can
satisfy the requirements of Definition 3.1 through the operators E,F,G,H, defined by

E(f1, g1, h1, . . . , fk, gk, hk) = idN,

F (f1, g1, h1, . . . , fk, gk, hk, a)=F ◦(f1, g1, h1, . . . , fk, gk, hk),

G(f1, g1, h1, . . . , fk, gk, hk, a)=G◦(f1, g1, h1, . . . , fk, gk, hk),

H(f1, g1, h1, . . . , fk, gk, hk, a)=H◦(f1, g1, h1, . . . , fk, gk, hk).

The operator E belongs to O from condition (4) of 1.1. Since the operators F ◦, G◦, H◦

belong to O, conditions (4), (5) and (7) from 1.1 imply that F,G,H also belong to O.

The connections between uniform O-computability and conditional O-computability of
real functions are further investigated in the paper [1]. For classes of operators O, which
satisfy certain natural properties, it is shown in [1] that:

• substitution of real functions preserves conditional O-computability;
• all conditionally O-computable real functions are locally uniformly O-computable;
• the conditionally O-computable real functions with compact domains are uniformly

O-computable.

All elementary functions of calculus are conditionally OM2-computable on their whole
domains (Corollary 1 in [9]). Roughly speaking, for the reciprocal and the logarithmic
function, the parameter s can be used to isolate the argument from 0. For the exponential
function, the parameter s can be used to compute an upper bound of its value, using the
fact that the graph of λxy.xy (belonging to T2) is ∆0-definable.

4. Some preliminary results

We will need some results from [6], which allow choosing a special kind of operators for
witnesses in the definition for conditional computability.

For a natural number k and a k-tuple (ξ1, . . . , ξk) ∈ Rk we denote by Aξ1,...,ξk the set of all
2k-tuples of unary functions (f1, g1, . . . , fk, gk), such that f1(n).g1(n) = . . . = fk(n).gk(n) = 0
for all n ∈ N and the triples (f1, g1, idN), . . . , (fk, gk, idN) name the real numbers ξ1, . . . , ξk,
respectively.

Under the same assumptions for all n ∈ N let us denote by A[n]
ξ1,...,ξk

the set of all

2k-tuples of natural numbers (x1, y1, . . . , xk, yk), such that the following conditions hold:

|x1 − y1 − (n+ 1)ξ1| < 1, . . . , |xk − yk − (n+ 1)ξk| < 1,

x1.y1 = . . . = xk.yk = 0.

We can identify the set Aξ1,...,ξk with the Cartesian product

A[0]
ξ1,...,ξk

× A[1]
ξ1,...,ξk

× A[2]
ξ1,...,ξk

× . . .

through the bijection F, which maps the 2k-tuple (f1, g1, . . . , fk, gk) ∈ Aξ1,...,ξk to the unary
function t = F(f1, g1, . . . , fk, gk), defined by t(n) = (f1(n), g1(n), . . . , fk(n), gk(n)), which is
easily seen to belong to the Cartesian product.

For all n ∈ N the set A[n]
ξ1,...,ξk

contains at most 2k elements and therefore it is compact in

any topology. We endow every A[n]
ξ1,...,ξk

with discrete topology and in the Cartesian product

we introduce the product topology. According to Tychonoff’s theorem the Cartesian product
is compact. Using the bijection F we transfer the topology from the Cartesian product into



CHARACTERIZATION THEOREM FOR THE CONDITIONALLY COMPUTABLE REAL FUNCTIONS 9

Aξ1,...,ξk , that is U is open in Aξ1,...,ξk if and only if F[U ] is open in the Cartesian product.
Of course, F becomes a homeomorphism and therefore Aξ1,...,ξk is also compact.

Lemma 4.1. Let k ∈ N, (ξ1, . . . , ξk) ∈ Rk and E be a continuous 2k-operator. Assume that
for every choice of (f1, g1, . . . , fk, gk) ∈ Aξ1,...,ξk there exists a natural number s, such that

E(f1, g1, . . . , fk, gk)(s) = 0. (4.1)

Then there exists T ∈ N, such that for all (f1, g1, . . . , fk, gk) ∈ Aξ1,...,ξk the equality (4.1)
holds for some s ≤ T .

Proof. On the set Aξ1,...,ξk we define the functional M by

M(f1, g1, . . . , fk, gk) = µs[E(f1, g1, . . . , fk, gk)(s) = 0].

The assumptions in the lemma guarantee that the minimization is always successful. Let us
fix a 2k-tuple of unary functions (f01 , g

0
1, . . . , f

0
k , g

0
k) ∈ Aξ1,...,ξk and let

M(f01 , g
0
1, . . . , f

0
k , g

0
k) = n.

By the continuity of E we can choose a natural number z, such that for any 2k-tuple of
unary functions (f1, g1, . . . , fk, gk) the equalities

fi(x) = f0i (x), gi(x) = g0i (x) (i = 1, . . . , k)

for all natural x ≤ z imply the equalities

E(f1, g1, . . . , fk, gk)(m) = E(f01 , g
0
1, . . . , f

0
k , g

0
k)(m) for m = 0, 1, . . . , n.

But from the last equalities we obtain M(f1, g1, . . . , fk, gk) = n = M(f01 , g
0
1, . . . , f

0
k , g

0
k). In

other words, on the open neighbourhood U0 = F−1[V0] of (f01 , g
0
1, . . . , f

0
k , g

0
k), where

V0 = {(f01 (0), g01(0), . . . , f0k (0), g0k(0))} × . . .
× {(f01 (z), g01(z), . . . , f0k (z), g0k(z))}

× A[z+1]
ξ1,...,ξk

× A[z+2]
ξ1,...,ξk

× . . . ,
the functional M assumes constant value n. By compactness, the set Aξ1,...,ξk can be covered
with finitely many open sets, such that the functional M is constant on each one of them.
Therefore, M assumes only finitely many values and we can choose T to be the largest of
these values.

To make use of our new restricted system of names for tuples of real numbers, we need
a uniform way to obtain this names. For this purpose, we define the auxiliary function
ehelp : N4 → N by

ehelp(p, q, r, n) =

⌊
(n+ 1)

p .− q
r + 1

+
1

2

⌋
.

It is clear that ehelp ∈M2. Its main properties are listed in the following remark.

Remark 4.2. For all natural numbers p, q, r, n we have

ehelp(p, q, r, n).ehelp(q, p, r, n) = 0

and the inequality∣∣∣∣ehelp(p, q, r, n)− ehelp(q, p, r, n)

n+ 1
− p− q
r + 1

∣∣∣∣ ≤ 1

2(n+ 1)
.
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The transition to the special names is realized by the 3-operator K from Section 1.3 of
[10], defined by

K(f, g, h)(n) = ehelp(f(2n+ 1), g(2n+ 1), h(2n+ 1), n).

Of course, K is M2-substitutional (K ∈ OM2).

Lemma 4.3. For all unary functions f, g, h and natural numbers n at least one of the
numbers K(f, g, h)(n) and K(g, f, h)(n) is 0. If (f, g, h) names a real number ξ, then the
triple (K(f, g, h),K(g, f, h), idN) also names ξ.

Corollary 4.4. For any k and (ξ1, . . . , ξk) ∈ Rk, if (fi, gi, hi) names ξi for i = 1, . . . , k,
then

(K(f1, g1, h1),K(g1, f1, h1), . . . ,K(fk, gk, hk),K(gk, fk, hk))

belongs to Aξ1,...,ξk .

The proof of Lemma 4.3 is based on Remark 4.2 and can be found in Section 1.3 of [10].
Corollary 4.4 follows immediately.

Lemma 4.5. Let O be a class of operators, which is the second component of some acceptable
pair (F ,O). Let k ∈ N and θ : D → R, D ⊆ Rk be a conditionally O-computable real function.
Then there exist 3k-operator E and (3k + 1)-operators F,G,H, all of them belonging to O,
such that for any point (ξ1, . . . , ξk) ∈ D there exists T ∈ N, for which the following conditions
hold:

(1) If the triples (f1, g1, h1), . . . , (fk, gk, hk) name ξ1, . . . , ξk respectively, then the equality

E(f1, g1, h1, . . . , fk, gk, hk)(s) = 0 (4.2)

holds for some natural number s ≤ T .
(2) Whenever (f1, g1, h1), . . . , (fk, gk, hk) name ξ1, . . . , ξk respectively and the equality (4.2)

holds for some natural number s, the triple

(F (f1, g1, h1, . . . , fk, gk, hk, ŝ),

G(f1, g1, h1, . . . , fk, gk, hk, ŝ),

H(f1, g1, h1, . . . , fk, gk, hk, ŝ))

names the real number θ(ξ1, . . . , ξk).

Proof. Let E,F,G,H ∈ O be witnesses for θ from Definition 3.1. We define 3k-operator E′

and (3k + 1)-operators F ′, G′, H ′ by

E′(f1, g1, h1, . . . , fk, gk, hk)

= E(K(f1, g1, h1),K(g1,f1, h1), idN, . . . ,K(fk, gk, hk),K(gk, fk, hk), idN),

F ′(f1, g1, h1, . . . , fk, gk, hk, a)

= F (K(f1, g1, h1),K(g1,f1, h1), idN, . . . ,K(fk, gk, hk),K(gk, fk, hk), idN, a),

G′(f1, g1, h1, . . . , fk, gk, hk, a)

= G(K(f1, g1, h1),K(g1,f1, h1), idN, . . . ,K(fk, gk, hk),K(gk, fk, hk), idN, a),

H ′(f1, g1, h1, . . . , fk, gk, hk, a)

= H(K(f1, g1, h1),K(g1,f1, h1), idN, . . . ,K(fk, gk, hk),K(gk, fk, hk), idN, a).
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We will show that we can choose E′, F ′, G′, H ′ in the role of E,F,G,H from the statement
of the lemma. We have K ∈ O, since OM2 ⊆ OF ⊆ O. From conditions (4), (5) and (7) of
Definition 1.1 we obtain that E′, F ′, G′, H ′ ∈ O. Let us fix a point (ξ1, . . . , ξk) ∈ D.

We define the 2k-operator E′′ by

E′′(f1, g1, . . . , fk, gk) = E(f1, g1, idN, . . . , fk, gk, idN).

It is clear that E′′ is continuous, since E is continuous from condition (3) of Definition 1.1.
Moreover, if (f1, g1, . . . , fk, gk) ∈ Aξ1,...,ξk , then (fi, gi, idN) names ξi for i = 1, . . . , k and
condition (1) from Definition 3.1 gives that there exists a natural number s, such that

E(f1, g1, idN, . . . , fk, gk, idN)(s) = E′′(f1, g1, . . . , fk, gk)(s) = 0.

We apply Lemma 4.1 for the operator E′′ and choose the corresponding natural number T .
Using Corollary 4.4 it is easily seen that the same number T satisfies condition (1) in the
present lemma (with E′ in the role of E). Condition (2) is an easy consequence of Lemma
4.3 and condition (2) from Definition 3.1.

5. The characterization theorem

Now we are ready to formulate a proper notion of conditional computability for real functions
in the style of Tent and Ziegler and prove the characterization theorem.

Definition 5.1. For a class of functions F and k ∈ N the real function θ : D → R, D ⊆ Rk
will be called conditionally F-computable in the style of Tent and Ziegler, if there exist
functions d0 ∈ T1 ∩ F , d ∈ T2 ∩ F , e ∈ T3k+1 ∩ F and f, g, h ∈ T6k+2 ∩ F , such that for all
(ξ1, . . . , ξk) ∈ D we have:

(1) There exists s0 ∈ N, such that for all natural numbers s ≥ s0 and
all p01, q

0
1, r

0
1, . . . , p

0
k, q

0
k, r

0
k ∈ N, the inequalities∣∣∣∣p0i − q0ir0i + 1
− ξi

∣∣∣∣ < 1

d0(s) + 1
for i = 1, . . . , k (5.1)

imply the equality
e(p01, q

0
1, r

0
1, . . . , p

0
k, q

0
k, r

0
k, s) = 0. (5.2)

(2) For all natural numbers s, p01, q
0
1, r

0
1, . . . , p

0
k, q

0
k, r

0
k, p1, q1, r1, . . . , pk, qk, rk, t, which satisfy

(5.1), (5.2) and

|ξi| ≤ s+ 1,

∣∣∣∣pi − qiri + 1
− ξi

∣∣∣∣ < 1

d(s, t) + 1
for i = 1, . . . , k, (5.3)

we have ∣∣∣∣p− qr + 1
− θ(ξ1, . . . , ξk)

∣∣∣∣ < 1

t+ 1
, (5.4)

where

p = f(p01, q
0
1, r

0
1, . . . , p

0
k, q

0
k, r

0
k, p1, q1, r1, . . . , pk, qk, rk, s, t), (5.5)

q = g(p01, q
0
1, r

0
1, . . . , p

0
k, q

0
k, r

0
k, p1, q1, r1, . . . , pk, qk, rk, s, t), (5.6)

r = h(p01, q
0
1, r

0
1, . . . , p

0
k, q

0
k, r

0
k, p1, q1, r1, . . . , pk, qk, rk, s, t). (5.7)
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The intuition behind this definition is not very clear at first glance, since its main purpose
is to be proper for proving the characterization thereom. The important thing is that the
definition does not refer to names of real numbers.

Theorem 5.2. Let (F ,O) be an acceptable pair and k ∈ N. The real function θ : D →
R, D ⊆ Rk is conditionally O-computable if and only if θ is conditionally F-computable in
the style of Tent and Ziegler.

Proof. Since F satisfies conditions (1) and (2) from Definition 1.1, we have that M2 ⊆ F
and F is closed under bounded minimum and bounded maximum, as noted after Definition
1.1. We assume k = 1. The generalization of the proof to arbitrary k is straightforward.

For the direction (⇐=), suppose that d0, d, e, f, g, h ∈ F are functions, which satisfy the
requirements from Definition 5.1. We will show that θ is conditionally O-computable. We
define the operator E by

E(f1, g1, h1)(s
′) = e(f1(d0(s)), g1(d0(s)), h1(d0(s)), s),

where s = max(f1(0), g1(0), s′). We also define operators F,G,H by

F (f1, g1, h1, a)(t) = p, G(f1, g1, h1, a)(t) = q, H(f1, g1, h1, a)(t) = r,

where the numbers p, q, r are defined by the equalities (5.5), (5.6), (5.7) with

p01 = f1(d0(s)), q01 = g1(d0(s)), r01 = h1(d0(s)), (5.8)

p1 = f1(d(s, t)), q1 = g1(d(s, t)), r1 = h1(d(s, t)) (5.9)

and s = max(f1(0), g1(0), a(t)). From conditions (4), (5) and (6) in Definition 1.1 we obtain
E,F,G,H ∈ O. We will show that these operators can be chosen as witnesses for the
conditional O-computability of θ. Let ξ1 ∈ D and (f1, g1, h1) name ξ1. Let us choose s0
from condition (1) of Definition 5.1. Let s = max(f1(0), g1(0), s0). We have that s ≥ s0 and
(5.1) is satisfied for the numbers p01, q

0
1, r

0
1, defined by the equalities (5.8). Then from (5.2)

we obtain
e(p01, q

0
1, r

0
1, s) = 0 = E(f1, g1, h1)(s0).

Thus there exists s′, such that E(f1, g1, h1)(s
′) = 0.

Now let s′ ∈ N and E(f1, g1, h1)(s
′) = 0, that is we have

e(f1(d0(s)), g1(d0(s)), h1(d0(s)), s) = 0,

where s = max(f1(0), g1(0), s′). We use condition (2) of Definition 5.1 for arbitrary t, the
chosen s and the numbers p01, q

0
1, r

0
1, p1, q1, r1, defined by the equalities (5.8) and (5.9). The

premises (5.1), (5.2), (5.3) are satisfied, since (f1, g1, h1) names ξ1 and therefore

|ξ1| < |f1(0)− g1(0)|+ 1 ≤ max(f1(0), g1(0)) + 1 ≤ s+ 1.

We obtain the inequality (5.4) for the numbers p, q, r, defined by the equalities (5.5), (5.6),

(5.7). But for a = λx.s′ = ŝ′ we have

p = F (f1, g1, h1, ŝ′)(t), q = G(f1, g1, h1, ŝ′)(t), r = H(f1, g1, h1, ŝ′)(t).

Thus ∣∣∣∣∣F (f1, g1, h1, ŝ′)(t)−G(f1, g1, h1, ŝ′)(t)

H(f1, g1, h1, ŝ′)(t) + 1
− θ(ξ1)

∣∣∣∣∣ < 1

t+ 1

for all t ∈ N, that is

(F (f1, g1, h1, ŝ′), G(f1, g1, h1, ŝ′), H(f1, g1, h1, ŝ′))
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is a name of θ(ξ1). Therefore θ is conditionally O-computable.
For the converse (=⇒), let us suppose that θ is conditionally O-computable. Since

O is the second component of an acceptable pair, we can apply Lemma 4.5 and choose
operators E,F,G,H ∈ O for the real function θ, according to the statement of the lemma.
We then choose 1-operators Ω,Ω1,Ω2,Ω3 ∈ O from the uniformity condition in Definition
1.1, corresponding to the operators E,F,G,H, respectively. We define consecutively the
following functions:

u(x, s) = (s+ 2)(x+ 1),

v(s, y) = Ω(λx.u(x, s))(y),

v′(s) = max
y≤s

v(s, y),

d0(s) = 6v′(s) + 5,

w(s, t) = max
(
Ω1(λx.u(x, s))(t),Ω2(λx.u(x, s))(t),Ω3(λx.u(x, s))(t)

)
,

w′(s, t) = max(v′(s), w(s, t)),

d(s, t) = 6w′(s, t) + 5,

b(p01, q
0
1, r

0
1, s) = µx≤s[E(f01 , g

0
1, idN)(x) = 0],

e(p01, q
0
1, r

0
1, s) = min

x≤s
E(f01 , g

0
1, idN)(x),

f(p01, q
0
1, r

0
1, p1, q1, r1, s, t) = F (f1, g1, idN, λx.b(p

0
1, q

0
1, r

0
1, s))(t),

g(p01, q
0
1, r

0
1, p1, q1, r1, s, t) = G(f1, g1, idN, λx.b(p

0
1, q

0
1, r

0
1, s))(t),

h(p01, q
0
1, r

0
1, p1, q1, r1, s, t) = H(f1, g1, idN, λx.b(p

0
1, q

0
1, r

0
1, s))(t),

where
f01 = λx.ehelp(p01, q

0
1, r

0
1, x), g01 = λx.ehelp(q01, p

0
1, r

0
1, x), (5.10)

and

f1 = λx.

{
ehelp(p01, q

0
1, r

0
1, x), if x ≤ v′(s),

ehelp(p1, q1, r1, x), if x > v′(s),
(5.11)

g1 = λx.

{
ehelp(q01, p

0
1, r

0
1, x), if x ≤ v′(s),

ehelp(q1, p1, r1, x), if x > v′(s).
(5.12)

Here we use the function ehelp defined in the previous section, ehelp ∈ F . It is not hard to
see that all of the defined functions belong to the class F (due to conditions (1), (2) and (8)
in Definition 1.1). Our purpose is to show that d0, d, e, f, g, h satisfy the two conditions in
Definition 5.1. We fix ξ1 ∈ D.

Let us choose a natural number T according to Lemma 4.5. Let s0 be a natural number,
such that s0 ≥ T and |ξ1| ≤ s0 + 1. We claim that condition (1) in Definition 5.1 is satisfied
for this s0. Indeed, let s ≥ s0 and p01, q

0
1, r

0
1 ∈ N are numbers, such that (5.1) holds. We

define the unary functions f01 and g01 by the equalities (5.10). From Remark 4.2 for all x ∈ N
we have ∣∣∣∣f01 (x)− g01(x)

x+ 1
− p01 − q01

r01 + 1

∣∣∣∣ ≤ 1

2(x+ 1)
, f01 (x).g01(x) = 0. (5.13)

Let us choose unary functions f01 and g01, such that for all x ∈ N

x ≤ v′(s) =⇒ f01 (x) = f01 (x) & g01(x) = g01(x),
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x > v′(s) =⇒

∣∣∣∣∣f01 (x)− g01(x)

x+ 1
− ξ1

∣∣∣∣∣ < 1

x+ 1
& f01 (x).g01(x) = 0. (5.14)

The right-hand side of (5.14) is true also for x ≤ v′(s), since∣∣∣∣∣f01 (x)− g01(x)

x+ 1
− ξ1

∣∣∣∣∣ =

∣∣∣∣f01 (x)− g01(x)

x+ 1
− p01 − q01

r01 + 1
+
p01 − q01
r01 + 1

− ξ1
∣∣∣∣

<
1

2(x+ 1)
+

1

d0(s) + 1
≤ 1

2(x+ 1)
+

1

2(v′(s) + 1)
≤ 1

2(x+ 1)
+

1

2(x+ 1)
=

1

x+ 1
,

f01 (x).g01(x) = f01 (x).g01(x) = 0.

We used that d0(s) ≥ 2v′(s) + 1. Thus (f01 , g
0
1, idN) names ξ1. According to the choice of T

there exists s1, such that s1 ≤ T and E(f01 , g
0
1, idN)(s1) = 0. Obviously, idN is majorized by

λx.u(x, s). From the right-hand side of (5.14) it follows that any of the numbers f01 (x), g01(x)
is less than (|ξ1|+ 1)(x+ 1). But from the choice of s0 we have |ξ1| ≤ s0 + 1 ≤ s+ 1 and so

the functions f01 , g
0
1 are majorized by λx.u(x, s). The same is true for the functions f01 , g

0
1,

since from (5.13) and (5.1) we have∣∣∣∣f01 (x)− g01(x)

x+ 1

∣∣∣∣ ≤ ∣∣∣∣p01 − q01r01 + 1

∣∣∣∣+
1

2
< |ξ1|+ 1.

For x ≤ v(s, s1) we have the equalities f01 (x) = f01 (x), g01(x) = g01(x), since s1 ≤ T ≤ s0 ≤ s
and therefore v(s, s1) ≤ v′(s). From the uniformity condition and the choice of Ω we obtain

E(f01 , g
0
1, idN)(s1) = E(f01 , g

0
1, idN)(s1) = 0.

Thus e(p01, q
0
1, r

0
1, s) = minx≤sE(f01 , g

0
1, idN)(x) = 0, because s1 ≤ s.

Now we prove condition (2) from Definition 5.1. Let s, p01, q
0
1, r

0
1, p1, q1, r1, t be natural

numbers, which satisfy the premises (5.1), (5.2), (5.3) in condition (2). In other words, we
have the inequalities∣∣∣∣p01 − q01r01 + 1

− ξ1
∣∣∣∣ < 1

d0(s) + 1
, |ξ1| ≤ s+ 1,

∣∣∣∣p1 − q1r1 + 1
− ξ1

∣∣∣∣ < 1

d(s, t) + 1

and the equality e(p01, q
0
1, r

0
1, s) = 0. Let p, q, r be defined by the equalities (5.5), (5.6), (5.7).

Our goal is to prove the inequality (5.4). First we define the functions f01 and g01 by the
equalities (5.10). For all x ∈ N we have (5.13) from above. We also define the functions f1,
g1 with the equalities (5.11), (5.12), respectively. We note explicitly that for x ≤ v′(s) we
have

f01 (x) = f1(x), g01(x) = g1(x).

For all x ∈ N we have
f1(x).g1(x) = 0,

x ≤ v′(s) =⇒
∣∣∣∣f1(x)− g1(x)

x+ 1
− p1 − q1

r1 + 1

∣∣∣∣ ≤ 5

6(x+ 1)
, (5.15)

x > v′(s) =⇒
∣∣∣∣f1(x)− g1(x)

x+ 1
− p1 − q1

r1 + 1

∣∣∣∣ ≤ 1

2(x+ 1)
. (5.16)

Only (5.15) requires a proof, (5.16) follows from Remark 4.2. Let x ≤ v′(s). Then∣∣∣∣f1(x)− g1(x)

x+ 1
− p1 − q1

r1 + 1

∣∣∣∣
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=

∣∣∣∣f01 (x)− g01(x)

x+ 1
− p01 − q01

r01 + 1
+
p01 − q01
r01 + 1

− ξ1 + ξ1 −
p1 − q1
r1 + 1

∣∣∣∣
<

1

2(x+ 1)
+

1

d0(s) + 1
+

1

d(s, t) + 1
≤ 1

2(x+ 1)
+

1

6(v′(s) + 1)
+

1

6(v′(s) + 1)

≤ 1

2(x+ 1)
+

1

6(x+ 1)
+

1

6(x+ 1)
=

5

6(x+ 1)
.

Here we used that d0(s) = 6v′(s) + 5 and d(s, t) ≥ 6v′(s) + 5.
From e(p01, q

0
1, r

0
1, s) = 0 we have that E(f01 , g

0
1, idN)(s1) = 0 for some s1 ≤ s. Let us

choose the least such s1. We choose functions f01 and g01 exactly as above and we obtain

that (f01 , g
0
1, idN) names ξ1 and

E(f01 , g
0
1, idN)(s1) = E(f01 , g

0
1, idN)(s1) = 0.

The only difference is that this time we have the inequality |ξ1| ≤ s + 1 directly in our
premises. We then choose functions f1 and g1, such that

x ≤ w′(s, t) =⇒ f1(x) = f1(x) & g1(x) = g1(x),

x > w′(s, t) =⇒
∣∣∣∣f1(x)− g1(x)

x+ 1
− ξ1

∣∣∣∣ < 1

x+ 1
& f1(x).g1(x) = 0.

Then for x ≤ w′(s, t) we have

f1(x).g1(x) = f1(x).g1(x) = 0,

x ≤ v′(s) =⇒
∣∣∣∣f1(x)− g1(x)

x+ 1
− ξ1

∣∣∣∣ =

∣∣∣∣f1(x)− g1(x)

x+ 1
− p1 − q1

r1 + 1
+
p1 − q1
r1 + 1

− ξ1
∣∣∣∣

<
5

6(x+ 1)
+

1

d(s, t) + 1
≤ 5

6(x+ 1)
+

1

6(v′(s) + 1)
≤ 5

6(x+ 1)
+

1

6(x+ 1)
=

1

x+ 1
,

x > v′(s) =⇒
∣∣∣∣f1(x)− g1(x)

x+ 1
− ξ1

∣∣∣∣ =

∣∣∣∣f1(x)− g1(x)

x+ 1
− p1 − q1

r1 + 1
+
p1 − q1
r1 + 1

− ξ1
∣∣∣∣

<
1

2(x+ 1)
+

1

d(s, t) + 1
≤ 1

2(x+ 1)
+

1

2(x+ 1)
=

1

x+ 1
.

For the first implication we used (5.15) and the inequality d(s, t) ≥ 6v′(s) + 5 and for the
second one – (5.16) and d(s, t) ≥ 2w′(s, t) + 1 ≥ 2x+ 1. Thus we obtain that (f1, g1, idN)

names ξ1. We have that idN, f
0
1 , g

0
1, f1, g1 are majorized by λx.u(x, s) and also

f01 (x) = f01 (x) = f1(x) = f1(x), g01(x) = g01(x) = g1(x) = g1(x)

for x ≤ v(s, s1), since v(s, s1) ≤ v′(s) ≤ w′(s, t). From the uniformity condition and the
choice of Ω,

E(f1, g1, idN)(s1) = E(f01 , g
0
1, idN)(s1) = 0.

The choice of the operators E,F,G,H gives the inequality∣∣∣∣F (f1, g1, idN, λx.s1)(t)−G(f1, g1, idN, λx.s1)(t)

H(f1, g1, idN, λx.s1)(t) + 1
− θ(ξ1)

∣∣∣∣ < 1

t+ 1
.

But idN, λx.s1, f1, g1 are majorized by λx.u(x, s), because s1 ≤ s. The same is true for f1, g1,
since ∣∣∣∣f1(x)− g1(x)

x+ 1

∣∣∣∣ ≤ ∣∣∣∣p1 − q1r1 + 1

∣∣∣∣+
5

6
< |ξ1|+ 1 ≤ s+ 2.
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We also have f1(x) = f1(x), g1(x) = g1(x) for x ≤ w(s, t), since w(s, t) ≤ w′(s, t). From the
uniformity condition and the choice of the operators Ω1,Ω2,Ω3 we obtain

F (f1, g1, idN, λx.s1)(t) = F (f1, g1, idN, λx.s1)(t),

G(f1, g1, idN, λx.s1)(t) = G(f1, g1, idN, λx.s1)(t),

H(f1, g1, idN, λx.s1)(t) = H(f1, g1, idN, λx.s1)(t).

Moreover, s1 = µx≤s[E(f01 , g
0
1, idN)(x) = 0] = b(p01, q

0
1, r

0
1, s), thus

F (f1, g1, idN, λx.s1)(t) = F (f1, g1, idN, λx.b(p
0
1, q

0
1, r

0
1, s))(t) = p,

G(f1, g1, idN, λx.s1)(t) = G(f1, g1, idN, λx.b(p
0
1, q

0
1, r

0
1, s))(t) = q,

H(f1, g1, idN, λx.s1)(t) = H(f1, g1, idN, λx.b(p
0
1, q

0
1, r

0
1, s))(t) = r.

We reached our goal – the inequality (5.4) and so the proof is completed.

Corollary 5.3. Let F be a class of functions, which satisfies conditions (1) and (2) from
Definition 1.1. Then a real function is conditionally OF -computable if and only if it is
conditionally F-computable in the style of Tent and Ziegler.

Proof. We apply Proposition 1.2.

Corollary 5.4. For an acceptable pair (F ,O) and a real function θ the following are
equivalent:

• θ is conditionally O-computable,
• θ is conditionally F-computable in the style of Tent and Ziegler,
• θ is conditionally OF -computable.

Conclusion

We plan to extend our results for uniform and conditional M2-computability to other
nonelementary real functions from calculus, such as the gamma function and the Riemann
zeta function. The results of Tent and Ziegler [11] in this direction, particularly Theorem 5.1
for the complexity of integration, cannot be used for the class M2, because it is not known
if M2 is closed under bounded summation.

Corollary 5.4 will prove to be very useful, because it provides extra machinery for
proving conditionalM2-computability. Namely, we can take any class of operators O, which
forms an acceptable pair with M2 and prove conditional O-computability. And such classes
of operators O, which are broader than the class of M2-substitutional operators, do exist.
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