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ABSTRACT. We show that the first order theory of the lattice of open sets in some natural
topological spaces is m-equivalent to second order arithmetic. We also show that for many
natural computable metric spaces and computable domains the first order theory of the
lattice of effectively open sets is undecidable. Moreover, for several important spaces (e.g.,
R™, n > 1, and the domain Pw) this theory is m-equivalent to first order arithmetic.

1. INTRODUCTION

From the very beginning of Model Theory, the study of (un)decidability of first order theories
became a central and popular topic. As a result, for virtually all structures A = (A4;0)
of a given signature o (in the Russian literature structures are also known as algebraic
systems) occurring naturally in mathematics their first order theories FO(A) has been
shown to be decidable or undecidable (among vast literature on the subject we mention
[TMR53, ELTTG65, Er80], as examples).

More recently, several researchers in Computability Theory have been working on the
problem of characterizing the algorithmic complexity of undecidable first order theories
(the complexity is usually measured by the m-degree [Ro67, So87] of the theory that in
this context coincides with the 1-1-degree, i.e. with the type of computable isomorphism
of the theory). For many natural structures A with undecidable theory the theory FO(A)
turns out to be m-equivalent either to first order arithmetic FO(N) or to second order
arithmetic FO(Ny) where N := (w;+, x) and Ny := (w U P(w);w, P(w), €, +, X), see e.g.
[NS80, NSS96, Ni98]. As is well known (see e.g. [Ro67]), FO(N) is m-equivalent to the w’th
iteration ) of the Turing jump starting from the empty set.

Decidability issues for topological spaces seem to have been studied less systematically
than for structures arising in algebra, logic and discrete mathematics, probably because
first order language is not well suited for topology. Nevertheless, there was some important
work for structures related to a topological space X, the most natural of which is the lattice
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30(X) of open sets in X. To our knowledge, A. Grzegorczyk [Gr51] was the first to consider
decidability issues in topology. One of the results in [Gr51] (Corollary 2) interprets first
order arithmetic in 3¢(R") for each n > 2 which implies that FO(N) is m-reducible to
FO(ZY(R™)) and hence the latter theory is undecidable. The question of whether FO(X{(R))
is decidable was left open. M. Rabin [Ra69] answered the question affirmatively (as well
as the analogous question for the Cantor and Baire spaces) as a corollary of his result on
decidability of the monadic second order theory of the binary tree.

A systematic model-theoretic study of structures arising in a topological setting was
undertaken in [HJRT77] where it is shown, in particular, that FO(Ny) <, FO(2{(X)) for
many Hausdorff spaces X, and the above mentioned Grzegorczyk’s estimate was improved to
FO(Ny) =, FO(X{(R")) for each n > 2. Note that in fact the papers [Gr51, HJIRT77] work
with the lattices of closed sets rather than with the lattices of opens but for our purposes
this is clearly equivalent.

Another facet of the relationship between Topology and Computability Theory is the
study of effectivity in a topological setting as developed in Computable Analysis [Wei00]
and Effective Descriptive Set Theory [Mo09, Se06]. An important object of study here is the
lattices ¥9(X) of the so called effectively open sets in topological spaces X satisfying some
effectivity conditions (see the next section for more details). The lattice ¥.9(X) is certainly
the most important sublattice of the lattice $9(X) of open sets, hence it is natural and
instructive to study also definability and (un)decidability issues for the lattices of effectively
open sets.

This study is interesting and non-trivial even for the discrete space w of natural numbers
since in this case the lattice X{(w) coincides with the lattice £ of computably enumerable
(c.e.) subsets of w which is an important and popular object of study in Computability
Theory [Ro67, So87]. A principal fact about this lattice is the undecidability of FO(E)
[He83, He84]. Moreover, FO(E) is known [HN98| to be m-equivalent to first-order arithmetic
FO(N). Note that the first order theory of X¢(w) = P(w) is decidable (because P(w) is a
Boolean algebra).

It seems that not much is known about (un)decidability of first order theories of the
lattices of effectively open sets except for what is known about the lattice ¥9(w) and its
relativizations. To our knowledge, only the cases of the Cantor space C and the Baire space
N have been studied to some extent, in the context of the theory of IT{-classes. In [Ni00]
(see the discussion of Main Theorem in the Introduction and Section 3) it is shown that
FO(Y(C)) is m-equivalent to FO(N). Since the lattice IT{(C) formed by the complements
of effectively open sets is anti-isomorphic to Z(l) (C), this settles the question for C. To our
knowledge, similar questions for A (even the decidability of FO(X{(N\))) are open.

In this paper, we make further steps in the study of (un)decidability issues for the
theories of ¥9(X) and X{(X). After recalling some necessary preliminaries we reprove in
Section 3 the estimate from [HJRT77] FO(Ng) =, FO(ZY(R")), n > 2, using the original
approach of A. Grzegorczyk which is different from the approach in [HJRT77]. We also
establish the same estimate for some natural domains. In Section 4 we first show that
for many natural effective spaces X (including computable metric spaces without isolated
points and many natural computable domains) the theory FO(X{(X)) is undecidable. Then
we show that FO(X{(R")), n > 1, is m-equivalent to first order arithmetic. The same
estimate also holds for some natural domains. We conclude in Section 4.3 with a discussion
of remaining open questions.
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The methods of this paper apply mainly to second countable locally compact spaces. A
precise estimate of the complexity of FO(X{(X)) and FO(X?(X)) turns out to be subtle and
depends strongly on the topology of X. For many natural spaces X we still have a big gap
between the known lower and upper bounds for FO(£{(X)) and FO(X{(X)). In particular,
for the Baire space we currently only know the estimate ( <,, FO(X9(X)) <,, O“) where
O is the Kleene ordinal notation system which is a II}-complete set.

Our upper bounds for the m-degree of FO(X{(X)) and FO(X{(X)) are obtained by a
straightforward application of the Tarski-Kuratowski algorithm, while the lower bounds use
a suitable interpretation of one of the structures £, N, Ny in the lattice under consideration.

This paper is an extended version of the conference paper [KS16] that contains, in
particular, new results on the lattices of all open sets and an essentially modified proof of
Theorem 4.4 for n > 1.

2. PRELIMINARIES

Here we briefly recall some notions and notation relevant to this paper. We freely use the
standard set-theoretic notation like | X| for the cardinality of X, X x Y for the cartesian
product of sets and topological spaces, P(X) for the set of all subsets of X, A for the
complement X \ A of a subset A of a space X.

We assume the reader to be familiar with basic notions of topology (see e.g. [En89]).
We often abbreviate “topological space” by “space”. By CI(S) (resp. Int(S)) we denote the
closure (resp. the interior) of a set S C X in a space X. A space X is Polish if it is separable
and metrizable with a metric d such that (X,d) is a complete metric space. We denote
the set of open subsets of a space X by X9(X). This is the first among the finite levels
{X9(X)} of the Borel hierarchy [Ke95, dBr13] which is formed by applying the operations
of complementation and countable union to the open sets.

Let w be the space of non-negative integers with the discrete topology. The space
w X w = w? is homeomorphic to w, the homeomorphism being realized by the Cantor pairing
function (z,y).

Let w¥ be the set of all infinite sequences of natural numbers (i.e., of all functions
€ :w — w). Let w<¥ be the set of finite sequences of elements of w, including the empty
sequence. For o0 € w<* and £ € N, we write 0 C £ to denote that ¢ is an initial segment of
the sequence £. By o0& = o - £ we denote the concatenation of o and &, and by o - N the set
of all extensions of o in . For x € w*, we can write z = x(0)z(1)--- where z(i) € w for
each i < w. For x € N and n < w, let z[n] = 2(0) ---x(n — 1) denote the initial segment
of  of length n. Notations in the style of regular expressions like 0%, 0<“1 or 0™1™ have
the obvious standard meaning. Define the topology on w® by taking arbitrary unions of
sets of the form o - w*, where 0 € w<¥, as the open sets. The space N' = w* with this
topology known as the Baire space, is of primary importance for Descriptive Set Theory and
Computable Analysis.

For any finite alphabet A (usually we assume without loss of generality that A = k =
{0,...,k — 1} where 0 < k < w), let A¥ be the set of w-words over A. This set may be
topologized similarly to the Baire space. The resulting spaces, which for £ > 2 are all
(computably) homeomorphic among themselves, are known as Cantor spaces (usually the
term Cantor space is applied to the space C = 2“ of infinite binary sequences). Note that
the Cantor space is compact while the Baire space is not.
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Next we recall some definitions related to domain theory (for more details see e.g.
[AJ94, Er93, GH+03]).

Let X be a Tp-space. For z,y € X, let < y denote that x € U implies y € U, for
all open sets U. The relation < is a partial order known as the specialization order. Let
F(X) be the set of finitary elements of X (known also as compact elements), i.e. elements
p € X such that the upper cone tp = {z | p < x} is open. Such open cones are called f-sets.
The space X is called a p-space if every open set is a union of f-sets. Note that every
non-discrete p-space is not Hausdorff. A p-space is complete if any non-empty directed set
has a supremum w.r.t. the specialization order.

A p-space X is an f-space if any compatible elements ¢,d € F(X) have a least upper
bound w.r.t. < (compatibility means that ¢, d have an upper bound in F(X)). An f-space
X is an fo-space if F(X) has a least element.

Let wS* = w<¥ U w® be the set of all finite and infinite strings of natural numbers
with the topology generated by the sets {x | u C x} where u € w<¥. For every 1 < k < w,
the space k=% of all finite and infinite words over the alphabet {0,...,k — 1} is defined
in the same way. Let Pw be the powerset of w with the topology generated by the sets
TF :={A| F C ACw} where F is a finite subset of w.

Let wi = wU{L} be the the space with the topology generated by {n}, n € w. Let w9
be the space of partial functions on w with the topology generated by the sets {g | f C g}
where f is a function with finite graph and C is the subgraph relation (as usual, we identify
a partial function g on w with the total function § : w — w; = w U {L} where g(x) is
undefined iff g(z) = L). For each k, 2 < k < w, let k¥ be the space of partial functions
g:w—{0,...,k—1} defined similarly to w?.

As is well known, wS* k<Y Pw,w 1,wY, kY are complete fp-spaces where the sets of
f-elements are respectively w<%, k<% the finite subsets of w, w |, the finite partial functions
on w, the finite partial functions from w to {0,...,k — 1}.

As is well known (see e.g. [Er72]), for any (complete) fo-spaces X,Y the space YX of
continuous functions from X to Y with the topology of pointwise convergence is again a
(complete) fo-space. Therefore, any space of continuous partial functionals over w of a finite
type is a complete fo-space. In particular, this applies to the spaces F,, defined by induction
as Foi=w,, Fhyp = wﬁ”.

Next we explain what we mean by effectively open sets. For any countably based
topological space X and any numbering 3 of a base of X, define a function 7 : w — P(X)
by m(n) = | B[W,] where {W,,} is the standard numbering of the c.e. sets [Ro67, So87])
and S[W,] = {B(a) | a € W, }. The sets in 7[w| are called effectively open sets in X. Thus,
the set of effectively open sets X{(X) is always equipped with the induced numbering ,
hence it makes sense to speak about computable sequences of effectively open sets.

For many reasonable spaces X with effectivity conditions, one can define in a natural
way the (finite levels of the) effective Borel hierarchy {¥2(X)} and the effective Luzin
hierarchy {1 (X)} (see e.g. [Mo09, Se06, Sel5] for details) which are reasonable effective
versions of the classical Borel and Luzin hierarchies. (Note that the definition of effective
hierarchies in a given effective space depends on the chosen numbering of a base of the
space.) In particular, {20 (w)} and {Z}(w)} (taken with a natural numbering of a base in w)
coincide with the arithmetical and analytical hierarchies of subsets of w which are central
objects of study in Computability Theory [Ro67].

We define some particular classes of effective spaces relevant to this paper. A computable
metric space [Wei00] is a triple (X, d,v), where (X, d) is a metric space and v : w — X is a
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numbering of a dense subset rng(v) of X such that the set

{(6,5,k,0) | 59, < d(v(2),v(4)) < >4}
is c.e. Here s is the conventional numbering of the set Q of rationals. Any computable
metric space (X,d,v) gives rise to a numbering 3 of the standard base B, ) = B(vm, 3n)
where (m,n) is the Cantor pairing and B(vy,, »,) is the basic open ball with center v, and
radius s, (if s, <0 the “ball” is empty).

By a strongly computable metric space (SCMS) we mean a computable metric space such
that there exists an infinite computable sequence {B,,} of pairwise disjoint basic open balls.
The metric spaces w, Q, C, N, R"™ (where R is the space of real numbers) equipped with the
standard metrics and with natural numberings of dense subsets are SCMS. Any computable
metric space without isolated points is an SCMS. Working with the Euclidean spaces R,
we denote by d the Euclidean metric, by 0 the zero-vector (0, ...,0) € R™, non-empty open
(resp. closed) rational balls by B(a,r) (resp. C(a,r)) where a € Q",r € Q*. Sometimes it
is convenient to use also the empty ball B(a,0).

By a computable ¢-space we mean a pair (X,d) consisting of a p-space X and a
numbering 6 : w — F(X) of all the finitary elements such that the specialization order is c.e.
on the finitary elements (i.e., the relation J, < 4, is c.e.). Setting 3(n) := 16,, we obtain a
numbering of a topological base of X. Thus, we have a notion of an effective open set in
every computable yp-space.

By a strongly computable p-space (SCPS) we mean a computable ¢-space X such that the
specialization order is computable on the finitary elements, and there is a computable sequence
{cn} of pairwise incomparable finitary elements. An SC®S X is a strongly computable fy-
space (SCFyS) if it is an fo-space, the relation of compatibility is computable on F(X), and
the supremum of compatible finitary elements is computable. Although the restrictions
imposed on SC®Ss and SCF(Ss are rather strong, many popular domains are SCFySs. In
particular, this applies to all concrete examples of p-spaces mentioned above in this section.
(For the space YX of continuous functions, a close inspection of the corresponding proofs
[Er72] shows that if X,Y are (complete) SCFSs then so is YX. Therefore, any space of
continuous partial functionals over w of a finite type is a complete SCF(S.) Note that the
“strong” variations above are rather ad hoc and do not pretend to be fundamental notions in
the field.

We conclude this section by briefly recalling of some notions from logic. We consider
only structures of finite relational signatures (when a functional symbol is used, as e.g.
in the structure N, we identify the corresponding function with its graph). For a o-
structure A = (A;0), a relation R C A* is definable in A if there is a first order o-formula
o(x1,..., 2k, p1,--.,p) and (possibly) some values pi,...,p; € A of parameters such that

R = {(l’l,...,l'k) € Ak ‘ A ): ¢(x1,...,xk,p1,...,pl)}.
If the list of parameters is empty then we speak about definability without parameters. Thus,
R C AF is definable in A without parameters if there is a first order o-formula ¢(x1, ..., z})
with
R={(z1,....zx) € A¥ | A = glan,...,zp)}.

A function on A is definable (with or without parameters) if its graph is definable. An
element of A is definable if the corresponding singleton set {a} is definable. A structure is
definable if its universe and all signature predicates are definable.
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E.g., if A = (4;U,Nn,0,1) is a bounded distributive lattice then any of U,N,0,1 is
definable without parameters in (A; <) where < is the induced partial order on A, and < is
definable in (A, U). Moreover, in this case we can even speak about arbitrary Boolean terms
of elements of A (meaning their values in a Boolean algebra extending A). Thus, dealing
with our lattices $9(X) and £{(X) we can mean any of the signatures {C}, {U,N, 0, X}, or
even {U,N, 0, X}. For simplicity, we omit the signature symbols in the notation of these
structures. We use in our formulas some standard abbreviations, in particular the bounded
quantifiers (V) ()Y := Vo (é(r) — ) and (I7) )Y := Fz(¢p(x) A1p) or the “quantifier”
Jlx) meaning “there exists a unique x satisfying ¢”.

The first order theory FO(A) of the structure A is the set of o-sentences true in A.
Along with first order logic, in logical theories some other logics are considered, in particular
the (monadic) second order logic where one can use, along with the usual variables, also
variables ranging over the (unary) relations on A. Accordingly, one can consider the monadic
second order theory MSO(A), or the full second order theory SO(A), of A (in the latter
case one needs variables for relations of any arity). Since the Cantor coding is definable in
N without parameters, SO(N) =,, MSO(N). The theory MSO(A) may be considered as the
first order theory FO(A™%°) of the extended structure

A™S0 .= (AU P(A); A, P(A), €,0)

obtained from A by adjoining the powerset of A to the universe, the unary predicates for
A and P(A), and the membership relation to the list of relations. In particular, we have
Ny = N™%¢ and SO(N) =,,, FO(Ny).

An important tool to compare algorithmic complexity of theories is the notion of
interpretability of one theory or structure in another. In fact, there are many versions of
this notion (see e.g. [TMR53, ELTT65, Er80] of which we briefly recall a couple of those
used in the sequel.

A 7-structure B is interpretable in a o-structure A without parameters if some isomorphic
copy of B is definable in A without parameters. A weaker version of this is the notion of
c-interpretability (where ¢ comes from “congruence”). We say that B is c-interpretable in A
without parameters if there exist a 7-structure C and a congruence ~ on C such that both
C and ~ are definable in A without parameters and the quotient-structure C/~ (whose
elements are the equivalence classes ¢/~, ¢ € C) is isomorphic to B. Interpretability with
parameters is introduced in the same manner.

As is well known (see e.g. [TMR53, ELTT65]), if B is c-interpretable in A without
parameters then FO(B) <,, FO(A). The same is true for definability with parameters
provided that the set of “defining” parameters may be chosen definable. The latter notion
means that there is a non-empty definable (without parameters) set P C Al of parameters
such that for any value of parameters in P the corresponding structure is isomorphic to B.
For future reference, we formulate some of the mentioned facts as a lemma.

Lemma 2.1. Let B be c-interpretable in A without parameters (or with a non-empty set of
parameters which is itself definable without parameters). Then FO(B) <,, FO(A).

When no non-empty set of eligible parameters is definable, the relation FO(B) <,,, FO(A)
is not true in general but there is some version of undecidability which is preserved also
by such interpretations. A theory (not necessarily complete) of signature o is hereditarily
undecidable if any of its subtheories of signature o is undecidable. It is well known (see
e.g. [Er80]) that if FO(B) is hereditarily undecidable and B is c-interpretable in A with
parameters then F'O(A) is hereditarily undecidable.
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Additional information about interpretations may be found on page 215 of [Ho93|.

3. THE LATTICES OF OPEN SETS

Here we give precise estimates of the algorithmic complexity of FO(X{(X)) for some
spaces X.

3.1. An upper bound. First we establish a natural upper bound that applies to many
countably based locally compact spaces. We need a technical notion related to local
compactness. By analytically locally compact space (AnLCS) we mean a triple (X, 3, k)
consisting of a topological space X, a numbering 5 of a base in X containing the empty
set (the presence of the empty set is not principal and maybe removed by using slight
modification of the notion of AnLLCS), and a numbering ~ of some compact sets in X such
that any set (3, is a union of some sets in {k; | ¢ < w}, and the relation x; C |J f[Dy] (where
{D,} is the canonical numbering of finite subsets of w [Ro67]) is analytical, i.e. it is in
U, ZL(w).

Note that although AnLLCSs are not automatically locally compact, many locally compact
spaces may be considered as AnLCSs. In particular, the computable p-spaces, the finite
dimensional Euclidean spaces, and the Cantor space are AnLCSs (for instance, for a
computable p-space (X,0) we can set K, := (3, := 10, which is compact; the relation
ki C U B[Dy] in this case is c.e.).

Proposition 3.1. If (X, 8, k) is an AnLCS then FO(XY(X)) <, FO(Na).

Proof. Define a surjection 7 : N — 29(X) by 7(p) = U,, Bp(n)- The surjection 7 has several
nice properties, in particular it is an admissible representation of the hyperspace of open
sets in X (see e.g. [Sel3| for additional details).

It suffices to show that the relation 7(p) C 7(q) is an analytical subset of N’ x N because
then the elementary diagram of the represented structure (X¢(X);C,7), and hence also
FO(XY(X)), are m-reducible to FO(Na).

Obviously, 7(p) C 7(q) is equivalent to Vn(k, C 7(p) = kn C 7(q)), hence it suffices
to show that the relation s, C 7(p) is analytical. We have x,, C 7(p) iff k, C U, Bp(s) iff
Im(k, C Bpy U= U Bpim)), by compactness of x,,. The set

{(m7n7p) ‘ kn Bp(O) U---u Bp(m)})
is, by the definition of AnLCS, an analytical subset of w x w x N, hence the relation x,, C 7(p)
is analytical. L]

3.2. Lattices of opens in Euclidean spaces. The next result improves the estimate from
[Gr51] mentioned in the Introduction, providing a different proof of this result compared
with [HJRT77].

Theorem 3.2. For any n > 2, FO(X{(R")) =,, FO(Ny).

Proof. Since the upper bound holds by Proposition 3.1, we only have to prove the lower
bound FO(Ny) <,,, FO(Z{(R")). For this, we extend Grzegorczyk’s interpretation [Gr51]
of N in ¥9(R") to an interpretation of Ny in 39(R™). We start with a brief sketch of the
Grzegorczyk interpretation (with slightly different notation).
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Since X{(R") is a distributive lattice, we can use in the definitions not only the symbol
of inclusion but also the symbols of Boolean operations and the constants (), R". Note that
for any z € R” the set R" \ {z} is open, and the class of such co-singleton sets is definable
in 3Y(R") as the class of sets maximal w.r.t. inclusion among the sets strictly below R”.
We also use some other observations from [HJRT77].

The key observation of Grzegorczyk was the definability in 39(R") (without parameters)
of the set Cof of cofinite subsets of R™, as well as of the following relations on Cof:

o U~V iff [U| =|V] where U := R"\ U,
o P (U V,W)iff U| x |V]| =|W]|.

Grzegorczyk’s interpretation is now given by the natural isomorphism k — Uy/~
from N onto the quotient of (Cof; Py, Px) modulo the definable congruence ~ where
U :=R"\ {(4,...,1) | i < k}.

The definability of Cof,~, P, Px makes heavy use of the notions of connected open
sets and open connected components which are definable, respectively, by the formulas

Con(U):=U#DAN-FV,WUCVUWAVAW =0AUNV LDANUNW #0)
and
Cmp(U,V):=U CV A Con(U)AVU' (U CV ACon(UYNUNU #0— U CU).

Let now £(U, V) be a formula saying in X9(R") that U is coinfinite, V' is cofinite, U N F = ()
(where F' is the finite set of all points in the complement of V'), U U F' is open, and V is the
smallest element of (Cof; C) with these properties. In other words, X9(R") |= £(U, V) iff
U is obtained from the open set U U F' by removing the points from F'; Note that, by the
minimality of V', for any coinfinite open set U there is at most one cofinite open set V' with
SO(R™) = £(U, V).

Let P be the definable subset of X{(R") formed by the coinfinite sets W satisfying
(YU) cmp(u,w)3VE(U, V). Then P is disjoint with Cof and we can associate with any W € P
the set

Aw =Lk € w | (BU) cmpww)IV(EWU, V) A V] = k)}.

Note that for any A C w there is W = W(A) € P with A = Ay . Indeed, we can take
the set W := |J{S, | @ € A} where S, is obtained from the open set (a,a + 1) x R*~! by
removing a points (note that S, are the connected components of ). Note also that the
relations

(VW) VeCf \WePA|V]€ Ay
and

WEW/<=>W€/P/\W/€’P/\AW:AW/
are definable in X¢(R") without parameters.

These remarks mean that the maps k — U,/~, A — W(A)/= give an isomorphism
from Ng onto the quotient of (Cof UP; Cof, P, €, Py, Px) modulo the definable congruence
on Cof UP induced by ~ and =. Thus, Ny is c-interpretable in 3%(R") without parameters.
By Lemma 2.1, FO(Ny) <,, FO(Z{(R")). O
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3.3. Lattices of opens in domains. Here we give a similar estimate for some natural
domains.

Theorem 3.3. For any X € {Pw, k¥ |2 <k <w}, FO(E(X)) = FO(Ny).

Proof. First consider the space Pw (which is homeomorphic to 14). Since the upper bound
holds by Proposition 3.1, we only have to prove the lower bound FO(Ng) <,,, FO(ZY(Pw)).
By an observation of R. Robinson mentioned in the beginning of the proof of Lemma 7.2 in
[HJRT77], x is definable in (w;+) by a monadic second order formula, so if suffices to prove
FO(N}) <, FO(E{(Pw)) where N}, := (w U P(w);w, P(w), €, +).

We show that the class F of f-sets (i.e., sets of the form 1F where F C w is a finite
set), is definable in ¥9(Pw) without parameters. Indeed, a defining formula is

ir(V):=V £0AVU,U'(V CUUU' =V CUVV CU)

which says in E?(Pw) that V' is a non-zero join-irreducible element. Obviously, any set
V = 1F satisfies this formula. Conversely, let an element V € X{(Pw) satisfy the formula.
Since V' # (), for some sequence {F),} of finite sets we have V = |J,, 1F},. Since the partial
order ({F,, | n < w}; Q) is well founded, it has a minimal element F'. Then of course
TF C V, so it suffices to show that V C 1F. Let S := J{tF, | F € F,}. Since S € £9(Pw),
V CTFUS and V is join-irreducible, it suffices to show that V' & S. Suppose the contrary,
then F' € S, so F,, C F for some n with F' Z F,,, contradicting the minimality of F'.

Let G be the set of finite subsets of w. Since (G; C) is isomorphic to (F;2) via G — TG,
we can interpret N} in X9(Pw) similarly to the previous proof. Define the relations =, Py
on F as follows:

o TF~1G iff |F|=|G|,
e PL(TF,1G,TH) iff |F| + |G| = |H]|.
We show that ~, P,, Py are definable in X{(Pw) without parameters.

First we show that the set V, := {1F : |F| = n} is definable in X{(Pw) for each
n < w. A sequence {¢,(V)} of defining formulas is given by induction on n as follows:
¢o(V) :==VYU(U C V) (saying that V is the largest element of a lattice), and

Ont1 (V) :==go(V) A= A=dn (V) A (VU )iy (V CU = do(V) V-V g (V)

(saying in X{(Pw) that V is a maximal join-irreducible element among those not in the set
defined by the formula ¢o(V)V ---V ¢,(V)). By induction on n, ¢,, defines V,, for each n.

Note that any U € X9(Pw) is uniquely representable as the union of its maximal
(w.r.t. inclusion) f-subsets. Clearly, the relation Mazf(C,U) meaning that “C' is a maximal
f-subset of U” is definable in X¢(Pw).

Let A ~y B be the definable (in 9(Pw)) relation “A =1F,B=1G € F, FNG = 0,
|[FNH|=|GNH| =1 for each maximal f-subset 1H of U, H N H' = (), for all distinct
maximal f-subsets 1H,1H' of U, and F UG C \J{H | Mazf(tH,U)}”. For instance,
M) =~y 10. Clearly, tF =~y TG implies |F| = |G|, and for all F,G € F we have: |F| = |G| iff
|F\G|=|G\ F|iff 3UM(F\G) ~y 1(G\ F)). This yields the definability of ~.

Since |F| + |G| = |H| iff there are disjoint F', G’ € G such that |F’'| = |F|, |D'| = |G|
and |F" UG'| = |H|, the relation P, is definable.

Since k +— 140, ...,k — 1} /~ is an isomorphism from (w;+) onto the quotient of (F; P;)
modulo ~, we get a c-interpretation of (w;+) in X{(Pw) without parameters. As in the
proof of the previous theorem, this interpretation can be easily extended to a c-interpretation
of Ny in XY(Pw) without parameters.
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Namely, let P := X{(Pw)\ F, so any W € P is either empty or has at least two maximal
f-subsets. Then P is definable and we can associate with any W € P the set

Ay = {k —1€w|3K € G(Mazf (1K, W) Ak = |K]|)}.

Note that for any A C w there is W = W(A) € P with A = Ay. If A is empty, we have to
take W = (). Otherwise, fix ag € A and choose a countable partition Q, Ry, Ry, ... of w into
infinite sets with @ = {¢(0) < ¢(1) <---} and R; = {r;(0) < r;(1) < ---}; now it suffices to

set
W(A) == Hq(0), .., q(a0)} U{J{Hra(0), .., ra(a)} | a € A}.
Furthermore, the relations
cETF,W)= FegGAW ePA|F| € Aw

and

WEW’@WE’P/\W’EP/\AW:AW/
are definable in ¥9(Pw) without parameters. Therefore, the maps k ~— 140,..., k — 1}/~,
A — W(A)/= give an isomorphism from N/, onto the quotient of (FUP; F,P, ¢, Py) modulo
the definable congruence on F U P induced by ~ and =. Thus, N is c-interpretable in
30 (Pw) without parameters. By Lemma 2.1, FO(N}) <,,, FO(2{(Pw)), completing the
proof for Pw.

Now consider the space k¥. Since again FO(X9(k%)) <,, FO(Nz) by Proposition 3.1,
it suffices to show FO(N2) <., FO(X{(k%)). By the just established estimate for Pw, it
suffices to show FO(X?(Pw)) <, FO(E{(kY)), i.e., to interpret X9(Pw) in E{(k¥) with a
non-empty definable set of parameters.

For any total function f :w — k, let Ay be the set of partial subfunctions of f. Then
Ay is a closed subset of kY which, taken with the subspace topology, is homeomorphic to
14, and hence also to Pw. Therefore, £9(Pw) is isomorphic to £{(Ay) for each f:w — k,
so it suffices to show that A := {A; | f : w — k} is definable in £9(k%) without parameters.
This follows from the following assertion that is easy to check: A € A iff A is a maximal
(w.r.t. inclusion) closed subset of k¢ satisfying

VUV eXVENUNA£ADAVNA£D-UNVNAHED). O

As mentioned in the Introduction, M. Rabin has shown that FO(X?(X)) is decidable
for X € {C,N,R}. The same holds for X € {[0,1],(0,1]}, with a slight modification of the
proof in [Ra69]. We conclude this section with a natural variation of this for domains.

Proposition 3.4. For any 1 < k < w, FO(XY(k=¥)) is decidable.

Proof. Relate to any A C k=¥ the open set Uy := (J,cq0 - k=“. Then A — Uy is a
surjection from P(k<¢) onto 39(k=¥). Let < be the preorder on P(k<¥) defined by: A < B
iff Us C Up. Then the lattice 39(k=%) is isomorphic to the quotient order of (P(k<%); <)
modulo the induced congruence =, hence £{(k<%) is c-interpretable in (P(k<%); <) without
parameters and therefore FO(X?(k=¥)) <, FO(P(k<%); <).

Since A < B iff Va € A(a - k=% C Up) iff Va € A(a € Up) iff Va € A3b € B(b C a),
the structure (P(k<%); <) is interpretable in (k<¥;C)™° without parameters and there-
fore FO(P(k<¥); %) <, MSO(k=“;C). Since the last theory is decidable by [Ra69],
FO(ZY(k=¥)) is decidable. O



FIRST ORDER THEORIES OF SOME LATTICES OF OPEN SETS 11

4. THE LATTICES OF EFFECTIVELY OPEN SETS

In this section we examine algorithmic complexity of the first order theories of lattices of
effectively open sets.

4.1. Preliminary results. We start by showing that for many natural effective spaces
their theories of the effectively open sets are hereditarily undecidable.

Theorem 4.1. Let X be an SCMS or an SC®S. Then FO(XY(X)) is hereditarily undecidable.

Proof. Since the theory FO(E) is hereditarily undecidable [He83, He84], it suffices to interpret
€ in ¥Y(X) with parameters; in our case two parameters V, W will suffice.
Consider the formulas ¢(U,V,W):=V CU AU C W and

¢ (U U, V,W) = ¢(U,V.W) AU, VW)U CU".

For any values V, W € {(X) for parameters with V' C W, the formulas define the sublattice
D of L{(X) formed by the sets lying between V and W. Therefore, it suffices to find
effectively open sets V, W such that the lattice D is isomorphic to £.

Let first X be an SCMS. Let {B,,} be the sequence of basic open balls from the definition
of SCMS and let B}, be obtained from the ball B,, by removing its center ¢,. Then {B}
is a computable sequence of effectively open sets, hence V :=J,, B, and W :=J,, B, are
effectively open and W\ V = {¢g, c1,...}. From the definition of SCMS it is easy to see that
the function D +— {n | ¢, € D} is a desired isomorphism between D and &.

Now let X be an SC®S. Let {¢,,} be the sequence of finitary elements from the definition
of SC®S. This time we take as parameters the values W := |, T¢, and V := {J,,(Ten \ {cn}).
From the definition of SC®S it is easy to see that {T¢, \ {cn}} is a computable sequence of
effectively open sets, hence again V and W are effectively open and W\ V = {¢o, c1,...}.
Moreover, the function D + {n | ¢, € D} is again an isomorphism between D and £. [

Next we aim to obtain precise estimates of the algorithmic complexity of FO(X{(X))
for some spaces X. First we establish a natural upper bound that applies to many countably
based locally compact spaces. Arithmetically locally compact spaces (ArLCS) are defined
precisely as AnLCS in the previous section but this time the relation x; C |JB[D,] is
required to be arithmetical, i.e. to bein |J,, 9 (w). Again, many locally compact spaces may
be considered as ArL.CSs. In particular, the computable p-spaces, the finite dimensional
Euclidean spaces, and the Cantor space are ArL.CSs.

The following proposition is an easy variation of Proposition 3.1.

Proposition 4.2. If (X, 3, k) is an ArLCS then FO(X9(X)) <,, FO(N).

Proof. Recall that m; := | B[W;] is the natural numbering of effectively open sets. It suffices
to show that the relation m; C 7; is arithmetical because then the elementary diagram of the
numbered structure (X9(X); C,7), and hence also FO(X9(X)), is m-reducible to FO(N).
Obviously, m; C 7; is equivalent to Vn(k, C m — K, C m;), hence it suffices to
show that the relation k, C m; is arithmetical. We have: k, C m; iff x, C (JB[W;] iff
Am(Dy, € Wi A Ky, €U B[Dm]) (the last equivalence holds by compactness of ,). The last
relation is arithmetical by the definition of ArLCS. []
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In the next subsection we give precise estimates of the m-degrees of FO(X!(R")) for
which we need the following lemma. Recall that the definition of X{(R")) depends on the
natural numbering of rational open balls in R™).

Lemma 4.3. Any connected component of an effectively open set in R™ is effectively open.

Proof. Let U be a connected component of V' € 3(R") and let a be a rational point in U.
Then

U=J{Bb.r) | b€Q"AreQt Adar-am1 € Q"Iry 11 € QT

m m—1
( /\ Clai,r) CV A /\ (B(ai, ) N B(aiy1,mi01) # 0) Aa € Blai,r1))}
i=1 i=1

where b = a,, and r = r,. Since we can computably enumerate the basic closed balls
C(b,7) CV [KKO7] with b € Q",r € QT, U is effectively open. O

4.2. Effectively open sets in Euclidean spaces. Now we prove the main result of this
paper:
Theorem 4.4. For any n > 1, FO(X{(R")) =,, FO(N).

Since the upper bound holds by Proposition 4.2, we only have to prove the lower bound
FO(N) <, FO(X{(R™)). Since %¢(R") is a distributive lattice, we can use in the definitions
not only the symbol of inclusion but also the symbols of Boolean operations and the constants
0, R™.

Recall that a point z = (x1,...,2,) € R™ is computable iff any real x;,i = 1,...,n,
is computable, i.e. z; = lim,, p, = lim,, ¢, for some computable sequences {p,}, {g,} of
rationals with pg < p; < -+ ;- < q1 < qo. Thus, z is computable iff R \ {z} is effectively
open, hence we can use (to simplify notation) in our defining formulas the computable points
(as the complements of effectively open sets maximal w.r.t. inclusion among the effectively
open sets strictly below R™).

More precisely, we can use a variable x to range over the computable points, the atomic
formulas z € U (where U range as usual through X{(R")), and we can quantify over z.
Our proof for n > 2 is closely related to that in [Gr51] while the proof for n = 1 is based
on quite different ideas, so we consider the two cases separately. To keep our notation as
close as possible to that of [Gr51], we let our formulas use, along with the “usual” variables
U,V,W,G ranging over ©¢(R"), the variables a, ,y ranging over the computable points of
R™, and variables A, B, C, D ranging over II{(R").

Proof for n > 2. In this case we find an interpretation of N in X{(R") without parameters,
which is sufficient by Lemma 2.1. Let Cof be the unary relation on X¢(R") which is true
precisely on the complements in R™ of finite sets of computable points (equivalently, we will
use the relation Fin on I19(R™) which is true precisely on the finite sets of computable points).
Furthermore, let CON (U) and CMP(U, V') denote formulas of signature {C} such that for all
U,V € $¥(R") we have: LI(R") = CON(U) iff U is connected, and ¥9(R") = CMP (U, V)
iff U is a connected component of V. With these Fiﬁ, CON, CMP at hand (we define them
later in the proof), it is easy to interpret N in X¢(R") similarly to [Gr51] or to the proof of
Theorem 3.2.
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Namely, first we show that Axiom A6 in [Gr51] holds also in the effective setting, i.e.
for any finite disjoint sets A, B of computable points the following formula is true in 3¢ (R"):

(AUBCUACON(U)) = 3IVIWACVABCW
ANVAW =0AVUW CUA CON(V)A CON(W)).

Indeed by the proof of the topological version of Axiom 6, given A, B we can find open
sets V, W with the specified properties; moreover, these sets are obtained as finite unions of
rational open balls, so V, W are effectively open and the effective version of Axiom 6 holds.

Let now A ~¢g B be the ternary relation meaning that A, B are finite disjoint sets of
computable points and G is an effectively open set such that

AUBCGAVH(CMP(H,G) = (|HNA|=1A|HNB|=1)).
Then A ~¢ B implies that A, B are of the same cardinality, |A| = |B|. Note that for any

finite sets A, B of computable points we have: |A| = |B| iff ZY(R") & Eq(A, B) where
Eq(A, B) is the formula

Fin(A) A Fin(B) A3C, D, G(Fin(C) A Fin(D)ANC ~g DAC = A\ BAD = B\ A).

As in [Gr51], it is now straightforward to interpret the structure N in the structure

(Z9(R™); Cm'o} ) without parameters by interpreting natural numbers as the cardinalities of
finite sets A, B of computable points (i.e., by taking the quotient-set of all such A under the

equivalence relation Fq) and interpreting +, x as follows: |A| + |B| = |C] iff
JA' B (Eq(A", A)NEq(B',ByANA'NB' =0 AEqA'UB'C),
and |A| x |B| = |C| iff

JUIF(Eq(B,F)NF,C CUAVYV(CMP(V,U) = ([VNF|=1AVNC|=|A|)).

It remains to define 13\1'71, CON, CMP from the beginning of the proof. We will use the
formulas Con(U) and Cmp(U, V') from the proof of Theorem 3.2 which now have a different
meaning because the set variables range now over the effectively open sets rather than
the open sets. If X{(R") = Con(U) we say that U is effectively connected. Note that if
two effectively open sets U,V are effectively connected and U NV # () then U UV is also
effectively connected. Note also that connected effectively open sets are effectively connected.
If X9(R") = Cmp(U, V) we say that U is an effective connected component of V.

Let ®(V') be the formula Vo € V3U C V(z € UNCmp(U,V')) saying that any computable

point of V' belongs to some effective component of V. Since the computable points are dense
in R", ©9(R") = ®(V) implies that V is the union of its effective components.

Define the unary relation so on IY(R") (an effective analogue of the relation I'so from
[Gr51]) as follows: Iso(A) iff

WVACVADSV)AVYU(Cmp(U,V) — Jz(z € ANU)))
and VU(U NA# 0 — Jz(x € UN A)).

Then the relation Iso is definable, ES(A) implies that any point in A is computable
and isolated (indeed, take a satisfying V', then any a € A is in a unique effective component
U of V; choose the unique computable z € U N A; since the computable points are dense in
R", ANU = {x}, hence = = a is isolated), any infinite IIY-set satisfying 50 is not bounded,
and any finite set of computable points satisfies Iso.
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The definition of Fin looks as follows: %(A) iff
Iso(A) ANU(Va € A3V (a € V CU) —» IW(ACW CT))

(the second conjunct says that if the closure CI(U) of an effectively open set U is disjoint
with A then A can be separated from U by an effectively open set W). From left to right
this is easy: if V, € X{(R") satisfies a € V, C U for each a € A and A is finite then
W :=|J{V. | a € A} is effectively open and separates A from U.

For the other direction, it suffices to show that if Iso(A) holds and A is infinite then
there is an effectively open set U such that Va € A(a ¢ CI(U)) and A C W € Z)(R")
implies W N U # (). Since Iso(A), A is effectively open, hence one can effectively enumerate
the rational closed balls C(b,q) contained in A. Hence, there is a computable sequence
{B(bk,qr)} of all rational open balls such that C(bg,qx) € A and g < 1; note that
Uk Bk, qr) = A = U, C(b,qx). For any k < w, let F(k) := 0 if d(bg,0) < g, and
let F(k) be the integer part of d(bg,0) — g otherwise; the function F' is computable.
As is well known [Ro67], there is a strictly increasing limitwise-monotone-computable
function ¢ : w — {1,2,...} that dominates all computable functions on w (recall that ¢ is
limitwise-monotone-computable if for some computable function g : w X w — w we have
g(k,s) < g(k,s+ 1) and t(k) = lim, g(k, s), and that ¢t dominates a function f :w — w if
there is ko with Vk > ko(f(k) < t(k))).

We claim that the set U := J;, B(bg,7%), where ry := q — W, has the desired
properties (note that in the possible case r;, < 0 the “ball” B(bg, 7)) is empty). Obviously,
U C A. Since F is computable and ¢ is limitwise-monotone-computable, U is effectively
open. Let us check that a ¢ CI(U) for each a € A. Suppose the contrary: there is a sequence
{¢;} in U that converges to a, so in particular for some iy we have Vi > ig(d(c;,a) < 1).
Choose a sequence of naturals {k;} with ¢; € B(bg,,7%,). Since a & B(by,,qx,), we have
d(c;,a) > m for all 7. Note that Vi(F'(k;) < m) for some m, because for all i > iy we
have

F(k;) < d(bg,,0) < d(bk;, ¢i) +d(c;, 0) < qi, +d(ci, 0) < 1+d(c;, a) +d(a,0) < 1+1+4d(a,0).
For any ¢ we have m > ﬁ and therefore d(a,c;) > t(# > 0, contradicting the

convergence of {¢;} to a. )

Finally, let A C W € X(R"); we have to show that WNU # ). Since W\ A is effectively
open and A is infinite (hence unbounded), there is a computable subsequence {B(bx;, qx,)}
of {B(bk,qr)} such that B(bk,,qr,) C W for each i and the sequence {F'(k;)} is strictly
increasing. Let h: w — QT be a computable function such that g, = h(F(k;)) for each i < w.

1

Since ¢t dominates all computable functions, for some iy we have Vm > io(m < t(m)).

Since {F(k;)} is strictly increasing, F(k;) > ip for some i, hence m < t(F(k;)) and
therefore g, > m Thus, the non-empty ball B(by,, r,) is contained in W N U, so the
latter set is non-empty. This completes the proof of definability of Fin.

Let Boundys,(U) := VA C U(Iso(A) — Fin(A)). Then for any U € L9(R") we have:
YI(R") = Bounds(U) iff U is bounded. Indeed, from left to right this follows from the
properties of I'so. Conversely, let U be non-bounded. Then there is a computable sequence
{ar} of rational points in U such that d(axy1,0) > d(ag,0) + 1 for each k¥ < w. Then

A= {ag | k < w} is an infinite I1{-subset of U and Iso(A) holds, as desired.
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Let Boundp(A) := 3U 2 A(Bounds(U)). Then clearly for any A € II{(R") we have:
YO(R") = Boundy(A) iff A is bounded.
Let

BCON (A) := Boundyy(A) A=3U,V(ACUUVAUNV =0ANANU £O0NANV £0D)).

Then for any A € IIY(R") we have: ¥9(R") = BCON(A) iff A is bounded and connected.
Indeed, from right to left this is obvious. Conversely, it suffices to show that if A bounded
and non-connected then

YR EIV,VIACUUVAUNV =0ANANU ADANANV £0)).
Since A in non-connected, for some open sets U’, V' we have
ACU UV, UNV =0, AnU #0, ANV £ 0.

Representing U’ and V' as the unions of some families 7/ and G’ of rational open balls, we
obtain an open cover 7' UG’ of A. Since A is compact, there are finite subfamilies F and G
of resp. F' and G’ such that F UG covers A. Then the effectively open sets U := | J F and
V :=J G have the desired properties.

Let

CON(U) :=Vz,y € U3B(x,y € BC U AN BCON(B)).

Then for any U € X{(R") we have: X{(R") = CON(U) iff U is connected. Indeed, if U is
connected and z,y are computable points in U, let B be a polygonal path with rational
inner points that connects x and y inside U; then z,y € B C U and BCON(B), as desired.
Conversely, let U be non-connected. Choose computable points x,y from distinct connected
components of U. Then clearly there is no connected set B with z,y € B C U.

With the formula CON at hand, it is straightforward to write down the formula CMP,
completing the proof of the theorem for the case n > 1.

In fact, the arguments above (except those concerning Axiom 6) work for any n > 1, so
we have the following corollary which is interesting in its own right.

Corollary 4.5. There are formulas CON(U) and CMP(U,V') of signature {C} such that
for alln > 1 and U,V € X{(R") we have: L{(R") = CON(U) iff U is connected, and
Y(R™) = CMP(U,V) iff U is a connected component of V.

Proof of Theorem 4.4 for n = 1. We use the formulas CON and CMP from Corollary 4.5.
Let £(U, V) be the formula

U#DANVADANUNV =0AVU U NV =0—=U CU AWV NU=0—=V' CV)

saying in X{(R) that U, V are disjoint non-empty effectively open sets such that U = Int(R\V)
(where Int is the interior operator) and V = Int(R\ U).

Note that between any U-components U; < Uy (where U; < Us means Va € UpVy €
Ui(x < y))) there is a V-component. Suppose the contrary, then the interval W :=
(inf(Uy), sup(Us)) is disjoint with V, hence W C U. This is a contradiction because
sup(Uy) € W\ U. Symmetrically, between any two V-components there is a U-component.

Let {qo,q1, -} be a computable enumeration of the set U N Q without repetitions.
Define the following equivalence relation ~ on w: m ~ n iff ¢, q, are in the same U-
component. We claim that this relation is c.e. Indeed, since m ~ n is equivalent to the
disjunction of ¢, < ¢ A [gm, qn] € U and ¢, < ¢m A [qn, gm] C U, so it suffices to check that
the relation ¢, < gn A [gm, gn] C U is c.e. We have U = |J; B; for a computable sequence
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{B;} of basic open balls (i.e., intervals with rational endpoints). Since closed intervals are
compact, the relation ¢, < g A [gm, qn] C U is equivalent to

3o, ..., iy(gm € Big Agn € Biy NBiy N By #0A---AB;,_, N By, #0).

Alternatively, the last assertion follows from the results in [KKO07]. Therefore, ~ is c.e. It is

also co-c.e. because, by the previous paragraph, m ¢ n is equivalent to the disjunction of

the predicates ¢, < go AIr € VNQ(gm <7 < ¢qpn) and ¢, < g AIr € VN Q(gn < 7 < gm).
Let now

Cmp*(U,V) := U C VAVU(CMP(U', V) = (U CUV UNU' = 0)).

Then X{(R) = Cmp*(U, V) iff U is an effectively open union of some connected components
of V. Let

ICmp(V) :=3U(Cmp* (U, V) A =IW (W =V \U A Cmp* (W, V))).

Then X{(R) = ICmp(V) implies that V has infinitely many connected components. Suppose
the contrary, then V = VU --- UV, for some n > 0 and pairwise disjoint components
Vo, -y Vi € B9(R). Then any U with X(R) = Cmp*(U, V) is a union of some of Vj, ..., Vi,
hence V' \ U is the finite union of the remaining V;, a contradiction.

Finally, let 0(U, V) := £(U, V) A ICmp(U). Then XY(R) = 6(U, V) iff both U,V have
infinitely many connected components which are computable intervals, U = Int(R\ V) and
V = Int(R\ U). For any such U,V the relation ~ is computable with infinitely many
equivalence classes, hence the lattice £ is isomorphic to the lattice F of c.e. sets closed
under ~. The lattice F is in turn isomorphic to the lattice (G; C) where G := {G | LI(R) =
Cmp*(G,U)} consists of effectively open subsets of U closed under components, for each
U as above. This shows that £ is c-definable in ¥9(R) with a non-empty definable set of
parameters. By Lemma 2.1, FO(&) <,, FO(2{(R)). O

4.3. Effectively open sets in domains. For some natural domains we have the following
interpretability result:

Theorem 4.6. For any X € {Pw,k=“ k% | 2 < k < w}, € is interpretable without
parameters in 39 (X).

Proof. We give the proof only for the most popular space Pw (which is homeomorphic to
14) but similar arguments work for the other spaces as well. First we check (just as in the
proof of Theorem 3.3) that the set of finitary elements TF, for all finite F' C w, is definable
in X9 (Pw).

Next we check (again as in the proof of Theorem 3.3) that the set V,, :== {TF : |F| =n}
is definable in X9(Pw) for each n < w via the formula ¢, (V).

Now let Uy, :={S Cw:n < |5}, so Uy = Pw and U, = |JV,. Then the singleton set
{Un+1} is defined by the formula

U1 (U) 1=V (¢pi1(V) = V CU) A =3V (¢p(V) AV C u).

By the proof of Theorem 4.1, the lattice £ is isomorphic to the sublattice {S € %{(Pw) |
Uy CS CU}of E?(Pw), and is thus definable without parameters. O

Corollary 4.7. For any X € {Pw,k=¥ k% |2 < k <w}, FO(XY(X)) =, FO(N).

Proof. The upper bound holds by Proposition 4.2, the lower bound by the previous theorem
(alternatively, by the proof of Theorem 3.3). ]
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5. CONCLUSION

The results of this paper show that a satisfactory understanding of definability in the
lattices of open and of effectively open sets is connected with intricate relationships between
topological and algorithmic properties of the corresponding effective spaces. For this reason
we believe that this research direction is interesting and deserves further developments. Many
questions remain open. In particular, we are still far from understanding the border between
decidability and undecidability of the theories of lattices of all open sets: in particular, we
currently have no general sufficient condition giving undecidability of this theory (similar to
Theorem 4.1 for the effectively open sets).

The methods in Section 4 are rather different when we distinguish between metric
spaces and domains. It would be useful to develop unified methods applicable e.g. to many
quasi-metric spaces [dBr13].

The methods of this paper work mainly for second countable locally compact spaces. It
would be nice to investigate our questions for second countable non-locally compact spaces
like the Baire space or for the space R*¥. The situation with non- second countable spaces is
even less clear.

We guess that Theorem 4.6 and Corollary 4.7 hold also for the spaces of continuous
partial functionals of finite types over w but the given proofs should be modified considerably.

A natural generalization of the topic of this paper is the study of first order theories
of lattices of other levels of the standard hierarchies, in particular of higher levels of Borel
hierarchy X0 and of the effective Borel hierarchy ¥0. As shown in [Ra69], the first order
theories of the lattices of 9-sets in C and in R are decidable.
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