
Logical Methods in Computer Science
Vol. 13(3:6)2017, pp. 1–25
https://lmcs.episciences.org/

Submitted Dec. 10, 2016
Published Jul. 21, 2017

FOCUSING IN ORTHOLOGIC

OLIVIER LAURENT

Université de Lyon, CNRS, ENS de Lyon, Université Claude Bernard Lyon 1, LIP
e-mail address: olivier.laurent@ens-lyon.fr

Abstract. We propose new sequent calculus systems for orthologic (also known as minimal
quantum logic) which satisfy the cut elimination property. The first one is a simple system
relying on the involutive status of negation. The second one incorporates the notion of
focusing (coming from linear logic) to add constraints on proofs and to optimise proof
search. We demonstrate how to take benefits from the new systems in automatic proof
search for orthologic.

Classical (propositional) logic can be used to reason about facts in classical mechanics and
is related with the lattice structure of Boolean algebras. On its side, quantum (propositional)
logic has been introduced to represent observable facts in quantum mechanics. It is provided
as an axiomatization of the lattice structure of the closed subspaces of Hilbert spaces. This
corresponds to the structure of so-called orthomodular lattices. Among the properties of
these lattices, and thus of quantum logic, one finds the orthomodularity law (p ≤ q =⇒ q ≤
p∨ (¬p∧ q)) which is a very weak form of distributivity. Removing this law gives the notion
of ortholattice and leads to the associated orthologic (also called minimal quantum logic, as
it can be defined as quantum logic without orthomodularity). The interested reader can
find more about logic and quantum physics in [Sme10].

In the description and reasoning about quantum properties, quantum logic is more
accurate than orthologic. Nevertheless a formula valid in orthologic is also valid in quantum
logic, and thus provides a valid quantum property. In the current state of the art, orthologic
benefits of much better logical properties than plain quantum logic (in proof theory in
particular) [Gol74, SM81, Gol84, Nis94, ET99]. It moreover corresponds to an interesting
class of lattices: ortholattices, widely studied in lattice theory. Ortholattices are bounded
lattices with an involutive negation such that p ∨ ¬p = >. As a consequence they can be
understood as Boolean lattices without distributivity, and indeed distributive ortholattices
are exactly Boolean lattices.

Key words and phrases: orthologic, focusing, minimal quantum logic, linear logic, automatic proof search,
cut elimination.

This paper is an extended version of [Lau16].
This work was supported by the LABEX MILYON (ANR-10-LABX-0070) of Université de Lyon, within

the program “Investissements d’Avenir” (ANR-11-IDEX-0007), and by projects Récré (ANR-11-BS02-0010)
and Elica (ANR-14-CE25-0005), all operated by the French National Research Agency (ANR).

LOGICAL METHODSl IN COMPUTER SCIENCE DOI:10.23638/LMCS-13(3:6)2017
c© Olivier Laurent
CC© Creative Commons

https://lmcs.episciences.org/
http://creativecommons.org/about/licenses

2 OLIVIER LAURENT

The main topic of the present work is the study of the proof theory of orthologic, from
the sequent calculus point of view. Sound and complete sequent calculi satisfying the cut-
elimination property already occur in the literature (see for example [SM81, Nis94, FS98]).
Our first result is another such calculus which is particularly simple: each sequent has exactly
two formulas and only seven rules are required. It relies on ideas of W. Tait [Tai68] for the
representation of systems with an involutive negation (also promoted by J.-Y. Girard in linear
logic [Gir87]), and shows how orthologic can be seen as an extension of the additive fragment
of linear logic with one new contraction-weakening rule. The second and main contribution
of this paper lies in the development of a “second-level proof-theory” for orthologic by
investigating the notion of focusing in this setting.

Focusing, introduced in linear logic by J.-M. Andreoli [And92], is a constraint on the
structure of proofs which requires connectives sharing some structural properties (like
reversibility) to be grouped together. The key point is that this restriction is sound and
complete: focused proofs are proofs and any provable sequent admits a focused proof.
Together with cut elimination, focusing can be used as a strong tool in proof search and
proof study since it reduces the search space to focused proofs. Focusing has also been used
to define new logical systems [Gir91].

In the case of orthologic, we show that focusing can be defined, and interacts particularly
well with the two-formulas sequents. In particular, not only logical rules associated with
connectives are constrained but also structural rules can be organised. The exchange rule can
be hidden easily in the specific focusing rules and the contraction-weakening rule becomes
precisely constrained. As a consequence, we obtain a bound on the height of all focused
proofs of a given sequent, which is rarely the case in the presence of a contraction rule.
Starting from this remark, we experiment proof search strategies for orthologic based on our
focused system.

In Section 1, we recall the definition of ortholattice and orthologic with the main results
from the literature on sequent calculus and cut-elimination for orthologic. In Section 2, we
introduce the sequent calculus OL (inspired by additive linear logic) with a few properties.
Section 3 gives the two-steps construction of the focused system OLf . We explain how
focusing is applied to orthologic and we prove soundness, completeness and cut-elimination.
The last Section 4 is dedicated to the application of OLf in (backward and forward) proof
search for orthologic. This is based on upper bounds on the height of proofs and on additional
structural properties of focused cut-free proofs.

Most of the results of the paper have been formalised in the Coq proof assistant and
naive versions of the proof search algorithms are implemented in OCaml (see page 24).

1. Ortholattices and Orthologic

Orthologic or minimal quantum logic is the logic associated with the order relation of
ortholattices (for some results about ortholattices, see for example [Bir67]).

Definition 1.1 (Ortholattice). An ortholattice O is a bounded lattice (a lattice with smallest
and biggest elements ⊥ and >) with an order-reversing involution p 7→ ¬p (also often denoted
p⊥ in the literature), called orthocomplement, satisfying p ∨ ¬p = > (for all p in O).

FOCUSING IN ORTHOLOGIC 3

In particular the following properties hold for any two elements p and q of any ortholattice:

p ≤ q =⇒ ¬q ≤ ¬p
¬¬p = p

¬⊥ = >
¬(p ∨ q) = ¬p ∧ ¬q
p ∧ ¬p = ⊥

as well as the other De Morgan’s laws, but there is no distributivity law between ∧ and ∨.

Example 1.2 (Hexagon Ortholattice). The hexagon lattice H below (also called benzene
ring) is an ortholattice:

>
↗ ↖

x y

↑ ↑
¬y ¬x

↖ ↗
⊥

Orthomodularity, which can be stated as the equation ∀pq, p ∨ q = p ∨ (¬p ∧ (p ∨ q)), does
not hold in H since:

¬y ∨ x = x

¬y ∨ (¬¬y ∧ (¬y ∨ x)) = ¬y ∨ (y ∧ x) = ¬y
In fact, any non-orthomodular ortholattice contains H as a sub-ortholattice (see for ex-
ample [Ber85, Theorem 5.4]). This means this lattice is typical of what may happen in
orthologic but not in quantum logic (see also Proposition 4.2).

Orthologic is the logic associated with the class of ortholattices, or conversely ortholattices
are the algebras associated with orthologic. Formulas in orthologic are built using connectives
corresponding to the basic operations of ortholattices:

A ::= X | A ∧A | A ∨A | > | ⊥ | ¬A
where X ranges over elements of a given countable set X of variables.

We want then A ` B to be derivable in orthologic if and only if A ≤ B is true in any
ortholattice O (for every interpretation of variables as elements of O, and with connectives
in A and B interpreted through the corresponding operations of O). In particular, the
Lindenbaum algebra associated with orthologic over the set X is the free ortholattice F over
X (which is infinite as soon as X contains at least two elements [Bru76]).

4 OLIVIER LAURENT

If we adopt a sequent calculus style presentation, an (sound and complete) axiomatization
of orthologic can be given by the following axioms and rules (in the spirit of [Gol74]):

ax
A ` A

A ` B B ` C
cut

A ` C

∧1LA ∧B ` A ∧2LA ∧B ` B
C ` A C ` B ∧R

C ` A ∧B
>R

C ` >

∨1RA ` A ∨B ∨2RB ` A ∨B
A ` C B ` C ∨L

A ∨B ` C
⊥L⊥ ` C

A ` B ¬¬B ` ¬A
¬¬R

A ` ¬¬A ¬¬L¬¬A ` A tnd> ` A ∨ ¬A
The first line corresponds to an (pre) order relation. The second and third lines correspond
to a bounded inf semi-lattice and bounded sup semi-lattice (thus together they provide us
the structure of a bounded lattice). The fourth line adds the missing ortholattice ingredients
related with the orthocomplement ¬A.

Example 1.3. If one wants to prove that for any p and q in an ortholattice, we have:

> ≤ ((p ∧ q) ∨ ¬p) ∨ ¬q
We can either use algebraic properties of ortholattices (which have to be proved as well):

((p ∧ q) ∨ ¬p) ∨ ¬q = (p ∧ q) ∨ (¬p ∨ ¬q)
= (p ∧ q) ∨ ¬(p ∧ q)
= >

or we can use, on the logic side, a derivation with conclusion the corresponding sequent
> ` ((X ∧ Y) ∨ ¬X) ∨ ¬Y . This requires us to use most of the rules above (see landscape
figure on page 5).

The axiomatization proposed above is a direct translation of the order-theoretic definition
of ortholattices. From a proof-theoretic point of view, it has strong defects such as the
impossibility of eliminating the cut rule:

A ` B B ` C
cut

A ` C
(which encodes the transitivity of the order relation). Example 1.3 could not be derived
without this rule for example. A reason for trying to avoid the cut rule is that when studying
a property like A ` C, the cut rule tells us that we may need to invent some arbitrary
B (unrelated with A and C). This may lead us to difficulties, undecidability, etc. In the
opposite, cut-free systems usually satisfy the sub-formula property stating that every formula
appearing in a proof of a given sequent is a sub-formula of a formula of this sequent. The
idea of finding presentations of the logic associated with lattices in such a way that cut (or
transitivity) could be eliminated goes back to P. Whitman [Whi41] with applications to the
theory of lattices. In the case of ortholattices, one can find such an axiomatization in [SM81]
under the name OCL+ (also called GOL in [ET03]):

FOCUSING IN ORTHOLOGIC 5

∨ 1
R

¬X
`
¬X
∨
¬Y

¬
¬(
¬X
∨
¬Y

)
`
¬¬

X
¬¬

L
¬¬

X
`
X

cu
t

¬(
¬X
∨
¬Y

)
`
X

∨ 2
R

¬Y
`
¬X
∨
¬Y

¬
¬(
¬X
∨
¬Y

)
`
¬¬

Y
¬¬

L
¬¬

Y
`
Y

cu
t

¬(
¬X
∨
¬Y

)
`
Y
∧R

¬(
¬X
∨
¬Y

)
`
X
∧
Y

¬
¬(
X
∧
Y

)
`
¬¬

(¬
X
∨
¬Y

)
¬¬

L
¬¬

(¬
X
∨
¬Y

)
`
¬X
∨
¬Y

cu
t

¬(
X
∧
Y

)
`
¬X
∨
¬Y

∨ 2
R

¬X
∨
¬Y
`

(X
∧
Y

)
∨

(¬
X
∨
¬Y

)
cu

t
¬(
X
∧
Y

)
`

(X
∧
Y

)
∨

(¬
X
∨
¬Y

)

(1
)

∨ 2
R

¬X
`

(X
∧
Y

)
∨
¬X

∨ 1
R

(X
∧
Y

)
∨
¬X
`

((
X
∧
Y

)
∨
¬X

)
∨
¬Y

cu
t

¬X
`

((
X
∧
Y

)
∨
¬X

)
∨
¬Y

∨ 2
R

¬Y
`

((
X
∧
Y

)
∨
¬X

)
∨
¬Y

∨L
¬X
∨
¬Y
`

((
X
∧
Y

)
∨
¬X

)
∨
¬Y

(2
)

∨ 1
R

X
∧
Y
`

(X
∧
Y

)
∨
¬X

∨ 1
R

(X
∧
Y

)
∨
¬X
`

((
X
∧
Y

)
∨
¬X

)
∨
¬Y

cu
t

X
∧
Y
`

((
X
∧
Y

)
∨
¬X

)
∨
¬Y

(2
)

¬X
∨
¬Y
`

((
X
∧
Y

)
∨
¬X

)
∨
¬Y

∨L
(X
∧
Y

)
∨

(¬
X
∨
¬Y

)
`

((
X
∧
Y

)
∨
¬X

)
∨
¬Y

(3
)

tn
d

>
`

(X
∧
Y

)
∨
¬(
X
∧
Y

)

∨ 1
R

X
∧
Y
`

(X
∧
Y

)
∨

(¬
X
∨
¬Y

)

(1
)

¬(
X
∧
Y

)
`

(X
∧
Y

)
∨

(¬
X
∨
¬Y

)
∨L

(X
∧
Y

)
∨
¬(
X
∧
Y

)
`

(X
∧
Y

)
∨

(¬
X
∨
¬Y

)
cu

t
>
`

(X
∧
Y

)
∨

(¬
X
∨
¬Y

)

(3
)

(X
∧
Y

)
∨

(¬
X
∨
¬Y

)
`

((
X
∧
Y

)
∨
¬X

)
∨
¬Y

cu
t

>
`

((
X
∧
Y

)
∨
¬X

)
∨
¬Y

6 OLIVIER LAURENT

OCL+

ax
A ` A

Γ ` ∆
wL

Γ, A ` ∆
Γ ` ∆

wR
Γ ` A,∆

Γ, A ` ∆ ∧1LΓ, A ∧B ` ∆

Γ, B ` ∆ ∧2LΓ, A ∧B ` ∆

Γ ` A,∆ Γ ` B,∆
∧R

Γ ` A ∧B,∆

Γ ` A,∆ ∨1RΓ ` A ∨B,∆
Γ ` B,∆ ∨2RΓ ` A ∨B,∆

Γ, A ` ∆ Γ, B ` ∆
∨L

Γ, A ∨B ` ∆

>R
Γ ` >,∆ ⊥L

Γ,⊥ ` ∆
Γ, A ` ∆

¬R
Γ ` ¬A,∆

Γ ` A,∆
¬L

Γ,¬A ` ∆

where sequents Γ ` ∆ are given from two finite sets Γ and ∆ of formulas such that
]Γ +]∆ ≤ 2 (comma denotes set union and] the cardinality of a set).

Example 1.4. We can prove in OCL+ the sequent of Example 1.3:

ax
X ` X ¬R` X,¬X ∨2R` X, (X ∧ Y) ∨ ¬X

∨1R` X, ((X ∧ Y) ∨ ¬X) ∨ ¬Y

ax
Y ` Y ¬R` Y,¬Y ∨2R` Y, ((X ∧ Y) ∨ ¬X) ∨ ¬Y

∧R` X ∧ Y, ((X ∧ Y) ∨ ¬X) ∨ ¬Y
∨1R` (X ∧ Y) ∨ ¬X, ((X ∧ Y) ∨ ¬X) ∨ ¬Y
∨1R` ((X ∧ Y) ∨ ¬X) ∨ ¬Y

wL> ` ((X ∧ Y) ∨ ¬X) ∨ ¬Y
The following key properties of OCL+ are proved in [SM81]:

Theorem 1.5 (Cut Elimination in OCL+). The cut rule
Γ1 ` A,∆1 Γ2, A ` ∆2

Γ1,Γ2 ` ∆1,∆2
is

admissible in OCL+.

Theorem 1.6 (Soundness and Completeness of OCL+). OCL+ is sound and complete for
orthologic.

By looking at the structure of the rules, one can see there is an important symmetry
between ∨ on the left and ∧ on the right, ∧ on the left and ∨ on the right, ⊥ on the left
and > on the right, etc. This is not very surprising in a context where negation is an
involution, and this is an incarnation of De Morgan’s duality between ∧ and ∨ and > and ⊥.
W. Tait [Tai68] (followed by J.-Y. Girard in linear logic [Gir87]) has shown how to simplify
sequent calculi in the presence of an involutive negation by restricting negation to variables
and by considering one-sided sequents only. This idea has been partly applied in [FS98]
where they define formulas for orthologic as:

A ::= X | A ∧A | A ∨A | > | ⊥ | ¬X
and negation is then extended to all formulas by induction (it is not a true connective
anymore):

¬(¬X) := X ¬(⊥) := > ¬(>) := ⊥ ¬(A ∨B) := ¬A ∧ ¬B ¬(A ∧B) := ¬A ∨ ¬B

FOCUSING IN ORTHOLOGIC 7

so that we obtain ¬¬A = A for any A. However the system proposed in [FS98] does not really
take benefits from this encoded involutive negation on formulas, since they use two-sided
sequents. One can also note that no remark is given in [FS98] regarding the number of
formulas in sequents. However one can see that, in their system, Γ ` ∆ is provable if and
only if

∧
Γ `

∨
∆ is provable, and that a proof of a sequent Γ ` ∆ with at most one formula

in Γ and at most one formula in ∆ contains only sequents satisfying this property.
We propose to go further in this direction of involutive negation to target a simpler

sequent calculus system for orthologic.

2. One-Sided Orthologic

In order to clarify the analysis and to be closer to an implementation, we prefer to consider
sequents based on lists rather than sets or multi-sets. The main difference with respect to
OCL+ is the necessity to use an explicit contraction rule and an explicit exchange rule. We
thus consider two kinds of sequents: ` A,B and ` A. As a notation, Π corresponds to 0 or
1 formula so that ` A,Π is a common notation for both kinds of sequents. Like in [FS98],
formulas are built with negation on variables only:

A ::= X | A ∧A | A ∨A | > | ⊥ | ¬X
and, by moving to a one-sided list-based system, the derivation rules we obtain are:

ax` ¬A,A
` A,B

ex` B,A
` A,A

c` A
` A w` A,B

` A,Π ∨1` A ∨B,Π
` B,Π ∨2` A ∨B,Π

` A,Π ` B,Π ∧` A ∧B,Π
>` >,Π

Note, a version with sequents as multi-sets of formulas with at most 2 elements would simply
lead us to the discarding of the exchange rule.

We are going to optimise these one-sided rules in order to build our new system OL. We
give here an informal description of the path leading to the new set of rules. First, we can
assume Π not to be empty in the rules above since the case of an empty Π is derivable from
the non-empty case (using rules (c) and (w)). For example, for the (∨1) rule:

` A w` A,A ∨B ∨1` A ∨B,A ∨B
c` A ∨B

Second, once we thus consider only logical rules with two formulas in sequents, the only rule
with a premise with only one formula is the (w) rule and the only rule with a conclusion
with only one formula is the (c) rule. This means that in a proof of a sequent with two
formulas, (c) and (w) rules always come together, one above the other, and we can group
them into a new combined rule:

` A,A
c` A w` A,B

7→ ` A,A
cw` A,B

Finally a sequent ` A can always be encoded as ` A,A since one is provable if and only if
the other is (thanks to the rules (c) and (w)). We thus focus on sequents ` A,B only, and
on the following set of rules:

8 OLIVIER LAURENT

OL
ax` ¬A,A

` A,B
ex` B,A

` A,A
cw` A,B

` A,C ∨1` A ∨B,C
` B,C ∨2` A ∨B,C

` A,C ` B,C ∧` A ∧B,C
>` >, C

This sequent calculus with 7 rules (6 rules in its multi-set-based and set-based versions)
does not seem to occur in the literature and looks simpler than all the sound and complete
calculi for orthologic we have found. We call it OL. Relying on the remarks above, we have:

Theorem 2.1 (Soundness and Completeness of OL). ` ¬A,B is provable in OL if and
only if A ` B is provable in OCL+, so that OL is sound and complete for orthologic.

Proof. To be completely precise, we have to recall that formulas of OL are all formulas of
OCL+. While the converse is not true, there is a canonical mapping of formulas of OCL+
into formulas of OL obtained by unfolding the definition of ¬. Both implications are obtained
by induction on proofs.

For soundness, we rely on Theorem 1.5. For example, in the case of a (cw) rule:

` ¬A,¬A
cw` ¬A,B

7→

ax
A ` A ¬L
A,¬A `

¬R
A ` ¬¬A

A ` ¬A ¬L
A,¬¬A `

cut
A `

wR
A ` B

Concerning completeness, we prove simultaneously that:

A ` B in OCL+ entails ` ¬A,B in OL
A ` in OCL+ entails ` ¬A,¬A in OL

A,A′ ` in OCL+ entails ` ¬A,¬A′ and ` ¬A′,¬A in OL (for A 6= A′)
` B in OCL+ entails ` B,B in OL

` B,B′ in OCL+ entails ` B,B′ and ` B′, B in OL (for B 6= B′)

For example:

A ∧B,B ` ∧2LA ∧B `
wR

A ∧B ` C
7→

` ¬B,¬A ∨ ¬B ∨2` ¬A ∨ ¬B,¬A ∨ ¬B
cw` ¬A ∨ ¬B,C

For readers familiar with linear logic [Gir87], this calculus OL can be seen as one-sided
additive linear logic extended with the (cw) rule, if we replace ∨ by ⊕, ∧ by & and ⊥ by 0.

Example 2.2. We can prove in OL the sequent of Example 1.3 in its one-sided version:

FOCUSING IN ORTHOLOGIC 9

ax` ¬X,X ∨2` (X ∧ Y) ∨ ¬X,X ∨1` ((X ∧ Y) ∨ ¬X) ∨ ¬Y,X
ex

` X, ((X ∧ Y) ∨ ¬X) ∨ ¬Y

ax` ¬Y, Y ∨2` ((X ∧ Y) ∨ ¬X) ∨ ¬Y, Y
ex

` Y, ((X ∧ Y) ∨ ¬X) ∨ ¬Y
∧` X ∧ Y, ((X ∧ Y) ∨ ¬X) ∨ ¬Y ∨1` (X ∧ Y) ∨ ¬X, ((X ∧ Y) ∨ ¬X) ∨ ¬Y ∨1` ((X ∧ Y) ∨ ¬X) ∨ ¬Y, ((X ∧ Y) ∨ ¬X) ∨ ¬Y

cw
` ((X ∧ Y) ∨ ¬X) ∨ ¬Y,⊥

ex
` ⊥, ((X ∧ Y) ∨ ¬X) ∨ ¬Y

We now describe a few properties of OL which will be used later.

First, the cut rule
` A,B ` ¬B,C

` A,C
is admissible. It is possible to give a direct

proof of this result but this will happen here as a consequence of a stronger result we have
to prove later anyway (see Proposition 3.11). It can be deduced from Theorems 2.1 and 1.5
as well.

We also have by simple inductions:

Proposition 2.3 (Axiom expansion for OL). If we restrict the axiom rule of OL to its
variable case axv` ¬X,X , the general rule (ax) is derivable.

Lemma 2.4 (Reversibility of ∧). ` A∧B,C is provable iff both ` A,C and ` B,C are.

Lemma 2.5 (Reversing). If we restrict the (cw) rule to formulas of the shape A1 ∨A2:

` A1 ∨A2, A1 ∨A2 cw∨` A1 ∨A2, B

where moreover B is neither > nor a ∧, the general rule (cw) is admissible.

Proof. This is done in two steps, first by proving the restriction on A (by induction on A for
an arbitrary B) and then the restriction on B (by induction on B, with A = A1 ∨A2).

This means that restricting the contraction-weakening rule of OL to ∨-formulas does
not modify the expressiveness of the system.

3. Focused Orthologic

Relying on the strong relation between the sequent calculus OL and linear logic, we import
the idea of focusing [And92]. This constraint on the structure of proofs is based on an analysis
of the polarity of connectives, by separating those which are reversible and those which are
not. By reducing the space of proofs of each formula, it is a strong tool for accelerating
proof search. In orthologic, the connectives ∧ and > are reversible: the conclusion of their
introduction rule implies its premises (see Lemma 2.4 for example). Such connectives are
also called asynchronous or negative. Their dual connectives are called synchronous or
positive. Following this pattern, we separate formulas into synchronous and asynchronous
ones according to their main connective:

X, ⊥ and A ∨B are synchronous,
and ¬X, > and A ∧B are asynchronous.

10 OLIVIER LAURENT

So that A is synchronous (resp. asynchronous) if and only if ¬A is asynchronous (resp.
synchronous). The choice for variables is in fact arbitrary, as soon as we preserve this dual
polarity between X and ¬X for each of them.

Let us now apply focusing to orthologic and to OL in particular.

3.1. A First Focused System OL0
f . Dealing with variables in focused systems is delicate,

so we recommend the reader not very familiar with focusing to concentrate on the other
aspects of the system first.

A key result will be to prove the focused system to be as expressive as OL (and thus
sound and complete for orthologic). In order to make this as simple and clear as possible, we
will work in two steps. Indeed some optimisations (to be introduced later on in Section 3.4)
would make a direct translation more difficult.

Our first focused system OL0
f is based on four kinds of sequents. For each of them, we

give an informal explanation based on how we can find a proof of such a sequent, thus from
the point of view of a bottom-up reading of proofs and rules:

• In a sequent ` ⇑ A,B, all the asynchronous connectives at the roots of A and B (in
formulas A and B seen as trees) will be deconstructed and after that, A and B are turned
into some A′ and B′ which are synchronous (or negation of a variable) and allowed to
move to the left of ⇑. In fact we first work on A and then we move to a sequent ` A′ ⇑ B
(with A′ synchronous or negation of a variable), and we start working on B.
• In a sequent ` A ⇑ B, A is synchronous or is the negation of a variable. The asynchronous

connectives at the root of B will be deconstructed and after that we reach some ` A ⇑ B′

with B′ synchronous (or negation of a variable) and allowed to move to the left of ⇑.
• In a sequent ` A,B ⇑ , A and B are synchronous or the negation of a variable. We

have to select a synchronous formula among them (let say B) and start decomposing its
synchronous connectives at the root, in a sequent ` A ⇓ B. Before that, we can apply
contraction-weakening rules to A and B. This is the main place where choices have to be
made during proof search.
• In a sequent ` A ⇓ B, A is synchronous or is the negation of a variable. The synchronous

connectives at the root of B will be deconstructed and after that we reach some ` A ⇓ B′

with B′ asynchronous (and we will start decomposing its asynchronous connectives at the
root in a sequent ` A ⇑ B′). Choices concerning the decomposition of ∨ will have to be
made here.

Note, sequents ` ⇑ A,B are crucial for the comparison with other systems but play a weak
role inside this system. Indeed they occur only in proofs of sequents of the same shape and
only at the bottom part of such a proof. As soon as we reach a sequent ` ⇑ (in the
bottom-up reading of a proof), we will not find any other sequent ` ⇑ , above.

Let us be more formal now with the explicit list of the rules of the system OL0
f which

uses four kinds of sequents ` ⇑ A,B, ` A ⇑ B, ` A,B ⇑ and ` A ⇓ B:

FOCUSING IN ORTHOLOGIC 11

OL0
f

` ⇑ A,C ` ⇑ B,C ⇑∧` ⇑ A ∧B,C
⇑>` ⇑ >, C

` A ⇑ C ⇑R` ⇑ A,C

` C ⇑ A ` C ⇑ B ∧⇑` C ⇑ A ∧B
[(s) or (n)] >⇑` A ⇑ >

` C,A ⇑
R⇑` C ⇑ A

` C,C ⇑
[(s) or (n)] cw1` C,A ⇑

` C,C ⇑
[(s) or (n)] cw2` A,C ⇑

` C ⇓ A
[(s)] D1` A,C ⇑

` C ⇓ A
[(s)] D2` C,A ⇑

axv` ¬X ⇓ X
` C ⇓ A ∨1` C ⇓ A ∨B

` C ⇓ B ∨2` C ⇓ A ∨B
` C ⇑ A

[(a)] R⇓` C ⇓ A
with the following side conditions written between square brackets []:

(a) A is asynchronous (s) A is synchronous (n) A is the negation of a variable.

One could have been more explicit by asking [(s) or (n)] as side condition in the (⇑R)
and (R⇑) rules but the following lemma proves these two side conditions to be redundant.

Lemma 3.1. If ` A ⇑ C or ` A,B ⇑ or ` A ⇓ C is provable then A and B are
synchronous or the negation of a variable.

Example 3.2. The sequent ` (X ∨ A) ∨ B, (C ∨ (D ∨ ¬X)) ∧ > has many proofs in the
systems of the previous sections, in particular in OL. However the corresponding sequent
` ⇑ (X ∨A) ∨B, (C ∨ (D ∨ ¬X)) ∧ > has a unique proof in OL0

f :

axv` ¬X ⇓ X ∨1` ¬X ⇓ X ∨A ∨1` ¬X ⇓ (X ∨A) ∨B
D1` (X ∨A) ∨B,¬X ⇑
R⇑

` (X ∨A) ∨B ⇑ ¬X
R⇓

` (X ∨A) ∨B ⇓ ¬X ∨2` (X ∨A) ∨B ⇓ D ∨ ¬X ∨2` (X ∨A) ∨B ⇓ C ∨ (D ∨ ¬X)
D2` (X ∨A) ∨B,C ∨ (D ∨ ¬X) ⇑
R⇑

` (X ∨A) ∨B ⇑ C ∨ (D ∨ ¬X)
>⇑

` (X ∨A) ∨B ⇑ >
∧⇑

` (X ∨A) ∨B ⇑ (C ∨ (D ∨ ¬X)) ∧ >
⇑R

` ⇑ (X ∨A) ∨B, (C ∨ (D ∨ ¬X)) ∧ >
This shows how focusing adds constraints to the structure of proofs.

Example 3.3. We can prove the sequent corresponding to Example 1.3:

12 OLIVIER LAURENT

axv` ¬X ⇓ X
D1` X,¬X ⇑
R⇑` X ⇑ ¬X
R⇓` X ⇓ ¬X ∨2` X ⇓ (X ∧ Y) ∨ ¬X ∨1` X ⇓ ((X ∧ Y) ∨ ¬X) ∨ ¬Y

D1` ((X ∧ Y) ∨ ¬X) ∨ ¬Y,X ⇑
R⇑

` ((X ∧ Y) ∨ ¬X) ∨ ¬Y ⇑ X

axv` ¬Y ⇓ Y
D1` Y,¬Y ⇑
R⇑` Y ⇑ ¬Y
R⇓` Y ⇓ ¬Y ∨2` Y ⇓ ((X ∧ Y) ∨ ¬X) ∨ ¬Y

D1` ((X ∧ Y) ∨ ¬X) ∨ ¬Y, Y ⇑
R⇑

` ((X ∧ Y) ∨ ¬X) ∨ ¬Y ⇑ Y
∧⇑

` ((X ∧ Y) ∨ ¬X) ∨ ¬Y ⇑ X ∧ Y
R⇓

` ((X ∧ Y) ∨ ¬X) ∨ ¬Y ⇓ X ∧ Y ∨1` ((X ∧ Y) ∨ ¬X) ∨ ¬Y ⇓ (X ∧ Y) ∨ ¬X ∨1` ((X ∧ Y) ∨ ¬X) ∨ ¬Y ⇓ ((X ∧ Y) ∨ ¬X) ∨ ¬Y
D2` ((X ∧ Y) ∨ ¬X) ∨ ¬Y, ((X ∧ Y) ∨ ¬X) ∨ ¬Y ⇑
cw2` ⊥, ((X ∧ Y) ∨ ¬X) ∨ ¬Y ⇑

R⇑
` ⊥ ⇑ ((X ∧ Y) ∨ ¬X) ∨ ¬Y

⇑R
` ⇑ ⊥, ((X ∧ Y) ∨ ¬X) ∨ ¬Y

One can prove the soundness of OL0
f with respect to orthologic by translation into OL.

Proposition 3.4 (Soundness of OL0
f). If ` ⇑ A,B or ` A ⇑ B or ` A,B ⇑ or ` A ⇓ B is

provable in OL0
f then ` A,B is provable in OL.

Proof. By a simple induction on the proof by erasing ⇑ and ⇓ in sequents and thanks to
exchange rules in OL.

To conclude this section, here are a few simple facts which will be useful later:

Lemma 3.5.

• ` X,Y ⇑ , ` ¬X,¬Y ⇑ and ` ⊥,⊥ ⇑ are not provable (both if X = Y or X 6= Y);
• if ` A,B ⇑ is provable then ` B,A ⇑ as well (and with a proof of the same size);
• if ` A,A ⇑ is provable then A is synchronous and the proof contains a proof of ` A ⇓ A.

Proof. Simple inductions on proofs.

3.2. Cut Elimination in OL0
f . Due to the very rigid structure of proofs in focused systems,

the possibility of enriching them with admissible cut rules is often used in their study [Gir91,
Lau04] (in particular for expressiveness analysis). It is the tool we are going to use here in
order to prove the completeness of OL0

f with respect to orthologic.

FOCUSING IN ORTHOLOGIC 13

Theorem 3.6 (Cut Elimination in OL0
f). The following cut rules are admissible in OL0

f :

` A,X ⇑ ` C,¬X ⇑
v-cut1` A,C ⇑

C synchronous

` X ⇓ A ` ¬X ⇓ C
v-cut2` C ⇓ A

C synchronous

` X ⇑ A ` ¬X ⇓ C
v-cut3` C ⇑ A

B asynchronous or variable

` A ⇑ B ` C ⇑ ¬B
cut1` A,C ⇑

` A ⇑ B ` C,¬B ⇑
cut2` A,C ⇑

B asynchronous

` A ⇑ B ` ¬B ⇓ C
cut3` A ⇓ C

B asynchronous or variable

` A ⇑ B ` C ⇓ ¬B
cut4` A,C ⇑

` A ⇑ B ` ¬B ⇑ C
cut5` A ⇑ C

` ⇑ A,B ` ⇑ C,¬B
cut0` ⇑ A,C

` ⇑ A,B ` C ⇑ ¬B
cut′0` C ⇑ A

Proof. This is a proof involving many cases which require a precise management of the four
kinds of sequents. We try to explain the key ingredients which work in successive steps.

• We prove simultaneously the admissibility of (v-cut2) and (v-cut3) by induction on the
size of the left premise.
• We deduce the admissibility of (v-cut1) by induction on the size of the left premise. For

example:

` X ⇓ A
D1` A,X ⇑

` ¬X ⇓ C
D1` C,¬X ⇑
v-cut1` A,C ⇑

` X ⇓ A ` ¬X ⇓ C

v-cut2` C ⇓ A
D1` A,C ⇑

since A and C are synchronous.
• Using the previous steps, we prove simultaneously the admissibility of (cut1), (cut2), (cut3),

(cut4) and (cut5) by induction on the pair (f, p) where f is the size of the cut-formula B
and p is the size of the right premise. The crucial cases are the following ones:
– Starting from:

` A ⇑ B1 ` A ⇑ B2 ∧⇑` A ⇑ B1 ∧B2

` C ⇓ ¬B1 ∨1` C ⇓ ¬B1 ∨ ¬B2 cut4` A,C ⇑

14 OLIVIER LAURENT

we can apply the induction hypothesis with a smaller cut formula by means of (cut1)
with Lemma 3.5 or (cut4):

B1 synchronous

` C ⇑ ¬B1 ` A ⇑ B1 cut1` C,A ⇑
` A,C ⇑

B1 asynchronous

` A ⇑ B1 ` C ⇓ ¬B1 cut4` A,C ⇑

– In the following case:

` A ⇑ B
` ¬B ⇓ C

D1` C,¬B ⇑
cut2` A,C ⇑

if B is asynchronous, we have:

` A ⇑ B
` ¬B ⇓ C

D1` C,¬B ⇑
cut2` A,C ⇑

` A ⇑ B ` ¬B ⇓ C

cut3` A ⇓ C
D2` A,C ⇑

otherwise B is a variable so that ` A ⇑ X must come from (R⇑) and we apply (v-cut1).
– The most tricky case is contraction where we need two induction steps (we use here

Lemma 3.5):

` A ⇑ B

` ¬B ⇓ ¬B
D` ¬B,¬B ⇑
cw

` ¬B,¬B ⇑
cw2` C,¬B ⇑

cut2` A,C ⇑

` A ⇑ B

` A ⇑ B ` ¬B ⇓ ¬B
cut3` A ⇓ ¬B

cut4` A,A ⇑
cw1` A,C ⇑

First we apply (cut3) with a smaller right premise and then, by transforming one more
step the (cut4), we reach a smaller cut formula.

• We deduce the case (cut′0) and then (cut0), by induction on the size of the left premise.

Among the 10 cut rules considered in the theorem above, mainly two will be used now
(namely cut0 and cut′0). The other rules were however necessary as intermediary steps to
prove the admissibility of these two rules.

3.3. Completeness of OL0
f . We are going to translate proofs of OL into proofs of OL0

f .
We start with some preliminary results about sequents ` ⇑ A,B in OL0

f which will be the
target of sequents of OL.

Lemma 3.7. The following rules are admissible in OL0
f :

` ⇑ C,>
` ⇑ C,A ` ⇑ C,B

` ⇑ C,A ∧B
` A ⇑ C
` ⇑ C,A

` ⇑ A,C
` ⇑ C,A

Proof. The first three rules are obtained by induction on C. The fourth is obtained by
induction on the proof of ` ⇑ A,C, using the other three.

FOCUSING IN ORTHOLOGIC 15

Lemma 3.8. In OL0
f , the following rules are admissible (and similarly for B ∨A instead of

A ∨B):

A asynchronous

` C ⇑ A
` A ∨B ⇑ C

A synchronous

` A ⇑ C
` A ∨B ⇑ C

A synchronous

` A,C ⇑
` A ∨B,C ⇑

A synchronous

` A ⇓ C
` A ∨B ⇓ C

Proof. If A is asynchronous, we have:

` C ⇑ A
R⇓` C ⇓ A ∨1` C ⇓ A ∨B

D1` A ∨B,C ⇑
R⇑` A ∨B ⇑ C

If A is synchronous, we prove the three statements by mutual induction on the proof.
Key cases are:

` A ⇓ A
...

` A,A ⇑
cw1` A,C ⇑

7→

IH
` A ∨B ⇓ A ∨1` A ∨B ⇓ A ∨B

D2` A ∨B,A ∨B ⇑
cw1` A ∨B,C ⇑

and

` C ⇓ A
D1` A,C ⇑

7→
` C ⇓ A ∨1` C ⇓ A ∨B

D1` A ∨B,C ⇑

Proposition 3.9 (Axiom expansion for OL0
f). If A is synchronous or a negation of a

variable, ` A ⇑ ¬A is provable.

Proof. The proof goes by induction on the size of A. The main case is when A = A1 ∨A2.
We must consider whether each Ai is synchronous or asynchronous. If Ai is asynchronous,
by induction hypothesis, we have ` ¬Ai ⇑ Ai and, by Lemma 3.8, ` A1 ∨A2 ⇑ ¬Ai. If
Ai is synchronous, we have ` Ai ⇑ ¬Ai by induction hypothesis and, by Lemma 3.8, it
implies ` A1 ∨A2 ⇑ ¬Ai. We thus have ` A1 ∨A2 ⇑ ¬Ai (i ∈ {1, 2}) in any case and we
can conclude:

` A1 ∨A2 ⇑ ¬A1 ` A1 ∨A2 ⇑ ¬A2 ∧⇑` A1 ∨A2 ⇑ ¬A1 ∧ ¬A2

This leads us to the completeness of OL0
f for orthologic by means of the completeness of

OL and the following translation result:

Theorem 3.10 (Completeness of OL0
f). If ` A,B is provable in OL then ` ⇑ A,B is

provable in OL0
f .

Proof. By induction on the proof of ` A,B in OL, the main cases are:

• If the last rule is a contraction-weakening rule, we use Lemma 2.5 to restrict ourselves to
the (cw∨) case, and by induction hypothesis we have ` ⇑ A1 ∨A2, A1 ∨A2. The only
way this is provable is by:

16 OLIVIER LAURENT

` A1 ∨A2, A1 ∨A2 ⇑ R⇑` A1 ∨A2 ⇑ A1 ∨A2 ⇑R` ⇑ A1 ∨A2, A1 ∨A2

so that we can build:

` A1 ∨A2, A1 ∨A2 ⇑ cw1` A1 ∨A2, B ⇑ R⇑` A1 ∨A2 ⇑ B ⇑R` ⇑ A1 ∨A2, B

• If the last rule is a (∨1) rule, by induction hypothesis we have ` ⇑ A,C, thus using
Lemmas 3.7 and 3.8, Proposition 3.9 and Theorem 3.6:

` ⇑ A,C
` ⇑ C,A

A synchronous

` A ⇑ ¬A
` A ∨B ⇑ ¬A

cut′0` A ∨B ⇑ C ⇑R` ⇑ A ∨B,C

and
` ⇑ A,C
` ⇑ C,A

A asynchronous

` ¬A ⇑ A
` A ∨B ⇑ ¬A

cut′0` A ∨B ⇑ C ⇑R` ⇑ A ∨B,C
As promised in Section 2, we can deduce cut elimination for OL.

Proposition 3.11 (Cut Elimination for OL). The cut rule is admissible in OL.

Proof. By Theorem 3.10, we have ` ⇑ A,B and ` ⇑ ¬B,C in OL0
f . By Lemma 3.7 we

deduce ` ⇑ C,¬B. Using cut0 (Theorem 3.6) we have ` ⇑ A,C, and by Proposition 3.4,
` A,C in OL.

3.4. A Second Focused System OLf . If we try to apply a simple bottom-up proof-search
procedure in a sequent calculus system, a first obstacle to the finiteness of the search is given
by cut rules. If a cut rule cannot be eliminated then a given conclusion leads us to a possibly
infinite set of premises. A second obstacle comes from loops, i.e. non trivial derivations
leading from a sequent to the same sequent (note however this obstacle can be dealt with by
using loop detection during the search, but loops make the proof-search longer). All the
systems we have seen so far contain non-trivial loops:

B ` A B ` B
B ` A ∧B A ∧B ` A

B ` A

OCL+

` A ∨B
wR` A,A ∨B ∨1R` A ∨B

OL
` A ∨B,A ∨B

cw` A ∨B,A
ex` A,A ∨B ∨1` A ∨B,A ∨B

OL0
f

` ¬X ∨B,¬X ∨B ⇑
cw1` ¬X ∨B,¬X ⇑

R⇑` ¬X ∨B ⇑ ¬X
R⇓` ¬X ∨B ⇓ ¬X ∨1` ¬X ∨B ⇓ ¬X ∨B

D1` ¬X ∨B,¬X ∨B ⇑
Avoiding loops is one of the motivations for looking for a more constrained focused

system. Let us analyse loops in OL0
f . They mainly come from rules acting on sequents of

FOCUSING IN ORTHOLOGIC 17

the shape ` , ⇑ . If we look at derivations in a bottom-up way, we reach such a sequent
through a (R⇑) rule:

` C,A ⇑
R⇑` C ⇑ A

then we stay with sequents ` , ⇑ by using (upwardly):

` C,C ⇑
cw1` C,A ⇑

and
` C,C ⇑

cw2` A,C ⇑
until we reach:

` C ⇓ A
D1` A,C ⇑

or
` C ⇓ A

D2` C,A ⇑
.

Globally, this means we start with a sequent ` C ⇑ A and we must end with ` C ⇓ A,
` A ⇓ C, ` A ⇓ A or ` C ⇓ C. This would correspond to four derivable rules:

` C ⇓ A
` C ⇑ A

` A ⇓ C
` C ⇑ A

` A ⇓ A
` C ⇑ A

` C ⇓ C
` C ⇑ A

In the same time we want to try to constrain contraction so that it is applied on ∨-formulas
only (in the spirit of Lemma 2.5). Moreover we would like contraction not being applied
twice on the same formula. In particular we get read of the fourth rule just above, which
would allow C to be contracted (uselessly) many times. All these remarks lead us to the
following new focused system called OLf :

OLf

` ⇑ A,C ` ⇑ B,C ⇑∧` ⇑ A ∧B,C
⇑>` ⇑ >, C

` C ⇑ A ` C ⇑ B ∧⇑` C ⇑ A ∧B
[(s) or (n)] >⇑` A ⇑ >

` B ∨ C ⇓ B ∨ C ⇑cw` ⇑ B ∨ C,A
` B ∨ C ⇓ B ∨ C

[(s) or (n)] cw⇑` A ⇑ B ∨ C

axv` ¬X ⇓ X
` C ⇓ A ∨1` C ⇓ A ∨B

` C ⇓ B ∨2` C ⇓ A ∨B

` A ⇑ C ⇑R` ⇑ A,C
` C ⇑ A

[(a)] R⇓` C ⇓ A
` C ⇓ A

[(s)] D1` A ⇑ C
` C ⇓ A

[(s)] D2` C ⇑ A
(a) A is asynchronous (s) A is synchronous (n) A is the negation of a variable

Note, sequents ` A,B ⇑ disappear in this system which relies on three kinds of sequents
only: ` A ⇑ B, ` A ⇓ B and ` ⇑ A,B.

Example 3.12. We can prove in OLf the sequent associated with Example 1.3:

18 OLIVIER LAURENT

axv` ¬X ⇓ X
D1` X ⇑ ¬X
R⇓` X ⇓ ¬X ∨2` X ⇓ (X ∧ Y) ∨ ¬X ∨1` X ⇓ ((X ∧ Y) ∨ ¬X) ∨ ¬Y

D1` ((X ∧ Y) ∨ ¬X) ∨ ¬Y ⇑ X

axv` ¬Y ⇓ Y
D1` Y ⇑ ¬Y
R⇓` Y ⇓ ¬Y ∨2` Y ⇓ ((X ∧ Y) ∨ ¬X) ∨ ¬Y

D1` ((X ∧ Y) ∨ ¬X) ∨ ¬Y ⇑ Y
∧⇑

` ((X ∧ Y) ∨ ¬X) ∨ ¬Y ⇑ X ∧ Y
R⇓

` ((X ∧ Y) ∨ ¬X) ∨ ¬Y ⇓ X ∧ Y ∨1` ((X ∧ Y) ∨ ¬X) ∨ ¬Y ⇓ (X ∧ Y) ∨ ¬X ∨1` ((X ∧ Y) ∨ ¬X) ∨ ¬Y ⇓ ((X ∧ Y) ∨ ¬X) ∨ ¬Y
cw⇑

` ⊥ ⇑ ((X ∧ Y) ∨ ¬X) ∨ ¬Y
⇑R

` ⇑ ⊥, ((X ∧ Y) ∨ ¬X) ∨ ¬Y
The system OLf is as expressive as OL0

f for sequents ` ⇑ A,B. In particular:

Proposition 3.13 (Expressiveness of OLf). If ` ⇑ A,B is provable in OL0
f , it is also

provable in OLf .

Proof. We prove by induction on the proof π in OL0
f the more general statement:

• If ` ⇑ A,B in OL0
f then ` ⇑ A,B in OLf .

• If ` A ⇑ B in OL0
f then either ` A ⇑ B in OLf or A = A1 ∨A2 with ` A ⇓ A in OLf .

• If ` A ⇓ B in OL0
f then either ` A ⇓ B in OLf or A = A1 ∨A2 with ` A ⇓ A in OLf .

• If ` A,B ⇑ in OL0
f then at least one of the following four possibilities holds:

– B is synchronous and ` A ⇓ B in OLf ;
– A is synchronous and ` B ⇓ A in OLf ;
– A = A1 ∨A2 and ` A ⇓ A in OLf ;
– B = B1 ∨B2 and ` B ⇓ B in OLf .

We consider each possible last rule for π. Interesting cases are:

• For the two contraction rules, we have ` C,C ⇑ in OL0
f thus, by induction hypothesis,

` C ⇓ C in OLf with C synchronous and we are done since ` ⊥ ⇓ ⊥ and ` X ⇓ X are
not provable thus C = C1 ∨ C2.
• For (∨1), by induction hypothesis, we have either ` C ⇓ A or ` C1 ∨ C2 ⇓ C1 ∨ C2 in

OLf with C = C1 ∨ C2. In the first case, we apply the corresponding rule. In the second
case, we are immediately done.
• For (⇑R), by induction hypothesis we have `A ⇑ C orA = A1∨A2 with `A1∨A2 ⇓ A1∨A2,

we can build:
` A ⇑ C ⇑R` ⇑ A,C

or
` A1 ∨A2 ⇓ A1 ∨A2 ⇑cw` ⇑ A1 ∨A2, C

• For (R⇑), we apply the induction hypothesis and we obtain four possible cases:

– If ` C ⇓ A in OLf with A synchronous, we have:
` C ⇓ A

D2` C ⇑ A
– If ` A ⇓ C in OLf with C synchronous, we have:

` A ⇓ C
D1` C ⇑ A

– If ` C1 ∨ C2 ⇓ C1 ∨ C2 (C = C1 ∨ C2) in OLf , we are done.
– If ` A1 ∨A2 ⇓ A1 ∨A2 (A = A1 ∨A2) in OLf , we have:

` A1 ∨A2 ⇓ A1 ∨A2 cw⇑` C ⇑ A1 ∨A2

FOCUSING IN ORTHOLOGIC 19

Proposition 3.14 (Soundness of OLf). If ` ⇑ A,B is provable in OLf then ` A,B is
provable in OL.

Proof. Similar to the proof of Proposition 3.4.

From Propositions 3.11, 3.13 and 3.14, and Theorem 3.10, we can deduce the admissibility
of the following cut rule in OLf :

` ⇑ A,B ` ⇑ ¬B,C
cut` ⇑ A,C

We have thus built yet another sound and complete system for orthologic. This one has
stronger constraints on the structure of proofs than the previous ones. A key property of
this new system (which holds in none of the previous ones) is the termination of the naive
bottom-up proof search strategy (Proposition 4.1).

4. Proof Search in OLf

We first develop a few properties of OLf on which we will rely for proof search. In a second
time, we will compare with other algorithms from the literature.

4.1. Backward Proof Search. The basic idea of backward proof search in a cut-free
sequent calculus system is to start from the sequent to be proved, to look in a bottom-up
manner at each possible instance of a rule with this sequent as conclusion and to continue
recursively with the premises of these instances until axioms are reached. Given a sequent, we
are going to bound the length of branches of its proofs in OLf , thus proving the termination
of this algorithm. Let us first define the following measure on formulas:

ϕ(X) = ϕ(¬X) = ϕ(⊥) = ϕ(>) = 1

ϕ(A ∧B) = ϕ(A) + ϕ(B)

ϕ(A ∨B) = 2ϕ(A) + 2ϕ(B)

As a bound on ϕ, we have ϕ(A) < 2|A| where |A| is the size (number of symbols) of A.

Proposition 4.1 (Finiteness of Branches in OLf). Given two formulas A and B, 2ϕ(A) +
2ϕ(B) is a bound on the length of the branches of any proof of ` ⇑ A,B in OLf .

Proof. We define the measure ψ of a sequent, according to its shape:

ψ(` ⇑ A,B) = 2ϕ(A) + 2ϕ(B)

ψ(` A ⇑ B) = ϕ(A) + 2ϕ(B)

ψ(` A ⇓ B) =

{
ϕ(A) + ϕ(B) if B is synchronous

ϕ(A) + 2ϕ(B) + 1 if B is asynchronous

We now prove for each rule of OLf : if S1 is a sequent premise of the rule and S2 is the
sequent conclusion of the rule, then ψ(S1) < ψ(S2). For example:

20 OLIVIER LAURENT

(∨1) with A synchronous (∨1) with A asynchronous

ψ(` C ⇓ A) = ϕ(C) + ϕ(A)
< ϕ(C) + 2ϕ(A) + 2ϕ(B)
= ϕ(C) + ϕ(A ∨B)
= ψ(` C ⇓ A ∨B)

ψ(` C ⇓ A) = ϕ(C) + 2ϕ(A) + 1
< ϕ(C) + 2ϕ(A) + 2ϕ(B)
= ϕ(C) + ϕ(A ∨B)
= ψ(` C ⇓ A ∨B)

Thus for any sequent S, ψ(S) is a bound on the height of the branches of the proofs of S.

Since rules of OLf are finitely branching, this bound on the length of branches ensures
(the absence of loops and) the termination of the backward proof search. Moreover, thanks
to the sub-formula property, we know every sequent appearing in a proof of ` ⇑ A,B is
made of two formulas which are sub-formulas of A or B. Since we have three different kinds
of sequents, there are at most 3(|A|+ |B|)2 such sequents. We have just proved a sequent
cannot appear twice in a branch of a proof, so we can deduce a tighter bound than ψ on the

height of branches: 3(|A|+ |B|)2. We thus have an upper bound 23(|A|+|B|)2+1 on the size of
proofs since rules have arity at most 2.

4.2. Single Formula Proof Search. As we have seen in Section 2, in systems with exactly
two formulas in sequents presented in this paper, the provability of a formula A in orthologic
is encoded as the provability of a sequent of the shape ` A,A or ` ⇑ A,A. Since we are
often interested in the provability of a single formula, these sequents play a specific role.
Note however that there is no direct reduction of the provability of two-formulas sequents
to the provability of these single-formula sequents as shown by the following proposition.
This is related with the so-called “implication problem” in quantum logic (see [Kal74] for
example).

Proposition 4.2 (Single-Formula Provability). In OL, there is no formula F using only
two variables X and Y and such that, for any two formulas A and B:

` A,B ⇐⇒ ` F
[
A/X ,

B/Y
]
, F
[
A/X ,

B/Y
]

Proof. First note that ` C,C if and only if ` C,⊥. Now, if F exists, it defines a function
I : F × F → F (where F is the free ortholattice over the set X) by mapping (p, q) to
I(p, q) = F [¬p/X ,

q/Y] (variables are mapped to their corresponding element in F and
conjunction, disjunction and negation are interpreted by the corresponding ortholattice
operations). We then have:

p ≤ q in F ⇐⇒ ` ¬p, q in OL
⇐⇒ ` F [¬p/X ,

q/Y] ,⊥ in OL
⇐⇒ > ≤ F [¬p/X ,

q/Y] in F
⇐⇒ I(p, q) = > in F

which contradicts the main theorem of [Moo93], since F is not orthomodular (see Exam-
ple 1.2).

FOCUSING IN ORTHOLOGIC 21

Nevertheless since the restricted sequents ` A,A or ` ⇑ A,A arise naturally (in
particular when considering provability of formulas instead of sequents), we give a dedicated
look at them. We can give some optimisation on the bottom structure of proofs of sequents
` ⇑ A,A in OLf .

Proposition 4.3 (Diagonal Sequent). The following properties hold in OLf :

• ` ⇑ X,X, ` ⇑ ¬X,¬X and ` ⇑ ⊥,⊥ are not provable (for any X).
• ` ⇑ >,> is provable.
• ` ⇑ B ∧ C,B ∧ C is provable if and only if both ` ⇑ B,B and ` ⇑ C,C are provable.
• ` ⇑ B ∨ C,B ∨ C is provable if and only if ` B ∨ C ⇓ B ∨ C is provable.

Proof. For the first two points, we can for example move to OL thanks to Proposition 3.14.
For ∧, we move back and forth to OL thanks to Theorem 3.10 and Propositions 3.13 and 3.14.
In OL, we use Lemma 2.4 and:

` B,B
cw` B,B ∧ C

` C,C
cw` C,B ∧ C ∧` B ∧ C,B ∧ C

For ∨, the only possible last rules are:

` B ∨ C ⇓ B ∨ C ⇑cw` ⇑ B ∨ C,B ∨ C
` B ∨ C ⇑ B ∨ C ⇑R` ⇑ B ∨ C,B ∨ C

and for a proof of ` B ∨ C ⇑ B ∨ C, the only possible last rules are:

` B ∨ C ⇓ B ∨ C
cw⇑` B ∨ C ⇑ B ∨ C

` B ∨ C ⇓ B ∨ C
D1` B ∨ C ⇑ B ∨ C

` B ∨ C ⇓ B ∨ C
D2` B ∨ C ⇑ B ∨ C

so that ` B ∨ C ⇓ B ∨ C must be provable for ` ⇑ B ∨ C,B ∨ C to be provable. In the
other direction we directly use (⇑cw).

This means in particular that any sequent ` A,A is either clearly not provable or
equivalent to a finite family of sequents ` B1 ∨ C1 ⇓ B1 ∨ C1,. . . , ` Bn ∨ Cn ⇓ Bn ∨ Cn

(with each Bi ∨ Ci sub-formula of A).

4.3. Forward Proof Search. Forward proof search consists in building, in a top-down
way, proof-trees which are candidates to be sub-proof-trees of proofs of a given sequent.
Clearly the sub-formula property can be used to control the sequents to be considered inside
the proof-trees. We can use even stronger constraints based on the structure of focused
sequents (see Lemma 3.1 for example).

Following Section 4.2, we present some specific optimisations which can be applied in
the case of forward proof search for sequents ` ⇑ A,A. Let us fix a formula A. We want to
study sub-proof-trees of proofs of ` ⇑ A,A in OLf . Thanks to Proposition 4.3, it is then
enough to focus on proofs of sequents of the shape ` B ∨ C ⇓ B ∨ C.

Proposition 4.4 (Strengthened Sub-Formula Property). If ` D ⇓ E or ` D ⇑ F appears
in a proof of ` B ∨ C ⇓ B ∨ C in OLf , D, E and F are sub-formulas of B∨C and moreover:

• if D is synchronous, it is equal to B ∨ C or it appears inside B ∨ C just below a ∧
connective;
• if E is asynchronous, it appears inside B ∨ C just below a ∨ connective;
• if F is synchronous, it appears inside B ∨ C just below a ∧ connective.

22 OLIVIER LAURENT

Proof. Since ` B ∨ C ⇓ B ∨ C satisfies the conclusion of the statement, we prove for each
rule that if the conclusion satisfies it, then all its premises as well.

• For the ∧⇑ rule, we apply the hypothesis relative to position D to the conclusion and,
concerning F , we have formulas occurring below a ∧ connective.
• For the cw⇑ rule, position D in the premise is below a ∧ connective since it is the case for

position F in the conclusion.
• For the ∨ rules, the result is immediate.
• For the R⇓ rule, the formula in position F in the premise must be asynchronous.
• For the D1 rule, if it is synchronous, position D in the premise is below a ∧ connective

since it is the case for position F in the conclusion.
• For the D2 rule, it is immediate from the property of the conclusion and the side condition.

This proposition provides us constraints on the meaningful sequents to be considered
during forward proof search for sequents ` ⇑ A,A. This means we can restrict the
application of rules in the algorithm for forward proof search to the case where they generate
sequents satisfying the properties given by Proposition 4.4.

4.4. Benchmark. We want to compare our proof-search procedures with procedures from
the literature. We consider some formulas from [McC98] and [ET03] as well as some random
formulas in the language of orthologic:

E1 = ((¬X ∨ Y) ∧X) ∨ ((X ∧ ¬Y) ∨ ((¬X ∧ ((X ∨ ¬Y) ∧ (X ∨ Y)))

∨ (¬X ∧ ((¬X ∧ Y) ∨ (¬X ∧ ¬Y)))))

E2 = X ∨ ((¬X ∧ ((X ∨ ¬Y) ∧ (X ∨ Y))) ∨ (¬X ∧ ((¬X ∧ Y) ∨ (¬X ∧ ¬Y))))

E3 = (((X ∨ ¬Y) ∧ (X ∨ Y)) ∧ (¬X ∨ (X ∧ ¬Y))) ∨ (¬X ∨ Y)

Φ0 = X0 ∨ ¬X0 Φn+1 = ((Xn ∧ Yn) ∧ (Xn ∧ Zn)) ∨ (((¬Xn ∧ Φn) ∨ ¬Yn) ∨ ¬Zn)

Ψ1
0 = > Ψ2

0 = ⊥ Ψ1
n+1 = Ψ1

n ∧Xn Ψ2
n+1 = Ψ2

n ∨ Yn
Ψ3

n = (X ∨ (Y ∧Ψ2
n)) ∧Ψ1

n Ψ4
n = (Y ∧ (X ∨Ψ1

n)) ∨Ψ2
n Ψn = ¬Ψ3

n ∨Ψ4
n

The formulas E2, E3 and Φn are provable, while E1 and Ψn are not.
We compare four algorithms:

• cf is prove-cf [ET03], a mixed backward-forward algorithm (pure backward search would
loop in general);
• fw is the forward algorithm from [ET03];
• bwf is the backward algorithm based on OLf (see Section 4.1);
• fwf is the forward algorithm based on OLf using Proposition 4.4 (see Section 4.3).

The implementations are done in OCaml in the most naive way (except that we use some
memoization), so that running time (time, in seconds) should not be taken too seriously. As
an alternative measure which depends less on the particular implementation, we also count
the number of rule occurrences (number of rules) applied during search.

FOCUSING IN ORTHOLOGIC 23

time (in seconds) number of rules
cf bwf fw fwf cf bwf fw fwf

E1 0.00 0.00 0.00 0.01 2 449 127 47 64
E2 0.00 0.00 0.00 0.00 145 102 33 42
E3 0.00 0.00 0.00 0.00 78 142 43 49

Φ5 0.02 0.00 0.36 0.28 5 599 382 416 338
Φ10 0.06 0.00 6.42 3.37 11 194 772 1 791 1 023
Φ20 0.16 0.00 120.36 48.36 22 384 1 552 7 391 3 443

Ψ5 0.18 0.00 0.17 0.02 248 855 303 343 123
Ψ10 135.86 0.00 1.06 0.05 195 724 597 818 773 273
Ψ20 TO 0.00 10.21 0.20 TO 2 598 2 083 723
Ψ100 TO 0.09 6701.08 7.92 TO 52 838 34 163 11 523

Rnd20 0.00 0.00 0.02 0.00 1 853 38 152 36
Rnd100 3.81 0.00 5.07 0.52 1 047 118 233 2 553 566

Lines Rnd20 and Rnd100 correspond to average values over some randomly generated
formulas of size respectively 20 and 100. The unknown values TO (time out) correspond to
the algorithm being stopped after more than 12 hours running time without answer.

This is a minimalist benchmarking. The goal here is simply to show that the new
focusing-based algorithms (bwf and fwf) look really competitive with respect to previous
work (cf and fw [ET03]). For this, it is meaningful to compare cf and bwf on the one side,
and fw and fwf on the other side. Comparing backward and forward algorithms is more
difficult here since the time measures really depend on the specific implementation, and
forward algorithms require more management of data. There is certainly room for a better
implementation of data structures.

We do not answer here to the question of what would be the best proof-search algorithm
for orthologic. We think future investigations in this direction should go towards focused-
based approaches. While the focused backward approach looks the most promising one, the
fact that fwf sometimes gives better results that bwf regarding the number of applied rules
suggests that better implementations of fwf (with more care on the chosen data structures)
might become competitive.

5. Conclusion

We have presented new sequent-calculus proof-systems for orthologic, mainly: OL which
is the simplest such system we know, and OLf which is based on focusing to constrain the
structure of proofs. With some complementary analysis on the structure of proofs in OLf we
have proposed efficient proof search algorithms for orthologic which look quicker than the
state of the art [ET03] (but additional studies in this direction must be done to obtain fully
convincing evaluations).

Our new systems open the door for additional proof-theoretical studies of orthologic
(and the possibility of extracting (finite) counter-models from proof-search failures should
be investigated). We also hope this will lead to results in the theory of ortholattices (free
ones in particular) in the spirit of P. Whitman’s work [Whi41]. We plan also to work on the
application of focusing to other lattice-related logics [SM81].

We have focused on the propositional part of the logic because of its close relation with
lattice theory. From the proof theoretical point of view, it would be natural to consider

24 OLIVIER LAURENT

first-order quantifiers as well. The theory of focusing for quantifiers is well understood and a
simple extension of the systems we have considered, with ∧-like rules for ∀ and ∨-like rules
for ∃, would be easy to define. Second-order quantification could also be investigated on the
logic side in relation with complete ortholattices.

Finally, the proof theory of orthologic seems to be mature enough to try to develop some
Curry-Howard correspondence aiming at exhibiting the computational content of orthologic.
In particular it would be interesting to investigate notions of proof-nets for orthologic relying
on the work on additive linear logic [HH15].

Additional Material. A Coq development formalising the main proofs of the paper is
available at:

https://arxiv.org/src/1612.01728/anc/olf_long.v

The OCaml code for the benchmark of Section 4.4 is available at:

https://arxiv.org/src/1612.01728/anc/olf_long.ml

Acknowledgements. We would like to thank D. Pous and P. Clairambault for helpful
discussions during the development of this work, as well as the anonymous referees for their
comments.

References

[And92] Jean-Marc Andreoli. Logic programming with focusing proofs in linear logic. Journal of Logic and
Computation, 2(3):297–347, 1992.

[Ber85] Ladislav Beran. Orthomodular Lattices. Mathematics and Its Applications. D. Reidel Publishing
Company, 1985.

[Bir67] Garrett Birkhoff. Lattice Theory, volume 25 of Colloquium Publications. American Mathematical
Society, third edition, 1967.

[Bru76] Günter Bruns. Free ortholattices. Canadian Journal of Mathematics, 28(5):977–985, October 1976.
[ET99] Uwe Egly and Hans Tompits. Gentzen-like methods in quantum logic. Technical Report 99-1,

Institute for Programming and Logics, University at Albany - SUNY, 1999. Position Papers of
TABLEAUX ’99.

[ET03] Uwe Egly and Hans Tompits. On different proof-search strategies for orthologic. Studia Logica,
73(1):131–152, February 2003.

[FS98] Claudia Faggian and Giovanni Sambin. From basic logic to quantum logics with cut-elimination.
International Journal of Theoretical Physics, 37(1):31–37, January 1998.

[Gir87] Jean-Yves Girard. Linear logic. Theoretical Computer Science, 50:1–102, 1987.
[Gir91] Jean-Yves Girard. A new constructive logic: classical logic. Mathematical Structures in Computer

Science, 1(3):255–296, 1991.
[Gol74] Robert Goldblatt. Semantic analysis of orthologic. Journal of Philosophical Logic, 3(1–2):19–35,

1974.
[Gol84] Robert Goldblatt. Orthomodularity is not elementary. Journal of Symbolic Logic, 49(2):401–404,

1984.
[HH15] Willem Heijltjes and Dominic Hughes. Complexity bounds for sum-product logic via additive proof

nets and petri nets. In 30th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS),
pages 80–91. IEEE Computer Society, 2015.

[Kal74] Gudrun Kalmbach. Orthomodular logic. Zeitschrift für mathematische Logik und Grundlagen der
Mathematik, 20(25–27):395–406, 1974.

[Lau04] Olivier Laurent. A proof of the focalization property of linear logic. Unpublished note, May 2004.

https://arxiv.org/src/1612.01728/anc/olf_long.v
https://arxiv.org/src/1612.01728/anc/olf_long.ml

FOCUSING IN ORTHOLOGIC 25

[Lau16] Olivier Laurent. Focusing in orthologic. In Delia Kesner and Brigitte Pientka, editors, 1st Inter-
national Conference on Formal Structures for Computation and Deduction (FSCD), volume 52
of Leibniz International Proceedings in Informatics (LIPIcs), pages 25:1–17. Schloss Dagstuhl –
Leibniz-Zentrum fuer Informatik, June 2016.

[McC98] William McCune. Automatic proofs and counterexamples for some ortholattice identities. Informa-
tion Processing Letters, 65(6):285–291, 1998.

[Moo93] David J. Moore. Quantum logic requires weak modularity. Helvetica Physica Acta, 66(5):471–476,
March 1993.

[Nis94] Hirokazu Nishimura. Proof theory for minimal quantum logic I. International Journal of Theoretical
Physics, 33(1):103–113, January 1994.

[SM81] Jürgen Schulte Mönting. Cut elimination and word problems for varieties of lattices. Algebra
Universalis, 12:290–321, December 1981.

[Sme10] Sonja Smets. Logic and quantum physics. Journal of the Indian Council of Philosophical Research,
27(2):203–227, 2010.

[Tai68] William W. Tait. Normal derivability in classical logic. In The Syntax and Semantics of Infinitary
Languages, volume 72 of Lecture Notes in Mathematics, pages 204–236. Springer, 1968.

[Whi41] Philip Whitman. Free lattices. Annals of Mathematics, 42(1):325–330, January 1941.

This work is licensed under the Creative Commons Attribution-NoDerivs License. To view a
copy of this license, visit https://creativecommons.org/licenses/by-nd/4.0/ or send a
letter to Creative Commons, 171 Second St, Suite 300, San Francisco, CA 94105, USA, or
Eisenacher Strasse 2, 10777 Berlin, Germany

	1. Ortholattices and Orthologic
	2. One-Sided Orthologic
	3. Focused Orthologic
	3.1. A First Focused System OLf
	3.2. Cut Elimination in OLf0
	3.3. Completeness of OLf0
	3.4. A Second Focused System OLf

	4. Proof Search in OLf
	4.1. Backward Proof Search
	4.2. Single Formula Proof Search
	4.3. Forward Proof Search
	4.4. Benchmark

	5. Conclusion
	Additional Material
	Acknowledgements

	References

