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Abstract. Given a logic presented in a sequent calculus, a natural question is that
of equivalence of proofs: to determine whether two given proofs are equated by any
denotational semantics, i.e. any categorical interpretation of the logic compatible with its
cut-elimination procedure. This notion can usually be captured syntactically by a set of
rule permutations.

Very generally, proofnets can be defined as combinatorial objects which provide canonical
representatives of equivalence classes of proofs. In particular, the existence of proof nets for
a logic provides a solution to the equivalence problem of this logic. In certain fragments of
linear logic, it is possible to give a notion of proofnet with good computational properties,
making it a suitable representation of proofs for studying the cut-elimination procedure,
among other things.

It has recently been proved that there cannot be such a notion of proofnets for the
multiplicative (with units) fragment of linear logic, due to the equivalence problem for this
logic being Pspace-complete.

We investigate the multiplicative-additive (without unit) fragment of linear logic and
show it is closely related to binary decision trees: we build a representation of proofs based
on binary decision trees, reducing proof equivalence to decision tree equivalence, and give a
converse encoding of binary decision trees as proofs. We get as our main result that the
complexity of the proof equivalence problem of the studied fragment is Logspace-complete.

1. Introduction

Writing a proof in a formal system, or a program following the grammar of a programming
language, one often finds different equivalent ways of describing the same object.

This phenomenon can be described at a semantic level: recall that a denotational
semantics of a logic is a categorical interpretation that is invariant modulo its cut-elimination
procedure. We want to say that two cut-free proofs are equivalent if they are interpreted as
the same morphism in any denotational semantics.
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Definition 1.1. We say that two cut-free proofs in a logic L presented in sequent calculus
are equivalent if they are interpreted by the same morphism in any denotational semantics
of L .

Consider now that the logic at hand is given as a sequent calculus. Then we can consider
a more syntactic flavor of the same idea by looking at rewriting steps that yield equivalent
proofs, e.g. by be permuting two rules. For example, in the following proof1

〈π〉
A,B ` D

〈µ〉
A,C ` D

⊕?
A,B ⊕ C ` D

(
B ⊕ C ` A( D

the ( rule can be lifted above the ⊕? rule, yielding the equivalent
〈π〉

A,B ` D
(

B ` A( D

〈µ〉
A,C ` D

(
C ` A( D

⊕?
B ⊕ C ` A( D

In the Curry-Howard view on logic, proofs are seen as programs, the cut-rule corresponds to
composition and the cut-elimination procedure to the evaluation mechanism. The existence
of equivalent but formally different objects is an issue in that during cut-elimination, we
may have to switch between equivalent objects to be able to actually perform a reduction
step. Consider

〈ν〉
` B

⊕l
` B ⊕ C

〈π〉
A,B ` D

〈µ〉
A,C ` D

⊕?
A,B ⊕ C ` D

(
B ⊕ C ` A( D

cut
` A( D

In order to go on with cut-elimination, one option2 is to apply the permutation we just saw
to the ⊕? and ( rules to get:

〈ν〉
` B

⊕l
` B ⊕ C

〈π〉
A,B ` D

(
B ` A( D

〈µ〉
A,C ` D

(
C ` A( D

⊕?
B ⊕ C ` A( D

cut
` A( D

and be able to perform an actual ⊕/⊕? elimination step. Note how this situation mirrors the
permutation we took as an example just above. These steps where some reorganization of
the proof but no actual elimination occurs are called commutative conversions. They make
the study of the cut-elimination procedure much more intricate, as one has to work modulo
equivalence, and this equivalence cannot be oriented: at some point we need to have the cut
rule in scope and realize it commutes with itself, if we want the procedure to be confluent
(indeed MALL-cut-elimination is only confluent modulo permutations)

1For now, we do not bother with the exchange rule for ease of presentation, but this will have to change
when we get into more technical considerations. See 3.13.

2The standard solution would rather be to lift the cut above the ( , but the end result would be the
same.
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〈ν〉
` B

〈µ〉
` A

〈π〉
A,B ` C

cut
B ` C

cut
` C

∼ 〈µ〉
` A

〈ν〉
` B

〈π〉
A,B ` C

cut
A ` C

cut
` C

This is particularly problematic in view of fine-grained analysis of the cut-elimination
procedure, e.g. in terms of complexity. In any case, we can define a decision problem
following the discussion above, and later discuss its decidability, complexity etc.

Definition 1.2 (equivalence problem). Given a logic L presented in sequent calculus, we
define the equivalence problem of L which we write Leq , as the decision problem:

“Given two L proofs π and ν , are they equivalent?”

We write π ∼ ν when two proofs are equivalent.

1.1. Proofnets and complexity of proof equivalence. The theory of proofnets, in-
troduced alongside linear logic [5], aims at tackling this issue by looking for a canonical
representation of proofs, usually graphical objects, with the idea that when one manipulates
canonical objects the commutative conversions automatically disappear. More technically:
we look for a data structure offering canonical representatives of equivalence classes of proofs.
The absolute minimal requirement is a translation function t(·) from proofs to proofnets.
One usually requires a section s(·) , from proofnets to proofs (with t ◦ s = Id ) of t(·) which
is usually called sequentialization, and of course the ability to implement cut-elimination
natively on the proofnet side. All of these together allows to use proofnets as proofs on their
own accord, while having only t(·) tells us about proof equivalence and nothing more.

In this article we will only look into the complexity of computing the t(·) function and
will refer to it simply as the complexity of the proofnets at hand. For the multiplicative
without units fragment of linear logic MLL-, a satisfactory notion of proofnet can be defined:
it indeed offers a representation of equivalence classes of proofs, while the translation from
proofs to proofnets can be computed in logarithmic space.3

Contrastingly, the linear logic community has struggled to extend the notion of proofnets
to wider fragments: even the case of MLL (that is, MLL- plus the multiplicative units) could
not find a satisfactory answer. A recent result [7] sheds some light on this question. Since
proofnets, when they exist, are canonical representatives of equivalence classes of proofs,
they offer a way to solve the equivalence problem of the logic: simply translate the two
proofs and check if the resulting proofnets are the same. The authors show that MLLeq is
actually a Pspace-complete problem. Hence, there is no hope for a satisfactory notion of
low-complexity proofnet for this fragment

In this article, we consider the same question, but in the case of MALL-: the multiplicative-
additive without units fragment of linear logic. Indeed, this fragment has so far also resisted
the attempts to build a notion of proofnet that at the same time characterizes proof equivalence
and has basic operations of tractable complexity: we have either canonical nets of exponential
size [9] or tractable nets that are not canonical [6]. D. Hughes and W. Heijltjes [8] recently

3Given a proof and looking at its conclusion sequent, one only needs to compute when two atoms are
linked by an axiom link. Which can be done by going from the root of the proof to an eventual leaf (axiom
rule), potentially stopping at a ⊗ rule if the two atoms are sent to two different subproofs.
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argued that it is unlikely that one can devise a notion of proofnets for MALL- that is at the
same time canonical and Ptime.

One might suspect that we have completeness for some untractable complexity class,4
as is the case for MLL. An obvious candidate in that respect would be coNP: as we will
see, one of the two approaches to proofnets for MALL- is related to Boolean formulas, which
equivalence problem is widely known to be coNP-complete. Moreover, the cut-elimination
problem (given two proofs with cuts, do they have the same normal form) of MALL- is
already known to be coNP-complete [13].

It actually turns out that this is not the case as we will show that the equivalence
problem of MALL- is Logspace-complete. However the connection between the problem of
proofnets for this fragment and the notion of binary decision tree established in the course of
the proof provides a beginning of clarification on the matter.

1.2. Binary Decision Trees. The problem of the representation of Boolean functions is of
central importance in circuit design and has a large range of practical applications. Over the
years, binary decision diagrams [15] became the most widely used data structure to treat this
question. We will actually use here the simpler cousins of binary decision diagrams which do
not allow sharing of subtrees: binary decision trees (BDT).

Let us set up a bit of notation and vocabulary concerning BDT.

Definition 1.3. A binary decision tree (BDT) is a a binary tree with leaves labeled by 0 or
1 , and internal vertices labeled by Boolean variables.

We will only be manipulating free BDT: no variable appears twice on a path from the
root to a leave.

A BDT represents a Boolean function in the obvious way: given a valuation of Boolean
variables (v : xi 7→ 0/1), go down from the root following the left/right branch of each
internal vertex according to the assignment. When a leaf is reached one has the output of
the function.

Example 1.4. The following BDT represents the x XOR y function:

y

x

0 1

x

1 0

Notation 1.5. We use the notation xBφ8ψ to describe BDT inductively, with the meaning:
the root is labeled by the variable x , with left subtree φ and right subtree ψ . Moreover we
write φ̄ for the negation of φ : take φ and swap the 0/1 at the leaves.

4The problem was first discovered to be decidable [3]. Later on the first notion of canonical proofnets for
MALL- [9] implied it can be solved in exponential time and finally the coNP bound [13] on cut-elimination
for the fragment, which subsumes the equivalence problem, was the best known to date.
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Different trees can represent the same function, and we have an equivalence relation
accounting for that.

Definition 1.6. We say that two BDT φ, ψ are equivalent (notation φ ∼ ψ ) if they represent
the same Boolean function.

Example 1.7. The two following BDT represent the boolean function x OR ( NOT y) and are
therefore equivalent:

x

y

1 0

1

y

1 x

0 1

As above, we can wonder about the complexity of the associated decision problem
BDTeq. While the equivalence problem for Boolean formulas is coNP-complete in general
and in many subcases including binary decision diagrams [15], we will see that the situation
is different for BDT due to their simpler structure.

Outline of the paper

We begin in section 2 by covering some background material on MALL- and notions of
proofnet for this fragment: monomial proofnets and the notion of slicing. Then, we introduce
in section 3 an intermediary notion of proof representation, BDT slicings, that will help us to
relate proofs in MALL- and BDD. In section 4, we establish further encodings and reductions.

The conference version [1] of this work contained a mistake in a proof which we fix in
this version by considering a variant of MALL- where the exchange rule is taken seriously
into account. This is discussed further in 3.13.

2. Multiplicative-Additive Proof Equivalence

We will be interested in the multiplicative-additive without units part of linear logic, MALL-,
and more precisely its intuitionistic fragment. We choose to work primarily in this fragment
for two reasons: first we want to avoid any impression that our constructions rely on the
classical nature of MALL-, second we believe that this makes the whole discussion more
accessible outside the linear logic community. For reductions and encodings to MALL-,
this actually makes for stronger results than if they were formulated in the classical case.
Conversely, when being limited the intuitionistic case would be restrictive (when deciding
equivalence) we will explain how constructions can be extended to the classical case.

We consider formulas that are built inductively from atoms which we write α, β, γ, . . .
and the binary connectives ⊕ and ( . We write formulas as A,B,C, . . . unless we want
to specify they are atoms and sequents as Γ ` A with Γ a sequence of formulas. The ⊕
occurring on the of the left of the ` symbol may be labeled by boolean variables (⊕x, we
omit the label when not relevant) and we assume that different occurrences of the connective
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in a sequent carry a different label. We consider an η -expanded logic, which simplifies proofs
and definitions. We do not include the cut rule in our study, since in a static situation (we
are not looking at the cut-elimination procedure) it can always be encoded w.l.o.g. using
the (? rule. Moreover it can be argued that proof equivalence with cut should include
cut-elimination, which is known to be coNP-complete [13] as we already mentioned. Also
we work with an explicit exchange rule, labeled by the positions i, j of the elements of the
context it swaps:

α ` α
Γ, A ` B

(
Γ ` A( B

Γ ` A B,∆ ` C
(?

Γ, A( B,∆ ` C
Γ ` C

exi,j
Γ′ ` C

Γ ` A
⊕l

Γ ` A⊕B
Γ ` B

⊕r
Γ ` A⊕B

Γ, A ` C Γ, B ` C
⊕?x

Γ, A⊕xB ` C

Notation 2.1. We will denote this proof system by λ(⊕ emphasizing that, even if we will
not explicitly manipulate λ-terms, we are working with the Curry-Howard counterpart of a
typed linear λ-calculus with sums.

Moreover, we will use the notation 〈π〉
Γ ` A

for “the proof π of conclusion Γ ` A”.

Remark 2.2. Any time we will look at a λ(⊕ proof from a complexity perspective, we will
consider they are represented as a tree with nodes labelled with a rule and the sequent that
is the conclusion of that rule.

We already discussed the idea of proof equivalence in general, its synthetic formulation
based on denotational semantics and how it can be captured algorithmically as rule
permutations in certain cases. We will not go through all the details specific to the MALL-

case, as we already have an available equivalent characterization in terms of slicing in the
literature [9, 10] which we review in subsection 2.2. Instead, in addition to the example we
saw in the introduction let us rather focus on another significant case:

〈ν〉
` D

〈π〉
E,A ` C

〈µ〉
E,B ` C

⊕?x
E,A⊕xB ` C

(?

D ( E,A⊕xB ` C

∼

〈ν〉
` D

〈π〉
E,A ` C

D ( E,A ` C

〈ν〉
` D

〈µ〉
E,B ` C

(?

D ( E,B ` C
⊕?x

D ( E,A⊕xB ` C
In this permutation, the (? rule gets lifted above the ⊕?x rule. But doing so, notice that we
created two copies of ν instead of one, therefore the size of the prooftree has grown. Iterating
on this observation, it is not hard to build pairs of proofs that are equivalent, but one of
which is exponentially bigger than the other. This “distributivity phenomenon” [8] is indeed
where the difficulty of proof equivalence in λ(⊕ (and hence MALL-) lies. As a matter of fact,
this permutation of rules alone would be enough to build the encoding of binary decision
trees by λ(⊕ proofs presented in section 4.
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2.1. Monomial proofnets. The first attempt in the direction of a notion of proofnet for
MALL- is due to J.-Y.Girard [6], followed by a version with a full cut-elimination procedure
by O. Laurent and R. Maieli [12].

While proofnets for multiplicative linear logic without units were introduced along
with linear logic itself [5], extending the notion to the multiplicative-additive without units
fragment proved to be a true challenge, mainly because of the superposition at work in the
N rule (⊕? in the intuitionistic fragment).

Girard’s idea was to represent the superposed “versions” of the proof by a graph with
Boolean formulas (called a weight) to each edge, with one variable for each N connective in the
conclusion Γ . To retrieve the version corresponding to some selection of the left/right branches
of each N , one then just needs to evaluate the Boolean formulas with the corresponding
valuation of their variables, keeping only the parts of the graph which weight evaluates to 1 .
Here is an example of monomial proofnet, from Laurent and Maieli’s article:

This notion of proofnet fails to be a canonical representation of equivalence classes of
proofs: for instance the rule permutation we just saw is not interpreted as an equality. Still,
we will retain this idea of using Boolean formulas and put it to work in section 3: suitably
regrouping and merging links, it appears that instead of a collection of scattered monomials
we can use binary decision trees. This will lead us to the definition of BDT slicing.

2.2. Slicings and proof equivalence. The idea of slicing dates back to J.-Y. Girard’s
original article on proofnets for MALL- [6], and was even present in the original article on
linear logic [5]. It has been really developed, addressing the many technical problems it poses
by D. Hughes and R.van Glabbeek [9] to set up the only known notion of canonical proofnets
for MALL-. It amounts to the natural point of view already evoked just above, seeing the
N rule as introducing superposed variants of the proof, which are eventually to be selected
from in the course of cut-elimination.

But if we have two alternative slices for each N connective of a sequent Γ and all
combinations of slices can be selected independently, we readily see that the global number
of slices can be exponential in the number of N connectives in Γ . This is indeed the major
drawback of the representation of proofs as a set of slices: the size of objects representing
proofs may grow exponentially with the size of the original proofs, impairing the possibility
of proofnets based on this idea to be low-complexity.

Let us give a variant of the definition in the case of the intuitionistic λ(⊕ :
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Definition 2.3 (slicing). Given a λ(⊕ sequent Γ ` A , a slice of Γ ` A is a set of (unordered)
pairs of occurrences of atoms in Γ ` A . Then, a slicing of Γ ` A is a finite set of slices of
Γ ` A , and to any λ(⊕ proof π , we associate a slicing Sπ by induction:

◦ If π = α ` α then Sπ is the set containing only the linking
{

[α, α]
}

◦ If π =

〈µ〉
Γ, A ` B

(
Γ ` A( B

then Sπ = Sµ
(seeing atoms of A( B as the corresponding ones of A and
B )

◦ If π =

〈µ〉
Γ ` A

〈ν〉
∆, B ` C

(?

Γ,∆, A( B ` C
then Sπ = { λ ∪ λ′ | λ ∈ Sµ , λ′ ∈ Sν }

◦ If π =
〈µ〉

Γ ` A
exi,j

Γ′ ` A
then Sπ = Sµ (accordingly reindexed)

◦ If π =
〈µ〉

Γ ` A
⊕l

Γ ` A⊕B
then Sπ = Sµ , and likewise for ⊕r

◦ If π =

〈µ〉
Γ, A ` C

〈ν〉
Γ, B ` C

⊕?
Γ,∆, A⊕B ` C

then Sπ = Sµ ∪ Sν

Example 2.4. The following proof π (we index occurences of atoms to differentiate them)
αl ` αr

⊕l
αl ` αr ⊕ βr

βl ` βr
⊕r

βl ` αr ⊕ βr
⊕?

αl ⊕ βl ` αr ⊕ βr
gets the (two-slices) slicing Sπ =

{
{ [αl, αr] }, { [βl, βr] }

}
.

Remark 2.5. In the (? rule, it is clear that the number of slices is multiplied. This is just
what is needed in order to have a combinatorial explosion: pick any proof interpreted by two
(or more) slices, and combine n copies of this proof to get a proof that has linear size in n ,
but is interpreted with 2n slices.

The main result we need from the work of Hughes and van Glabbeek is their canonicity
result [9, 10] formulated in the case of MALL-, that specializes readily to the intuitionistic
fragment λ(⊕ .

Theorem 2.6 (slicing equivalence). Let π and ν be two λ(⊕ proofs. We have that π and ν
are equivalent if and only if Sπ = Sν .
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3. BDT slicings

We now introduce an intermediate notion of representation of proofs which will be a central
tool in the rest of the article. In a sense, it is a synthesis of monomial proofnets and slicings:
acknowledging the fact that slicing makes the size of the representation explode, we rely
on BDT to keep things more compact. Of course, the canonicity property is lost, but this
is exactly the point! Indeed, deciding whether two “BDT slicings” are equivalent is the
reformulation of proof equivalence we rely on in the next sections.

The basic idea is, considering a sequent Γ ` A , to use the boolean variable associated to
⊕ occurrences in Γ and associate a BDT to each pair of (occurrences of) atoms in Γ ` A ,
indicating the presence of an axiom rule linking the two, depending on which branch of the
⊕? rules we are sitting in.

For example in the proof
α ` α

⊕l
α ` α⊕ β

β ` β
⊕r

β ` α⊕ β
⊕?x

α⊕x β ` α⊕ β
we have a β ` β axiom only when we are selecting the right branch of the ⊕? rule. So the
BDT x B 0 8 1 should be associated to the pair [β, β] (here we use 1.5), and conversely
[α, α] gets xB 1 8 0 .

We can lift this idea to a complete inductive definition:

Definition 3.1 (BDT slicing). Given a λ(⊕ sequent Γ ` A , a BDT slicing of Γ ` A is a
function B that associates a BDT to every (unordered) pair [α, β] of distinct occurrences of
atoms of Γ ` A .

To any λ(⊕ proof π , we associate a BDT slicing Bπ by induction on the tree structure
of π :

◦ If π = α ` α then Bπ[α, α] = 1

◦ If π =

〈µ〉
Γ, A ` B

(
Γ ` A( B

then Bπ[α, β] = Bµ[α, β]
(seeing atoms of A ( B as the corresponding atoms of A
and B )

◦ If π =

〈µ〉
Γ ` A

〈ν〉
∆, B ` C

(?

Γ,∆, A( B ` C
then Bπ[α, β] =


Bµ[α, β] if α, β are atoms of Γ ` A
Bν [α, β] if α, β are atoms of ∆, B ` C
0 otherwise

◦ If π =
〈µ〉

Γ ` A
ex

Γ′ ` A
then Bπ[α, β] = Bµ[α, β] (accordingly reindexed)

◦ If π =
〈µ〉

Γ ` A
⊕l

Γ ` A⊕B
then Bπ[α, β] =

{
Bµ[α, β] if α, β are atoms of Γ ` A
0 otherwise

(and likewise for ⊕r)
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◦ If π =

〈µ〉
Γ, A ` C

〈ν〉
Γ, B ` C

⊕?x
Γ, A⊕xB ` C

then Bπ[α, β] =


xB Bµ[α, β] 8 0 if α or β is an atom of A
xB 0 8 Bν [α, β] if α or β is an atom of B
xB Bµ[α, β] 8 Bν [α, β] if α or β are both atoms of Γ, C

0 otherwise

All cases except ⊕? are just ensuring proper branching of subformulas, while the ⊕? case
implements the idea behind the example before the definition: the left branch of the rule
corresponds to the left branch of the BDT.

The equivalence of BDT slicings is straightforward to define:

Definition 3.2. We say that two BDT slicings M,N of the same Γ ` A are equivalent
(notation M∼ N ) if for any pair [α, β] we have M[α, β] ∼ N [α, β] in the sense of 1.6.

The usefulness of the notion of BDT slicing comes from the fact that it captures exactly
proof equivalence, reducing it to BDT equivalence.

Theorem 3.3 (proof equivalence). Let π and ν be two λ(⊕ proofs, then π ∼ ν if and only
if Bπ ∼ Bν .

Proof. We will rely on the characterization of proof equivalence by slicing, i.e. 2.6 and show
that Sπ = Sν if and only if Bπ ∼ Bν .

To a BDT slicing B , we can associate a slice v(B) for each valuation v of the variables
occurring in B by setting v(B) = { [α, β] | v(B[α, β]) = 1 } (where v(B[α, β]) denotes
the result of evaluating a BDT against a valuation of variables) and then a slicing SB =
{ v(B) | v valuation } . Note that in the process different valuations yielding identical slices
might be identified. By definition, it is clear that if B and B′ involve the same variables and
B ∼ B′ then SB = SB′ .

It is straightforward to see that SBπ = Sπ so we have that Bπ ∼ Bν implies Sπ = Sν
Conversely, suppose Bπ 6∼ Bν , so that there is a v such that v(Bπ) 6= v(Bν) . To conclude

that SBπ 6= SBν , we need the following lemmas:

Lemma 3.1. Let π be a λ(⊕ proof of A1, . . . , An ` A0 and v a valuation of the variables
of π then for any i, v(Bπ) contains at least one pair with an atom in Ai .

Lemma 3.2. Let π be a λ(⊕ proof of Γ ` C and x a label of some ⊕?x rule introducing the
subformula A⊕xB and v a valuation of the variables of π mapping x to 0 then:

◦ The pairs in v(Bπ) contain no atom of B .
◦ At least one pair in v(Bπ) contains an atom of A .

(and conversely if v maps x to 1)

Proof of the lemmas. The first one follows from a straightforward induction on π .
The second is also by induction on π : going through the cases of 3.1 we see any rule

that does not introduce A ⊕xB itself but has it as a subformula will preserve these two
properties. In the case of a ⊕?x rule branching two proofs µ and ν , by definition any pair
with atoms of B will evaluate to 0 if x does, and hence cannot be part of v(Bπ) ; conversely,
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the first lemma provides us with a pair containing an atom of A in v(Bµ) which will still be
present in v(Bπ) .

A consequence of the second lemma is that for any λ(⊕ proofs π and ν with the same
conclusion, and two different valuations v, w of their variables we have v(Bπ) 6= w(Bν) : just
apply the lemma with x a variable on which v, w differ. This means we have v(Bπ) 6= v(Bν)
and also if v 6= w , v(Bπ) 6= w(Bν) , so that v(Bπ) 6∈ SBν and therefore SBπ 6= SBν , that is
Sπ 6= Sν .

This theorem will allow us to decide proof equivalence by reducing it to BDT equivalence.
Therefore let us have a look at the complexity of computing BDT slicings.

Proposition 3.4. For any λ(⊕ proof π and any pair [α, β], we can compute Bπ[α, β] in
Logspace.

Proof. To build Bπ[α, β] we only have to go through the prooftree and apply 3.1, creating
new x vertices when visiting ⊕?x rules, passing through ( and ⊕ rules, following only the
relevant branch of (? rules etc.

At any step we do not need to remember any other information than a pointer to our
position in the prooftree, which requires only logarithmic space.

3.1. Proof equivalence is Logspace-complete. Thanks to the results we just established,
we will be able to decide λ(⊕ proof equivalence in logarithmic space. Since 3.4 basically
reduces proof equivalence to BDT equivalence in logarithmic space, let us focus on BDT
equivalence for a moment.

Definition 3.5 (compatible leaves). Consider two leaves l,m of two BDT φ, ψ and the
two paths p, q from the leaves to the root of their respective trees. We say these leaves are
compatible if there is no variable that appears both in p and q while being reached from
opposite left/right branches.

A small example to illustrate the idea: in the following trees φ (left) and ψ (right)

x

t

z

0 1

0

y

0 0

t

x

1 z

1 0

y

1 1

the only 1 leaf of φ is compatible with the leftmost 1 leaf of ψ , but is not compatible with
its only 0 leaf.
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Lemma 3.3. Two BDT φ and ψ are not equivalent if and only if there is a 1 leaf of φ and
a 0 leaf of ψ that are compatible, or conversely.

Proof. If we have compatible 0 and 1 leaves, we can build a number of valuations of the
variables that will lead to these leaves when evaluating φ and ψ , making them not equivalent.

Conversely, if φ and ψ are not equivalent, then we have a valuation that have them
evaluate differently. Both of these evaluations are reached by following a path from the roots
to leaves with different values, and these two leaves must be compatible.

With this lemma we can devise a decision procedure in logarithmic space for BDTeq.

Proposition 3.6. The BDT equivalence problem is in Logspace.

Proof. With the above lemma, we see that given two BDT φ, ψ all we have to do is look for
compatible leaves with different values. To do that we can go through all the pairs of one
leaf of φ and one leaf of ψ (two pointers) and then through all pairs of variables on the
paths between the leaves and the root of their respective trees (again, two pointers), checking
if the two leaves hold different values while being compatible. This needs four pointers of
logarithmic size, so we can decide BDTeq in Logspace.

Proposition 3.7. The equivalence problem λ(⊕ eq is in Logspace.

Proof. Combine 3.4 and 3.6, relying on the fact that Logspace algorithms can be composed
without stepping out of Logspace: given two λ(⊕ proofs π, µ with the same conclusion
Γ ` A , go through all the pairs of atoms [α, β] of Γ ` A , compute the two associated BDT
Bπ[α, β],Bµ[α, β] and test them for equivalence.

To prove the hardness direction of the completeness result, we rely on a standard
Logspace-complete problem and reduce it to λ(⊕ eq.

Definition 3.8 (ORD). Order between vertices (ORD) is the following decision problem:

“Given a directed graph G = (V,E) that is a line5 and two vertices f, s ∈ V
do we have f < s in the total order induced by G?”

Theorem 3.9. ORD is Logspace-complete [4].

Remark 3.10. Since we want to prove Logspace-completeness results, the notion of
reduction in what follows needs to be in a smaller complexity class than Logspace itself
(indeed any problem in Logspace is complete under Logspace reductions).

One among many standard notions is (uniform) AC0 reduction [2], formally defined in
terms of uniform circuits of fixed depth and unbounded fan-in. We will not be getting into
the details about this complexity class and, as we will consider only graph transformations,
we will rely on the following intuitive principle: if a graph transformation locally replaces
each vertex by a bounded number of vertices and the replacement depends only on the vertex
considered and eventually its direct neighbors, then the transformation is in AC0. Typical
examples of such a transformation are certain simple cases of so-called “gadget” reductions
used in complexity theory to prove hardness results.

5We use the standard definition of graph as a pair (V,E) of sets of vertices and edges (oriented couples of
vertices x→ y ). A graph is a line if it is connected and all the vertices have in-degree and out-degree 1 ,
except the begin vertex which has in-degree 0 and out-degree 1 and the exit vertex which has in-degree 1
and out-degree 0 . A line induces a total order on vertices through its transitive closure
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Lemma 3.4. ORD reduces to λ(⊕ eq in AC0.

Proof. We are going to build a local graph transformation between the two problems.
First, we assume w.l.o.g. that the begin b vertex of the line G is different from f and s .

Consider the following proof (where the indexes are just used to identify occurences of the
same atom a) that we call π0 :

a1 ` a1 a2 ` a2
(?

a1, a1 ( a2 ` a2 a3 ` a3
(?

a1, a1 ( a2, a2 ( a3 ` a3 a4 ` a4
(?

a1, a1 ( a2, a2 ( a3, a3 ( a4 ` a4
Then encoding relies on the exchange rule: the begin vertex b is replaced by the proof π0 ,
the f vertex is replaced by the ex2,3 rule with conclusion a, a( a, a( a, a( a ` a , the
s vertex is replaced by the ex3,4 rule a, a( a, a( a, a( a ` a and all the other vertices
are replaced by a sequence of two identical ex1,2 rules (so the end result is doing nothing)
again with conclusion a, a( a, a( a, a( a ` a . Edges are kept as they were. Note that
the conclusions of each “gadget” does not depend on the rest of the tree (as is the case in
general) which would be problematic with respect to AC0 complexity.

Because the permutations corresponding to ex2,3 and ex3,4 do not commute, asking if
f comes before s amounts to asking if the resulting proof is equivalent to

〈π0〉
a1, a1 ( a2, a2 ( a3, a3 ( a4 ` a4

ex2,3
a1, a2 ( a3, a1 ( a2, a3 ( a4 ` a4

ex3,4
a1, a2 ( a3, a3 ( a4, a1 ( a2 ` a4

So in the end, we get:

Theorem 3.11 (Logspace-completeness). The problem λ(⊕ eq is Logspace-complete.

Remark 3.12. Since the reduction we use for the hardness part uses only the rules (? and
exchange, any subsystem of intuitionistic linear logic containing these rules will be have a
Logspace-hard equivalence problem. If they are moreover subsystems of λ(⊕ , the problem
will be Logspace-complete. For instance intuitionistic multiplicative linear logic (without
units) has a Logspace-complete equivalence problem.

Remark 3.13. The choice of including an explicit exchange rule needs to be commented
here. In the the conference version of this article [1] we tried to work modulo exchange to
simplify proofs and definitions. But when dealing with such low complexities as Logspace
and AC0 reductions, this is not something we can afford: as we just saw, the exchange rule
entails Logspace-hardness of equivalence, so that working modulo this rule amounts to work
modulo a problem which is hard for the complexity class we are looking at.

This is at the root of a mistake in the conference version of this work: deprived of explicit
exchange rule, we were forced to try to prove hardness via a reduction of BDT equivalence,
which does not seem to be doable in AC0 after all. More generally, this shows that when
dealing with such low complexities the details of how proofs are implemented can be fully
relevant.
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3.2. Classical case. Exploring further the relation between BDT and λ(⊕ proofs, let us
have a look at extending the above constructions and results to the classical case.

In MALL- we have one sided sequents ` Γ (we even drop the ` which no longer serve any
purpose) of formulas built from atoms and duals of atoms α?, β?, γ?, . . . and the connectives
⊕,N,⊗,O . The N connectives are now holding the labels. Here are the rules of MALL-:

α?, α
Γ, A,B

O
Γ, AOB

Γ, A ∆, B
⊗

Γ,∆, A⊗B
Γ

exi,j
Γ′

Γ, A
⊕l

Γ, A⊕B
Γ, B

⊕r
Γ, A⊕B

Γ, A Γ, B
Nx

Γ, ANxB

Notice how close this is to what we had before. We are indeed looking at nothing more
than a symmetrized version of λ(⊕ , with a one-to-one correspondence between rules: O
matches ( , ⊗ matches (? etc. this makes the extension of previous result to MALL-

extremely straightforward.
Logspace-hardness is immediate since λ(⊕ is a subsystem of MALL-.
Moreover, the slicing and proof equivalence result of subsection 2.2 were originally

formulated for MALL- [9] and we did nothing but adapt them to λ(⊕ . The notion of BDT
slicing never relies on the fact that we have a separation Γ ` A so extending this to MALL-

is just a matter of giving the same interpretation to corresponding rules. It follows that we
can still reduce MALL-eq to BDTeq in logarithmic space, and therefore that MALL-eq is in
Logspace.

Theorem 3.14. The equivalence problem MALL-eq is Logspace-complete.

4. Reductions

With the development of previous sections, we were able to show that λ(⊕ eq is Logspace-
complete. This relied on the use of BDT, which equivalence problem was show to be in
Logspace. In this section we complete the picture by first showing that BDT equivalence is
Logspace-hard and setting up a direct reduction from BDT to λ(⊕ proofs.

We start by showing that the BDT equivalence problem is Logspace-hard, by a similar
argument to that of the proof of Lemma 3.4. Then we will show we have a converse
transformation to BDT slicing: we can encode any BDT into a λ(⊕ proof in logarithmic space,
transporting BDTeq to λ(⊕ eq. This translation is more expansive than the one we would
get from completeness results, but it preserves the tree structure it manipulates.

4.1. BDTeq is Logspace-complete. Let us now show that the equivalence problem of
BDT is Logspace-hard (and hence complete), again by reducing ORD ( 3.8) to it.

Lemma 4.1. ORD reduces to BDTeq in AC0.

Proof. (very similar to the proof of Lemma 3.4) First, we assume w.l.o.g. that the begin b
and the exit e vertices of the line G are different from f and s . We write f+ and s+ the
vertices immediately after f and s in G .

Then, we perform a first transformation by replacing the graph with three copies of itself
(this can be done by locally scanning the graph and create labeled copies of the vertices
and edges). We write xi to refer to the copy of the vertex x in the graph i . The second
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transformation is a rewiring of the graph as follows: erase the edges going out of the fi and
si and replace them as pictured in the two first subgraphs:

f1 f2 f3 s1 s2 s3

f+1 f+2 f+3 s+1 s+2 s+3

x

y

b3 b2 b1

Let us call Gr the rewired graph and Gn the non-rewired graph. To each of them we add
two binary vertices x and y connected to the begin vertices bi as pictured in the third graph
above.

Then we can produce two corresponding BDT φr and φn by replacing the exit vertices
e1 , e2 , e3 by 1 , 0 , 0 respectively, and each complete each unary (those with an out-degree
1) vertex with a →1 second branch, making each vertex binary.

It is then easy to see that if f < s in the order induced by G if and only if φr and φn
are equivalent.

Let us illustrate graphically what happens in the case where indeed f < s : we draw the
resulting BDT as a labeled graph (with the convention that the we do not picture the extra
→1 on unary vertices)

b · · · f f+ · · · s s+ · · · 1
y

x b · · · f f+ · · · s s+ · · · 0

b · · · f f+ · · · s s+ · · · 0

As a consequence of the lemma and the results of subsection 3.1 we get:

Theorem 4.1. The equivalence problems of BDT (and hence of BDT slicings) is Logspace-
complete.

4.2. From BDT to λ(⊕ proofs (in Logspace). We know now that both BDTeq and
λ(⊕ eq are Logspace-complete. Therefore there are reductions in both directions between
these two problems. However, coming from completeness theory these reductions would not
preserve the structure of the trees they manipulate.

The basic idea here is to use the ⊕?x rule to encode the xB · 8 · vertices. We will have
a formula B which will receive the encoded BDT in the BDT slicing interpretation of the
proof, and an atomic formula αi for each variable. To be able to mix the order in which
the variables appear, we will need a careful treatment of which variables have already been
tested at any point.

Definition 4.2 (free variable). Given a BDT φ we call the free variables of a vertex or leaf
v of φ the list of variables one encounters on the path from v to the root of φ .

In other words, a variable is free at a certain point of a BDT if it needs to be tested to
reach this point from the root of the tree. For instance, in the BDT
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x

t

z

0 0

0

y

1 0

the 1 leaf has free variables x, y while the z vertex has free variables x, t . Note that at any
point of the tree, the two children of an internal vertex have the same free variables.

Let us then settle a few notation to help streamline the definition of the encoding.

Notation 4.3. We fix atomic formulas α1, . . . , αn . . . and β and write B = β ⊕ β . In
what follows, we will use βl and βr to refer respectively to the left and right copies of
β in B ; and likewise αli and αri for copies of αi in αi ⊕ αi and we implicitly associate
the boolean variable xi to αi ⊕ αi . Moreover, we write α(

i for the occurrence of αi in
Fn = αn ( · · ·( α2 ( α1 ( β .6

Given n and a subset I ⊆ {x1, . . . , xn} we can then identify uniquely atom occurrences
in the sequents:

◦ ΛI = { αi | xi ∈ I }
◦ ∆I = { αj ⊕αj | xj 6∈ I }
◦ Γn,I = ΛI ,∆I , Fn

We define respectively π1 and π0 as the proofs
β ` β

⊕l
β ` B

and
β ` β

⊕r
β ` B

. For any k ,

we write πk⊕ for the proof
αk ` αk αk ` αk

⊕?xkαk ⊕αk ` αk
and πkId the proof (reduced to an axiom

rule) αk ` αk .
Finally, we write R, ex when a rule is applied together with a series of exchanges before

and after it which are obvious from context.

We can then go on with the definition of the encoding of a BDT.

Definition 4.4. Given a number of variables n , to any BDT φ using the variables x1, . . . , xn ,
we associate a λ(⊕ proof πφ of conclusion Γn,∅ ` B defined by induction on the tree structure
of φ . We think of any point P in the tree as the root of a new BDT, augmented with the
information of the free variables at that point: to P with free variables I we associate a
proof of conclusion Γn,I ` B .

◦ If P is a leaf 0/1 with free variables I , we begin by setting Ik = I ∩ x1, . . . , xk and then
define πP as
6We follow the usual convention of writing the arrow ( as right-associating: α( β ( γ = α( (β ( γ)
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νn

ν2

ν1

〈π0/1〉
β ` B

(?

Γ1,I1 ` B
(?

Γ2,I2 ` B

...
Γn−1,In−1 ` B

(?

Γn,I ` B

(with νi = πiId if xi ∈ I and νi = πi⊕ otherwise)

◦ If P = xkBQ8R , with free variables I , then P and Q both have free variables I ′ = I, xk
and we define πP as

〈πQ〉
Γn,I′ ` B

〈πR〉
Γn,I′ ` B

⊕?xk , exΓn,I ` B

Example 4.5. The BDT for the x OR ( NOT y) function we saw in 1.7

x

y

1 0

1

translates to the proof:

αx ` αx

αy ` αy
〈π1〉
β ` B

(?

αy,( αy ( β ` B
(?

αx, αy, αx ( αy ( β ` B

αx ` αx

αy ` αy
〈π0〉
β ` B

(?

αy,( αy ( β ` B
(?

αx, αy, αx ( αy ( β ` B
⊕?y, ex

αx, αy ⊕ αy, αx ( αy ( β ` B

αx ` αx

〈πy⊕〉
αy ⊕αy ` αy

〈π1〉
β ` B

(?

αy ⊕ αy, αy ( β ` B
(?

αx, αy ⊕ αy, αx ( αy ( β ` B
⊕?x, ex

αx ⊕ αx, αy ⊕ αy, αx ( αy ( β ` B

We then have to check that we get indeed a faithful encoding of BDTs, reducing
equivalence of BDT to equivalence of proofs.

Lemma 4.2 (representation). Writing B the BDT slicing of πφ , we have

B[β, βl] = φ B[β, βr] = φ̄

B[αli , α
(
i ] ∼ xi B 1 8 0 B[αri , α

(
i ] ∼ xi B 0 8 1

Proof. A straightforward induction: at the leaf level (first part of the definition) we get,
if we are dealing for instance with a 1 leaf, B[β, βl] = 1 , B[β, βr] = 0 , if xi is not
free then B[αi, α

(
i ] = 1 , if on the contrary xi is free then B[αli , α

(
i ] = xi B 1 8 0 and

B[αri , α
(
i ] = xi B 0 8 1 .

From there, we can see that the induction step for variable xi of the definition just
branches together in the expected way the B[β, βl] and B[β, βr] , does not change (up to
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equivalence) any of the B[ · , α(
j ] for j 6= i and turns B[αi, α

(
i ] ∼ 1 into B[αli , α

(
i ] ∼

xi B 1 8 0 and B[αri , α
(
i ] ∼ xi B 0 8 1 .

Corollary 4.6. Two BDT φ, ψ are equivalent iff πφ ∼ πψ .

We can then have a look at the complexity of the reduction:

Lemma 4.3 (Logspace reduction). The representation πφ of a BDT φ by a proof can be
computed in logarithmic space.

Proof. We can do this in two steps: first process the BDT to have the free variables at each
vertex made explicit, which is done by listing the variables encountered between the vertex
and the root of the tree and requires only to remember two positions in the tree; then each
vertex of the new tree can be replaced by the corresponding piece of proof from 4.4. Both
these steps can be performed in logarithmic space, and since logarithmic space function
compose, we are done.

Some extra remarks about this encoding: first, because we need to keep track of which
variables have been used and which have not, we do not have a linear size bound but only a
quadratic one. Second, on a more positive note: we can see how closely the tree structure of
πφ mimics that of φ ; in fact we believe that a form of one to one correspondance between
proofs of Γn,I ` B and BDT using variables x1, . . . , xn could be worked out.

Conclusion

We established that the equivalence problem of intuitionistic additive-multiplicative (without
units ) linear logic is Logspace-complete, this was achieved by introducing an intermediate
representation of proofs based on binary decision trees.

We also established low-complexity (computable in logarithmic space) correspondence
between binary decision trees and proofs. This correspondance relates the tree structures of
proofs and BDT very tightly amd ought to be studied further in view of potential limitation
results.

However, the question of the possibility of a notion of proofnets for this logic is still
unsettled: even if the equivalence problem is in Logspace, it might very well be that no
notion of canonical representative could be built. The fact that optimization of BDT is a hard
problem [11] (even hard to approximate [14]), could possibly be used to derive limitations on
(if not impossibility of) the existence of low-complexity, canonical representatives. But this
has still to be clarified.
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