
Logical Methods in Computer Science
Vol. 13(4:4)2017, pp. 1–39
https://lmcs.episciences.org/

Submitted Nov. 29, 2016
Published Oct. 30, 2017

ADDING PATH-FUNCTIONAL DEPENDENCIES TO THE GUARDED

TWO-VARIABLE FRAGMENT WITH COUNTING

GEORGIOS KOURTIS AND IAN PRATT-HARTMANN

School of Computer Science, The University of Manchester, UK
e-mail address: {kourtisg,ipratt}@cs.man.ac.uk

Abstract. The satisfiability and finite satisfiability problems for the two-variable guarded
fragment of first-order logic with counting quantifiers, a database, and path-functional
dependencies are both ExpTime-complete.

1. Introduction

In the theory of information systems, a path-functional dependency is a data constraint
stating that individuals yielding identical values on application of various sequences of
functions must themselves be identical. For example, in a database of customers, we may
wish to impose the condition that no two individuals have the same customer ID:

∀x∀y(custID(x) = custID(y)→ x = y). (1.1)

Alternatively, we may wish to impose the condition that no two customers have both the
same name and postal codes:

∀x∀y(name(x) = name(y)∧
postCode(address(x)) = postCode(address(y))→ x = y). (1.2)

The formula in (1.1) has a single equality on the left-hand side of the implication; and
therefore we speak of the condition it expresses as a unary path-functional dependency. By
contrast, (1.2) has a conjunction of two equalities on the left-hand side of the implication;
and we speak of the condition it expresses as a binary path-functional dependency.

Path-functional dependencies were introduced by Weddell [Wed89] (see also [IW94,
BP00]), and are of particular interest when combined with data-integrity constraints rep-
resented using formulas of some description logics [TW05b, TW05a]. In this connection,
Toman and Weddell [TW08] report various results on the decidability of the satisfiability
problem for description logics extended with various forms of path-functional constraints.
The purpose of the present paper is to extend those results to a more general logical setting,
namely that of the two-variable guarded fragment with counting quantifiers.

2012 ACM CCS: [Theory of computation]: Database theory—Logic and databases.
Key words and phrases: Satisfiability, two-variable fragments, guarded fragment, counting quantifiers,

integrity constraints, key constraints, path-functional dependencies.

LOGICAL METHODSl IN COMPUTER SCIENCE DOI:10.23638/LMCS-13(4:4)2017
c© Georgios Kourtis and Ian Pratt-Hartmann
CC© Creative Commons

https://lmcs.episciences.org/
http://creativecommons.org/about/licenses

2 GEORGIOS KOURTIS AND IAN PRATT-HARTMANN

The guarded fragment of first-order logic, denoted GF , was introduced by Andréka et al.
[ANvB98] as a generalization of modal logic, in an attempt to explain the latter’s good
computational behaviour (see e.g. [Var96, Grä99b]). Roughly speaking, GF is the fragment
of first-order logic in which all quantification is relativized (guarded) by atoms featuring all
variables free in the context of quantification. Thus, for example, in the guarded formula

∀x(customer(x)→ ∃y(lastName(x, y) ∧ string(y))),

stating that every customer has a last name (which is of type string), the quantifier ∃y
is relativized by the binary atom lastName(x, y). This fragment has the so-called finite
model property: if a GF-formula is satisfied in some structure, it is satisfied in some finite
structure. The problem of determining whether a given GF-formula is satisfiable is 2-
ExpTime-complete [Grä99a], dropping to ExpTime-complete if the number of variables in
formulas is less than some fixed limit k ≥ 2. Of particular interest in this regard is the case
k = 2, since this fragment remains ExpTime-complete even when we add so-called counting
quantifiers (‘there exist at most/at least/exactly m x such that . . . ’). The resulting logic,
denoted GC2, allows us to state, for example, that customers are uniquely identified by their
customer identification numbers:

∀x(string(x)→ ∃≤1y(custID(y, x) ∧ customer(y))).

Indeed, GC2 subsumes the well-known description logic ALCQI.
The logic GC2 lacks the finite model property. Nevertheless, the satisfiability and

finite satisfiability problems for this fragment are both decidable, and in fact ExpTime-
complete [Kaz04, PH07].

From a logical point of view, a database is simply a finite set of ground literals—i.e. atomic
statements or negated atomic statements featuring only constants as arguments:

custID(#111001, 5030875), firstName(#111001, ‘Fred’), . . .

We assume that such data are subject to constraints presented in the form of a logical
theory—as it might be, a collection of formulas of GC2, for instance. Those constraints may
imply the existence of individuals not mentioned in the database: indeed, since GC2 lacks
the finite model property, they may consistently imply the existence of infinitely many such
individuals. We denote by GC2D the logic that results from adding a database to GC2; and
we denote by GC2DK the logic that results from adding unary and binary path-functional
dependencies to GC2D. (A formal definition is given in Sec. 2.)

The satisfiability problem for GC2DK asks the following: given a database ∆, a GC2-
formula ϕ and a finite set of unary and binary path-functional dependencies K, are the data
in ∆ consistent with the constraints expressed in ϕ and K? The finite satisfiability problem
for GC2DK asks the same question, but subject to the assumption of a finite universe. We
show that both of these problems are ExpTime-complete, the same as the corresponding
problems for GC2 alone. That is: adding databases and unary or binary path-functional
dependencies to GC2 does not change the complexity class of the satisfiability and finite
satisfiability problems.

Our strategy will be to reduce the satisfiability and finite satisfiability problems for
GC2DK to the corresponding problems for GC2D, by showing how unary and binary path-
functional dependencies can be systematically eliminated. The case of unary path-functional
dependencies is simple, and is dealt with in the preliminary material of Sec. 2. Binary
path-functional dependencies, however, present a greater challenge, and occupy the whole
of Sections 3–6. Our point of departure here is the familiar observation that models of

ADDING PATH-FUNCTIONAL DEPENDENCIES TO GC2 3

GC2-formulas, when viewed as graphs, can be assumed to contain no ‘short’ cycles. We use
this observation to characterize putative violations of binary path-functional dependencies
in terms of the occurrence of certain acyclic subgraphs, which can then be forbidden by
writing additional GC2-formulas. The remainder of the paper, Sections 7–9, is devoted to
establishing that the satisfiability and finite satisfiability problems for GC2D are both in
ExpTime. The argument here proceeds by reduction to linear programming feasibility,
closely following the proof given in [PH07] that the finite satisfiability of GC2 is in ExpTime.
We show how to modify that proof so as to accommodate the presence of a database.

2. Preliminaries

2.1. The logics GC2, GC2D and GC2DK. A literal is an atomic formula or the negation of
an atomic formula; a literal is ground if all arguments occurring in it are constants. If ϕ is
any formula, the length of ϕ, denoted ‖ϕ‖, is the number of symbols it contains. In addition
to the usual boolean connectives, quantifiers ∀, ∃, and equality predicate, we employ the
counting quantifiers ∃≤C , ∃≥C and ∃=C (for all C ≥ 0). A sentence is a formula with no
free variables. In most of this paper, we consider two-variable formulas—that is, those
whose only variables (free or bound) are x and y. Furthermore, we restrict attention to
signatures comprised of individual constants or predicates of arity 1 or 2; in particular,
function symbols are not allowed. (Function symbols were used in Section 1 for the sake of
presentation, but we introduce different notation for path-functional dependencies in the
sequel.) We call literals involving only symbols from some signature σ σ-literals.

An atomic formula of the form p(x, y) or p(y, x) is called a guard. The guarded two-
variable fragment with counting, denoted GC2 is the smallest set of formulas satisfying the
following conditions:

• unary or binary literals with all arguments in {x, y} are formulas, with = allowed as a
binary predicate;
• the set of formulas is closed under Boolean combinations;
• if ϕ is a GC2-formula with at most one free variable and u is a variable (i.e. either x or y),

then ∀u.ϕ and ∃u.ϕ are formulas.
• if ϕ is a formula, α is a guard, u is a variable and C is a bit-string, then ∃≤Cu(α ∧ ϕ),
∃≥Cu(α ∧ ϕ) and ∃=Cu(α ∧ ϕ) are formulas.

We read ∃≤Cu.ϕ as ‘there exist at least C u such that ϕ’, and similarly for ∃≥C and
∃=C . The formal semantics is as expected. To improve readability, we write ∃≤0u(α ∧ ¬ϕ)
as ∀u(α→ ϕ), and ∃≥1u(α ∧ ϕ) as ∃u(α ∧ ϕ). Where no confusion results, we equivocate
between bit-strings and the integers they represent, it being understood that the size of
the expression ∃=C is approximately logC (and not C). Observe that formulas of the form
∃≤Cx.p(x) are not in GC2, because counting quantifiers must be guarded by atoms featuring
both variables. (This is not a gratuitous restriction: adding such formulas to GC2 renders
the fragment NExpTime-time hard.) In the sequel, formulas that are obviously logically
equivalent to a GC2-formula will typically be counted as GC2-formulas by courtesy.

A database is a set ∆ of ground (function-free) literals. We call ∆ consistent if it includes
no pair of ground literals {α,¬α}. Where the signature σ is clear from context, we call
∆ complete if for any ground σ-literal λ 6∈ ∆, ∆ ∪ {λ} is inconsistent. Given a database
∆, a completion for ∆ is any complete set ∆∗ ⊇ ∆ of ground (function-free) σ-literals.
It is obvious that every consistent database has a consistent completion. Databases are

4 GEORGIOS KOURTIS AND IAN PRATT-HARTMANN

interpreted as sets of atomic formulas in the expected way. For convenience, we shall employ
the unique names assumption throughout: distinct individual constants are interpreted
as distinct individuals. Hence, when a particular interpretation is clear from context, we
sometimes equivocate between constants and their denotations to streamline the presentation.
To further reduce notational clutter, we allow ourselves to treat a database ∆ as a single
conjunctive formula—i.e., writing ∆ in place of

∧
∆.

The two-variable guarded fragment with counting and databases, denoted GC2D, is defined
exactly as for GC2, except that we have the additional syntax rule

• ground unary or binary literals are formulas.

Although GC2D allows formulas in which ground literals appear within the scope of quantifiers,
in practice, it is much more natural to separate out the ‘GC2-part’ from the ‘database-part’:
thus all GC2D-formulas encountered in the sequel will have the form ϕ ∧∆, where ϕ is a
GC2-formula, and ∆ a database. Notice, however, that, in GC2D, it is forbidden to mix
variables and individual constants in atoms: thus, for example, p(x, c) is not a GC2D-formula.
This is an essential restriction; if mixing variables and constants is allowed, it is easy to
encode a grid of exponential size and, as a result, runs of an exponential-time Turing
machine, leading to an NExpTime lower bound. If A is any structure, we call those elements
interpreting an individual constant active, and we refer to the set of all such elements as the
active domain (or sometimes, informally, as the database). Elements which are not active
are called passive.

We assume that any signature σ features a (possibly empty) distinguished subset of
binary predicates, which we refer to as key predicates. Key predicates are always interpreted
as the graphs of irreflexive functions. That is, if f is a key predicate, then in any structure
A interpreting f , A |= ∀x∃≤1y f(x, y) and A |= ∀x∃y(f(x, y) ∧ x 6= y). (We remark that
this formula is in GC2.) We use the (possibly subscripted or otherwise decorated) letters
f , g, h to range over key predicates, and we use f̄ , ḡ, h̄ for words over the alphabet of
key predicates—i.e., finite sequences of key predicates. Warning: f̄1, f̄2 etc. will always be
taken to denote whole sequences of key predicates, not the individual elements of some such
sequence f̄ .

If A is a structure, f̄ a word f0 · · · fk−1 over the alphabet of key predicates interpreted by
A, and a ∈ A, we write f̄A(a) to denote the result of successively applying the corresponding
functions in f̄ to a. More formally, f̄A(a) = ak where a0 = a and, for all i (0 ≤ i < k), ai+1

is the unique b ∈ A such that A |= fi(ai, b). An n-ary path-functional dependency κ is an
expression

P[f̄1, . . . , f̄n] (2.1)

where, for all i (1 ≤ i ≤ n), f̄i is a word over the alphabet of key predicates. Thus, P[] is
simply a piece of logical syntax that allows us to construct a formula from an n-tuple of
sequences of key predicates. For any interpretation A, we take the dependency (2.1) to be
satisfied in A, and write A |= κ, if, for all a, b ∈ A,

f̄Ai (a) = f̄Ai (b) for all i (1 ≤ i ≤ n) implies a = b.

That is to say, κ is satisfied in A if any two elements of A which agree on the result of
applying each of the function sequences corresponding to the words f̄1 to f̄n are in fact
identical. In this paper we shall consider only unary and binary path-functional dependencies,
i.e. n = 1 or 2. The two-variable guarded fragment with counting, databases and (unary
or binary) path-functional dependencies, denoted GC2DK, is defined exactly as for GC2D,
except that we have the additional syntax rule

ADDING PATH-FUNCTIONAL DEPENDENCIES TO GC2 5

• all unary and binary path-functional dependencies are formulas.

Again, to reduce notational clutter, we treat a set of path-functional dependencies K as
a single conjunctive formula—i.e., writing K in place of

∧
K. Although GC2DK allows

formulas in which path-functional dependencies appear within the scope of quantifiers, in
practice, it is much more natural to separate out the ‘GC2-part’ from the database and
the path-functional dependencies: thus all GC2DK-formulas encountered in the sequel will
have the form ϕ ∧ ∆ ∧ K, where ϕ is a sentence of GC2, ∆ is database, and K a set of
path-functional dependencies.

Note that, although key predicates give us the ability to express functional dependencies,
they remain, syntactically speaking, predicates, not function-symbols. In fact in the logics
considered here, there are no function-symbols. In particular the expressions (1.1) and (1.2)
are for expository purposes only: in GC2DK, we should write, respectively, the unary and
binary path-functional dependencies

P[custID], P[name, postCode address],

where custID, postCode and address are binary (key) predicates.
Taking key predicates to denote total (as opposed to partial) functions represents

no essential restriction, as partial functions can always be encoded using total functions
interpreted over expanded domains featuring ‘dummy’ objects. The restriction to irreflexive
functions, though not so easily eliminable, is in most cases perfectly natural (the telephone
number of a person is not a person), and greatly simplifies much of the ensuing argumentation,
obviating the constant need to consider various special cases.

If L is any of the languages GC2, GC2D or GC2DK, a sentence ϕ of L is (finitely) satisfiable
if, for some (finite) structure A interpreting its signature, A |= ϕ. We define the (finite)
satisfiability problem for any of the logics in the expected way: given a formula ϕ of L, return
Y if ϕ is (finitely) satisfiable; N otherwise. It was shown in [Kaz04] that the satisfiability
problem for GC2 is ExpTime-complete, and in [PH07] that the finite satisfiability problem
for GC2 is ExpTime-complete. In this paper, we show that the same complexity bounds
apply to GC2D and GC2DK.

The following lemma assures us that we may confine attention to GC2DK formulas of
the standard form ϕ ∧∆ ∧K.

Lemma 2.1. Let ψ be a GC2DK formula. We can compute, in time bounded by exponential
function of |ψ|, a set Ψ of GC2DK formulas with the following properties: (i) each formula
in Ψ is bounded in size by a polynomial function of |ψ| and has the form ϕ ∧∆ ∧K, where
ϕ is a GC2-formula, ∆ a complete database and K a set of path-functional dependencies;
(ii) ϕ is (finitely) satisfiable if and only if some member of Ψ is.

Sketch proof. Consider any mapping θ from the set of path-functional dependencies and
ground atoms occurring in ψ to the logical constants {>,⊥}, and let K = ∆ = ∅. For every
path-functional dependency κ occurring in ψ, if θ(κ) = >, add κ to K; otherwise, add to ∆
a sequence of literals (possibly with fresh individual constants) encoding a violation of κ in
the obvious way. Let ψ′ be the result of replacing each path-functional dependency κ in ψ
by θ(κ). For every ground atom α occurring in ψ′, if θ(α) = >, add α to ∆; otherwise, add
¬α to ∆. Let ϕ be the result of replacing each ground atom α in ψ′ by θ(α). Let Ψ be the
set of of all formulas obtained in this way, for all possible mappings θ.

6 GEORGIOS KOURTIS AND IAN PRATT-HARTMANN

The logic GC2 sometimes surprises us with its expressive power. The next lemma provides
a simple example, that will prove useful in the sequel. Let dst(x, y, z) be an abbreviation for
the formula x 6= y ∧ y 6= z ∧ x 6= z, stating that x, y and z are distinct.

Lemma 2.2. Let

ϕ1(x) := ∃y∃z
(
dst(x, y, z) ∧ α(x, y) ∧ β(y, z)

)
,

ϕ2(y) := ∃x∃z
(
dst(x, y, z) ∧ α(x, y) ∧ β(y, z)

)
,

be formulas over σ, where α(x, y) and β(y, z) are GC2-formulas. Then, we can compute, in
polynomial time, GC2-formulas ϕ∗1(x) and ϕ∗2(y), which are logically equivalent to ϕ1(x) and
ϕ2(y) respectively.

Proof. Let

ϕ∗1(x) := ∃y
(
x 6= y ∧ α(x, y) ∧ ¬β(y, x) ∧ ∃x(x 6= y ∧ β(y, x))

)
∨∃y

(
x 6= y ∧ α(x, y) ∧ β(y, x) ∧ ∃≥2x(x 6= y ∧ β(y, x))

)
;

ϕ∗2(y) := ∃x
(
x 6= y ∧ α(x, y) ∧ ¬β(y, x) ∧ ∃x(x 6= y ∧ β(y, x))

)
∨∃x

(
x 6= y ∧ α(x, y) ∧ β(y, x) ∧ ∃≥2x(x 6= y ∧ β(y, x))

)
.

2.2. Graphs of structures. If f is a key predicate, we introduce a new binary predicate
f−1, referred to as the converse of f , and subject to the requirement that, for any structure
A, A |= ∀x∀y

(
f(x, y)↔ f−1(y, x)

)
. (We remark that this formula is in GC2.) There is no

requirement that f−1 be functional, though of course it must be irreflexive. We refer to any
key predicate f or its converse f−1 as a graph predicate. We use the (possibly subscripted
or otherwise decorated) letters r, s, t to range over graph predicates. If r = f−1, we take
r−1 to denote f . In the sequel, we fix a signature σ such that, for any key predicate f in σ,
f−1 is also in σ. That is: the set of graph predicates of σ is closed under converse. We use
letters r̄, s̄, t̄ for words over the alphabet of graph predicates—i.e., finite sequences of graph
predicates. If r̄ = r1 · · · r`, we write r̄−1 for the word r−1

` · · · r
−1
1 .

Let A be a structure interpreting σ over domain A, and let E = E1 ∪ E2 be the set of
unordered pairs of elements of A, given by

E1 ={(a, b) ∈ A2 | A |= r(a, b) for some graph predicate r of σ}
E2 ={(a, b) ∈ A2 | a and b are distinct and both active}.

Then G = (A,E) is a (possibly infinite) graph, and we refer to G as the graph of A. The
edges of the graph are essentially the union of the interpretations of graph predicates, but
with the database totally connected. By a cycle in A, we mean a finite sequence of distinct
elements ā = a0 · · · a`−1, with ` ≥ 3, such that, writing a` = a0, (ai, ai+1) ∈ E for all i
(0 ≤ i < `). The length of ā is `. A cycle in A is said to be active if all its elements are
active (i.e. are interpretations of constants), passive if all its elements are passive, and mixed
if it contains both passive and active elements. We call A `-quasi-acyclic if all passive or
mixed cycles in A have length greater than `.

The following lemma is a kind of pumping lemma for interpretations for the logic GC2D.
It states that, if a GC2D-formula ϕ is satisfied in a (finite) structure A, then ϕ is also satisfied
in a (finite) structure B containing no short passive or mixed cycles in B.

ADDING PATH-FUNCTIONAL DEPENDENCIES TO GC2 7

Lemma 2.3 [PH09, Lemma 13]. Let ϕ be a GC2D-formula. Suppose A |= ϕ, with D ⊆ A
the set of active elements, and let ` > 0. Then there exists an `-quasi-acyclic model B |= ϕ
such that D ⊆ B and A|D = B|D. Moreover, if A is finite, then we can ensure that B is
finite.

We remark that the proof of Lemma 2.3 makes essential use of guardedness.
Having discussed the graphs defined by GC2D-structures, we turn now to configurations

of small collections of elements of those structures. Let A be a structure interpreting σ over
domain A, let ā = a0 · · · a` (` ≥ 0) be a word over the alphabet A, and let r̄ = r0, . . . r`−1 be
a word over the alphabet of graph predicates of σ. The pair [ā, r̄] is a walk of length ` if, for
all i (0 ≤ i < `) A |= ri[ai, ai+1]. Alternatively, we say that ā is an r̄-walk; and where r̄ is
clear from context, we speak of the walk ā. There is no requirement that the ai all be distinct,
though, of course, the irreflexivity of ri means that ai 6= ai+1 (0 ≤ i < `); however, if the ai
are all distinct, then we speak of the path ā. Now let ā′ = a0, . . . , a`−1, with r̄ = r0, . . . r`−1

be as before. The pair (ā′, r̄) is a tour of length ` if, for all i (0 ≤ i < `) A |= ri[ai, ai+1]
where addition in indices is performed modulo `. Again, we speak of ā′ as being an r̄-tour,
etc. Intuitively, we identify the tour (ā′, r̄) with the walk [ā′a0, r̄], starting and ending at a0.
Note that (ε, ε) (corresponding to ` = 0) is a tour, namely, the empty tour starting (and
ending) at any element a. A path ā is said to be active if all its elements are active, passive
if all its elements are passive, and mixed otherwise; similarly for (non-empty) tours. In the
case of the empty tour, we count it as being active if we think of it as beginning at an active
element, and passive otherwise: this slight informality should cause no confusion in practice.
Notice that a tour of length at least 3 in which all elements are distinct is a cycle in A.

Consider now any walk [ā, f̄] in A, where ā = a0 · · · a`. Noting that the ai are not
necessarily distinct, let V = {ai | 0 ≤ i ≤ `}, and let us say that a and b in V are neighbours
if, for some i (0 ≤ i < `), either a = ai and b = ai+1, or b = ai and a = ai+1. Let
E be the set of unordered pairs (a, b) from V such that a and b are neighbours. Then
G = (V,E) is a graph, which we refer to as the locus of the walk [ā, f̄]. If (ā, f̄) is a
non-empty tour in A beginning at a0, then we take the locus of (ā, f̄) to be the locus of the
walk [āa0, f̄]. Thus loci are static records of all the steps taken during a walk or tour, but
with information about the order of those steps suppressed. Fig. 1 shows a possible locus
of a tour (a0a1a2a3a4a3a5a3a4a3a2a1, f0 · · · f11) of length 12; the element a3 is encountered
four times in this tour. It is easy to see that the locus of a walk (or tour) in A is a subgraph
of the graph of A, though of course it will in general not be an induced subgraph. We call a
walk (or tour) acyclic if its locus contains no cycles. The tour whose locus is depicted in
Fig. 1 is acyclic. It should be obvious that, if A is an `-quasi-acyclic structure, and (ā, f̄) a
passive tour in A of length at most `, then (ā, f̄) must be acyclic.

2.3. Path-functional dependencies and their violations. With these preliminaries
behind us, we turn our attention to the analysis of path-functional dependencies in particular
structures. We start, for simplicity, with the unary case. Our goal will be to encode a
given unary path-functional dependency as a certain GC2 formula. Let κ be a unary path-
functional dependency P[f̄], where f̄ = f0 · · · fk−1. If 0 ≤ i ≤ k, denote the prefix f0 · · · fi−1

by f̄i, and let κi = P[f̄i]; we call κi a prefix of κ. It is easily seen that κ entails each of its
prefixes—i.e., A |= κ→ κi. Moreover, the empty unary path-functional dependency, P[ε],
is trivially valid. A set K of unary path-functional dependencies is prefix-closed, if for any
κ ∈ K, every prefix of κ is in K. Given any set K of unary path-functional dependencies,

8 GEORGIOS KOURTIS AND IAN PRATT-HARTMANN

a0 a1 a2 a3

a4

a5

f0

f11

f1

f10

f2

f9

f3, f7

f4, f8

f5

f6

Figure 1. A tour (a0a1a2a3a4a3a5a3a4a3a2a1, f0 · · · f11) and its locus.

we may—without affecting satisfiability—ensure that it is prefix closed by adding at most
linearly many additional unary path-functional dependencies.

Suppose now that κ is violated in some σ-structure A, and let a, b ∈ A be a violating
pair for κ, i.e. a 6= b but the f̄ -walks starting at a and b end in the same element. Define the
sequence of elements ā = a0 · · · ak where a0 = a and, for all i (0 ≤ i < k), A |= fi(ai, ai+1);
and define b̄ = b0 · · · bk where b0 = b and, for all i (0 ≤ i < k), A |= fi(bi, bi+1). Noting that
ak = bk, let i be the smallest number 0 ≤ i ≤ k such that ai = bi, i.e. the point at which
ā and b̄ converge. Clearly i > 0, since a and b are distinct. We say that the violation of
κ at a, b is critical if i = k, i.e. if ā and b̄ converge only at their last element. It is then
obvious that, if K is prefix closed, and some κ ∈ K is violated, then some κ′ ∈ K is critically
violated.

Checking for critical violations of unary path-functional dependencies is simple. Bearing
in mind that P[ε] is trivial valid, suppose κ = P[f̄f]. For any prefix f̄ ′ of f̄ (proper or
improper), let pf̄ ′ be a fresh unary predicate, and let Pκ be the set GC2-formulas{

∀x.pε(x)} ∪
{
∀x
(
pf̄ ′f ′(x)↔ ∃y(pf̄ ′(y) ∧ f ′(y, x))

)
| f̄ ′f ′ a prefix of f̄}.

In the presence of Pκ, we may read pf̄ ′(x) as stating that x is at the end of an f̄ ′-walk in A.

Thus, in a model A |= Pκ, κ = P[f̄f] has a critical violation just in case the formula

ψκ(y) := ∃x∃z(dst(x, y, z) ∧ (pf̄ (x) ∧ f(x, y)) ∧ (pf̄ (z) ∧ f(z, y)).

is satisfied in A. (In particular, if κ has a critical violation at a, b, ψκ will be satisfied at
the (common) final elements of the f̄ -walks starting at a and b.) By Lemma 2.2, ψκ(y) may
be equivalently written as a GC2-formula ψ∗κ(y). Thus, if K is a prefix-closed set of unary
path-functional dependencies, a GC2DK-formula ϕ ∧K ∧∆ is satisfiable over some domain
A if and only if the GC2D-formula

ϕ ∧
∧⋃

{Pκ | κ ∈ K} ∧
∧
κ∈K
∀y ¬ψ∗κ(y) ∧∆

is satisfiable over the same domain. This provides a polynomial time reduction from the
(finite) satisfiability problem for GC2DK restricted to unary path-functional dependencies to
the corresponding problem for GC2D. Since we show in the sequel that the latter problem is
in ExpTime, so is the former.

We now turn our attention to the more difficult case of binary path-functional depen-
dencies. Let κ be a binary path-functional dependency P[f̄ , ḡ], where f̄ = f0 · · · fk−1. For

ADDING PATH-FUNCTIONAL DEPENDENCIES TO GC2 9

all i (0 ≤ i < k), denote by f̄i, the prefix f1 · · · fi−1 of f̄ , and let κi = P[f̄i, ḡ]. We call
κi a left-prefix of κ. Thus κ entails each of its left-prefixes; moreover, P[ε, ḡ] is trivially
valid. If K is a set of binary path-functional dependencies, say that K is left-prefix-closed, if
for κ ∈ K, any left-prefix of κ is in K. Any set K of binary path-functional dependencies
may—without affecting satisfiability—be made left-prefix-closed by adding at most linearly
many additional binary path-functional dependencies. We could instead have spoken of
right-prefix-closed sets of functional dependencies, defined in the obvious way; the choice
between these notions is completely arbitrary.

Suppose now that κ = P[f̄ , ḡ] is violated in some σ-structure A, and let a, b ∈ A be
a violating pair for P[f̄ , ḡ], i.e. a 6= b but the f̄ -walks starting at a and b end in the same
element, and moreover the ḡ-walks starting at a and b end in the same element. Writing
f̄ = f0 · · · fk−1, define the sequence of elements ā = a0 · · · ak where a0 = a and, for all i
(0 ≤ i < k), A |= fi(ai, ai+1). Similarly define b̄ = b0 · · · bk where b0 = b and, for all i
(0 ≤ i < k), A |= fi(bi, bi+1). We call the violation of κ at a, b critical if ai 6= bi for all i
(0 ≤ i < k). It is again obvious that, if K is a left-prefix-closed set of binary path-functional
dependencies, and some κ ∈ K is violated, then some κ′ ∈ K is critically violated. Thus, as
with unary path-functional dependencies, so with their binary counterparts, we may confine
our attention to critical violations.

The difficulty is that critical violations of binary path-functional dependencies cannot
be straightforwardly expressed using GC2-formulas as in the unary case. To understand the
problem, consider a binary path-functional dependency κ = P[f̄f, ḡ], which has a critical
violation at a, b. Writing f̄ = f0 · · · fk−1 and fk = f , define ā = a0 · · · ak+1 where a0 = a
and, for all i (0 ≤ i ≤ k), A |= fi(ai, ai+1), and define b̄ = b0 · · · bk+1 where b0 = b and,
for all i (0 ≤ i ≤ k), A |= fi(bi, bi+1). Thus, ak+1 = bk+1. Writing ḡ = g0 · · · g`−1, define
ā′ = a′0 · · · a′` where a′0 = a and, for all i (0 ≤ i < `), A |= gi(a

′
i, a
′
i+1); and define b̄′ similarly,

but starting with b′0 = b. Thus, a′` = b′`. Referring to Fig. 2, it follows that

a0a1 · · · akak+1bk · · · b1b0b′1 · · · b′`a′`−1 · · · a′1
is an f̄ff−1f̄−1ḡḡ−1-tour in A. The problem is how to characterize the existence of such
tours with only GC2-formulas and conditions on the database at our disposal.

Let us consider the tour of Fig. 2 more closely. Since key predicates are by assumption
irreflexive, we know that neighbouring elements in this tour are distinct. Furthermore, since
the violation of κ is by assumption critical, we also know that ak 6= bk. That is, the elements
ak, ak+1 and bk are all distinct. We can make this observation—which is fundamental to the
entire development of Section 3, 4 and 5—work for us if we rotate the tour so that it starts
at ak. Write c = ak, d = ak+1 = bk+1 and e = bk, so that A |= f(c, d) and A |= f(e, d), with
c, d and e all distinct. This yields a tour

(cdeē, ff−1f̄−1ḡḡ−1f̄f)

for some sequence of elements ē. For brevity, we shall always write r̄κ in the sequel to denote
the ‘rotated’ sequence of graph predicates

r̄κ = ff−1f̄−1ḡḡ−1f̄f

obtained from the binary path-functional dependency P[f̄f, ḡ]. Thus, κ is critically violated
in a structure A if and only if A contains an r̄κ-tour whose first three elements are distinct.

Note that the diagram of Fig. 2 depicts an r̄κ-tour, and not its locus. In particular,
there is no assumption that the sequences ā, b̄, ā′ and b̄′ do not contain repeated elements,
and no assumption that they are disjoint. Indeed, we recall Lemma 2.3, which allows us to

10 GEORGIOS KOURTIS AND IAN PRATT-HARTMANN

a = a0

b = b0

c = ak

d = ak+1 = bk+1

e = bk

f̄

ḡ

ḡ

f̄

f

f

Figure 2. A critical violating tour of P[f̄f, ḡ]. The sequences a0 · · · ak and
b0 · · · bk are f̄ -walks; the elements c, d and e are distinct.

restrict attention to `-quasi-acyclic structures for various `. If ` > |r̄κ|, then all violations of
κ involving only passive elements will yield acyclic r̄κ-tours. This forms our main line of
attack: Sections 3 and 4 are concerned with the classification of r̄κ-tours; Section 5 uses
this classification to encode the non-existence of critical violations using GC2-formulas and
conditions on the database; finally, Section 6 assembles all these observations to yield a
reduction of the (finite) satisfiability problem for GC2DK to the corresponding problem for
GC2D.

3. Decompositions of Walks and Tours

We have seen that critical violations of binary path-functional dependencies in a structure
correspond to the existence of certain tours in the graph of that structure. This section
presents the basic tools we require in the sequel for decomposing walks and tours in structures.
None of the reasoning involved goes beyond elementary graph theory. Lemmas 3.1–3.2
concern acyclic walks and tours; Lemmas 3.3–3.5 concern tours in `-quasi-acyclic structures.

Lemma 3.1. Let A be a structure and [ā, t̄] be an acyclic walk in A. Then, for some m ≥ 1,
the sequences ā and t̄ can be decomposed

ā = b̄0b0 · · · b̄m−1bm−1b̄mbm

t̄ = r̄0r0 · · · r̄m−1rm−1r̄m

such that: (i) the sequences b̄1, . . . , b̄m are pairwise disjoint; (ii) for all j (0 ≤ j ≤ m),
(b̄j , r̄j) is a tour starting at bj; and (iii) [b0 · · · bk, r0 · · · rm−1] is a path in A (Fig. 3).

Proof. Let ā = a0 · · · a` (` > 0). Let ι(0) = 0 and define b0 = aι(0) = a0. Suppose now that
ι(i) and bi have been defined, with i ≤ `. If bi 6= a`, then let ι(i+ 1) be the largest number
j (ι(i) < j ≤ `) such that aj−1 = bi, and define bi+1 = aι(i+1) and b̄i = aι(i) · · · aι(i+1)−2.

Likewise, define ri = tι(i+1)−1 and r̄i = tι(i) · · · tι(i+1)−2. Then A |= ri(bi, bi+1) and (b̄i, r̄i)
is a possibly empty acyclic tour starting at bi. When, eventually, bi = a`, define m = i,
b̄m = aι(i) · · · a`−1 and r̄m = fι(i) · · · f`−1. The disjointness of the b̄i is immediate.

ADDING PATH-FUNCTIONAL DEPENDENCIES TO GC2 11

b0 = a0 b1 bk = a`

b̄0 b̄1 b̄k

Figure 3. A decomposition of a walk a0 · · · a` into its spine b0 · · · bk, with a
(possibly empty) acyclic subtour at each bi, 0 ≤ i ≤ k.

a0
c

a (= ai = aj)

aj+1

ai−1

Figure 4. A cycle when ai−1 6= aj+1, as described in the proof of Lemma 3.2;
b̄′′′ is the path from c to ai−1 and b̄′′c is the path from aj+1 to c.

We call the path [b0 · · · bk, r0 · · · rk−1] in the decomposition of [ā, t̄] given by Lemma 3.1
the spine of [ā, t̄]. Where the sequence t̄ is of no interest, we simply say that b0 . . . bk is the
spine of ā.

Lemma 3.2. Let A be a structure and ā = a0, . . . , a`−1 a non-empty acyclic tour in A. Let
a be any element of ā not equal to a0, let i, j (0 < i ≤ j < `) be the smallest and the largest
index respectively such that ai = aj = a, and let a` = a0. Then aj+1 = ai−1.

Proof. Observe first that the words a0, . . . , ai−1 and aj+1, . . . , a` are non-empty, since ai =
aj 6= a0 = a`; thus, these words define walks in A. Let b̄ be the spine of the walk a0, . . . , ai−1,
and let b̄′ be the spine of the walk aj+1, . . . , a`. Thus, b̄ is a path from a0 to ai−1 and b̄′ a
path from aj+1 to a`. Let b̄′′c be the shortest prefix of b̄′ that intersects b̄, and let b̄′′′ be the
suffix of b̄ beginning with the element c. Then, if ai−1 6= aj+1, b̄′′′aib̄

′′ is a cycle, contrary to
hypothesis. (See Fig. 4 for an illustration.)

The following lemmas concern tours in `-quasi-acyclic structures. We start with the
observation that, if a tour of length ` in such a structure exits the database at some point,
then it must re-enter at the same point. Recall that a mixed tour is one featuring both
active and passive elements; and remember that, in the graph of a structure A, the database
is totally connected.

Lemma 3.3. Let A be an `-quasi-acyclic structure and ā = a0 · · · a`−1 a tour in A. Suppose
i (0 ≤ i < `) is such that a0 · · · ai are all active, but ai+1 passive. Writing a` = a0, let j be
the smallest index j (i < j < `) such that aj+1 is active. Then ai+1 = aj and aj+1 = ai.

Proof. By construction, ai+1 · · · aj is a passive walk from ai+1 to aj . Let the spine of this
walk be b̄; note that the sequence b̄ is non-empty, and its initial and final elements are,
respectively, ai+1 and aj . Suppose first that ai 6= aj+1. Since these elements are active, they
are joined by an edge in the graph of A, whence aib̄aj+1 is a mixed cycle in A of length (at
least 3 and) at most `. Since A is `-quasi-acyclic this is a contradiction, whence ai = aj+1.

12 GEORGIOS KOURTIS AND IAN PRATT-HARTMANN

Suppose, now that ai+1 6= aj , whence |b̄| ≥ 2. Then, since ai = aj+1, it follows that aib̄ is
a mixed cycle of length (at least 3 and) at most `. Again, this is a contradiction, whence
ai+1 = aj .

The next lemma is a similar to the last, but with ‘enter’ and ‘exit’ transposed. The
reasoning is essentially identical.

Lemma 3.4. Let A be an `-quasi-acyclic structure and ā = a0 · · · a`−1 a tour in A. Suppose
i (0 ≤ i < `) is such that a0 · · · ai are all passive, but ai+1 active. Writing a` = a0, let j be
the largest index j (i < j < `) such that aj is active and aj+1 is passive. Then ai+1 = aj
and aj+1 = ai.

The final two lemmas of this section will play an important role in Sec. 6.

Lemma 3.5. Let A be an `-quasi-acyclic structure, and (ā, t̄) a mixed tour in A of length `,
beginning with some passive element a. Then (ā, t̄) can be decomposed as (c̄ā∗b̄, s̄t̄∗r̄) such
that, for some active element b: (i) [b̄a; r̄] is an acyclic walk from b to a in which b occurs
exactly once; (ii) [c̄b; s̄] is an acyclic walk from a to b in which b occurs exactly once; and
(iii) (ā∗; t̄∗) is a tour beginning at b.

Proof. Write ā = a0 · · · a`−1, let b = ai be the first active element of ā, and let j (i ≤ j < `)
be the greatest index such that aj = b. Since a is passive, i > 0. Write c̄ = a0 · · · ai−1,
ā∗ = ai · · · aj−1 and b̄ = aj · · · a`−1. Let s̄, t̄∗ and r̄ be the corresponding decomposition of t̄.
Since (ā, t̄) is a mixed tour, it is acyclic; so therefore are the walks [b̄a; r̄] and [c̄b; s̄] which it
contains.

Lemma 3.6. Suppose A is an `-quasi-acyclic structure containing a tour, (ā∗; t̄∗), with
|t∗| = `, and suppose the initial element of ā∗ is active. Then there exist decompositions ā∗ =
b̄0b0 · · · b̄m−1bm−1b̄m and t̄∗ = r̄0r0 · · · r̄m−1rm−1r̄m, such that: (i) (b0 · · · bm−1, r0 · · · rm−1)
is an active tour; (ii) each (b̄i; r̄i) is an acyclic tour beginning at bi (1 ≤ i < m), and (b̄m, r̄m)
is an acyclic tour beginning at b0 (Fig. 5).

Proof. Write ā∗ = a0, . . . , a`−1, with a0 active. As usual, let a` = a0. Let ι(0) = 0 and define
b0 = aι(0) = a0. Suppose that ι(i) and bi have been defined, with bi active and ι(i) ≤ `. Let
ι(i+ 1) be the smallest number j (ι(i) < j ≤ `) such that aj is active and distinct from bi,
assuming first that such an element exists. Note that, if ι(i+ 1) 6= ι(i) + 1, then aι(i)+1 is
passive, whence, by Lemma 3.3, the next active element in the tour ā after aι(i)+1 is aι(i) = bi.
By applying this argument repeatedly, we see that aι(i+1)−1 = bi. Define bi+1 = aι(i+1) and

b̄i = aι(i) · · · aι(i+1)−2. Likewise, define ri = tι(i+1)−1 and r̄i = tι(i) · · · tι(i+1)−2. Thus (b̄i, r̄i)
is a (possibly empty) mixed—hence acyclic—tour starting at bi, and A |= ri(bi, bi+1). Now
suppose that there is no number j (ι(i) < j ≤ `) such that aj is active and distinct from
bi. Set m = ι(i), and define b̄m = aι(i) · · · a`−1. Likewise, define r̄m = tm · · · t`−1. If b̄m is
non-empty, it leaves the database, and, whenever it does so, it re-enters at the same point,
by Lemma 3.3. Hence (b̄m, r̄m) is a (possibly empty) mixed—hence acyclic—tour starting at
bm whence bm = a` = a0.

4. Detection of Violations

We now show how to detect violations of binary path-functional dependencies, using the
decompositions of tours developed in the previous section. Recall from Section 2 that a

ADDING PATH-FUNCTIONAL DEPENDENCIES TO GC2 13

r̄1

b1

r̄2
b2

r̄3

b3

r̄4

b4

r̄m−2
bm−2

r̄m−1

bm−1

r̄0r̄m

b0

Figure 5. Decomposition of an f̄ -tour (ā∗, t̄∗) of length ` > 0, beginning in
the database, in an `-quasi-acyclic structure (Lemma 3.6).

critical violation of a binary path-functional dependency κ in a structure A is identified
with an r̄κ-tour whose first three elements are distinct. Such a tour can be decomposed in
various ways, depending on which of these three elements belong to the active domain (i.e.,
the database). Altogether, we isolate nine configurations of r̄κ-tours, illustrated in Fig. 6,
with the circle representing a sub-tour in the database (which is further decomposed as in
Fig. 5) and triangles representing acyclic sub-tours. The task of this section is to establish
that the nine configurations of Fig. 6 exhaust the possible r̄κ-tours. In Section 5, we show
how to use GC2-formulas together with conditions on the database to rule out each of these
configurations, and thus to guarantee that κ is not critically violated. In the following
sequence of lemmas, we fix κ = P[f̄f, ḡ], where ḡ 6= ε, as usual writing r̄κ for ff−1f̄−1ḡḡ−1f̄ .
Notice that, by construction, |r̄κ| ≥ 4.

Lemma 4.1. Suppose A is a |r̄κ|-quasi-acyclic structure containing a passive tour, (ā, r̄κ),
whose first three elements, a0, a1 and a2, are distinct. Then there exist decompositions
ā = a0a1ā0a2ā1a1ā2 and r̄κ = ff−1t̄0t1t̄1t2t̄2, such that (i) (ā0, t̄0) is an acyclic tour in A
starting at a2; (ii) (ā1, t̄1) is an acyclic tour in A starting at a1; (iii) (ā2, t̄2) is an acyclic
tour in A starting at a0; (iv) t2(a1, a0) and t1(a2, a1) are true in A (Fig. 6(i)).

Proof. Since (ā, r̄κ) is passive, it is acyclic. Write ā = a0 · · · a`−1, r̄ = r0 · · · r`−1 and a` = a0;
thus, r0 = f and r1 = f−1. Let i be the largest index (2 ≤ i < `) such that ai = a2, let
ā0 = a2 · · · ai−1 and t̄0 = r2 · · · ri−1. Thus, (ā0, t̄0) is an acyclic tour starting at a2. By
Lemma 3.2, ai+1 = a1; write t1 = ri. Similarly, let j be the largest index (i + 1 ≤ j < `)
such that aj = a1, and let ā1 = ai+1 · · · aj−1 and t̄1 = ri+1 · · · rj−1; thus, (ā1, t̄1) is an acyclic
tour starting at a1. By Lemma 3.2 again, aj+1 = a0; write t2 = rj . Let ā2 = aj+1, . . . , a`−1

and t̄2 = rj+1, . . . , r`−1. This completes the tour (going back to a0) and (ā2, t̄2) is acyclic.

14 GEORGIOS KOURTIS AND IAN PRATT-HARTMANN

a0 a1 a2

(ā2, t̄2)

(ā1, t̄1)

(ā0, t̄0)

f f

t2 t1

(i) ā ∩D = ∅

a0
a1 a2

(ā2, t̄2)

(ā1, t̄1)

(ā0, t̄0)

f f

t2 t1

(ii) a0 ∈ D; a1, a2 6∈ D

a0
a1 a2

(ā2, t̄2)

(ā1, t̄1)

(ā0, t̄0)

f f

t2 t1

(iii) a0, a1 6∈ D; a2 ∈ D

f
t1

f
t2

(ā2, t̄2)

(ā1, t̄1)

(ā0, t̄0)

a0 a2

a1

(iv) a0, a2 6∈ D; a1 ∈ D

a0 a1

a2

f
f

t1

(ā0, t̄0)

(ā1, t̄1)

(v) a0, a1 ∈ D; a2 6∈ D

a1 a2f
f

t1

(ā1, t̄1)
a0

(ā0, t̄0)

(vi) a0 6∈ D; a1, a2 ∈ D

a0

a1

a2
(ā0, t̄0)

(ā1, t̄1)

b

f

t2

f

t1

(vii) a0, a1, a2 6∈ D;

(ā2, t̄2) mixed

a0

a1

a2

(ā2, t̄2) (ā0, t̄0)

b

f

t2

f

t1

(viii) a0, a1, a2 6∈ D;

(ā1, t̄1) mixed

a0

a1

a2
(ā2, t̄2)

(ā1, t̄1)

b

f

t2

f

t1

(ix) a0, a1, a2 6∈ D;

(ā0, t̄0) mixed

f f

t̄

a0

a1

a2

(x) a0, a1, a2∈D

Figure 6. Possible configurations of a violating r̄κ-tour ā with initial (dis-
tinct) elements a0, a1 and a2, in a |r̄κ|-quasi-acyclic structure with active
domain D. Triangles indicate acyclic subtours; the circle indicates a subtour
involving elements of D; see Lemmas 4.1–4.8.

ADDING PATH-FUNCTIONAL DEPENDENCIES TO GC2 15

Lemma 4.2. Suppose A is a |r̄κ|-quasi-acyclic structure containing a mixed tour, (ā, r̄κ),
whose first three elements, a0, a1 and a2, are distinct. Suppose further that a0 is active,
but a1 and a2 are passive. Then there exist decompositions ā = a0a1ā0a2ā1a1ā2 and r̄κ =
ff−1t̄0t1t̄1t2t̄2, such that (i) (ā0, t̄0) is an acyclic tour in A starting at a2; (ii) (ā1, t̄1) is an
acyclic tour in A starting at a1; (iii) (ā2, t̄2) is a tour in A starting at a0; (iv) t2(a1, a0) and
t1(a2, a1) are true in A (Fig. 6(ii)).

Proof. Write ā = a0 · · · a`−1, r̄ = r0 · · · r`−1 and a` = a0; thus, r0 = f and r1 = f−1. Let j
be the smallest index (2 ≤ j < `) such that aj+1 is active. Since a0 is active and a1 passive, it
follows by Lemma 3.3 that aj = a1 and aj+1 = a0. Thus, ā′ = a1a2 · · · aj−1 is a passive—and
hence acyclic—tour. Considering the tour ā′, let i be the largest index (2 ≤ i < j) such
that ai = a2. By Lemma 3.2, ai+1 = a1. Let ā0 = a2 · · · ai−1 and t̄0 = r2 · · · ri−1; let
ā1 = ai+1 · · · aj−1 and t̄1 = ri+1 · · · rj−1; and let ā2 = aj+1 · · · a`−1 and t̄2 = rj+1 · · · r`−1.
In addition, write t1 = ri and t2 = rj . Thus, ā = a0a1ā0a2ā1a1ā2 and r̄κ = ff−1t̄0t1t̄1t2t̄2.
Moreover, (ā0, t̄0) and (ā1, t̄1) are acyclic tours, and (ā2, t̄2) is a tour.

Lemma 4.3. Suppose A is a |r̄κ|-quasi-acyclic structure containing a mixed tour, (ā, r̄κ),
whose first three elements, a0, a1 and a2, are distinct. Suppose further that a2 is active,
but a0 and a1 are passive. Then there exist decompositions ā = a0a1ā0a2ā1a1ā2 and r̄κ =
ff−1t̄0t1t̄1t2t̄2, such that (i) (ā0, t̄0) is a tour in A starting at a2; (ii) (ā1, t̄1) is an acyclic
tour in A starting at a1; (iii) (ā2, t̄2) is an acyclic tour in A starting at a0; (iv) t2(a1, a0)
and t1(a2, a1) are true in A (Fig. 6(iii)).

Proof. Analogous to the proof of Lemma 4.2.

Lemma 4.4. Suppose A is a |r̄κ|-quasi-acyclic structure containing a mixed tour, (ā, r̄κ),
whose first three elements, a0, a1 and a2, are distinct. Suppose further that a1 is active,
but a0 and a2 are passive. Then there exist decompositions ā = a0a1ā0a2ā1a1ā2 and r̄κ =
ff−1t̄0t1t̄1t2t̄2, such that (i) (ā0, t̄0) is an acyclic tour in A starting at a2; (ii) (ā1, t̄1) is a
tour in A starting at a1; (iii) (ā2, t̄2) is an acyclic tour in A starting at a0; (iv) t2(a1, a0)
and t1(a2, a1) are true in A (Fig. 6(iv)).

Proof. Analogous to the proof of Lemma 4.2.

Lemma 4.5. Suppose A is a |r̄κ|-quasi-acyclic structure containing a mixed tour, (ā, r̄κ),
whose first three elements, a0, a1 and a2, are distinct. Suppose further that a0 and a1

are active, but a2 is passive. Then there exist decompositions ā = a0a1ā0a2ā1 and r̄κ =
ff−1t̄0t1t̄1, such that (i) (ā0, t̄0) is an acyclic tour in A starting at a2; (ii) (a0ā1, f t̄1) a
tour in A where ā1 is a non-empty sequence starting with a1; (iii) t1(a2, a1) is true in A
(Fig. 6(v)).

Proof. Write ā = a0 · · · a`−1, r̄ = r0 · · · r`−1 and a` = a0; thus, r0 = f and r1 = f−1. Let i
be the smallest index (2 ≤ i < `) such that ai+1 is active. Since a` is active, i exists. By
Lemma 3.3, ai = a2 and ai+1 = a1. Let ā0 = a2 · · · ai−1 and t̄0 = r2 . . . ri−1. By construction,
(ā0, t̄0) is a passive—hence acyclic—tour beginning at a2. Now let t1 = ri, ā1 = ai+1 · · · a`−1

and t̄0 = ri+1 · · · r`−1.

Lemma 4.6. Suppose A is a |r̄κ|-quasi-acyclic structure containing a mixed tour, (ā, r̄κ),
whose first three elements, a0, a1 and a2, are distinct. Suppose further that a1 and a2

are active, but a0 is passive. Then there exist decompositions ā = a0a1ā0a1ā1 and r̄κ =
ff−1t̄0t1t̄1, such that (i) (a1ā0, f

−1t̄0) a tour in A where ā0 is a non-empty sequence starting

16 GEORGIOS KOURTIS AND IAN PRATT-HARTMANN

with a2; (ii) (ā1, t̄1) is an acyclic tour in A starting at a0; (iii) t1(a1, a0) is true in A
(Fig. 6(vi)).

Proof. Analogous to the proof of Lemma 4.4.

We remark at this point that, if A is a |r̄κ|-quasi-acyclic structure containing a mixed
tour (ā; r̄κ) whose first three elements, a0, a1 and a2, are distinct, then it cannot be the case
that a0 and a2 are active, but a1 passive, as a0a1a2 would then form a cycle in the graph of
A. In the statement of the next lemma, all arithmetic performed on indices is assumed to
be modulo 3.

Lemma 4.7. Suppose A is a |r̄κ|-quasi-acyclic structure containing a mixed tour, (ā, r̄κ),
whose first three elements, a0, a1 and a2, are distinct and all passive. Then there exist
decompositions ā = a0a1ā0a2ā1a1ā2 and r̄κ = ff−1t̄0t1t̄1t2t̄2, such that: (i) for all j (0 ≤
j < 3) (āj , t̄j) is a tour in A starting at a2−j; (ii) two of these tours are acyclic and the
third is mixed; (iii) t2(a1, a0) and t1(a2, a1) are true in A (Fig. 6(vii)–(ix)).

Proof. Write ā = a0 · · · a`−1, r̄ = r0 · · · r`−1 and a` = a0; thus, r0 = f and r1 = f−1. Let h be
the smallest index 2 ≤ h < ` such that ah+1 is active, and k the largest index h < k < ` such
that ak is active and ak+1 is passive. By Lemma 3.4, ah = ak+1, whence a2 · · · ahak+2 · · · a`−1

is a passive tour. Suppose first that a0 is encountered along the walk a2 · · · ah, i.e. there
exists j (2 < j < h) such that aj+1 = a0 (Fig. 6(vii)). Denote by `′ the smallest such
value of j. It follows that b̄ = a0a1a2 · · · a`′ is a passive tour. Repeating the reasoning of
Lemma 4.1, let i be the largest index (2 ≤ i < `′) such that ai = a2, let ā0 = a2 · · · ai−1

and t̄0 = r2 · · · ri−1. Thus, (ā0, t̄0) is a passive—and hence acyclic—tour starting at a2.
By Lemma 3.2 (applied to b̄), ai+1 = a1; write t1 = ri. Now let m be the largest index
(i + 1 ≤ m < `′) such that am = a1. Let ā1 = ai+1 · · · am−1 and t̄1 = ri+1 · · · rm−1; thus,
(ā1, t̄1) is an acyclic tour starting at a1. By Lemma 3.2 again, am+1 = a0, whence, in fact
m+ 1 = `′; write t2 = rm. Let ā2 = a`′ · · · a`−1 and t̄2 = r`′ · · · r`−1; then, (ā2, t̄2) is a mixed
tour starting at a0.

Now suppose that a0 is not encountered again along the walk a2 · · · ah, but a1 is, i.e. there
exists j (2 ≤ j < h) such that aj+1 = a1 (Fig. 6(viii)). Denote by `′ the smallest such value
of j. Again, let i be the largest index (2 ≤ i < `′) such that ai = a2, let ā0 = a2 · · · ai−1 and
t̄0 = r2 · · · ri−1. Thus, (ā0, t̄0) is an acyclic tour starting at a2. By Lemma 3.2, ai+1 = a1;
write t1 = ri. Since ai+1 = a1 and ah = ak+1, we know that b̄ = a0ai+1 · · · ahak+2 . . . a`−1

is a passive tour. Let m be the largest index 1 ≤ m < ` such that am occurs in b̄ and
am = a1. By Lemma 3.2 (applied to b̄), the next element in the tour b̄ must be a0. Since,
by assumption, a0 does not occur among a2 · · · ah, we have k + 1 ≤ m < `. Thus, letting
ā1 = ai+1 · · · am−1 and t̄1 = ri+1 · · · rm−1, (ā1, t̄1) is a mixed tour starting at a1. Let
t2 = rm. Let ā2 = am+1 · · · a`−1 and t̄1 = rm+1 · · · r`−1; thus, (ā2, t̄2) is a passive—and hence
acyclic—tour starting at a0.

Finally, suppose that neither a0 nor a1 is encountered along the walk a2 · · · ah (Fig. 6(ix)).
Since ah = ak+1, we know that b̄ = a0a1 · · · ahak+2 . . . a`−1 is a passive—and hence acyclic—
tour. Let i be the largest index (2 ≤ i < `) such that ai occurs in b̄ and ai = a2. By
Lemma 3.2, the next element in the tour b̄ must be a1. Since, by assumption, a1 does not
occur among a2 · · · ah, we have k + 1 ≤ i < `, and hence ai+1 = a1. Let ā0 = a2 · · · ai−1 and
t̄0 = r2 · · · ri−1. Thus, (ā0, t̄0) is a mixed tour starting at a2. Write t1 = ri. Since ai+1 = a1

and k + 1 ≤ i, we know that a0ai+1 · · · a`−1 is a passive tour. Let j be the largest index
i + 1 ≤ j < ` such that aj = a1, let ā1 = ai+1 · · · aj−1, and let t̄1 = ri+1 · · · rj−1. Thus,

ADDING PATH-FUNCTIONAL DEPENDENCIES TO GC2 17

(ā1, t̄1) is a passive—and hence acyclic—tour starting at a1. Lemma 3.2, aj+1 = a0; let
t2 = rj . Let ā2 = aj+1 · · · a`−1, t̄2 = rj+1 · · · r`−1. Thus (ā2, t̄2) is a passive—and hence
acyclic—tour starting at a0.

Lemma 4.8. Suppose A is a |r̄κ|-quasi-acyclic structure containing a mixed tour, (ā, r̄κ),
whose first three elements, a0, a1 and a2, are distinct. Suppose further that a0, a1 and a2

are active. Then, writing ā = a0a1b̄ and r̄κ = ff−1t̄, the pair [b̄a0, t̄] is a walk in A starting
at a2 (Fig. 6(x)).

Proof. Completely trivial.

Let us sum up what we have discussed so far. Fix a path-functional dependency
κ = P[f̄f, ḡ], and let ` be the length of r̄κ. Any violation of P[f̄f, ḡ] in a structure A can be
identified with a r̄κ-tour in A whose first three elements are distinct. Thus, when determining
the satisfiability of a GC2DK-formula ϕ ∧∆ ∧K, our goal is to determine whether there
exists a model of ϕ ∧∆ containing no such tours. Indeed, by Lemma 2.3, we may confine
attention to `-quasi-acyclic models of ϕ ∧∆. Now suppose ā is a sequence of elements in
some such model suspected of being a r̄κ-tour in A whose first three elements are distinct.
Depending on which (if any) of these three initial elements of an r̄κ-tour ā belong to the
database, ā can be decomposed in different ways, as seen in Fig. 6. All these decompositions,
except for that of Fig. 6(i), involve elements of the database. The configuration of Fig. 6(i),
it turns out, can be ruled out by means of a GC2-formula. In addition, by introducing
additional predicates to our original signature, and writing formulas ensuring that these
predicates are satisfied by database elements occurring at certain critical points in the
various configurations depicted in Fig. 6(ii)–(ix), we can reduce the problem of determining
the existence of such violating configurations to a simple database check. The next section
addresses the task of establishing the required interpretations of these additional predicates.

5. Encoding critical violations in GC2

Let κ = P[f̄f, ḡ] be a binary path-functional dependency, and let r̄κ = ff−1f̄−1ḡḡ−1f̄ as
above. In this section, we present three technical devices consisting of sets of GC2-formulas
denoted, respectively, Fκ, Bκ and Iκ. The first device enables us to describe acyclic tours
in structures, the second to characterize certain sorts of ternary branching structures, and
the third to characterize elements connected to each other by a pair of walks forming an
acyclic tour. In the next section, we shall employ these devices to characterize the ten cases
depicted in Fig. 6, and thus to rule out the presence of violations of κ in a structure using
GC2-formulas. We write t ∈ r̄κ to indicate that t occurs in r̄κ, and t̄ C r̄κ to indicate that t̄
is a sub-word (i.e. a contiguous sub-sequence) of r̄κ. Observe that the number of sub-words
of r̄κ is |r̄κ|(|r̄κ|+ 1)/2.

Let the signature σ1
κ consist of σ together with the unary predicates fan〈t̄〉, one for each

sub-word t̄ of r̄κ. The intention is that fan〈t̄〉 will be satisfied by an element a in certain
sorts of structures just in case a is the start of an acyclic t̄-tour. Accordingly, let Fκ be the
set consisting of the formula ∀x fan〈ε〉(x) together with all the formulas

∀x
(
fan〈t̄〉(x)↔

∨
r,r̄,s,s̄:
t̄=rr̄ss̄

∃y (x 6= y ∧ r(x, y) ∧ fan〈r̄〉(y) ∧ s(y, x) ∧ fan〈s̄〉(x))
)
,

where t̄ C r̄κ is non-empty. Evidently the size of Fκ is polynomial in the size of r̄κ.

18 GEORGIOS KOURTIS AND IAN PRATT-HARTMANN

a0 a1
a2

(ā1, t̄1)

(ā0, t̄0)

g g

t2 t1

Figure 7. Satisfaction of the predicate branch1〈g, t1, t2, t̄0, t̄1〉 at a0.

Lemma 5.1. Suppose A is a σ-structure such that A |= Fκ. Let a be an element of A and t̄
a sub-word of r̄κ. If A |= fan〈t̄〉(a), then a is the start of a t̄-tour in A; conversely, if a is
the start of an acyclic t̄-tour in A, then A |= fan〈t̄〉(a).

Proof. We prove by induction on the length of t̄ that if A |= fan〈t̄〉(a), then a is the start
of a t̄-tour in A. If t̄ = ε, then the result is evident (recall that every single element is the
start of an ε-tour). Now, if t̄ 6= ε, since A |= Fκ, we can write t̄ = rr̄ss̄, for some r̄ and s̄,
such that there exists an a′ ∈ A with a 6= a′, A |= r(a, a′), A |= s(a′, a), A |= fan〈r̄〉(a′) and
A |= fan〈s̄〉(a). Thus, by inductive hypothesis, a′ is the start of an r̄-tour and a is the start
of an s̄-tour. Clearly, then, a is the start of the t̄-tour.

For the converse, suppose that a is the start of an acyclic t̄-tour ā in A. We prove, by
induction on the length of t̄, that A |= fan〈t̄〉(a0). Write ā = a0, . . . , a`−1 and t̄ = t0, . . . , t`−1,
as usual, letting a` = a0. If t̄ = ε (i.e. ` = 0) then, since A |= Fκ we have A |= fan〈ε〉(a).
Now, suppose that h̄ 6= ε (i.e. ` > 0). Then A |= t0(a0, a1). Let j be the largest index
(1 ≤ j < `) such that aj = a1. By Lemma 3.2, aj+1 = a0, whence A |= tj(a1, a0). Write
r = t0, r̄ = t1 · · · tj−1, s = tj and s̄ = tj+1 · · · t`−1. Thus, t̄ = rr̄ss̄, a1 is the start of an
acyclic r̄-tour, and a0 the start of an acyclic s̄-tour. By inductive hypothesis, A |= fan〈r̄〉(a1)
and A |= fan〈s̄〉(a0). Since A |= Fκ, we have A |= fan〈t̄〉(a0).

Now for our second device, which enables us to identify ternary-branching structures
of the kind illustrated in Fig. 6(ii). Let the signature σ2

κ consist of σ1
κ together with the

unary predicates branch1〈g, t1, t2, t̄0, t̄1〉, where g, t1 and t2 are letters in r̄κ, and t̄0, t̄1 are
sub-words of r̄κ. The intention is that branch1〈g, t1, t2, t̄0, t̄1〉 should be satisfied by an
element a0 just in case there exists a (gg−1t̄0t1t̄1t2)-tour a0a1ā0a2ā1a1, where ā0 is a t̄0-tour
starting at a2, and ā1 a t̄1-tour starting at a1, as depicted in Fig. 7. Let B1

κ be the set of all
formulas

∀x(branch1〈g, t1, t2, t̄0, t̄1〉(x)↔
∃y∃z(x 6= y ∧ y 6= z ∧ x 6= z ∧

(g(x, y) ∧ t2(y, x) ∧ fan〈t̄1〉(y)) ∧ (g(z, y) ∧ t1(z, y) ∧ fan〈t̄0〉(z)))),
where g, t1, t2 ∈ r̄κ, t̄0 C r̄κ and t̄1 C r̄κ.

Lemma 5.2. Suppose A is a structure such that A |= Fκ ∪ B1
κ. Then a0 ∈ A satisfies

branch1〈g, t1, t2, t̄0, t̄1〉 if and only if there exist elements a1, a2 ∈ A such that a0, a1, a2 are
distinct, A |= g(a0, a1), A |= g−1(a1, a2), A |= t1(a2, a1), A |= t2(a1, a0), A |= fan〈t̄0〉(a2)
and A |= fan〈t̄1〉(a1).

Proof. Immediate.

ADDING PATH-FUNCTIONAL DEPENDENCIES TO GC2 19

b a

r̄0

s̄k

r̄1

s̄k−1

r̄2

s̄k−2

r̄k

s̄0

r0

sk−1

r1

sk−2

r2

sk−3

rk−1

s0
p

Figure 8. An isthmus starting at a and terminating in an element b satisfying
a unary predicate p; here, r̄ = r̄0r0 · · · r̄krk and s̄ = s̄0s0 · · · s̄ksk.

We also introduce an additional family of unary predicates branch2〈g, t1, t2, t̄0, t̄2〉,
satisfied by elements in configurations such as that of a1 in Fig. 6(iv), where g = f . To this
end, we define B2

κ to be the set of formulas

∀y(branch2〈g, t1, t2, t̄0, t̄2〉(y)↔
∃x∃z(x 6= y ∧ y 6= z ∧ x 6= z ∧

(g(x, y) ∧ t2(y, x) ∧ fan〈t̄2〉(x)) ∧ (g(z, y) ∧ t1(z, y) ∧ fan〈t̄0〉(z)))),
where g, t1, t2, t̄0, t̄1 have the same range as for B1.

Lemma 5.3. Suppose A is a structure such that A |= Fκ ∪ B2
κ. Then a1 ∈ A satisfies

branch2〈g, t1, t2, t̄0, t̄1〉 if and only if there exist elements a0, a2 ∈ A such that a0, a1, a2 are
distinct, A |= g(a0, a1), A |= g−1(a1, a2), A |= t1(a2, a1), A |= t2(a1, a0), A |= fan〈t̄0〉(a2)
and A |= fan〈t̄2〉(a0).

Of course, the formulas in B1
κ and B2

κ are not in GC2, as they feature three variables.
However, Lemma 2.2 ensures that they are equivalent to GC2-formulas. In the sequel,
therefore, we shall treat B1

κ and B2
κ as sets of GC2-formulas, understanding them to be

replaced by their (harder-to-read) GC2-equivalents. We write Bκ = B1
κ ∪B2

κ.
Our third device enables us to identify elements at the start of structures of the kind

illustrated in Fig. 8, whose final elements satisfy a given unary predicate p of σ2
κ. Let the

signature σ3
κ consist of σ2

κ together with the unary predicates isth〈r̄, p, s̄〉, where r̄ and s̄ are
sub-words of r̄κ, and p is any unary predicate of σ2

κ. (Note that σ2
κ contains predicates of the

forms branch1〈g, t1, t2, t̄0, t̄1〉 and branch2〈g, t1, t2, t̄0, t̄2〉.) The intention is that isth〈r̄, p, s̄〉
will be satisfied by an element b in certain sorts of structures just in case there exists an
element a satisfying p, as well as an r̄-walk from b to a and an s̄-walk from a to b, which
together form acyclic r̄s̄-tour. We refer to such a tour, informally, as an isthmus. Accordingly,
let Iκ be the set of all formulas

∀x
[
isth〈r̄, p, s̄〉(x)↔

(
(fan〈r̄〉(x) ∧ p(x) ∧ fan〈s̄〉(x))∨∨

r̄=r̄′rr̄′′,
s̄=s̄′′ss̄′

(
fan〈r̄′〉(x) ∧ fan〈s̄′〉(x) ∧ ∃y(x 6= y ∧ r(x, y) ∧ s(y, x) ∧ isth〈r̄′′, p, s̄′′〉(y))

))]
,

where r̄ C r̄κ, s̄ C r̄κ and p is a unary predicate of σ2
κ. Again, the sizes of the signature σ3

κ

and the set of formulas Iκ are polynomially bounded in |r̄κ|.

Lemma 5.4. Let r̄′ C r̄κ, r̄′′ C r̄κ and p ∈ σ2
κ. Suppose A |= Fκ ∪ Iκ. If A |= isth〈r̄, p, s̄〉(b),

then there exists an element a ∈ A such that A |= p(a), a walk [b̄a, r̄] from b to a, and a walk

20 GEORGIOS KOURTIS AND IAN PRATT-HARTMANN

[c̄b, s̄] from a to b. Conversely, if such a, b̄, r̄, c̄, s̄ exist, with (b̄c̄, r̄s̄) additionally an acyclic
tour, then A |= isth〈r̄, p, s̄〉(b).

Proof. Suppose that A |= isth〈r̄, p, s̄〉(b). To construct the required a, b̄, r̄, c̄ and s̄, we
proceed by induction on the length of the combined sequence r̄s̄. For the case |r̄s̄| = 0, if
A |= fan〈r̄〉(b) ∧ p(b) ∧ fan〈s̄〉(b), then by Lemma 5.1, there exists an r̄-tour b̄ and a s̄-tour c̄,
both starting at b. Now set a = b. Thus, [b̄a, r̄] is a walk from b to itself, and [c̄b, s̄] a walk
from a to itself, as required. For the case |r̄s̄| > 0, since A |= Iκ, we may write r̄ = r̄′rr̄′′ and
s̄′′ = s̄′′ss̄′, such that A |= fan〈r̄′〉(b) ∧ fan〈s̄′〉(b) and there exists b′ ∈ A with A |= r(b, b′),
A |= s(b′, b) and A |= isth〈r̄′′, p, s̄′′〉(b′). By inductive hypothesis, there exist an element
a ∈ A and walks [b̄′′a, r̄′′], [c̄′′b′, s̄′′], with b′ the first element of b̄′′, a the first element of c̄′′,
and A |= p(a). On the other hand, from Lemma 5.1, b is the start of an r̄′-tour, say b̄′, and
of an s̄′-tour, say c̄′. Writing b̄ = b̄′b′b̄′′ and c̄ = c̄′′b′c̄′, we see that b̄a is an r̄-walk from b to
a, and c̄b is an s̄-walk from a to b, as required.

For the converse, suppose that there exist an element a ∈ A and walks [b̄a, r̄], [c̄b, s̄],
with b the first element of b̄ and a the first element of c̄, such that (b̄c̄, r̄s̄) is an acyclic
tour, and A |= p(b). We again proceed by induction on |r̄s̄|, supposing that the result holds
for sequences of smaller combined length. Write b̄b = b0 · · · b` and c̄a = c0 · · · cm. Thus,
b = b0 = cm and a = b` = c0. Let i be the largest index (0 ≤ i ≤ `) such that bi = b0. If
i = m, then a = b. In that case, a satisfies p; moreover, (b̄, r̄) and (c̄, s̄) are acyclic tours,
and so by Lemma 5.1, b satisfies fan〈r̄〉 and fan〈s̄〉. Since A |= Iκ, a also satisfies isth〈r̄, p, s̄〉.
Suppose, then that i < `, so that bi 6= bi+1. Then d̄ = bi · · · b`−1c0 · · · cm−1 is an acyclic
tour starting at b. Let c be the last element of d̄ equal to bi+1. Applying Lemma 3.2 to
d̄, the next element after c must be bi = b0 = b; and since c0 6= b0 and by construction b0
does not occur in bi+1 · · · b`−1, we have c = cj for some j (1 ≤ j < m). Thus, b = bi = cj+1.
Now let b̄′ = b0 · · · bi−1, b̄′′ = bi+1 · · · b`−1, c̄′′ = c0 · · · cj−1, c̄′ = cj+1 · · · cm−1; define the
sequences r̄′, r̄′′, s̄′′, s̄′ correspondingly. Write b′ = bi+1 = cj , r = ri and s = sj . Then
A |= r(b, b′) and A |= s(b′, b). Moreover, (b̄′, r̄′) and (c̄′, s̄′) are acyclic tours beginning at b,
[b̄′′a, s̄′′] is a walk from b′ to a and [c̄′′b′, s̄′′] a walk from a to b′ such that the tour (b̄′′c̄′′, r̄′′s̄′′)
is acyclic. By Lemma 3.2, b satisfies fan〈r̄′〉 and fan〈s̄′〉; and by inductive hypothesis, b′

satisfies A |= isth〈r̄′′, p, s̄′′〉. Since A |= Iκ, b satisfies isth〈r̄, p, s̄〉.

6. Complexity of GC2DK

With these tools at our disposal, we may return to the task of reducing the satisfiability and
finite satisfiability problems for GC2DK to the corresponding problems for GC2D. As before,
let κ = P[f̄f, ḡ] be a binary path-functional dependency, and define r̄κ = ff−1f̄−1ḡḡ−1f̄ .
We have observed that κ is critically violated in a structure A if and only if A contains an
r̄κ-tour ā whose first three elements are distinct. Furthermore, we have shown that, in such
a case, ā must fall under exactly one of the ten cases depicted in Fig. 6.

Consider first the case illustrated in Fig. 6(i): ā is passive. Define Vκ,(i) to be the

GC2-sentence

∃x
∨{

fan〈t̄2〉(x) ∧ branch1〈f, t1, t2, t̄0, t̄1〉(x) | r̄κ = ff−1t̄0t1t̄1t2t̄2
}
.

The following lemma states that we can now rule out such critical violations of κ by writing
the GC2-formula ¬Vκ,(i).

ADDING PATH-FUNCTIONAL DEPENDENCIES TO GC2 21

Lemma 6.1. Suppose A |= Fκ ∧ Bκ. If A is |r̄κ|-quasi-acyclic, but contains a critical
violation of κ having the form of a passive r̄κ-tour, then A |= Vκ,(i). Conversely, if A |= Vκ,(i),
then A contains a critical violation of κ.

Proof. Suppose A contains a passive r̄κ-tour whose first three elements, a0, a1 and a2

are distinct. By Lemma 4.1, there is a decomposition ff−1t̄0t1t̄1t2t̄2 of r̄κ and distinct
a0, a1, a2 ∈ A such that f(a0, a1), f−1(a1, a2), t1(a2, a1) and t2(a1, a0) all hold, and each ai
(0 ≤ i < 3) is the start of a t̄2−i tour. Since A is |r̄κ|-quasi-acyclic, these tours must be
acyclic. By three applications of Lemma 5.1, each ai satisfies fan〈t̄2−i〉. By Lemma 5.2 and
construction of Vκ,(i), A |= Vκ,(i).

Suppose, conversely, A |= Vκ,(i). By construction of Vκ,(i) and Lemma 5.2, there is a

decomposition ff−1t̄0t1t̄1t2t̄2 of r̄κ and three distinct elements a0, a1, a2 such that f(a0, a1),
f−1(a1, a2), t1(a2, a1), t2(a1, a0) all hold, and each ai (0 ≤ i < 3) satisfies fan〈t̄2−i〉. By
Lemma 5.1, each ai the start of a t̄2−i tour. Thus, a0 is the start of an r̄κ-tour in A whose
first elements are distinct, whence A contains a critical violation of κ.

Now consider the case where (ā; r̄κ) is as in Fig. 6(ii): a0 is active, but a1 and a2 are
passive. The following lemma states that we can now rule out such critical violations of κ by
checking some conditions on ∆. Note that, if a database ∆ is complete with respect to some
signature, and p is a predicate in that signature, then, for A |= ∆ and ā a tuple of active
elements of A of the same arity as p, the conditions A |= p(ā) and p(ā) ∈ ∆ are equivalent.

Lemma 6.2. Suppose A |= Fκ ∧ Bκ ∧∆, where ∆ is complete with respect to σ3
κ. If A is

|r̄κ|-quasi-acyclic, but contains an r̄κ-tour a0 · · · a`−1 such that a0, a1, a2 are distinct with
a0 active, but a1 and a2 passive, then there exists a decomposition

r̄κ = ff−1t̄0t1t̄1t2{r̄iri}m−1
i=0 r̄m

and a sequence of database elements b0 · · · bm with a0 = b0 = bm, such that:
(i) branch1〈f, t1, t2, t̄0, t̄1〉(b0) ∈ ∆; (ii) ri(bi, bi+1) ∈ ∆ for all i (0 ≤ i < m); and (iii)
fan〈r̄i〉(bi) ∈ ∆ for all i (0 ≤ i ≤ m). Conversely, if such a decomposition and sequence of
database elements exists, then A contains a critical violation of κ.

Proof. Suppose A contains a r̄κ-tour a0 · · · a`−1 such that a0 is active, but a1 and a2

are passive. By Lemma 4.2 there exist decompositions ā = a0a1ā0a2ā1a1ā2 and r̄κ =
ff−1t̄0t1t̄1t2t̄2, such that f(a0, a1), t2(a1, a0), f(a2, a1) and t1(a2, a1) are all true in A,
(ā2−i, t̄2−i) (i = 1, 2) is an acyclic tour starting at ai, and (ā2, t̄2) is a tour in A starting
at a0. By two applications of Lemma 5.1 and Lemma 5.2, branch1〈f, t1, t2, t̄0, t̄1〉(a0) ∈ ∆.
Furthermore, by Lemma 3.6, the tour (ā2, t̄2) starting at a0 can be further decomposed as
({b̄ibi}m−1

i=0 b̄m, {r̄iri}
m−1
i=0 r̄m) such that (b0 · · · bm−1, r0 · · · rm−1) is an active tour, and each

(b̄i, r̄i) is an acyclic tour beginning at bi (1 ≤ i ≤ m). Thus, we have ri(bi, bi+1) ∈ ∆ for all i
(0 ≤ i < m). Finally, by repeated applications of Lemma 5.1, we have fan〈r̄i〉(bi) ∈ ∆ all i
(0 ≤ i ≤ m).

Conversely, suppose the decomposition ff−1t̄0t1t̄1t2{r̄iri}m−1
i=0 r̄m and database elements

b0 · · · bm exist with the advertised properties. By Lemma 5.2 and two applications of
Lemma 5.1, a0 = b0 is the start of an ff−1t̄0t1t̄1t2-tour, say d̄, whose first three elements
are distinct. Moreover, by Lemma 5.1, each bi (0 ≤ i ≤ m) is the start of an r̄i tour, say b̄i.
Concatenating these tours, a0 is the start of a r̄κ-tour, namely d̄{b̄ibi}m−1

i=0 b̄m, whose first
three elements are distinct, whence A contains a critical violation of κ.

22 GEORGIOS KOURTIS AND IAN PRATT-HARTMANN

Violations of κ having the forms shown in Fig. 6(iii)–(vi) can be ruled out in essentially
the same way as for Fig. 6(ii). Fig. 6(iii) is symmetric to Fig. 6(ii); Fig. 6(iv) is similar to
Fig. 6(ii), but using the predicate branch2 correspondingly. Fig. 6(v) is, again, similar to
Fig. 6(ii), where the predicate branch1〈f, t1, t2, t̄0, t̄1〉 is satisfied by a0 = b0, but with the
extra requirement that a1 = b1, f(b0, b1) ∈ ∆, and t̄1 = ε. (Note, in the previous sentence,
that the element b1 is unique because f is functional.) Fig. 6(vi) is symmetric to Fig. 6(v).
Consequently, we turn our attention to the case of Fig. 6(vii)–(ix).

Lemma 6.3. Suppose A |= Fκ ∧Bκ ∧ Iκ ∧∆, where ∆ is complete with respect to σ3
κ. If A

is |r̄κ|-quasi-acyclic, but contains a mixed r̄κ-tour ā whose first three elements are all passive,
then there exists a decomposition r̄κ = ff−1t̄0t1t̄1t2t̄2 and a sequence of active elements
b0 · · · bm, with bm = b0, such that the following hold:

(i) one of the three conditions
(a) t̄2 = s̄{r̄iri}m−1

i=0 r̄mr̄, isth〈r̄,branch1〈f, t1, t2, t̄0, t̄1〉, s̄〉(b0) ∈ ∆

(b) t̄1 = s̄{r̄iri}m−1
i=0 r̄mr̄, isth〈r̄,branch2〈f, t1, t2, t̄2, t̄0〉, s̄〉(b0) ∈ ∆

(c) t̄0 = s̄{r̄iri}m−1
i=0 r̄mr̄, isth〈r̄,branch1〈f, t−1

2 , t−1
1 , t̄1, t̄2〉, s̄〉(b0) ∈ ∆

obtains;
(ii) ri(bi, bi+1) ∈ ∆ for all i (0 ≤ i < m); and

(iii) fan〈r̄i〉(bi) ∈ ∆ for all i (0 ≤ i ≤ m).

Conversely, if any such decomposition and sequence of database elements exists, then A
contains a critical violation of κ.

Proof. Suppose A contains a mixed r̄κ-tour ā whose first three elements are all passive. By
Lemma 4.7, there exist decompositions ā = a0a1ā0a2ā1a1ā2 and r̄κ = ff−1t̄0t1t̄1t2t̄2, such
that: (i) for all j (0 ≤ j < 3) (āj , t̄j) is a tour in A starting at a2−j ; (ii) two of these tours
are acyclic and the third is mixed; (iii) t2(a1, a0) and t1(a2, a1) are true in A.

Assume, for definiteness, that (ā0, t̄0) and (ā1, t̄1) are acyclic, and (ā2, t̄2) is mixed.
By two applications of Lemma 5.1 and Lemma 5.2, branch1〈f, t1, t2, t̄0, t̄1〉(a0) ∈ ∆. Now
consider the mixed tour (ā2, t̄2), starting at the passive element a0. Write a = a0, the initial
element of this tour. By Lemma 3.5, there exists an element b such that we can write
ā2 = c̄ā∗b̄ and t̄2 = s̄t̄∗r̄, where (b̄a, r̄) is a walk from b to a, (c̄b, s̄) is a walk from a to b,
and (ā∗, t̄∗) is a tour starting at b. Write b0 = b. Now applying Lemma 5.4, we see that
isth〈r̄,branch1〈f, t1, t2, t̄0, t̄1〉, s̄〉(b0) ∈ ∆. Further, applying Lemma 3.6 to the tour (ā∗, t̄∗),
we may write ā∗ = {b̄ibi}m−1

i=0 b̄m and t̄∗ = {r̄iri}m−1
i=0 r̄m such that ri(bi, bi+1) ∈ ∆ for all i

(0 ≤ i < m), and (b̄i, r̄i) is an acyclic tour starting at bi for all i (0 ≤ i ≤ m). By repeated
applications of Lemma 5.1, fan〈r̄i〉(bi) ∈ ∆ for all i (0 ≤ i ≤ m). This yields the conditions
required in the lemma, with disjunct (a) realized in condition (i). If (ā1, t̄1) is mixed, then
we obtain disjunct (b), and if (ā0, t̄0) is mixed, disjunct (c), by similar arguments.

Conversely, suppose that there exists a decomposition as described by the lemma, with
disjunct (a) realized in condition (i). By (i)(a) and Lemma 5.4, there exist an element
a ∈ A, a walk [b̄a, r̄] from b0 to a, and a walk [c̄b0, s̄] from a to b0, such that (b̄c̄; r̄s̄) is an
acyclic tour, and A |= branch1〈f, t1, t2, t̄0, t̄1〉(a). Write a0 = a, so that, by Lemma 5.2, there
exist elements a1, a2 ∈ A such that a0, a1, a2 are distinct, A |= f(a0, a1), A |= f(a2, a1),
A |= t1(a2, a1), A |= t2(a1, a0) and for i = 1, 2, A |= fan〈t̄2−i〉(ai). By Lemma 5.1, there is
an t̄2−i-tour starting at ai for i = 1, 2. Starting at the element a = a0, and concatenating
these various tours and single steps, we obtain the tour

(a0a1ā0a2ā1a1c̄b̄, ff
−1t̄0t1t̄1t2s̄r̄)

ADDING PATH-FUNCTIONAL DEPENDENCIES TO GC2 23

passing through b0. Note that b0 is the initial element of b̄. From condition (ii) and repeated
applications of Lemma 5.1, there exists a tour (b̄j , r̄j) starting at bj for all j (0 ≤ j < m)
and a tour (b̄m, r̄m) starting at b0. Thus, from condition (iii), there exists a tour

(b̄0b0 . . . b̄m−1bm−1b̄m, r0r̄0 . . . r̄m−1rm−1r̄m)

starting at b0. Inserting the second of these tours into the first at the element b0, we obtain
the tour

(a0a1ā0a2ā1a1c̄{b̄ibi}m−1
i=0 b̄mb̄, ff

−1t̄0t1t̄1t2s̄{r̄iri}m−1
i=0 r̄mr̄).

But this is just an r̄κ-tour whose first three elements, a0, a1, a2, are distinct, so that κ has a
critical violation. The disjuncts (b) and (c) in condition (i) are dealt with similarly.

This leaves just the final case of Fig. 6 to cover.

Lemma 6.4. Suppose A |= Fκ ∪ Bκ ∪ Iκ. If A is |r̄κ|-quasi-acyclic, but contains a mixed
r̄κ-tour whose three initial elements are all active, then there exist a decomposition r̄κ =
r0r1{r̄iri}mi=2r̄m and a sequence of active elements b0 · · · bm with b0, b1, b2 distinct and bm = b0,
such that

(i) ri(bi, bi+1) ∈ ∆ for all i (2 ≤ i < m); and
(ii) fan〈r̄i〉(bi) ∈ ∆ for all i (0 ≤ i ≤ m).

Conversely, if such a decomposition exists, then A contains a critical violation of κ.

Proof. Easy using by-now familiar reasoning from Lemmas 3.6, 4.8 and 5.1.

Lemmas 6.1–6.4 yield a reduction from the satisfiability and finite satisfiability problems
for GC2DK to the corresponding problems for GC2D. For definiteness, we consider satisfi-
ability; the reduction for finite satisfiability is identical. By Lemma 2.1, we may confine
attention to GC2-formulas of the form ψ ∧ Γ ∧K, where ψ is a GC2-formula, Γ a database
and K a set of unary and binary path-functional dependencies. We may assume that Γ is
consistent, since if not, ψ is certainly unsatisfiable. Furthermore, we may suppose that every
κ ∈ K is binary, since unary path-functional dependencies can be easily eliminated. Let
FK be the conjunction of all the Fκ for κ ∈ K; similarly for BK and IK . Let NK be the
conjunction of all the formulas ¬Vκ, for κ ∈ K. Finally, let the signature σ3

K be the union
of all the σ3

κ for κ ∈ K. Consider each of the exponentially many consistent completions
∆ ⊇ Γ over σ3

K , in turn. For each such ∆, check the GC2D-formula

ϕ ∧BK ∧ FK ∧ IK ∧NK ,

is satisfiable, and that none of the ten types of violations of κ depicted in Fig. 6(ii)–(x) arises,
by checking that ∆ satisfies the relevant conditions in Lemmas 6.2–6.4. (Note that the truth
of formulas NK rules out violations of κ of the type depicted in Fig. 6(i), by Lemma 6.1.) If,
for some ∆, these checks succeed, we may report that ϕ is satisfiable. Otherwise, we may
report that it is unsatisfiable.

Anticipating Theorems 9.5 and 9.6, stating that the satisfiability and finite satisfiability
problems for GC2D are in ExpTime, we have our main result:

Theorem 6.5. The satisfiability and finite satisfiability problems for GC2DK are in ExpTime.

24 GEORGIOS KOURTIS AND IAN PRATT-HARTMANN

7. Complexity of GC2D: preliminaries

It remains only to establish that the satisfiability and finite satisfiability problems for GC2D
are in ExpTime (Theorems 9.5 and 9.6). The proof given here is a modification of the
proof in [PH07] that the finite satisfiability problem for GC2 is in ExpTime. Unfortunately,
guarded formulas cannot straightforwardly be used to express databases, and the authors
know of no natural reduction from (finite) GC2D-satisfiability to (finite) GC2-satisfiability: the
proof, even though its broad outlines are the same, has to be re-written from scratch. Many
of the following lemmas are taken—modulo inessential reformulation—directly from [PH07].
We begin with a normal-form lemma for GC2-formulas.

Lemma 7.1 ([PH07], Lemma 2). Let ψ be a GC2-formula. We can compute in time
polynomial in ‖ψ‖, a sentence

ϕ := ∀xα ∧
∧

1≤j≤n
∀x∀y(ej(x, y)→ (βj ∨ x = y)) ∧

∧
1≤i≤m

∀x∃=Ci y(oi(x, y) ∧ x 6= y),
(7.1)

such that: (i) α is a quantifier- and equality-free formula in one variable, x; (ii) n, m are
positive integers; (iii) ej is a binary predicate different from =, for all j (1 ≤ j ≤ n); (iv)
βj is a quantifier- and equality-free formula; (v) Ci is a positive integer; (vi) oi is a binary
predicate other than =, for all i (1 ≤ i ≤ m); (vii) ϕ entails ψ; and (viii) any model of ψ
can be expanded to a model of ϕ.

In the sequel, we fix a GC2D-formula ϕ ∧ ∆, where ϕ is of the form (7.1), and ∆ a
database, over some signature σ. As we are employing the unique names assumption, we
continue to write c instead of cA where the interpretation A is clear from context. We assume
that σ contains, for each individual constant c, a unary predicate with the same name,
and that ∆ contains all the formulas c(c) and ¬c(d) where c and d are distinct individual
constants. We refer to these unary predicates as naming predicates and to the formulas
added to ∆ as naming formulas. Elements realizing a naming predicate c(·) are to be viewed
as candidates for the constant c. When building a model of ϕ ∧∆, one of these candidates
is chosen to realize the actual constant. Note that the addition of naming predicates and
formulas requires at most a polynomial increase in the size of σ and ∆. We further assume,
again for technical reasons, that σ contains dlog((mC)2 + 1)e unary predicates not occurring
in ϕ or ∆. We refer to these unary predicates as spare predicates. Notice that the number of
spare predicates is bounded by a polynomial function of ‖ϕ‖.

A 1-type is a maximal consistent set of non-ground, equality-free literals (over σ) with x
as the only free variable; a 2-type is a maximal consistent set of non-ground, equality-free
literals (over σ) with x and y as the only free variables. In this article, expressions involving
equality do not feature in 1- or 2-types: this includes, in particular, formulas of the forms
x = c and x 6= c. On the other hand, every individual constant c in σ is also a naming
predicate, and literals of the forms c(x) and ¬c(x) do occur in 1- and 2-types. Since ∆ is
assumed to contain all the naming formulas, if A |= ϕ∧∆, then c will be the unique database
element of A whose 1-type contains the literal c(x). We stress however that, if A |= ϕ ∧∆,
there can be multiple other (non-database) elements of A whose 1-type contains the literal
c(x). (These elements can be viewed as candidates that where not chosen to realize c when
A was built.) We use the letters π and τ , possibly with subscripts, to range over 1- and

ADDING PATH-FUNCTIONAL DEPENDENCIES TO GC2 25

2-types respectively. Where convenient, we treat a k-type (k = 1, 2) as the conjunction of
the formulas constituting it.

For a given structure A interpreting σ and element a ∈ A, we denote by tpA[a] the
unique 1-type τ such that A |= τ(a). In this case, we say that τ is realized by a or that a
realizes τ . If a and b are distinct elements of A, we speak similarly of the 2-type tpA[a, b]
realized by a and b. Let τ be a 2-type; we denote by τ−1 the 2-type which is the result of
transposing the variables x and y in τ . Further, we denote by tp1(τ) the result of deleting
all literals from τ involving the variable y, and we define tp2(τ) = tp1(τ−1). We are to
think of tp1(τ) as the ‘starting point’ of τ and of tp2(τ) as the ‘endpoint’ of τ . Evidently,
if τ is a 2-type, A a structure, and a, b distinct elements of A such that tpA[a, b] = τ , then
tpA[b, a] = τ−1, tpA[a] = tp1(τ) and tpA[b] = tp2(τ).

By a vector we understand an m-dimensional vector over N. We denote the vector
(C1, . . . , Cm) of counting subscripts occurring in (7.1) by C and the m-dimensional zero
vector by 0. We use ≤ for the pointwise ordering on vectors: v ≤ w if every component
of v is less than or equal to the corresponding component of w, and v < w if v ≤ w and
v 6= w; similarly for ≥ and >. Let C = max1≤i≤m{Ci}. The number of vectors u such that
u ≤ C is evidently bounded by (C + 1)m, and thus by an exponential function of ‖ϕ‖.

The following notions make specific reference to our fixed formula ϕ given in (7.1), and
in particular to the binary predicates q1, . . . , qm appearing in it. Let τ be a 2-type over
σ. We say that τ is a message-type if |= τ → oi(x, y), for some i (1 ≤ i ≤ m). For τ
a message-type, if τ−1 is also a message-type, we say that τ is invertible; otherwise, τ is
non-invertible. Finally, if τ is a 2-type such that neither τ nor τ−1 is a message-type, we say
that τ is silent.

Let A be a structure interpreting σ. If a, b are distinct elements of A such that
tpA[a, b] = τ is a message-type, we say, informally, that a sends a message (of type τ) to b.
We call A chromatic if the following are true:

• For all a, b ∈ A such that a 6= b and tpA[a, b] is an invertible message-type, we have
tpA[a] 6= tpA[b].
• For all pairwise distinct a, b, c ∈ A such that tpA[a, b] and tpA[b, c] are invertible message-

types, we have tpA[a] 6= tpA[c].

In other words, a structure A is chromatic if no element sends an invertible message to an
element with the same 1-type as itself, and no element sends invertible messages to two
different elements with the same 1-type as each other. The following lemma shows that for
our fixed formula ϕ ∧∆ and signature σ, we may restrict attention to chromatic models.
This lemma relies on the fact that σ contains the dlog((mC)2 + 1)e ‘spare’ predicates not
occurring in ϕ or ∆.

Lemma 7.2 [PH07, Lemma 3]. If ϕ∧∆ has a model interpreting σ, then it has a chromatic
model interpreting σ over the same domain.

Assume, then, that A is a chromatic model of ϕ ∧∆ over σ. By adding to ∆ all ground
literals over σ that are true in A, we may assume that ∆ is complete over σ. Notice that,
for a complete database ∆, all models of ∆ assign the same 1-type to c, and so we may
denote this 1-type by tp∆[c]. If c and d are distinct individual constants, we define tp∆[c, d]
analogously.

Let Π = π0, . . . , πP−1 be an enumeration of the 1-types over σ. It is clear that P is a
power of 2, thus p = logP is an integer. We will need to index certain sub-sequences of Π
using bit-strings. Let ε denote the empty string and define Πε = Π to be the whole sequence.

26 GEORGIOS KOURTIS AND IAN PRATT-HARTMANN

Now suppose Πs = πj , . . . πk−1 has been defined, where s is a bit-string of length less than
p, and k − j is a power of 2. We define Πs0 and Πs1 to be the first and second halves of Πs,
respectively:

Πs0 = πj , . . . , π(j+k)/2−1 and Πs1 = π(j+k)/2, . . . , πk−1.

When |s| = p, it is clear that Πs corresponds to exactly one 1-type πj : we sometimes denote
this type by πs. Note that, in this case, s is the binary representation of the subscript j.

We now index (sequences of) invertible message-types according to their terminal 1-types
using bit-strings as follows. Let Λ be the set of all invertible message-types (over σ). Fix
any 1-type π, let s be any bit-string with 0 ≤ |s| ≤ p, and define

Λπ,s = {λ ∈ Λ | tp1(λ) = π and tp2(λ) ∈ Πs},
i.e. Λπ,s is the set of all invertible message-types ‘starting’ from an element of 1-type π and
‘ending’ at an element whose 1-type is in Πs. Notice that each of the sets Λπ,s will usually
contain more than one 2-type. This is true even when |s| = p, as there are several ways one
could ‘connect’ an element of 1-type π with another element of 1-type π′. For a chromatic
model, A, however, we are guaranteed that no element sends an invertible message-type to
an element of the same 1-type and any element a of 1-type π can send an invertible message
to no more than one element b of type π′ (6= π). Thus, when |s| = p, there can be at most
one element b ∈ A \ {a} such that tpA[a, b] ∈ Λπ,s.

In a similar way, we use bit-strings to index sequences of 2-types that are not invertible
message-types. Fix any 1-type π and let

Mπ = µπ,0, . . . , µπ,Q−1

be an enumeration of all 2-types τ with tp1(τ) = π that are either non-invertible message-
types or silent 2-types. In other words, Mπ is an enumeration of all 2-types τ with tp1(τ) = π
such that τ−1 is not a message-type. It follows, then, that Q is a power of 2, thus q = logQ
is an integer. Define Mπ,ε = Mπ. Now suppose Mπ,t = µj , . . . µk−1 has been defined, where
t is a bit-string of length less than q, and k − j is a power of 2. We recursively define

Mπ,t0 = µj , . . . , µ(j+k)/2−1 and Mπ,t1 = µ(j+k)/2, . . . , µk−1.

Note that if |t| = q, then Mπ,t contains a single 2-type µπ,j , which we often write as µπ,t
for convenience.

8. Reduction to linear programming

In this section, we show how to transform our given GC2D-formula, ϕ ∧∆, into a system
of exponentially many linear inequalities. The variables in these inequalities represent the
frequency with which certain (local) configurations are realized in a putative model. We
shall show that this system of inequalities has a non-negative integer solution if and only if
ϕ ∧∆ is finitely satisfiable.

Let A be a model of ϕ interpreting the signature σ. Let a ∈ A be an element with
tpA[a] = π, and s a bit-string of length at most p. Define the s-spectrum of a in A, denoted
spA

s [a], to be the m-element vector v = (v1, . . . , vm) where, for 1 ≤ i ≤ m,

vi = |{b ∈ A \ {a} : A |= oi(a, b) and tpA[a, b] ∈ Λπ,s}|.

ADDING PATH-FUNCTIONAL DEPENDENCIES TO GC2 27

Likewise, if t is a bit-string with |t| < q, define the t-tally of a, denoted tlAt [a], to be the
m-element vector w = (w1, . . . , wm) where, for 1 ≤ i ≤ m,

wi = |{b ∈ A \ {a} : A |= oi(a, b) and tpA[a, b] ∈Mπ,t}|.
Informally, spA

s [a] records the number of oi-messages (1 ≤ i ≤ m) sent by the element a, and
whose types belong to Λπ,s. (Note that these message-types are all invertible.) In particular,

spA
ε [a] records the number of invertible oi-messages (1 ≤ i ≤ m) sent by the element a.

Similarly, tlAt [a] records the number of oi-messages (1 ≤ i ≤ m) sent by the element a, and
whose types belong to Mπ,t. (Note that these message-types are all non-invertible.) In

particular, tlAε [a] records the number of non-invertible oi-messages (1 ≤ i ≤ m) sent by the
element a.

Let s be any bit-string with |s| < p and fix a 1-type π. For a given structure A, each
vector v specifies a set of elements of A, i.e. the set of elements of type π that have s-spectrum
v. The following lemma encapsulates the observation that this set can also be characterized
as the union of sets of elements of type π whose s0- and s1-spectra add up to v. The same
idea applies to tallies.

Lemma 8.1. Let A be a finite model of ϕ, and let a ∈ A with tpA[a] = π. Let s, t be any
bit-strings with |s| < p and |t| < q. Then, the following equations hold:

spA
ε [a] + tlAε [a] = C (8.1)

spA
s0[a] + spA

s1[a] = spA
s [a] (8.2)

tlAt0[a] + tlAt1[a] = tlAt [a] (8.3)

Proof. Equation (8.1) is immediate from the definition of spectra and tallies and the normal
form in Lemma 7.1. For Equation (8.2), notice that the set Λπ,s can be partitioned into two
subsets Λπ,s0 and Λπ,s1, and this induces a partition of the outgoing message-types from a
(1 ≤ i ≤ m); Equation (8.2) is then evident. Likewise for Equation (8.3).

Let τ be any 2-type. With τ we associate an m-dimensional vector Cτ , whose ith
component is given by

(Cτ)i =

{
1 if |= τ → oi(x, y),
0 otherwise.

Let A be a finite model of ϕ, a ∈ A, and t a bit-string with |t| = q. Now, consider the (only)
2-type µπ,t in Mπ,t and, if µπ,t is non-silent, let n be the number of messages of type µπ,t
sent by a, i.e. n is the number of elements b ∈ A \ {a} such that tpA[a, b] = µπ,t. It is clear,

then, that tlAt [a] = n ·Cµπ,t . On the other hand, if µπ,t is silent, we have tlAt [a] = Cµπ,t = 0.
Let s be a bit-string with |s| = p, and suppose further that A is chromatic. For each element
a ∈ A with 1-type π and non-zero s-spectrum, there is a unique λ ∈ Λπ,s (depending on a)
such that a sends a message of type λ, and hence has s-spectrum Cλ.

Lemma 8.2. Let A be a chromatic model of ϕ, a ∈ A, π a 1-type, and s a bit-string with
|s| = p. If tpA[a] = π and spA

s [a] 6= 0, then there exists λ ∈ Λπ,s with spA
s [a] = Cλ such that

a sends a message of type λ to some b ∈ A \ {a}. Conversely, if there exists λ ∈ Λπ,s such

that a sends a message of type λ to some b ∈ A \ {a}, then tpA[a] = π and spA
s [a] = Cλ.

Proof. Suppose tpA[a] = π and spA
s [a] 6= 0. As discussed previously, there exists a unique

b ∈ A \ {a} such that λ = tpA[a, b] ∈ Λπ,s. Clearly, then, spA
s [a] = Cλ. Conversely, suppose

28 GEORGIOS KOURTIS AND IAN PRATT-HARTMANN

Variable Intended meaning of its value

xλ |{a ∈ A : for some b ∈ A \ {a}, tpA[a, b] = λ}|
yπ,s,u |{a ∈ Aπ : spA

s [a] = u}|
zπ,t,u |{a ∈ Aπ : tlAs [a] = u}|
ŷπ,s,v,w |{a ∈ Aπ : spA

s0[a] = v and spA
s1[a] = w, whenever |s| < p}|

ẑπ,t,v,w |{a ∈ Aπ : tlAt0[a] = v and tlAt1[a] = w, whenever |t| < q}|

Table 1. Variables and their intended meanings, for a finite model A of
∆ ∪ {ϕ}. Recall, Aπ = {a ∈ A | tpA[a] = π}.

a sends a message of type λ ∈ Λπ,s to some element b ∈ A \ {a}. Evidently, then, tpA[a] = π

and b is unique, thus spA
s [a] = Cλ.

Henceforth, given a structure A, we will denote the set of elements in the universe A of A
having 1-type π by Aπ, that is Aπ = {a ∈ A | tpA[a] = π}. We now proceed to transform the
question of whether ϕ∧∆ is finitely satisfiable into the question of whether a certain system
of linear equations/inequalities has a solution over N. The solutions of these equations count
how often various local configurations appear in a model. These configurations are:

• realizations of each invertible message-type λ;
• elements of 1-type π having s-spectrum u, for all vectors u ≤ C;
• elements of 1-type π having t-tally u, for all vectors u ≤ C;
• elements of 1-type π whose s-spectrum u is obtained as the sum of an s0-spectrum v and

an s1-spectrum w, for v,u,w ≤ C and for all s with |s| < p;
• elements of 1-type π whose t-tally u is obtained as the sum of a t0-tally v and a t1-tally
w, for v,u,w ≤ C and for all t with |t| < q.

To each of those configurations we associate a variable which is intended to capture how
many times it appears in a model. These variables and the properties that they capture can
be seen in Table 1. Unless specified otherwise, the ranges of the subscripts of these variables
are as follows: π ranges over all 1-types in Π, λ ranges over all invertible message-types, s
ranges over all bit-strings with |s| ≤ p, t ranges over all bit-strings with |t| ≤ q, and u,v,w
vary over all vectors ≤ C. (Similarly for their primed counterparts π′, λ′, s′, t′,u′,v′ and
w′.) That is, we have one variable xλ for each invertible message-type λ, one variable yπ,s,u
for each possible combination of π ∈ Π, s with |s| ≤ p and u ≤ C, and so on.

We now write a collection of constraints that a given structure A has to satisfy for it to
be a model of ϕ ∧∆. For ease of reading, we divide these constraints into four groups: the
first three are imposed by the formula ϕ, and the fourth, by the database ∆. Let E1 be the
following set of constraints, where indices vary over their standard ranges, but with s and t

ADDING PATH-FUNCTIONAL DEPENDENCIES TO GC2 29

subject to the additional constraint that |s| < p and |t| < q:

yπ,ε,u = zπ,ε,C−u (8.4)

yπ,s,u =
∑
{ŷπ,s,v′,w′ | v′ + w′ = u} (8.5)

zπ,t,u =
∑
{ẑπ,t,v′,w′ | v′ + w′ = u} (8.6)

yπ,s0,v =
∑
{ŷπ,s,v,w′ | v + w′ ≤ C} (8.7)

yπ,s1,w =
∑
{ŷπ,s,v′,w | v′ + w ≤ C} (8.8)

zπ,t0,v =
∑
{ẑπ,t,v,w′ | v + w′ ≤ C} (8.9)

zπ,t1,w =
∑
{ẑπ,t,v′,w | v′ + w ≤ C} (8.10)

1 ≤
∑
{yπ′,ε,u′ | π′ a 1-type, u′ ≤ C} (8.11)

Lemma 8.3 ([PH07], Lemma 7). Let A be a finite model of ϕ. The constraints E1 are
satisfied when the variables take the values specified in Table 1.

Proof. For (8.4), we see from (8.1) that every element contributing to the count yπ,ε,u
contributes to zπ,ε,C−u, and vice versa. For (8.5), we see from (8.2) that every element
contributing to the count yπ,s,u must contribute to ŷπ,s,v′,w′ for some pair of vectors v′, w′

summing to u, and vice versa. The other equations are similar. The inequality (8.11) in
effect states that A is non-empty.

Recalling our fixed formula ϕ given in (7.1), let τ be any 2-type. We say that τ is
forbidden if the following formula is unsatisfiable:∧

τ ∧ α(x) ∧ α(y)∧∧
1≤j≤n

(
(ej(x, y)→ βj(x, y)) ∧ (ej(y, x)→ βj(y, x))

)
.

Evidently, no forbidden 2-type can be realized in any model of ϕ.
Let E2 be the following set of constraints, where indices vary over their standard ranges,

but with s and t subject to the additional constraint that |s| = p and |t| = q:

yπ,s,u =
∑
{xλ′ | λ′ ∈ Λπ,s and Cλ′ = u} (8.12)

xλ−1 = xλ (8.13)

xλ = 0, whenever tp1(λ) = tp2(λ) (8.14)

xλ = 0, whenever λ is forbidden (8.15)

zπ,t,u = 0, whenever µπ,t is forbidden (8.16)

zπ,t,u = 0, whenever u is not a scalar multiple of Cµπ,t (8.17)

Lemma 8.4 ([PH07], Lemma 8). Let A be a finite, chromatic model of ϕ. The constraints
E2 are satisfied when the variables take the values specified in Table 1.

Proof. For (8.12), we observed in Lemma 8.2 that every element a contributing to the
count yπ,s,u emits exactly one invertible message whose type λ lies in Λπ,s, and that

u = spA
s [a] = Cλ. The other equations are obvious.

30 GEORGIOS KOURTIS AND IAN PRATT-HARTMANN

Let E3 be the following set of constraints, where indices vary over their standard ranges,
but with t and u subject to the additional constraint that |t| = q, and u 6= 0:

zπ,t,u > 0 ⇒
∑
{yπ′,ε,u′ | π′ = tp2(µπ,t) and u′ ≤ C} > 0 (8.18)

In effect, this inequality states that, if a non-invertible message-type is realized in A, then it
must have a ‘landing-site’ of the appropriate 1-type. Thus, we have:

Lemma 8.5 [PH07, Lemma 9]. Let A be a finite model of ϕ. The constraints E3 are satisfied
when the variables take the values specified in Table 1.

We now turn our attention to the constraints that ∆ enforces. (Note that these
constraints do not occur at all in [PH07].) These constraints feature the spectra and tallies
of our database elements. The difficulty is that, since we do not know how elements in
the database are related to those outside it in some putative model A, these quantities are
unknown. Moreover, although the number of database elements is bounded by the size of ∆,
the number of values spA

s [c] and tlAt [c] (for each constant c ∈ D) is exponential in the size of
ϕ, and thus too large to simply guess in order to obtain the desired ExpTime-complexity
bound. We therefore need to perform this guessing judiciously.

Suppose A |= ϕ ∧∆ is chromatic: for each constant c ∈ D, let

• Sc be the set of strings s of length p such that c sends an invertible message in A to some
database element b of 1-type πs; and
• Tc be the set of strings t of length q such that c sends a non-invertible message in A of

type µt to some database element.

Thus, Sc is the set of indices of (terminal 1-types of) invertible messages sent by c within
the database, and Tc is the set of indices of non-invertible messages sent by c within the
database. Obviously, the cardinalities of both sets are bounded by the size of the database.

If x is any bit-string we denote by seg(x) the set of all proper initial segments of x (thus,
ε ∈ seg(x), but x 6∈ seg(x)), and we write

CCx = {ε} ∪ {yb | y ∈ seg(x) and b ∈ {0, 1}}.
Alternatively, CCx is the set of all proper initial segments of x together with their extensions
by a single bit. For example,

CC0101 = {ε, 0, 1, 00, 01, 010, 011, 0100, 0101}. (8.19)

(The notation is an allusion to the similar notion of C-command in transformational linguis-
tics.) Notice that |CCx| = 2|x|+ 1. Now define, for any individual constant c,

CCSc = {ε} ∪
⋃
{CCs | s ∈ Sc}

CCTc = {ε} ∪
⋃
{CCt | t ∈ Tc}.

The idea is simple: for an individual constant c of type π, CCSc collects every string s of
length p such that c sends an invertible message of type λ ∈ Λπ,s to a database element,
together with all of s’s proper prefixes and the extensions of those proper prefixes by a
single bit. Notice that CCSc is always taken to include the empty string even if c sends
no invertible messages to any database element: this stipulation avoids some otherwise
tedious special cases. Similarly, CCTc collects every string t of length q such that c sends
a non-invertible message of type µ ∈ Mπ,t to a database element, together with all of t’s
proper prefixes and the extensions of those proper prefixes by a single bit; again, we always

ADDING PATH-FUNCTIONAL DEPENDENCIES TO GC2 31

add the string ε. Both of these sets are polynomially bounded in the size of ϕ ∧ ∆; we
shall need to guess spA

s [c] only for s ∈ CCSc and tlAt [c] only for t ∈ CCTc. We remark
that, by construction, for any s with 0 ≤ |s| < p, s0 ∈ CCSc if and only if s1 ∈ CCSc, and
s0 ∈ CCSc implies s ∈ CCSc; similarly with CCTc.

Keeping our chromatic structure A fixed for the moment, for any individual constant c,
with tpA[c] = π, and any s ∈ CCSc, t ∈ CCTc, define:

γcπ,s = spA
s [c] δcπ,t = tlAt [c]. (8.20)

That is, γcπ,s is the s-spectrum in A of the database element named c, and δcπ,t is its t-tally.
As a special case of (8.1)–(8.3), for all bit-strings s, t with s0 ∈ CCSc and t0 ∈ CCTc:

γcπ,ε + δcπ,ε = C (8.21)

γcπ,s0 + γcπ,s1 = γcπ,s (8.22)

δcπ,t0 + δcπ,t1 = δcπ,t. (8.23)

A moment’s thought shows that ∆ imposes additional constraints on the quantities
γcπ,s δ

c
π,t. For consider an individual constant c and bit-string s of length p, and suppose

there exists an individual constant d such that tp∆[c, d] = λ ∈ Λπ,s. (Since A is chromatic,

there can be at most one such d.) Then γcπ,s = spA
s [c] = Cλ. Similarly, if, for an individual

constant c and bit-string t of length q, where µ = µπ,t is a non-invertible message-type,
there exist k individual constants d, distinct from c, with tp∆[c, d] = µπ,t, then, writing µ

for µπ,t, we have δcπ,t = tlAt [c] ≥ k ·Cµ. As we might say, ∆ has to be compatible with the
systems γcπ,s and δcπ,t, in the obvious sense of not requiring that c sends more messages than
these vectors allow.

We need one further group of constraints. For each invertible type λ, let ηλ be the
number of elements in ∆ that send an invertible message of type λ to another database
element. Of course, these numbers can be read directly from ∆. Now let E4 be the following
classes of constraints, where λ varies as usual, π ranges over the set of 1-types realized in
the database, c ranges over the set of individual constants, s ranges over the set of strings s
such that s0 ∈ CCSc and t over the set of strings t such that t0 ∈ CCTc:

xλ ≥ ηλ (8.24)

yπ,ε,u ≥ 1, when u = γcπ,ε and π = tp∆[c] (8.25)

zπ,ε,u ≥ 1, when u = δcπ,ε and π = tp∆[c] (8.26)

ŷπ,s,v,w ≥ 1, when v = γcπ,s0, w = γcπ,s1, and π = tp∆[c] (8.27)

ẑπ,t,v,w ≥ 1, when v = δcπ,t0, w = δcπ,t1, and π = tp∆[c] (8.28)

Lemma 8.6. Let A be a finite model of ϕ ∧∆. The constraints E4 are satisfied when the
variables take the values specified in Table 1.

Proof. The constraints (8.24), (8.25) and (8.26) are evident. For (8.27), let c ∈ D be
a constant, with 1-type π = tp∆[c]. Pick any s such that s0 ∈ CCSc. (Hence, also,
s1, s ∈ CCSc.) By definition, γcπ,s0 and γcπ,s1 are the s0- and s1-spectrum (respectively)
of the (database) element c ∈ A. But then, referring to Table 1, c is one of the elements
‘recorded’ by the variable ŷπ,s,v,w, for v = γcπ,s0 and w = γcπ,s1. Consequently, ŷπ,s,v,w ≥ 1,
when v = γcπ,s0 and w = γcπ,s1. Thus, the constraints (8.27) are satisfied. Similarly for (8.28).

32 GEORGIOS KOURTIS AND IAN PRATT-HARTMANN

Let E = E1∪E2∪E3∪E4. Note that the size ‖E‖ of E is bounded above by an exponential
function of ‖ϕ‖.

Lemma 8.7. Let ϕ and ∆ be as above. If ϕ∧∆ is finitely satisfiable, then E has a solution
over N.

Proof. Lemmas 8.3–8.6.

9. Obtaining a Model from the Solutions

In the previous section, we established a system of constants γcπ,s, δ
c
π,t and ηλ, and constructed

a system E of linear equations and inequalities featuring these constants. We showed that, if
ϕ∧∆ has a finite model A, then, by interpreting the constants γcπ,s, δ

c
π,t and ηλ, with respect

to ∆ and A as suggested, we find that the γcπ,s, δ
c
π,t satisfy (8.21)–(8.23), and, moreover, that

E has a solution over N. In this section, we establish a converse result. Assuming that the
constants γcπ,s and δcπ,t satisfy (8.21)–(8.23), and that the γcπ,s, δ

c
π,t and ηλ are compatible

with ∆ as described, we construct, from any solution of E over N, a finite model of ϕ ∧∆.
Our strategy is as follows. We start with sets of elements Aπ of the right cardinality, for

each 1-type π, and gradually build the message-types that those elements ‘want’ to send.
Fix some 1-type π and let Aπ be a set with cardinality

|Aπ| =
∑
{yπ,ε,u′ | u′ ≤ C}.

Think of Aπ as the set of elements that ‘want’ to have 1-type π. We shall define functions
fπ,s and gπ,t that give us the spectra and tallies for each element a ∈ Aπ. Think of fπ,s(a)
as the s-spectrum that a ‘wants’ to have and gπ,t(a) as the t-tally that a ‘wants’ to have
(when a model is eventually built). For those functions to agree with the solutions of the
previous system of constraints, we shall ensure that

|f−1
π,s(u)| = yπ,s,u (9.1)

|g−1
π,t(u)| = zπ,t,u. (9.2)

Furthermore, we shall ensure that, for all a ∈ Aπ,

fπ,ε(a) + gπ,ε(a) = C (9.3)

fπ,s0(a) + fπ,s1(a) = fπ,s(a) (9.4)

gπ,t0(a) + gπ,t1(a) = gπ,t(a). (9.5)

Finally, for each individual constant c, setting π = tp∆[c], we shall ensure the existence of
an element bc ∈ Aπ such that, for all s ∈ CCSc and all t ∈ CCTc,

fπ,s(bc) = γcπ,s (9.6)

gπ,t(bc) = δcπ,t. (9.7)

The idea is that such an element bc can be used to realize the constant c, when a model is
eventually built.

The following lemma guarantees that the above requirements can be satisfied.

ADDING PATH-FUNCTIONAL DEPENDENCIES TO GC2 33

Lemma 9.1. Suppose that xλ, yπ,s,u, zπ,t,u, ŷπ,s,v,w, ẑπ,t,v,w are (classes of) natural
numbers satisfying the constraints E. Fix any 1-type π ∈ Π, and let Aπ be a set of cardinality∑
{yπ,ε,u′ | u′ ≤ C}. Then there exists a system of functions on Aπ

fπ,s : Aπ → {u | u ≤ C} and gπ,t : Aπ → {u | u ≤ C},
for each bit-string s with |s| ≤ p and t with |t| ≤ q, satisfying the following conditions:

(i) Equations (9.1) and (9.2) hold for all vectors u ≤ C;
(ii) Equations (9.3)–(9.5) hold for all a ∈ Aπ and all s, t with |s| < p and |t| < q.

Furthermore, if π = tp∆[c] for some individual constant c, then there exists in addition an
element bc ∈ Aπ such that

(iii) Equations (9.6)–(9.7) hold for all s ∈ CCSc and t ∈ CCTc.

Proof. Decompose Aπ into pairwise disjoint sets Au of cardinality |Au| = yπ,ε,u, for each
vector u ≤ C. Note that, since yπ,ε,u might be zero, some of these sets may be empty.

We construct the functions fπ,s, where 0 < |s| ≤ p by induction on s. Suppose s = ε;
for each u ≤ C, and for all a ∈ Au, set fπ,ε(a) = u and gπ,ε(a) = C −u. These assignments
clearly satisfy (9.1) and (9.2), keeping in mind the constraints (8.4). Now suppose π = tp∆[c],
for some individual constant c. By (8.25), and setting u to be the vector γcπ,ε, we have
Au 6= ∅. Choose bc to be any element in Au. This immediately secures (9.6) for s = ε, and
given the condition (8.21) relating γcπ,ε and δcπ,ε, also (9.7).

Now, assume that fπ,s (0 ≤ |s| < p) has been defined and satisfies (9.1) and (9.6).
For every vector u ≤ C, decompose the set f−1

π,s(u) into subsets Av,w with cardinality
|Av,w| = ŷπ,s,v,w, where v, w range over all vectors ≤ C such that v + w = u. This is
possible from the constraints (8.5) and Equation (9.1). Set

fπ,s0(a) = v and fπ,s1(a) = w,

for all a ∈ Av,w. Notice that Equation (9.4) holds as required.
To see that fπ,s0 and fπ,s1 both satisfy Equation (9.1), note that fπ,s0(a) = v if and only

if, for some vector w′ such that v + w′ ≤ C, a ∈ Av,w′ . Similarly, fπ,s1(a) = w if and only
if, for some vector v′ such that v′ + w ≤ C, a ∈ Av′,w. That is,

f−1
π,s0(v) =

⋃
{Av,w′ | v + w′ ≤ C}

f−1
π,s1(w) =

⋃
{Av′,w | v′ + w ≤ C},

with the collections of sets on the respective right-hand sides being pairwise disjoint. By the
constraints (8.7)–(8.8), together with the fact that |Av,w| = ŷπ,s,v,w for all v,w, we have:

|f−1
π,s0(v)| = yπ,s0,v

|f−1
π,s1(w)| = yπ,s1,w,

which establishes (9.1) for the functions fπ,s0 and fπ,s1.
It remains only to secure (9.6) for the functions fπ,s0 and fπ,s1 in the case where

π = tp∆[c], for some individual constant c, and s0 (and hence s1 and s) is in CCSc. By
inductive hypothesis, fπ,s(bc) = γcπ,s, i.e., bc ∈ f−1

π,s(u) where u is the vector γcπ,s. Let
v = γcπ,s0 and w = γcπ,s1. Then, by (8.22), these vectors satisfy the condition v + w = u,

so that, in the decomposition of f−1
π,s(u), the set Av,w will have cardinality ŷπ,v,w. Thus,

by (8.27), Av,w 6= ∅, so that we may ensure that bc is contained in this set when we
perform the decomposition of f−1

π,s(u). But then we will have set fπ,s0(bc) = v = γcπ,s0 and

34 GEORGIOS KOURTIS AND IAN PRATT-HARTMANN

fπ,s1(bc) = w = γcπ,s1, so that (9.6) holds with s replaced by s0 and s1. This completes the
induction.

The construction of the functions gπ,t is completely analogous.

Lemma 9.2 [PH07, Lemma 12]. Let the functions f and g be constructed as in Lemma 9.1.
Then, for all a ∈ Aπ, we have∑

{fπ,s′(a) : |s′| = p}+
∑
{gπ,t′(a) : |t′| = q} = C.

Proof. We prove the stronger result that, for all a ∈ Aπ, j (0 ≤ j ≤ p) and k (0 ≤ k ≤ q),∑
{fπ,s′(a) : |s′| = j}+

∑
{gπ,t′(a) : |t′| = k} = C, (9.8)

using a double induction on j and k. If j = k = 0, then the left-hand side of (9.8) is simply
fπ,ε(a) + gπ,ε(a), which is equal to C by (9.3). Suppose now that the result holds for the
pair j, k, with j < p. Then∑

{fπ,s′(a) : |s′| = (j + 1)}+
∑
{gπ,t′(a) : |t′| = k}

=
∑
{fπ,s′0(a) + fπ,s′1(a) : |s′| = j}+

∑
{gπ,t′(a) : |t′| = k}

=
∑
{fπ,s′(a) : |s′| = j}+

∑
{gπ,t′(a) : |t′| = k} by (9.4)

= C by inductive hypothesis.

This establishes the result for the pair j + 1, k. An analogous argument using (9.5) applies
when k < m, completing the induction.

We are now ready to prove the converse of Lemma 8.7.

Lemma 9.3. Let ∆, ϕ and E be as given above. If E has a solution over N, then ϕ ∧∆ is
finitely satisfiable.

Proof. Let xλ, yπ,s,u, zπ,t,u, ŷπ,s,v,w, ẑπ,t,v,w be natural numbers satisfying E (with the
indices π, s, t, u, v, w varying as usual). Notice that, for all positive integers k, the (sets
of) natural numbers kxλ, kyπ,s,u, kzπ,t,u, kŷπ,s,v,w, kẑπ,t,v,w also satisfy E . Thus, we may
assume that all values in the sought-after solution are either 0 or ≥ 3mC.

We start by defining the universe A of our model A. Let

A =
⋃
{Aπ | π is any 1-type over σ},

where each set Aπ has cardinality

|Aπ| =
∑
{yπ,ε,u′ | u′ ≤ C}

and the sets Aπ are pairwise disjoint. Think of Aπ as the elements of A that ‘want’ to have
1-type π. Note that A 6= ∅, by the constraint (8.11).

Let the functions fπ,s, gπ,t and elements bc be as constructed in Lemma 9.1. Think of
fπ,s(a) as the s-spectrum that a ‘wants’ to have, gπ,t(a) as the t-tally that a ‘wants’ to have,
and bc the database element that ‘wants’ to be the denotation of c. We are only interested
in the values of these functions when |s| = p and |t| = q. Fix some such s. Decompose
each Aπ into sets f−1

π,s(u) (with u varying), for each vector u with 0 < u ≤ C. By the

constraints (8.12) and Equation (9.1), decompose each of those f−1
π,s(u) into pairwise disjoint

(possibly empty) sets Aλ with |Aλ| = xλ, for all invertible message-types λ ∈ Λπ,s with
Cλ = u. When performing this decomposition, for each individual constant c, if ∆ specifies

ADDING PATH-FUNCTIONAL DEPENDENCIES TO GC2 35

λa,0

λa,1

λa,P−1

µπ,0

na,0

µπ,0

µπ,1

na,1

µπ,1

µπ,R−1

na,R−1 µπ,R−1

Figure 9. The messages sent by a ∈ Aπ.

that c sends an invertible message of type λ to some other database element, then make sure
that bc is assigned to the set Aλ: by (8.24), this set is at least as numerous as the number of
database elements sending a message of type λ, so that we never run out of elements. Think
of Aλ as the set of elements in Aπ that ‘want’ to send a single invertible message of type λ.
The above process is repeated for all possible different values of s (with |s| = p), and each
decomposition should be thought of as independent of each other. Analogously, for each
t with |t| = q, Aπ is decomposed into pairwise disjoint sets g−1

π,t(u) (with u varying); and,
again, those decompositions should be thought of as independent of each other.

Based on the above decompositions, we specify for each a ∈ Aπ a ‘mosaic piece’ and show
how to assemble these pieces into a model of ϕ. A mosaic piece is, informally, a collection of
the messages that a ‘wants’ to send. This collection might contain more than one message
of each type (or zero for that matter). Let a ∈ Aπ; the mosaic piece corresponding to a
contains:

(i) a single message labelled λa,s for each bit-string s with |s| = p if fπ,s(a) 6= 0, where
λa,s is the (unique) 2-type λ for which a ∈ Aλ;

(ii) na,t messages labelled µπ,t for each bit-string t with |t| = q, where na,t is the (unique)
natural number such that gπ,t(a) = na,t ·Cµπ,t . Note that if gπ,t(a) = 0 then na,t = 0,
otherwise na,t exists by the constraints (8.17) and Equation (9.2).

The mosaic piece corresponding to a is depicted in Fig. 9. Here, for legibility, we have
identified the strings s of length p with the numbers 0, . . . , P − 1, and the strings t of length
q for which µπ,t is a (non-invertible) message-type with the numbers 0, . . . , R−1, for suitable
P , R. The dashed radial arrows indicate that a may or may not send a message of invertible
type λa,s ∈ Λπ,s; the solid radial arrows indicate that a sends na,t (possibly zero) messages
of non-invertible type µπ,t.

36 GEORGIOS KOURTIS AND IAN PRATT-HARTMANN

Let a ∈ A and define Ca to be the vector (Ca,1, . . . , Ca,m) whose ith coordinate Ca,i
records the number of messages in the mosaic piece of a containing an outgoing oi arrow—
i.e. messages having label ν for which oi(x, y) ∈ ν. Clearly (see Fig. 9),

Ca =
∑
{fπ,s′(a) : |s′| = p}+

∑
{gπ,t′ : |t′| = q}

and, by Lemma 9.2,
Ca = C. (9.9)

We now build A in four steps as follows.

Step 1 (Fixing the 1-types) For all 1-types π and all a ∈ Aπ, set tpA[a] = π. Since
1-types do not contain equality literals such as x = c or x 6= d, this is meaningful. Moreover,
since the sets Aπ are pairwise disjoint, no clashes arise. For each individual constant c, let
cA = bc. Since ∆ contains naming formulas c(c) and ¬c(d), where c and d are distinct, it is
obvious that the unique names assumption is respected: that is, cA 6= dA for c and d distinct.
Therefore, we may, as before, write c instead of the more correct cA, since no confusion
arises.

Step 2 (Fixing the invertible message-types) We first assign the invertible message-types
for all pairs c, d ∈ A, where c and d are distinct individual constants, as dictated by ∆. To
see that this is possible, suppose ∆ |= λ(c, d), where λ ∈ Λπ,s, say. Then by Lemma 9.1, c
will ‘want’ to have s-spectrum γcπ,s, which, by the assumed compatibility of ∆ with these
constants, implies that γcπ,s = Cλ. That is: the mosaic piece for c will send an invertible
message of type λ. Similarly, the mosaic piece for d will send an invertible message of
type λ−1; and these two messages may be paired up with each other. We then put, by the
constraints (8.13), all other λ-labelled messages and all λ−1-labelled messages in one-to-one
correspondence, for each invertible message of type λ. Thus, if a sends a λ-labelled message
and b ‘wants to receive it’ (i.e. sends a λ−1-labelled message), we set tpA[a, b] = λ. To
ensure that each assignment tpA[a, b] (a, b ∈ A) is valid, we need only check that a and b are
distinct. But, since xλ > 0, by the constraints (8.14) we must have tpA[a] 6= tpA[b] hence, by
construction, a and b belong to the disjoint sets AtpA[a] and AtpA[b]. Moreover, since every
element sends at most one invertible message of each type, no conflicts with the present
assignment will arise in future assignments.

Step 3 (Fixing the non-invertible message-types) Start by decomposing each non-empty
set Aπ into three pairwise disjoint (possibly empty) sets Aπ,0, Aπ,1 and Aπ,2 having at least

mC elements each, since |Aπ| ≥ 3mC, and with the following restriction: if cA ∈ Aπ, for
some constant c ∈ D (i.e. π = tp∆[c]), pick these three sets such that cA ∈ Aπ,0. This is
possible by our choise of solution of E .

Let µπ,t be any non-invertible message type, with π = tp1(µπ,t) and ρ = tp2(µπ,t)
being its starting and terminal 1-types. Let a ∈ A be an element that sends na,t > 0
messages of type µπ,t. Clearly, then, a ∈ Aπ and there is a vector u > 0 such that

gπ,t(a) = u, hence g−1
π,t(u) is non-empty. As a result, zπ,t,u = |g−1

π,t(u)| is positive, thus,
by the constraints (8.18),

∑
{yρ,ε,u′ | u′ ≤ C} is also positive. This implies that Aρ is

non-empty since, clearly, |Aρ| =
∑
{yρ,ε,u′ | u′ ≤ C} and hence has been partitioned into

three sets Aρ,0, Aρ,1 and Aρ,2 having at least mC elements each.
Let us assume for the moment that a is not equal to the interpretation of any constant.

We employ the standard ‘circular witnessing’ technique of [GKV97]. The non-empty set Aπ

ADDING PATH-FUNCTIONAL DEPENDENCIES TO GC2 37

has been partitioned into Aπ,0, Aπ,1 and Aπ,2; since a ∈ Aπ, let j be such that a ∈ Aπ,j ,
0 ≤ j ≤ 2. Now, let k = j + 1 (mod 3) and select na,t elements b from Aρ,k that have not
already been chosen to receive any messages (invertible or non-invertible) and set, for each
one of those, tpA[a, b] = µπ,t. Note that there are enough elements in Aρ,k to choose from,
as a can send at most mC messages (of invertible or non-invertible type). Suppose, on the
other hand, a is (the interpretation of) some constant, say c, and that ∆ specifies that c
sends messages of type µ to k other database elements. Then by Lemma 9.1, c will ‘want’
to have t-spectrum δcπ,t, which, by the assumed compatibility of ∆ with these constants,
implies that δcπ,t ≥ k ·Cµ. That is: the mosaic piece for c will send at least k non-invertible
messages of type λ. Now set tpA[c, d] = µπ,t for each of the k elements as required by ∆,
subtract k from the value na,t to take account of the fact that these non-invertible message
of type µπ,t have been dealt with, and proceed as before. Since µ is not an invertible 2-type,
we can be sure that it has not already been set during Step 2. Moreover, ‘circular witnessing’
ensures that no clashes arise during Step 3.

Step 4 (Fixing the remaining 2-types) If c and d are distinct individual constants for
which tpA[c, d] has not been defined, set tpA[c, d] = tp∆[c, d]; of course, this must a silent
type, since all messages sent within the database have been accounted for. If tpA[a, b] has
not yet been defined, set it to be the 2-type

π ∪ ρ[y/x] ∪ {¬e | e is a guard-atom not involving =},
where π = tpA[a], ρ = tpA[b] and ρ[y/x] is the result of replacing x by y in ρ. Note that,
since C1, . . . , Cm are by assumption positive integers, a and b certainly send some messages
and, thus, the constraints (8.15) and (8.16) ensure that both α ∧ π and α ∧ ρ are satisfiable.
Note also that this is the point in the proof where we make essential use of of the fact that
ϕ is guarded. In particular, the conjuncts ∀x∀y(ej(x, y) → (. . .)) in (7.1) are satisfied by
the assignments in this step, because the antecedents are false.

This completes the definition of A and we now show that A |= ϕ ∧∆. Referring to the
normal form in Lemma 7.1, notice that none of the above steps violates the conjuncts

∀xα ∧
∧

1≤j≤n
∀x∀y(ej(x, y)→ (βj ∨ x = y)).

Furthermore, the conjuncts ∧
1≤i≤m

∀x∃=Ci y(oi(x, y) ∧ x 6= y)

are all satisfied taking into account Equation (9.9) and the fact that none of the 2-types
assigned in Step 4 is a message type. The database ∆ is evidently satisfied by the above
construction.

38 GEORGIOS KOURTIS AND IAN PRATT-HARTMANN

Now, observe that all the constraints in E have the forms

x1 + . . .+ xn = x,

x1 + . . .+ xn ≥ c,

x = 0,

x1 = x2,

x ≥ c,

x > 0 ⇒ x1 + . . .+ xn > 0,

where x, x1, . . . xn are variables and c is a constant. Recall that the size ‖E‖ of E is
exponential in |ϕ ∧∆|. Our goal is to find a solution of E in N. The following lemma shows
that we can transform a system of the above form into an integer programming problem
which, in turn, can be regarded as a linear programming problem. This is important because
linear programming is in PTime, whereas integer programming is in NPTime.

Lemma 9.4 ([Cal96]; see also [PH07], Lemma 15). Let ∆, ϕ and E be as above. An algorithm
exists to determine whether E has a solution over N in time bounded by a polynomial function
of ‖E‖.

We have now established the required upper complexity-bound for finite satisfiability in
GC2D.

Theorem 9.5. The finite satisfiability problem in GC2D is in ExpTime.

Proof. Let a GC2D-formula ψ ∧ Γ and ψ be given. By Lemma 7.1, convert ψ to a formula ϕ
of the form (7.1), and let σ be the signature of ϕ together with additional unary predicates:
all the naming predicates for the individual constants in ∆ and dlog((mC)2 + 1)e spare
predicates. If Γ is inconsistent, fail; otherwise, add all the naming formulas to Γ, and guess
a consistent completion ∆ ⊇ Γ. Having fixed ϕ, σ and ∆, compute, for each individual
constant c, the sets of strings CCSc and CCTc, and then guess the vectors γcπ,s, for s ∈ CCSc
and δcπ,t, for t ∈ CCTc. Check that these vectors satisfy the conditions (8.21)–(8.23), and
that they are consistent with ∆, failing if not. Compute the numbers ηλ from ∆. Now write
the system of equations E . Determine whether E has a solution over N. By Lemma 9.4, this
can be determined in exponential time. If E has a solution for any of these guesses, then
succeed; otherwise fail. By Lemmas 8.6 and 9.3, the above procedure has a successful run
(for some guess) if and only if ψ∧Γ has a finite model. All guesses involve only a polynomial
amount of data, and so may be exhaustively searched in exponential time.

Having dealt with the finite satisfiability problem for GC2, we turn now to the corre-
sponding satisfiability problem. We employ ‘extended arithmetic’, over the set N ∪ {ℵ0},
where addition and multiplication are extended in the obvious way, i.e. ℵ0 +ℵ0 = ℵ0 ·ℵ0 = ℵ0,
n+ ℵ0 = ℵ0 + n = ℵ0, for all n ∈ N, etc. After all the gruel we have just chomped our way
through, Theorem 9.6 is dessert.

Theorem 9.6. The satisfiability problem in GC2D is in ExpTime.

Sketch proof. We proceed exactly as in the finite case, except that we seek solutions to E
over extended arithmetic. It is evident that, if v is a solution of E , then so is ℵ0v. Thus, we
may confine attention to solutions over the 2-element set {0,ℵ0}. Such a system is essentially
Boolean, so its constraints can be viewed as formulas of propositional logic; and, with a
little care, can be written as Horn clauses. (See [PH07] for more details.) This establishes
membership in ExpTime.

ADDING PATH-FUNCTIONAL DEPENDENCIES TO GC2 39

It is well known that the satisfiability and finite satisfiability problems for GC2 are
ExpTime-hard. Thus, all the complexity bounds given above are tight.

References

[ANvB98] Hajnal Andréka, István Németi, and Johan van Benthem. Modal languages and bounded fragments
of predicate logic. Journal of Philosophical Logic, 27(3):217–274, 1998.

[BP00] J. Biskup and Torsten Polle. Decomposition of database classes under path functional dependencies
and onto constraints. In Proc. Foundations of Information and Knowledge Systems, Proceedings
of First International Symposium, (FoIKS), volume 1762 of Lecture Notes in Computer Science,
pages 31–49. Springer, 2000.

[Cal96] Diego Calvanese. Unrestricted and finite model reasoning in class-based representation formalisms.
PhD thesis, Dipartimento di Informatica e Sistemistica, Università di Roma La Sapienza. In In
Proc. of the 4th Int. Conf. on Deductive and Object-Oriented Databases (DOOD-95), number 1013
in Lecture Notes in Computer Science. Citeseer, 1996.

[GKV97] Erich Grädel, Phokion G Kolaitis, and Moshe Y Vardi. On the decision problem for two-variable
first-order logic. Bulletin of symbolic logic, 3(01):53–69, 1997.

[Grä99a] Erich Grädel. On the restraining power of guards. Journal of Symbolic Logic, pages 1719–1742,
1999.

[Grä99b] Erich Grädel. Why are modal logics so robustly decidable? In Bulletin EATCS. Citeseer, 1999.
[IW94] M. Ito and G. Weddell. Implication problems for functional constraints on databases supporting

complex objects. Journal of Computer and System Sciences, 49(3):726–768, 1994.
[Kaz04] Yevgeny Kazakov. A polynomial translation from the two-variable guarded fragment with number

restrictions to the guarded fragment. In Logics in Artificial Intelligence, pages 372–384. Springer,
2004.

[PH07] Ian Pratt-Hartmann. Complexity of the guarded two-variable fragment with counting quantifiers.
J. Log. Comput., 17(1):133–155, 2007.

[PH09] Ian Pratt-Hartmann. Data-complexity of the two-variable fragment with counting quantifiers.
Information and Computation, 207(8):867–888, 2009.

[TW05a] David Toman and Grant Weddell. On path-functional dependencies as first-class citizens in
description logicsion between inverse features and path-functional dependencies in description
logics. In Proc. Description Logics (DL), 2005.

[TW05b] David Toman and Grant Weddell. On the interaction between inverse features and path-functional
dependencies in description logics. In Proc. International Joint Conference on Artificial Intelligence
(IJCAI), pages 603–608, 2005.

[TW08] David Toman and Grant Weddell. On keys and functional dependencies as first-class citizens in
description logics. Journal of Automated Reasoning, 40(2–3):117–132, 2008.

[Var96] Moshe Y Vardi. Why is modal logic so robustly decidable? Descriptive complexity and finite
models, 31:149–184, 1996.

[Wed89] G. Weddell. A theory of functional dependencies for object oriented data models. In Proc. Inter-
national Conference on Deductive and Object-Oriented Databases, pages 165–184, 1989.

This work is licensed under the Creative Commons Attribution-NoDerivs License. To view a
copy of this license, visit https://creativecommons.org/licenses/by-nd/4.0/ or send a
letter to Creative Commons, 171 Second St, Suite 300, San Francisco, CA 94105, USA, or
Eisenacher Strasse 2, 10777 Berlin, Germany

	1. Introduction
	2. Preliminaries
	2.1. The logics GC2, GC2D and GC2DK
	2.2. Graphs of structures
	2.3. Path-functional dependencies and their violations

	3. Decompositions of Walks and Tours
	4. Detection of Violations
	5. Encoding critical violations in GC2
	6. Complexity of GC2DK
	7. Complexity of GC2D: preliminaries
	8. Reduction to linear programming
	9. Obtaining a Model from the Solutions
	References

