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Abstract. Metric temporal logic (MTL) and timed propositional temporal logic (TPTL)
are quantitative extensions of linear temporal logic, which are prominent and widely used
in the verification of real-timed systems. It was recently shown that the path-checking
problem for MTL, when evaluated over finite timed words, is in the parallel complexity
class NC. In this paper, we derive precise complexity results for the path-checking problem
for MTL and TPTL when evaluated over infinite data words over the non-negative integers.
Such words may be seen as the behaviours of one-counter machines. For this setting, we
give a complete analysis of the complexity of the path-checking problem depending on the
number of register variables and the encoding of constraint numbers (unary or binary).
As the two main results, we prove that the path-checking problem for MTL is P-complete,
whereas the path-checking problem for TPTL is PSPACE-complete. The results yield the
precise complexity of model checking deterministic one-counter machines against formulas
of MTL and TPTL.

1. Introduction

Linear temporal logic (LTL) is nowadays one of the main logical formalisms for describing
system behaviour. Triggered by real-time applications, various timed extensions of LTL have
been invented. Two of the most prominent examples are MTL (metric temporal logic) [19]
and TPTL (timed propositional temporal logic) [2]. In MTL, the temporal until modality
(U) is annotated with time intervals. For instance, the formula pU[2,3) q holds at time t,
if there is a time t′ ∈ [t + 2, t + 3), where q holds, and p holds during the interval [t, t′).
TPTL is a more powerful logic [6] that is equipped with a freeze formalism. It uses register
variables, which can be set to the current time value and later, these register variables can
be compared with the current time value. For instance, the above MTL formula pU[2,3) q
is equivalent to the TPTL formula x.(pU (q ∧ 2 ≤ x < 3)). Here, the constraint 2 ≤ x < 3
should be read as: The difference of the current time value and the value stored in x is in
the interval [2, 3). Formulas in MTL and TPTL are evaluated over finite or infinite timed
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Satisfiability Model Checking

Real-Timed Words

MTL finite words Fωω -complete [26, 28] Fωω -complete [26, 28]

MTL infinite words undecidable [25] undecidable [25]

TPTL undecidable [1] undecidable [1]

Discrete Timed Words

MTL EXPSPACE-complete [1] EXPSPACE-complete [1]

TPTL EXPSPACE-complete [2] EXPSPACE-complete [2]

Data Words

MTL undecidable [7] undecidable [27]

TPTL undecidable [7] undecidable [27]

FreezeLTL undecidable [8] undecidable [9]

FreezeLTL1 finite words Fω-complete [8, 12] undecidable [9]

FreezeLTL1 infinite words undecidable [8] undecidable [9]

Table 1: Complexity results for the satisfiability problem and the model-checking problem
for the logics MTL, TPTL, FreezeLTL, and its one-variable fragment FreezeLTL1.
By real-timed words (discrete timed words, respectively) we mean timed words with
timestamps in the non-negative reals (non-negative integers, respectively). Model
checking for timed words is done for timed automata, and model checking for data
words is done for one-counter machines. We do not distinguish between finite and
infinite words if this does not influence the complexity.

words of the form (a0, t0)(a1, t1) . . . , where t0, t1, . . . is a monotonically increasing sequence
of real-valued timestamps, and the ai are actions that take place at timestamp ti. In the
context of formal verification of timed automata, satisfiability and model checking for MTL
and TPTL have been studied intensively in the past, see Table 1 for a summary of the most
important results.

The freeze mechanism from TPTL has also received attention in connection with data
words. Data words generalize timed words and are of the form (a0, d0)(a1, d1) . . . , where the
data values d0, d1, . . . come from an arbitrary infinite data domain. Following [9], we regard
data words as computation paths of one-counter machines, i.e., we study data words over
the domain of the non-negative integers. Note that, different to timed words, the sequence
of data values d0, d1, . . . does not have to be monotonically increasing. Applications for data
words can be seen in areas where data streams of discrete values have to be analyzed, and
the focus is on the dynamic variation of the values (e.g. streams of discrete sensor data or
stock charts).

For reasoning about data words, besides MTL and TPTL in [7], a strict fragment of
TPTL called FreezeLTL is studied in [8, 9]. With formulas in FreezeLTL one can only test
equality of the value of a variable x and the data value at the current position in a data
word. Table 1 shows that for all these logics, model checking one-counter machines and
the satisfiability problem are undecidable, with the exception of the satisfiability problem
for the one-variable fragment of FreezeLTL when evaluated over finite data words. The
situation changes if one considers model checking of deterministic one-counter machines: in
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this case, FreezeLTL-model checking is PSPACE-complete [9]. Note that model checking of
deterministic one-counter machines is a special case of the following path-checking problem :
given a data word w and some formula ϕ, does w satisfy ϕ?

The path-checking problem plays a key role in run-time verification [13, 24, 23], specifi-
cally in offline monitoring, where the satisfaction of a specification formula is tested only for
an individual single computation path of the observed system. Run-time verification may be
the only practical alternative to check that certain temporal properties hold, in situations
where the source code of the system under consideration is not available, or where model
checking of the system is unfeasible if not undecidable, as it is the case for one-counter
machines.

For LTL and periodic words without data values, it was shown in [21] that the path-
checking problem can be solved using an efficient parallel algorithm. More precisely, the
problem belongs to AC1(LogDCFL), a subclass of NC. This result solved a long standing
open problem; the best known lower bound is NC1, arising from NC1-hardness of evalu-
ating Boolean expressions. The AC1(LogDCFL)-upper complexity bound was later even
established for the path-checking problem for MTL over finite timed words [5].

In this paper, we continue the study of the path-checking problem started in [9] for TPTL
and data words over the non-negative integers, i.e., we regard data words as the behaviours
of one-counter machines. Note that TPTL is strictly more expressive than FreezeLTL in
that, in contrast to the latter, with TPTL one can express that the difference of the current
data value in a data word and the value stored in a register belongs to a certain interval. We
further investigate path checking for MTL, because, as it was recently proved [6], MTL is
strictly less expressive than TPTL in the setting of data words over the non-negative integers.
More specifically, we investigate the path-checking problems for TPTL over data words that
can be either finite or infinite periodic; in the latter case the data word is specified by an
initial part, a period, and an offset number, which is added to the data values in the period
after each repetition of the period.

We show that the AC1(LogDCFL)-membership result of [5] for path checking of MTL
over finite timed words is quite sharp in the following sense: path checking for MTL over
(finite or infinite) data words as well as path checking for the one-variable fragment of
TPTL evaluated over monotonic (finite or infinite) data words is P-complete. Moreover,
path checking for TPTL (with an arbitrary number of register variables) over finite as well
as infinite periodic data words becomes PSPACE-complete. We also show that PSPACE-
hardness already holds (i) for the fragment of TPTL with only two register variables and
(ii) for full TPTL, where all interval borders are encoded in unary (the latter result can
be shown by a straightforward adaptation of the PSPACE-hardness proof in [9]). These
results yield a rather complete picture on the complexity of path checking for MTL and
TPTL, see Figure 7 at the end of the paper. We also show that PSPACE-membership for
the path-checking problem for TPTL still holds if data words are specified succinctly by so
called straight-line programs, which have the ability to generate data words of exponential
length. For ordinary LTL it was shown in [24] that path checking is PSPACE-complete if
paths are represented by straight-line programs. Our result extends the PSPACE upper
bound from [24].

Since the infinite data word produced by a deterministic one-counter machines is pe-
riodic, we can transfer all complexity results for the infinite periodic case to deterministic
one-counter machines, assuming that update numbers are encoded in unary notation. The
third author proved recently that model checking for TPTL over deterministic one-counter
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machines is decidable [27], but the complexity remained open. Our results show that the pre-
cise complexity is PSPACE-complete. This also generalizes the PSPACE-completeness result
for FreezeLTL over deterministic one-counter machines [9]. Our PSPACE upper bound for
TPTL model checking over deterministic one-counter machines also holds when the update
numbers of the one-counter machines are given in binary notation. These are called succinct
one-counter automata in [15, 17], where the complexity of reachability problems and model-
checking problems for various temporal logics over succinct nondeterministic one-counter
automata were studied.

An extended abstract of this paper without full proofs appeared in [11].

2. Temporal Logics over Data Words

Data Words. Let P be a finite set of atomic propositions. A word over P is a finite or
infinite sequence P0P1P2 . . . , where Pi ⊆ P for all i ∈ N. If Pi = {pi} is a singleton set for
every position i in the word, then we may also write p0p1p2 . . . . A data word over P is a
finite or infinite sequence (P0, d0)(P1, d1)(P2, d2) . . . , where (Pi, di) ∈ (2P × N) for all i ∈ N.
A data word is monotonic (strictly monotonic), if di ≤ di+1 (di < di+1) for all i ∈ N. A pure
data word is a finite or infinite sequence d0d1d2 . . . of natural numbers; it can be identified
with the data word (∅, d0)(∅, d1)(∅, d2) . . . . We use (2P ×N)∗ and (2P×N)ω, respectively, to
denote the set of finite and infinite, respectively, data words over P. We use |w| to denote
the length of a data word w, i.e., the number of all pairs (Pi, di) in w. If w is infinite, then
|w| = +∞.

Let w = (P0, d0)(P1, d1) . . . be a data word, and let i ∈ {0, . . . , |w|} be a position in w.
We define w[i :] to be the suffix of w starting in position i, i.e., w[i :] ··= (Pi, di)(Pi+1, di+1) . . ..
For an integer k ∈ Z satisfying di + k ≥ 0 for all i ≥ 0, we define the data word w+k ··=
(P0, d0 + k)(P1, d1 + k) . . . .

We use u1u2 to denote the concatenation of two data words u1 and u2, where u1 has to
be finite. For finite data words u1, u2 and k ∈ N, we define

u1(u2)
ω
+k

··= u1u2(u2)+k(u2)+2k(u2)+3k . . .

For complexity considerations, the encoding of the data values and the offset number
k (in an infinite data word) makes a difference. We speak of unary (resp., binary) encoded
data words if all these numbers are given in unary (resp., binary) encoding.

Linear Temporal Logic. Given a finite set P of propositions, the set of formulas of linear
temporal logic (LTL, for short) is built up from P by Boolean connectives and the until
modality U using the following grammar:

ϕ ····= true | p | ¬ϕ | ϕ ∧ ϕ | ϕUϕ

where p ∈ P. Formulas of LTL are interpreted over words over P. Let w = P0 P1 P2 . . .
be a word over P, and let i be a position in w. We define the satisfaction relation for LTL
inductively as follows:

• (w, i) |=LTL true.
• (w, i) |=LTL p if, and only if, p ∈ Pi.
• (w, i) |=LTL ¬ϕ if, and only if, (w, i) 6|=LTL ϕ.
• (w, i) |=LTL ϕ1 ∧ ϕ2 if, and only if, (w, i) |=LTL ϕ1 and (w, i) |=LTL ϕ2.
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• (w, i) |=LTL ϕ1Uϕ2 if, and only if, there exists a position j > i in w such that (w, j) |=LTL

ϕ2, and (w, k) |=LTL ϕ1 for all positions k with i < k < j.

We say that a word satisfies an LTL formula ϕ, written w |= ϕ, if (w, 0) |= ϕ.
We use the following standard abbreviations:

false ··= ¬true Fϕ ··= trueUϕ

ϕ1 ∨ ϕ2 ··= ¬(¬ϕ1 ∧ ¬ϕ2) Gϕ ··= ¬F¬ϕ

ϕ1 → ϕ2 ··= ¬ϕ1 ∨ ϕ2 Xϕ ··= falseUϕ

ϕ1 Rϕ2 ··= ¬(¬ϕ1U¬ϕ2) Xmϕ ··= X . . .X
︸ ︷︷ ︸

m

ϕ

The modalities X (next), F (finally) and G (globally), respectively, are unary operators,
which refer to the next position, some position in the future and all positions in the future,
respectively. The binary modality R is the release operator, which is useful to transform a
formula into an equivalent negation normal form, where the negation operator (¬) may only
be applied to true or to propositions.

Metric Temporal Logic and Timed Propositional Temporal Logic. Metric Temporal
Logic, MTL for short, extends LTL in that the until modality U may be annotated with
an interval over Z. More precisely, the set of MTL formulas is defined by the following
grammar:

ϕ ····= true | p | ¬ϕ | ϕ ∧ ϕ | ϕUIϕ

where p ∈ P and I ⊆ Z is an interval with endpoints in Z ∪ {−∞,+∞}.
Formulas in MTL are interpreted over data words. Let w = (P0, d0)(P1, d1) . . . be a

data word over P, and let i be a position in w. We define the satisfaction relation for MTL,
denoted by |=MTL, inductively as follows (we omit the obvious cases for ¬ and ∧):

• (w, i) |=MTL p if, and only if, p ∈ Pi.
• (w, i) |=MTL ϕ1UIϕ2 if, and only if, there exists a position j > i in w such that (w, j) |=MTL

ϕ2, dj − di ∈ I, and (w, k) |=MTL ϕ1 for all positions k with i < k < j.

We say that a data word satisfies an MTL formula ϕ, written w |=MTL ϕ, if (w, 0) |=MTL ϕ.
We use the same syntactic abbreviations as for LTL, where every temporal operator is
annotated with an interval, e.g., FIϕ ··= trueUIϕ and XIϕ ··= falseUIϕ. For annotating the
temporal operators, we may also use pseudo-arithmetic expressions of the form x ∼ c, where
∼ ∈ {<,≤,=,≥, >} and c ∈ Z. For instance, we may write F=2p as abbreviation for F[2,2]p.
If I = Z, then we may omit the annotation I on UI .

Some of our results for lower bounds already hold for fragments of MTL, which we
explain in the following. We write MTL(F,X) to denote the unary fragment of MTL in
which the only temporal modalities allowed are F and X, and we write MTL(F) to denote
the fragment of MTL in which F is the only allowed temporal modality. We write PureMTL
(PureMTL(F,X), respectively) to denote the set of MTL formulas (MTL(F,X) formulas,
respectively), in which no propositional variable from P is used.

Next, we define Timed Propositional Temporal Logic, TPTL for short. Let V be a
countable set of register variables. Formulas of TPTL are built by the following grammar:

ϕ ····= true | p | x ∼ c | ¬ϕ | ϕ ∧ ϕ | ϕUϕ | x.ϕ

where p ∈ P, x ∈ V , c ∈ Z, and ∼∈ {<,≤,=,≥, >}.
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A register valuation ν is a function from V to Z. Given a register valuation ν, a data
value d ∈ Z, and a variable x ∈ V , we define the register valuations ν + d and ν[x 7→ d] as
follows: (ν + d)(y) = ν(y) + d for every y ∈ V , (ν[x 7→ d])(y) = ν(y) for every y ∈ V \{x},
and (ν[x 7→ d])(x) = d. Let w = (P0, d0)(P1, d1) . . . be a data word over P, let ν be a
register valuation, and let i be a position in w. The satisfaction relation for TPTL, denoted
by |=TPTL, is defined inductively in the obvious way; we only give the definitions for the
new formulas:

• (w, i, ν) |=TPTL x ∼ c if, and only if, di − ν(x) ∼ c.
• (w, i, ν) |=TPTL x.ϕ if, and only if, (w, i, ν[x 7→ di]) |=TPTL ϕ.

Intuitively, x.ϕ, means that x is updated to the data value at the current position of
the data word, and x ∼ c means that, compared to the last time that x was updated, the
data value has changed by at least (at most, or exactly, respectively) by c. We say that a
data word w satisfies a TPTL formula ϕ, written w |= ϕ, if (w, 0,d0) |=TPTL ϕ, where d0

denotes the valuation that maps all register variables to the initial data value d0 of the data
word w.

We use the same syntactic abbreviations as for LTL. We define the fragments TPTL(F,X),
TPTL(F), and PureTPTL like the corresponding fragments of MTL. Additionally, we define
FreezeLTL to be the subset of TPTL formulas ϕ where every subformula x ∼ c of ϕ must be
of the form x = 0. Further, for every r ∈ N, we use TPTLr to denote the fragment of TPTL
in which at most r different register variables occur; similarly for other TPTL-fragments.

For complexity considerations, it makes a difference whether the numbers c in constraints
x ∼ c are binary or unary encoded, and similarly for the interval borders in MTL. We
annotate our logics L by an index u or b, i.e., we write Lu respectively Lb, to emphasize
that numbers are encoded in unary (resp., binary) notation. The length of a (TPTL or
MTL) formula ψ, denoted by |ψ|, is the number of symbols occurring in ψ.

In the rest of the paper, we study the path-checking problems for our logics over data
words. Data words can be (i) finite or infinite, (ii) monotonic or non-monotonic, (iii) pure
or non-pure, and (iv) unary encoded or binary encoded. For a logic L and a class of data
words C, we consider the path-checking problem for L over C: given some data word w ∈ C

and some formula ϕ ∈ L, does w |=L ϕ hold?

3. Background from Complexity Theory

We assume that the reader is familiar with the complexity classes P (deterministic polyno-
mial time) and PSPACE (polynomial space), more background can be found for instance
in [3]. Recall that, by Savitch’s theorem, nondeterministic polynomial space is equal to
deterministic polynomial space. All completeness results in this paper refer to logspace
reductions.

We will make use of well known characterizations of P and PSPACE in terms of alternat-
ing Turing machines. An alternating Turing machine is a nondeterministic Turing machine,
whose state set Q is partitioned in four disjoint sets Qacc (accepting states), Qrej (rejecting
states), Q∃ (existential states), and Q∀ (universal states). A configuration c, where the
current state is q, is accepting if (i) q ∈ Qacc or (ii) q ∈ Q∃ and there exists an accepting
successor configuration of c or (iii) q ∈ Q∀ and all successor configurations of c are accepting.
The machine accepts an input w if, and only if, the initial configuration for w is accept-
ing. It is well known that the class of all languages that can be accepted by an alternating
Turing machine in polynomial time (APTIME) is equal to PSPACE, and that the class of
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all languages that can be accepted by an alternating Turing machine in logarithmic space
(ALOGSPACE) is equal to P.

A couple of times we will mention the complexity class AC1(LogDCFL). For complete-
ness, we present the definition: the class LogDCFL is the class of all languages that are
logspace reducible to a deterministic context-free language. Then AC1(LogDCFL) is the
class of all problems that can be solved by a logspace-uniform circuit family of polynomial
size and logarithmic depth, where in addition to ordinary Boolean gates (NOT, AND, OR)
also oracle gates for problems from LogDCFL can be used. More details can be found in
[21]. The class AC1(LogDCFL) belongs to NC (the class of all problems that can be solved
on a parallel random-access machine (PRAM) in polylogarithmic time with polynomially
many processors), which, in turn, is contained in P.

4. Upper Complexity Bounds

In this section we prove the upper complexity bounds for the path-checking problems. We
distinguish between (i) unary or binary encoded data words, and (ii) finite and infinite data
words.

4.1. Polynomial Space Upper Bound for TPTL. For the most general path-checking
problem (TPTLb over infinite binary encoded data words) we can devise an alternating
polynomial time (and hence a polynomial space) algorithm by constructing an alternating
Turing machine that, given a TPTLb formula ϕ and an infinite binary encoded data word w,
has an accepting run if, and only if, w |=TPTL ϕ. The main technical difficulty is to bound
the position in the infinite data word and the values of the register valuation, so that they
can be stored in polynomial space.

Theorem 4.1. Path checking for TPTLb over infinite binary encoded data words is in
PSPACE.

Before we give the proof of Theorem 4.1, we introduce some helpful notions and prove
some lemmas.

Relative semantics. Let w be a data word, i ∈ N be a position in w, and let δ be a
register valuation. For technical reasons, we introduce a relative satisfaction relation for
TPTL, denoted by |=rel, as follows. For Boolean formulas, |=rel is defined like |=TPTL. For
the other operators we define:

• (w, i, δ) |=rel ϕ1Uϕ2 if, and only if, there exists a position j > i in w such that (w, j, δ +
(dj − di)) |=

rel ϕ2, and (w, k, δ + (dt − di)) |=
rel ϕ1 for all positions k with i < k < j

• (w, i, δ) |=rel x ∼ c if, and only if, δ(x) ∼ c
• (w, i, δ) |=rel x.ϕ if, and only if, (w, i, δ[x 7→ 0]) |=rel ϕ.

We say that the data word w satisfies the formula ϕ under the relative semantics, written
w |=rel ϕ, if (w, 0,0) |=rel ϕ, where 0 denotes the valuation function that maps all register
variables to 0.

The main advantage of the relative semantics is the following: under the normal TPTL
semantics, a constraint x ∼ c is true under a valuation ν at a position with data value d,
if d − ν(x) ∼ c holds. In contrast, under the relative semantics, a constraint x ∼ c is true
under a valuation δ, if δ(x) ∼ c holds, i.e., the data value at the current position is not
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important. The following lemma implies that w |=TPTL ϕ if, and only if, w |=rel ϕ, which
allows us to work with the relative semantics.

Lemma 4.2. Let w be a data word and di the data value at position i. If δ(x) = di − ν(x)
for every register variable x, then for every TPTL formula ϕ, (w, i, ν) |=TPTL ϕ if, and only
if, (w, i, δ) |=rel ϕ.

Proof. The proof is by induction on the structure of the formula ϕ. We only consider the
non-trivial cases.
Base case. Assume ϕ = x ∼ c.

(w, i, ν) |=TPTL ϕ ⇔ di − ν(x) ∼ c (definition |=TPTL)

⇔ di − di + δ(x) ∼ c (assumption)

⇔ (w, i, δ) |=rel ϕ (definition |=rel) .

Induction step.

• Assume ϕ = ϕ1Uϕ2. We have

(w, i, ν) |=TPTL ϕ1Uϕ2

⇔ there exists i < j < |w|.(w, j, ν) |=TPTL ϕ2, and

(w, t, ν) |=TPTL ϕ1 for all i < t < j (definition |=TPTL)

⇔ there exists i < j < |w|.(w, j, δ + (dj − di)) |=
rel ϕ2, and

(w, t, δ + (dt − di)) |=
rel ϕ1 for all i < t < j (induction hypothesis)

⇔ (w, i, δ) |=rel ϕ1Uϕ2 (definition |=rel)

• Assume ϕ = x.ϕ1. By definition

(w, i, ν) |=TPTL x.ϕ1 ⇔ (w, i, ν[x 7→ di]) |=TPTL ϕ1,

and
(w, i, δ) |=rel x.ϕ1 ⇔ (w, i, δ[x 7→ 0]) |=rel ϕ1.

Clearly,
(δ[x 7→ 0])(x) = 0 = di − di = di − (ν[x 7→ di])(x),

and
(δ[x 7→ 0])(y) = δ(y) = di − ν(y) = di − (ν[x 7→ di])(y)

for every register variable y 6= x. The result follows by induction hypothesis on δ[x 7→ 0]
and ν[x 7→ di].

For the next three lemmas, we let w = u1(u2)
ω
+k, where u1 and u2 are finite data words,

and k ≥ 0. Further assume i ≥ |u1|, and let ψ be a TPTL formula.

Lemma 4.3. For all register valuations δ, (w, i, δ) |=rel ψ if and only if (w, i + |u2|, δ) |=
rel ψ.

Proof. Let δ be a register valuation. Define ν = di − δ and ν ′ = ν + k. Lemma 4.2 yields

(w, i, δ) |=rel ψ ⇔ (w, i, ν) |=TPTL ψ,

and, together with di+|u2| = di + k,

(w, i + |u2|, δ) |=
rel ψ ⇔ (w, i + |u2|, ν

′) |=TPTL ψ.

We prove that (w, i, ν) |=TPTL ψ ⇔ (w, i + |u2|, ν
′) |=TPTL ψ; the claim then follows. For

l ≥ 0, let w≥l denote the suffix of w starting in position l. Since i ≥ |u1|, we have w≥(i+|u2|) =
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w≥i+k. Hence, we only need to show that (w≥i, 0, ν) |=TPTL ψ ⇔ ((w≥i)+k, 0, ν
′) |=TPTL ψ.

This can be shown by a simple induction on the structure of ψ.

Lemma 4.4. Let δ1, δ2 be two register valuations. If for every j ≥ i and every subformula
x ∼ c of ψ we have

(w, j, δ1 + (dj − di)) |=
rel x ∼ c ⇔ (w, j, δ2 + (dj − di)) |=

rel x ∼ c,

then we also have (w, i, δ1) |=
rel φ ⇔ (w, i, δ2) |=

rel φ.

Proof. The proof is by induction on the structure of ψ. We only prove the non-trivial cases.
Base case. Let ψ = x ∼ c. Clearly, δk = δk + (di − di) for k = 1, 2. Hence

(w, i, δ1) |=
rel x ∼ c ⇔ (w, i, δ1 + (di − di)) |=

rel x ∼ c

⇔ (w, i, δ2 + (di − di)) |=
rel x ∼ c ⇔ (w, i, δ2) |=

rel x ∼ c.

Induction step. Assume ψ = x.ψ1. By definition,

(w, i, δk) |=
rel x.ψ1 ⇔ (w, i, δk [x 7→ 0]) |=rel ψ1

for k = 1, 2. Note that the valuations δ1[x 7→ 0] and δ2[x 7→ 0] satisfy the premise of the
lemma. The result follows by induction hypothesis.

For a TPTL formula ϕ and a finite data word v we define:

Cϕ = max{c ∈ Z | x ∼ c is a subformula of ϕ} (4.1)

Mv = max{di − dj | di and dj are data values in v} ≥ 0 (4.2)

We may always assume that Cϕ ≥ 0 (we can add a dummy constraint x ≥ 0). Note that in
the infinite data word vω+k, for all positions i < j we have dj − di +Mv ≥ 0, where di and
dj denote the data values at positions i and j, respectively.

Lemma 4.5. Let δ be a register valuation and define δ′ by δ′(x) = min{δ(x), Cψ +Mu2 + 1}
for all x. For every subformula θ of ψ, we have (w, i, δ) |=rel θ if, and only if, (w, i, δ′) |=rel θ.

Proof. We prove that the premise of Lemma 4.4 holds for δ1 = δ and δ2 = δ′. The claim
then follows from Lemma 4.4. So let j ≥ i, and let x ∼ c be a subformula of ψ. If
δ(x) ≤ C +Mu2 +1, and hence δ′(x) = δ(x), then it is clear that the premise of Lemma 4.4
is satisfied. So assume δ(x) > C +Mu2 + 1, and hence δ′(x) = C +Mu2 + 1. Then

δ(x) + dj − di > C +Mu2 + 1 + dj − di ≥ C + 1

and
δ′(x) + dj − di = C +Mu2 + 1 + dj − di ≥ C + 1.

Thus, the premise of Lemma 4.4 holds.
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Proof of Theorem 4.1. Fix two finite data words u1, u2, a number k ∈ N and a TPTL
formula ψ, and let w = u1(u2)

ω
+k. We show that one can decide in APTIME = PSPACE

whether w |=TPTL ψ holds. We first deal with the case k > 0 and later sketch the necessary
adaptations for the (simpler) case k = 0. Without loss of generality, we further assume ψ
to be in negation normal form. Define C ··= Cψ and M ··=Mu2 by (4.1) and (4.2).

The non-trivial cases in our alternating polynomial time algorithm are the ones for
ψ = ϕ1Uϕ2 and ψ = ϕ1Rϕ2. Consider a position i and a register valuation δ. We have
(w, i, δ) |=rel ϕ1Uϕ2 if, and only if, there exists some position j > i in w such that (w, j, δ +
(dj − di) |=

rel ϕ2, and for all t with i < t < j we have (w, t, δ + dt − di) |=
rel ϕ1. Because

w is an infinite word, j could be arbitrarily large. Our first goal is to derive a bound on j.
Suppose that 0 ≤ i ≤ |u1|+ |u2| − 1; this is no restriction by Lemma 4.3. Define

mδ = min{δ(x) | x is a register variable in ψ}, (4.3)

m1 = max{di − dj | di and dj are data values in u1u2} and (4.4)

m2 = min{d | d is a data value in u2}. (4.5)

Let nδ ≥ 2 be the minimal number such that mδ +m2 + (nδ − 1)k − di ≥ C +M + 1, i.e.,
(here we assume k > 0),

nδ = max{2,

⌈
C +M + 1 + di −mδ −m2

k

⌉

+ 1}. (4.6)

If h ≥ |u1|+ (nδ − 1)|u2|, then for every register variable x from ψ we have

δ(x) + dh − di ≥ mδ + dh − di ≥ mδ +m2 + (nδ − 1)k − di ≥ C +M + 1.

By Lemmas 4.3 and 4.5, for every h ≥ |u1|+ (nδ − 1)|u2| we have

(w, h, δ + dh − di) |=
rel ϕ2 ⇔ (w, h + |u2|, δ + dh+|u2| − di) |=

rel ϕ2.

Therefore, the position j witnessing (w, j, δ+dj−di) |=
rel ϕ2 can be bounded by |u1|+nδ|u2|.

Similarly, we get the same result for ϕ1Rϕ2.
We sketch an alternating Turing machine T that, given a TPTLb formula ψ and a data

word w, has an accepting run if, and only if, w |=TPTL ψ. The machine T first computes
and stores the value C +M +1. In every configuration, T stores a triple (i, δ, ϕ), where i is
a position in the data word, δ is a register valuation (with respect to the relative semantics),
and ϕ is a subformula of ψ. By Lemma 4.3, we can restrict i to the interval [0, |u1|+ |u2|),
and by Lemma 4.5, we can restrict the range of δ to the interval [−m1,max{m1, C+M+1}].
The machine T starts with the triple (0,0, ψ), where 0(x) = 0 for each register variable x.
Then, T branches according to the following rules, where we define the function ρ : N →
[0, |u1|+ |u2|) by ρ(z) = z for z < |u1| and ρ(z) = ((z − |u1|) mod |u2|) + |u1| otherwise.

If ϕ is of the form p, ¬p, or x ∼ c, then accept if (w, i, δ) |=rel ϕ, and reject otherwise.

If ϕ = ϕ1 ∧ ϕ2, then branch universally to (i, δ, ϕ1) and (i, δ, ϕ2).

If ϕ = ϕ1 ∨ ϕ2, then branch existentially to (i, δ, ϕ1) and (i, δ, ϕ2).

If ϕ = x.ϕ1, then go to (i, δ[x 7→ 0], ϕ1).

If ϕ = ϕ1Uϕ2, then branch existentially to the following two alternatives.

• Go to (i, δ, ϕ).
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• Compute the value nδ according to (4.3), (4.5), and (4.6), then branch existentially to
each value j ∈ (i + 1, |u1| + nδ|u2|], and finally branch universally to each triple from
{(ρ(t), δt, ϕ1) | i < t < j} ∪ {(ρ(j), δj , ϕ2)}, where for all x:

δj(x) =

{

min{δ(x) + dj − di, C +M + 1} if j ≥ |u1|,

δ(x) + dj − di otherwise,

δt(x) =

{

min{δ(x) + dt − di, C +M + 1} if t ≥ |u1|,

δ(x) + dt − di otherwise.

If ϕ = ϕ1Rϕ2, then compute the value nδ according to (4.3), (4.5), and (4.6) and branch
existentially to the following two alternatives:

• branch universally to all triples from {(ρ(j), δj , ϕ2) | i ≤ j ≤ |u1|+ nδ|u2|}, where

δj(x) =

{

min{δ(x) + dj − di, C +M + 1} if j ≥ |u1|,

δ(x) + dj − di otherwise.

• branch existentially to each value j ∈ [i+1, |u1|+nδ|u2|], and then branch universally to
all triples from {(ρ(t), δt, ϕ2) | i < t ≤ j} ∪ {(ρ(j), δj , ϕ1)}, where for all x:

δj(x) =

{

min{δ(x) + dj − di, C +M + 1} if j ≥ |u1|,

δ(x) + dj − di otherwise,

δt(x) =

{

min{δ(x) + dt − di, C +M + 1} if t ≥ |u1|,

δ(x) + dt − di otherwise.

The machine T clearly works in polynomial time.
Let us briefly discuss the necessary changes for the case k = 0 (i.e., w = u1(u2)

ω). The
main difficulty in the above algorithm is to find the upper bound of the witnessing position
j for the formulas ϕ1Uϕ2 and ϕ1Rϕ2. If k = 0, then it is easily seen that for every i ≥ |u1|,
formula ϕ and valuation ν, (w, i, ν) |=TPTL ϕ if, and only if, (w, i + |u2|, ν) |=TPTL ϕ.
One can easily see that the witnessing position j can be bounded by |u1| + 2|u2|. It is
straightforward to implement the necessary changes in the above algorithm.

Note that one can easily adapt the proof of Theorem 4.1 to obtain the following result
for finite data words:

Theorem 4.6. Path checking for TPTLb over finite binary encoded data words is in PSPACE.

Straight-line programs for data words. In this section we prove an extension of Theo-
rem 4.1, where the data words are succinctly specified by so called straight-line programs.
Straight-line programs allow to represent data words of exponential length. In Section 6
we will apply the result of this section to the model-checking problem for deterministic
one-counter machines with binary encoded updates.

A straight-line program, briefly SLP, is a tuple G = (V,A0, rhs), where V is a finite
set of variables, A0 ∈ V is the output variable, and rhs (for right-hand side) is a mapping
that associates with every variable A ∈ V an expression rhs(A) of the form BC, B + d,
or (P, d), where B,C ∈ V , d ∈ N, and P ⊆ P. Moreover, we require that the relation
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{(A,B) ∈ V × V | B occurs in rhs(A)} is acyclic. This allows to assign to every variable A
inductively a data word valG(A):

• if rhs(A) ··= (P, d) then valG(A) = (P, d),
• if rhs(A) ··= B + d then valG(A) = valG(B)+d, and
• if rhs(A) ··= BC then valG(A) = valG(B)valG(C).

Finally, we set val(G) = valG(A0). We assume that natural numbers appearing in right-hand
sides are binary encoded. The size of the SLP G is defined as the sum of the sizes of all
right-hand sides, where a right-hand side of the form BC (resp. (P, d) or B + d) has size 1
(resp., ⌈log2 d⌉).

Example 4.7. Consider the straight-line program G = ({A0, A1, A2, A3, A4, A5}, A0, rhs),
where rhs is defined as follows:

rhs(A5) = ({a, b}, 2), rhs(A4) = ({b, c}, 3), rhs(A3) = A5A4,

rhs(A2) = A3A3, rhs(A1) = A2 + 4, rhs(A0) = A2A1.

We get

valG(A3) = ({a, b}, 2)({b, c}, 3)

valG(A2) = ({a, b}, 2)({b, c}, 3)({a, b}, 2)({b, c}, 3)

valG(A1) = ({a, b}, 6)({b, c}, 7)({a, b}, 6)({b, c}, 7)

valG(A0) = ({a, b}, 2)({b, c}, 3)({a, b}, 2)({b, c}, 3)({a, b}, 6)({b, c}, 7)({a, b}, 6)({b, c}, 7)

= val(G).

Lemma 4.8. For a given SLP G we can compute the numbers min(val(G)) and max(val(G))
in polynomial time.

Proof. Let G = (V,A0, rhs). We compute min(valG(A)) for every A ∈ V bottom-up according
to the following rules:

• If rhs(A) = (P, d), then min(valG(A)) ··= d.
• If rhs(A) = B + k, then min(valG(A)) ··= min(valG(B)) + k.
• If rhs(A) = BC, then min(valG(A)) ··= min{min(valG(B)),min(valG(C))}.

Of course, for computing max(val(G)) in polynomial time one can proceed analogously.

The following result extends Theorem 4.1 to SLP-encoded infinite data words, i.e.,
infinite data words u1(u2)

ω
+k that are succinctly represented by two SLPs for u1 and u2,

respectively, and the binary encoding of the number k.

Theorem 4.9. Path checking for TPTLb over infinite (resp., finite) SLP-encoded data words
is in PSPACE.

Proof. We only show the statement for infinite data words. The proof is almost identical
to the proof of Theorem 4.1. We explain the necessary adaptations. The input consists of
a TPTL formula ψ (without loss of generality in negation normal form), two SLPs G1 and
G2 and a binary encoded number k. Let u1 = val(G1), u2 = val(G2) and w = u1(u2)

ω
+k. We

have to check whether w |=TPTL ψ holds. For this we use the alternating polynomial time
algorithm from the proof of Theorem 4.1. We only consider the more difficult case k > 0.
Define C ··= Cψ by (4.1), M ··= Mu2 by (4.2), m1 by (4.4), and m2 by (4.5). Note that the
binary encodings of these four numbers can be computed in polynomial time by Lemma 4.8.
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As before, in every configuration, T stores a triple (i, δ, ϕ), where ϕ is a subformula of ψ,
i is a position in the data word from the interval [0, |u1|+ |u2|), and δ is a register valuation
(with respect to the relative semantics) whose range is [−m1,max{m1, C +M + 1}]. For
each such δ we define mδ as in (4.3) and nδ as in (4.6). Given δ, one can compute the binary
encodings of these numbers in polynomial time. Furthermore, note that a triple (i, δ, ϕ) with
the above properties can be stored in polynomial space.

The machine T starts with the triple (0,0, ψ), where 0(x) = 0 for each register variable
x. Then, T branches according to the rules from the proof of Theorem 4.1. The numbers j
and t guessed there can be still stored in polynomial space, and all arithmetic manipulations
can be done in polynomial time. In particular, the function ρ : N → [0, |u1| + |u2|) defined
by ρ(z) = z for z < |u1|, and ρ(z) = ((z−|u1|) mod |u2|)+ |u1| otherwise, can be computed
in polynomial time on binary encoded numbers.

4.2. Polynomial Time Upper Bounds for TPTL with Fixed Number of Registers.

If the number of register variables is fixed and all numbers are unary encoded (or their unary
encodings can be computed in polynomial time), then the alternating Turing-machine in the
proof of Theorem 4.1 works in logarithmic space. Since ALOGSPACE = P, we obtain the
following statement for (i):

Theorem 4.10. For every fixed r ∈ N, path checking for TPTLru over (i) infinite unary
encoded data words or (ii) infinite binary encoded monotonic data words is in P.

Proof. We start with the proof of the statement for (i). In the algorithm from the proof
of Theorem 4.1, if all numbers are given in unary, then the numbers C +M + 1, m1, m2

and n can be computed in logarithmic space and are bounded polynomially in the input
size. Moreover, a configuration of the form (i, δ, ϕ) needs only logarithmic space: clearly, the
position i ∈ [0, |u1|+ |u2|) and the subformula ϕ only need logarithmic space. The valuation
δ is an r-tuple over [−m1,max{m1, C +M + 1}] and hence needs logarithmic space too,
since r is a constant. Hence, the alternating machine from the proof of Theorem 4.1 works
in logarithmic space. The theorem follows, since ALOGSPACE = P.

Let us now prove statement (ii) in Theorem 4.10. We actually prove a slightly stronger
statement for so called quasi-monotonic data words instead of monotonic data words.

For a finite data word u, let min(u) (resp., max(u)) be the minimal (resp., maximal)
data value that occurs in u. Given k ∈ N, and two finite data words u1 and u2, we say that
the infinite data word u1(u2)

ω
+k is quasi-monotonic if max(u1) ≤ max(u2) ≤ min(u2) + k.

Note that if u1(u2)
ω
+k is monotonic, then u1(u2)

ω
+k is also quasi-monotonic.

Let us now prove statement (ii) (with “monotonic” replaced by “quasi-monotonic”). Sup-
pose that k, u1 and u2 are binary encoded, and u1(u2)

ω
+k is quasi-monotonic. The idea is

that we construct in polynomial time two unary encoded finite data words v1, v2 and l ∈ N

encoded in unary notation such that u1(u2)
ω
+k |=TPTL ψ if, and only if, v1(v2)

ω
+l |=TPTL ψ,

where ψ is the input TPTLru formula. Then we can apply the alternating logarithmic space
algorithm from the above proof for (i).

Let x1 ∼1 c1, . . . , xm ∼m cm be all constraint formulas in ψ. Without loss of generality,
we suppose that ci ≤ ci+1 for 1 ≤ i < m. We define an equivalence relation ≡ψ on N such
that a ≡ψ b if a = b or a and b both belong to one of the intervals (−∞, c1), (cm,+∞),
(ci, ci+1) for some 1 ≤ i < m. Define C = max{|c1|, . . . , |cm|}.
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Suppose that |u1| = n1 and |u2| = n2. Let d1, . . . , dn1+n2
be an enumeration of all data

values in u1u2 such that dj ≤ dj+1 for 1 ≤ j < n1 + n2. Without loss of generality, we
suppose that d1 = 0. For 1 < i ≤ n1 + n2 let δi = di − di−1. We define a new sequence
d′1, . . . , d

′
n1+n2

inductively as follows: d′1 = 0 and for all 1 < i ≤ n1 + n2,

d′i =

{

d′i−1 + δi if δi ≤ C,

d′i−1 + C + 1 if δi > C.

Intuitively, the data values d′j are obtained by shrinking the dj so that the largest difference
between two different data values is bounded by C + 1.

We obtain the new data words v1 and v2 by replacing in u1 and u2 every data value dj
by d′j for every j ∈ [1, n1 +n2]. Note that d′n1+n2

≤ (C +1) · (n1 +n2 − 1). Since C is given
in unary notation, we can compute in polynomial time the unary encodings of the numbers
d′1, . . . , d

′
n1+n2

.
To define the number l, note that δ := min(u2) + k−max(u2) is the difference between

the smallest data value in (u2)+k and the largest data value in u2 (which is the largest data
value of u1u2). Since u1(u2)

ω
+k is quasi-monotonic, we have δ ≥ 0. We define the number l

as

l =

{

max(v2)−min(v2) + δ if δ ≤ C,

max(v2)−min(v2) + C + 1 if δ > C.

Again, the unary encoding of l can be computed in polynomial time. Let ei (resp., e′i) be
the data value in the i-th position of u1(u2)

ω
+k (resp., v1(v2)

ω
+l). Then, for every j >

i we have ej − ei ≡ψ e′j − e′i. This implies that u1(u2)
ω
+k |=TPTL ϕ if, and only if,

v1(v2)
ω
+l |=TPTL ϕ. Finally, we can use the alternating logarithmic space algorithm to

check whether v1(v2)
ω
+l |=TPTL ϕ holds.

For finite data words, we obtain a polynomial time algorithm also for binary encoded
data words (assuming again a fixed number of register variables):

Theorem 4.11. For every fixed r ∈ N, path checking for TPTLrb over finite binary encoded
data words is in P.

Proof. Let the input data word w be of length n and let d1, . . . , dn be the data values
appearing in w. Moreover, let x1, . . . , xr be the register variables appearing in the input
formula ψ. Then, we only have to consider the nr many register valuation mappings ν :
{x1, . . . , xr} → {d1, . . . , dn}. For each of these mappings ν, for every subformula ϕ of ψ,
and for every position i in w we check whether (w, i, δ) |=TPTL ϕ. This information is
computed bottom-up (with respect to the structure of ϕ) in the usual way.

For infinite data words we have to reduce the number of register variables to one in
order to get a polynomial time complexity for binary encoded numbers, cf. Theorem 5.12:

Theorem 4.12. Path checking for TPTL1
b over infinite binary encoded data words is in P.

For the proof of Theorem 4.12 we first show some auxiliary results of independent
interest.

Lemma 4.13. For a given LTL formula ψ, words u1, . . . , un, u ∈ (2P)∗ and binary encoded

numbers N1, . . . , Nn ∈ N, the question whether uN1

1 uN2

2 . . . uNn
n uω |= ψ holds, belongs to P

(more precisely, AC1(LogDCFL))).



PATH CHECKING FOR MTL AND TPTL OVER DATA WORDS 15

Proof. We first prove that for all finite words u, v ∈ (2P)∗, every infinite word w ∈ (2P)ω

and every number N ≥ |ψ|, we have uvNw |= ψ if, and only if, uv|ψ|w |= ψ. For the proof,
we use the Ehrenfeucht-Fraïssé game for LTL (EF-game, for short), introduced in [10] and
briefly explained in the following.

Let w0 = (P0, d0)(P1, d1) . . . and w1 = (P ′
0, d

′
0)(P

′
1, d

′
1) . . . be two infinite data words

over 2P, and let k ≥ 0. The k-round EF-game is played by two players, called Spoiler and
Duplicator, on w0 and w1. A game configuration is a pair of positions (i0, i1) ∈ N×N, where
i0 is a position in w0, and i1 is a position in w1. In each round of the game, if the current
configuration is (i0, i1), Spoiler chooses an index l ∈ {0, 1} and a position jl > il in the data
word wl. Then, Duplicator responds with a position j1−l > i1−l in the other data word w1−l.
After that, Spoiler has two options:

• He chooses to finish the current round. The current round then finishes with configuration
(j0, j1).

• He chooses a position j′1−l so that i1−l < j′1−l < j1−l. Then Duplicator responds with a
position j′l so that il < j′l < jl. The current round then finishes with configuration (j′0, j

′
1).

The winning condition for Duplicator is defined inductively by the number k of rounds
of the EF-game: duplicator wins the 0-round EF-game starting in configuration (i0, i1) if
Pi0 = P ′

i1
. Duplicator wins the k + 1-round EF-game starting in configuration (i0, i1) if

Pi0 = P ′
i1

and for every choice of moves of Spoiler in the first round, Duplicator can respond
such that Duplicator wins the k-round EF-game starting in the finishing configuration of
the first round (i.e., in the above configuration (j0, j1) or (j′0, j

′
1)).

The until rank of an LTL formula ϕ, denoted by Rank(ϕ), is defined inductively on the
structure of ϕ:

• If ϕ is true, p ∈ P or x ∼ c, then Rank(ϕ) = 0.
• If ϕ is ¬ϕ1, then Rank(ϕ) = Rank(ϕ1).
• If ϕ is ϕ1 ∧ ϕ2, then Rank(ϕ) = max{Rank(ϕ1),Rank(ϕ2)}.
• If ϕ is ϕ1Uϕ2, then Rank(ϕ) = max{Rank(ϕ1),Rank(ϕ2)}+ 1.

Theorem 4.14 ([10]). Duplicator wins the k-round EF-game on w0 and w1 starting in
configuration (0, 0) if, and only if, for every LTL formula ϕ with Rank(ϕ) ≤ k, we have
w0 |=LTL ϕ if, and only if, w1 |=LTL ϕ.

Now, let k ≥ 0, and assume that w0 = uvm0w and w1 = uvm1w, where m0,m1 ≥ k, u and
v are finite words, and w is an infinite word. One can easily prove that Duplicator can win
the k-round EF-game starting from configuration (0, 0). The point is that Duplicator can
enforce that after the first round the new configuration (i0, i1) satisfies one of the following
two conditions:

• w0[i0 :] = w1[i1 :], i.e., after the first round the suffix of w0 starting in position i0 is equal
to the suffix of w1 starting in i1. This implies that Duplicator can win the remaining
(k − 1)-round EF-game starting in configuration (i0, i1).

• w0[i0 :] (respectively, w1[i1 :]) has the form u′vn0w (respectively, u′vn1w), where n0, n1 ≥
k − 1. Hence, by induction, Duplicator can win the (k − 1)-round EF-game from configu-
ration (i0, i1).

By Theorem 4.14, we have uvm0w |=LTL ϕ if, and only if, uvm1w |=LTL ϕ for every LTL
formula ϕ with Rank(ϕ) ≤ k. It follows that for two infinite words um1

1 um2

2 . . . umn
n uωn+1 and
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u
m′

1

1 u
m′

2

2 . . . u
m′

n
n uωn+1 satisfying mi,m

′
i ≥ k for all i ∈ {1, . . . , n}, we have

um1

1 um2

2 . . . umn

l uωn+1 |=LTL ϕ if, and only if, u
m′

1

1 u
m′

2

2 . . . u
m′

n

l uωn+1 |=LTL ϕ

for every LTL formula ϕ with Rank(ϕ) ≤ k.
We use this to prove the lemma as follows: replace every binary encoded exponent Ni

in the word uN1

1 uN2

2 . . . uNn

l uωn+1 by min{Ni, |ψ|}. By Theorem 3.6 in [24], infinite path
checking for LTL can be reduced in logspace to finite path checking for LTL. Finite path
checking for LTL is in AC1(LogDCFL) ⊆ P [21].

Lemma 4.15. Path checking for TPTLb formulas, which do not contain the freeze quantifier
x.(·), over infinite binary encoded data words is in P (in fact, AC1(LogDCFL)).

Proof. We reduce the question whether w |=TPTL ψ in logspace to an instance of the special
LTL path-checking problem from Lemma 4.13. Let w = u1(u2)

ω
+k. We use w[i] to denote

the pair (Pi, di) ∈ 2P × N occurring at the i-th position of w. Let n1 = |u1| and n2 = |u2|.
Without loss of generality we may assume that the only register variable that appears in
constraint formulas in ϕ is x. Note that since ϕ does not contain the freeze quantifier, the
value of x is always assigned the initial value d0.

In order to construct an LTL formula from ψ, it remains to eliminate occurrences of con-
straint formulas x ∼ c in ψ. Without loss of generality, we may assume that all constraints
are of the form x < c or x > c. Let x ∼1 c1, . . . , x ∼m cm be a list of all constraints that ap-
pear in ψ. We introduce for every j ∈ {1, . . . ,m} a new atomic proposition pj, and we define
P
′ ··= P∪{p1, . . . , pm}. Let ψ′ be obtained from ψ by replacing every occurrence of x ∼j cj by

pj, and let w′ ∈ (2P
′
)ω be the ω-word defined by w′[i] = Pi ∪ {pj | 1 ≤ j ≤ m,di− d0 ∼j cj}.

Clearly w |=TPTL ψ if, and only if, w′ |=LTL ψ
′. Next we will show that the word w′ can be

written in the form required in Lemma 4.13.
First of all, we can write w′ as w′ = u′1u

′
2,0u

′
2,1u

′
2,2 . . . , where |u′1| = n1 and |u′2,i| = n2.

The word u′1 can be computed in logspace by evaluating all constraints at all positions of
u1. Moreover, every word u′2,i is obtained from u2 (without the data values) by adding the
new propositions pj at the appropriate positions. Consider the equivalence relation ≡ on N

with a ≡ b if, and only if, u′2,a = u′2,b. The crucial observations are that (i) every equivalence

class of ≡ is an interval, and (ii) the index of ≡ is bounded by 1 + n2 · m (one plus the
length n2 of u2 times the number m of constraint formulas). To see this, consider a position
i ∈ {0, . . . , n2 − 1} in the word u2 and a constraint x ∼j cj for some j ∈ {1, . . . ,m}. Then,
the truth value of “proposition pj is present at the i-th position of u′2,x” switches (from true

to false or from false to true) at most once when x grows. The reason for this is that the
data value at position n1 + i + n2 · x is dn1+i+n2·x = dn1+i + k · x for x ≥ 0, i.e., it grows
monotonically with x. Hence, the truth value of dn1+i + k · x − d0 ∼j cj switches at most
once, when x grows. So, we get at most n2 ·m many “switching points” in N which produce
at most 1 + n2 ·m many intervals.

Let I1, . . . , Il be a list of all ≡-classes (intervals), where a < b whenever a ∈ Ii, b ∈ Ij
and i < j. The borders of these intervals can be computed in logspace using arithmetics on
binary encoded numbers (addition, multiplication and division with remainder can be carried
out in logspace on binary encoded numbers [18]). Hence, we can compute in logspace the
lengths Ni = |Ii| of the intervals, where Nl = ω. Also, for all i ∈ {1, . . . , l} we can compute

in logspace the unique word vi such that vi = u′2,a for all a ∈ Ii. Hence, w′ = u′1v
N1

1 . . . vNl

l .
We can now apply Lemma 4.13.
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a1 a2 a3 a4 a5

b1 b2 b3 b4 b5

c1 c2 c3 c4 c5

level 1 (∧-gates)

level 2 (∨-gates)

level 3 (input gates)

Figure 1: An SAM2-circuit with three levels.

Proof of Theorem 4.12. Consider an infinite binary encoded data word w = u1(u2)
ω
+k and a

TPTL1
b formula ψ. Let n = |u1|+ |u2|. We check in polynomial time whether w |=TPTL ψ.

A TPTL formula ϕ is closed if every occurrence of a register variable x in ϕ is under the
scope of a freeze quantifier x.(·). The proofs of the following two claims are straightforward:

Claim 1 : If ϕ is closed, then for all valuations ν, ν ′, (w, i, ν) |=TPTL ϕ if, and only if,
(w, i, ν ′) |=TPTL ϕ.

Claim 2 : If ϕ is closed and i ≥ |u1|, then for every valuation ν, (w, i, ν) |=TPTL ϕ if, and
only if, (w, i + |u2|, ν) |=TPTL ϕ.

By Claim 1 we can write (w, i) |=TPTL ϕ for (w, i, ν) |=TPTL ϕ. It suffices to compute for
every (necessarily closed) subformula x.ϕ of ψ the set of all positions i ∈ [0, n − 1] such
that (w, i) |=TPTL x.ϕ, or equivalently w[i :] |=TPTL ϕ. We do this in a bottom-up process.
Consider a subformula x.ϕ of ψ and a position i ∈ [0, n − 1]. We have to check whether
w[i :] |=TPTL ϕ. Let x.ϕ1, . . . , x.ϕl be a list of all subformulas of ϕ that are not in the scope
of another freeze quantifier within ϕ. We can assume that for every s ∈ {1, . . . , l} we have
already determined the set of positions j ∈ [0, n − 1] such that (w, j) |=TPTL x.ϕs. We
can therefore replace every subformula x.ϕs of ϕ by a new atomic proposition ps and add
in the data words u1 (resp., u2) the proposition ps to all positions j (resp., j − |u1|) such
that (w, j) |=TPTL x.ϕs, where j ∈ [0, n − 1]. Here, we make use of Claim 2. We denote
the resulting formula and the resulting data word with ϕ′ and w′ = u′1(u

′
2)
ω
+k, respectively.

Next, we explain how to compute from u′1 and u′2 new finite data words v1 and v2 such that
v1(v2)

ω
+k = w′[i :]. If i < |u′1| then we take v1 = u′1[i :] and v2 = u′2. If |u′1| ≤ i ≤ n − 1,

then we take v1 = ε and v2 = u′2[i :](u
′
2[: i− 1]+ k), where u′2[: i− 1] denotes the prefix of u′2

up to position i − 1. Finally, using Lemma 4.15 we can check in polynomial time whether
w′[i :] |=TPTL ϕ

′.

5. Lower Complexity Bounds

In this section we prove several P-hardness and PSPACE-hardness results for the path-
checking problem. Together with the upper bounds from Section 4 we obtain sharp com-
plexity results for the various path-checking problems.
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5.1. P-Hardness Results. We prove our P-hardness results by a reduction from a re-
stricted version of the Boolean circuit value problem. A Boolean circuit is a finite directed
acyclic graph, where each node is called a gate. An input gate is a node with indegree 0. All
other gates are of a certain type, which is either ∨, ∧ or ¬ (i.e., the corresponding logical
OR, AND and NOT operations). An output gate is a node with outdegree 0. A Boolean
circuit is monotone if it does not have gates of type ¬.

A synchronous alternating monotone circuit with fanin 2 and fanout 2 (SAM2-circuit,
for short) is a monotone circuit divided into levels 1, . . . , l for some l ≥ 2 such that the
following properties hold:

• All wires go from a gate in level i+ 1 to a gate from level i.
• All output gates are in level 1 and all input gates are in level l.
• All gates in the same level are of the same type (∧, ∨ or input) and the types of the levels

between 1 and l − 1 alternate between ∧ and ∨.
• All gates except the output gates have outdegree 2, and all gates except the input gates

have indegree 2. For all i ∈ {2, . . . , l − 1}, the two input gates for a gate at level i are
different.

By the restriction to fanin 2 and fanout 2, each level contains the same number of
gates. Figure 1 shows an example of an SAM2-circuit; the node names ai, bi, ci will be used
later. The circuit value problem for SAM2-circuits, called SAM2CVP in [16], is the following
problem: given an SAM2-circuit α, inputs x1, . . . , xn ∈ {0, 1}, and a designated output gate
y, does the output gate y of α evaluate to 1 on inputs x1, . . . , xn? The circuit value problem
for SAM2-circuits is P-complete [16].

Theorem 5.1. Path checking for PureMTL(F,X)u over finite unary encoded pure data
words is P-hard.

Proof. The proof is a reduction from SAM2CVP. Let α be an SAM2-circuit. We first encode
each pair of consecutive levels of α into a data word, and combine these data words into a data
word w, which is the encoding of the whole circuit. Then we construct a PureMTL(F,X)u
formula ψ such that w |=MTL ψ if, and only if, α evaluates to 1. The data word w that we
are going to construct contains gate names of α (and some copies of the gates) as atomic
propositions. These propositions are only needed for the construction. At the end, we
remove all propositions from the data word w to obtain a pure data word. The whole
construction can be done in logarithmic space. The reader might look at Example 5.2,
where the construction is carried out for the circuit shown in Figure 1.

Let α be an SAM2-circuit with l ≥ 2 levels and n gates in each level. By the restriction
to fanin 2 and fanout 2, the induced undirected subgraph containing the nodes in level i
and level i + 1 is comprised of several cycles; see Figure 2. For instance, for the circuit in
Figure 1, there are two cycles between level 1 and 2, and we have the same number of cycles
between level 2 and 3.

We can enumerate in logarithmic space the gates of level i and level i+1 such that they
occur in the order shown in Figure 2. To see this, let a1, . . . , an (respectively, b1, . . . , bn)
be the nodes in level i (respectively, i + 1) in the order in which they occur in the input
description. We start with b1 and enumerate the nodes in the cycle containing b1 (from b1
we go to the smaller neighbour among a1, . . . , an. Then from this node the next node on
the cycle is uniquely determined since the graph has degree 2. Thereby we store the current
node in the cycle and the starting node b1. As soon as we come back to b1, we know that
the first cycle is completed. To find the next cycle, we search for the first node from the list
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a1,1 a1,2 a1,j1

b1,1 b1,2 b1,j1

a2,1 a2,2 a2,j2

b2,1 b2,2 b2,j2

ah,1 ah,2 ah,jh
level i

bh,1 bh,2 bh,jh
level i+1

Figure 2: The induced subgraph between level i and i+ 1

a1,1 a1,2 a1,j1 a
′
1,1

b1,1 b1,2 b1,j1 b
′
1,1

a2,1 a2,2 a2,j2 a
′
2,1

b2,1 b2,2 b2,j2 b
′
2,1

ah,1 ah,2 ah,jha
′
h,1

bh,1 bh,2 bh,jh b
′
h,1

Figure 3: The graph after adding dummy nodes

di di+1 . . . di+j1

d′i d
′
i + 1 . . . d′i +j1

. . . di+j1+j2+1

. . . d′i+j1+j2+1

. . . di+m−1

. . . d′i+m−1

Figure 4: The graph after assigning data values to the nodes

b2, . . . , bn that is not reachable from b1 (reachability in undirected graphs is in LOGSPACE),
and continue in this way.

So, assume that the nodes in level i and i + 1 are ordered as in Figure 2. Assume we
have h cycles. Next, we want to get rid of the crossing edges between the rightmost node in
level i and the leftmost node in level i+1 in each cycle. For this, we introduce for each cycle
two dummy nodes which are basically copies of the leftmost node in each level. Formally,
for each t ∈ {1, . . . , h}, add a node a′t,1 (respectively, b′t,1) after at,jt (respectively, bt,jt), and

then replace the edge (at,jt , bt,1) by a new edge (at,jt , b
′
t,1). In this way we obtain the graph

shown in Figure 3. Again, the construction can be done in logarithmic space.
By adding dummy nodes, we can assume that for every i ∈ {1, . . . , l− 1}, the subgraph

between level i and i + 1 has the same number (say h) of cycles (this is only done for
notational convenience, and we still suppose that there are n gates in each level). Thus,
after the above step we have m = n+ h many nodes in each level. Define di = (i− 1) · 2m
and d′i = di+m. Next we are going to label the nodes from Figure 3: in level i (respectively,
i+ 1) with the numbers di, di + 1, . . . , di +m− 1 (respectively d′i, d

′
i + 1 . . . , d′i +m− 1) in

this order, see Figure 4. Note that this labelling is the crucial point for encoding the wiring
between the gates of two levels: the difference between two connected nodes in level i and
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level i+1 is always m or m+1. We will later exploit this fact and use the modality F[m,m+1]

(respectively, G[m,m+1]) to jump from a ∨-gate (respectively, ∧-gate) in level i to a successor
gate in level i+ 1. We now obtain in logarithmic space the data word wi = wi,1wi,2, where

wi,1 =







(a1,1, di)(a1,2, di + 1) · · · (a1,j1 , di + j1 − 1)

(a2,1, di + j1 + 1)(a2,2, di + j1 + 2) · · · (a2,j2 , di + j1 + j2) · · ·

(ah,1, di +

h−1∑

t=1

jt + h− 1)(ah,2, di +

h−1∑

t=1

jt + h) · · · (ah,jh , di +m− 2)

wi,2 =







(b1,1, d
′
i) · · · (b1,j1 , d

′
i + j1 − 1)(b′1,1, d

′
i + j1)

(b2,1, d
′
i + j1 + 1) · · · (b2,j2 , d

′
i + j1 + j2)(b

′
2,1, d

′
i + j1 + j2 + 1) · · ·

(bh,1, d
′
i +

h−1∑

t=1

jt + h− 1) · · · (bh,jh , d
′
i +m− 2)(b′h,1, d

′
i +m− 1)

which is the encoding of the wires between level i and level i + 1 from Figure 4. Note that
the new nodes a′1,1, a

′
2,1, . . . , a

′
h,1 in level i of the graph in Figure 3 do not occur in wi,1.

Suppose now that for all i ∈ {1, . . . , l − 1}, the data words wi is constructed. We
combine w1, w2, . . . , wl−1 to obtain the data word w that encodes the complete circuit as
follows. Suppose that

wi,2 = (b̃1, y1) . . . (b̃m, ym) and wi+1,1 = (b1, z1) . . . (bn, zn).

Note that every b̃s is either one of the bj or b′j (the copy of bj). Let

vi+1,1 = (b̃1, z
′
1) . . . (b̃m, z

′
m),

where the data values z′s are determined as follows: if b̃s = bj or b̃s = b′j , then z′s = zj . Then,
the data word w is w = w1,1w1,2v2,1w2,2 . . . vl−1,1wl−1,2.

Next, we explain the idea of how to construct the MTL formula. Consider a gate aj of
level i for some i ∈ {2, . . . , l − 1}, and assume that level i consists of ∨-gates. Let bj1 and
bj2 (from level i + 1) be the two input gates for aj . In the above data word vi,1 there is a
unique position where the proposition aj occurs, and possibly a position where the copy a′j
occurs. If both positions exist, then they carry the same data value. Let us point to one of
these positions. Using an MTL formula, we want to branch (existentially) to the positions
in the factor vi+1,1, where the propositions bj1 , b

′
j1
, bj2 , b

′
j2

occur (where b′j1 and b′j2 possibly

do not exist). For this, we use the modality F[m,m+1]. By construction, this modality

branches existentially to positions in the factor wi,2, where the propositions bj1 , b
′
j1
, bj2 , b

′
j2

occur. Then, using the iterated next modality Xm, we jump to the corresponding positions
in vi+1,1.

In the above argument, we assumed that i ∈ {2, . . . , l − 1}. If i = 1, then we can argue
similarly, if we assume that we are pointing to the unique aj-labelled position of the prefix
w1,1 of w. Now consider level l − 1. Suppose that

wl−1,2 = (ẽ1, d1) . . . (ẽm, dm).

Let e1, . . . , en be the original gates of level l, which all belong to {ẽ1, . . . , ẽm}, and let
xi ∈ {0, 1} be the input value for gate ei. Define

J = {j | j ∈ [1,m],∃i ∈ [1, n] : ẽj ∈ {ei, e
′
i}, xi = 1}. (5.1)
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a1 a2 a′1 a3 a4 a5 a′3

0 1 2 3 4 5 6

7 8 9 10 11 12 13

b1 b2 b′1 b3 b4 b5 b′3

Figure 5: The labelling for level 1 and 2

Let the designated output gate be the k-th node in level 1. We construct the PureMTL(F,X)

formula ψ = Xk−1ϕ1, where, for every i ∈ {1, . . . , l−1}, the formula ϕi is inductively defined
as follows:

ϕi ··=







F[m,m+1]X
mϕi+1 if i < l − 1 and level i is a ∨-level,

G[m,m+1]X
mϕi+1 if i < l − 1 and level i is a ∧-level,

F[m,m+1](
∨

j∈J Xm−j¬X true) if i = l − 1 and level i is a ∨-level,

G[m,m+1](
∨

j∈J Xm−j¬Xtrue) if i = l − 1 and level i is a ∧-level.

The formula ¬X true is only true in the last position of a data word. Suppose data word w
is the encoding of the circuit. From the above consideration, it follows that w |=MTL ψ if,
and only if, the circuit α evaluates to 1. Note that we only use the unary modalities F,G,X
and do not use any propositions in ψ. We can thus ignore the propositional part in the data
word w to get a pure data word. Since the number m is bounded by 2n, and all data values
in w are bounded by 4nl, where n is the number of gates in each level and l is the number
of levels, we can compute the formula ψ and data word w where the interval borders and
data values are encoded in unary notation in logarithmic space.

Example 5.2. Let α be the SAM2-circuit from Figure 1. It has 3 levels and 5 gates in
each level. Level 1 contains ∧-gates and level 2 contains ∨-gates. There are 2 cycles in the
subgraph between level 1 and 2, and also 2 cycles in the subgraph between level 2 and 3. The
encoding for level 1 and level 2 is

(a1, 0)(a2, 1)(a3, 3)(a4, 4)(a5, 5)

(b1, 7)(b2, 8)(b
′
1, 9)(b3, 10)(b4, 11)(b5, 12)(b

′
3, 13),

(5.2)

which can be obtained from Figure 5. The new nodes a′1 and a′3 in level 1 are not used for
the final encoding in the data word. The encoding for level 2 and 3 is

(b1, 14)(b5, 15)(b3, 16)(b2, 18)(b4, 19)

(c1, 21)(c3, 22)(c5, 23)(c
′
1, 24)(c2, 25)(c4, 26)(c

′
2, 27),

(5.3)

which can be obtained from Figure 6. We skip the new nodes b′1 and b′2 in level 2 in this
encoding.

We combine (5.2) and (5.3) to obtain the following data word (5.4) which is the encoding
of the circuit α. The encoding for level 1 and 2 determines the order of the propositional
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b1 b5 b3 b′1 b2 b4 b′2

14 15 16 17 18 19 20

21 22 23 24 25 26 27

c1 c3 c5 c′1 c2 c4 c′2

Figure 6: The labelling for level 2 and 3

part of the third line in (5.4), and the encoding for level 2 and 3 determines its data values.

(a1, 0)(a2, 1)(a3, 3)(a4, 4)(a5, 5)

(b1, 7)(b2, 8), (b
′
1, 9)(b3, 10)(b4, 11)(b5, 12)(b

′
3, 13)

(b1, 14)(b2, 18)(b
′
1, 14)(b3, 16)(b4, 19)(b5, 15)(b

′
3, 16)

(c1, 21)(c3, 22)(c5, 23)(c
′
1, 24)(c2, 25)(c4, 26)(c

′
2, 27).

(5.4)

Let the designated output gate be a3 in level 1, and assume that the input gates c1, c4, c5
(respectively, c2, c3) receive the value 0 (respectively, 1). Then the set J from (5.1) is J =
{2, 5, 7} and the formula ψ is

ψ = X2
(
G[7,8]X

7
(
F[7,8]

( ∨

j∈{2,5,7}

X7−j¬X true
)))

.

Theorem 5.3. Path checking for MTL(F,X)u over infinite unary encoded data words is
P-hard.

Proof. We use an adaptation of the proof for Theorem 5.1. Let p be an atomic proposition
that is not used in the data word w defined in the proof of Theorem 5.1. Define the infinite
data word w′ = w (p, 5ml)ω+0, and redefine for every i ∈ {1, . . . , l − 1} the formula ϕi by:

ϕi ··=







F[m,m+1]X
mϕi+1 if i < l − 1 and level i is a ∨-level,

G[m,m+1]X
mϕi+1 if i < l − 1 and level i is a ∧-level,

F[m,m+1](
∨

j∈I Xm−j(¬p ∧ Xp)) if i = l − 1 and level i is a ∨-level,

G[m,m+1](
∨

j∈I Xm−j(¬p ∧ Xp)) if i = l − 1 and level i is a ∧-level.

Then w′ |=MTL ψ if, and only if, the circuit α evaluates to 1.

Note that the construction in the proof of Theorem 5.1 uses data words that are not
monotonic. This is indeed unavoidable: path checking for MTL over finite monotonic data
words is in AC1(LogDCFL) [5]. In the following, we prove that in contrast to MTL, the
path-checking problem for TPTL1

u over finite monotonic data words is P-hard, even for the
pure fragment that only uses only the unary modalities F and X.

Theorem 5.4. Path checking for PureTPTL1(F,X)u over finite unary encoded strictly
monotonic pure data words is P-hard.

Before we prove Theorem 5.4, we prove P-hardness of path checking for some extension
of MTL.

In MTL, the U modality is annotated by some interval I. If, instead, we allow the U
modality to be annotated by a finite union of intervals I1 ∪ I2 ∪ · · · ∪ In, then we call this



PATH CHECKING FOR MTL AND TPTL OVER DATA WORDS 23

logic succinct MTL, SMTL for short. Formally, the syntax and semantics of SMTL is the
same as for MTL, except that the set I in UI can be a finite union I = I1 ∪ I2 ∪ · · · ∪ In of
intervals Ii ⊆ Z. The corresponding fragments of SMTL are defined in the expected way.

Let I =
⋃n
i=1 Ii. It is easily seen that (≡ denotes logical equivalence)

ϕ1UIϕ2 ≡
n∨

i=1

ϕ1UIiϕ2, and ϕ1UIϕ2 ≡ x.ϕ1U
((

n∨

i=1

x ∈ Ii
)
∧ ϕ2

)
.

The following two propositions are easy to prove.

Proposition 5.5. Each SMTL formula is equivalent to an MTL formula which can be
exponentially larger.

Proposition 5.6. For a given SMTL formula ϕ one can compute in logspace an equivalent
TPTL1 formula of size polynomial in the size of ϕ.

In the following, we prove P-hardness of path checking for SMTLu over finite unary
encoded strictly monotonic pure data words. Like the P-hardness proof for MTL in The-
orem 5.1, the proof is by reduction from SAM2CVP. Unlike the data word in the proof
of Theorem 5.1, we encode the wires between two levels of an SAM2-circuit by a strictly
monotonic data word. This is possible due to the succinct usage of unions of intervals anno-
tating the finally and globally modalities in the SMTL formula ψ. The reader might look at
Example 5.8 below, where the construction is carried out for the circuit shown in Figure 1.

Theorem 5.7. Path checking for PureSMTL(F,X)u over finite unary encoded strictly mono-
tonic pure data words is P-hard.

Proof. We reduce from SAM2CVP. Let α be an SAM2-circuit with l ≥ 2 levels and n gates
in each level. The idea will be to encode the wires between two consecutive layers by a
suitably shifted version of the data word

wn =
n∏

i=1

i ·
n∏

i=1

i(n + 1) = (1, 2, . . . , n, 1 · (n+ 1), 2 · (n+ 1), . . . , n · (n+ 1)).

Note that for all i1, i2 ∈ {1, . . . , n} and j1, j2 ∈ {1·(n+1), 2·(n+1), . . . , n·(n+1)} we have the
following: if j1− i1 = j2− i2, then i1 = i2 and j1 = j2. This is best seen by viewing numbers
in their base (n+1) expansion. Let us denote with ∆ = n(n+1)−1 the maximal difference
between a number from {1, . . . , n} and a number from {1 · (n+1), 2 · (n+1), . . . , n · (n+1)}.

We define the pure and strictly monotonic data word wn,l as

wn,l =

l−2∏

j=0

(wn)+j·n(n+2) (5.5)

The offset number j · n(n + 2) is chosen such that the difference between a number from
{1, . . . , n} and a number from {1 + j · n(n + 2), . . . , n + j · n(n + 2)} is larger than ∆ for
every j ≥ 1.

Note that the unary encoding of the data word wn,l can be computed in logspace from
the circuit. For each j ∈ {1, . . . , l − 1}, define

Sj = {i2(n + 1)− i1 | the i1-th gate in level j connects to the i2-th gate in level j + 1}.

Suppose ok, for some k ∈ {1, . . . , n}, is the designated output gate. Let I be the set of all
i ∈ [1, n] such that the i-th gate in layer l is set to the Boolean value 1. We construct the
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SMTL formula ψ = Xk−1ϕ1, where ϕj , for all j ∈ {1, . . . , l − 1}, is defined inductively as
follows:

ϕj =







FSj
Xnϕj+1 if j < l − 1 and level j is a ∨-level,

GSj
Xnϕj+1 if j < l − 1 and level j is a ∧-level,

FSj
(
∨

i∈I Xn−i¬X true) if j = l − 1 and level j is a ∨-level,

GSj
(
∨

i∈I Xn−i¬X true) if j = l − 1 and level j is a ∧-level.

The purpose of the prefix Xn in front of ϕj+1 is to move from a certain position within the
second half of the j-th copy of wn to the corresponding position within the first half of the
(j + 1)-th copy of wn in wn,l.

It is straightforward to check that wn,l |= ψ if, and only if, the circuit α evaluates to 1.

Example 5.8. We illustrate the proof of Theorem 5.7 with the SAM2 from Figure 1. The
formula in equation (5.5) yields

w5,3 = (1, 2, 3, 4, 5, 6, 12, 18, 24, 30)(36, 37, 38, 39, 40 41, 47, 53, 59, 65).

We compute

S1 = {5, 11, 4, 10, 15, 21, 20, 26, 13, 25} and S2 = {5, 17, 10, 22, 3, 27, 8, 20, 13, 25}.

Note that the values in S1 correspond to all distances between gates in level 1 which are wired
to gates in level 2. Assuming that a3 is the designated output gate and that c1, c4, d5 (c2, c3,
respectively) receive the input value 0 (1, respectively), we have I = {2, 3} and we obtain the
formula

ψ = X2GS1
X5 FS2

(X3¬Xtrue ∨ X2¬Xtrue).

Proof of Theorem 5.4. The theorem is a direct consequence of Theorem 5.7 and Proposi-
tion 5.6.

Similarly to the proof of Theorem 5.3, we can adapt the proof of Theorem 5.7 and extend
the results to infinite data words.

Theorem 5.9. Path checking for SMTL(F,X)u and TPTL(F,X)1u over infinite unary en-
coded data words are P-hard.

5.2. PSPACE-Hardness Results. Next we prove three PSPACE lower bounds, which
complete the picture about the complexity of the path-checking problem for MTL and
TPTL.

Theorem 5.10. Path checking for PureTPTL(F)u over finite unary encoded strictly mono-
tonic pure data words is PSPACE-hard.

Proof. The proof is a reduction from the quantified Boolean formula problem: does a given
closed formula Ψ = Q1x1 . . . Qnxnφ, where Qi ∈ {∀,∃}, and φ is a quantifier-free proposi-
tional formula, evaluate to true? This problem is PSPACE-complete [14].

Let Ψ = Q1x1 . . . Qnxnφ be an instance of the quantified Boolean formula problem. We
construct the finite pure strictly monotonic data word

w = 0, 1, 2, . . . , 2n − 1, 2n, 2n + 1.

For every i ∈ {1, . . . , n}, the subword 2i− 1, 2i is used to quantify over the Boolean variable
xi.
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For the formula, we use a register variable x and register variables xi corresponding to
the variables used in Ψ, for every i ∈ {1, . . . , n}. Intuitively, if we assign to register variable
xi the data value 2i− b, then the corresponding Boolean variable xi is set to b ∈ {0, 1}.

We define the PureTPTL(F)u formula x.x1.x2. . . . xn.Ψ
′, where Ψ′ is defined inductively

by the following rules.

• If Ψ = ∀xiΦ, then Ψ′ = G((xi = 2i− 1 ∨ xi = 2i) → xi.Φ
′).

• If Ψ = ∃xiΦ, then Ψ′ = F((xi = 2i− 1 ∨ xi = 2i) ∧ xi.Φ
′).

• If Ψ is a quantifier-free formula, then

Ψ′ = F(x = 2n+ 1 ∧Ψ[x1/x1 = 2n, . . . , xi/xi = 2(n− i) + 2, . . . , xn/xn = 2]).

Here, Ψ[x1/x1 = a0, . . . , xn/xn = an] denotes the TPTL formula obtained from Ψ by
replacing every occurrence of xi by xi = ai for every i ∈ {1, . . . , n}.

Recall that the subformula xi = 2i−1∨xi = 2i is true if, and only if, the difference between
the current data value and the value to which xi is bound (and which, initially, is set to 0)
is 2i−1 or 2i. Hence, the subformula is only true at the two positions where the data values
are 2i− 1 and 2i, respectively. Clearly, Ψ is true if, and only if, w |=TPTL x.Ψ

′.

The quantified subset sum problem [29] (QSS, for short) is to decide for a given sequence
a1, a2, . . . , a2n, b ∈ N of binary encoded numbers, whether

∀x1 ∈ {0, a1}∃x2 ∈ {0, a2} . . . ∀x2n−1 ∈ {0, a2n−1}∃x2n ∈ {0, a2n} :

2n∑

i=1

xi = b

holds. This problem is PSPACE-complete [29].
We define a variant of QSS, called positive quantified subset sum problem (PQSS, for

short), in which for a given sequence a1, a2, . . . , a2n, b ∈ N \ {0} of binary encoded numbers,
we want to decide whether

∀x1 ∈ {1, a1}∃x2 ∈ {1, a2} . . . ∀x2n−1 ∈ {1, a2n−1}∃x2n ∈ {1, a2n} :

2n∑

i=1

xi = b.

One can easily see that QSS and PQSS are polynomial time-interreducible, and thus PQSS
is PSPACE-complete.

Theorem 5.11. Path checking for PureTPTL2(F)b over the infinite strictly monotonic pure
data word w = 0(1)ω+1 = 0, 1, 2, 3, 4, . . . is PSPACE-hard.

Proof. The theorem is proved by a reduction from PQSS. Given an instance a1, a2, . . . , a2n, b
of PQSS, we construct the PureTPTL2(F)b formula x.ϕ1, where the formula ϕi, for every
i ∈ {1, . . . , , 2n + 1}, is defined inductively by

ϕi =







y.G((y = 1 ∨ y = ai) → ϕi+1) for i < 2n odd,

y.F((y = 1 ∨ y = ai) ∧ ϕi+1) for i ≤ 2n even,

x = b for i = 2n + 1.

The intuition is the following: note that in the data word w the data value is increasing
by one in each step. Assume we want to evaluate y.G((y = 1 ∨ y = ai) → ϕi+1) in a
position where the data value is currently d. The initial freeze quantifier sets y to d. Then,
G((y = 1 ∨ y = ai) → ϕi+1) means that in every future position, where the current data
value is either d + 1 (in such a position y = 1 holds by the TPTL-semantics) or d + ai (in
such a position y = ai holds), the formula ϕi+1 has to hold. In this way, we simulate the
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quantifier ∀xi ∈ {1, ai}. At the end, we have to check that the current data value is b, which
can be done with the constraint x = b (note that x is initially set to 0 and never reset). One
can show that (0)ω+1 |=TPTL x.ϕ1 if, and only if, (a1, a2, . . . , a2n, b) is a positive instance of
PQSS.

Theorem 5.12. Path checking for FreezeLTL2 over infinite binary encoded pure data words
is PSPACE-hard.

Proof. The proof is by a reduction from PQSS. We first prove the claim for infinite binary
encoded data words. Then we show how one can change the proof to obtain the result for
pure data words.

Given an instance a1, a2, . . . , a2n, b of PQSS, we define the infinite data word

w ··= (r, b)

(

(q, 0)

2n∏

i=1

(p, 1)(p, ai)(r, 0)

)ω

+1

For definining the FreezeLTL2 formula, we first define for every FreezeLTL2 formula ψ the
auxiliary formulas

Fpψ ··= pU(p ∧ ψ) and Gpψ ··= ¬Fp¬ψ.

The formula Fpψ holds in position i if, and only if, there exists a future position j > i such
that ψ holds, and p holds in all positions k ∈ {i + 1, . . . , j}. Note that the formula Gpψ is
equivalent to ¬pR(p→ ψ); it thus holds in a position i if, and only if, for all future positions
j > i, ψ holds in position j whenever p holds in all positions k ∈ {i+ 1, . . . , j}.

Define for every i ∈ {1, . . . , 2n} the FreezeLTL2 formula ϕi as follows:

ϕi ··=







X3(i−1)Gpy.F(q ∧ y = 0 ∧ ϕi+1) for i < 2n odd,

X3(i−1)Fpy.F(q ∧ y = 0 ∧ ϕi+1) for i ≤ 2n even,

x = 0 for i = 2n + 1.

Finally set ϕ = x.y.Xϕ1.
Note that in ϕ, we require the auxiliary formulas Fpψ and Gpψ to hold in w only at

positions in which also q holds, i.e., at positions corresponding to the beginning of the
periodic part of w. Plainly put, formula Fpψ holds at some position in w in which also q
holds, if, and only if, ψ holds at the next or the next but one position; analogously, the
formula Gpψ holds, if, and only if, ψ holds at the next and the next but one position. Note
that we resign from using the next modality here to avoid an exponential blow-up of the
formula.

We explain the idea of the reduction. Assume w |=TPTL ϕ. Then, formula ϕ1 holds at
the beginning of the first iteration of the periodic part of w, i.e., at the position with letter
(q, 0). By formula Gpy.(q ∧ y = 0 ∧ ϕ2), we know that y.(q ∧ y = 0 ∧ ϕ2) holds both at
the position with letter (p, 1) and at the position with letter (p, a1) (universal quantification
by the Gp-modality). This is the case if, and only if, ϕ2 holds at the beginning of the 2nd
iteration of the periodic part of w (i.e., the position with letter (q, 1)) and at the beginning
of the (a1 +1)-th iteration of the periodic part of w (the position with letter (q, a1)). In the
former case, we can conclude that the formula y.F(q∧ y = 0∧ϕ3) holds at the position with
letter (p, 1 + 1) or at the position with letter (p, 1 + a2) (existential quantification of the
Fp-modality); in the second case, the formula y.F(q ∧ y = 0∧ϕ3) holds at the position with
letter (p, a1 + 1) or at the position with letter (p, a1 + a2) (again, existential quantification
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of the Fp-modality). Note how the intermediate sums computed so far, i.e., (1+1 or 1+ a2,
and, a1 + 1 or a1 + a2), are stored in the corresponding data values with proposition p.

Note that the register variable x is set to the first data value occurring in w, which is b.
Hence, in the formula ϕ2n, the constraint x = 0 expresses that the current data value has
to be b.

Clearly, one can prove that w |=TPTL x.y.Xϕ1 if, and only if, a1, a2, . . . , a2n, b is a
positive instance of PQSS.

Next, we explain how we can encode the propositional variables occurring in w and ϕ by
data values, to obtain the result for pure data words and the pure logics. Note that r does
not occur in ϕ. It thus suffices to encode q and p, respectively, which we do by (0, 1, 1) and
(0, 0, 0), respectively. We obtain the pure data word w′ from w by replacing all occurrences
of p and q by their corresponding data values, and by removing r, as follows, where we
underline the data values that occurred in the w:

w′ ··= b

(

0, 1, 1, 0,
2n∏

i=1

(0, 0, 0, 1, 0, 0, 0, ai, 0)

)ω

+1

.

Define ϕq = x.X(¬(x = 0) ∧ x.X(x = 0)) and ϕp = x.X(x = 0 ∧ X(x = 0)). We replace the
formula Fpψ by

F′
pψ = [ϕp ∨ X3(ϕp ∧ X¬ϕp) ∨ X2(ϕp ∧ X¬ϕp) ∨ X(ϕp ∧ X¬ϕp)]U[ϕp ∧ ψ]

and define G′
pψ = ¬F′

p¬ψ. Then we define:

ϕ′
i
··=







X9(i−1) G′
p X3y.F(ϕq ∧ X4ϕp ∧ X3(y = 0) ∧ X3ϕ′

i+1) for i < 2n odd,

X9(i−1) F′
p X3y.F(ϕq ∧ X4ϕp ∧ X3(y = 0) ∧ X3ϕ′

i+1) for i ≤ 2n even,

x = 0 for i = 2n+ 1.

Analysing the formulas yields that w′ |=TPTL x.y.X4 ϕ′
1 if, and only if, a1, a2, . . . , a2n, b is

positive instance of PQSS.

6. Model Checking for Deterministic One-Counter Machines

A one-counter machine (OCM, for short) is a nondeterministic finite-state machine extended
with a single counter that takes values in the non-negative integers. Formally, a one-counter
machine is a tuple A = (Q, q0, E), where Q is a finite set of control states, q0 ∈ Q is
the initial control state, and E ⊆ Q × Op × Q is a finite set of labelled edges, where
Op = {zero}∪{add(a) | a ∈ Z}. We use the operation zero to test whether the current value
of the counter is equal to zero, and we use add(a) for adding a to the current value of the
counter. A configuration of the one-counter machine A is a pair (q, c), where q ∈ Q is a state
and c ∈ N is the current value of the counter. We define a transition relation →A over the
set of all configurations by (q, c) →A (q′, c′) if, and only if, there is an edge (q, op, q′) ∈ E
and one of the following two cases holds:

• op = zero and c = c′ = 0,
• op = add(a) and c′ = c+ a ≥ 0.

If A is clear from the context, we write → for →A. A finite computation of A is a finite
sequence (q0, c0)(q1, c1) . . . (qn, cn) over Q × N such that c0 = 0 and (qi, ci) → (qi+1, ci+1)
for all i ∈ {0, . . . , n − 1}, and such that there does not exist a configuration (q, c) with
(qn, cn) → (q, c). We identify such a computation with the finite data word of the same form.
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An infinite computation of A is an infinite sequence (q0, c0)(q1, c1) . . . over Q×N such that,
again, c0 = 0, and (qi, ci) → (qi+1, ci+1) for all i ≥ 0. We identify such a computation with
the infinite data word of the same form. A deterministic one-counter machine A = (Q, q0, E),
briefly DOCM, is an OCM such that for every configuration (q, c) with (q0, 0) →

∗ (q, c) there
is at most one configuration (q′, c′) such that (q, c) → (q′, c′). This implies that A has a
unique (finite or infinite) computation, which we denote by comp(A), and which we view
as a data word as explained above. For complexity considerations, it makes a difference
whether the numbers a ∈ Z in operations add(a) occurring at edges in A are encoded in
unary or in binary. We will therefore speak of unary encoded (resp., binary encoded) OCMs
in the following. Let α(A) be the largest number a such that add(a) appears in an edge
from E. We use the following lemma from [9]

Lemma 6.1 ([9, Lemma 9]). Let A = (Q, q0, E) be a DOCM. Then, the following holds:

• If comp(A) is infinite then comp(A) = u1(u2)
ω
+k with 0 ≤ k ≤ |Q| and |u1u2| ≤ α(A)·|Q|3.

• If comp(A) is finite then |comp(A)| ≤ α(A) · |Q|3.

Proof. The first statement is shown in [9] for a DOCM A with the operations zero, add(−1)
and add(1) (and hence α(A) = 1). To get the full first statement of the lemma, it suffices to
simulate every add(a) operation by at most α(A) many operations add(−1) or add(1). To
the resulting DOCM one can then apply [9, Lemma 9].

The second statement is implicitly shown in the proof of [9, Lemma 9]. Like for the
proof of the first statement, it suffices to consider a DOCM such that a ∈ {1,−1} for all
instructions add(a) and afterwards multiply the length of comp(A) by α(A). Assume that
comp(A) is finite and let comp(A) = (q0, c0)(q1, c1) . . . (qn, cn). Consider i < j such that
ci = cj = 0. By [9, Lemma 10], we must have j − i ≤ |Q|2. Moreover, there can be at most
|Q| many i ≥ 0 such that ci = 0. Let k be maximal such that ck = 0. From the previous
discussion, we get k ≤ |Q|2(|Q| − 1).

Assume that there exist j > i > k with qi = qj. If ci ≤ cj then comp(A) would be infinite,
and if ci > cj then the counter would hit zero again, which contradicts the choice of k. It
follows that n ≤ k+|Q|−1 and hence |comp(A)| = n+1 ≤ k+|Q| ≤ |Q|2(|Q|−1)+|Q| ≤ |Q|3.

For unary encoded DOCMs we make use of the following result:

Lemma 6.2. For a given unary encoded DOCM A = (Q, q0, E) one can check in logspace,
whether comp(A) is finite or infinite. Moreover, the following holds:

• If comp(A) is finite, then the corresponding data word in unary encoding can be computed
in logspace.

• If comp(A) is infinite, then one can compute in logspace two unary encoded data words u1
and u2 and a unary encoded number k such that comp(A) = u1(u2)

ω
+k.

Proof. In order to check whether comp(A) is infinite, it suffices by Lemma 6.1 to simulate A
for at most α(A)·|Q|3 many steps. For this we store (i) the current configuration (q, c) with c
encoded in binary notation and (ii) a step counter t in binary notation, which is initially zero
and incremented after each transition of A. The algorithm stops if (q, c) has no successor
configuration or t reaches the value α(A) · |Q|3. In the latter case, comp(A) is infinite. Note
that the counter value c is bounded by α(A)2 · |Q|3. Therefore, logarithmic space suffices to
store (q, c) and t. More precisely, (q, c) can be stored with 4 log |Q| + 2 log α(A) bits (note
that in the input representation, α(A) is represented with α(A) bits) and t can be stored
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with 3 log |Q| + logα(A) bits. In a similar way, we can produce the data word comp(A)
itself in logarithmic space. We only have to print out the current configuration in each
step. Internally, our machine stores counter values in binary encoding. Since we want to
output the data word in unary encoding, we transform the binary encoded counter values
into unary encoding, which can be done with a logspace machine. In case comp(A) is finite,
the machine outputs the unary encoding of comp(A) in this way. In case comp(A) is infinite,
we can output with a first logspace machine the unary encoded data word consisting of the
first α(A) · |Q|3 many configurations. From this data word, a second logspace machine can
easily compute two unary encoded data words u1 and u2 and a unary encoded number k
such that comp(A) = u1(u2)

ω
+k. We then use the fact that the composition of two logspace

machines can be compiled into one logspace machine.

In order to extend Lemma 6.2 to binary encoded DOCMs, we need SLPs:

Lemma 6.3. For a given binary encoded DOCM A one can check in polynomial time,
whether comp(A) is finite or infinite. Moreover, the following holds:

• If comp(A) is finite, then an SLP G with val(G) = comp(A) can be computed in polynomial
time.

• If comp(A) is infinite, then one can compute in polynomial time two SLPs G1 and G2 and
a binary encoded number k such that comp(A) = val(G1)(val(G2))

ω
+k.

For the proof of Lemma 6.3 we need the following lemma:

Lemma 6.4. Let u be a finite data word, and let m ∈ N and k ∈ Z be binary encoded
numbers such that d + ik ≥ 0 for all data values d occuring in u and all 0 ≤ i ≤ m. From
u, m, and k one can construct in polynomial time an SLP for the data word

∏m
i=1 u+ik.

Proof. We first consider the case k > 0. First, assume that m = 2n for some n ≥ 0. If
Un =

∏2n

i=1 u+ik then we obtain the following recurrence:

U0 = u+k and Un+1 = Un(Un)+2nk.

This recurrence can be directly translated into an SLP. Second, assume that m is not neces-
sarily a power of two and let m = 2n1 +2n2 + · · ·+2nl be the binary expansion of m, where
n1 < n2 < · · · < nl. Let mj = 2n1 + 2n2 + · · · + 2nj for 1 ≤ j ≤ l. If Vj =

∏mj

i=1 u+ik then
we obtain the following recurrence:

V1 = Un1
and Vj+1 = Vj(Unj+1

)+mjk.

Again, this recurrence can be directly translated into an SLP.
Let us finally show how to reduce the case k < 0 to the case k > 0 (the case k = 0 is

easier). Assume that k < 0 and let v = (u+(m+1)k)
rev, where wrev denotes the data word w

reversed. Then, for l = −k > 0 we get the following identity:
m∏

i=1

u+ik = (

m∏

i=1

v+il)
rev.

From an SLP for
∏m
i=1 v+il it is easy to compute in polynomial time an SLP for (

∏m
i=1 v+il)

rev:
one just has to replace every right-hand side of the form BC by CB. This shows the lemma.
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Proof of Lemma 6.3. Fix a DOCM A = (Q, q0, E). We define below a procedure comp(q),
where q ∈ Q. This procedure constructs an SLP for the unique computation that starts
in the configuration (q, 0). Hence the call comp(q0) computes an SLP for comp(A). The
algorithm stores as an auxiliary data structure a graph G with vertex set Q ∪ {f} (where
f 6∈ Q) which initially is the empty graph and to which edges labelled with data words are

added. These data words will be represented by SLPs. The idea is that an edge q
u
−→ p

is added if the data word u represents a computation of A from configuration (q, 0) to
configuration (p, 0). The overall algorithm terminates as soon as (i) an edge to node f is
added or (ii) the graph G contains a cycle.

The call comp(q) starts simulating A in the configuration (q, 0). Let (pi, ci) be the
configuration reached after i ≥ 0 steps (thus, p0 = q). After at most |Q|+1 transitions, one
of the following situations has to occur:

• There exists 0 ≤ i ≤ |Q| such that that the computation terminates with (pi, ci). We add

the edge q
u
−→ f to the graph G, where u = (p0, 0)(p1, c1) . . . (pi, ci) and the call comp(q)

terminates.
• There exists 1 ≤ i ≤ |Q| + 1 such that ci = 0. We add the edge q

u
−→ pi to the graph G,

where u = (p0, 0)(p1, c1) . . . (pi−1, ci−1) and call comp(pi).
• ci > 0 for all 1 ≤ i ≤ |Q| + 1 and there exists 1 ≤ j < l ≤ |Q| + 1 such that pj = pl

and cj ≤ cl. We add the edge q
u
−→ f to the graph G, where u = u1(u2)

ω
+k, u1 =

(p0, 0)(p1, c1) . . . (pj−1, cj−1), u2 = (pj , cj)(pj+1, cj+1) . . . (pl−1, cl−1) and k = cl − cj , and
the call comp(q) terminates.

• ci > 0 for all 1 ≤ i ≤ |Q| + 1 and there exists 1 ≤ j < l ≤ |Q| + 1 such that pj = pl and
cj > cl. Let k = cl − cj < 0. We compute in polynomial time the binary encoding of the
largest number m ≥ 0 such that ci +mk > 0 for all j ≤ i ≤ l − 1. That means that the
computation of A starts from (q, 0) with the data word u

∏m
i=0 v+ik, where

u = (p0, 0)(p1, c1) . . . (pj−1, cj−1) and v = (pj, cj)(pj+1, cj+1) . . . (pl−1, cl−1).

Moreover, by the choice of m, there exists an i ∈ [j, l − 1] such that ci + (m + 1)k ≤ 0.
Let i be minimal with this property and define

w = (pj , cj + (m+ 1)k) . . . (pi−1, ci−1 + (m+ 1)k).

This implies that the computation of A starts from (q, 0) with the data word u(
∏m
i=0 v+ik)w.

Moreover, if ci+(m+1)k < 0 the computation terminates in the configuration (pi−1, ci−1+
(m + 1)k) and we add to G an edge from q to f labelled with u(

∏m
i=0 v+ik)w. On the

other hand, if ci + (m + 1)k = 0 then we add to G an edge from q to pi labelled with
u(
∏m
i=0 v+ik)w and call comp(pi).

We did not make the effort to make the above four cases non-overlapping; ties are broken in
an arbitrary way. As mentioned above we start the overall algorithm with the call comp(q0)
and terminate as soon as (i) an edge to node f is added or (ii) the graph G contains a
cycle. This ensures that there is a unique path in G starting in q0 that either ends in f (in
case (i)) or enters a cycle (in case (ii)). In case (i) the data word comp(A) is u1u2 . . . un,
where the data words u1, u2, . . . , un label the path from q0 to f (note that un can be an
infinite data word). In case (ii) the data word comp(A) is u1u2 . . . un(un+1 . . . um)

ω
+0, where

the data words u1, u2, . . . , un label the path from q0 to the first state on the cycle, and
un+1, . . . , um label the cycle. Finally, note that all data words that appear as labels in
G can be represented by SLPs that can be computed in polynomial time. For the label
u(
∏m
i=0 v+ik)w this follows from Lemma 6.4.
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The algorithm from the above proof can be also used to check in polynomial time whether
a given binary encoded OCM is deterministic, which is not clear from our definition of
DOCMs. We run the same algorithm as in the above proof but check in every step whether
more than one successor configuration exists.

Let L be one of the logics considered in this paper. The model-checking problem for L

over unary (resp., binary) encoded DOCMs asks for a given unary (resp., binary) encoded
DOCM A and a formula ϕ ∈ L, whether comp(A) |=logic ϕ holds. Based on Lemma 6.2 we
can now easily show:

Theorem 6.5. Let L be one of the logics considered in this paper. The model-checking
problem for L over unary encoded DOCMs is equivalent with respect to logspace reductions
to the path-checking problem for L over infinite unary encoded data words.

Proof. The reduction from the model-checking problem for L over DOCMs to the path-
checking problem for L over infinite unary encoded data words follows from Lemma 6.2. For
the other direction take a unary encoded infinite data word w = u1(u2)

ω
+k and a formula

ψ ∈ L. It is straightforward to construct (in logspace) from u1, u2 a unary encoded DOCM
A such that the infinite sequence of counter values produced by A is equal to the sequence
of data values in w with an initial 0 (that comes from the initial configuration (q0, 0)) added.
Moreover, no state of A repeats among the first |u1u2| many positions in comp(A). Hence,
by replacing every proposition in ψ by a suitable disjunction of states of A we easily obtain
a formula ψ′ ∈ L such that w |= ψ if, and only if, comp(A) |= ψ′.

By Theorem 6.5, the left diagram from Figure 7 also shows the complexity results for
TPTL-model checking over DOCMs.

Finally, for binary encoded DOCMs, Lemma 6.3 and Theorem 4.9 directly imply the
following result (PSPACE-hardness follows by a reduction similar to the one from the proof
of Theorem 6.5):

Theorem 6.6. The model-checking problem for TPTL over binary encoded DOCMs is
PSPACE-complete.

7. Summary and Open Problems

Figure 7 collects our complexity results for path-checking problems. We use TPTL≥2 to
denote the fragments in which at least 2 registers are used. We observe that in all cases
whether data words are pure or not does not change the complexity. For finite data words,
the complexity does not depend upon the encoding of data words (unary or binary), and
for TPTL and SMTL, it does not depend on whether a data word is monotonic or not. In
contrast to this, for infinite data words, these distinctions indeed influence the complexity:
for binary encoded data words the complexity picture looks different from the picture for
unary encoded or (quasi-)monotonic data words.

We leave open the precise complexity of the model-checking problem for MTL and
TPTL1 over DOCMs. Model checking MTL over data words that are represented by SLPs
is PSPACE-complete (and this even holds for LTL, see [24]), but the SLPs that result from
DOCMs have a very simple form (see the proof of Lemma 6.2). This may be helpful in
proving a polynomial time upper bound.

Kuhtz proved in his thesis [20] that the tree checking problem for CTL (i.e., the ques-
tion whether a given CTL formula holds in the root of a given tree) can be solved in
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AC2(LogDCFL). One might try to combine this result with the AC1(LogDCFL)-algorithm
of Bundala and Ouaknine [5] for MTL path checking over monotonic data words. There is
an obvious CTL-variant of MTL that might be called MCTL, which to our knowledge has
not been studied so far. Then, the question is whether the tree checking problem for MCTL
is in AC2(LogDCFL). Here the tree nodes are labelled with data values and this labelling
should be monotonic in the sense that if v is a child of u, then the data value of v is at least
as large as the data value of u.

Similarly to MTL, also TPTL has a CTL-variant. One might try extend our polynomial
time path checking algorithm for the one-variable TPTL-fragment to this CTL-variant.
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TPTL≥2
u TPTL1

b

TPTLu TPTL2
b

TPTLb

infinite data words,

unary or quasi-monotonic

infinite data words,
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P-compl. P-compl.

P-compl.

PSPACE-compl. PSPACE-compl.

PSPACE-compl.
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SMTLuMTLb

MTLu

TPTL1
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Figure 7: Complexity results of path checking
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