
Logical Methods in Computer Science
Vol. 13(4:23)2017, pp. 1–21
www.lmcs-online.org

Submitted Mar. 15, 2016
Published Oct. 29, 2017

GRILLIOT’S TRICK IN NONSTANDARD ANALYSIS

SAM SANDERS

Munich Center for Mathematical Philosophy, LMU Munich, Germany & Department of Mathematics,
Ghent University
e-mail address: sasander@me.com

Abstract. Recently, Dag Normann and the author have established a connection between
higher-order computability theory and Nonstandard Analysis; new results in both fields
are obtained by exploiting this connection ([28]). Now, on the side of computability
theory, the technique known as Grilliot’s trick constitutes a template for explicitly defining
the Turing jump functional (∃2) in terms of a given effectively discontinuous type two
functional ([14]). In light of the aforementioned connection, it is a natural question what
corresponds to Grilliot’s trick in Nonstandard Analysis? In this paper, we discuss the
nonstandard extensionality trick : a technique similar to Grilliot’s trick in Nonstandard
Analysis. This nonstandard trick proceeds by deriving from the existence of certain
nonstandard discontinuous functionals, the Transfer principle from Nonstandard analysis
limited to Π0

1-formulas; from this (generally ineffective) implication, we obtain an effective
implication expressing the Turing jump functional in terms of a discontinuous functional
(and no longer involving Nonstandard Analysis). The advantage of our nonstandard
approach is that one obtains effective content without paying attention to effective content.
We also discuss a new class of functionals which fall outside the established categories.
These functionals derive from the Standard Part axiom of Nonstandard Analysis.

1. Introduction

Recently, Dag Normann and the author have established a connection between higher-
order computability theory and Nonstandard Analysis ([28]). In the latter, they investigate
the complexity of functionals connected to the Heine-Borel compactness of Cantor space.
Surprisingly, this complexity turns out to be intimately connected to the nonstandard
compactness of Cantor space as given by Robinson’s theorem (See [17, p. 42]) in Nonstandard
Analysis. In fact, the results in [28] are ‘holistic’ in nature in that theorems in computability
theory give rise to theorems in Nonstandard Analysis, and vice versa. We discuss these
results in Section 4 as they serve as the motivation for this paper.

In light of the aforementioned connection, it is a natural question which notions from
higher-order computability theory have elegant analogues in Nonstandard Analysis, and vice
versa. This paper explores one particular case of this question, namely for the technique know
as Grilliot’s trick, introduced in [14]. The latter ‘trick’ actually constitutes a template for

This research was supported by the following funding bodies: FWO Flanders, the John Templeton
Foundation, the Alexander von Humboldt Foundation, and the Japan Society for the Promotion of Science.

LOGICAL METHODSl IN COMPUTER SCIENCE DOI:10.23638/LMCS-13(4:23)2017
c© S. Sanders
CC© Creative Commons

http://creativecommons.org/about/licenses


2 S. SANDERS

explicitly defining the Turing jump functional (∃2) in terms of a given effectively discontinuous
type two functional. Below, we introduce the nonstandard extensionality trick, which is a
technique similar to Grilliot’s trick in Nonstandard Analysis. In this way, we study a new
computational aspect of Nonstandard Analysis pertaining to Reverse Mathematics (RM), in
line with the results in [31–34]. We refer to [39,40] for an overview to RM. We shall make
use of internal set theory, i.e. Nelson’s axiomatic Nonstandard Analysis ([26]). We introduce
internal set theory and its fragments from [3] in Section 2.

The nonstandard extensionality trick sums up as: From the existence of nonstandard
discontinuous functionals, the Transfer principle from Nonstandard analysis (See Section 2.1)
limited to Π0

1-formulas is derived; from this (generally ineffective) implication, we obtain
an effective implication expressing the Turing jump functional in terms of a discontinuous
functional (and no longer involving Nonstandard Analysis). Essential to obtaining this
effective implication is the ‘term extraction theorem’ in Theorem 2.2, based on [3]. We
shall apply the nonstandard extensionality trick to binary expansion, the intermediate value
theorem, the Weierstraß maximum theorem, and weak weak König’s lemma in Section 3.

Now, combining the aforementioned results with similar results from [32,33] regarding
the RM zoo from [12], one gets the idea that the higher-order landscape is not very rich
and similar to the second-order framework. To counter this view, we discuss a new class of
functionals in Section 4 which do not fit the existing categories of RM. These functionals
are inspired by the Standard Part axiom of Nonstandard Analysis.

Finally, we hasten to point out that there are well-established techniques for obtaining
effective content from classical mathematics, the most prominent one being the proof mining
program ([19]). In particular, the effective results in this paper could be or have been
obtained in this way. What is surprising about the results in this paper (in our opinion) is
the emergence of effective content (with relative ease) from Nonstandard Analysis despite
claims that the latter is somehow fundamentally non-constructive by e.g. Bishop and Connes
(See [37] for a detailed discussion of the Bishop-Connes critique).

2. Internal set theory and fragments

In this section, we sketch internal set theory, Nelson’s syntactic approach to Nonstandard
Analysis, first introduced in [26], and its fragments from [3]. An in-depth and completely
elementary introduction to the constructive content of Nonstandard Analysis is [35].

2.1. Introducing internal set theory. Nelson’s system IST of internal set theory is defined
as follows: The language of IST consist of the language of ZFC, the ‘usual’ foundations
of mathematics, plus a new predicate ‘st(x)’, read as ‘x is standard’. The new quantifiers
(∀stx)(. . . ) and (∃sty)(. . . ) are short for (∀x)(st(x)→ . . . ) and (∃y)(st(y) ∧ . . . ). A formula
of IST is called internal if it does not involve ‘st’, and external otherwise.

The system IST is the internal system ZFC plus the following1 three external axioms
Idealisation, Standard Part, and Transfer which govern the predicate ‘st’.

(I) (∀st finx)(∃y)(∀z ∈ x)ϕ(z, y)→ (∃y)(∀stx)ϕ(x, y), for internal ϕ.
(S) (∀stx)(∃sty)(∀stz)

(
(z ∈ x ∧ ϕ(z))↔ z ∈ y

)
, for any formula ϕ.

(T) (∀stt)
[
(∀stx)ϕ(x, t)→ (∀x)ϕ(x, t)

]
, for internal ϕ and t, x the only free variables.

1The ‘fin’ in (I) means that x is finite, i.e. its number of elements are bounded by a natural number.
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Nelson proves in [26] that IST is a conservative extension of ZFC, i.e. ZFC and IST prove
the same (internal) sentences. Various fragments of IST have been studied previously, and
we shall make essential use of the system P, a fragment of IST based on Peano arithmetic,
introduced in Section 2.2. The system P was first introduced in [3] and is exceptional in
that it has a ‘term extraction procedure’ with a very wide scope. We discuss this aspect of P
in more detail in Remark 2.4.

2.2. The classical system P. In this section, we introduce the classical system P which
is a conservative extension of Peano arithmetic by Theorem 2.2. We refer to [19, §3.3] for
the detailed definition of the rather mainstream system E-PAω, i.e. Peano arithmetic in all
finite types with the axiom of extensionality. The system P consist of the following axioms,
starting with the basic ones.

Definition 2.1. [Basic axioms of P]

(1) The system E-PAω∗ is the definitional extension of E-PAω with types for finite sequences
as in [3, §2].

(2) The set T ∗ is the collection of all the constants in the language of E-PAω∗.
(3) The external induction axiom IAst is

Φ(0) ∧ (∀stn0)(Φ(n)→ Φ(n+ 1))→ (∀stn0)Φ(n). (IAst)

(4) The system E-PAω∗st is defined as E-PAω∗ + T ∗st + IAst, where T ∗st consists of the following
basic axiom schemas.
(a) The schema2 st(x) ∧ x = y → st(y).
(b) The schema providing for each closed term t ∈ T ∗ the axiom st(t).
(c) The schema st(f) ∧ st(x)→ st(f(x)).

Secondly, Nelson’s axiom Standard part is weakened in [3] to HACint:

(∀stxρ)(∃styτ )ϕ(x, y)→ (∃stF ρ→τ
∗
)(∀stxρ)(∃yτ ∈ F (x))ϕ(x, y), (HACint)

where ϕ is any internal formula and τ∗ is the type of finite sequences of objects of type
τ . Note that F only provides a finite sequence of witnesses to (∃sty), explaining the name
Herbrandized Axiom of Choice for HACint.

Thirdly, Nelson’s axiom idealisation I appears in [3] as follows:

(∀stxσ
∗
)(∃yτ )(∀zσ ∈ x)ϕ(z, y)→ (∃yτ )(∀stxσ)ϕ(x, y), (I)

where ϕ is internal and σ∗ is the type of finite sequences of objects of type σ.

For P ≡ E-PAω∗st + HACint + I, we have the following ‘term extraction theorem’, which is
not explicitly formulated or proved in [3]. A proof may be found in [32,34].

Theorem 2.2 (Term extraction). Let ϕ be an internal formula and let ∆int be a collection
of internal formulas. If we have:

P + ∆int ` (∀stx)(∃sty)ϕ(x, y, a) (2.1)

then one can extract from the proof a sequence of closed terms t in T ∗ such that

E-PAω∗ + ∆int ` (∀x)(∃y ∈ t(x))ϕ(x, y, a). (2.2)

2The language of E-PAω∗st contains a symbol stσ for each finite type σ, but the subscript is always omitted.
Hence T ∗

st is an axiom schema and not an axiom.
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Proof. The proof of the theorem in a nutshell: A proof interpretation Sst is defined in
[3, Def. 7.1]; a tedious but straightforward verification using the clauses (i)-(v) in [3, Def.
7.1] establishes that Φ(a)Sst ≡ Φ(a) for Φ(a) ≡ (∀stx)(∃sty)ϕ(x, y, a) and ϕ internal. The
theorem now follows immediately from [3, Theorem 7.7].

The term t in (2.2) is primitive recursive in the sense of Gödel’s system T . The latter
was introduced in [13], and is also discussed in [19, §3]. For the rest of this paper, a ‘normal
form’ will refer to a formula as in (2.1), i.e. of the form (∀stx)(∃sty)ϕ(x, y, a) for internal ϕ.

As expected, the previous theorem does not really depend on the presence of full Peano
arithmetic. Indeed, let E-PRAω be the system defined in [20, §2] and let E-PRAω∗ be its
definitional extension with types for finite sequences as in [3, §2]. We permit ourselves a slight

abuse of notation by not distinguishing between Kohlenbach’s RCAω0 ≡ E-PRAω + QF-AC1,0

(See [20, §2]) and E-PRAω∗ + QF-AC1,0.

Corollary 2.3. The previous theorem and corollary go through for P and E-PAω∗ replaced
by RCAΛ

0 ≡ E-PRAω∗ + T ∗st + HACint + I + QF-AC1,0 and RCAω0 .

Proof. The proof of [3, Theorem 7.7] goes through for any fragment of E-PAω∗ which includes
EFA, sometimes also called I∆0 + EXP. In particular, the exponential function is (all what
is) required to ‘easily’ manipulate finite sequences.

Next, we discuss the vast scope of the term extraction result in Theorem 2.2.

Remark 2.4 (The scope of term extraction). First of all, there are examples of classically
provable sentences (See [19, §2.2]) with only two quantifier alternations from which no
computational information can be extracted. By contrast, it is shown in [34] that the scope
of Theorem 2.2 encompasses all theorems of ‘pure’ Nonstandard Analysis, where ‘pure’ means
that only nonstandard definitions (of continuity, compactness, differentiability, Riemann

integration, et cetera) are used. Indeed, it is easy to prove in P (or RCAΛ
0 ) that these

nonstandard definitions have equivalent normal forms, and that an implication between two
normal forms is again equivalent to a normal form. In other words, the scope of the term
extraction result in Theorem 2.2 is vast, as explored in [31–34].

Finally, we note that a ‘constructive’ version of P is introduced in [3, §5]. In particular,
the system H is a conservative extension of Heyting arithmetic E-HAω for the latter’s language,
and satisfies a term extraction theorem similar to Theorem 2.2 (See [3, Theorem 5.9]). We
briefly discuss H in Remark 3.4.

2.3. Notations. We mostly use the notations from [3], some of which we repeat.

First of all, the following notations were sketched in Section 2.1.

Remark 2.5 (Notations). We write (∀stxτ )Φ(xτ ) and (∃stxσ)Ψ(xσ) as short for the formula
(∀xτ )

[
st(xτ ) → Φ(xτ )

]
and (∃xσ)

[
st(xσ) ∧ Ψ(xσ)

]
. We also write (∀x0 ∈ Ω)Φ(x0) and

(∃x0 ∈ Ω)Ψ(x0) as short for (∀x0)
[
¬st(x0)→ Φ(x0)

]
and (∃x0)

[
¬st(x0) ∧Ψ(x0)

]
. Finally,

a formula A is ‘internal’ if it does not involve st. The formula Ast is defined from A by
appending ‘st’ to all quantifiers (except bounded number quantifiers).

Secondly, we use the usual notations for rational and real numbers in RCAω0 as introduced
in [20, p. 288-289]. We repeat some of the latter definitions.
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Definition 2.6 (Real numbers and related notions).

(1) A (standard) rational q0 is a fraction ±m
n for (standard) n0 > 0 and (standard) m0. We

write ‘q0 ∈ Q’ to denote that q is a rational.
(2) A (standard) real number x is a (standard) fast-converging Cauchy sequence q1

(·), i.e.

(∀n0, i0)(|qn − qn+i)| <0
1

2n ). We use Kohlenbach’s ‘hat function’ from [20, p. 289] to

guarantee that every sequence f1 is a real.
(3) We write [x](k) := qk for the k-th approximation of a real x1 = (q1

(·)).

(4) Two reals x, y represented by q(·) and r(·) are equal, denoted x =R y, if (∀n > 0)(|qn−rn| ≤
1

2n−1 ). Inequality x <R y is defined by (∃n > 0)(qn + 1
2n−1 < rn).

(5) We write x ≈ y if (∀stn > 0)(|qn − rn| ≤ 1
2n−1 ) and x� y if x >R y ∧ x 6≈ y.

(6) Functions F : R→ R mapping reals to reals are represented by functionals Φ1→1 mapping
equal reals to equal reals, i.e.

(∀x1, y1)(x =R y → Φ(x) =R Φ(y)). (RE)

(7) Sets of objects of type ρ are denoted Xρ→0, Y ρ→0, Zρ→0, . . . and are given by their

characteristic functions fρ→0
X , i.e. (∀xρ)[x ∈ X ↔ fX(x) =0 1], where fρ→0

X is assumed
to output zero or one.

Thirdly, we use the usual extensional notion of equality in P.

Remark 2.7 (Equality in P). Equality between natural numbers ‘=0’ is a primitive. Equality
‘=τ ’ for type τ -objects x, y is then defined as follows:

[x =τ y] ≡ (∀zτ11 . . . zτkk )[xz1 . . . zk =0 yz1 . . . zk] (2.3)

if the type τ is composed as τ ≡ (τ1 → . . .→ τk → 0). In the spirit of Nonstandard Analysis,
we define ‘approximate equality ≈τ ’ as follows:

[x ≈τ y] ≡ (∀stzτ11 . . . zτkk )[xz1 . . . zk =0 yz1 . . . zk] (2.4)

with the type τ as above. The system P includes the axiom of extensionality :

(∀xρ, yρ, ϕρ→τ )
[
x =ρ y → ϕ(x) =τ ϕ(y)

]
. (E)

However, as noted in [3, p. 1973], the so-called axiom of standard extensionality (E)st is
not included in P, as this would jeopardise the term extraction property as in Theorem 2.2.
Finally, a functional Ξ1→0 is called an extensionality functional for ϕ1→1 if

(∀k0, f1, g1)
[
fΞ(f, g, k) =0 gΞ(f, g, k)→ ϕ(f)k =0 ϕ(g)k

]
, (2.5)

i.e. Ξ witnesses (E) for ϕ. As will become clear in Section 3, (E)st is translated to the
existence of an extensionality functional when applying Theorem 2.2.

3. An analogue of Grilliot’s trick in Nonstandard Analysis

In this section, we show how from certain equivalences in Nonstandard Analysis involving a
fragment of Nelson’s Transfer, namely Π0

1-TRANS, one obtains effective RM-equivalences
involving (∃2) in Kohlenbach’s higher-order RM.

(∃ϕ2)(∀f1)
[
(∃n)(f(n) = 0)↔ ϕ(f) = 0

]
. (∃2)

(∀stf1)
[
(∀stn)f(n) 6= 0→ (∀n)f(n) 6= 0

]
. (Π0

1-TRANS)
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To this end, we shall make use of a technique from Nonstandard Analysis we call the
nonstandard extensionality trick, and which is similar to Grilliot’s trick. We first introduce
some of the above italicised notions in the following section.

3.1. Preliminaries. In this section, we introduce the notion of ‘effective implication’ and
so-called Grilliot’s trick. First of all, the notion of ‘effective implication’ is defined as one
would expect in RCAω0 .

Definition 3.1. [Effective implication] An implication (∃Φ)A(Φ)→ (∃Ψ)B(Ψ) (proved in
RCA0) is effective if there is a term t (in the language of RCAω0 ) such that additionally
(∀Φ)[A(Φ)→ B(t(Φ))] (proved in RCAω0 ).

The terms obtained using Theorem 2.2 are primitive recursive in the sense of Gödel’s
system T , as discussed in Section 2.2. In light of the elementary nature of an extensionality
functional (See Remark 2.7), we still refer to an implication as ‘effective’, if the term t as in
Definition 3.1 involves an extensionality functional. Note that RCAω0 proves the existence of

an extensionality functional thanks to QF-AC1,0 while an unbounded search (available in a
more general setting than Gödel’s T ) also yields such a functional.

Secondly, as to methodology, we shall make use of a nonstandard technique, called the
nonstandard extensionality trick (See Remark 3.3), similar to Grilliot’s trick. Now, the
latter trick is in fact an explicit construction to obtain the Turing jump functional (∃2)
from a given effectively discontinuous functional (See e.g. [14], [20, Prop. 3.7], or [22, Prop.
3.4] for more details). In our nonstandard trick, one obtains Π0

1-TRANS from a functional
Φ1→1 which is nonstandard discontinuous, i.e. there are x0 ≈1 x1 such that Φ(x0) 6≈1 Φ(x1).
By applying term extraction as in Theorem 2.2, one then obtains an effective implication
involving (∃2). As we will see, the nonstandard proof involving Π0

1-TRANS uses proof by
contradiction, i.e. no attempt to obtain effective content is made in the nonstandard proofs.

Thirdly, in the next sections, we apply the aforementioned nonstandard extensionality
trick to binary expansion, the intermediate value theorem, the Weierstraß maximum theorem,
and weak weak König’s lemma. We choose these theorems due to their ‘non-constructive’
nature, and as some of the associated uniform versions (sometimes involving sequences)
have been studied ([16, 29, 30], [40, IV.2.12], [20, §3]). It is particularly interesting that
we can ‘recycle’ the Brouwerian counterexamples to the intermediate value theorem and
Weierstraß maximum theorem ([2, I.7], [24]) to obtain nonstandard equivalences.

Finally, it is a natural question why we can obtain computational information from
proofs in classical Nonstandard Analysis at all. Indeed, Bishop and Connes have made
rather strong claims regarding the non-constructive nature of Nonstandard Analysis (See3

[7, p. 513], [5, p. 1], [6], [11, p. 6207] and [10, p. 26]). Furthermore, there are examples
of classically provable sentences (See [19, §2.2]) with only two quantifier alternations from
which no computational information can be extracted, and the aforementioned theorems
involve a lot more quantifier alternations. Moreover, our nonstandard proofs make use of
‘proof by contradiction’, i.e. no attempt at a ‘constructive’ proof is made. Nonetheless, in
Sections 3.2 to 3.4, we shall obtain effective equivalences from certain ‘non-constructive’
nonstandard equivalences. Following similar results in Section 3.5, we offer an explanation
why Nonstandard Analysis contains so much computational information.

3The third reference is Bishop’s review of Keisler’s introduction to Nonstandard Analysis [18].
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3.2. Binary conversion. In this section, we study the principle of binary conversion, i.e.
the statement that every real can be represented in binary as follows:

(∀x ∈ [0, 1])(∃α1 ≤1 1)(x =R
∑∞

i=1
α(i)
2i

). (BIN)

Hirst shows in [16] that RCA0 proves BIN, and that a uniform version of the latter involving
sequences is equivalent to WKL. Furthermore, BIN is equivalent to LLPO in constructive
Reverse Mathematics ([9, p. 10]), while a finer classification may be found in [4]. We study
a higher-type uniform version of BIN:

(∃Φ : R→ 1)(∀x ∈ [0, 1])
[
Φ(x) ≤1 1 ∧ x =R

∑∞
i=1

α(i)
2i

]
. (UBIN)

We shall first establish a particular nonstandard equivalence involving Π0
1-TRANS, and a

nonstandard version of UBIN. As a result of applying Corollary 2.3 to this nonstandard
equivalence, we obtain an effective equivalence between UBIN and the following version of
arithmetical comprehension.

(∃µ2)
[
(∀f1)

(
(∃x0)f(x) = 0→ f(µ(f)) = 0

)]
. (µ2)

The functional (µ2) is also known as Feferman’s non-constructive mu-operator (See [1, §8.2]),
and is equivalent to (∃2) in RCAω0 by [22, §3]. We denote by MU(µ) the formula in square
brackets in (µ2). We use the following nonstandard version of UBIN, called UBIN+:

(∃stΦ : R→ 1)(∀stx ∈ [0, 1])
[
UBIN(Φ, x) ∧ (∀stx, y ∈ [0, 1])(x ≈ y → Φ(x) ≈1 Φ(y))

]
.

where UBIN(Φ, x) is the formula in square brackets in UBIN. Note that the second conjunct
of UBIN+ expresses that Φ is ‘standard extensional’, i.e. satisfies extensionality as in (RE)
relative to ‘st’ (and the range is Baire space instead of R).

Theorem 3.2. From a proof in RCAΛ
0 that UBIN+ ↔ Π0

1-TRANS, terms s, t can be extracted
such that RCAω0 proves:

(∀µ2)
[
MU(µ)→ UBIN(s(µ))

]
∧ (∀Φ1→1)

[
UBIN(Φ)→ MU(t(Φ,Ξ))

]
. (3.1)

where Ξ is an extensionality functional for Φ and UBIN(Φ) is (∀x ∈ [0, 1])UBIN(Φ, x).

Proof. First of all, we prove that UBIN+ → Π0
1-TRANS in RCAΛ

0 , and obtain the associated
second conjunct of (3.1). The remaining results are then sketched.

To prove UBIN+ → Π0
1-TRANS in RCAΛ

0 , assume UBIN+ and suppose that Π0
1-TRANS

is false, i.e. there is standard g such that (∀stn)g(n) = 0 but also (∃m0)g(m) 6= 0. Now
define the standard sequence α0 as follows

α0(i) :=

{
0 (∀n ≤ i)g(n) = 0

1 otherwise
. (3.2)

Furthermore, define the standard reals x± := 1
2 ±

∑∞
n=1

α0(n)
2n and note that x+ ≈ x− by the

definition of g. Since x− <R
1
2 <R x+, the binary expansion α± of x± must be such that

α−(1) = 0 and α+(1) = 1. However, this implies that Φ(x−)(1) = 0 6= 1 = Φ(x+)(1), and
also Φ(x−) 6≈1 Φ(x+). Clearly, the latter contradicts the standard extensionality of Φ as
x+ ≈ x− was also proved. In light of this contradiction, we must have UBIN+ → Π0

1-TRANS.

We now prove the second conjunct in (3.1). Note that Π0
1-TRANS can easily be brought

into the following normal form:

(∀stf1)(∃sti0)
[
(∃n0)f(n) = 0→ (∃m ≤ i)f(m) = 0

]
, (3.3)
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where the formula in square brackets is abbreviated by B(f, i). Similarly, the second conjunct
of UBIN+ has the following normal form:

(∀stx1, y1 ∈ [0, 1], k0)(∃stN)
[
|x− y| < 1

N → Φ(x)k =0 Φ(y)k
]
, (3.4)

which is immediate by resolving ‘≈1’ and ‘≈’, and bringing standard quantifiers outside.
We denote the formula in square brackets in (3.4) by A(x, y,N, k,Φ). Hence, UBIN+ →
Π0

1-TRANS now easily yields:

(∀stΦ,Ξ)
[
[(∀stx ∈ [0, 1])UBIN(Φ, x) ∧ (∀stx, y ∈ [0, 1], k0)A(x, y,Ξ(x, y, k), k,Φ)]

→ (∀stf1)(∃stn)B(f, n)
]
, (3.5)

as standard Ξ as in the antecedent of (3.5) yields standard outputs for standard inputs,
and hence (3.4) follows. Dropping the ‘st’ in the antecedent of (3.5) and bringing out the
remaining standard quantifiers, we obtain the normal form:

(∀stΦ,Ξ, f1)(∃stn)
[
[(∀x1 ∈ [0, 1])UBIN(Φ, x)∧

(∀U1, S1, k0)A(U, S,Ξ(U, S, k), k,Φ)]→ B(f, n)
]
. (3.6)

Let C(Φ,Ξ, f, n) be the formula in big square brackets and apply Corollary 2.3 to ‘RCAΛ
0 `

(∀stΦ,Ξ, f1)(∃stn)C(Φ,Ξ, f, n)’ to obtain a term t such that RCAω0 proves

(∀Φ,Ξ, f1)(∃n ∈ t(Φ,Ξ, f))C(Φ,Ξ, f, n). (3.7)

Now define the term s(Φ,Ξ, f) as maxi<|t(Φ,Ξ,f)| t(Φ,Ξ, f)(i) and note that the formula
(∃n ∈ t(Φ,Ξ, f))C(Φ,Ξ, f, n) implies C(Φ,Ξ, f, s(Φ,Ξ, f)). Finally, bring the quantifier
involving f inside C to obtain for all Φ,Ξ that

[(∀x1 ∈ [0, 1])UBIN(Φ, x) ∧ (∀U1, S1, k0)A(U, S,Ξ(U, S, k), k,Φ)]→ (∀f1)B(f, s(Φ,Ξ, f)).

Thus, s(Φ,Ξ, ·) provides the functional (µ2) if Φ satisfies (∀x1 ∈ [0, 1])UBIN(Φ, x) and Ξ is
the associated extensionality functional.

Finally, to prove Π0
1-TRANS→ UBIN+, consider (3.3) and apply HACint to the former to

obtain ν1→0∗ such that (∀stf1)(∃i0 ∈ ν(f))A(f, i), where A is the formula in square brackets
in (3.3). Now define the standard functional ξ2 by

ξ(f) := (µm ≤ max
i<|ν(f)|

ν(f)(i))(f(m) = 0)

and note that [MU(ξ)]st, i.e. we have access to Feferman’s search operator relative to ‘st’. In
particular, ξ2 provides arithmetical comprehension (and Transfer for Π0

1-formulas):

(∀stf1)
[
(f(ξ(f)) = 0)↔ (∃m0)(f(m) = 0)↔ (∃stm0)(f(m) = 0)

]
. (3.8)

To define Φ as in UBIN+, use ξ from (3.8) to decide if x ≥R
1
2 or x <R

1
2 and define

Φ(x)(0) as 1 or 0 respectively. Similarly, define Φ(x)(n+ 1) as 1 or 0 depending on whether

x ≥R
1
2(x+

∑n
i=0

Φ(x)(i)
2i

) or not, again using ξ. Then Φ is standard and satisfies [UBIN(Φ)]st.

Now apply Π0
1-TRANS to the latter and the axiom of extensionality to obtain UBIN+. The

first conjunct of (3.1) now follows in the same way as in the first part of the proof.
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Note that the non-computable power of uniform BIN (both nonstandard and non-
nonstandard) arises from the fact that not all reals have a unique binary expansion. Hence,
for small (infinitesimal) variations of the input of the functional in UBIN, we can produce
large (standard) variations in the output. This is exploited as follows in the previous proof.

Remark 3.3 (Nonstandard extensionality trick). First of all, we note that Φ as in UBIN(Φ)
is nonstandard discontinuous in that for every x, y ∈ R such that x <R

1
2 <R y ∧ x ≈ 1

2 ≈ y
we have Φ(x) 6≈1 Φ(y), in particular Φ(x)(1) = 0 6= 1 = Φ(y)(1). Secondly, we use
(3.2) to define standard points x± at which Φ from UBIN+ is nonstandard discontinuous,
assuming ¬Π0

1-TRANS. The ensuing contradiction with the standard extensionality of Φ
yields UBIN+ → Π0

1-TRANS. Thirdly, applying term extraction to the (normal form (3.6)
of the) latter implication, we obtain the effective implication (3.1).

The previous technique is similar in spirit to Grilliot’s trick, but note that our non-
standard technique produces an effective implication, without paying attention to effective
content. In particular, we used the non-constructive ‘proof by contradiction’ to establish
UBIN+ → Π0

1-TRANS, and ‘independence of premises’ to obtain the latter’s normal form
(3.6) (See e.g. (3.3) and (3.4)).

Note that we do not claim that the previous theorem (or the below theorems) is unique
or a first in this regard: Kohlenbach’s treatment of Grilliot’s trick ([22]) and the proof mining
program ([19]) are well-known to produce effective results from classical mathematics. What
is surprising about results in this paper (in our opinion) is the emergence of effective content
(with relative ease) from Nonstandard Analysis despite claims that the latter is somehow
fundamentally non-constructive by e.g. Bishop and Connes (See [37] for a detailed discussion
of the Bishop-Connes critique).

Surprisingly, the proof of Theorem 3.2 goes through constructively, as we discuss now.

Remark 3.4 (The system H). The system H is a conservative extension of Heyting arithmetic
satisfying a term extraction theorem similar to Theorem 2.2 (See [3, Theorem 5.9]). Although
H is based on intuitionistic logic, it does prove the following ‘standard’ version of Markov’s
principle (See [3, p. 1978]):

(∀stf1)
[
¬¬[(∃stm)(f(m) = 0)]→ (∃stn)(f(n) = 0)

]
. (MPst)

Now, the proof of UBIN+ → Π0
1-TRANS in Theorem 3.2 easily yields a proof of:

UBIN+ → (∀stf1)
[
(∃m)(f(m) = 0)→ ¬[(∀stn0)(f(n) = 0)]

]
. (3.9)

inside the system H. However, combined with MPst, (3.9) yields that H also proves the
implication UBIN+ → Π0

1-TRANS, using the same ‘proof by contradiction’ proof used for
Theorem 3.2. Furthermore, similar to MPst, the system H also contains a ‘standard’ version
of the independence of premise schema (in the form of HIP∀st ; see [3, p. 1978]). Thanks
to this schema, H proves Π0

1-TRANS→ (3.3) and even that Π0
1-TRANS→ UBIN+ implies

its normal form (3.6). Applying the term extraction theorem [3, Theorem 5.9] for H, a
constructive proof of (3.1) is established.
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3.3. Weak weak König’s lemma. In this section, we study the principle weak weak
König’s lemma (WWKL for short), using the standard extensionality trick in Remark 3.3.
Note that WWKL was not directly studied in [32,33].

Definition 3.5. [Weak weak König’s lemma]

(1) We reserve ‘T 1’ for trees and denote by ‘T 1 ≤1 1’ that T is a binary tree.

(2) For a binary tree T , define ν(T ) := limn→∞
{σ∈T :|σ|=n}

2n .

(3) For a binary tree T , define ‘ν(T ) >R a
1’ as (∃k0)(∀n0)

({σ∈T :|σ|=n}
2n ≥ a+ 1

k

)
.

(4) We define WWKL as (∀T ≤1 1)
[
ν(T ) >R 0→ (∃β ≤1 1)(∀m)(βm ∈ T )

]
.

The principle WWKL is not part of the ‘Big Five’ of RM, but there are some equivalences
involving the former (See [40, X.1]). In this section, we study the following uniform versions:

(∃Φ1→1)(∀T ≤1 1)
[
ν(T ) >R 0→ (∀m)(Φ(T )m ∈ T )

]
(UWWKL)

Also, UWWKL(Φ(T ), T ) is UWWKL without the leading quantifiers, and UWWKL+ is

(∃stΦ1→1)
[
(∀stT 1)UWWKL(Φ(T ), T ) ∧ (∀stT 1, S1)

(
T ≈1 S → Φ(T ) ≈1 Φ(S)

)]
.

Note that the second conjunct expresses that Φ is standard extensional. We have the
following theorem, which is the effective version of [29, Theorem 3.2]. Note that UWWKL(Φ)
is (∀T ≤1 1)UWWKL(Φ(T ), T ).

Theorem 3.6. From a proof in RCAΛ
0 that UWWKL+ ↔ Π0

1-TRANS, terms s, t can be
extracted such that RCAω0 proves:

(∀µ2)
[
MU(µ)→ UWWKL(s(µ))

]
∧ (∀Φ1→1)

[
UWWKL(Φ)→ MU(t(Φ,Ξ))

]
, (3.10)

where Ξ is an extensionality functional for Φ.

Proof. First of all, to prove UWWKL+ → Π0
1-TRANS in RCAΛ

0 , assume UWWKL+ and
suppose that Π0

1-TRANS is false, i.e. there is f such that (∀stn)f(n) = 0 ∧ (∃m0)f(m) 6= 0.
Now define the trees Ti for i = 0, 1 as follows

σ ∈ Ti ↔
[
σ(0) = i ∨

[
σ(0) = 1− i ∧ (∀m ≤ |σ|)f(m) = 0

]]
.

By the definition of Ti and the behaviour of f , we have T0 ≈1 T1 ≈1 2N, where the latter
is the full binary tree and N := {n0 : n =0 n}. Furthermore, ν(T0) = ν(T1) = 1

2 hold,
and observe that T0 (resp. T1) only has paths starting with 0 (resp. 1). Hence, we have
Φ(T0)(0) = 0 6= 1 = Φ(T1)(0) for Φ as in UWWKL+, which yields Φ(T0) 6≈1 Φ(T1). Clearly,
the latter contradicts the standard extensionality of Φ. In light of this contradiction, we
have UWWKL+ → Π0

1-TRANS.

Secondly, to prove Π0
1-TRANS → UWWKL+, note that Π0

1-TRANS implies (3.8) as
established in the proof of Theorem 3.2. To define Φ as in UWWKL+, let standard T 1 ≤1 1
be such that ν(T ) >R 0 and use (standard) ξ from (3.8) to decide if

(∀stn0)(∃β0∗ ∈ T )(β(0) = 1 ∧ |β| = n) or (∀stn0)(∃β0∗ ∈ T )(β(0) = 0 ∧ |β| = n), (3.11)

and define Φ(T )(0) as 1 if the first formula in (3.11) holds, and 0 otherwise. Similarly, for
Φ(T )(m+ 1) again use ξ from (3.8) to decide if the following formula holds:

(∀stn0 ≥ m+ 1)(∃β0∗ ∈ T )(βm = Φ(T )(0) ∗ · · · ∗ Φ(T )(m) ∧ β(m+ 1) = 1 ∧ |β| = n)

and define Φ(T )(m+ 1) as 1 if it does, and zero otherwise. Then Φ is standard and satisfies
[UWWKL(Φ)]st. Now apply Π0

1-TRANS to the latter and (E) to obtain UWWKL+.
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Thirdly, we now prove the second conjunct in (3.10). Note that Π0
1-TRANS can easily

be brought into the normal form (3.3) where the formula in square brackets is abbreviated
by B(f, i). Similarly, the second conjunct of UWWKL+ has the following normal form:

(∀stT 1, S1, k0)(∃stN)
[
TN =0 SN → Φ(T )k =0 Φ(S)k

]
, (3.12)

which is immediate by resolving ‘≈1’ and bringing standard quantifiers outside. We denote the
formula in square brackets in (3.12) by A(T, S,N, k,Φ). Hence, the implication UWWKL+ →
Π0

1-TRANS now immediately yields:

(∀stΦ,Ξ)
[
[(∀stT 1)UWWKL(Φ(T ), T ) ∧ (∀stU1, S1, k0)A(U, S,Ξ(U, S, k), k,Φ)]

→ (∀stf1)(∃stn)B(f, n)
]
, (3.13)

by strengthening the antecedent by introducing Ξ. Dropping the ‘st’ in the antecedent of
the implication and bringing out the remaining standard quantifiers:

(∀stΦ,Ξ, f1)(∃stn)
[
[(∀T 1)UWWKL(Φ(T ), T )∧(∀U, S, k)A(U, S,Ξ(U, S, k), k,Φ)]→ B(f, n)

]
.

Let C(Φ,Ξ, f, n) be the formula in big square brackets and apply Corollary 2.3 to ‘RCAΛ
0 `

(∀stΦ,Ξ, f1)(∃stn)C(Φ,Ξ, f, n)’ to obtain a term t such that RCAω0 proves

(∀Φ,Ξ, f1)(∃n ∈ t(Φ,Ξ, f))C(Φ,Ξ, f, n). (3.14)

Now define the term s(Φ,Ξ, f) as maxi<|t(Φ,Ξ,f)| t(Φ,Ξ, f)(i) and note that the formula
(∃n ∈ t(Φ,Ξ, f))C(Φ,Ξ, f, n) implies C(Φ,Ξ, f, s(Φ,Ξ, f)). Finally, bring the quantifier
involving f inside C to obtain for all Φ,Ξ that

[(∀T 1)UWWKL(Φ(T ), T ) ∧ (∀U1, S1, k0)A(U, S,Ξ(U, S, k), k,Φ)]→ (∀f1)B(f, s(Φ,Ξ, f)).

Thus, s(Φ,Ξ, ·) provides (µ2) if Φ satisfies (∀T 1)UWWKL(Φ(T ), T ) and Ξ is the associated
extensionality functional.

Finally, the first conjunct in (3.10) is proved as follows: Π0
1-TRANS→ UWWKL+ yields

(∀stf1)(∃stn)B(f, n)→ (∀stT 1)(∃stα1 ≤1 1)UWWKL(α, T ), (3.15)

where we used the same notations B as in (3.13). Since standard functionals yield standard
output for standard input by the basic axioms of Definition 2.1, (3.15) yields

(∀stµ2)
[
(∀stf1)B(f, µ(f))→ (∀stT 1)(∃stα1 ≤1 1)UWWKL(α, T )

]
. (3.16)

Weakening the antecedent of (3.16) and bringing outside the standard quantifiers, we obtain

(∀stµ2, T 1)(∃stα1 ≤1 1)
[
(∀f1)B(f, µ(f))→ UWWKL(α, T )

]
. (3.17)

Applying Corollary 2.3 to ‘RCAΛ
0 ` (3.17)’, we obtain a term t such that RCAω0 proves

(∀µ2, T 1)(∃α1 ∈ t(µ, T ))
[
(∀f1)B(f, µ(f))→ UWWKL(α, T )

]
. (3.18)

Since µ2 satisfying the antecedent of (3.18) is indeed Feferman’s mu as in (µ2), we can select
the ‘right’ α ∈ t(µ, T ), and we have obtained the first conjunct in (3.10).
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As suggested by its name, WWKL is a weakening of WKL, namely to binary trees with
positive measure. Hence, the above proof should also go through for UWKL+, which is
UWWKL+ without the aforementioned restriction. In particular, the measure does not play
any role except saying that the tree is infinite. We hasten to add that the restriction to trees
of positive measure does play an important role for STP and LMP by Theorem 4.7.

3.4. The intermediate value theorem. In this section, we study the intermediate value
theorem IVT. We will apply the nonstandard extensionality trick from Remark 3.3 to a
nonstandard version of the ‘usual’ Brouwerian counterexample to IVT from [2, I.7].

Now, IVT has a proof in RCA0 when formulated in second-order arithmetic using so-
called RM codes ([40, II.6.2]). However, IVT is not constructively true (See [2, I.7]) as
the aforementioned proof makes essential use of the law of excluded middle, while a finer
classification may be found in [4]. As a consequence of this non-constructive status, there is
an equivalence (See [20, Prop. 3.14]) between the Turing jump functional (∃2) and uniform
IVT, the latter defined as UIVT as follows (See [20, §3] for a number of variations):

(∃Φ(1→1)→1)(∀f ∈ C)[f(Φ(f)) =R 0], (UIVT)

where ‘f ∈ C’ is short for ‘f(0) <R 0 <R f(1) ∧ (3.19)’ where the latter is as follows

(∀k0)(∀x1 ∈ [0, 1])(∃N0)(∀y1 ∈ [0, 1])(|x− y| <R
1
N → |f(x)− f(y)| <R

1
k ), (3.19)

i.e. the internal ‘epsilon-delta’ definition of (pointwise) continuity on [0, 1]. We also write
‘f ∈ C([0, 1])’ if f : R → R satisfies (3.19). We define UIVT(Φ) ≡ (∀f ∈ C)[f(Φ(f)) =R 0].
Now consider the following nonstandard and uniform version of UIVT:

(∃stΦ)
[
(∀stf ∈ C)[f(Φ(f)) =R 0] ∧ (∀stf, g ∈ C)

(
f ≈ g → Φ(f) ≈ Φ(g)

)]
, (UIVT+)

where ‘f ≈ g’ is short for (∀stq0 ∈ [0, 1])(f(q) ≈ g(q)). Note that the second conjunct of
UIVT+ expresses that Φ is ‘standard extensional’, i.e. satisfies extensionality as in (RE)
relative to ‘st’. We have the following theorem.

Theorem 3.7. From a proof in RCAΛ
0 that UIVT+ ↔ Π0

1-TRANS, terms s, t can be extracted
such that RCAω0 proves:

(∀µ2)
[
MU(µ)→ UIVT(s(µ))

]
∧ (∀Φ1→1)

[
UIVT(Φ)→ MU(t(Φ,Ξ))

]
, (3.20)

where Ξ is an extensionality functional for Φ.

Proof. First of all, we prove UIVT+ → Π0
1-TRANS, for which we make use of the ‘usual’

Brouwerian counterexample to IVT (See e.g. [2, Fig. 2, p. 12]). Let f0 : R→ R be the function
which is 3x−1 for x ∈ [0, 1

3 ], 3x−2 for x ∈ [2
3 , 1], and zero for x ∈ [1

3 ,
2
3 ]. Suppose Π0

1-TRANS
is false and let standard g1 be such that (∀stn)(g(n) = 0) and (∃m0)g(m0) 6= 0. Define

standard functions f±(x) := f0(x)±
∑∞

i=0
g(i)
2i

and note that f+(x) ≈ f−(x) for all x ∈ [0, 1].

However, for Φ as in UIVT+, we have Φ(f+) <R
1
3 and Φ(f−) >R

2
3 , which contradicts the

second conjunct of UIVT+. Hence, Π0
1-TRANS follows and we obtain UIVT+ → Π0

1-TRANS.

Secondly, for the reversal Π0
1-TRANS→ UIVT+, fix standard k0, x1 ∈ [0, 1] and f : R→ R

in (3.19) and consider the following Σ1
2-formula:

(∃N0)(∀q0 ∈ [0, 1])(|x− q| <R
1
N → |f(x)− f(q)| ≤R

1
k ). (3.21)
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Applying4 Π0
1-TRANS to the formula (3.21) yields:

(∃stN0)(∀stq0 ∈ [0, 1])(|x− q| � 1
N → |f(x)− f(q)| / 1

k ). (3.22)

Applying Π0
1-TRANS to the universal formula in (3.22), we obtain for standard f that

(∀stx ∈ [0, 1], k0)(∃stN0)(∀q0 ∈ [0, 1])(|x− q| <R
1
N → |f(x)− f(q)| ≤R

1
k ), (3.23)

and applying HACint to the previous formula yields standard Φ(1×0)→0∗ such that

(∀stx ∈ [0, 1], k0)(∃N0 ∈ Φ(x, k))(∀q0 ∈ [0, 1])(|x− q| <R
1
N → |f(x)− f(q)| ≤R

1
k ),

Define Ψ(x, k) as maxi<|Φ(x,k)|Φ(x, k)(i) and note that Ψ provides a kind of modulus of
continuity for (standard) f . With this continuity in place, we can follow (a variation of) the
classical proof of IVT in [40, II.6] to define standard Φ as in UIVT+ as follows.

To this end, recall that Π0
1-TRANS implies the existence of standard ξ as in (3.8), which

allows us to decide for standard f ∈ C if (∃stq0 ∈ [0, 1])(f(q) ≈ 0) holds or not. If the
latter holds, use ξ to find such q0 and define Φ(f) := q, which also yields f(Φ(f)) =R 0
by Π0

1-TRANS. If however (∀stq0 ∈ [0, 1])(f(q) 6≈ 0), define Φ(f)(0) as 0 or 1
2 depending

on whether f(1
2) � 0 or f(1

2) � 0 (ξ as in (3.8) decides which disjunct holds). Similarly,

define Φ(f)(n+ 1) as Φ(f)(n) or Φ(f)(n) + 1
2n+2 depending on f(Φ(f)(n) + 1

2n+2 )� 0 or

f(Φ(f)(n) + 1
2n+2 )� 0 (ξ as in (3.8) again decides which disjunct holds).

Note that by Π0
1-TRANS, we have f(z) � 0 ↔ f(z) >R 0 for any standard z1 ∈ R

and f : R → R. In light of (3.8), we also have access to IΣ1 relative to ‘st’, assuming
all parameters involved are standard. Hence, it is easy to prove that Φ(f) is a real
number such that (∀stn)(Φ(f)(n) <R Φ(f) <R Φ(f)(n) + 1

2n+1 ) and f(Φ(f)(n)) � 0 and

f(Φ(f)(n) + 1
2n+1 ) � 0. In light of these facts and the continuity of f as in (3.23) for

x = Φ(f), we obtain f(Φ(f)) ≈ 0 and also f(Φ(f)) =R 0 by Π0
1-TRANS. Furthermore, Φ

only invokes f on rational numbers and (∀stq0 ∈ [0, 1])(f(q) ≈ g(q)) for standard f, g ∈ C
thus implies (∀q0 ∈ [0, 1])(f(q) =R g(q)) by Π0

1-TRANS. By the previous property and the
extensionality of f, g, we have Φ(f) =R Φ(g), and hence the second conjunct of UIVT+.

Thirdly, one obtains a normal form for UIVT+ ↔ Π0
1-TRANS in the same way as in

the proofs of Theorems 3.2 and 3.6. Applying term extraction as in Theorem 2.2, one then
readily obtains (3.20). For completeness, we mention the two normal forms corresponding
to Π0

1-TRANS→ UIVT+ and UIVT+ → Π0
1-TRANS, namely as follows:

(∀stf ∈ C, µ2)(∃stx ∈ [0, 1])
[
(∀g1)B(g, µ(g))→ (f(x) =R 0)

]
.

(∀stΦ,Ξ, g1)(∃stn0)
[(

(∀z ∈ C)(z(Φ(z)) =R 0) ∧ (∀x, y ∈ C, k0)(∃q0, n0 ∈ Ξ(x, y, k))(
|x(q)− y(q)| < 1

n → |Φ(x)− Φ(y)| < 1
k

))
→ B(g, n)

]
,

where we used the notation B from (3.13). To be absolutely clear, we point out that the
formula ‘(∀stf ∈ C)A(f)’ is short for (∀f)([st(f)∧ f ∈ C]→ A(f)). In particular, ‘f ∈ C’ is

4 To obtain (3.21)→ (3.22), note that ¬(3.22) has a normal form; apply HACint to remove the existential
quantifier and then apply Π0

1-TRANS to the resulting formula to obtain a contradiction with (3.21). In

general, similar to how one ‘bootstraps’ Π0
1-comprehension from ACA0, the system RCAΛ

0 + Π0
1-TRANS proves

ϕ ↔ ϕst for any internal arithmetical formula (only involving standard parameters). Indeed, recall that
Π0

1-TRANS→ (µ2)st (See the proof of Theorem 3.2) and use the latter to remove all existential quantifiers
(except the leading one, if such there is) from ϕst; applying Π0

1-TRANS to the resulting universal formula
yields ϕ. The implication ϕ→ ϕst follows from the previous, ¬ϕst → ¬ϕ in particular.
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the internal formula ‘f(1) >R 0 >R f(0) ∧ (3.19)’ which remains untouched by the addition
of ‘st’ to the quantifier over the variable f . For this reason, the formula ‘f ∈ C’ does not
play any role in obtaining the normal form of UIVT+ ↔ Π0

1-TRANS and the associated term
extraction via Theorem 2.2.

The previous proof is easily adapted to the Brouwerian counterexample to the Weier-
straß maximum theorem, as follows.

Remark 3.8 (Weierstraß maximum theorem). The Brouwerian counterexample to the
Weierstraß maximum theorem is given in [2, I.6] by a function with two relative maxima. For
instance, one can use f± : R→ R which is (1±x0)| sin 7x| for x ∈ [0, 1

7π] and (1∓x0)| sin 7x|
for x ∈ [1

7π, 1], where x0 :=
∑∞

i=0
g(i)
2i

and g as in the previous proof. A functional witnessing

the Weierstraß maximum theorem will map f+ to π
14 and f− to 3π

14 while f+ ≈ f− under the
same assumptions as in the previous proof.

3.5. Rational numbers and the law of excluded middle. In this section, we study
the classical dichotomy that every real number is either rational or not, i.e.

(∀x ∈ R)
[
(∃q ∈ Q)(q =R x) ∨ (∀r ∈ Q)(r 6=R x)

]
. (DQ)

Our study will yield interesting insights into the role of the law of excluded middle in
Nonstandard Analysis. In particular, we will offer a partial explanation why Nonstandard
Analysis can produce computational information, as observed in the previous sections (and
the aforementioned references).

First of all, DQ is a trivial consequence of the law of excluded middle, and the former
is indeed equivalent to LPO in constructive mathematics ([8, p. 5]). We will study the
nonstandard version of DQ, defined as follows:

(∀stx ∈ R)
[
(∃stq ∈ Q)(q =R x) ∨ (∀r ∈ Q)(r 6=R x)

]
, (DQns)

The uniform version of DQ is also obvious:

(∃Φ2)(∀x ∈ R)
[
(Φ(x) ∈ Q ∧ q =R x) ∨ (∀r ∈ Q)(r 6=R x)

]
. (UDQ)

Let UDQ(Φ) be the previous with the leading quantifier dropped.

Theorem 3.9. In RCAΛ
0 , we have Π0

1-TRANS ↔ DQns. From the latter proof, we can
extract terms s and t such that

(∀µ2)
[
MU(µ)→ UDQ(s(µ))

]
∧ (∀Φ2)

[
UDQ(Φ)→ MU(t(Φ))

]
. (3.24)

Proof. The first forward implication is trivial while the first reverse equivalence follows easily:
Suppose Π0

1-TRANS is false and consider f1 such that (∀stn)(f(n) = 0) ∧ (∃m)(f(m) 6= 0).

Define the real x :=
∑∞

i=0
h(n)
2n where h(n) = 1 if (∀i ≤ n)(f(n) = 0), and zero otherwise.

Note that x is a rational number, namely x =R
∑m0

i=0
h(n)
2n , where m0 is the last m such that

f(m) 6= 0. However, we also have x 6=R q for every standard rational, and this contradiction
yields Π0

1-TRANS.

Since Π0
1-TRANS has a normal form (3.3) and DQns has an obvious normal form, (3.24)

follows in the same way as in the second part of the proof of Theorem 3.2.
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Secondly, we discuss an apparent (but not actual) contradiction regarding DQns and
the previous theorem, as follows.

Remark 3.10 (Equality in P). First of all, P proves DQ via the law of excluded middle.
Hence for a standard real x which does not satisfy the second disjunct of DQ, we may
conclude the existence of a rational q0 such that x equals q. Secondly, in light of the first
basic axiom of P (See item (4a) of Definition 2.1), q must be standard as x is standard, and

x equals q. However, this means that RCAΛ
0 proves DQns, which is impossible in light of

Theorem 3.9. Thirdly, this apparent contradiction is easily explained by noting that ‘=R’ as
defined in P (See Definition 2.6) does not fall under item (4a) of Definition 2.1.

Thirdly, while Theorem 3.9 is not particularly deep, this theorem inspires Remark 3.10,
which in turn gives rise to the following observation: In RCAω0 , either a real is rational

or not because of the law of excluded middle DQ. By contrast, in RCAΛ
0 , there are three

possibilities for every standard real:

(1) x is a standard rational;
(2) x is not a rational;
(3) x is a rational, but not standard;

and the third possibility (3) only disappears given Π0
1-TRANS by Theorem 3.9. Similarly,

again over RCAΛ
0 , for a standard function f1, there are three possibilities:

(1) there is standard n0 such that f(n) = 0;
(2) for all m0 we have f(m) 6= 0;
(3) for all standard n0 we have f(n) 6= 0 while there is m0 with f(m) = 0;

and the third possibility again only disappears given Π0
1-TRANS. In particular, in the

extended language of RCAΛ
0 , Π0

1-TRANS (and not DQ) is the principle which excludes the
third option (3) and (iii). In other words, it seems that Π0

1-TRANS plays the role of the law

of excluded middle/third in the extended language of RCAΛ
0 .

Furthermore, it has been suggested that the predicate ‘st(n0)’ can be read as ‘n0 is
computationally relevant’ or ‘n0 is calculable’ in [3, p. 1963], [15, §4], and [34, §3.4]. If we
read the previous items (i)-(iii) through this filter, they reflect three well-known possibilities
suggested by the BHK interpretation (See [42, §3.1]):

(1) we can compute n0 s.t. f(n) = 0 (constructive existence);
(2) for all m0 we have f(m) 6= 0;
(3) ¬[(∀m0)(f(m) 6= 0)];

In conclusion, we have observed that the role of the law of excluded middle in the extended
language of RCAΛ

0 is played by Nelson’s axiom Transfer, which is however absent from

RCAΛ
0 . Due to this absence, there are three possibilities as in items (i)-(iii), similar to the

possibilities in items (I)-(III) in constructive mathematics. In other words, the systems P
and RCAΛ

0 are constructive in that they lack Transfer, which is the law of excluded middle
for the extended language of internal set theory. We believe this to be a partial explanation
of the vast computational content of Nonstandard Analysis established above and in [31–34].
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4. A new class of functionals

We discuss the results from [28], some of which were announced in [38], and related results.
The associated connection between Nonstandard Analysis and computability theory forms
the motivation for this paper, as discussed in Section 1.

4.1. Nonstandard Analysis and Computability Theory: an introduction. The
connection between computability theory and Nonstandard Analysis is investigated [28]. The
two following topics are investigated and shown to be intimately related.

(T.1) A basic property of Cantor space 2N is Heine-Borel compactness: For any open cover
of 2N, there is a finite sub-cover. A natural question is: How hard is it to compute
such a finite sub-cover? This is made precise in [28] by analysing the complexity of
functionals that for g : 2N → N, output a finite sequence 〈f0, . . . , fn〉 in 2N such that
the neighbourhoods defined from fig(fi) for i ≤ n form a cover of Cantor space.

(T.2) A basic property of Cantor space in Nonstandard Analysis is Abraham Robinson’s
nonstandard compactness (See [17, p. 42]), i.e. that every binary sequence is ‘infinitely
close’ to a standard binary sequence. The strength of this nonstandard compactness
property of Cantor space is analysed in [28] and compared to the other axioms of
Nonstandard Analysis and usual mathematics.

The study of (T.1) in [28] involves the special fan functional Θ, discussed in Section 4.2
below and first introduced in [31]. Clearly, Tait’s fan functional ([27]) computes5 a sequence
〈f0, . . . , fn〉 as in (T.1) for continuous g : 2N → N, while the special fan functional does so
for any g : 2N → N. This generalisation from continuous to general inputs is interesting
(and even necessary) in our opinion as mathematics restricted to e.g. only recursive objects,
like the Russian school of recursive mathematics, can be strange and counter-intuitive (See
[2, Chapter IV] for this opinion). Some of the (highly surprising) computational properties
of Θ established in [28] are discussed in Section 4.2. In particular, Θ seems extremely hard
to compute (as in Kleene’s S1-S9 from [23, §5.1]) as no type two functional can compute it.

The study of (T.2) in [28] amounts to developing the Reverse Mathematics of Nonstandard
Analysis. For instance, the nonstandard counterparts of WKL0 and WWKL0 are STP and
LMP (See Section 4.2 for definitions), each expressing a nonstandard kind of compactness.
On the other hand, the nonstandard counterpart of ACA0 is Π0

1-TRANS introduced above.
While we have ACA0 → WKL0 → WWKL0 in RM, the nonstandard counterparts behave
quite differently, namely we have Π0

1-TRANS 6→ STP and Π0
1-TRANS 6→ LMP, and much

stronger non-implications involving the nonstandard counterpart of Π1
1-CA0, the strongest

‘Big Five’ system.

We stress that (T.1) and (T.2) are highly intertwined and that the study of these topics in
[28] is ‘holistic’ in nature: results in computability theory give rise to results in Nonstandard
Analysis and vice versa, as discussed in the next section. By way of a basic example, consider
Θ as in (T.1) and recall that the output of Θ is readily computed in terms of Tait’s fan
functional if g2 is continuous on Cantor space. Experience bears out that the uninitiated
express extreme skepticism about the fact that Θ is also well-defined for discontinuous inputs
g2. However, Θ almost trivially emerges form the nonstandard compactness of Cantor space,

5Tait’s fan functional Φ computes a modulus of uniform continuity N0 = Φ(g) for any continuous
functional g : 2N → N. The modulus N0 yields a supremum for g by computing the maximum of g(σ ∗ 00 . . . )
for all binary sequences σ of length N .
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i.e. Nonstandard Analysis tells us that the special fan functional Θ exists and is well-defined.
Furthermore, the fact that the Turing jump functional from (∃2) cannot compute Θ as
mentioned in (T.1) readily implies the non-implication Π0

1-TRANS 6→ STP from (T.2). More
examples are discussed in the next section, and of course [28].

Finally, we have sketched a connection between Nonstandard Analysis and computability
theory. However, the better part of the latter does not obviously have a counterpart in
the former and vice versa. We list two examples: First of all, the fact that no type two
functional computes Θ is proved in computability theory (See [28, §3]) using Gandy selection
(See [23, Theorem 5.4.5]), but what is the nonstandard counterpart of the latter theorem?
Secondly, the Loeb measure is one of the crown jewels of Nonstandard Analysis ([17]), but
what is the computability theoretic counterpart of this measure? Note that first steps in this
direction have been taken in [36]. In the paper at hand, we have formulated a nonstandard
counterpart of Grilliot’s trick inspired by the above connection between Nonstandard
Analysis and computability theory.

4.2. The special fan functional and related topics. We introduce the special fan
functional and discuss how it derives from the Standard Part axiom of Nonstandard Analysis
and why it does not belong to any existing category in RM.

Our motivation for this study is the following discrepancy: On one hand, there is literally
a ‘zoo’ of theorems in RM ([12]) which do fit into the ‘Big Five classification’ of RM. On the
other hand, as shown above and in [32, 33], uniform theorems are mostly equivalent to (∃2),
with some exceptions based on the contraposition of WKL, i.e. the fan theorem. Thus, the
‘higher-order RM zoo’ consisting of uniform theorems is still rather sparse compared to the
original RM zoo. In this light, it is a natural question whether the higher-order RM zoo can
be made as populous as the original RM zoo.

As a first step towards an answer to the aforementioned question, we discuss the following
functional. Note that 1∗ is the type of finite sequences of type 1.

Definition 4.1. [Special fan functional] We define SCF(Θ) as follows for Θ(2→(0×1∗)):

(∀g2, T 1 ≤1 1)
[
(∀α ∈ Θ(g)(2))(αg(α) 6∈ T )→ (∀β ≤1 1)(∃i ≤ Θ(g)(1))(βi 6∈ T )

]
.

Any functional Θ satisfying SCF(Θ) is referred to as a special fan functional.

As noted in [28] and above, from a computability theoretic perspective, the main
property of the special fan functional Θ is the selection of Θ(g)(2) as a finite sequence of
binary sequences 〈f0, . . . , fn〉 such that the neighbourhoods defined from fig(fi) for i ≤ n
form a cover of Cantor space; almost as a by-product, Θ(g)(1) can then be chosen to be the
maximal value of g(fi) + 1 for i ≤ n. We stress that g2 in SCF(Θ) may be discontinuous
and that Kohlenbach has argued for the study of discontinuous functionals in RM ([20]).

The name of Θ from the previous definition is due to the fact that a special fan functional
may be computed from the intuitionistic fan functional Ω3, as in Theorem 4.2.

(∀Y 2)(∀f, g ≤1 1)(fΩ(Y ) = gΩ(Y )→ Y (f) = Y (g)). (MUC(Ω))

As to the logical strength of (∃Ω)MUC(Ω), the latter gives rise to a conservative extension
of the system WKL0 by [20, Prop. 3.15].

Theorem 4.2. There is a term t such that E-PAω proves (∀Ω3)(MUC(Ω)→ SCF(t(Ω))).
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Proof. The theorem was first proved indirectly in [31, §3] by applying Theorem 2.2 to a
suitable nonstandard implication. For completeness, we include the following direct proof
which can also be found in [28]. Note that Θ(g) as in SCF(Θ) has to provide a natural
number and a finite sequence of binary sequences. The number Θ(g)(1) is defined as
max|σ|=Ω(g)∧σ≤0∗1 g(σ ∗ 00 . . . ) and the finite sequence of binary sequences Θ(g)(2) consists

of all τ ∗ 00 . . . where |τ | = Θ(g)(1) ∧ τ ≤0∗ 1. We have for all g2 and T 1 ≤1 1:

(∀β ≤1 1)(β ∈ Θ(g)(2)→ βg(β) 6∈ T )→ (∀γ ≤1 1)(∃i ≤ Θ(g)(1))(γi 6∈ T ). (4.1)

Indeed, suppose the antecendent of (4.1) holds. Now take γ0 ≤1 1, and note that β0 =
γ0Θ(g)(1) ∗ 00 · · · ∈ Θ(g)(2), implying β0g(β0) 6∈ T . But g(α) ≤ Θ(g)(1) for all α ≤1 1, by
the definition of Ω, implying that γ0g(β0) = β0g(β0) 6∈ T by the definition of β0, and the
consequent of (4.1) follows.

In light of the previous, Θ exists at the level of WKL0 and it therefore stands to
reason that it would be easy to compute. We have the following surprising theorem where
‘computable’ should be once again interpreted in the sense of Kleene’s S1-S9 (See [23, 5.1.1]).
The metatheory is -as always- ZFC set theory.

Theorem 4.3. Let ϕ2 be any functional of type two. Any functional Θ3 as in SCF(Θ) is
not computable in ϕ. Any functional Θ3 as in SCF(Θ) is computable in (∃3) as follows

(∃E3)(∀ϕ2)
[
(∃f1)(ϕ(f) = 0)↔ E3(ϕ) = 0

]
. (∃3)

Proof. A proof may be found in [28].

By the previous, Θ is quite different from the usual6 objects studied in (higher-order)
RM. An obvious question is: Where does the special fan functional and its behaviour come
from? The answer is as follows: The nonstandard counterpart of WKL0 is defined as:

(∀α1 ≤1 1)(∃stβ1 ≤1 1)(α ≈1 β), (STP)

which has the following normal form, already reminiscent of Θ.

Theorem 4.4. In P, STP is equivalent to the following normal form:

(∀stg2)(∃stw1∗)
[
(∀T 1 ≤1 1)(∃(α1 ≤1 1, k0) ∈ w)

(
(αg(α) 6∈ T ) (4.2)

→ (∀β ≤1 1)(∃i ≤ k)(βi 6∈ T )
)]
.

The system P + (∃stΘ)SCF(Θ) proves STP.

Proof. The following proof is implicit in the results in [31, §3] and is added for completeness.
First of all, STP is easily seen to be equivalent to

(∀T 1 ≤1 1)
[
(∀stn)(∃β0)(|β| = n ∧ β ∈ T )→ (∃stα1 ≤1 1)(∀stn0)(αn ∈ T )

]
, (4.3)

and this equivalence may also be found in [31, Theorem 3.2]. For (4.2)→(4.3), note that
(4.2) implies for all standard g2

(∀T 1 ≤1 1)(∃st(α1 ≤1 1, k0)
[
(αg(α) 6∈ T )→ (∀β ≤1 1)(∃i ≤ k)(βi 6∈ T )

]
, (4.4)

which in turn yields, by bringing all standard quantifiers inside again, that:

(∀T ≤1 1)
[
(∃stg2)(∀stα ≤1 1)(αg(α) 6∈ T )→ (∃stk)(∀β ≤1 1)(βk 6∈ T )

]
, (4.5)

6Note that the connection between Θ and Kohlenbach’s generalisations of WKL from [21, §5-6] is discussed
in [28, §4]. This connection turns out to be quite non-trivial and interesting.
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To obtain (4.3) from (4.5), apply HACint to (∀stα1 ≤1 1)(∃stn)(αn 6∈ T ) to obtain standard
Ψ1→0∗ such that (∀stα1 ≤1 1)(∃n ∈ Ψ(α))(αn 6∈ T ), and defining g(α) := maxi<|Ψ|Ψ(α)(i)
we obtain g as in the antecedent of (4.5). The previous implies

(∀T 1 ≤1 1)
[
(∀stα1 ≤1 1)(∃stn)(αn 6∈ T )→ (∃stk)(∀β ≤1 1)(βi 6∈ T )

]
, (4.6)

which is the contraposition of (4.3), using classical logic. For the implication (4.3)→ (4.2),
consider the contraposition of (4.3), i.e. (4.6), and note that the latter implies (4.5). Now
push all standard quantifiers outside as follows:

(∀stg2)(∀T 1 ≤1 1)(∃st(α1 ≤1 1, k0)
[
(αg(α) 6∈ T )→ (∀β ≤1 1)(∃i ≤ k)(βi 6∈ T )

]
,

and applying idealisation I yields (4.2). The final part now follows immediately in light of
the basic axioms of P in Definition 2.1.

By the previous theorem Θ emerges from Nonstandard Analysis, and the behaviour of
Θ as in Theorem 4.3 can be explained similarly: It is part of the folklore of Nonstandard
Analysis that Transfer does not imply Standard Part. The same apparently holds for
fragments: P + Π0

1-TRANS does not prove STP by the results in [28, §6]. As a result of
applying Theorem 2.2, there is no term of Gödel’s T which computes Θ in terms of (µ2). A
stronger result as in Theorem 4.3 apparently can be obtained.

Next, we discuss a nonstandard version of WWKL, introduced in [41], as follows:

(∀T ≤1 1)
[
ν(T )� 0→ (∃stβ ≤1 1)(∀stn)(βn ∈ T )

]
, (LMP)

and one obtains a normal form of LMP similar to (4.2). As for the latter, this normal form
gives rise to a weak fan functional Λ, first introduced in [28, §3]. We have the following
theorem where ATR0 is the fourth ‘Big Five’ system of RM (See [40, V]).

Theorem 4.5. The system P + Π0
1-TRANS + STP proves the consistency of ATR0 while

P + Π0
1-TRANS + LMP does not.

Proof. See [28, §6].

The previous result is referred to as a ‘phase transition’ in [28] as there is (currently)
nothing in between WKL0 and WWKL0 in the RM zoo.

Corollary 4.6. The system P + Π0
1-TRANS does not prove STP.

Proof. Suppose P + Π0
1-TRANS proves STP and note that P + Π0

1-TRANS then proves
the consistency of ATR0 by the theorem. By Theorem 2.2, E-PAω∗ + (µ2) also proves the
consistency of ATR0, which contradicts Gödel’s incompleteness theorems.

At the end of Section 3.3, we noted that Theorem 3.6 should go through for WKL
instead of WWKL. In particular, the restriction to trees of positive measure (which is part
of WWKL) can be lifted while still obtaining the same equivalence as in (3.10). Hence, these
results are robust, i.e. equivalent to small perturbations of themselves (See [25, p. 432]). We
now provide an example where the notion of ‘tree with positive measure’ yields non-robust
results. To this end, consider the following strengthening of LMP:

(∀T ≤1 1)
[
µ(T ) >R 0→ (∃stβ ≤1 1)(∀stm)(βm ∈ T )

]
, (LMP+)

and the following weakening of STP:

(∀T ≤1 1)
[
(∀n0)(∃β0∗)(β ∈ T ∧ |β| = n)→ (∃stβ ≤1 1)(∀stm)(βm ∈ T )

]
, (STP−)
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Theorem 4.7. In P0 + WWKL, we have STP↔ LMP+ ↔ STP−.

Proof. The implication STP → STP− is immediate; for the reverse implication, apply
overspill to the antecedent of (4.3) to obtain a sequence β0∗

0 of nonstandard length in
T . Extend the latter to an infinite tree by including β0 ∗ 00 . . . , which is nonstandard.
Applying STP− to this extended tree yields the consequence of (4.3), and hence STP. For
STP→ LMP+, apply STP to the path claimed to exist by WWKL and note that we obtain
LMP+. For LMP+ → STP, fix f1 ≤1 1 and nonstandard N . Define the tree T ≤1 1 which is
f until height N , followed by the full binary tree. Then µ(T ) >R 0 and let standard g1 ≤1 1
be such that (∀stn)(gn ∈ T ). By definition, we have f ≈1 g, and we are done.

In light of the theorem, STP and Θ seem fairly robust, while LMP and Λ are not.

Finally, STP and LMP are not unique: Similar nonstandard (and functional) versions
exist for most of the theorems in the RM zoo. Indeed, since every theorem T in the RM zoo
follows from arithmetical comprehension, we can prove T st in RCAΛ

0 + Π0
1-TRANS + STP,

and use STP to drop the ‘st’ in the leading quantifier as in (4.3) for WKLst. The author and
Dag Normann are currently investigating the exact power of Θ and Λ and the strength of
the associated nonstandard axioms.
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