
Logical Methods in Computer Science
Vol. 14(1:1)2018, pp. 1–31
https://lmcs.episciences.org/

Submitted Nov. 14, 2016
Published Jan. 09, 2018

COMPATIBILITY PROPERTIES OF SYNCHRONOUSLY AND

ASYNCHRONOUSLY COMMUNICATING COMPONENTS

ROLF HENNICKER AND MICHEL BIDOIT

Ludwig-Maximilians-Universität München, Germany
e-mail address: hennicker@ifi.lmu.de

LSV, CNRS and ENS de Cachan, France
e-mail address: bidoit@lsv.ens-cachan.fr

Abstract. We study interacting components and their compatibility with respect to
synchronous and asynchronous composition. The behavior of components is formalized by
I/O-transition systems. Synchronous composition is based on simultaneous execution of
shared output and input actions of two components while asynchronous composition uses
unbounded FIFO-buffers for message transfer. In both contexts we study compatibility
notions based on the idea that any output issued by one component should be accepted as an
input by the other. We distinguish between strong and weak versions of compatibility, the
latter allowing the execution of internal actions before a message is accepted. We consider
open systems and study conditions under which (strong/weak) synchronous compatibility
is sufficient and necessary to get (strong/weak) asynchronous compatibility. We show that
these conditions characterize half-duplex systems. Then we focus on the verification of weak
asynchronous compatibility for possibly non half-duplex systems and provide a decidable
criterion that ensures weak asynchronous compatibility. We investigate conditions under
which this criterion is complete, i.e. if it is not satisfied then the asynchronous system is not
weakly asynchronously compatible. Finally, we discuss deadlock-freeness and investigate
relationships between deadlock-freeness in the synchronous and in the asynchronous case.

1. Introduction

Distributed systems consist of sets of components which are deployed on different nodes and
communicate through certain media. In this work we consider reactive components with
a well defined behavior which communicate by message exchange. Each single component
has a life cycle during which it sends and receives messages and it can also perform internal
actions in between. For the correct functioning of the overall system it is essential that
no communication errors occur during component interactions. Two prominent classes of
communication errors can be distinguished: The first one concerns situations, in which
an output of one component is not accepted as an input by the other. The second one
occurs if a component waits for an input which is never delivered. In this paper we focus
on the former kind of communication error and we consider systems consisting of two

2012 ACM CCS: [Theory of computation]: Concurrency.
Key words and phrases: distributed systems, synchronous and asynchronous communication, verification

of interaction compatibility.

LOGICAL METHODSl IN COMPUTER SCIENCE DOI:10.23638/LMCS-14(1:1)2018
c© Rolf Hennicker and Michel Bidoit
CC© Creative Commons

https://lmcs.episciences.org/
http://creativecommons.org/about/licenses

2 ROLF HENNICKER AND MICHEL BIDOIT

components. We assume that outputs are autonomous actions and we call two components
compatible if any output issued by one component is accepted by its communication partner.
In our study we deal with bidirectional, peer to peer communication and with synchronous
and asynchronous message exchange. The former is based on a rendezvous mechanism
such that two components must execute shared output and input actions together while
the latter uses potentially unbounded FIFO-buffers which hold the messages sent by one
component and received by the other. We consider FIFO-buffers since these are used in
well-known communication models, like CFSMs (Communicating Finite State Machines [4]),
but also many concrete technologies rely on FIFO-communication, like the TCP protocol,
the Java Messaging Service (being part of the Java Enterprise Edition as a message oriented
middleware) and the Microsoft Message Queuing Service for service-oriented architectures.
While compatibility of synchronously communicating components is decidable, see, e.g., [1], it
is undecidable if unbounded FIFO-buffers are used as communication channels [4]. Therefore
we are interested to investigate effective proof techniques for the verification of compatibility
in the asynchronous case.

For this purpose we study, in the first part of this paper, relationships between syn-
chronous and asynchronous compatibility. In each case we consider two versions, a strong
and a weak compatibility notion. For the formalization of component behaviors we use I/O-
transition systems (IOTSes) and call two IOTses A and B strongly synchronously compatible
if in any reachable state of the synchronous product of A and B, if one component, say A,
has a transition enabled with output action a then B must have a transition enabled with
input action a. In many practical examples it turns out that before interacting with the
sending component the receiving component should still be able to perform some internal
actions in between. This leads to our notion of weak synchronous compatibilty. In the
asynchronous context, components communicate via unbounded message queues. The idea
of asynchronous compatibility is to require that whenever a message queue is not empty,
then the receiver component must be able to take the next element of the queue; a property
called specified reception in [4]. We distinguish again between strong and weak versions
of asynchronous compatibility. In the asynchronous context the weak compatibility notion
is particularly powerful since it allows a component, before it inputs a message waiting in
the queue, still to put itself messages in its output queue (since we consider such enqueue
actions as internal).

An obvious question is to what extent synchronous and asynchronous compatibility
notions can be related to each other and, if this is not possible, which proof techniques
can be used to verify asynchronous compatibility. We contribute to these issues with the
following results:

(1) We establish a relationship between strong/weak synchronous and asynchronous compat-
ibility of two components (Sects. 4.1 and 4.2). As a main result (Cor. 4.10) we get that
strong (weak) synchronous compatibility is equivalent to strong (weak) asynchronous
compatibility if the system enjoys the half-duplex property [10]. This means that in the
asynchronous system at any time at most one message queue is not empty.

(2) In the second part of this work (Sect. 5), we consider general, possibly non half-duplex
systems and study the verification of weak asynchronous compatibility in such cases. In
Sect. 5.1 we investigate a decidable and powerful criterion, called WAC-criterion, for
weak asynchronous compatibility (Thm. 5.3). The criterion cannot be necessary, since
for unbounded FIFO-buffers the problem is undecidable, i.e., our proof method cannot
be complete. In Sect. 5.2 we discuss how far we are away from completeness. To this end

COMPATIBILITY PROPERTIES OF COMMUNICATING COMPONENTS 3

Strongly/weakly

synch. compatible?

WAC-criterion

satisfied?

Completeness criterion

satisfied?

System half-duplex?

Strongly/weakly

asynch. compatible

Not strongly/weakly

asynch. compatible

Weakly

asynch. compatible

Not weakly

asynch. compatible
?

no

no

no

no

yes

yes yes

yes

Figure 1: Verification method for compatibility

we develop a decidable completeness criterion (Thm. 5.8). If this criterion is satisfied
then we can even disprove weak asynchronous compatibility.

Our results lead to the verification methodology for compatibility checking summarized in
Fig. 1. Assume given two asynchronously communicating components A and B, each one
having finitely many local states. First, we check whether the system is half-duplex, which is
decidable [10]. If the answer is positive, then we check whether A and B are strongly (weakly)
synchronously compatible, which is decidable as well [3]. Then the equivalence in Cor. 4.10
shows that if the answer is positive, then A and B are strongly (weakly) asynchronously
compatible, otherwise they are not. If the system is not half-duplex we proceed as follows:
We check whether the WAC-criterion (Thm. 5.3) is satisfied, which is decidable. If the
answer is positive, then A and B are weakly asynchronously compatible. Otherwise we
check the completeness criterion (Thm. 5.8), which is decidable as well. If the answer is
positive, we know that A and B are not weakly asynchronously compatible. Otherwise we
don’t know.

In Sect. 6, we discuss deadlock-freeness of synchronous and asynchronous systems and
show that deadlock-freeness is neither sufficient nor necessary for compatibility. We show
how to perform a deadlock analysis for asynchronous systems following again the idea to
prove properties of the synchronous system in order to get properties of the asynchronous
one. Sect. 7 discusses related work and Sect. 8 summarizes our results and future work.

This paper is a significantly revised and extended version of the conference paper [13].
In Sect. 5 we have simplified the criterion for weak asynchronous compatibility. We have
also added Sect. 5.2, which discusses completeness of the criterion. Moreover, the analysis of
weak asynchronous compatibility is complemented in the new Sect. 6 by a deadlock analysis.

2. I/O-Transition Systems and Their Compositions

We start with the definitions of I/O-transition systems and their synchronous and asynchro-
nous compositions which are the basis of the subsequent study.

Definition 2.1 (IOTS). An I/O-transition system is a quadruple A = (statesA, startA,
actA,−→A) consisting of a set of states statesA, an initial state startA ∈ statesA, a set

4 ROLF HENNICKER AND MICHEL BIDOIT

actA = inA∪outA∪intA of actions being the disjoint union of sets inA, outA and intA of input,
output and internal actions resp., and a transition relation −→A ⊆ statesA × actA × statesA.

We write s
a−→As

′ instead of (s, a, s′) ∈ −→A . For X ⊆ actA we write s
X−−→∗As

′ if there

exists a (possibly empty) sequence of transitions s
a1−→As1 . . . sn−1

an−→As
′ involving only

actions of X, i.e. a1, . . . , an ∈ X. A state s ∈ statesA is reachable if startA
actA−−−→∗As. The set

of reachable states of A is denoted by R(A).
Two IOTSes A and B are (syntactically) composable if their actions only overlap on

complementary types, i.e. actA ∩ actB = (inA ∩ outB) ∪ (inB ∩ outA). The set of shared
actions actA∩actB is denoted by shared(A,B). The synchronous composition of two IOTSes
A and B is defined as the product of transition systems with synchronization on shared
actions which become internal actions in the composition. Shared actions can only be
executed together; they are blocked if the other component is not ready for communication.
In contrast, internal actions and non-shared input and output actions can always be executed
by a single component in the composition. These (non-shared) actions are called free actions
in the following.

Definition 2.2 (Synchronous composition). Let A and B be two composable IOTSes. The
synchronous composition of A and B is the IOTS A⊗B = (statesA×statesB, (startA, startB),
actA⊗B,−→A⊗B) where actA⊗B is the disjoint union of the input actions inA⊗B = (inA ∪
inB) r shared(A,B), the output actions outA⊗B = (outA ∪ outB) r shared(A,B), and the
internal actions intA⊗B = intA ∪ intB ∪ shared(A,B). The transition relation of A⊗B is
the smallest relation such that

• for all a ∈ actA r shared(A,B), if s
a−→As

′, then (s, t)
a−→A⊗B (s′, t) for all t ∈ statesB,

• for all a ∈ actB r shared(A,B), if t
a−→B t

′, then (s, t)
a−→A⊗B (s, t′) for all s ∈ statesA, and

• for all a ∈ shared(A,B), if s
a−→As

′ and t
a−→B t

′, then (s, t)
a−→A⊗B (s′, t′).

The synchronous composition of two IOTSes A and B yields a closed system if it has
no input and output actions, i.e. (inA ∪ inB) r shared(A,B) = ∅ and (outA ∪ outB) r
shared(A,B) = ∅, otherwise the system is open.

In distributed applications, implemented, e.g., with a message-passing middleware,
usually an asynchronous communication pattern is used. In this paper, we consider asyn-
chronous communication via unbounded message queues. In Fig. 2 two asynchronously
communicating IOTSes A and B are depicted. A sends a message a to B by putting it, with
action aB, into a queue which stores the outputs of A. Then B can receive a by removing it,
with action a, from the queue. In contrast to synchronous communication, the sending of a
message cannot be blocked if the receiver is not ready to accept it. Similarly, B can send
a message b to A by using a second queue which stores the outputs of B. The system in
Fig 2 is open: A has an open output x to the environment and an open input y for messages
coming from the environment. Similarly B has an open input u and an open output v.
Additionally, A and B may have some internal actions.

To formalize asynchronous communication, we equip each communicating IOTS with an
“output queue”, which leads to a new IOTS indicated in Fig. 2 by Ω(A) and Ω(B) respectively.
The motivation for using output queues should become clear when we define asynchronous
compatibility in the next section. Formally, we represent an output queue as an (infinite)
IOTS and then, in the case of A, we compose it with a renamed version of A where all
outputs a of A (to be stored in the queue) are renamed to enqueue actions of the form aB.

COMPATIBILITY PROPERTIES OF COMMUNICATING COMPONENTS 5

B

b

a

Ω(A)

Ω(B)

= {b,v}Bout

inB
= {a,u}

= {...}Bint

a...

b ...y

x u

v

a

b

= {...}Aint

= {x,a}Aout

= {y,b}inA

A

Figure 2: Asynchronous communication

Definition 2.3 (IOTS with output queue).

(1) Let M be a set of names and MB = {aB | a ∈ M}. The queue IOTS for M is
QM = (M∗, ε, actQM

,−→QM
) where the set of states is the set M∗ of all words over M ,

the initial state ε ∈M∗ is the empty word, and the set of actions actQM
is the disjoint

union of input actions inQM
= MB, output actions outQM

= M and with no internal
action. The transition relation −→QM

is the smallest relation such that

• for all aB ∈MB and states q ∈M∗ : q
aB−→QM

qa (enqueue on the right),

• for all a ∈M and states q ∈M∗ : aq
a−→QM

q (dequeue on the left).

(2) Let A be an IOTS such that M ⊆ outA and MB ∩ actA = ∅. Let AB
M be the renamed

version of A where all a ∈ M are renamed to aB. The IOTS A equipped with output
queue for M is given by the synchronous composition ΩM (A) = AB

M ⊗QM . (Note that
AB

M and QM are composable.)

The states of ΩM (A) are pairs (s, q) where s is a state of A and q is a word over M .
The initial state is (startA, ε). For the actions we have inΩM (A) = inA, outΩM (A) = outA,
and intΩM (A) = intA ∪MB. Transitions in ΩM (A) are:

• if a ∈ inA and s
a−→As

′ then (s, q)
a−→ΩM (A)(s′, q),

• if a ∈ outA rM and s
a−→As

′ then (s, q)
a−→ΩM (A)(s′, q),

• if a ∈M ⊆ outA then (s, aq)
a−→ΩM (A)(s, q),

• if a ∈ intA and s
a−→As

′ then (s, q)
a−→ΩM (A)(s′, q),

• if aB ∈MB and s
a−→As

′ (i.e. s
aB−→AB

M
s′) then (s, q)

aB−→ΩM (A)(s′, qa).

To define the asynchronous composition of two IOTSes A and B, we assume that A and
B are asynchronously composable which means that A and B are composable (as before)
and shared(A,B)B ∩ (actA ∪ actB) = ∅, i.e. no name conflict can arise when we rename a
shared action a to aB. Concerning A we consider the output actions of A which are shared
with input actions of B and denote them by outAB = outA ∩ inB. These are the messages of
A directed to B. Then, according to Def. 2.3, the IOTS A equipped with output queue for
outAB is given by ΩoutAB (A) = AB

outAB
⊗QoutAB . Note that AB

outAB
is the renamed version

of A where all actions a ∈ outAB are renamed to aB. Similarly, we consider the output
actions of B which are shared with input actions of A, denote them by outBA = outB ∩ inA

6 ROLF HENNICKER AND MICHEL BIDOIT

and construct the IOTS ΩoutBA(B) = BB
outBA

⊗QoutBA which represents the component B
equipped with output queue for outBA. The IOTSes ΩoutAB (A) and ΩoutBA(B) are then
synchronously composed which gives the asynchronous composition of A and B.

Definition 2.4 (Asynchronous composition). Let A, B be two asynchronously composable
IOTSes. The asynchronous composition of A and B is defined by A⊗as B = ΩoutAB (A)⊗
ΩoutBA(B).1

In the sequel we will briefly write Ω(A) for ΩoutAB (A) and Ω(B) for ΩoutBA(B). The
states of Ω(A)⊗ Ω(B) are pairs ((sA, qA), (sB, qB)) where sA is a state of A, the queue qA
stores elements of outAB , sB is a state of B, and the queue qB stores elements of outBA.
The initial state is ((startA, ε), (startB, ε)). For the actions we have inΩ(A)⊗Ω(B) = inA⊗B,
outΩ(A)⊗Ω(B) = outA⊗B, and intΩ(A)⊗Ω(B) = intA⊗B ∪ shared(A,B)B. For the transitions
in Ω(A)⊗ Ω(B) we have two main cases:

(1) Transitions which can freely occur in A or inB without involving any output queue. These
transitions change just the local state of A or of B. An example would be a transition

sA
a−→As

′
A with action a ∈ outA r inB which induces a transition ((sA, qA), (sB, qB))

a−→Ω(A)⊗Ω(B) ((s′A, qA), (sB, qB)).

(2) Transitions which involve the output queue of A. There are two sub-cases concerning
dequeue and enqueue actions which are internal actions in Ω(A)⊗ Ω(B):

(a) a ∈ outAB (hence a ∈ outQoutAB
) and sB

a−→B s
′
B

then ((sA, aqA), (sB, qB))
a−→Ω(A)⊗Ω(B)((sA, qA), (s′B, qB)).

(b) aB ∈ outBAB (hence aB ∈ inQoutAB
) and sA

a−→As
′
A

then ((sA, qA), (sB, qB))
aB−→Ω(A)⊗Ω(B)((s′A, qAa), (sB, qB)).

Transitions which involve the output queue of B are analogous.

A detailed description of the form of the transitions of Ω(A)⊗Ω(B) is given in Appendix A.

3. Compatibility Notions

In this section we review our compatibility notions introduced in [3] for the synchronous and
in [2] for the asynchronous case. For synchronous compatibility the idea is that whenever
two synchronously cooperating components reach a state, in which one of the components
wants to send an output a, i.e., a is enabled in the local state of the component, and if this
action a belongs to the input actions of the other component, then the other component
should be ready to receive a. This means that the other component should be in a local
state such that an outgoing transition labeled with a exists. An implicit assumption behind
this definition is that outputs are autonomously selected by the sending component and
therefore its communication partner should accept (as an input) any possible output.

Definition 3.1 (Strong synchronous compatibility). Two IOTSes A and B are strongly
synchronously compatible, denoted by A←→ B, if they are composable and if for all reachable
states (sA, sB) ∈ R(A⊗B),

(1) ∀a ∈ outA ∩ inB : sA
a−→As

′
A =⇒ ∃ sB

a−→B s
′
B,

(2) ∀a ∈ outB ∩ inA : sB
a−→B s

′
B =⇒ ∃ sA

a−→As
′
A.

1Note that ΩoutAB (A) and ΩoutBA(B) are composable.

COMPATIBILITY PROPERTIES OF COMMUNICATING COMPONENTS 7

In [3] we have introduced a weak version of compatibility such that a component can
delay the required input and perform some internal actions before. We have shown in [3]
that this fits well to weak refinement of component specifications in the sense that weak
refinement (in particular, weak bisimulation) preserves weak compatibility while it does not
preserve strong compatibility. Refinement is, however, not a topic of this work.

Definition 3.2 (Weak synchronous compatibility). Two IOTSes A and B are weakly
synchronously compatible, denoted by A B, if they are composable and if for all reachable
states (sA, sB) ∈ R(A⊗B),

(1) ∀a ∈ outA ∩ inB : sA
a−→As

′
A =⇒ ∃ sB

intB−−−→∗B sB
a−→B s

′
B,

(2) ∀a ∈ outB ∩ inA : sB
a−→B s

′
B =⇒ ∃ sA

intA−−−→∗A sA
a−→As

′
A,

Now we turn to compatibility of asynchronously communicating components A and B.
In this case outputs of a component are stored in a queue from which they can be consumed
by the receiver component. Therefore, in the asynchronous context, compatibility means
that whenever a queue is not empty, the receiver component must be ready to take (i.e.
input) the next removable element from the queue. Since we have enhanced components by
output queues (rather than input queues) this idea can be easily formalized by reduction to
synchronous compatibility of the components Ω(A) and Ω(B). Indeed, Ω(A) has an output a
enabled iff a is the first element of the output queue of A and the same holds symmetrically
for Ω(B).

Definition 3.3 (Strong and weak asynchronous compatibility). Let A and B be two
asynchronously composable I/O-transition systems. A and B are strongly asynchronously

compatible, denoted by A
a←→ B, if Ω(A) ←→ Ω(B). A and B are weakly asynchronously

compatible, denoted by A a B, if Ω(A) Ω(B).

Example 3.4. Fig. 3 shows the behavior of a Maker and a User process. Here and in the
subsequent drawings we use the following notations: Initial states are denoted by 0, input
actions a are indicated by a?, output actions a by a!, and internal actions a by τa. The
maker expects some material from the environment (input action material), constructs
some item (internal action make), and then it signals either that the item is ready (output
action ready) or that the production did fail (output action fail). Both actions are
shared with input actions of the user. When the user has received the ready signal it
uses the item (internal action use). Maker and User are weakly synchronously compatible
but not strongly synchronously compatible. The critical state in the synchronous product
Maker ⊗ User is (2, 1) which can be reached with the transitions

(0, 0)
material−−−−−→(1, 0)

make−−−→(2, 0)
ready−−−−→(0, 1)

material−−−−−→(1, 1)
make−−−→(2, 1).

In this state the maker wants to send ready or fail but the user must first perform
its internal use action before it can receive the corresponding input. The asynchronous
composition Maker ⊗as User has infinitely many states since the maker can be faster then
the user. We will see, as an application of the forthcoming results, that Maker and User are
also weakly asynchronously compatible.

4. Relating Synchronous and Asynchronous Compatibility

As pointed out in Sect. 1, it is generally undecidable whether two IOTSes are asynchronously
compatible. In this section we study relationships between synchronous and asynchronous

8 ROLF HENNICKER AND MICHEL BIDOIT

User:

use

0 1

ready?
fail?

τmake

0 2

ready!

1

fail!

material?

Maker:
τ

Figure 3: Maker and User

A: 0

a? 1

2

b!

ack_a!

ack_b?

0

a! 1

2

b?

ack_a?

ack_b!

B:

Figure 4: A ←→ B but not A
a←→ B

compatibility and conditions under which both are equivalent. Under these conditions we
can reduce asynchronous compatibility checking to synchronous compatibility checking which
is decidable for finite state components.

4.1. From Synchronous to Asynchronous Compatibility. We are interested in condi-
tions under which it is sufficient to check strong (weak) synchronous compatibility to ensure
strong (weak) asynchronous compatibility. In general this implication does not hold. As
an example consider the two IOTSes A and B in Fig. 4. Obviously, A and B are strongly
synchronously compatible. They are, however, neither strongly nor weakly asynchronously
compatible since A may first put a in its output queue, then B can output b in its queue and
then both are blocked (A can only accept ack a while B can only accept ack b). In Fig. 4
each IOTS has a state (the initial state) where a choice between an output and an input
action is possible. We will see (Cor. 4.6) that if such situations are avoided synchronous
compatibility implies asynchronous compatibility, and we will even get more general criteria
(Thm. 4.3) for which the following property P is important.
Property P: Let A and B be two asynchronously composable IOTSes. The asynchronous
system A⊗asB satisfies property P if for each reachable state ((sA, qA), (sB, qB)) ∈ R(Ω(A)⊗
Ω(B)) one of the following conditions holds:

(i) qA = qB = ε and (sA, sB) ∈ R(A⊗B).
(ii) qA = a1 . . . am 6= ε and qB = ε and there exists rA ∈ statesA such that:

(rA, sB) ∈ R(A⊗B) and rA
a1=⇒A . . .

am=⇒AsA.
(iii) qA = ε and qB = b1 . . . bm 6= ε and there exists rB ∈ statesB such that:

(sA, rB) ∈ R(A⊗B) and rB
b1=⇒B . . .

bm=⇒B sB.

To define the notation
a

=⇒A , let a ∈ outA∩ inB and FA = actArshared(A,B) be the set

of the free actions of A. Then s
a

=⇒As
′ holds if there exist transitions s

FA−−→∗As
a−→As

′ FA−−→∗As
′.

Recall from Sect. 2 that t
FA−−→∗A t

′ stands for a (possibly empty) sequence of transitions

involving only actions of FA. Hence, s
a

=⇒As
′ stands for a sequence of transitions such that

COMPATIBILITY PROPERTIES OF COMMUNICATING COMPONENTS 9

a single transition with a ∈ outA ∩ inB is surrounded by arbitrary transitions in A involving

only free actions of A. The notation
b

=⇒B is defined analogously.
Looking more closely to property P we see that it requires two things: (a) In each

reachable state of the asynchronous composition at least one of the two queues is empty,
since one of the cases (i) - (iii) must always hold which entails emptiness of at least one queue.
(b) The state of the component where the output queue is not empty can be reached from a
reachable state in the synchronous product by outputting the actions stored in the queue,
possibly interleaved with free actions. Part (a) specifies a well-known class of asynchronous
systems called half-duplex systems; see, e.g., [10].

Definition 4.1. Let A and B be two asynchronously composable IOTSes. The asynchronous
system A⊗asB is half-duplex, if for all reachable states ((sA, qA), (sB, qB)) ∈ R(Ω(A)⊗Ω(B))
it holds that qA = ε or qB = ε.

It turns out that part (b) explained above is not really an extra condition. It is already
a consequence of part (a), i.e., of being a half-duplex system. Hence, property P and being
half-duplex are equivalent conditions, as shown in the crucial lemma below. The direction
(1) ⇒ (2) is trivial since property P entails (a) from above, i.e., the half-duplex property.
The difficult direction is (2) ⇒ (1). The induction proof for this direction relies on condition
(3) of Lem. 4.2 which is an easy consequence of being half-duplex. A nice side-effect of
Lem. 4.2 is the equivalence (2) ⇔ (3). It shows how the half-duplex property can be decided,
since (3) is decidable for finite state components. This corresponds to a result in [10] where
it is shown that membership to the class of half-duplex systems is decidable.

Lemma 4.2 (Crucial lemma). Let A and B be two asynchronously composable IOTSes.
The following conditions are equivalent:

(1) The asynchronous system A⊗as B satisfies property P.
(2) The asynchronous system A⊗as B is half-duplex.

(3) For each reachable state (sA, sB) ∈ R(A ⊗ B) and each transitions sA
a−→As

′
A and

sB
b−→B s

′
B either a /∈ outA ∩ inB or b /∈ outB ∩ inA.

Proof. (1) ⇒ (2) is trivial. (2) ⇒ (3) is proved by contradiction: Assume (3) does not

hold. Then there exist a reachable state (sA, sB) ∈ R(A ⊗ B) and transitions sA
a−→As

′
A

and sB
b−→B s

′
B such that a ∈ outA ∩ inB and b ∈ outB ∩ inA. Now we allow us a forward

reference to Lem. 4.8, which shows ((sA, ε), (sB, ε)) ∈ R(Ω(A)⊗ Ω(B)). Since sA
a−→As

′
A we

get a transition

((sA, ε), (sB, ε))
aB−→

Ω(A)⊗ Ω(B)
((s′A, a), (sB, ε)).

Since sB
b−→B s

′
B we get a transition

((s′A, a), (sB, ε))
bB−→

Ω(A)⊗ Ω(B)
((s′A, a), (s′B, b))

and therefore the system is not half-duplex.
The direction (3) ⇒ (1) is proved by induction on the length of the derivation to reach

((sA, qA), (sB, qB)) ∈ R(Ω(A)⊗Ω(B)). It involves a complex case distinction on the form of
the transitions in the asynchronous composition. Interestingly only the case of transitions
with enqueue actions needs the assumption (3). The compete proof of (3) ⇒ (1) is given in
Appendix B. The interesting case in this proof is Case 5 (iii).

10 ROLF HENNICKER AND MICHEL BIDOIT

Theorem 4.3 (Synch2Asynch). Let A and B be two asynchronously composable IOTSes
such that one (and hence all) of the conditions in Lemma 4.2 are satisfied. Then the following
holds:

(1) A←→ B =⇒ A
a←→ B.

(2) A B =⇒ A a B.

Proof. The proof uses Lem. 4.2 for both cases.
(1) Assume A←→ B. We have to show Ω(A)←→ Ω(B). We prove condition (1) of Def. 3.1.
Condition (2) is proved analogously.

Let ((sA, qA), (sB, qB)) ∈ R(Ω(A)⊗Ω(B)), a ∈ outΩ(A)∩ inΩ(B) and (sA, qA)
a−→Ω(A)(s′A, q

′
A).

Then qA has the form aa2 . . . am. By assumption, Ω(A)⊗ Ω(B) satisfies property P . Hence,

there exists rA ∈ statesA such that (rA, sB) ∈ R(A⊗B) and rA
a

=⇒ArA
a2=⇒...

am=⇒AsA. Thereby

rA
a

=⇒ArA is of the form rA
FA−−→∗As

a−→As
′ FA−−→∗ArA. Since FA involves only free actions of A

(not shared with B), and since (rA, sB) ∈ R(A⊗B) we have that (s, sB) ∈ R(A⊗B). Now

we can use the assumption A←→ B which says that there exists sB
a−→B s

′
B. Since a ∈ inB,

we get a transition (sB, qB)
a−→Ω(B)(s′B, qB) and we are done.

(2) The weak case is a slight generalization of the proof of (1). The first part of the
proof is the same but then we use the assumption A B which says that there ex-

ists sB
intB−−−→∗B sB

a−→B s
′
B consisting of a sequence of internal transitions of B followed

by sB
a−→B s

′
B with a ∈ inB. Therefore we get transitions (sB, qB)

intB−−−→ ∗
Ω(B) (sB, qB)

a−→Ω(B)(s′B, qB) and, since intB ⊆ intΩ(B), we are done.

Note that the half-duplex property is not necessary for getting implication (1) and (2) of
the last theorem. An example would be two components A and B such that outA∩inB = {a},
outB ∩ inA = {b} are the only actions, A has one state and two looping transitions labeled
with a and b, and the same holds for B. Then A and B are synchronously and asynchronously
strongly and weakly compatible, but the system is not half-duplex. In fact, condition (3) of
Lem. 4.2 is violated.

We come back to our discussion at the beginning of this section where we have claimed
that for I/O-transition systems which do not show states where input and output actions
are both enabled, synchronous compatibility implies asynchronous compatibility. We must,
however, be careful whether we consider the strong or the weak case which leads us to two
versions of I/O-separation.

Definition 4.4 (I/O-separated transition systems). Let A be an IOTS.

(1) A is called I/O-separated if for all reachable states s ∈ R(A) it holds: If there exists a

transition s
a−→As

′ with a ∈ outA then there is no transition s
a′−→As

′′ with a′ ∈ inA.
(2) A is called observationally I/O-separated if for all reachable states s ∈ R(A) it holds: If

there exists a transition s
a−→As

′ with a ∈ outA then there is no sequence of transitions

s
intA−−−→∗A sA

a′−→As
′′ with a′ ∈ inA.

Obviously, observational I/O-separation implies I/O-separation but not the other way
round; cf. Ex. 4.7.

Lemma 4.5. Let A and B be two asynchronously composable IOTSes.

(1) If A and B are I/O-separated and A←→ B, then one (and hence all) of the conditions
in Lemma 4.2 are satisfied.

COMPATIBILITY PROPERTIES OF COMMUNICATING COMPONENTS 11

ack_b!

 j

0

3

b!0

a! 1

2

3
b?

1
2

τ i

a?

A: B:

ack_a? ack_a!

ack_b?

τ

Figure 5: I/O-separated and A B but not A a B

(2) If A and B are observationally I/O-separated and A B, then one (and hence all) of
the conditions in Lemma 4.2 are satisfied.

Proof. (1) By contradiction: Assume condition (3) of Lem. 4.2 does not hold. Then there

are a reachable state (sA, sB) ∈ R(A⊗B) and transitions sA
a−→As

′
A and sB

b−→B s
′
B such

that a ∈ outA ∩ inB and b ∈ outB ∩ inA. Since A←→ B there is a transition sB
a−→B s

′′
B with

a ∈ inB. Therefore B is not I/O-separated.
(2) is proved similarly by contradiction: Assume that condition (3) of Lem. 4.2 does not hold.

This gives us again a reachable state (sA, sB) ∈ R(A⊗ B) and transitions sA
a−→As

′
A and

sB
b−→B s

′
B such that a ∈ outA∩inB and b ∈ outB∩inA. Since A B there exist transitions

sB
intB−−−→∗B sB

a−→B s
′′
B with a ∈ inB. Therefore B is not observationally I/O-separated.

The notion of I/O-separation appears in a more strict version, called input-separation,
in [14] and similarly as system without local mixed states in [10]. [21] introduces internal
choice labeled transition systems which are particular versions of I/O-separated transition
systems. The difference is that I/O-separation still allows internal actions as an alternative to
an input. Part (1) of Lem. 4.5 can be considered as a generalization of Lemma 4 in [14] which
has shown that input-separated IOTSes which are strongly compatible and form a closed
system are half-duplex. This result was in turn a generalization of Thm. 35 in [10]. Open
systems and weak compatibility were not an issue in these approaches. With Theorem 4.3
and Lemma 4.5 we get:

Corollary 4.6. Let A and B be two asynchronously composable IOTSes.

(1) If A and B are I/O-separated and A←→ B, then A
a←→ B.

(2) If A and B are observationally I/O-separated and A B, then A a B.

As an application of Cor. 4.6 we refer to Ex. 3.4. Maker and User are observationally
I/O-separated, they are weakly synchronously compatible and therefore, by Cor. 4.6(2), they
are also weakly asynchronously compatible.

Example 4.7. It may be interesting to note that part (2) of Cor. 4.6 and of Lem. 4.5
would not hold, if we would only assume I/O-separation. Fig. 5 shows two I/O-separated
IOTSes A and B with internal actions i and j resp., such that A and B are not observationally
I/O-separated. A and B are weakly synchronously compatible but not weakly asynchronously
compatible and the asynchronous system A⊗as B is also not half-duplex.

12 ROLF HENNICKER AND MICHEL BIDOIT

4.2. From Asynchronous to Synchronous Compatibility. This section studies the
other direction, i.e. whether asynchronous compatibility can imply synchronous compatibility.
It turns out that for the strong case this is indeed true without any further assumption
while for the weak case this holds under the equivalent conditions of Lem. 4.2. In any case,
we need for the proof the following lemma which shows that all reachable states in the
synchronous product are reachable in the asynchronous product with empty output queues.

Lemma 4.8. Let A and B be two asynchronously composable IOTSes. For any state
(sA, sB) ∈ R(A⊗B), the state ((sA, ε), (sB, ε)) belongs to R(Ω(A)⊗ Ω(B)).

Proof. The proof is straightforward by induction on the length of the derivation of (sA, sB) ∈
R(A⊗B). It is given in the Appendix.

Theorem 4.9 (Asynch2Synch). For asynchronously composable IOTSes A and B it holds:

(1) A
a←→ B =⇒ A←→ B.

(2) If one (and hence all) of the conditions in Lemma 4.2 are satisfied, then A a B =⇒
A B.

Proof. (1) Assume A
a←→ B, i.e. Ω(A) ←→ Ω(B). We have to show A ←→ B. We prove

condition (1) of Def. 3.1. Condition (2) is proved analogously.

Let (sA, sB) ∈ R(A ⊗ B), a ∈ outA ∩ inB and sA
a−→As

′
A. By Lem. 4.8, ((sA, ε), (sB, ε))

∈ R(Ω(A)⊗ Ω(B)). Since sA
a−→As

′
A, we have a transition in Ω(A)⊗ Ω(B) with enqueue

action for a: ((sA, ε), (sB, ε))
aB−→Ω(A)⊗Ω(B)((s′A, a), (sB, ε)) and it holds ((s′A, a), (sB, ε)) ∈

R(Ω(A)⊗ Ω(B)). Then, there is a transition (s′A, a)
a−→Ω(A) (s′A, ε). Since Ω(A)←→ Ω(B)

there must be a transition (sB, ε)
a−→Ω(B)(s′B, ε). This transtion must be caused by a

transition sB
a−→B s

′
B and we are done.

(2) Assume A a B, i.e. Ω(A) Ω(B). We have to show A B. We prove condition
(1) of Def. 3.2. Condition (2) is proved analogously.

Let (sA, sB) ∈ R(A⊗B), a ∈ outA∩ inB and sA
a−→As

′
A. With the same reasoning as in case

(1) we get ((s′A, a), (sB, ε)) ∈ R(Ω(A)⊗Ω(B)) and we get a transition (s′A, a)
a−→Ω(A) (s′A, ε).

Since Ω(A) Ω(B) there are transitions (sB, ε)
intΩ(B)−−−−−→ ∗

Ω(B) (sB, qB)
a−→Ω(B)(s′B, qB). Since

internal transitions of Ω(B) do not involve any steps of Ω(A), we have ((s′A, a), (sB, qB)) ∈
R(Ω(A)⊗ Ω(B)). Due to the assumption that the conditions in Lemma 4.2 are satisfied,
Ω(A) ⊗ Ω(B) is half-duplex and therefore qB must be empty and the same holds for all

intermediate queues reached by the transitions in (sB, ε)
intΩ(B)−−−−−→ ∗

Ω(B) (sB, qB). Therefore no

enqueue action can occur in these transitions. Noticing that intΩ(B) = intB ∪ (outB ∩ inA)B,

we get (sB, ε)
intB−−−→ ∗

Ω(B) (sB, ε)
a−→Ω(B)(s′B, ε) and all these transtions must be induced by

transitions sB
intB−−−→∗B sB

a−→B s
′
B, i.e. we are done.

As a consequence of Thms. 4.3 and 4.9 we see that under the equivalent conditions of
Lem. 4.2, in particular when the asynchronous system is half-duplex, (weak) synchronous
compatibility is equivalent to (weak) asynchronous compatibility.

Corollary 4.10 (SynchIFFAsynch). Let A and B be two asynchronously composable IOTSes
such that one (and hence all) of the conditions in Lemma 4.2 are satisfied. Then the following
holds:

COMPATIBILITY PROPERTIES OF COMMUNICATING COMPONENTS 13

useAuseB

τmakeA

2

1

failA!
0 failB?

readyB?materialA?

readyA!

3

MA:

2

1

failB!
0 failA?

readyA?materialB?

readyB!

3

MB:

τmakeB

ττ

Figure 6: MA a MB but not MA MB.

(1) A←→ B ⇐⇒ A
a←→ B.

(2) A B ⇐⇒ A a B.

5. Weak Asynchronous Compatibility: The General Case

In this section we are interested in the verification of asynchronous compatibility in the
general case, where at the same time both queues of the communicating components may be
not empty. We focus here on weak asynchronous compatibility since non-half duplex systems
are often weakly asynchronously compatible but not weakly synchronously compatible.2

A simple example would be two components which both start to send a message to each
other and after that each component takes the message addressed to it from the buffer.
Such a system would be weakly asynchronously compatible but not weakly synchronously
compatible.

Example 5.1. Fig. 6 shows two IOTSes MA and MB which produce items for each other. After
reception of some material from the environment (input action materialA), MA produces an
item (internal action makeA) followed by either a signal that the item is ready for use (output
readyA) or a signal that the production did fail (output failA). Whenever MA reaches its
initial state it can also accept an input readyB and then use the item produced by MB

(internal action useB) or it can accept a signal that the production of its partner did fail
(input failB). The behavior of MB is analogous. Note that materialA (resp. materialB)
is a non-shared input action of MA (resp. MB). They are open to the environment after
composition of MA and MB. The asynchronous composition of MA and MB is not half-duplex;
both processes can produce and signal concurrently. Clearly, the system is not weakly
synchronously compatible. For instance, the state (2,2) is reachable in the synchronous
product and in this state each of the two components wants to output an action but the other
one is not able to synchronize with a corresponding input. We will prove below that the
system is weakly asynchronously compatible. Let us note that the system considered here is
neither synchronizable in the sense of [19] nor desynchronizable in the sense of [6, 7]. The
reason is simple: The synchronous system is blocked in state (2,2) while the asynchronous
system can always proceed with putting messages in the buffers, consuming them and
firing transitions for the free actions open to the environment. Therefore there cannot be
a branching bisimulation between the synchronous and the asynchronous versions of the
system as required for synchronizability in [19] and for desynchronizability in [6, 7].

2This is in contrast to the strong case where strong asynchronous compatibility implies strong synchronous
compatibility; see Thm. 4.9(1).

14 ROLF HENNICKER AND MICHEL BIDOIT

In general, the problem of weak asynchronous compatibility is undecidable due to
potentially unbounded message queues. For instance, in the asynchronous composition of
MA and MB in Ex. 5.1 both output queues can grow without upper bound. In Sect. 5.1 we
develop a criterion for proving weak asynchronous compatibility in the general case (allowing
for non half-duplex systems with unbounded message queues). The criterion is decidable
if the underlying IOTSes are finite. In Sect. 5.2 we investigate properties under which the
criterion is even complete, i.e. if the criterion is not satisfied, then the system is not weakly
asynchronously compatible.

5.1. A Criterion for Weak Asynchronous Compatibility. Let A and B be two asyn-
chronously composable IOTSes. The idea for proving weak asynchronous compatibility of A
and B is again to use synchronous products, but not the standard synchronous composition
of A and B but variants of it. First we focus only on one direction of compatibility concerning
the outputs of A which should be received by B. Due to the weak compatibility notion B
can, before it takes an input message, execute internal actions. In particular, it can put
outputs directed to A in its output queue. (Remember that enqueue actions are internal).
To simulate these autonomous enqueue actions in a synchronous product with A, we consider
the renamed version BB

outBA
of B where all actions b ∈ outBA = outB ∩ inA are renamed to

bB. Thus they become non-shared actions which can be freely executed in the synchronous
product of A and BB

outBA
(just as the enqueue actions bB in the asynchronous product of

A and B). At the same time all previously shared input actions of A become free. Now
we require that in each reachable state of the synchronous product A⊗BB

outBA
if A wants

to send an output a addressed to B then BB
outBA

can execute some internal actions and/or
free output actions bB ∈ outBBA before it accepts a. This idea is formalized in the following
condition (a). A symmetric condition concerning the compatibility in the direction from B
to A is formalized in condition (b).

(a) For all reachable states (sA, sB) ∈ R(A ⊗ BB
outBA

), ∀a ∈ outAB = outA ∩ inB :

sA
a−→As

′
A =⇒ ∃ sB

intB∪outBBA−−−−−−−−→ ∗
BB

outBA

sB
a−→B s

′
B.3

(b) For all reachable states (sA, sB) ∈ R(AB
outAB

⊗ B), ∀b ∈ outBA = outB ∩ inA :

sB
b−→B s

′
B =⇒ ∃ sA

intA∪outBAB−−−−−−−−→ ∗
AB

outAB

sA
b−→As

′
A.

Notation 5.2. We write A 99K BB
outBA

if condition (a) holds and B 99K AB
outAB

if condition
(b) holds.

We call the conditions A 99K BB
outBA

and B 99K AB
outAB

the WAC-criterion since they
are sufficient for weak asynchronous compatibility.

Theorem 5.3 (WAC-criterion). Let A and B be two asynchronously composable IOTSes
such that A 99K BB

outBA
and B 99K AB

outAB
holds. Then A and B are weakly asynchronously

compatible, i.e. A a B.

The proof of this theorem needs an auxiliary, technical lemma which establishes a
relationship between the reachable states of the asynchronous composition of A and B and

3Note that intB = intBB
outBA

and sB
a−→

B
s′B is equivalent to sB

a−→
BB

outBA

s′B , since a ∈ outA ∩ inB is not

renamed.

COMPATIBILITY PROPERTIES OF COMMUNICATING COMPONENTS 15

the reachable states considered in the synchronous products A ⊗ BB
outBA

and AB
outAB

⊗ B
respectively.

Lemma 5.4. For any two asynchronously composable IOTSes A and B it holds that A and
BB

outBA
as well as AB

outAB
and B are synchronously composable and both of the following

two properties QA and QB are satisfied.
Property QA: For each reachable state ((sA, qA), (sB, qB)) ∈ R(Ω(A) ⊗ Ω(B)) one of the
following two conditions holds:

(i) qA = ε and (sA, sB) ∈ R(A⊗BB
outBA

),
(ii) qA = a1 . . . am 6= ε and there exists rA ∈ statesA such that:

(rA, sB) ∈ R(A⊗BB
outBA

) and rA
a1

V
A
. . .

am
V

A
sA.

The notation s
a
V

A
s′ stands for an arbitrary sequence of transitions in A which contains

exactly one transition with an output action in outA ∩ inB and this output action is a.

Property QB: For each reachable state ((sA, qA), (sB, qB)) ∈ R(Ω(A) ⊗ Ω(B)) one of the
following two conditions holds:

(i) qB = ε and (sA, sB) ∈ R(AB
outAB

⊗B),
(ii) qB = b1 . . . bm 6= ε and there exists rB ∈ statesB such that:

(sA, rB) ∈ R(AB
outAB

⊗B) and rB
b1
V

B
. . .

bm
V

B
sB.

The notation
b
V

B
is defined analogously to

a
V

A
.

Proof. Since A and B are asynchronously composable they are synchronously composable
and shared(A,B)B ∩ (actA ∪ actB) = ∅. Hence, A and BB

outBA
as well as AB

outAB
and B are

synchronously composable.
The initial state ((startA, ε), (startB, ε)) satisfies QA and QB. Then we consider transi-

tions
((sA, qA), (sB, qB))

a−→
Ω(A)⊗ Ω(B)

((s′A, q
′
A), (s′B, q

′
B))

and show that if ((sA, qA), (sB, qB)) satisfies QA (QB resp.) then ((s′A, q
′
A), (s′B, q

′
B)) satisfies

QA (QB resp.). Then the result follows by induction on the length of the derivation to reach
((sA, qA), (sB, qB)) ∈ R(Ω(A)⊗ Ω(B)). The complete proof is given in the Appendix.

Property QA(i) expresses that whenever a global state ((sA, ε), (sB, qB)) is reachable
in the asynchronous composition of A and B, then (sA, sB) is already reachable in the
synchronous composition A ⊗ BB

outBA
. Property QA(ii) expresses that whenever a global

state ((sA, qA), (sB, qB)) with qA 6= ε is reachable in the asynchronous composition of A and
B there exists a state rA of A such that (rA, sB) is reachable in the synchronous composition
A⊗BB

outBA
and the local control state sA of A can be reached from rA by outputting the

actions stored in the queue, possibly interleaved with arbitrary other actions of A which are
not output actions directed to B. Properties QB(i) and (ii) are the symmetric properties
concerning the output queue of B.

The properties QA and QB have a pattern similar to property P in Sect. 4.1 which has
related reachable states of the asynchronous composition of A and B with reachable states
in the synchronous product A⊗B. Such a relation was only possible under the half-duplex
assumption while QA and QB are generally valid. The intuitive reason is that A⊗BB

outBA

as well as AB
outAB

⊗ B can have significantly more reachable states than A ⊗ B. This is
demonstrated in Ex. 5.6 and this is also the reason why our proof technique is in general
not complete; see Sect. 5.2. We are now prepared to prove Thm. 5.3.

16 ROLF HENNICKER AND MICHEL BIDOIT

Proof of Theorem 5.3: By definition of A a B we have to show Ω(A) Ω(B). We
prove condition (1) of Def. 3.2. Condition (2) is proved analogously.
Let ((sA, qA), (sB, qB)) ∈ R(Ω(A)⊗ Ω(B)). To prove condition (1) of Def. 3.2 we assume

given a ∈ outΩ(A) ∩ inΩ(B) and (sA, qA)
a−→Ω(A) (s′A, q

′
A) and we must show that there exist

transitions (sB, qB)
intΩ(B)−−−−−→ ∗

Ω(B) (sB, qB)
a−→Ω(B)(s′B, q

′
B).

By the assumption, qA must have the form aa2 . . . am. By Lem. 5.4, propertyQA(ii) holds
for ((sA, qA), (sB, qB)). Hence, there exists rA ∈ statesA such that (rA, sB) ∈ R(A⊗BB

outBA
)

and rA
a
V

A
rA

a2

V
A
. . .

am
V

A
sA. Thereby rA

a
V

A
rA is of the form rA

YA−−→∗As
a−→As

′ YA−−→∗ArA with
a ∈ outΩ(A)∩inΩ(B) = outA∩inB = outAB and YA involves no action in outAB . Since outAB

are the only shared actions of A and BB
outBA

, the transitions in rA
YA−−→∗As induce transitions

in A⊗BB
outBA

without involving BB
outBA

. Therefore, since (rA, sB) ∈ R(A⊗BB
outBA

), we get
(s, sB) ∈ R(A ⊗ BB

outBA
). Now we can use the assumption A 99K BB

outBA
which says that

there exists a sequence of transitions

sB
intB∪outBBA−−−−−−−−→ ∗

BB
outBA

sB
a−→
B
s′B.

The actions in intB ∪ outBBA are internal actions of Ω(B) such that we get transitions

(sB, qB)
intΩ(B)−−−−−→ ∗

Ω(B)
(sB, qB)

a−→
Ω(B)

(s′B, qB)

where qB extends qB according to the elements that have been enqueued with actions in
outBBA. Thus Ω(B) accepts a, possibly after some internal actions, and we are done.

Example 5.5. To apply Thm. 5.3 to Ex. 5.1 we have to prove MA 99K MBB{readyB,failB}
and MB 99K MAB{readyA,failA}. For the former case, Fig. 7 shows the IOTS MA and the IOTS

MBB{readyB,failB} obtained by renaming of its outputs. We will check only this case, the other

one is analogous. We have to consider the reachable states in the synchronous product
MA⊗MBB{readyB,failB} and when an output readyA or failA is possible in MA. These states are

(2,0), (2,1) and (2,2) since materialA, materialB are non-shared input actions and makeA,
makeB are internal actions. (Note that state (2,3) is not reachable in MA⊗ MBB{readyB,failB}
because readyA is a shared action of MA and MBB{readyB,failB}.)

In state (2,0) any output readyA or failA is immediately accepted by MBB{readyB,failB}.

In state (2,1), MBB{readyB,failB} can perform first the internal action makeB, then the free

output action readyBB or failBB and then it can accept the input readyA or failA. In
state (2,2), MBB{readyB,failB} can perform the free output action readyBB or failBB and then

accept the input. Therefore we have shown MA a MB. Note that with the free output actions
we have simulated in the synchronous product the (internal) enqueue actions readyBB and
failBB that can be executed by MB in the asynchronous composition.4

4Our technique would also work for the non-synchronizable system example in [19], Fig. 4.

COMPATIBILITY PROPERTIES OF COMMUNICATING COMPONENTS 17

:

useB

τmakeA

MB{readyB,failB}

2

1

failA!
0 failB?

readyB?materialA?

readyA!

3 2

1

0 failA?

readyA?materialB?

3

τmakeB

τ
useA

 failB !

readyB !

MA:

τ

Figure 7: Compatibility check: MA 99K MBB{readyB,failB}

:0 BA: 1

b?

a!

0
{b}

Figure 8: Compatibility check A 99K BB{b} fails but A a B.

5.2. On the Completeness of the Compatibility Criterion. The compatibility crite-
rion of the last section relies on the two conditions (a) and (b) required for all reachable
states of A⊗BB

outBA
and AB

outAB
⊗B respectively. If A and B are finite then the compatibility

criterion is decidable while weak asynchronous compatibility is, in general, not decidable.
Hence the compatibility criterion cannot be complete. In this section we first discuss in
which situations it can happen that the compatibility criterion is not necessary for weak
asynchronous compatibility and then we establish a condition under which the compatibility
criterion is even complete for proving or disproving weak asynchronous compatibility.

Example 5.6. The following very simple example illustrates the issue. We consider two
components A and B such that inA = {b}, outA = {a}, intA = ∅ and inB = {a}, outB = {b},
intB = ∅. The transitions of A are shown in Fig. 8. The component B and hence BB

outBA
has

no transitions; i.e. their actions are never enabled. Then it is trivial that A and B are weakly
asynchronously compatible, since in the asynchronous composition A will never receive a
message from B, i.e. Ω(A)⊗ Ω(B) will never reach a state (sA, qA), (sB, qB) with sA = 1.
Therefore A will never put a in its output buffer. However, our condition (a), A 99K BB

outBA
,

is not satisfied since b is a free input action of A in A⊗BB
outBA

and therefore the state (1, 0)
is reachable in A⊗BB

outBA
. Then A 99K BB

outBA
would require that BB

outBA
is able to receive

b in its state 0 which is not the case.

The problem encountered in Ex. 5.6 is that A⊗BB
outBA

(or, symmetrically, AB
outAB

⊗B)
may have more reachable states than necessary to be considered in the asynchronous
composition A⊗as B. These states are reached by open inputs in A⊗BB

outBA
(or AB

outAB
⊗B)

which are never served in the asynchronous composition where the inputs are shared actions.
More precisely, our conjecture is that the criterion of Thm. 5.3 may not be complete only if
either

(i) there are states (sA, sB) reachable in A⊗BB
outBA

such that A has an output in state sA
but the local state sA is not reachable in the asynchronous composition with B and
hence irrelevant for proving asynchronous compatibility in the direction from A to B, or

18 ROLF HENNICKER AND MICHEL BIDOIT

(ii) there are states (sA, sB) reachable in AB
outAB

⊗ B such that B has an output in state
sB but the local state sB is not reachable in the asynchronous composition with A and
hence irrelevant for proving asynchronous compatibility in the direction from B to A.

The subsequent theorem shows that our conjecture is right. It relies on the definition of
locally reachable states.

Definition 5.7. Let A and B be two synchronously composable IOTSes. A state sA of A
is locally reachable in A⊗B, if there exists a state sB of B such that (sA, sB) ∈ R(A⊗B).
Local reachability for states of B is defined analogously.

Theorem 5.8 (Completeness criterion). Let A and B be two asynchronously composable
IOTSes such that the following two properties XA and XB are satisfied.

Property XA: For any state sA of A for which a transition sA
a−→As

′
A exists with a ∈ outAB

the following holds: If sA is locally reachable in A⊗BB
outBA

then (sA, ε) is locally reachable

in Ω(A)⊗ Ω(B).5

Property XB: For any state sB of B for which a transition sB
b−→B s

′
B exists with b ∈ outBA

the following holds: If sB is locally reachable in AB
outAB

⊗B then (sB, ε) is locally reachable
in Ω(A)⊗ Ω(B).

Then A 99K BB
outBA

and B 99K AB
outAB

holds if, and only if, A and B are weakly

asynchronously compatible, i.e. A a B.

Proof. Taking into account Thm. 5.3, it remains to show that under the assumptions XA

and XB we have that A a B implies A 99K BB
outBA

and B 99K AB
outAB

. Let A a B, i.e.
Ω(A) Ω(B). We show that then A 99K BB

outBA
holds. The proof of B 99K AB

outAB
is

analogous.
Let (sA, sB) ∈ R(A⊗BB

outBA
). To show A 99K BB

outBA
we assume a ∈ outAB = outA∩inB

and sA
a−→As

′
A. According to the meaning of A 99K BB

outBA
(as defined in the notation before),

we have to show that there exist transitions

(∗)sB
intB∪outBBA−−−−−−−−→ ∗

BB
outBA

sB
a−→
B
s′B.

Since XA is valid, there exist sB, qB such that ((sA, ε), (sB, qB)) ∈ R(Ω(A) ⊗ Ω(B)).

The transition sA
a−→As

′
A induces an enqueue transition ((sA, ε), (sB, qB))

aB−→Ω(A)⊗Ω(B)

((s′A, a), (sB, qB)) such that a is the only element in the output queue of A. Obviously,

((s′A, a), (sB, qB)) ∈ R(Ω(A)⊗ Ω(B)) and there is a transition (s′A, a)
a−→Ω(A) (s′A, ε). Since

Ω(A) Ω(B) there are transitions

(sB, qB)
intΩ(B)−−−−−→ ∗

Ω(B)
(sB, qB)

a−→
Ω(B)

(s′B, qB).

Since intΩ(B) = intB ∪ outBBA and a ∈ inΩ(B) = inB there are transitions (*) and we are
done.

5In other words, there exist sB , qB such that ((sA, ε), (sB , qB)) ∈ R(Ω(A)⊗ Ω(B)).

COMPATIBILITY PROPERTIES OF COMMUNICATING COMPONENTS 19

Example 5.9. In this example we want to construct two components whose asynchronous
composition has infinitely many states but weak asynchronous compatibility is decidable.
As a tool we want to apply Thm. 5.8. Therefore our components should satisfy properties
XA and XB of Thm. 5.8. Consider the two components MA and MB in Fig. 6. We remove the

transition 0
failA−→

MB
0 with input action failA from MB which gives us the component MB’.

Now we show that the properties XA and XB are satisfied for MA and MB’. To check XA we
must consider the state 2 of MA in which an output is enabled and which is locally reachable
in MA⊗ MB’B{readyB,failB} (since, e.g., (2,0) is reachable in MA⊗ MB’B{readyB,failB}). Obviously,

the state (2,ε) of Ω(MA) is locally reachable in Ω(MA)⊗ Ω(MB’). (For instance, ((2,ε),(0,ε)) is
reachable in Ω(MA)⊗ Ω(MB’).) Property XB is checked analogously. According to Thm. 5.8
we can therefore decide whether MA and MB’ are weakly asynchronously compatible. In this
example, MA 99K MB’B{readyB,failB} does not hold since in state (2,0) the component MA can

output failA which cannot be accepted by MB’. Therefore, by Thm. 5.8, we have proved
that MA and MB’ are not weakly asynchronously compatible.

6. Deadlock Analysis for Communicating Components

Another property which is important when analysing system behaviours concerns deadlock-
freeness. We are interested here in the analysis of deadlock-freeness for communicating
components A and B.

Definition 6.1. Let A and B be two asynchronously composable IOTSes.

(1) A deadlock state of the synchronous system A⊗B is a state (sA, sB) ∈ R(A⊗B) such
that there exists no outgoing transition from (sA, sB) in A⊗B. If A⊗B has no deadlock
state then it is synchronously deadlock-free, denoted by df(A⊗B).

(2) A deadlock state of the asynchronous system A ⊗as B is a state ((sA, qA), (sB, qB)) ∈
R(Ω(A)⊗ Ω(B)) such that there exists no outgoing transition from ((sA, qA), (sB, qB))
in Ω(A)⊗Ω(B). If A⊗as B has no deadlock state then it is asynchronously deadlock-free,
denoted by df(A⊗as B).

For finite IOTSes A and B synchronous deadlock-freeness is decidable while asynchro-
nous deadlock-freeness is generally undecidable. In this section we study possibilities for
verification of deadlock-freeness for asynchronous systems. First, we want to point out that
deadlock-freeness and (weak) asynchronous compatibility are different properties. None of
the two implies the other.

Example 6.2.

(1) A a B does not imply df(A⊗as B): We consider two components A and B such that
inA = {b}, outA = {a}, intA = ∅ and inB = {a}, outB = {b}, intB = ∅. The transitions
of A and B are shown in Fig. 9. Component A is always ready to accept b and B is
always ready to accept a but none of the two ever sends a message to the other. Hence

A a B (and also A
a←→ B) holds trivially but, since no message is sent, the initial state

of Ω(A)⊗ Ω(B) is a deadlock state.
(2) df(A⊗as B) does not imply A a B: Let A and B be two components with the actions

defined in part (1) above. The transitions of A and B are shown in Fig. 10. The
asynchronous composition A⊗as B is deadlock-free since A puts continuously message
a in its output queue while B does the same with message b. Since A (resp. B) never

20 ROLF HENNICKER AND MICHEL BIDOIT

a?

A: 0

b?

B: 0

Figure 9: A a B but not df(A⊗as B)

b!

A: 0

a!

B: 0

Figure 10: df(A⊗as B) but not A a B

takes the message addressed to it, the system is not weakly asynchronously compatible
(and also not strongly asynchronously compatible).

In the following of this section we assume that we have already checked that A and B
are weakly asynchronously compatible and that we now want to prove deadlock-freeness of
the asynchronous system. The half-duplex property is again useful for this case. In fact, if
the asynchronous system is half-duplex, then deadlock freeness of the asynchronous system
is equivalent to deadlock-freeness of the synchronous composition.

Theorem 6.3. Let A and B be two asynchronously composable and weakly asynchronously
compatible IOTSes. If the asynchronous system A⊗as B is half-duplex, then df(A⊗B) holds
if, and, only if df(A⊗as B) holds.

Proof. ⇒: Let ((sA, qA), (sB, qB)) be an arbitrary state in R(Ω(A)⊗ Ω(B)).
Case 1: qA 6= ε or qB 6= ε. By assumption, A a B. Hence, any element being in one of
the queues will be consumed and therefore ((sA, qA), (sB, qB)) is not a deadlock state of
A⊗as B.
Case 2: Let qA = qB = ε. Since A ⊗as B is half-duplex we then know, by Lem. 4.2,
that A ⊗as B satisfies property P(i). Therefore (sA, sB) ∈ R(A ⊗ B). Since df(A ⊗ B)

holds, there exists a transition (sA, sB)
x−→A⊗B (s′A, s

′
B). If x is a non-shared action of A

or of B then this transition is induced by a transition of A or B which in turn induces
a transition of Ω(A) ⊗ Ω(B) starting in ((sA, ε), (sB, ε)). In fact, if x is not a shared
action of A and B this is clear. If x is a shared action of A and B there are two cases:
x ∈ outA∩ inB or x ∈ outB ∩ inA. W.l.o.g. let x ∈ outA∩ inB. Then (sA, sB)

x−→A⊗B (s′A, s
′
B)

is induced by transitions sA
x−→As

′
A and sB

x−→B s
′
B. The transition sA

x−→As
′
A induces a transition

((sA, ε), (sB, ε))
xB

−−→Ω(A)⊗Ω(B)((s′A, x), (sB, ε)). Hence, ((sA, ε), (sB, ε)) is not a deadlock state

of A⊗as B. Thus, in all possible cases ((sA, qA), (sB, qB)) is not a deadlock state of A⊗as B
and therefore df(A⊗as B) holds.
⇐: Let (sA, sB) be an arbitrary state in R(A⊗B). By Lem. 4.8, ((sA, ε), (sB, ε)) belongs

to R(Ω(A)⊗ Ω(B)). Since df(A⊗as B) holds, there exists a transition

((sA, ε), (sB, ε))
x−→
Ω(A)⊗ Ω(B)

((s′A, qA), (s′B, qB)).

If x is an action of A or of B which is not shared between A and B, then this transition
is induced by a transition of A or of B which in turn induces a transition of A ⊗ B

COMPATIBILITY PROPERTIES OF COMMUNICATING COMPONENTS 21

a?

A: 0 1

a!

b?

B: 0 1

b!

Figure 11: df(A⊗as B) but not df(A⊗B)

a?
A: 0

x!

1 2
a! b?

B: 0

x?

1 2
b!

Figure 12: df(A⊗B) but not df(A⊗as B)

starting in (sA, sB). Hence, (sA, sB) is not a deadlock state of A ⊗ B. Otherwise there
are four cases: (i) x ∈ outA ∩ inB, (ii) x ∈ outB ∩ inA, or (iii) x is of the form aB with
a ∈ outA ∩ inB or (iv) x is of the form bB with b ∈ outB ∩ inA. Cases (i) and (ii) are not
possible since, e.g., case (i) relies on an input action of B which is not possible since the
output queue of A is empty. For the remaining two cases we consider, w.l.o.g., case (iii).

Then ((sA, ε), (sB, ε))
aB−−→Ω(A)⊗Ω(B)((s′A, a), (sB, ε)) is induced by a transition sA

a−→As
′
A with

a ∈ outA ∩ inB. Since, by assumption, A a B holds and A⊗as B is half-duplex, we know,

by Thm. 4.9(2), that A B holds. Therefore there exist transitions sB
intB−−−→∗B sB

a−→B s
′
B

which induce transitions (sA, sB)
intB−−−→ ∗

A⊗B (sA, sB)
a−→A⊗B (s′A, s

′
B). Hence, (sA, sB) is not

a deadlock state of A ⊗ B. Thus, in all possible cases (sA, sB) is not a deadlock state of
A⊗B and therefore df(A⊗B) holds.

The next example shows that Thm. 6.3 would not hold without the half-duplex assump-
tion.

Example 6.4.

(1) df(A⊗as B) does not imply df(A⊗B): Let A and B be two components with actions as
in Ex. 6.2. The transitions of A and B are shown in Fig. 11. A⊗as B is not half-duplex.
Obviously, A⊗as B is deadlock-free but A⊗B is not.

(2) df(A⊗B) does not imply df(A⊗as B): Let A and B be two components with the actions
as above but with an additional shared action x being an output action of A and an
input action of B. The transitions of A and B are shown in Fig. 12. A ⊗as B is not
half-duplex. Obviously, A⊗B is deadlock-free but A⊗as B is not.

We are now interested in verifying deadlock-freeness in the general case where A⊗as B
is not half-duplex. Similarly to the technique proposed for verifying weak asynchronous
compatibility we rely again on a criterion which uses the synchronous products A⊗BB

outBA

and AB
outAB

⊗B; see Sect. 5.

Definition 6.5. Let A and B be two asynchronously composable IOTSes. A⊗BB
outBA

is
autonomously deadlock free if for each reachable state (sA, sB) ∈ R(A⊗BB

outBA
) there exists a

transition (sA, sB)
a−→A⊗BB

outBA

(s′A, s
′
B) with a /∈ inA∩outB . Autonomous deadlock-freeness

of AB
outAB

⊗B is defined analogously.

22 ROLF HENNICKER AND MICHEL BIDOIT

Note that the condition a /∈ inA∩outB is needed in the next theorem to ensure df(A⊗asB).

Otherwise, if we have a transition (sA, sB)
a−→A⊗BB

outBA

(s′A, s
′
B) with a ∈ inA ∩ outB, then

this would be a free input of A in the composition A ⊗ BB
outBA

. But in the asynchronous
composition A⊗as B, a would be a shared input which can only be performed if the message
a is available in the output queue of B. But this may not be the case and therefore A⊗as B
could be in a state in which it cannot continue with a while A ⊗ BB

outBA
could continue

due to the freeness of a. Therefore deadlock-freeness of A ⊗ BB
outBA

or AB
outAB

⊗ B would
not be sufficient and that’s why we have introduced the stronger version of autonomous
deadlock-freeness above.

Theorem 6.6. Let A and B be two asynchronously composable and weakly asynchronously
compatible IOTSes. If A ⊗ BB

outBA
or AB

outAB
⊗ B is autonomously deadlock free, then

df(A⊗as B).

Proof. As in the proof of Thm. 6.3, direction “⇒”, the critical cases are states
((sA, qA), (sB, qB)) ∈ R(Ω(A) ⊗ Ω(B)) with qA = qB = ε. (Otherwise, the assumption
A a B guarantees progress.) W.l.o.g. let A⊗BB

outBA
be autonomously deadlock free. Since

qA = ε, we know, by Lem. 5.4, that (sA, sB) ∈ R(A⊗BB
outBA

). Then, by assumption, there

exists a transition (sA, sB)
x−→A⊗BB

outBA

(s′A, s
′
B) with x /∈ inA ∩ outB. If x is an action of A

or of B which is not shared between A and B, then this transition is induced by a transition
of A or of B which in turn induces a transition of Ω(A)⊗ Ω(B) starting in ((sA, ε), (sB, ε)).
Hence, ((sA, ε), (sB, ε)) is not a deadlock state of A⊗as B. Otherwise (i) x ∈ outA ∩ inB or
(ii) x is of the form bB with b ∈ outB ∩ inA. (Note that x ∈ inA ∩ outB is not possible due
to the assumption.)

(i): If x ∈ outA ∩ inB, then (sA, sB)
x−→A⊗BB

outBA

(s′A, s
′
B) is induced by transitions sA

x−→As
′
A

and sB
x−→BB

outBA

s′B. The transition sA
x−→As

′
A induces a transition

((sA, ε), (sB, ε))
xB

−−→
Ω(A)⊗ Ω(B)

((s′A, x), (sB, ε)).

Hence, ((sA, ε), (sB, ε)) is not a deadlock state of A⊗as B.

(ii): If x is of the form bB with b ∈ outB ∩ inA, then (sA, sB)
bB−−→A⊗BB

outBA

(sA, s
′
B) is induced

by a transition sB
bB−−→BB

outBA

s′B. Hence, there exists a transition

((sA, ε), (sB, ε))
bB−−→

Ω(A)⊗ Ω(B)
((sA, ε), (s

′
B, b))

and therefore ((sA, ε), (sB, ε)) is not a deadlock state of A⊗as B. In summary, there is no
deadlock state of A⊗as B and therefore df(A⊗as B) holds.

Example 6.7. Consider the two components MA and MB in Fig. 6. We have shown, in
Ex. 5.5, that MA a MB holds. It is easy to check that MA⊗ MBB{readyB,failB} is autonomously

deadlock-free, since in any reachable state an action different from readyB,failB can be
executed. Therefore, we can apply Th. 6.6 and get df(MA⊗as MB).

COMPATIBILITY PROPERTIES OF COMMUNICATING COMPONENTS 23

7. Related Work

Compatibility notions are mostly considered for synchronous systems, since in this case
compatibility checking is easier manageable and even decidable if the behaviors of local
components have finitely many states. Some approaches use process algebras to study
compatibility, like [8] using the π-calculus, others investigate interface theories with binary
compatibility relations preserved by refinement, see, e.g., interface automata [1] or modal
interfaces [20, 16]. Others consider n-ary compatibility in multi-component systems like, e.g.,
team automata [9]. A prominent example of multi-component systems with asynchronous
communication via unbounded FIFO-buffers are CFSMs [4], for which many problems, like
absence of unspecified reception, are undecidable. Exceptions where decidability is ensured
are half-duplex systems consisting of two components; see, e.g., [10] and [17], or systems
whose network topologies are acyclic; see [15]. Bag structures are typically used for modeling
asynchronous communication with Petri nets where the reachability problem, and therefore
many compatibility problems [12], are decidable. In [11] decidable topologies are studied for
systems which contain both FIFO and bag channels for communication.

There is, however, not much work on relationships between synchronous and asyn-
chronous compatibility. Exceptions are approaches based on synchronizability [19] and
on desynchronizability [6]. Despite of the different terminologies in both cases the idea
is to establish a branching bisimulation between the synchronous and the asynchronous
versions of a system with message consumption from buffers considered internal. Un-
der the assumption of synchronizability [19] proposes methods to prove compatibility of
asynchronously communicating peers by checking synchronous compatibility. The central
notion is (synchronous/asynchronous) UR compatibility which corresponds to our weak
(synchronous/asynchronous) compatibility plus deadlock-freeness. Comparing our work
to [19], obvious differences are that [19] considers multi-component systems while we study
compatibility for two components only. On the other hand, [19] considers closed systems
while we allow open systems. Also our method for checking asynchronous compatibility
is very different. In the first part of our work we rely on half-duplex systems instead of
synchronizability and in the second part we drop any assumptions and investigate powerful
and decidable criteria for asynchronous compatibility of systems which are neither half-duplex
nor synchronizable.

The desynchronization approach in [6, 7] suggests a variant of asynchronous composition
which enforces the half-duplex property by blocking outputs to a buffer if there are inputs
waiting in the other buffer. [7] shows that for such systems desynchronizability implies
freedom of orphans, which means that buffers can always be emptied and therefore no
message loss can occur. Moreover, conditions for the synchronous system are provided
which characterize desynchronizability6. Among them is the condition of well-posedness
which coincides with our notion of synchronous strong compatibility. The results in [6, 7]
are established for concrete systems, i.e., the underlying components do not have silent
transitions. Under this assumption strong and weak synchronous compatibility are the same.
Comparing our work to [6, 7], obvious differences are that we allow internal transitions of the
underlying components which (a) leads to the notion of weak synchronous compatibility and
(b) is also necessary to scale to larger systems where subsystems are asynchronously composed
and therefore introduce silent transitions anyway. Moreover, in the first part of our work we

6For the definition of a desynchronizable system [6, 7] use a variant of branching bisimulation which is
sensitive w.r.t. emptyness of buffers.

24 ROLF HENNICKER AND MICHEL BIDOIT

do not enforce half-duplex queues (which are not supported by standard implementation
technologies either) but study asynchronous systems which have by themselves the half-
duplex property. As already mentioned above, in the second part we drop any assumptions
such that we can treat also systems which are not desynchronizable.

Another issue concerns checking the correctness of implementations of reactive compo-
nents against their specifications. Although this is not really a topic of this work, it is still
very relevant that compatibility proved on specification level should also hold for (possibly
distributed) implementations. Since in practice implementations often use asynchronous
message passing, it would be nice if one could check compatibility for synchronous compo-
sition of specifications and infer from this compatibility for asynchronous composition of
implementations. A pragmatic solution has been studied in [22] where programming strate-
gies have been proposed to ensure that implementations of reactive components collaborate
correctly if their component protocols are compatible in the sense of strong synchronous
compatibility as considered here. A formal treatment for implementation correctness using
a testing approach has been studied in [21] and, developed further, in [18]. The testing
approach for input-output conformance is motivated by the fact that a formal model of
a concrete implementation may not be available and therefore the implementation can
only be checked by running a set of test cases against it. Since implementations are often
only accessible through asynchronous communication channels the observations obtained by
testing an implementation rely on an asynchronous interaction. On the other hand, test cases
and component specifications can be represented by transition systems with input-output
labels and their interaction could be most easily observed by a synchronous composition
of the two. Then the question at hand is whether observations obtained by synchronous
composition of a set of test cases with a component specification allow us to infer that
an implementation tested in an asynchronous environment conforms to the specification.
[21] and [18] develop conditions under which such an approach is feasible. Interestingly
the conditions are very much related to properties studied in the first part of our paper.
For instance, an internal choice input-output labeled transition system in [21, 18] is an
I/O-separated transition system according to our Def. 4.4(1). An internal choice test case in
the sense of [18] stimulates an implementation-under-test only when “quiescence has been
observed”, i.e., the implementation does not send itself an output to the test case in the
current state. This is similar to condition (3) in our Lem. 4.2 which expresses that two
synchronously composed components cannot reach a state in which each of them has an
output enabled. We have shown in Lem. 4.2 that this condition characterizes half-duplex
systems. Similarly, Lemma 4 in [18] states when executing an internal choice test case on an
implementation behaving as internal choice input-output labeled transition system, the input
and output queues cannot be empty simultaneously, i.e., we get half-duplex communication.
Despite of these technical similarities the goals of our work are quite different since we study
safe communication and not correctness of implementations w.r.t. specifications.

Last not least let us point out that the first part of our work is closely related to the
study of half-duplex systems by Cécé and Finkel [10]. Due to their decidability result
concerning unspecified reception (for two communicating CFSMs) it is not really surprising
that we get an effective characterization of asynchronous compatibility and a way to decide
it for components with finitely many states. A main difference to [10] is that we consider
also synchronous systems and relate their compatibility properties to the asynchronous
versions. Moreover, we deal with open systems as well and consider a weak variant of
asynchronous compatibility, which we believe adds much power to the strong version. The

COMPATIBILITY PROPERTIES OF COMMUNICATING COMPONENTS 25

same differentiation applies to [17]. Finally, as explained above, a significant part of our
work deals with systems which are not necessarily half-duplex and this was not an issue
in [10].

8. Conclusion

We have proposed techniques to verify asynchronous compatibility and deadlock-freeness of
communicating components by using criteria that are based on synchronous composition
and hence decidable (if the components are finite state). We have shown that strong (weak)
synchronous and strong (weak) asynchronous compatibility are equivalent if the asynchronous
system is half-duplex. For non-half duplex systems we have provided decidable conditions
which are sufficient for weak asynchronous compatibility.

The IOTSes used here for modeling component behaviors are special cases of modal I/O-
transition systems [16], for which synchronous composition and synchronous compatibility
checking is implemented in the MIO Workbench [3], an Eclipse-based verification tool. Since
the verification conditions studied in this paper involve only synchronous compatibility
checking, we can use the MIO Workbench for this purpose.

The most important issues for future research concern (a) the consideration of other
compatibility problems, e.g., that a component waiting for some input will eventually get
it [5], and (b) the extension of our approach to treat multi-component systems. The latter
is a particularly challenging task. For instance, the results on two component half-duplex
systems cannot be directly extended since systems with n > 2 components and pairwise
half-duplex communication have the power of Turing machines; see [10].

Acknowledgment

We are grateful to Alexander Knapp for his suggestion to use output queues (instead of
input queues) for the formalization of asynchronous compatibility. Moreover, we would like
to thank anonymous reviewers for many useful comments and suggestions.

References

[1] Luca de Alfaro and Thomas A. Henzinger. Interface Automata. Proc. 9th ACM SIGSOFT Ann. Symp.
Foundations of Software Engineering (FSE’01), 109–120. ACM Press, 2001.

[2] Sebastian S. Bauer, Rolf Hennicker, and Stephan Janisch. Interface Theories for (A)synchronously
Communicating Modal I/O-Transition Systems. Proc. Foundations for Interface Technologies, FIT’10,
EPTCS 46, 1–8, 2010.

[3] Sebastian S. Bauer, Philip Mayer, Andreas Schroeder, and Rolf Hennicker. On Weak Modal Compatibility,
Refinement, and the MIO Workbench. Proc. 16th Int. Conf. Tools and Algorithms for the Construction
and Analysis of Systems (TACAS’10), Lecture Notes in Computer Science 6015, 175–189. Springer, 2010.

[4] Daniel Brand and Pitro Zafiropulo. On Communicating Finite-State Machines. J. ACM, 30(2), 323–342,
1983.

[5] Maurice H. ter Beek, Josep Carmona, Rolf Hennicker, and Jetty Kleijn. Communication Requirements
for Team Automata. Proc. 19th IFIP Int. Conf. on Coordination Models and Languages (COORDINA-
TION’17), Lecture Notes in Computer Science. Springer, to appear 2017.

[6] Harsh Beohar, and Pieter J. L. Cuijpers. Avoiding Diamonds in Desynchronisation. Sci. Comput.
Program., 91, 45-69, 2014.

[7] Harsh Beohar. Refinement of Communication and States in Models of Embedded Systems. Faculty of
Mathematics and Computer Science, Technische Universiteit Eindhoven, 2013.

26 ROLF HENNICKER AND MICHEL BIDOIT

[8] Carlos Canal, Ernesto Pimentel, and José M. Troya. Compatibility and Inheritance in Software Architec-
tures. Sci. Comput. Program., 41(2), 105–138, 2001.

[9] Josep Carmona and Jetty Kleijn. Compatibility in a Multi-component Environment. Theor. Comput.
Sci., 484, 1–15, 2013.

[10] Gérard Cécé and Alain Finkel. Verification of Programs with Half-duplex Communication. Inf. Comput.,
202(2), 166–190, 2005.

[11] Lorenzo Clemente, Frédéric Herbreteau, and Grégoire Sutre. Decidable Topologies for Communicating
Automata with FIFO and Bag Channels. Proc. 25th Int. Conf. on Concurrency Theory (CONCUR’14),
Lecture Notes in Computer Science 8704, 281–296. Springer, 2014.

[12] Serge Haddad, Rolf Hennicker, and Mikael H. Møller. Channel Properties of Asynchronously Composed
Petri Nets. Proc. Application and Theory of Petri Nets and Concurrency, Lecture Notes in Computer
Science 7927, 369–388. Springer, 2013.

[13] Rolf Hennicker, Michel Bidoit, and Thanh-Son Dang. On Synchronous and Asynchronous Compatibility
of Communicating Components. Proc. 18th IFIP Int. Conf. on Coordination Models and Languages
(COORDINATION’16), Lecture Notes in Computer Science 9686, 138–156. Springer, 2016.

[14] Rolf Hennicker, Stephan Janisch and Alexander Knapp. Refinement of Components in Connection-Safe
Assemblies with Synchronous and Asynchronous Communication. Foundations of Computer Software.
Future Trends and Techniques for Development, 15th Monterey Workshop 2008, Lecture Notes in
Computer Science 6028, 154–180. Springer, 2008.

[15] Salvatore La Torre, P. Madhusudan, and Gennaro Parlato. Context-Bounded Analysis of Concurrent
Queue Systems. Proc. 14th Int. Conf. on Tools and Algorithms for the Construction and Analysis of
Systems (TACAS’08), Lecture Notes in Computer Science 4963, 299–314. Springer, 2008.

[16] Kim Guldstrand Larsen, Ulrik Nyman, and Andrzej Wasowski. Modal I/O Automata for Interface and
Product Line Theories. Proc.16th European Symposium on Programming, ESOP’07, Lecture Notes in
Computer Science 4421, 64–79. Springer, 2007.

[17] Étienne Lozes and Jules Villard. Reliable Contracts for Unreliable Half-Duplex Communications. Proc.
8th International Workshop on Web Services and Formal Methods WS-FM’11, Lecture Notes in Computer
Science 7176, 2–16. Springer, 2011.

[18] Neda Noroozi, Ramtin Khosravi, Mohammad Reza Mousavi, and Tim A. C. Willemse. Synchrony and
Asynchrony in Conformance Testing. Software and System Modeling, 14 (1), 149-172, 2015.

[19] Meriem Ouederni, Gwen Salaün, and Tevfik Bultan. Compatibility Checking for Asynchronously
Communicating Software. Proc. Formal Aspects of Component Software - 10th International Symposium,
FACS’13, Lecture Notes in Computer Science 8348, 310–328. Springer, 2013.

[20] Jean-Baptiste Raclet, Eric Badouel, Albert Benveniste, Benôıt Caillaud, Axel Legay, and Roberto
Passerone. A Modal Interface Theory for Component-based Design. Fundam. Inform., 108 (1-2), 119–149,
2011.

[21] Martin Weiglhofer. Automated Software Conformance Testing. PhD thesis, TU Graz, 2009.
[22] Daniel M. Yellin, and Robert E. Strom. Protocol Specifications and Component Adaptors. ACM Trans.

Program. Lang. Syst., 19 (2), 292-333, 1997.

Appendix A. Transitions of Ω(A)⊗ Ω(B)

• If a ∈ inΩ(A)⊗Ω(B):

– a ∈ inA r outB and sA
a−→As

′
A

then ((sA, qA), (sB, qB))
a−→Ω(A)⊗Ω(B)((s′A, qA), (sB, qB)),

– a ∈ inB r outA and sB
a−→B s

′
B

then ((sA, qA), (sB, qB))
a−→Ω(A)⊗Ω(B)((sA, qA), (s′B, qB)).

• If a ∈ outΩ(A)⊗Ω(B):

– a ∈ outA r inB and sA
a−→As

′
A

then ((sA, qA), (sB, qB))
a−→Ω(A)⊗Ω(B)((s′A, qA), (sB, qB)),

COMPATIBILITY PROPERTIES OF COMMUNICATING COMPONENTS 27

– a ∈ outB r inA and sB
a−→B s

′
B

then ((sA, qA), (sB, qB))
a−→Ω(A)⊗Ω(B)((sA, qA), (s′B, qB)).

• If a ∈ intA⊗B = intA ∪ intB ∪ (outA ∩ inB) ∪ (outB ∩ inA):

– a ∈ intA and sA
a−→As

′
A

then ((sA, qA), (sB, qB))
a−→Ω(A)⊗Ω(B)((s′A, qA), (sB, qB)),

– a ∈ intB and sB
a−→B s

′
B

then ((sA, qA), (sB, qB))
a−→Ω(A)⊗Ω(B)((sA, qA), (s′B, qB)).

– a ∈ outA ∩ inB (hence a ∈ outQoutAB
) and sB

a−→B s
′
B

then ((sA, aqA), (sB, qB))
a−→Ω(A)⊗Ω(B)((sA, qA), (s′B, qB)),

– a ∈ outB ∩ inA (hence a ∈ outQoutBA
) and sA

a−→As
′
A

then ((sA, qA), (sB, aqB))
a−→Ω(A)⊗Ω(B)((s′A, qA), (sB, qB)).

• If aB ∈ shared(A,B)B = (outA ∩ inB)B ∪ (outB ∩ inA)B:

– aB ∈ (outA ∩ inB)B (hence aB ∈ inQoutAB
) and sA

a−→As
′
A

then (sA, qA)
aB−→Ω(A)(s′A, qAa) and

then ((sA, qA), (sB, qB))
aB−→Ω(A)⊗Ω(B)((s′A, qAa), (sB, qB)),

– aB ∈ (outB ∩ inA)B (hence a ∈ inQoutBA
) and sB

a−→B s
′
B

then (sB, qB)
aB−→Ω(B)(s′B, qBa) and

then ((sA, qA), (sB, qB))
aB−→Ω(A)⊗Ω(B)((sA, qA), (s′B, qBa)).

Appendix B. Proofs

Proof of Lemma 4.2:
It remains to prove (3) ⇒ (1): We have to show that for each reachable state in R(Ω(A)⊗
Ω(B)) one of the conditions (i), (ii), or (iii) in the definition of property P is valid. The
initial state ((startA, ε), (startB, ε)) satisfies (i). Now assume given an arbitrary transition

(∗) ((sA, qA), (sB, qB))
a−→

Ω(A)⊗ Ω(B)
((s′A, q

′
A), (s′B, q

′
B))

with reachable state ((sA, qA), (sB, qB)). It is sufficient to show that for any kind of action
a ∈ actΩ(A)⊗Ω(B), if ((sA, qA), (sB, qB)) satisfies one of the conditions (i), (ii), or (iii) then
((s′A, q

′
A), (s′B, q

′
B)) satisfies (i), (ii), or (iii). The proof is done by case distinction on the

form of the action a.
Case 1 : In this case we consider actions a ∈ actA r shared(A,B) which can freely occur in
A, i.e. without involving B or the output queue of A. This covers the cases a ∈ inA r outB ,
a ∈ outA r inB, and a ∈ intA. In all these cases the transition (*) has the form

((sA, qA), (sB, qB))
a−→

Ω(A)⊗ Ω(B)
((s′A, qA), (sB, qB))

and is induced by a transition sA
a−→As

′
A. It is trivial that, if ((sA, qA), (sB, qB)) satisfies (i)

((iii) resp.), then ((s′A, qA), (sB, qB)) satisfies (i) ((iii) resp.). If the state ((sA, qA), (sB, qB))
satisfies (ii), then qA = a1 . . . am 6= ε and qB = ε and there exists rA ∈ statesA such that:

28 ROLF HENNICKER AND MICHEL BIDOIT

(rA, sB) ∈ R(A⊗B) and rA
a1=⇒A . . .

am=⇒AsA. Since
am=⇒A can involve, besides am, arbitrary

free actions of A and sA
a−→As

′
A is such a free action, we obtain rA

a1=⇒A . . .
am=⇒As

′
A. Thus

((s′A, qA), (sB, qB)) satisfies (ii).
Case 2 : In this case we consider actions a ∈ actB r shared(A,B) which can freely occur in
B, i.e. without involving A or the output queue of B. This case is proved analogously to
case 1.
Case 3 : a ∈ outA ∩ inB. Then the transition (*) has the form

((sA, aqA), (sB, qB))
a−→

Ω(A)⊗ Ω(B)
((sA, qA), (s′B, qB))

and is induced by a transition sB
a−→B s

′
B. In this case ((sA, aqA), (sB, qB)) can only satisfy

(ii) such that: qA = aa2 . . . am 6= ε and qB = ε and there exists rA ∈ statesA such

that (rA, sB) ∈ R(A ⊗ B) and rA
a

=⇒ArA
a2=⇒...

am=⇒AsA. Thereby rA
a

=⇒ArA is of the form

rA
FA−−→∗As

a−→As
′ FA−−→∗ArA. Since FA involves only free actions of A (not shared with B), and

since (rA, sB) ∈ R(A⊗B) we have that (s, sB) ∈ R(A⊗B). Now the two transitions s
a−→As

′

and sB
a−→B s

′
B synchronize and reach (s′, s′B) ∈ R(A ⊗ B). Obviously, s′

a2=⇒...

am=⇒AsA. If

m = 0 then qA = qB = ε and s′
FA−−→∗AsA. Thus (sA, s

′
B) ∈ R(A⊗B) and condition (i) is valid

for ((sA, qA), (s′B, qB)). Otherwise, since (s′, s′B) ∈ R(A⊗B) and s′
a2=⇒...

am=⇒AsA, condition
(ii) holds for ((sA, qA), (s′B, qB)).
Case 4 : a ∈ outB ∩ inA. This case is analogous to case 3.
Case 5 : aB ∈ (outA ∩ inB)B. Then the transition (*) has the form

((sA, qA), (sB, qB))
aB−→

Ω(A)⊗ Ω(B)
((s′A, qAa), (sB, qB))

and is induced by a transition sA
a−→As

′
A with a ∈ outA ∩ inB.

If ((sA, qA), (sB, qB)) satisfies condition (i), then qA = qB = ε and (sA, sB) ∈ R(A⊗B).

Since sA
a−→As

′
A we have sA

a
=⇒As

′
A. Thus, taking rA = sA condition (ii) is satisfied for

((s′A, qAa), (sB, qB)).
If ((sA, qA), (sB, qB)) satisfies condition (ii), then qA = a1 . . . am 6= ε and qB = ε and

there exists rA ∈ statesA such that: (rA, sB) ∈ R(A ⊗ B) and rA
a1=⇒A . . .

am=⇒AsA. Since

sA
a−→As

′
A we get a sequence rA

a1=⇒A . . .
am=⇒AsA

a
=⇒As

′
A. Thus ((s′A, qAa), (sB, qB)) satisfies

condition (ii).
If ((sA, qA), (sB, qB)) would satisfy condition (iii), then qA = ε and qB = b1 . . . bm 6= ε

and there exists rB ∈ statesB such that: (sA, rB) ∈ R(A⊗B) and rB
b1=⇒B rB

b2=⇒...

bm=⇒B sB.

Here rB
b1=⇒B rB has the form rB

FB−−→∗B s
b1−→B s

′ FB−−→∗B rB. Since FB involves only free actions of
B (not shared with A), and since (sA, rB) ∈ R(A⊗B) we get (sA, s) ∈ R(A⊗B). Now we

have two transitions sA
a−→As

′
A with a ∈ (outA ∩ inB) and s

b1−→B s
′ with b1 ∈ (outB ∩ inA)

which contradicts the assumption (3). Hence ((sA, qA), (sB, qB)) cannot satisfy condition
(iii).
Case 6 : aB ∈ (outB ∩ inA)B. This case is analogous to case 5.

Proof of Lemma 4.8:
The proof is by induction on the length of the derivation of (sA, sB) ∈ R(A⊗B). For the
initial state (startA, startB) of A⊗ B we have ((startA, ε), (startB, ε)) ∈ R(Ω(A)⊗ Ω(B)).
For the induction step it is enough to show that whenever a state (sA, sB) ∈ R(A ⊗ B)

COMPATIBILITY PROPERTIES OF COMMUNICATING COMPONENTS 29

satisfies ((sA, ε), (sB, ε)) ∈ R(Ω(A)⊗ Ω(B)), then for any possible transition

(∗) (sA, sB)
a−→
A⊗B

(s′A, s
′
B)

the successor state (s′A, s
′
B) satisfies ((s′A, ε), (s

′
B, ε)) ∈ R(Ω(A)⊗ Ω(B)). The proof is done

by case distinction on the form of the action a.
Case 1 : a ∈ actA r shared(A,B). Then the transition (*) has the form

(sA, sB)
a−→
A⊗B

(s′A, sB)

and is induced by a transition sA
a−→As

′
A. We assume ((sA, ε), (sB, ε)) ∈ R(Ω(A) ⊗

Ω(B)). Since a is not shared with B, the transition sA
a−→As

′
A induces a transition

((sA, ε), (sB, ε))
a−→Ω(A)⊗Ω(B)((s′A, ε), (sB, ε)). Since ((s′A, ε), (sB, ε)) ∈ R(Ω(A) ⊗ Ω(B)),

(s′A, sB) satisfies the desired property.
Case 2 : a ∈ actB r shared(A,B). The proof is symmetric to Case 1.

Case 3 : a ∈ outA ∩ inB. Then the transition (*) is induced by two transition sA
a−→As

′
A

with a ∈ outA and sB
a−→B s

′
B with a ∈ inB. We assume ((sA, ε), (sB, ε)) ∈ R(Ω(A)⊗Ω(B)).

Since a ∈ outA ∩ inB, we get a transition

((sA, ε), (sB, ε))
aB−→

Ω(A)⊗ Ω(B)
((s′A, a), (sB, ε))

with enqueue action aB. On the other hand, the transition sB
a−→B s

′
B gives rise to a transition

((s′A, a), (sB, ε))
a−→Ω(A)⊗Ω(B)((s′A, ε), (s

′
B, ε)) with dequeue action a. Since ((s′A, ε), (s

′
B, ε)) ∈

R(Ω(A)⊗ Ω(B)), (s′A, s
′
B) satisfies the desired property.

Case 4 : a ∈ outB ∩ inA. The proof is symmetric to Case 3.

Proof of Lemma 5.4:
The initial state ((startA, ε), (startB, ε)) satisfies QA and QB. Then we consider transitions

(∗) ((sA, qA), (sB, qB))
a−→

Ω(A)⊗ Ω(B)
((s′A, q

′
A), (s′B, q

′
B))

and show that if ((sA, qA), (sB, qB)) satisfies QA and QB then ((s′A, q
′
A), (s′B, q

′
B)) satisfies

QA and QB . The proof is performed by case distinction on the form of the action a. Then the
result follows by induction on the length of the sequence of transitions to reach an arbitrary
state ((sA, qA), (sB, qB)) ∈ R(Ω(A)⊗ Ω(B)). In the following we show that property QA is
preserved by transitions (*). For QB the proof is completely analogous.
Case 1 : In this case we consider actions a ∈ actA r shared(A,B) which can freely occur in
A, i.e. without involving B or the output queue of A. This covers the cases a ∈ inA r outB ,
a ∈ outA r inB, and a ∈ intA. In all these cases the transition (*) has the form

((sA, qA), (sB, qB))
a−→

Ω(A)⊗ Ω(B)
((s′A, qA), (sB, qB))

and is induced by a transition sA
a−→As

′
A. If ((sA, qA), (sB, qB)) satisfies (i), then qA = ε and

(sA, sB) ∈ R(A⊗BB
outBA

). Since a ∈ actA r shared(A,B) and A and B are asynchronously

composable, a ∈ actA r shared(A,BB
outBA

). Hence, since sA
a−→As

′
A, also (s′A, sB) ∈ R(A⊗

BB
outBA

) and therefore ((s′A, qA), (sB, qB)) satisfies (i).
If ((sA, qA), (sB, qB)) satisfies (ii), then qA = a1 . . . am 6= ε and there exists rA ∈ statesA

such that: (rA, sB) ∈ R(A ⊗ BB
outBA

) and rA
a1

V
A
. . .

am
V

A
sA. Since

am
V

A
can involve, besides

30 ROLF HENNICKER AND MICHEL BIDOIT

am, arbitrary actions of A which are not in outA ∩ inB and sA
a−→As

′
A is such a free action,

we obtain rA
a1

V
A
. . .

am
V

A
s′A. Thus ((s′A, qA), (sB, qB)) satisfies (ii).

Case 2 : In this case we consider actions b ∈ actB r shared(A,B) which can freely occur in
B, i.e. without involving A or the output queue of B. This covers the cases b ∈ inB r outA,
b ∈ outB r inA, and b ∈ intB. In all these cases the transition (*) has the form

((sA, qA), (sB, qB))
b−→

Ω(A)⊗ Ω(B)
((sA, qA), (s′B, qB))

and is induced by a transition sB
b−→B s

′
B . If ((sA, qA), (sB, qB)) satisfies (i), then qA = ε and

(sA, sB) ∈ R(A⊗BB
outBA

). Since b ∈ actB r shared(A,B) and A and B are asynchronously

composable, b ∈ actB r shared(A,BB
outBA

). Hence, since sB
b−→B s

′
B , also sB

b−→BB
outBA

s′B and

(sA, s
′
B) ∈ R(A⊗BB

outBA
). Therefore ((sA, qA), (s′B, qB)) satisfies (i).

If ((sA, qA), (sB, qB)) satisfies (ii), then qA = a1 . . . am 6= ε and there exists rA ∈ statesA

such that: (rA, sB) ∈ R(A ⊗ BB
outBA

) and rA
a1

V
A
. . .

am
V

A
sA. Since sB

b−→B s
′
B involves

only a free action of B and hence of BB
outBA

, (rA, s
′
B) ∈ R(A ⊗ BB

outBA
) and therefore

((sA, qA), (s′B, qB)) satisfies (ii).
Case 3 : a ∈ outA ∩ inB. Then the transition (*) has the form

((sA, aqA), (sB, qB))
a−→

Ω(A)⊗ Ω(B)
((sA, qA), (s′B, qB))

and is induced by a transition sB
a−→B s

′
B. In this case ((sA, aqA), (sB, qB)) can only satisfy

(ii) such that: qA = aa2 . . . am 6= ε and there exists rA ∈ statesA such that: (rA, sB) ∈ R(A⊗
BB

outBA
) and rA

a
V

A
rA

a2

V
A
. . .

am
V

A
sA. Thereby rA

a
V

A
rA is of the form rA

YA−−→∗As
a−→As

′ YA−−→∗ArA.
Since YA involves arbitrary actions of A but no action in outA ∩ inB, and since (rA, sB) ∈
R(A ⊗ BB

outBA
) we have that (s, sB) ∈ R(A ⊗ BB

outBA
).7 Now the transition s

a−→As
′ can

synchronize with sB
a−→B s

′
B and therefore also with sB

a−→BB
outBA

s′B. Thus (s′, s′B) ∈ R(A⊗

BB
outBA

). Obviously, s′
a2

V
A
. . .

am
V

A
sA. If m < 2 then qA = ε and s′

YA−−→∗AsA. Thus
(sA, s

′
B) ∈ R(A⊗BB

outBA
) and condition (i) is valid for ((sA, qA), (s′B, qB)). Otherwise, since

(s′, s′B) ∈ R(A⊗BB
outBA

) and s′
a2

V
A
. . .

am
V

A
sA, condition (ii) holds for ((sA, qA), (s′B, qB)).

Case 4 : a ∈ outB ∩ inA. Then the transition (*) has the form

((sA, qA), (sB, aqB))
a−→

Ω(A)⊗ Ω(B)
((s′A, qA), (sB, qB))

and is induced by a transition sA
a−→As

′
A. If ((sA, qA), (sB, aqB)) satisfies (i), then qA = ε

and (sA, sB) ∈ R(A⊗BB
outBA

). Since sA
a−→As

′
A and a is not a shared action of A and BB

outBA
,

since outBA = outB ∩ inA has been renamed to BB
outBA

, also (s′A, sB) ∈ R(A⊗BB
outBA

) and
therefore ((s′A, qA), (sB, qB)) satisfies (i).

If ((sA, qA), (sB, aqB)) satisfies (ii), then qA = a1 . . . am 6= ε and there exists rA ∈ statesA

such that: (rA, sB) ∈ R(A⊗BB
outBA

) and rA
a1

V
A
. . .

am
V

A
sA. Since sA

a−→As
′
A and a is not in

outA ∩ inB we get rA
a1

V
A
. . .

am
V

A
s′A. Thus ((s′A, qA), (sB, qB)) satisfies (ii).

7Note that the shared actions of A and BB
outBA

are outA ∩ inB .

COMPATIBILITY PROPERTIES OF COMMUNICATING COMPONENTS 31

Case 5 : aB ∈ (outA ∩ inB)B. Then the transition (*) has the form

((sA, qA), (sB, qB))
aB−→

Ω(A)⊗ Ω(B)
((s′A, qAa), (sB, qB))

and is induced by a transition sA
a−→As

′
A with a ∈ outA ∩ inB.

If ((sA, qA), (sB, qB)) satisfies (i), then qA = ε and (sA, sB) ∈ R(A ⊗ BB
outBA

). Since

sA
a−→As

′
A we have sA

a
V

A
s′A. Thus, taking rA = sA condition (ii) is satisfied for

((s′A, qAa), (sB, qB)).
If ((sA, qA), (sB, qB)) satisfies (ii), then qA = a1 . . . am 6= ε and there exists rA ∈ statesA

such that: (rA, sB) ∈ R(A ⊗ BB
outBA

) and rA
a1

V
A
. . .

am
V

A
sA. Since sA

a−→As
′
A we get a

sequence rA
a1

V
A
. . .

am
V

A
sA

a
V

A
s′A. Thus ((s′A, qAa), (sB, qB)) satisfies condition (ii).

Case 6 : bB ∈ (outB ∩ inA)B = outBBA. Then the transition (*) has the form

((sA, qA), (sB, qB))
bB−→

Ω(A)⊗ Ω(B)
((sA, qA), (s′B, qBb))

and is induced by a transition sB
b−→B s

′
B with b ∈ outB ∩ inA = outBA.

If ((sA, qA), (sB, qB)) satisfies (i), then qA = ε and (sA, sB) ∈ R(A ⊗ BB
outBA

). Since

sB
b−→B s

′
B we have sB

bB−→BB
outBA

s′B. Moreover, since A and B are asynchronously composable,

bB is not a shared action with A. Hence (sA, s
′
B) ∈ R(A⊗BB

outBA
). Thus ((sA, qA), (s′B, qBb))

satisfies (i).
If ((sA, qA), (sB, qB)) satisfies (ii), then qA = a1 . . . am 6= ε and there exists rA ∈ statesA

such that: (rA, sB) ∈ R(A ⊗ BB
outBA

) and rA
a1

V
A
. . .

am
V

A
sA. Since sB

b−→B s
′
B we have

sB
bB−→BB

outBA

s′B and since bB is not a shared action with A we get (rA, s
′
B) ∈ R(A⊗BB

outBA
).

Thus ((sA, qA), (s′B, qBb)) satisfies (ii).

This work is licensed under the Creative Commons Attribution-NoDerivs License. To view a
copy of this license, visit https://creativecommons.org/licenses/by-nd/4.0/ or send a
letter to Creative Commons, 171 Second St, Suite 300, San Francisco, CA 94105, USA, or
Eisenacher Strasse 2, 10777 Berlin, Germany

	1. Introduction
	2. I/O-Transition Systems and Their Compositions
	3. Compatibility Notions
	4. Relating Synchronous and Asynchronous Compatibility
	4.1. From Synchronous to Asynchronous Compatibility
	4.2. From Asynchronous to Synchronous Compatibility

	5. Weak Asynchronous Compatibility: The General Case
	5.1. A Criterion for Weak Asynchronous Compatibility
	5.2. On the Completeness of the Compatibility Criterion

	6. Deadlock Analysis for Communicating Components
	7. Related Work
	8. Conclusion
	Acknowledgment
	References
	Appendix A. Transitions of Omega(A) x Omega(B)
	Appendix B. Proofs

