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Abstract. The algebraic intersection type unification problem is an important component
in proof search related to several natural decision problems in intersection type systems. It
is unknown and remains open whether the algebraic intersection type unification problem
is decidable. We give the first nontrivial lower bound for the problem by showing (our
main result) that it is exponential time hard. Furthermore, we show that this holds even
under rank 1 solutions (substitutions whose codomains are restricted to contain rank 1
types). In addition, we provide a fixed-parameter intractability result for intersection type
matching (one-sided unification), which is known to be NP-complete.

We place the algebraic intersection type unification problem in the context of unification
theory. The equational theory of intersection types can be presented as an algebraic
theory with an ACI (associative, commutative, and idempotent) operator (intersection
type) combined with distributivity properties with respect to a second operator (function
type). Although the problem is algebraically natural and interesting, it appears to occupy
a hitherto unstudied place in the theory of unification, and our investigation of the problem
suggests that new methods are required to understand the problem. Thus, for the lower
bound proof, we were not able to reduce from known results in ACI-unification theory and
use game-theoretic methods for two-player tiling games.

1. Introduction

Intersection type systems occupy a prominent place within the theory of typed λ-calculus
[BDS13]. As is well known, variants of such systems characterize deep semantic properties
of λ-terms, including normalization and solvability properties [BDS13]. As a consequence
of the enormous expressive power of intersection types, standard type-theoretic decision
problems are undecidable for general intersection type systems, including the problem of
type checking (given a term and a type, does the term have the type?) and inhabitation
(given a type, does there exist a term having the type?). A combinatorial problem centrally
placed in many classical type-theoretic decision problems is that of unification over a term
algebra of type expressions: given two types σ and τ , does there exist a substitution S
of types for type variables such that S(σ) = S(τ) in a suitable equational theory (=) of
types? In this paper we wish to initiate a study of the problem of algebraic intersection
type unification which we believe to be of considerable systematic interest. We consider
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an equational theory of intersection types induced by an important subtyping relation
for intersection types [BCDC83] extended with type constants. Although decidability of
algebraic intersection type unification appears to be surprisingly difficult and remains open,
the present paper provides the first nontrivial lower bound indicating that the problem
is of very high complexity: we prove that the problem is Exptime-hard. Our proof uses
game-theoretic methods, in the form of two-player tiling games, which we believe to be of
intrinsic interest and potentially helpful towards understanding the problem of decidability.
Moreover, as we will show, the algebraic intersection type unification problem occupies a
natural but hitherto (so far as we are aware) unstudied place in the theory of unification.

The algebraic unification problem considered in this paper is distinct from problems of
unification with type schemes under chains of substitutions and expansions, as found in, e.g.,
the work by Ronchi Della Rocca [Ron88]. This line of work was motivated from the theory
of principality for intersection types but contains the algebraic intersection type unification
problem as a component. In the following, unless otherwise stated, when we talk about
“unification” we shall understand algebraic unification considered here.

We hope with this paper to stimulate further work on a fascinating open problem in
type theory as well as in unification theory. Many variants of intersection type subtyping
have been introduced (see [BDS13] for an overview). For all of these theories corresponding
algebraic intersection type unification problems can be induced along the lines of this paper,
and consequently we should think of the algebraic unification problem considered here for
one specific theory to be indicative of a whole family of such problems. For many, probably
most, of these variations it is not known whether algebraic unification is decidable. The
present paper establishes the result that for one important variant the problem is of high
complexity and suggests that the question of decidability is both challenging and interesting
for intersection type unification in general.

1.1. Motivation. Since the algebraic unification problem under study in this paper has not
hitherto been considered per se, we discuss some general motivations for considering the
problem here, whereas more specific remarks can be found in Sec. 2.

First, as will be explained in more detail below and in Sec. 2.1, the algebraic unification
problem for intersection types appears be a natural problem of systematic interest in unifi-
cation theory [BS01], occupying a hitherto unstudied position there and posing interesting
challenges which do not seem to be readily amenable to known techniques.

The second main motivation for studying the problem comes from applications of the
theory of intersection types in programming. It is well known that important decision
problems (most prominently, typability and type checking) for various type systems can be
characterized, modulo polynomial time transformations, by certain algebraic and combinato-
rial problems, which do not refer to the rules of the type system at all, thereby providing
abstract combinatorial and algorithmic “signatures” for these systems. To mention a few well
known examples, typability in simple types can be characterized as a standard unification
problem over the free term algebra of simple type expressions and can be solved using the
unification algorithm of Robinson [Hin08, Sec. 3D]. Typability in systems extending simple
types with subtyping can be characterized by the problem of subtype satisfiability [Reh98].
Typability in ML can be characterized by acyclic semi-unification problems, whereas the
problem becomes equivalent to general semi-unification in the presence of polymorphic
recursion and is undecidable [KTU93]. In contrast to these examples, it does not appear
to be obvious, in general, how to characterize typability problems for intersection type
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systems in terms of such algebraic type constraint systems. The reason is, essentially, that
intersection type systems are “proof functional” (rather than “truth functional”). More
precisely, the rule of intersection introduction requires one and the same term to have both
types τ and σ for the term to have the type τ ∩σ. Because of this dependency on the identity
of the subject term, it is not clear how the logical effects of the rule can be captured in a
purely algebraic way. If we would attempt to characterize typability by extracting algebraic
type constraints from a given term, we would have difficulty deciding, from the structure of
term alone, how to apply the rule of intersection introduction.

Nonetheless, it turns out that intersection type unification as considered here is a natural
component in deciding problems related to typability and type checking for intersection
types. As already mentioned, the algebraic unification problem considered in this paper
is a component problem in the problem of unification with type schemes under chains of
substitutions and expansions studied by Ronchi Della Rocca [Ron88] (assuming we consider
the problem with usual type constants, as suggested in [Ron88, p.182]), for which a semi-
decision procedure is provided. Further remarks comparing to this notion of unification
can be found in Sec. 2.2. The algebraic unification problem is relevant when investigating
restrictions of the intersection type system. Such investigation, in turn, may be of particular
interest, because the full system is undecidable (both with respect to typability, type
checking, and inhabitation, see [BDS13] for an overview). An example of such a restriction is
provided in Sec 5.1 (Example 4), where we consider combinators with intersection types over
arbitrary bases but excluding the intersction introduction rule, motivated from applications
in program synthesis. The typability problem for this fragment is polynomial time equivalent
to intersection type unification. Another example is the restriction of λ-calculus with explicit
intersection types studied in [KT95], which is equivalent to the intersection type system
of [BCDC83] without intersection introduction. We know that type checking is decidable
for β-normal forms in this system, as was shown in [KT95], and inhabitation is decidable
and exponential space complete [RU12]. But we do not know whether type checking is
decidable in general for this restriction. However, it is not difficult to see that the problem is
reducible to intersection type unification. An interesting question to consider here is whether
it might be equivalent to either the unification problem or to its associated matching problem
considered in this paper. The algebraic unification problem is likely to be involved as soon as
one attempts to combine intersection types with usual notions of type instantiation. A recent
example is the so-called type tallying problem of [CNXA15], which is decidable. The main
difference to the problem considered in this paper is the inclusion of union and negation type
connectives as well as recursive types. Recursive types in particular allow for a direct solution
of cyclic constraints such as α

.
= α∩ (α→ b) by S(α) = µX.(X ∩ (X → b)). For all we know

at this time, it could be the case that the algebraic intersection type unification problem
considered in this paper is undecidable, but that it becomes decidable when recursive types
are added. Finally, let us mention that it may be interesting, in the light of this paper,
to compare the combinatorial complexity of the theory of subtyping and type equivalence
in the strict intersection type system [vB11] with that of, say, [BCDC83], by considering
associated algebraic unification problems.
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Perhaps these theories will turn out to be distinguishable in that respect, but the question
of decidability of unification is open for both systems.

It should be emphasized that, as already indicated, many variants of intersection type
subtyping theories exist (a catalogue can be found in [BDS13]), giving rise to a whole family
of intersection type unification problems analogous to the one studied in this paper. While
we discuss some variations, other members of this family of problems are yet to be studied.
Our choice of the specific variant of subtyping and type equivalence arises from the theory
presented in [BCDC83] extended with type constants. This choice was motivated by two
main considerations. For one, the theory of subtyping and equivalence of [BCDC83] is
particularly rich, and several variants can be seen as subsystems thereof. Second, we adopted
this theory for applications within type-based program synthesis based on combinatory logic
with intersection types [Reh13, DMR14], where it is useful for supporting type refinement
with semantic types (compare also [FP91]). Similar theories of intersection type subtyping
and equivalence have been adopted, or adapted, in many contexts, an example being the
programming language Forsythe by Reynolds [Rey96]. It should be noted that the exact
theory of intersection types considered in [BCDC83] contains only a single type constant,
denoted ω, which is equivalent to the empty intersection and is semantically a universal type.
Because of the special properties of the type ω (in particular, the equation τ → ω = ω), the
intersection type unification problem is trivial for this exact variant, because we can solve
any such problem by mapping all type variables to ω (see also further remarks in Sec. 2).
However, if we leave out the type ω (as is done in some variations), or if we introduce
other type constants (such as bool, int, real), as is done in applications to programming
languages, we arrive at theories for which the development in this paper is relevant. A more
detailed analysis of further variants must, however, be postponed for future work to which
the present paper may be seen as an invitation.

1.2. Algebraic properties. We briefly summarize some of the most important algebraic
properties of the equational theory of intersection types needed to appreciate the systematic
placement of the unification problem (full details are given later in the paper). Intersection
type systems are characterized by the presence of an associative, commutative, idempotent
operator, ∩ (intersection), which allows the formation of types of the form σ∩ τ . In addition,
we have function types, σ → τ . The standard equational theory, denoted =, of intersection
types [BCDC83] is induced from a partial order ≤ on types, referred to as subtyping, by
taking type equality to be the relation ≤ ∩ ≤−1. Conversely, as will be discussed in the paper,
it is also possible to give a purely equational presentation of subtyping. Because intersection
is greatest lower bound with respect to subtyping, the intersection type unification problem
is equivalent to the subtype satisfiability problem: given σ and τ , does there exist a type
substitution S such that S(σ) ≤ S(τ)? The latter is equivalent to S(σ)∩S(τ) = S(τ), hence
satisfiability is reducible to unification. The equational theory includes right-distributivity
of → over ∩: σ → (τ1 ∩ τ2) = (σ → τ1) ∩ (σ → τ2) and left-contravariance of → with
respect to subtyping: σ1 → τ1 ≤ σ2 → τ2 whenever σ2 ≤ σ1 and τ1 ≤ τ2. As a consequence,
one has “half left-distributivity” of → over ∩: (σ1 → τ) ∩ (σ2 → τ) ≤ (σ1 ∩ σ2) → τ
(but the symmetric relation does not hold). Altogether, we could say for short that → is
“11

2 -distributive” over ∩. Axioms specific to a special largest type, ω, are added in some
variants of the theory (both variants, with or without ω, are important in type theory),
including the recursion axiom ω = ω → ω, and we have the derived equation σ → ω = ω.
Thus, ω is unit (neutral element) with respect to ∩ and right-absorbing element with respect
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to →. Clearly, as already mentioned, in a system in which ω is the only constant any two
intersection types are unifiable by replacing all occurring variables by ω. The variant of the
problem considered in the following includes other type constants besides ω as well.

2. Related work

We consider the most closely related work within unification theory and type theory.

2.1. Related work in unification theory. The single most directly related piece of work
in the literature is the study from 2004 by Anantharaman, Narendran, and Rusinowitch on
unification modulo ACUI (associativity, commutativity, unit, idempotence) plus distributivity
axioms [ANR04]. They consider equational theories over a binary ACUI symbol, denoted +,
together with a binary operator, ∗, which distributes (left, right, or both) over +. Indeed,
since (as summarized above) we have an ACUI theory of ∩ together with → enjoying
distributivity properties over ∩, it would seem that we are temptingly close to the theories
studied in [ANR04], by thinking of their + as ∩ and their ∗ as→. In particular, algebraically
closest among the theories covered in that paper, ACUI-unification with one-sided (say, left)
distributivity (ACUIDl) is shown to be Exptime-complete, using techniques from unification
modulo homomorphisms [BN01]. But it turns out that there are fundamental obstacles to
transferring results or techniques from ACUIDl-unification to intersection type unification,
as will be summarized next.

With regard to any upper bound, the main obstacle is that, whereas decidability of the
ACUID-problems can be relatively straight-forwardly obtained by appeal to an occurs-check
(nontrivial cyclic equations have no solutions), this is very far from being clear in the case
of intersection type unification. Indeed, even in the absence of the recursive type ω, we
can solve nontrivial cyclic constraints, due to contravariance. For example, the constraint
α ≤̇ α → b (where ≤̇ denotes a formal subtyping constraint, α is a type variable and b is
a constant) can be solved by setting S(α) = b ∩ (b→ b). The theory of intersection types
is non-structural in the sense that types with significantly different shapes (tree domains,
when types are regarded as labeled trees) may be related, and this presents fundamental
obstacles for bounding the depth of substitutions via any kind of standard occurs-check.
Although “11

2 -distributivity” of → over ∩ may at first sight appear to be algebraically close

to the ACUID-framework of [ANR04], the contravariant “1
2 -distributivity” makes the theory

of intersection types significantly different. We cannot exclude that some kind of restricted
occurs-check might be possible, but our investigations lead us to believe that, in case it
exists, it is likely to be very complicated, and we have been unable to find such a bounding
principle. Hence, decidability remains a challenging open problem.

With regard to the exponential time lower bound, the results of [ANR04] (in fact,
both the Exptime upper and lower bounds) rely essentially on reductions from unification
modulo a set H of noncommuting homomorphisms (ACUIDH), which was shown to be
Exptime-complete in [BN01]. The basic idea is to represent unification with distributivity to
unification modulo homomorphisms by replacing s ∗ t by hs(t) where hs is a homomorphism
with respect to the AC(U)I-theory. However, again, such techniques fail in our case
due to contravariance. The equational presentation of the theory of intersection types
captures contravariant subtyping by the absorption axiom (written in the algebraic notation
of [ANR04]): s ∗ t = s ∗ t + (s + s′) ∗ t. One could attempt to represent this axiom
by hs(t) = hs(t) + hs+s′(t). But here the expression hs+s′(t) does not fall within the
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homomorphic format, and it is therefore not clear how the homomorphic framework could
be applied. Moreover, the bounding problem discussed above leads to the problem that
it is not clear how the theory could be adequately represented using only a finite set of
homomorphisms. We concluded that new methods are required in order to provide lower
bounds for intersection type unification, and the route we present in this paper for the
Exptime-lower bound is entirely different, relying on game theoretical results on tiling
problems.

2.2. Related work in type theory. It may be surprising that computational properties
(decidability, complexity) of the intersection type unification problem have not previously
been systematically pursued per se. The theory of intersection type subtyping and its
equational counterpart have rather been studied from semantic (operational and denotational)
perspectives. Indeed, as mentioned already, the intersection type system captures deep
operational properties of λ-terms, and undecidability of type checking and typability follows
immediately. The theories of intersection type subtyping and equality studied here arose
naturally out of model-theoretic considerations. For example, a fundamental result [Hin82,
BCDC83] shows that intersection type subtyping and equality are sound and complete for
set-theoretic containment in a class of λ-models: σ ≤ τ holds, if and only if JσKMv ⊆ JτKMv
for all models M in the class and valuations v. The intersection type unification problem
can therefore also be endowed with semantic interpretations.

Several extensions and variations of the standard algebraic operations of unification
studied here have been considered in connection with intersection type systems, foremostly
motivated by questions related to notions of principality (principal types, principal typings,
principal pairs) in such systems. Ronchi della Rocca, working from such motivations, defines
a notion of unification in [Ron88] and gives a semi-decision procedure for the corresponding
unification problem. But that problem involves operations (chains of substitutions together
with special expansion operations) which are not present in the algebraic notion of unification
we consider here. Similarly, so-called expansion variables with associated operations have
been used by Kfoury and Wells to characterize principality properties [KW04] and so-
called β-unification involving expansion variables has been shown to characterize strong
normalization in the λ-calculus [Kfo99], see also [CG95, BZ05].

Since the contravariant “1
2 -distributivity” makes the theory of intersection types signifi-

cantly different compared to the well studied ACUIDl-unification, it is interesting to compare
with problems that include left-contravariance of →. One of them is the subtyping problem
for second-order types, which is undecidable [TU96]. The authors point out that, if → is
considered covariant in both arguments, then the corresponding subtyping problem becomes
decidable. Finally, the above mentioned non-structural nature of the unification problem
and the challenges it poses for bounding substitution depth could possibly be compared
with challenges posed by the well known open problem of non-structural subtype entailment.
For this problem a Pspace lower bound is known [HR98], but despite many attempts over
the past 20 years the question of decidability of non-structural subtype entailment remains
open (see [Reh06] for more information and further references).

Summarizing the situation with regard to intersection type unification within type
theory, it appears to hold an interesting and rather unexplored intermediate position: it is
contained in many decision problems associated with intersection type systems, it is known
to be expressive enough to capture certain restrictions of the type system, but it is not
known whether it is decidable. It is therefore also a problem of importance for advancing our
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understanding of restrictions of the intersection type system and computational properties
of associated decision problems.

Organization of the paper. The remainder of this paper is organized as follows.
Intersection types are introduced in Sec. 3 together with the standard theory of subtyping
[BCDC83]. In Sec. 4 we briefly study the matching problem (one-sided unification) as
a natural preparation for considering the unification problem. The unification problem
is studied in Sec. 5, which contains our main result. We first introduce the unification
problem and the equational theory of intersection types (Sec. 5.1) and then turn to the proof
of the Exptime-lower bound. We introduce tiling games (Sec. 5.2) and prove Exptime-
completeness of a special form of such (“spiral tiling games”), which is then used (Sec. 5.3) in
our reduction to unification and satisfiability. Next we adapt the Exptime-lower bound to
the ω-free fragment (Sec. 5.4) and inspect a different presentation of the underlying equational
theory (Sec. 5.5). We provide some insights into a possible upper bound construction for
unification in rank 1 (Sec. 6) and conclude the paper in Sec. 7.

3. Intersection types

Definition 1 (T). The set T of intersection types, ranged over by σ, τ, ρ, is given by

T 3 σ, τ, ρ ::= a | α | ω | σ → τ | σ ∩ τ
where a, b, c, . . . range over type constants drawn from the set C, ω is a special (universal
type) constant, and α, β, γ range over type variables drawn from the set V.

As a matter of notational convention, function types associate to the right, and ∩ binds
stronger than →. A type τ ∩ σ is said to have τ and σ as components. The size of a type τ ,
denoted by |τ |, is the number of nodes in the syntax tree of τ .

Definition 2 (Subtyping ≤). Subtyping ≤ is the least preorder (reflexive and transitive
relation) over T (cf. [BCDC83]) such that

σ ≤ ω, ω ≤ ω → ω, σ ∩ τ ≤ σ, σ ∩ τ ≤ τ, (σ → τ1) ∩ (σ → τ2) ≤ σ → τ1 ∩ τ2,

if σ ≤ τ1 and σ ≤ τ2 then σ ≤ τ1 ∩ τ2, if σ2 ≤ σ1 and τ1 ≤ τ2 then σ1 → τ1 ≤ σ2 → τ2

Type equality, written σ = τ , holds when σ ≤ τ and τ ≤ σ, thereby making ≤ a partial
order over T. We use ≡ for syntactic identity. By the axioms of subtyping, ∩ is associative,
commutative, idempotent and has the following distributivity properties

(σ → τ1) ∩ (σ → τ2) = σ → (τ1 ∩ τ2) (σ1 → τ1) ∩ (σ2 → τ2) ≤ (σ1 ∩ σ2)→ (τ1 ∩ τ2)

We write
⋂n
i=1 τi or

⋂
i∈I τi or

⋂
{τi | i ∈ I} for an intersection of several components, where

the empty intersection is identified with ω.
Observe that in the above subtyping definition type constants are treated the same

as type variables. The motivation to distinguish type variables from type constants is
twofold. First, practical scenarios often contain constants (e.g. int or string) that cannot
be instantiated. Second, in the setting of E-unification in the sense of [BS01], variables that
are subject to instantiation by terms in the underlying term algebra are distinct from any
constructors of that algebra (in particular variables in the sense of [BCDC83]).

Using [BCDC83](Lemma 2.4.1) we syntactically define the set Tω of types equal to ω.

Definition 3 (Tω). The set Tω of types in T equal to ω is given by

Tω 3 σω, τω ::= ω | σ → τω | σω ∩ τω
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Lemma 1. For τ ∈ T we have τ ∈ Tω iff τ = ω.

Lemma 2 (Beta-Soundness [BCDC83, BDS13]). Given σ =
⋂
i∈I

(σi → τi) ∩
⋂
j∈J

aj ∩
⋂
k∈K

αk,

we have

(i) If σ ≤ a for some a ∈ C, then a ≡ aj for some j ∈ J .
(ii) If σ ≤ α for some α ∈ V, then α ≡ αk for some k ∈ K.
(iii) If σ ≤ σ′ → τ ′ 6= ω for some σ′, τ ′ ∈ T, then I ′ = {i ∈ I | σ′ ≤ σi} 6= ∅ and

⋂
i∈I′

τi ≤ τ ′.

Let us briefly consider the problem of deciding the subtyping relation itself:

Problem 1. (Subtyping) Given σ, τ ∈ T, does σ ≤ τ hold?

The subtyping relation is known to be decidable in polynomial time [RU11]. The
algorithm sketched in the proof of the following lemma gives an improved, quadratic upper
bound (implemented in the Combinatory Logic Synthesis framework [BDD+14] which is
under continuous development).

Lemma 3. Problem 1 (Subtyping) is decidable in time O(n2) where n is the sum of the
sizes of the input types σ and τ .

Proof. For a polynomial time decision algorithm with a quartic upper bound see [RU11].
For a different approach with a quintic upper bound using rewriting see [Sta15]. However, a
quadratic upper bound to decide σ ≤ τ is achievable using Lemmas 1 and 2. First, in linear
time, subterms of σ and τ of the shape defined by Tω are replaced by ω. Second, in linear
time, nested intersection are flattened using associativity of ∩ and components equal to ω
are dropped. Third, in quadratic time, Lemma 2 is applied recursively using the additional
property ρ ≤

⋂
i∈I τi iff ρ ≤ τi for i ∈ I.

For the explicit algorithmic analysis let T (σ, τ) be the running time to decide σ ≤ τ . We
show T (σ, τ) ≤ a|σ||τ | − b = O(|σ||τ |) for some constants a, b ∈ R+ with a ≥ b by induction
on the sum of the depths of syntax trees of σ and τ . The most challenging subcase in the
algorithmic application of Lemma 2 is to decide whether

⋂n
i=1 σi ≤ σ′ → τ ′ holds. We

proceed as follows: let S be an empty linked list. For i = 1 . . . n such that σi ≡ ρi → τi and
σ′ ≤ ρi append τi to S. Finally, accept iff

⋂
S ≤ τ ′. Our goal is to bound T (σ, σ′ → τ ′)

where σ ≡
⋂n
i=1 σi by a|σ||σ′ → τ ′| − b. Let τ ≡

⋂
(τi | σi ≡ ρi → τi, σ

′ ≤ ρi) observing that
the depth of the syntax tree of τ is strictly less than the depth of the syntax tree of σ. By
the induction hypothesis for some constant u we have

T (σ, σ′ → τ ′) ≤ un+
∑

i∈{1,...,n}
σi≡ρi→τi

T (σ′, ρi) + T (τ, τ ′)

≤ un+
∑

i∈{1,...,n}
σi≡ρi→τi

(a|σ′||ρi| − b) + a|τ ||τ ′| − b

≤ un+ a|σ′|
∑

i∈{1,...,n}
σi≡ρi→τi

|ρi|+ a|τ ||τ ′| − b

≤ un+ a|σ′||σ|+ a|σ||τ ′| − b

≤ un+ a|σ|(|σ′ → τ ′| − 1)− b
a≥u,|σ|≥n
≤ a|σ||σ′ → τ ′| − b



THE ALGEBRAIC INTERSECTION TYPE UNIFICATION PROBLEM 9

In the above analysis, it is crucial that linked list concatenation is done in constant time in
the construction of τ . Therefore, the invariant that ∩ is not nested and does not contain ω
as components can be ensured in recursive calls.

We recapitulate the notion of paths and organized types introduced in [DMRU12] that
coincides with the notion of factors in [Sta15].

Definition 4 (Paths P). The set P of paths in T, ranged over by π, is given by

P 3 π ::= a | α | τ → π

Definition 5 (Organized type). A type τ is organized, if τ ≡ ω or τ ≡
⋂
i∈I πi for some

paths πi for i ∈ I.

A type can be organized (transformed to an equivalent organized type) in polynomial
time [DMRU12]. Additionally, an organized type is not necessarily normalized in the
sense of [Hin82]. Normalization can lead to an exponential blow-up of type size, whereas
organization does not as illustrated by the following examples.

Example 1. Let σ ≡ ((a ∩ b→ a ∩ b)→ a ∩ b)→ a ∩ b. The equivalent organized type is
σ =

(
((a∩ b→ a∩ b)→ a∩ b)→ a

)
∩
(
((a∩ b→ a∩ b)→ a∩ b)→ b

)
, whereas the equivalent

normalized type in the sense of [Hin82] is

σ =
(
((a ∩ b→ a) ∩ (a ∩ b→ b)→ a) ∩ ((a ∩ b→ a) ∩ (a ∩ b→ b)→ b)→ a

)
∩
(
((a ∩ b→ a) ∩ (a ∩ b→ b)→ a) ∩ ((a ∩ b→ a) ∩ (a ∩ b→ b)→ b)→ b

)
In general, normalization can lead to an exponential blow-up of type size because arguments
of arrow types are normalized recursively.

Example 2. Let σ ≡ a →
1⋂
i=0

(bi →
1⋂
j=0

(cj →
1⋂

k=0

dk)). The equivalent organized type

coincides with the equivalent normalized type σ =
⋂

(i,j,k)∈{0,1}3
(a → bi → cj → dk). Still, when

generalized, this example does not lead to an exponential blow-up of type size by organization
because the size of σ is already exponential in the depth of its syntax tree.

Lemma 4. Given two organized types σ ≡
⋂
i∈I πi and τ ≡

⋂
j∈J πj, we have

σ ≤ τ iff for all j ∈ J there exists an i ∈ I with πi ≤ πj.

Corollary 1. Given a path π ∈ P and types σ, τ , we have σ ∩ τ ≤ π iff σ ≤ π or τ ≤ π.

For the sake of completeness, we recall the corresponding type assignment system
from [BCDC83], sometimes also called BCD in literature. A basis (also called context) is
a finite set Γ = {x1 : τ1, . . . , xn : τn}, where the variables xi are pairwise distinct; we set
dom(Γ) = {x1, . . . , xn} and we write Γ, x : τ for Γ ∪ {x : τ}, where x 6∈ dom(Γ).

Definition 6 (Type Assignment). BCD type assignment is given by the following rules

x : τ ∈ Γ (Ax)
Γ ` x : τ

Γ, x : σ ` e : τ
(→I)

Γ ` λx.e : σ → τ
Γ ` e : σ → τ Γ ` e′ : σ (→E)

Γ ` (e e′) : τ

(ω)
Γ ` e : ω

Γ ` e : σ Γ ` e : τ (∩I)
Γ ` e : σ ∩ τ

Γ ` e : σ σ ≤ τ
(≤)

Γ ` e : τ



10 A. DUDENHEFNER, M. MARTENS, AND J. REHOF

4. Intersection type matching

In order to understand the unification problem it is useful first to investigate its restriction
to matching (one-sided unification). Intersection type matching occurs naturally during
proof search in intersection type systems and is known to be NP-complete [DMR13]. We
strengthen this result by showing that the problem remains so even when restricted to the
fixed-parameter case where only a single type variable and only a single constant is used in
the input.

For τ ∈ T let Var(τ) ⊆ V denote the set of variables occurring in τ .

Problem 2 (Matching). Given a set of constraints C = {σ1 ≤̇ τ1, . . . , σn ≤̇ τn}, where for
each i ∈ {1, . . . , n} we have Var(σi) = ∅ or Var(τi) = ∅, is there a substitution S : V → T
such that S(σi) ≤ S(τi) for 1 ≤ i ≤ n?

We say that a substitution S satisfies {σ1 ≤̇ τ1, . . . , σn ≤̇ τn} if S(σi) ≤ S(τi) for
1 ≤ i ≤ n.

Problem 3 (One-Sided Unification). Given a set of constraints C = {σ1
.
= τ1, . . . , σn

.
= τn},

where for each i ∈ {1, . . . , n} we have Var(σi) = ∅ or Var(τi) = ∅, is there a substitution
S : V→ T such that S(σi) = S(τi) for 1 ≤ i ≤ n?

Any matching constraint set C = {σ1 ≤̇ τ1, . . . , σn ≤̇ τn} can be reduced to a single
matching (resp. one-sided unification) constraint σ ≤̇ τ (resp. σ ∩ τ .

= σ) with Var(σ) = ∅
by fixing a type constant • ∈ C, defining

(σ′i, τ
′
i) =

{
(σi → •, τi → •) if Var(σi) = ∅
(τi, σi) if Var(τi) = ∅

for 1 ≤ i ≤ n

and taking σ ≡ σ′1 → . . . → σ′n → • and τ ≡ τ ′1 → . . . → τ ′n → •. By Lemma 2, for any
substitution S we have S(σ) ≤ S(τ) (resp. S(σ ∩ τ) = S(σ)) iff S(σi) ≤ S(τi) for 1 ≤ i ≤ n.
Observe that Var(σ) = ∅. Therefore, matching and one-sided unification coincide and remain
NP-complete even when restricted to single constraints.

In [DMR13] the lower bound for matching is shown by reduction from 3-SAT and requires
two type variables αx, α¬x for each propositional variable x. Since 3-SAT, parameterized by
the number of propositional variables, is fixed parameter tractable, we naturally ask whether
the same holds for matching (resp. one-sided unification) parameterized by the number of
type variables.

Lemma 5. Problem 2 (Matching) is NP-hard even if only a single type variable and a
single constant is used in the input.

Proof. We fix a 3-SAT instance F containing clauses (L1 ∨ L2 ∨ L3) ∈ F over propositional
variables V where Li is either x or ¬x for some x ∈ V . We reduce satisfiability of F to
matching with one type variable α. First, we fix a set of type constants B = V ∪{¬x | x ∈ V }
and the type constant •. Let σx ≡

⋂
(B \ {¬x}) and σ¬x ≡

⋂
(B \ {x}) for x ∈ V . We

construct the set C containing the following constraints

for x ∈ V (consistency) :

((σ¬x → •)→ (¬x→ •)) ∩ ((σx → •)→ (x→ •)) ≤̇ (α→ •)→ (α→ •)
for (L1 ∨ L2 ∨ L3) ∈ F (validity) :

(L1 → •) ∩ (L2 → •) ∩ (L3 → •) ≤̇ α→ •
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If F is satisfied by a valuation v, then the substitution α 7→
⋂

v(x)=1

x ∩
⋂

v(x)=0

¬x satisfies C.

If C is satisfied by a substitution S, then by Corollary 1 and the consistency constraints
we have either σ¬x ≤ S(α) ≤ ¬x or σx ≤ S(α) ≤ x for x ∈ V . A valuation v constructed
according to these cases satisfies each clause in F due to Corollary 1 and the validity
constraints.

Instead of using constants {a1, . . . , ak, •} for an instance of the matching problem,
encode [ai] = • → . . .→ • →︸ ︷︷ ︸

i times

• for 1 ≤ i ≤ k in the proof. Using this technique, a single

type constant • is sufficient.

Combining Lemma 5 with the reduction in [DMR13] we conclude that neither restricting
substitutions to the shape S : {α} → T nor restricting to the shape S : V → C (atomic
substitutions, mapping variables to type constants) reduces the complexity of matching.

5. Intersection type unification

5.1. The unification problem.

Problem 4 (Satisfiability). Given a set of constraints C = {σ1 ≤̇ τ1, . . . , σn ≤̇ τn}, is there
a substitution S : V→ T such that S(σi) ≤ S(τi) for 1 ≤ i ≤ n?

Problem 5 (Unification). Given a set of constraints C = {σ1
.
= τ1, . . . , σn

.
= τn}, is there

a substitution S : V→ T such that S(σi) = S(τi) for 1 ≤ i ≤ n?

Since for any σ, τ ∈ T and any substitution S we have S(σ) ≤ S(τ) ⇐⇒ S(σ)∩S(τ) =
S(σ), satisfiability and unification are (trivially) equivalent. Similarly to matching (resp.
one-sided unification) restricting satisfiability (resp. unification) to single constraints does
not reduce its complexity.

We now provide a number of observations that give some insight into the type-theoretical
and combinatorial expressive power of unification.

Consider a combinatory logic with intersection types [HS08, DCH92] with arbitrary
basis B, that is, a finite set of combinator symbols F,G, . . . with types τF , τG, . . .. Such a
system is given by the rules (applicative fragment) (→E), (∩I), (≤) of Definition 6 together
with a rule assigning types S(τF ) to the combinator symbol F for any substitution S. Write
B ` E : τ for derivability of the type τ for the combinatory expression E in this system.

Example 3. Let B = {F : (σ → τ)→ a,G : α→ α}, where wlog. α 6∈ Var(σ) ∪Var(τ). In
this scenario, type-checking B ` F G : a is equivalent to solving the satisfiability problem
α→ α ≤̇ σ → τ , or equivalently, the unification problem σ ∩ τ .

= σ, because we need to find
substitutions S, S1, . . . Sn for some n ∈ N such that

n⋂
i=1

Si(α→ α) ≤ S(σ → τ)

Lem. 2⇐⇒ S(σ) ≤
⋂
i∈I

Si(α) and
⋂
i∈I

Si(α) ≤ S(τ) for some I ⊆ {1, . . . , n}

⇐⇒ S(α→ α) ≤ S(σ → τ) setting S(α) =
⋂
i∈I

Si(α)
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Write B `∗ E : τ if B ` E : τ is derivable without the intersection introduction rule (∩I).
This restriction occupies an interesting “intermediate” position: generalized to arbitrary
bases B, it is the combinatory logic that subsumes the BCD-calculus without intersection
introduction [KT95, RU12] and the one-dimensional fragment [DR17] of the intersection
type system. For example, using the following basis (cf. [DCH92])

B = {S : (α→ β → γ)→ (α′ → β)→ α ∩ α′ → γ,K : α→ β → α, I : α→ α}
the system `∗ is sufficient to type S I I, i.e., the SKI-combinatory logic equivalent of
the λ-term λx.(xx), which is not typable in simple types. The full expressive power of
`∗ is subject to ongoing research as a candidate combinatory logic suitable for software
synthesis [Reh13, DMR14].

Example 4. Typability with respect to `∗ is equivalent to unification. Let B = {F1 :
τ1, . . . Fn : τn}, where wlog. Var(τi)∩Var(τj) = ∅ for i 6= j, and let E be a combinatory term
over B. We want to know whether there is a type τ such that B `∗ E : τ . Conveniently,
without arrow introduction or intersection introduction, type derivations are entirely term
driven up to ≤ and initial substitutions.

For any combinatory term E′ and type τ ′ we define

f(E′, τ ′) =

{
{τi ≤̇ τ ′} if E′ = Fi for some i ∈ {1, . . . , n}
f(E1, α→ β) ∪ f(E2, α) ∪ {β ≤̇ τ ′} if E′ = E1E2 and α, β are fresh

Given E′ and τ ′, by induction on E′ we have that the satisfiability problem instance f(E′, τ ′)
has a solution S iff B `∗ E′ : S(τ ′). Therefore, f(E,α), where α is fresh, has a solution iff
E is typable in the basis B.

Conversely, given a satisfiability problem σ ≤̇ τ , we consider typability of F G in the
basis B = {F : τ → a,G : σ}.

In addition to the previously illustrated non-structurality of unification, the following
examples illustrate further potential difficulties. Example 5 shows that unification is not
finitary, i.e. unification instances may have infinitely many most general unifiers.

Example 5. Consider the unification constraint a→ a→ (β∩ b) .
= β∩α and some solution

S. We have S(β) = a→ a→
⋂
i∈I

πi such that for all i ∈ I either πi = b or πi = a→ a→ πj

for some j ∈ I. Therefore, S(β) (and consequently S(α)) contains paths that may be arbitrary
long, end in the constant b and have an even number of “a”s as arguments. As a result,
solutions to the above constraint cannot be built by specialization from a finite set of (most
general) unifiers.

The following Example 6 shows that certain unification instances may require all solutions
to be of exponential size.

Example 6. Consider prime numbers 2, 3 and the following unification constraints

a→ a→ (β2 ∩ b)
.
= β2 ∩ α, a→ a→ a→ (β3 ∩ b)

.
= β3 ∩ α

Let S be any solution to the above constraints. Similar to Example 5, S necessarily
satisfies the following properties

• S(β2) 6= ω, otherwise we would have S(α) = a → a → b which by the second constraint
implies a→ a→ a→ (S(β3) ∩ b) ≤ a→ a→ b and therefore a→ (S(β3) ∩ b) ≤ b, which
is a contradiction.



THE ALGEBRAIC INTERSECTION TYPE UNIFICATION PROBLEM 13

• S(β3) 6= ω, otherwise we would have S(α) = a→ a→ a→ b which by the first constraint
implies a→ a→ (S(β2) ∩ b) ≤ a→ a→ a→ b, therefore S(β2) ≤ a→ b. Again, by the
first constraint we obtain a→ a→ (S(β2) ∩ b) ≤ a→ b, which is a contradiction.
• S(α) 6= ω, otherwise we would have S(β2) ≤ a → a → b, therefore S(β2) ≤ a → a →
S(β2) ≤ a → a → a → a → b and, inductively, S(β2) ≤ a → . . . → a → b with an even
number of “a”s, which by Lemma 4 would in total imply a solution of infinite size.
• S(β2) =

⋂
i∈I πi such that πi = a→ . . .→ a→ b with an even number of “a”s similar to

Example 5.
• S(β3) =

⋂
j∈J πj such that πj = a→ . . .→ a→ b with a number of “a”s that is a multiple

of 3.
• S(α) =

⋂
k∈K πk such that πk = a→ . . .→ a→ b with a number of “a”s that is a multiple

of 2 and 3.

One possible solution S′ to the above constraints is

S′(β2) = (a→ a→ b) ∩ (a→ a→ a→ a→ b)

S′(β3) = a→ a→ a→ b

S′(α) = a→ a→ a→ a→ a→ a→ b

In sum, the size of S(α) in any solution is greater than the product of our initial primes 2
and 3. By adding an additional constraint a→ a→ a→ a→ a→ (β5 ∩ b)

.
= β5 ∩α, the size

of S(α) is at least 2 · 3 · 5 in any solution, growing exponentially with additional constraints.
As a side note, similarly to Example 5, the above unification instance does not have a most
general unifier that produces all possible solutions by specialization.

An axiomatization of the equational theory of intersection type subtyping (without ω) is
derived in [Sta15]. We add two additional axioms (U) and (RE) in the following Definition
7 to incorporate the universal type ω.

Definition 7 (ACIUDlReAb). The equational theory ACIUDlReAb is given by

(A) σ ∩ (τ ∩ ρ) ∼ (σ ∩ τ) ∩ ρ
(C) σ ∩ τ ∼ τ ∩ σ
(I) σ ∩ σ ∼ σ
(U) σ ∩ ω ∼ σ
(Dl) (σ → τ) ∩ (σ → τ ′) ∼ σ → τ ∩ τ ′
(RE) ω ∼ ω → ω
(AB) σ → τ ∼ (σ → τ) ∩ (σ ∩ σ′ → τ)

The recursion axiom (RE) captures the recursive nature of ω and the absorption axiom
(AB) captures contra-variance.

Lemma 6. Given σ, τ ∈ T we have σ = τ iff σ ∼ τ .

Proof. “=⇒=⇒=⇒”: Induction on the depth of the derivation of σ ≤ τ to show σ ∩ τ ∼ σ. The
most interesting subcase is σ1 → τ1 ≤ σ2 → τ2 under the assumptions σ2 ≤ σ1 and τ1 ≤ τ2.
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In the subcase we have

σ1 → τ1
(AB)∼ (σ1 → τ1) ∩ (σ1 ∩ σ2 → τ1)

IH∼ (σ1 → τ1) ∩ (σ1 ∩ σ2 → τ1 ∩ τ2)
(Dl)∼ (σ1 → τ1) ∩ (σ1 ∩ σ2 → τ1) ∩ (σ1 ∩ σ2 → τ2)
IH∼ (σ1 → τ1) ∩ (σ1 ∩ σ2 → τ1) ∩ (σ2 → τ2)

(AB)∼ (σ1 → τ1) ∩ (σ2 → τ2)

Finally, σ ≤ τ and τ ≤ σ imply σ ∼ σ ∩ τ ∼ τ .
“⇐=⇐=⇐=”: Each axiom of ACIUDlReAb is derivable using subtyping. Again, the most in-
teresting subcase is σ → τ ∼ (σ → τ) ∩ (σ ∩ σ′ → τ). First, by contravariance we
have σ → τ ≤ σ ∩ σ′ → τ , therefore σ → τ ≤ (σ → τ) ∩ (σ ∩ σ′ → τ). Second,
(σ → τ) ∩ (σ ∩ σ′ → τ) ≤ σ → τ . Therefore, σ → τ = (σ → τ) ∩ (σ ∩ σ′ → τ).

The absorption axiom (AB) distinguishes the above theory ACIUDlReAb from theories
studied in literature. As discussed in the introduction, the closest equational theory ACIUDl

of [ANR04], which assumes ω → σ ∼ ω ∼ σ → ω and has no equivalent of the absorption
axiom (AB), is Exptime-complete. Unfortunately, the absorption axiom prevents the
approaches presented in [ANR04, ANR03] as shown by the following examples.

Example 7. Consider α ∩ (α → a)
.
= α (or equivalently α ≤̇ α → a). A DAG-based (or

“occurs-check”-based) approach cannot stratify such a constraint since any solution S(α)
contains at least one subterm S(α)→ a and therefore a circular dependency. Interestingly,
using absorption there is a solution S(α) = ω → a.

Example 8. Consider α∩ (((α→ c)∩ b)→ a)
.
= α (or equivalently α ≤̇ ((α→ c)∩ b)→ a).

In contrast to the previous example, all occurrences of α are positive. Again, we have a
circular dependency. Using absorption there is a solution S(α) = b→ a.

The constraint α ∩ (α→ a)
.
= α (or equivalently α ≤̇ α→ a) in Example 7 has several

interesting properties. For any σ such that σ ≤ σ → a we may type the (Church-style
annotated) lambda-term λxσ.(xσ→a xσ) using subtyping. Additionally, there are several
structurally different solution for the above constraint:

• S1(α) = ω → a (requires (AB), (U), (C))
• S2(α) = a ∩ (a→ a) (requires (AB))
• S3(α) = ((a ∩ (a→ a))→ a)→ a (requires (AB), (Dl), (A), (C))

S1 requires the absorption axiom as well as the unit axiom, whereas S2 and S3 do not
require any axiom containing ω. Therefore, ω may play a crucial role in solving circular
constraints but is not strictly necessary. The main difference between S2 and S3 is that S3

uses distributivity and, more importantly, only one path (or factor in the sense of [Sta15])
instead of an intersection of two paths. This is especially interesting in the light of Lemma 4.
In particular, restricting substitutions to paths does not avoid satisfiable circular constraints.

5.2. Tiling games. In this section we introduce a special kind of domino tiling game,
referred to as two-player corridor tiling games, for which the problem of existence of winning
strategies is Exptime-complete [Chl86]. We then show that Exptime-completeness is
preserved when tilings are restricted to a particular “spiral” shape, which will be used to
prove our Exptime-lower bound for intersection type unification in Sec. 5.3.
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Definition 8 (Tiling System). A tiling system is a tuple (D,H, V, b̄, t̄, n), where

• D is a finite set of tiles (also called dominoes)
• H,V ⊆ D ×D are horizontal and vertical constraints
• b̄, t̄ ∈ Dn are n-tuples of tiles
• n is a unary encoded natural number

Definition 9 (Corridor Tiling). Given a tiling system (D,H, V, b̄, t̄, n), a corridor tiling is
a mapping λ : {1, . . . , l} × {1, . . . , n} → D for some l ∈ N such that

• b̄ = (λ(1, 1), . . . , λ(1, n)) (correct bottom row)
• t̄ = (λ(l, 1), . . . , λ(l, n)) (correct top row)
• for i ∈ {1, . . . , l} and j ∈ {1, . . . , n−1} we have (λ(i, j), λ(i, j+1)) ∈ H, i.e. the horizontal

constraints are satisfied
• for i ∈ {1, . . . , l − 1} and j ∈ {1, . . . , n} we have (λ(i, j), λ(i+ 1, j)) ∈ V , i.e. the vertical

constraints are satisfied

Given a tiling system (D,H, V, b̄, t̄, n), a Two-Player Corridor Tiling game consists of
two players (Constructor and Spoiler). The game is played on an N × {1, . . . , n} board
and starts with the bottom row b̄. Each player places copies of tiles in turn starting with
Constructor. While Constructor tries to construct a corridor tiling, Spoiler tries to prevent
it. Constructor wins if Spoiler makes an illegal move (with respect to H or V ), or when a
correct corridor tiling is completed. We say Constructor has winning strategy, if he can win
no matter what Spoiler does.

Lemma 7 (Chlebus [Chl86]). The decision problem whether Constructor has a winning
strategy in a given two-player corridor tiling game is Exptime-complete.

Instead of directly encoding a Two-Player Corridor Tiling into intersection type satis-
fiability, we introduce a slightly different game that is played out as sequences instead of
corridors. The main goal is to get rid of several structural constraints of corridors for a more
accessible construction of a spiral where each new tile has a neighboring previous tile.

Definition 10 (Spiral Tiling). Given a tiling system (D,H, V, b̄, t̄, n), a spiral tiling is a
sequence d1 . . . dm ∈ Dm for some m ∈ N such that

• b̄ = d1 . . . dn (correct prefix)
• t̄ = dm−n+1 . . . dm (correct suffix)
• (di, di+1) ∈ H for 1 ≤ i ≤ m− 1 (horizontal constraints)
• (di, di+n) ∈ V for 1 ≤ i ≤ m− n (vertical constraints)

Given a tiling system (D,H, V, b̄, t̄, n) a Two-Player Spiral Tiling game, played by
Constructor and Spoiler, starts with the sequence b̄. Each player adds a copy of a tile to the
end of the current sequence taking turns starting with Constructor. While Constructor tries
to construct a spiral tiling, Spoiler tries to prevent it. Constructor wins if Spoiler makes an
illegal move (with respect to H or V ), or when a correct spiral tiling is completed. Again,
we are interested in whether Constructor has a winning strategy.

The main difference between a corridor tiling and a spiral tiling is the lack of individual
rows. While a tile at the beginning of the new row of a corridor is not constrained by
the previously placed tile, in a spiral each new tile is constrained by the previous one.
Additionally, any corridor tiling contains l · n tiles for some l; a spiral tiling does not obey
this restriction. To clarify essential aspects of spiral tilings, consider the following examples.



16 A. DUDENHEFNER, M. MARTENS, AND J. REHOF

Example 9. Consider the tiling system with D = {a, b}, H = {(a, b), (b, a), (b, b)}, V =
D2, b̄ = aaa, t̄ = bbb and n = 3. Constructor does not have a winning strategy in the
corresponding Two-Player Spiral Tiling game. During the game on Spoiler’s turn there are
two possibilities. In case the current sequence ends in a, Spoiler is forced/allowed to append
b, which does not result in the suffix bbb. Regardless of Constructor’s next tile the suffix is
not bbb. In case the current sequence ends in b, Spoiler is allowed to append a and, similarly,
Constructor is not able to produce a spiral tiling.

Example 10. Consider the tiling system with D = {a, b}, H = D2, V = D2 \ {(b, a)},
b̄ = aaaaa, t̄ = bbbbb and n = 5. Constructor has a winning strategy in the corresponding
Two-Player Spiral Tiling game by always appending b. Due to V , if the current sequence
has the tile b at position i, then it will have the tile b at any later position i+ 5j for j ∈ N.
Therefore, after the first nine turns of the game all positions 1 + 5j, 3 + 5j, 5 + 5j, 7 + 5j
and 9 + 5j for j ∈ N will have the tile b regardless of Spoiler’s moves. Since those positions
will form a suffix bbbbb after 9 turns, Constructor is able to produce a spiral tiling.

Lemma 8. The decision problem whether Constructor has a winning strategy in a given
two-player spiral tiling game is Exptime-complete.

Proof.
Lower Bound: Given a tiling system T = (D,H, V, (b1, . . . , bn), (t1, . . . , tn), n), let

D′ = D ∪̇ {#}
H ′ = H ∪̇ {(d,#) | d ∈ D′} ∪ {(#, d) | d ∈ D′}
V ′ = V ∪̇ {(#,#)}
T ′ = (D′, H ′, V ′, (b1, . . . , bn,#,#), (t1, . . . , tn,#,#), n+ 2)

We show that Constructor has a winning strategy for Two-Player Corridor Tiling in T iff he
has a winning strategy for Two-Player Spiral Tiling in T ′.

By construction, both players are allowed to and have to place the tile # at exactly the
turns i(n + 2) − 1 and i(n + 2) for i ≥ 1. Therefore, a winning strategy does not branch
nor end at those turns. Additionally, a correct spiral tiling ends in two consecutive # tiles,
therefore necessarily contains i(n+ 2) tiles.

From any correct corridor tiling λ : {1, . . . , l} × {1, . . . , n} for T we construct a spiral
tiling d1 . . . dl(n+2) for T ′ by

dk =

{
λ(i, j) if k = (i− 1)(n+ 2) + j and i ≥ 1 and 1 ≤ j ≤ n
# if k = (i− 1)(n+ 2) + j and i ≥ 1 and either j = 0 or j = n+ 1

From a correct spiral tiling d1 . . . dl(n+2) for T ′ we construct a corridor tiling λ :
{1, . . . , l} × {1, . . . , n} for T by λ(i, j) = d(i−1)(n+2)+j .

In particular, Constructor’s winning strategy (skipping/adding the forced # turns) is
exactly the same for both games.

Upper Bound: Computation in Apspace = Exptime (similar to Two-Player Corridor
Tiling). To continue, only the n previously placed tiles have to be considered.
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5.3. Exptime lower bound. We now prove our main result, that the intersection type
unification problem is Exptime-hard. The proof will be by reduction from spiral tiling
games (Lemma 8) to the intersection type satisfiability problem.

Let T = (D,H, V, b̄ = b1 . . . bn, t̄ = t1 . . . tn, n) be a tiling system. Wlog. (bi, bi+1) ∈ H
and (ti, ti+1) ∈ H for 1 ≤ 1 < n, otherwise the given prefix b̄ or the given suffix t̄ would
already violate constraints on consecutive tiles and Constructor would have no chance
to construct a spiral tiling. We fix the set of type constants C = D ∪̇{•} and variables
V = {α} ∪ {βd | d ∈ D} and construct the following set of constraints CT :

(i) σH⊥ ∩ σV⊥ ∩ σt ∩
⋂
d∈D

βd ≤̇ σb ∩
⋂
d′∈D

⋂
d∈D

(d′ → d→ βd) (Game moves)

(ii)
⋂

(d′,d)∈H
(d→ d′ → α) ≤̇

⋂
d∈D

(d→ βd) (d respects H)

(iii)
⋂

(d′,d)∈V
(d→ ω → . . .→ ω →︸ ︷︷ ︸

n−1 times

d′ → α) ≤̇
⋂
d∈D

(d→ βd) (d respects V )

where

σb ≡ bn → . . .→ b1 → • (Initial state)

σt ≡ (tn → . . .→ t1 → α) ∩ (ω → tn → . . .→ t1 → α) (Final states)

σH⊥ ≡
⋂

(d,d′)∈D×D\H

(d′ → d→ α) (d′ violates H)

σV⊥ ≡
⋂

(d,d′)∈D×D\V

(d′ → ω → . . .→ ω →︸ ︷︷ ︸
n−1 times

d→ α) (d′ violates V )

Intuitively, we use Lemma 4 to realize alternation. The rhs of (i) represents an in-
tersection of all board positions which Constructor may face. For all such positions he
needs to find a suitable move by choosing a path on the lhs of (i). He can either state that
the Spoiler’s last move violates H (resp. V ) choosing σH⊥ (resp. σV⊥), or that the game
is finished choosing σt, or he can pick his next move d ∈ D choosing βd. Intuitively, βd
captures all board positions in which Constructor decides to place d next. Note that on the
rhs of (i) in the type d′ → d → βd the tile d′ is not constrained (representing all possible
Spoiler’s moves) while the tile d is constrained to the index of βd, i.e. Constructor’s previous
choice. Therefore, by picking a move d Constructor faces board positions that arise from the
previous position extended by d and each possible d′. Constraints (ii) and (iii) ensure that
whenever Constructor picks his next move d ∈ D choosing βd he has to respect H and V .

We show that Constructor has a winning strategy for two-player spiral tiling in T iff
the constraint system CT is satisfiable. To represent game positions as types, we define
the mapping [·] : D∗ → T such that [ε] = • and [s̄d] = d → [s̄] for s̄ ∈ D∗ and d ∈ D. To

improve readability, we use the notation σ
φ
≤ τ , where φ is a hint why the inequality holds.

Lemma 9. Let T be a tiling system. If Constructor has a winning strategy in a two-player
spiral tiling game in T , then the constraint system CT is satisfiable.

Proof. Assume that Constructor has a winning strategy that is represented by a labeled tree
f : dom(f)→ {C, S} where

• dom(f) ⊆ D∗ is finite and prefix-closed, i.e. ūv̄ ∈ dom(f) implies ū ∈ dom(f).
• depth(f) = max{k | d1 . . . dk ∈ dom(f)}.
• For s̄ = d1 . . . dk ∈ dom(f) we have f(s̄) = C if k is even and f(s̄) = S if k is odd, i.e. C

(resp. S) places a tile after an even (resp. odd) number of turns.
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• For s̄ ∈ dom(f) such that f(s̄) = S we have s̄d′ ∈ dom(f) for all d′ ∈ D, i.e. the strategy
has to consider all (possibly illegal) Spoiler’s moves.
• For s̄ ∈ dom(f) such that f(s̄) = C we have either

– There exists exactly one d ∈ D such that s̄d ∈ dom(f) and b̄s̄ = ūd1 . . . dn for some
ū ∈ D∗ and d1, . . . , dn ∈ D with (dn, d) ∈ H and (d1, d) ∈ V , i.e. Constructor’s next
move is d which respects H and V .

– s̄d 6∈ dom(f) for all d ∈ D and either
∗ b̄s̄ = ūt̄ for some ū ∈ D∗, i.e. Constructor states that the game is finished.
∗ b̄s̄ = ūt̄d′ for some ū ∈ D∗ and d′ ∈ D, i.e. Constructor states that Spoiler’s last

move d′ is illegal because the game already ended.
∗ b̄s̄ = ūdd′ for some ū ∈ D∗, d, d′ ∈ D such that (d, d′) 6∈ H, i.e. Constructor states

that Spoiler’s last move d′ violates H.
∗ b̄s̄ = ūdv̄d′ for some ū ∈ D∗, v̄ ∈ Dn−1, d, d′ ∈ D such that (d, d′) 6∈ V , i.e.

Constructor states that Spoiler’s last move d′ violates V .

We construct the following substitution S

S(α) =
⋂

d1...dk=s̄∈D∗
k≤depth(f)+n

[s̄] and S(βd) =
⋂

s̄∈f−1(C)
s̄d∈dom(f)

[b̄s̄] for d ∈ D

We verify that the individual inequalities hold.

• S(σH⊥ ∩ σV⊥ ∩ σt ∩
⋂
d∈D

βd) ≤ σb:

if b̄ = t̄, then S(σt) ≤ σb. Otherwise, according to f , there exists a d ∈ D such that
d ∈ dom(f). Therefore, S(βd) ≤ [b̄] ≡ σb.
• S(σH⊥ ∩ σV⊥ ∩ σt ∩

⋂
d∈D

βd) ≤ S(d′ → d→ βd) for all d, d′ ∈ D:

we show that for any π = dk → . . .→ d1 → σb = [b̄s̄] such that d1 . . . dk = s̄ ∈ f−1(C) and
s̄d ∈ dom(f) we have S(σH⊥ ∩σV⊥ ∩σt∩

⋂
d∈D

βd) ≤ d′ → d→ π ≡ [b̄s̄dd′]. Since s̄d ∈ dom(f)

and f(s̄) = C we have s̄dd′ ∈ dom(f) and f(s̄dd′) = C. According to f we have either
– s̄dd′d′′ ∈ dom(f) for some d′′ ∈ D. Therefore, S(βd′′) ≤ d′ → d→ π ≡ [b̄s̄dd′]
– or
∗ b̄s̄dd′ = ūt̄ for some ū ∈ D∗, then S(σt) ≤ [ūt̄] ≡ [b̄s̄dd′].
∗ b̄s̄dd′ = ūt̄d′ for some ū ∈ D∗, then S(σt) ≤ [ūt̄d′] ≡ [b̄s̄dd′].
∗ (d, d′) 6∈ H, then S(σH⊥ ) ≤ [b̄s̄dd′].
∗ b̄s̄dd′ = ūd′′v̄d′ for some ū ∈ D∗, v̄ ∈ Dn−1, d′′ ∈ D such that (d′′, d′) 6∈ V , then
S(σV⊥) ≤ [ūd′′v̄d′] ≡ [b̄s̄dd′].

• S(
⋂

(d′,d)∈H
(d→ d′ → α)) ≤ S(d→ βd) for all d ∈ D:

fix any π = dk → . . .→ d1 → σb = [b̄s̄] such that d1 . . . dk = s̄ ∈ f−1(C) and s̄d ∈ dom(f).
Since f(s̄) = C and s̄d ∈ dom(f), we have b̄s̄d = ūd′d for some ū ∈ D∗ and d′ ∈ D such
that (d′, d) ∈ H. We have

S(
⋂

(d′,d)∈H

(d→ d′ → α))
S(α)≤[ū]

≤ [ūd′d] ≡ [b̄s̄d] ≡ d→ π

• S(
⋂

(d′,d)∈V
(d→ ω → . . .→ ω →︸ ︷︷ ︸

n−1 times

d′ → α)) ≤ S(d→ βd) for all d ∈ D:

fix any π = dk → . . .→ d1 → σb = [b̄s̄] such that d1 . . . dk = s̄ ∈ f−1(C) and s̄d ∈ dom(f).
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Since f(s̄) = C and s̄d ∈ dom(f), we have b̄s̄d = ūd′v̄d for some ū ∈ D∗, v̄ ∈ Dn−1 and
d′ ∈ D such that (d′, d) ∈ V . We have

S(
⋂

(d′,d)∈V

(d→ ω → . . .→ ω →︸ ︷︷ ︸
n−1 times

d′ → α))
S(α)≤[ū]

≤ [ūd′v̄d] ≡ [b̄s̄d] ≡ d→ π

Lemma 10. Let T be a tiling system. If the constraint system CT is satisfiable, then
Constructor has a winning strategy in a two-player spiral tiling game in T .

Proof. Assume that there exists a substitution S that satisfies the constraints CT and wlog.
uses only organized types. Constructor wins the game regardless of Spoiler’s moves as
follows: Let τ ≡ S(σb ∩

⋂
d′∈D

⋂
d∈D

(d′ → d→ βd)), i.e. the rhs of (i). The initial game position

is b̄ and we have τ ≤ σb ≡ [b̄]. We consider a single turn of Constructor from any game
position s̄ ∈ D∗ that he may face.
Assume (?) that the current game position s̄ satisfies τ ≤ [s̄]. Due to (i) and Corollary 1 we
have the following cases

• If S(σH⊥ ) ≤ [s̄], then there exist d, d′ ∈ D such that (d, d′) 6∈ H and for some path π we
have d′ → d → π ≤ [s̄]. Therefore, s̄ = ūdd′ for some ū ∈ D∗ and Constructor wins
because Spoiler’s last move d′ violates H. As a side note, his is not possible for s̄ = b̄
since b̄ is horizontally consistent.
• If S(σV⊥) ≤ [s̄], then there exist d, d′ ∈ D such that (d, d′) 6∈ V and for some path π we

have d′ → ω → . . .→ ω →︸ ︷︷ ︸
n−1 times

d→ π ≤ [s̄]. Therefore, s̄ = ūdv̄d′ for some ū ∈ D∗, v̄ ∈ Dn−1

and Constructor wins because Spoiler’s last move d′ violates V . As a side note, this is not
possible for s̄ = b̄ since b̄ is too short.
• If S(σt) ≤ [s̄], then Constructor wins because tn → . . .→ t1 → π ≤ [s̄] for some path π

implies the winning condition s̄ = ūt̄ for some ū ∈ D∗. Alternatively ω → tn → . . . →
t1 → π ≤ [s̄] for some path π implies s̄ = ūt̄d′ for some ū ∈ D∗ and d′ ∈ D, therefore
Spoiler’s last move d′ was illegal because the game already ended.
• If S(βd) ≤ [s̄] for some d ∈ D, then Constructor may safely place d as the next tile. We

verify consistency wrt. H and V . First, due to (ii) there exists a path d → d′ → π for
some d′ ∈ D with (d′, d) ∈ H such that

d→ d′ → π
(ii)

≤ S(d→ βd)
S(βd)≤[s̄]

≤ [s̄d]

Therefore, s̄d = ūd′d for some ū ∈ D∗ and placing d does not violate H. Second, due
to (iii) there exists a path d→ ω → . . .→ ω →︸ ︷︷ ︸

n−1 times

d′ → π′ for some d′ ∈ D with (d′, d) ∈ V

such that

d→ ω → . . .→ ω →︸ ︷︷ ︸
n−1 times

d′ → π′
(iii)

≤ S(d→ βd)
S(βd)≤[s̄]

≤ [s̄d]

Therefore, s̄d = ūd′v̄d for some ū ∈ D∗, v̄ ∈ Dn−1 and placing d does not violate V .

In neither case Constructor loses. If Constructor placed the tile d ∈ D, in which case we
have S(βd) ≤ [s̄], Spoiler may place any tile d′ ∈ D. The new game position is s̄dd′ and our
initial assumption (?) is inductively satisfied

τ ≤ S(d′ → d→ βd)
S(βd)≤[s̄]

≤ [s̄dd′]
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Therefore, we may apply our argument inductively. Additionally, the game necessarily ends
after a finite number of turns: if τ =

⋂
i∈I

(σi1 → . . . σili → ci) (for some index set I, integers

li ≥ 0 for i ∈ I, types σij for i ∈ I and 1 ≤ j ≤ li and type constants ci for i ∈ I), then (?),

i.e. τ ≤ [s̄], cannot be satisfied by any s̄ ∈ Dk with k > max{li | i ∈ I}.

Theorem 1. The intersection type satisfiability problem and the intersection type unification
problem are Exptime-hard.

Proof. Immediate from Lemma 8, Lemma 9 and Lemma 10, since all reduction steps
are evidently computable in polynomial time. Moreover, satisfiability is polynomial time
equivalent to unification.

Corollary 2. Satisfiability and unification are Exptime-hard even in the presence of only
one constant.

Proof. Encode di by [di] = • → . . .→ • →︸ ︷︷ ︸
i times

• for 1 ≤ i ≤ k in the original proofs.

Corollary 3. Satisfiability and unification are Exptime-hard even if the codomain of
substitutions is restricted to types of rank 1, i.e. intersections of simple types.

Proof. In the proof of Lemma 9 each variable is substituted by an intersection of simple
types, i.e. a rank 1 intersection type.

Interestingly, the axiom (RE) ω ∼ ω → ω (resp. ω ≤ ω → ω) is not necessary for
the Exptime lower bound proof, while the axioms (U) and (AB) (resp. σ ≤ ω and
ω → τ ≤ σ → τ derived from contravariance) play a crucial role in the construction of σV⊥
to capture an exponential number of cases. Naturally, we would like to know whether the
special properties of ω are necessary for the Exptime lower bound, which we will consider
in the following Sec. 5.4.

5.4. Exptime lower bound without ω. In AC unification theories [BS01] it is often the
case that presence of unit does not change unification complexity. This holds true for the
Exptime lower bound of satisfiability in the ω-free fragment of intersection types and the
corresponding ACIDlAb unification. We observe that in the construction of constraints
CT in Section 5.3 it suffices to consider substitutions that map variables to intersections of
types of the shape d1 → . . .→ dk → • where d1, . . . , dk ∈ D. Therefore, we may replace the
use of ω in CT by iterated distributivity. Generally, this is possible because the codomain of
substitutions necessary for the lower bound construction may be restricted to a fixed rank.

Given a tiling system T = (D,H, V, b̄ = b1 . . . bn, t̄ = t1 . . . tn, n) we fix the set of type
constants C = D ∪̇{•} and variables V = {α} ∪ {βd | d ∈ D} ∪ {γid | d ∈ D, i ∈ {1, . . . , n}}
and construct the following set of constraints C ′T :

(i) σH⊥ ∩ σV⊥ ∩ σt ∩
⋂
d∈D

βd ≤̇ σb ∩
⋂
d′∈D

⋂
d∈D

(d′ → d→ βd) (Game moves)

(ii) σH> ≤̇
⋂
d∈D

(d→ βd) (d respects H)

(iii) σV> ≤̇
⋂
d∈D

(d→ βd) (d respects V )

(iv) γ1
d
.
= d→ α (for each d ∈ D, d is last)

(v) γid
.
=
⋂
di∈V

(di → γi−1
d ) (for each d ∈ D and each i = 2 . . . n, d is i-th to last)
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where σb ≡ bn → . . .→ b1 → • (Initial state)

σt ≡ (tn → . . .→ t1 → α) ∩
⋂
d′∈D

(d′ → tn → . . .→ t1 → α) (Final states)

σH⊥ ≡
⋂

(d,d′)∈D×D\H

(d′ → d→ α) (d′ violates H)

σV⊥ ≡
⋂

(d,d′)∈D×D\V

(d′ → γnd ) (d′ violates V )

σH> ≡
⋂

(d′,d)∈H

(d→ d′ → α) (d respects H)

σV> ≡
⋂

(d′,d)∈V

(d→ γnd′) (d respects V )

The above constraints C ′T differ from CT in two aspects. First, final states in σt are
described explicitly for each possible last tile d′ ∈ D, instead of using ω as a wildcard.
Second, in order to describe a sequence in which d′ is last and d is n− 1 tiles before d, i.e., d′

is vertically adjacent to d in a tiling, instead of using a type such as d′ → ω → . . . ω → d→ α
we use d′ → γnd . By a simple inductive proof we have that for substitution S satisfying
constraints (iv) and (v) if S(d′ → γid) ≤ d1 → . . . → dk → •, then d1 = d′ and dn+1 = d.
Additionally, intersections in γid appear either on the top level or in arrow target position.
Therefore, using distributivity, it still suffices to consider only substitutions that map
variables to intersections of types of the shape d1 → . . .→ dk → • where d1, . . . , dk ∈ D.

Theorem 2. The intersection type satisfiability problem in the ω-free fragment and the
intersection type unification problem in the ω-free fragment are Exptime-hard.

Proof. Same as the proof of Theorem 1 using the set of constraints C ′T .

5.5. Alternative Presentation. The most peculiarly shaped axiom in ACIUDlReAb is
absorption. Therefore, we would like to explore a different presentation of ACIUDlReAb
unification that does not rely on such oddly shaped axiom. For this purpose, we introduce the
least upper bound ∨ (cf. [KT95, Theorem 2.9]) as a syntactic meta-operator to intersection
types. In particular, we can define ∨ : T × T → T such that for all σ, τ, ρ ∈ T we have
σ ≤ ρ and τ ≤ ρ iff σ ∨ τ ≤ ρ. As a result, the axiom (Ab) is subsumed by lattice-theoretic
operations. Note that using the meta-operator ∨ is different from using union types ∪, which
are strictly more expressive.

Considering the way the least upper bound operation is defined for intersection types, we
split the original absorption axiom into lattice-theoretic absorption (AB∩) and contravariant
right-distributivity (D−r ) in the following Definition 11.

Definition 11 (ACIUD−ReAb∩). The equational theory ACIUD−ReAb∩ is given by

(A) σ ∩ (τ ∩ ρ) ≈ (σ ∩ τ) ∩ ρ
(C) σ ∩ τ ≈ τ ∩ σ
(I) σ ∩ σ ≈ σ
(U) σ ∩ ω ≈ σ
(Dl) (σ → τ) ∩ (σ → τ ′) ≈ σ → τ ∩ τ ′
(RE) ω ≈ ω → ω
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(AB∩) σ ≈ σ ∩ (σ ∨ τ)
(D−r ) (σ → τ) ∨ (σ′ → τ) ≈ (σ ∩ σ′)→ τ

The theory ACIUD−ReAb∩ interacts with ∨ syntactically. Since we are interested in
∨-free intersection types, we need to verify that ≈ is identical to ∼ on T.

Lemma 11. Given σ, τ ∈ T we have σ ∼ τ in ACIUDlReAb iff σ ≈ τ in ACIUD−ReAb∩.

Proof. “=⇒=⇒=⇒”: The theory ACIUD−ReAb∩ splits the original absorption axiom into lattice-
theoretic absorption (AB∩) and contravariant right-distributivity (D−r ) as follows

σ → τ
AB∩≈ (σ → τ) ∩ ((σ → τ) ∨ (σ′ → τ))

D−r≈ (σ → τ) ∩ (σ ∩ σ′ → τ)

Therefore, σ ∼ τ implies σ ≈ τ by replacing (AB) as shown above.
“⇐=⇐=⇐=”: First, we show that the additional axioms (AB∩) and (D−r ) are derivable using

subtyping and the least upper bound property of ∨.

(AB∩) First, σ ≤ σ and σ ≤ σ ∨ τ implies σ ≤ σ ∩ (σ ∨ τ). Second, σ ∩ (σ ∨ τ) ≤ σ.
Therefore, σ = σ ∩ (σ ∨ τ).

(D−r ) Due to [KT95, Theorem 2.9] σ∩σ′ → τ is the least upper bound of σ → τ and σ′ → τ .
By least upper bound uniqueness, we have

(σ → τ) ∨ (σ′ → τ) = (σ ∩ σ′)→ τ

As a result, σ ≈ τ implies σ = τ , therefore σ ∼ τ by Lemma 6.

Corollary 4. Given σ, τ ∈ T we have σ = τ iff σ ≈ τ .

Remark 1. Since ∩ is greatest lower bound wrt. ≤ and ∨ is least upper bound wrt. ≤, we
may add lattice theoretic properties of ∨ (such as ACI and mutual distributivity of ∩ and ∨)
to ACIUD−ReAb∩ without changing its expressiveness.

It remains open whether one can exploit additional lattice theoretic properties introduced
by ∨ to bound unification complexity similar to the type tallying problem [CNXA15].

6. On Decidability of Rank 1 Unification

Since problems in the intersection type system are often sensitive to rank [Urz09], it is
interesting to inspect decidability of rank restricted unification.

By rank 1 unification (resp. rank 1 satisfiability) we denote unification (resp. sat-
isfiability) where the substitution codomain is restricted to rank 1 types. To be precise,
each variable can be mapped to a (possibly empty, i.e. ω) intersection of simple types (not
containing intersections or ω).

In this section we sketch the reduction of rank 1 unification to set constraints with
projections in finite sets with cardinalities. Unfortunately, only the complexity of set
constraints with projections in infinite sets is known to be NExptime [CP94] and complexity
in finite sets is unknown. For an overview of properties of set constraints with projections
see [CP94]. The purpose of the sketched reduction is to provide a toolbox to translate the
oddities of intersection type unification in a uniform set theoretic setting, raising the question
regarding its decidability. Although intersection types have a set-theoretic interpretation
in a λ-calculus model [BCDC83] where subtyping coincides with set inclusion at the level
of λ-terms, it is not evident how the the shape of legal solutions (possibly infinite sets
of λ-terms of an arbitrary type) can be expressed in the syntax of set constraints with
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projections in the sense of [CP94]. The fundamental observation that distinguishes rank 1
unification is that rank 1 subtyping degenerates to set inclusion (cf. Lemma 13) at the level
of types.

Given a set C of constraints, we non-deterministically transform C to a set of set
constrains with projections D such that C has a solution iff D has a solution. The signature
of the resulting set constraints is that of simple types, where src (resp. tgt) is the first (resp.
second) projection of → lifted to sets. The cardinality constraint |α| = 1 implies that any
solution requires the set substituted for α to contain exactly one element.

To construct D, first choose a set V of variables and replace each occurrence of each
variable in V by ω. Second, normalize (recursively organize) all occurring types. Third,
iteratively apply the following rules until C is empty (given by highest to lowest priority)

(1) Remove σ ≤̇ τ from C if σ ≤ τ .
(2) Remove ϕ ≤̇ α from C if ϕ is a simple type and add α = {ϕ} to D (cf. Lemma 12).
(3) Remove α ≤̇ ϕ from C if ϕ is a simple type and add {ϕ} ⊆ α to D (cf. Lemma 13).
(4) Remove α ≤̇ β from C and add β ⊆ α to D (cf. Lemma 13).
(5) If ω ≤̇ τ in C and τ 6∈ Tω abort with “no solution” (cf Lemma 1).
(6) Replace σ ≤̇

⋂
i∈I τi in C by {σ ≤̇ τi | i ∈ I}.

(7) If a ≤̇ σ → τ , σ → τ ≤̇ a or a ≤̇ b in C then abort with “no solution”.
(8) Replace

⋂
i∈I τi ≤̇ σ1 → . . .→ σn → a in C by τi ≤̇ σ1 → . . .→ σn → a where i ∈ I is

chosen non-deterministically (cf. Corollary 1).
(9) Replace

⋂
i∈I τi ≤̇ σ1 → . . . → σn → α in C by {τi ≤̇ σ1 → . . . → σn → αi | i ∈ I ′}

and add α =
⋃
i∈I′ αi to D where ∅ 6= I ′ ⊆ I is chosen non-deterministically and αi for

i ∈ I ′ are fresh (cf. Lemma 4).
(10) Replace σ1 → τ1 ≤̇ σ2 → τ2 in C by {σ2 ≤̇ σ1, τ1 ≤̇ τ2}.
(11) Replace α ≤̇ σ → τ in C by {σ ≤̇ β, γ ≤̇ τ} and add {δ ⊆ α, β = src(δ), γ = tgt(δ)} to

D where β, γ, δ are fresh (cf. Lemma 14).
(12) Replace ω → τ ≤̇ α in C by τ ≤̇ β and add α ⊆ γ → β to D where β, γ are fresh.
(13) Replace

⋂
i∈I σi → τ ≤̇ α in C by {σi → τ ≤̇ α | i ∈ I} (cf. [KT95, Theorem 2.9]).

(14) Replace (σ1 → . . . → σn → a) → τ ≤̇ α in C by {σi ≤̇ βi | i = 1 . . . n} ∪ {τ ≤̇ γ}
and add α ⊆ (β1 → . . . → βn → a) → γ to D where βi, γ are fresh for i = 1 . . . n (cf.
Lemma 15).

(15) Replace (σ1 → . . . → σn → δ) → τ ≤̇ α in C by {σi ≤̇ βi | i = 1 . . . n} ∪ {τ ≤̇ γ} and
add {α ⊆ (β1 → . . .→ βn → δ)→ γ, |δ| = 1} to D where βi, γ are fresh for i = 1 . . . n
(cf. Lemma 15).

The above sketched construction contains justifications for its soundness and complete-
ness. A crucial aspect for rank 1 unification is that subtyping restricted to simple types
degenerates to equality.

Lemma 12. For ϕ,ψ ∈ T such that ϕ and ψ are simple types we have ϕ ≤ ψ iff ϕ ≡ ψ.

Proof. By induction on the sum of depths of ϕ and ψ using Lemma 2.

Since a simple type is also a path (cf. Definition 4), subtyping restricted to intersections
of simple types degenerates to set inclusion.

Lemma 13. For σ, τ ∈ T such that σ ≡
⋂
i∈I ϕi and τ ≡

⋂
j∈J ψj are intersections of simple

types we have σ ≤ τ iff {ψj | j ∈ J} ⊆ {ϕi | i ∈ I}.

Proof. Consequence of Lemma 12 and Lemma 4.
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An other crucial property of intersection type subtyping that allows to strictly strengthen
inequalities is expressed by the following Lemma 14.

Lemma 14. We have
⋂
i∈I(σi → τi) ≤ σ′ → τ ′ iff there exists an index set I ′ ⊆ I such that⋂

i∈I′ σi →
⋂
i∈I′ τi ≤ σ′ → τ ′.

Proof. Immediate consequence of Lemma 2 (iii).

Finally, the most important case (15) in the above construction relies on a more involved
argument. In particular, we need to restrict the cardinality of solutions due to the following
Lemma 15.

Lemma 15. We have (σ1 → . . .→ σn →
⋂
i∈I ϕi)→ τ ≤

⋂
j∈J ψj where ϕi, ψj are simple

types for i ∈ I 6= ∅, j ∈ J 6= ∅ iff for each j ∈ J we have ψj ≡ (ψ1
j → . . .→ ψnj → ψn+1

j )→
ψn+2
j for some ψ1

j , . . . , ψ
n+2
j and the following conditions hold

(i) τ ≤
⋂
j∈J ψ

n+2
j

(ii) σk ≤
⋂
j∈J ψ

k
j for k = 1 . . . n

(iii) φi ≡ ψn+1
j for all i ∈ I and j ∈ J

Proof. “=⇒=⇒=⇒”: For each j ∈ J the shape ψj ≡ (ψ1
j → . . .→ ψnj → ψn+1

j )→ ψn+2
j for some

ψ1
j , . . . , ψ

n+2
j is due to Lemma 2 with the resulting conditions

(1) for all j ∈ J we have τ ≤ ψn+2
j

(2) for all j ∈ J and k = 1 . . . n we have σk ≤ ψkj
(3) for all j ∈ J we have ψn+1

j ≤
⋂
i∈I ϕi

Conditions (1) and (2) are equivalent to conditions (i) and (ii). By Lemma 13 we have
{ϕi | i ∈ I} ⊆ {ψn+1

j } for each j ∈ J which implies condition (iii).
“⇐=⇐=⇐=”: Immediately by definition of ≤.

7. Conclusion and future work

We have positioned the algebraic intersection type unification problem as a natural object
of study within unification theory and type theory, and we have provided the first nontrivial
lower bound in the standard and the ω-free fragment showing that the problem is of high
complexity. Our Exptime-lower bound uses game-theoretic methods which may be useful for
making further progress on the main open question for future work, that of decidability. Next
steps include exploring variants and restrictions. Variants of intersection type subtyping
theories (see [BDS13]) give rise to a family of intersection type unification problems yet to
be studied. We conjecture an NExptime-upper bound for rank 1 restricted unification,
in which variables are substituted by intersections of simple types. Since organized rank
1 subtyping corresponds to set inclusion, one can reduce a rank 1 unification problem to
satisfiability of set constraints with projections [CP94] in finite sets. Unfortunately, standard
set constraint interpretations may contain infinite sets, which is why this approach needs
further investigation.
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