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Abstract. In this paper, we introduce an SMT-based method that automatically synthe-
sizes a distributed self-stabilizing protocol from a given high-level specification and network
topology. Unlike existing approaches, where synthesis algorithms require the explicit de-
scription of the set of legitimate states, our technique only needs the temporal behavior
of the protocol. We extend our approach to synthesize ideal-stabilizing protocols, where
every state is legitimate. We also extend our technique to synthesize monotonic-stabilizing
protocols, where during recovery, each process can execute an most once one action. Our
proposed methods are fully implemented and we report successful synthesis of well-known
protocols such as Dijkstra’s token ring, a self-stabilizing version of Raymond’s mutual
exclusion algorithm, ideal-stabilizing leader election and local mutual exclusion, as well as
monotonic-stabilizing maximal independent set and distributed Grundy coloring.

1. Introduction

Self-stabilization [7] has emerged as one of the prime techniques for forward fault recovery.
A self-stabilizing protocol satisfies two requirements: (1) Convergence ensures that starting
from any arbitrary state, the system reaches a set of legitimate states (denoted in the sequel
by LS ) with no external intervention within a finite number of execution steps, provided no
new faults occur; (2) Closure indicates that the system remains in LS thereafter.

As Dijkstra mentions in his belated proof of self-stabilization [8], designing self-stabilizing
systems is a complex task. Proving the correctness of these algorithms is even more tedious.
Thus, having access to automated methods (as opposed to manual techniques such as [6])
for synthesizing correct self-stabilizing systems is highly desirable. However, synthesizing
self-stabilizing protocols incurs high time and space complexity [21]. The techniques proposed

A preliminary version of the paper has appeared in [13].
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in [1, 4, 10, 22] attempt to cope with this complexity using heuristic algorithms, but none of
these algorithms are complete; i.e., they may fail to find a solution although there exists one.

1.1. Motivation. Recently, Faghih and Bonakdarpour [14] proposed a sound and complete
method to synthesize finite-state self-stabilizing systems based on SMT-solving. However, the
shortcoming of this work as well as the techniques in [4,10,22] is that an explicit description
of LS is needed as an input to the synthesis algorithm. The problem is that developing a
formal predicate for legitimate states is not at all a straightforward task. For instance, the
predicate for the set of legitimate states for Dijkstra’s token ring algorithm with three-state
machines [7] for three processes is the following:

LS = ((x0 + 1 ≡3 x1) ∧ (x1 + 1 6≡3 x2)) ∨
((x1 = x0) ∧ (x1 + 1 6≡3 x2)) ∨
((x1 + 1 ≡3 x0) ∧ (x1 + 1 6≡3 x2)) ∨
((x0 + 1 6≡3 x1) ∧ (x1 + 1 6≡3 x0) ∧ (x1 + 1 ≡3 x2))

where ≡3 denotes modulo 3 equality and variable xi belongs to process i. Obviously,
developing such a predicate requires substantial expertise and insight and is, in fact, the
key to the solution. Ideally, the designer should only express the basic requirements of the
protocols (i.e., the existence of a unique token and its fair circulation), instead of an obscure
predicate such as the one above.

1.2. Contributions. In this paper, we propose an automated approach to synthesize self-
stabilizing systems given (1) the network topology, and (2) the high-level specification of
legitimate states in the linear temporal logic (LTL) [25]. We also investigate automated
synthesis of two important refinements of self-stabilization, namely ideal stabilization [24]
and monotonic stabilization [28]. Ideally stabilizing protocols address two drawbacks of
self-stabilizing protocols, namely exhibiting unpredictable behavior during recovery and poor
compositional properties. In order to keep the specification as abstract as possible, the input
LTL formula may include a set of uninterpreted predicates. In designing ideal-stabilizing
systems, the transition relation of the system and interpretation function of uninterpreted
predicates must be found such that the specification is satisfied in every state.

Monotonic stabilization [28] relates to the behavior of a self-stabilizing system during
stabilization, as it mandates a participating processor to change its output at most once after
a transient fault occurs. So, a legitimate state is reached after at most one output change at
every process. Intuitively, monotonic stabilization prevents unnecessary oscillations during
stabilization, and guarantees recovery in a monotonic way (the system always moves closer
to a legitimate state). Generic approaches to monotonic stabilization [28] require huge
memory and time resources as the monotonic stabilization layer is added to an existing
protocol. Finding specific monotonically stabilizing protocols that are memory and time
efficient is notoriously difficult, yet highly appealing. These difficulties further motivate the
need for developing methods that can automatically synthesize distributed self-, ideal-, and
monotonic-stabilizing protocols.

Our synthesis approach is inspired by bounded-synthesis [15], where we transform the
input specification into a set of SMT constraints. If the SMT instance is satisfiable, then
a witness solution to its satisfiability encodes a distributed protocol that meets the input
specification and topology. If the instance is not satisfiable, then we are guaranteed that no
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Figure 1: Input and output of our synthesis method.

protocol that satisfies the input specification exists. The inputs and output of our synthesis
method are depicted in Fig. 1.

We also conduct several case studies using the model finder Alloy [19]. In the case of
self-stabilizing systems, we successfully synthesize Dijkstra’s [7] (three-state machine) token
ring and Raymond’s [26] mutual exclusion algorithms without explicit legitimate states as
input. We also synthesize ideal-stabilizing leader election and local mutual exclusion (in a
line topology) protocols, as well as monotonic-stabilizing distributed maximal independent
set protocols and Grundy coloring.

Comparison to the conference version. A preliminary version of this article appeared in the
36th International Conference on Formal Techniques for Distributed Objects, Components,
and Systems (FORTE’16). This article extends the conference version as follows:

• We extend our synthesis approach to synthesize monotonic-stabilizing protocols.
• We conduct three case studies on synthesizing monotonic-stabilizing distributed maximal

independent set, and Grundy coloring.

More precisely, Subsections 3.4, 6.3.4, and 7.3 are our added contributions.

Organization. In Sections 2 and 3, we present the preliminary concepts on the shared-memory
model and self-stabilization. Section 4 formally states the synthesis problems. Formalization
of timing models and symmetry in distributed programs are described in Section 5. In
Section 6, we describe our SMT-based technique, while Section 7 is dedicated to our case
studies. In Section 8, we respond to some of the questions often raised about this line of
work. We discuss the related work in Section 9 and make concluding remarks Section 10.

2. Model of Computation

2.1. Distributed Programs. Throughout the paper, let V be a finite set of discrete
variables. Each variable v ∈ V has a finite domain Dv. A state is a mapping from each
variable v ∈ V to a value in its domain Dv. We call the set of all possible states the state
space. A transition in the state space is an ordered pair (s0, s1), where s0 and s1 are two
states. We denote the value of a variable v in state s by v(s).

Definition 2.1. A process π over a set V of variables is a tuple 〈Rπ,Wπ, Tπ〉, where

• Rπ ⊆ V is the read-set of π; i.e., variables that π can read;
• Wπ ⊆ Rπ is the write-set of π; i.e., variables that π can write, and
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• Tπ is the set of transitions of π, such that (s0, s1) ∈ Tπ implies that for each variable
v ∈ V , if v(s0) 6= v(s1), then v ∈Wπ.

Notice that Definition 2.1 requires that a process can only change the value of a variable
in its write-set (third condition), but not blindly (second condition). We say that a process
π = 〈Rπ,Wπ, Tπ〉 is enabled in state s0, if there exists a state s1, such that (s0, s1) ∈ Tπ.

Definition 2.2. A distributed program is a tuple D = 〈ΠD, TD〉, where

• ΠD is a set of processes over a common set V of variables, such that:
– for any two distinct processes π1, π2 ∈ ΠD, we have Wπ1 ∩Wπ2 = ∅;
– for each process π ∈ ΠD and each transition (s0, s1) ∈ Tπ, the following read restriction

holds:

∀s′0, s′1 :

((
∀v ∈ Rπ :

(
v(s0) = v(s′0) ∧ v(s1) = v(s′1)

))
∧

(
∀v 6∈ Rπ : v(s′0) = v(s′1)

))
=⇒ (s′0, s

′
1) ∈ Tπ (2.1)

• TD is the set of transitions and is the union of transitions of all processes:

TD =
⋃

π∈ΠD

Tπ

Intuitively, the read restriction in Definition 2.2 imposes the constraint that for each process
π, each transition in Tπ depends only on reading the variables that π can read. Thus, each
transition forms an equivalence class in TD, which we call a group of transitions. The key
consequence of read restrictions is that during synthesis, if a transition is included (respec-
tively, excluded) in TD, then its entire corresponding group must be included (respectively,
excluded) in TD as well. Also, notice that TD is defined in such a way that D resembles
an asynchronous distributed program, where process transitions execute in an interleaving
fashion.

Example. Let V = {x0, x1, x2} be the set of variables, where Dx0 = Dx1 = Dx2 = {0, 1, 2}.
Let D = 〈ΠD, TD〉 be the distributed program, where ΠD = {π0, π1, π2}. Each process
πi (0 ≤ i ≤ 2) can write variable xi. Also, Rπ0 = {x0, x1}, Rπ1 = {x0, x1, x2}, and
Rπ2 = {x1, x2}. Notice that following Definition 2.2 and read/write restrictions of π0, the
following (arbitrary) transitions

t1 =
(
[x0 = 1, x1 = 1, x2 = 0], [x0 = 2, x1 = 1, x2 = 0]

)
t2 =

(
[x0 = 1, x1 = 1, x2 = 2], [x0 = 2, x1 = 1, x2 = 2]

)
are in the same group, since π0 cannot read x2. This implies that if t1 is included in the set
of transitions of a distributed program, then so should be t2. Otherwise, execution of t1 by
π0 will depend on the value of x2, which, of course, π0 cannot read.

Definition 2.3. A computation of D = 〈ΠD, TD〉 is an infinite sequence of states s =
s0s1 · · · , such that: (1) for all i ≥ 0, we have (si, si+1) ∈ TD, and (2) if a computation reaches
a state si, from where there is no state s 6= si, such that (si, s) ∈ TD, then the computation
stutters at si indefinitely. Such a computation is called a terminating computation.
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2.2. Predicates. Let D = 〈ΠD, TD〉 be a distributed program over a set V of variables.
The global state space of D is the set of all possible global states of D:

ΣD =
∏
v∈V

Dv

The local state space of a process π ∈ ΠD is the set of all possible local states of π, that is,
the states that π can fully read:

Σπ =
∏
v∈Rπ

Dv

Definition 2.4. An interpreted global predicate of a distributed program D = 〈ΠD, TD〉 is
a subset of ΣD and an interpreted local predicate of a process π ∈ ΠD is a subset of Σπ.

Definition 2.5. Let D = 〈ΠD, TD〉 be a distributed program. An uninterpreted global
predicate up is an uninterpreted Boolean function from ΣD. An uninterpreted local predicate
lp is an uninterpreted Boolean function from Σπ, for some π ∈ ΠD.

The interpretation of an uninterpreted global predicate is a Boolean function from the
set of all states:

upI : ΣD 7→ {true, false}
Similarly, the interpretation of an uninterpreted local predicate for a process π is a Boolean

function:
lpI : Σπ 7→ {true, false}

Throughout the paper, we use ‘uninterpreted predicate’ to refer to either uninterpreted
global or local predicate, and use ‘global (local) predicate’ to refer to interpreted global
(local) predicate.

2.3. Topology. A topology specifies the communication model of a distributed program.

Definition 2.6. A topology is a tuple T = 〈V, |ΠT |, RT ,WT 〉, where

• V is a finite set of finite-domain discrete variables;
• |ΠT | ∈ N≥1 is the number of processes;
• RT is a mapping [0, |ΠT | − 1] 7→ 2V from a process index to its read-set, and
• WT is a mapping [0, |ΠT | − 1] 7→ 2V from a process index to its write-set, such that
WT (i) ⊆ RT (i), for all i ∈ [0, |ΠT | − 1].

Definition 2.7. A distributed program D = 〈ΠD, TD〉 has topology T = 〈V, |ΠT |, RT ,WT 〉
iff

• each process π ∈ ΠD is defined over V
• |ΠD| = |ΠT |
• there is a bijective function g : [0, |ΠT | − 1] 7→ ΠD such that

∀i ∈ [0, |ΠT | − 1] : (RT (i) = Rg(i)) ∧ (WT (i) = Wg(i))
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3. Formal Characterization of Self-, Monotonic-, and Ideal-Stabilization

We specify the behavior of a distributed stabilizing program based on (1) the functional
specification, and (2) the recovery specification. The functional specification is intended to
describe what the program is required to do in a fault-free scenario (e.g., mutual exclusion
or leader election). The recovery behavior stipulates Dijkstra’s idea of self-stabilization in
spite of distributed control [7].

3.1. The Functional Behavior. We use LTL [25] to specify the functional behavior of a
stabilizing program. Since LTL is a commonly-known language, we refrain from presenting
its syntax and semantics (F , G , X , and U denote the ‘finally’, ‘globally’, ‘next’, and ‘until’
operators, respectively). In our framework, an LTL formula may include uninterpreted
predicates. Thus, we say that a program D satisfies an LTL formula ϕ from an initial
state in the set I, and write D, I |= ϕ iff there exists an interpretation function for each
uninterpreted predicate in ϕ, such that all computations of D, starting from a state in I
satisfy ϕ. Also, the semantics of the satisfaction relation is the standard semantics of LTL
over Kripke structures (i,e., computations of D that start from a state in I).

Example 3.1. Consider the problem of token passing in a ring topology (i.e., token ring),
where each process πi has a variable xi with the domain Dxi = {0, 1, 2}. This problem has
two functional requirements:

Safety: The safety requirement for this problem is that in each state, only one process has
the token and, hence, can execute. To formulate this requirement, we assume that each
process πi is associated with a local uninterpreted predicate tk i, which shows whether πi
is enabled. Let LP = {tk i | 0 ≤ i < n}. Thus, a process πi can execute a transition, if
and only if tk i is true. The LTL formula, ϕTR, expresses the above requirement for a
ring of size n:

ϕTR = ∀i ∈ [0, n− 1] : tk i ⇐⇒
(
∀val ∈ {0, 1, 2} : (xi = val)⇒ X (xi 6= val)

)
Using the set of uninterpreted predicates, the safety requirement can be expressed by

the following LTL formula:

ψsafety = ∃i ∈ [0, n− 1] : (tk i ∧ ∀j 6= i : ¬tk j)

Note that although safety requirements generally need the G operator, we do not need
it, as every state in a stabilizing system can be an initial state.

Fairness: This requirement express that for every process πi and starting from each state,
the computation should reach a state, where πi is enabled:

ψfairness = ∀i ∈ [0, n− 1] : (F tk i)

Another way to guarantee this requirement is that processes get enabled in a clockwise
order in the ring, which can be formulated as follows:

ψfairness = ∀i ∈ [0, n− 1] : (tk i ⇒ X tk (i+1 mod n))

Note that the latter approach is a stronger constraint, and would prevent us to synthesize
bidirectional protocols, such as Dijkstra’s three-state solution.
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Thus, the functional requirements of the token ring protocol is

ψTR = ψsafety ∧ ψfairness

Observe that following Definition 2.3, ψTR ensures deadlock-freedom as well.

Example 3.2. Consider the problem of local mutual exclusion on a line topology, where each
process πi has a Boolean variable xi. The requirements of this problem are as follows:

Safety: In each state, (1) at least one process is enabled, that is, (i.e., deadlock-freedom),
and (2) no two neighboring processes are enabled (i.e., local mutual exclusion). To
formulate these requirements, we associate with each process πi a local uninterpreted
predicate tk i, which is true when πi is enabled:

ϕLME = ∀i ∈ [0, n− 1] : tk i ⇐⇒
(

(xi ⇒ X¬xi) ∧ (¬xi ⇒ Xxi)
)

Thus, LP = {tk i | 0 ≤ i < n} and the safety requirement can be formulated by the
following LTL formula:

ψsafety = (∃i ∈ [0, n− 1] : tk i) ∧ (∀i ∈ [0, n− 2] : ¬(tk i ∧ tk (i+1)))

Fairness: Each process is eventually enabled:

ψfairness = ∀i ∈ [0, n− 1] : (F tk i)

Thus, the functional requirement of the local mutual exclusion protocol is

ψLME = ψsafety ∧ ψfairness

3.2. Self-Stabilization. A self-stabilizing system [7] is one that always recovers a good
behavior (typically, expressed in terms of a set of legitimate states), starting from any
arbitrary initial state.

Definition 3.1. A distributed program D = 〈ΠD, TD〉 is self-stabilizing for LTL functional
specification ψ iff there exists a global predicate LS 1 (called the set of legitimate states),
such that:

• Functional behavior: D,LS |= ψ
• Strong convergence: D,ΣD |= F LS
• Closure: D,ΣD |= (LS ⇒ X LS )

1LS is a set of states, which is implicitly specified in terms of an LTL formula. When it appears on the
left-hand side of |=, it means that the formula on the right-hand side needs to hold in LS , rather than in the
whole state-space ΣD. When LS appears in right-hand side of |=, it is part of the formula, which we need to
hold.
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Notice that the strong convergence property ensures that starting from any state, any
computation converges to a legitimate state of D within a finite number of steps. The closure
property ensures that execution of the program is closed in the set of legitimate states. In
the sequel, we will omit the state space ΣD and LTL specification ψ, when they are clear
from the context or they are irrelevant.

There exist several results on impossibility of distributed self-stabilization (e.g., in
token circulation and leader election in anonymous networks [18]). Thus, weaker forms of
stabilization have been introduced in the literature of distributed computing. One example
is weak-stabilizing distributed programs [16], which is defined as follows.

Definition 3.2. A distributed program D = 〈ΠD, TD〉 is weak-stabilizing for a set LS of
legitimate states if and only if the following conditions hold:

• Weak convergence: For each state s0 in the state space of D, there exists a computation
s = s0s1 · · · of D, where there exists i ≥ 0, such that si ∈ LS.2

• Functional behavior: As defined in Definition 3.1
• Closure: As defined in Definition 3.1.

Notice that unlike strong self-stabilizing programs, in a weak-stabilizing program, there
may exist execution cycles outside the set of legitimate states. In the rest of the paper,
we use ‘strong self-stabilization’ (respectively, ‘strong convergence’) and ‘self-stabilization’
(respectively, ‘convergence’) interchangeably.

3.3. Ideal-Stabilization. Self-stabilization does not predict program behavior during re-
covery, which may be undesirable for some applications. A simple way to integrate program
behavior during recovery is to include it in the specification itself. This way, the proto-
col must ensure that every configuration in the specification is legitimate (so, the only
recovery behaviors are those included in the specification). Such a protocol is called ideal
stabilizing [24].

Definition 3.3. Let ψ be an LTL specification and D = 〈ΠD, TD〉 be a distributed program.
We say that D is ideal stabilizing for ψ iff D,ΣD |= ψ.

The existence of ideal stabilizing protocols for LTL specifications (that only mandate
legitimate states) is an intriguing question, as one has to find a “clever” set of transitions and
an interpretation function for every uninterpreted predicate (if included in the specification),
such that the system satisfies the specification at all times. Note that there is a specification
for every system to which it ideally stabilizes [24], and that is the specification that includes
all of the system computations (ψ = true). In this paper, we do the reverse; meaning that
getting an LTL specification ψ, we synthesize a distributed system that ideally stabilizes
to ψ.

3.4. Monotonic-Stabilization. Monotonic stabilization [28] also relates to prescribing
program behavior during recovery, as it requires every process to change its variable at most
once after a transient fault occurs. This simple requirement induces desirable properties
for fault recovery. For example, processes cannot go back and forth between states: once
a variable has been changed, it remains so until a legitimate state is reached, improving
stability while recovering.

2Observe that weak convergence cannot be expressed in LTL.
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A generic approach to monotonic stabilization [28] is for each process to collect variable
information at some distance that depends on the considered problem, and change its
variable only if it is absolutely sure that it should do so. The space and time required to
implement such a scheme is huge, even for relatively simple problems. In order to design
a viable monotonically stabilizing protocol, a problem specific approach is necessary. This
indeed makes manual design of monotonic-stabilizing protocols a tedious task.

Definition 3.4. A distributed program D = 〈ΠD, TD〉 is monotonic-stabilizing iff

• D is self-stabilizing with some set LS of legitimate states, and
• for every (recovery) computation s = s0s1 · · · sn of D, where for all i ∈ [0, n− 1], we have
si ∈ ¬LS and sn ∈ LS, the following holds:

∃j ∈ [0, n− 1] : ∃π ∈ ΠD : ∃v ∈Wπ : v(sj) 6= v(sj+1) ⇒
∀k ∈ [0, n− 1]− {j} : ∀v ∈Wπ : v(sk) = v(sk+1)

4. Problem Statement

Our goal is to develop a synthesis algorithm that takes as input (1) system topology, and (2)
two LTL formulas ϕ and ψ that involve a set LP of uninterpreted predicates, and generate
as output a self-, monotonic-, or ideal-stabilizing protocol. For instance, in token passing on
a ring, ψTR includes safety and fairness, which should hold in the set of legitimate states,
while ϕTR is a general requirement that we specify on every uninterpreted predicate tk i.
Since in the case of self-stabilizing systems, we do not get LS as a set of states (global
predicate), we refer to our problem as “synthesis of self-stabilizing systems with implicit
LS”.

Problem statement 1 (self/monotonic-stabilization). Given is

(1) a topology T = 〈V, |ΠT |, RT ,WT 〉;
(2) two LTL formulas ϕ and ψ that involve a set LP of uninterpreted predicates.

The synthesis algorithm is required to identify as output (1) a distributed program
D = 〈ΠD, TD〉, (2) an interpretation function for every local predicate lp ∈ LP , and
(3) the global state predicate LS , such that D has topology T , D,ΣD |= ϕ, and D is
self/monotonic-stabilizing for ψ.

Problem statement 2 (ideal-stabilization). Given is

(1) a topology T = 〈V, |ΠT |, RT ,WT 〉
(2) two LTL formulas ϕ and ψ that involve a set LP of uninterpreted predicates.

The synthesis algorithm is required to generate as output (1) a distributed program
D = 〈ΠD, TD〉, and (2) an interpretation function for every local predicate lp ∈ LP ,
such that D has topology T and D,ΣD |= (ϕ ∧ ψ).

5. Timing Models and Symmetry in Distributed Programs

We would like our synthesis solution to also take as input the timing model as well as
symmetry requirements among processes. These constraints are defined in Subsections 5.1
and 5.2.
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5.1. Timing Models. Two commonly-considered timing models in the literature of dis-
tributed computing are synchronous and asynchronous programs [23]. In an asynchronous
distributed program, every transition of the program is a transition of one and only one of
its processes (central daemon model).

Definition 5.1. A distributed program D = 〈ΠD, TD〉 is asynchronous if and only if the
following condition holds:

ASYN = ∀(s0, s1) ∈ TD :
(

(∃π ∈ ΠD : (s0, s1) ∈ Tπ) ∨

((s0 = s1) ∧ ∀π ∈ ΠD : ∀s : (s0, s) 6∈ Tπ)
)

(5.1)

Thus, the set of transitions of an asynchronous program is simply the union of transitions
of all its processes. That is,

TD =
⋃

π∈ΠD

Tπ

An asynchronous distributed program resembles a system, where process transitions execute
in an interleaving fashion.

In a synchronous distributed program, on the other hand, in every step, all enabled
processes have to take a step simultaneously.

Definition 5.2. A distributed program D = 〈ΠD, TD〉 is synchronous if and only if the
following condition holds:

SYN =∀(s0, s1) ∈ TD : ∀π ∈ ΠD :(
∃s : ((s0, s) ∈ Tπ) ∧ ∀v ∈Wπ : v(s1) = v(s)

)
∨ (5.2)(

∀s : ((s0, s) 6∈ Tπ) ∧ ∀v ∈Wπ : v(s0) = v(s1)
)

In other words, a distributed program is synchronous, if and only if each transition
(s0, s1) ∈ TD is obtained by execution of all enabled processes (the ones that have a transition
starting from s0). Hence, the value of the variables in their write-sets change in s1 accordingly.
Also, for all non-enabled processes, the value of the variables in their write-sets do not
change from s0 to s1.

5.2. Symmetry. Symmetry in distributed programs refers to similarity of behavior of
different processes.

Definition 5.3. A distributed program D = 〈ΠD, TD〉 is called symmetric if and only if
for any two distinct processes π, π′ ∈ ΠD, there exists a bijection f : Rπ → Rπ′, such that
the following condition holds:

SYM = ∀(s0, s1) ∈ Tπ : ∃(s′0, s′1) ∈ Tπ′ :(
∀v ∈ Rπ : (v(s0) = f(v)(s′0))

)
∧
(
∀v ∈Wπ : (v(s1) = f(v)(s′1))

) (5.3)
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In other words, in a symmetric distributed program, the transitions of a process can be
determined by a simple variable mapping from another process. A distributed program is
called asymmetric if it is not symmetric.

6. SMT-based Synthesis Solution

Our technique is inspired by our SMT-based method in [14]. In particular, we transform the
problem input into an SMT instance. An SMT instance consists of two parts: (1) a set of
entity declarations (in terms of sets, relations, and functions), and (2) first-order modulo-
theory constraints on the entities. An SMT-solver takes as input an SMT instance and
determines whether or not the instance is satisfiable. If so, then a witness generated by the
SMT solver is the answer to our synthesis problem. We describe the SMT entities obtained
in our transformation in Subsection 6.1. SMT constraints appear in Subsections 6.2- 6.3.
Note that using our approach in [14], we can synthesize different systems considering types
of timing models (i.e., synchronous and asynchronous), symmetric and asymmetric, as well
as strong- and weak-stabilizing protocols.

6.1. SMT Entities. Recall that the inputs to our problems include a topology T =
〈V, |ΠT |, RT ,WT 〉, and two LTL formulas on a set LP of uninterpreted predicates. Let
D = 〈ΠD, TD〉 denote a distributed program that is a solution to our problem. In our SMT
instance, we include:

• A set Dv for each v ∈ V , which contains the elements in the domain of v.
• A set Bool that contains the elements true and false.

• A set called S, whose cardinality is

∣∣∣∣ ∏
v∈V

Dv

∣∣∣∣. This set represents the state space of the

synthesized distributed program.
• An uninterpreted function v val for each variable v; i.e., v val : S 7→ Dv.
• An uninterpreted function lp val for each uninterpreted predicate lp ∈ LP ; i.e, lp val :
S 7→ Bool .
• An uninterpreted relation Ti ⊆ S × S that represents the transition relation for process πi

in the synthesized program.
• An uninterpreted function γ, from each state to a natural number (γ : S 7→ N). This

function is used to capture convergence to the set of legitimate states.
• An uninterpreted function LS : S 7→ Bool .

The last two entities are only included in the case of Problem Statement 1.

Example. For Example 3.1, we include the following SMT entities:

• Dx0 = Dx1 = Dx2 = {0, 1, 2}, Bool = {true, false}, set S, where |S| = 27
• x0 val : S 7→ Dx0 , x1 val : S 7→ Dx1 , x2 val : S 7→ Dx2

• T0 ⊆ S × S, T1 ⊆ S × S, T2 ⊆ S × S , γ : S 7→ N , LS : S 7→ Bool

6.2. General SMT Constraints.
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6.2.1. State Distinction. Any two states differ in the value of some variable:

∀s, s′ ∈ S : (s 6= s′) ⇒ (∃v ∈ V : v val(s) 6= v val(s′)) (6.1)

6.2.2. Local Predicates Constraints. Let LP be the set of uninterpreted predicates used in
formulas ϕ and ψ. For each uninterpreted local predicate lpπ, we need to ensure that its
interpretation function is a function of the variables in the read-set of π. To guarantee this
requirement, for each lpπ ∈ LP , we add the following constraint to the SMT instance:

∀s, s′ ∈ S :
(
∀v ∈ Rπ : (v(s) = v(s′)) ⇒ (lpπ(s) = lpπ(s′))

)
Example. For Example 3.1, we add the following constraint for process π1:

∀s, s′ ∈ S :
(
(x0(s) = x0(s′)) ∧ (x1(s) = x1(s′)) ∧ (x2(s) = x2(s′))

)
⇒

(tk1(s) = tk1(s′))
(6.2)

6.2.3. Constraints for an Asynchronous System. To synthesize an asynchronous distributed
program, we add the following constraint for each transition relation Ti:

∀(s, s′) ∈ Ti : ∀v /∈WT (i) : v val(s) = v val(s′) (6.3)

Constraint 6.3 ensures that in each relation Ti, only process πi can take a transition. By
introducing |ΠT | transition relations, we consider all possible interleaving of processes taking
transitions. Note that this constraint is a formulation of the third item in Definition 2.1.

6.2.4. Read Restrictions. To ensure that D meets the read restrictions given by T and
Definition 2.2, we add the following constraint for each process index:

∀(s0, s1) ∈ Ti : ∀s′0, s′1 :
((
∀v ∈ Rπ : (v(s0) = v(s′0) ∧ v(s1) = v(s′1))

)
∧(

∀v 6∈ Rπ : v(s′0) = v(s′1)
))
⇒ (s′0, s

′
1) ∈ Ti

(6.4)

6.3. Specific SMT Constraints for Self- and Ideal-Stabilizing Problems. Before
presenting the constraints specific to each of our problem statements, we present the
formulation of an LTL formula as an SMT constraint. We use this formulation to encode the
ψ and ϕ formulas (given as input) as ψSMT and ϕSMT , and add them to the SMT instance.

6.3.1. SMT Formulation of an LTL Formula. SMT formulation of an LTL formula is
presented in [15]. Below, we briefly discuss the formulation of LTL formulas without nested
temporal operators. For formulas with nested operators, the formulation based on universal
co-Büchi automata [15] needs to be applied.

SMT formulation of X : A formula of the form XP is translated to an SMT constraint as
below 3:

∀s, s′ ∈ S : ∀i ∈ [0, |ΠT | − 1] : (s, s′) ∈ Ti ⇒ P (s′) (6.5)

3Note that for a formula P , P (s) is acquired by replacing each variable v with v(s).
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SMT formulation of U : Inspired by bounded synthesis [15], for each formula of the form
P UQ, we define an uninterpreted function γi : S 7→ N and add the following constraints to
the SMT instance:

∀s, s′ ∈ S : ∀i ∈ [0, |ΠT | − 1] : ¬Q(s) ∧ (s, s′) ∈ Ti ⇒ (P (s) ∧ γi(s
′) > γi(s)) (6.6)

∀s ∈ S : ¬Q(s) ⇒ ∃i ∈ [0, |ΠT | − 1] : ∃s′ ∈ S : (s, s′) ∈ Ti (6.7)

The intuition behind Constraints 6.6 and 6.7 can be understood easily. If we can assign
a natural number to each state, such that along each outgoing transition from a state in
¬Q, the number is strictly increasing, then the path from each state in ¬Q should finally
reach Q or get stuck in a state, since the size of state space is finite. Also, there cannot
be any loops whose states are all in ¬Q, as imposed by the annotation function. Finally,
Constraint 6.7 ensures that there is no deadlock state in ¬Q states.

6.3.2. Synthesis of Self-Stabilizing Systems. In this section, we present the constraints specific
to synthesizing self-stabilizing systems.

Closure (CL): The formulation of the closure constraint in our SMT instance is as follows:

∀s, s′ ∈ S : ∀i ∈ [0, |ΠT | − 1] : (LS (s) ∧ (s, s′) ∈ Ti) ⇒ LS (s′) (6.8)

Strong Convergence (SC ): Similar to the constraints presented in Section 6.3.1, our SMT
formulation for SC is a simplification of Constraints 6.6 and 6.7 (recall that F LS =
trueU LS ):

∀s, s′ ∈ S : ∀i ∈ {0 · · · |ΠT | − 1} : ¬LS (s) ∧ (s, s′) ∈ Ti ⇒ γ(s′) > γ(s) (6.9)

∀s ∈ S : ¬LS (s) ⇒ ∃i ∈ {0 · · · |ΠT | − 1} : ∃s′ ∈ S : (s, s′) ∈ Ti (6.10)

General Constraints on Uninterpreted Predicates: As mentioned in Section 4, one of the
inputs to our problem is an LTL formula, ϕ describing the role of uninterpreted predicates.
Considering ϕSMT to be the SMT formulation of ϕ, we add the following SMT constraint to
the SMT instance:

∀s ∈ S : ϕSMT (6.11)

Constraints on LS: Another input to our problem is the LTL formula ψ that includes
requirements, which should hold in the set of legitimate states. We formulate this formula
as SMT constraints using the method discussed in Section 6.3.1. Considering ψSMT to be
the SMT formulation of the ψ formula, we add the following SMT constraint to the SMT
instance:

∀s ∈ S : LS (s) ⇒ ψSMT (6.12)
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Example. Continuing with Example 3.1, we add the following constraints to encode ϕTR:

∀s ∈ S : ∀i ∈ [0, n− 1] : tk i(s) ⇐⇒ (∀j ∈ [0, n− 1] : j 6= i ⇒
@s′ ∈ S : (s, s′) ∈ Tj)

Note that the asynchronous constraint does not allow change of xi for Tj , where j 6= i. The
other requirements of the token ring problem are ψsafety and ψfairness, which should hold in
the set of legitimate states. To guarantee them, the following SMT constraints are added to
the SMT instance:

∀s ∈ S : LS (s) ⇒ (∃i ∈ [0, n− 1] : (tk i(s) ∧ ∀j 6= i : ¬tk j(s)))

∀s ∈ S : LS (s) ⇒ ∀i ∈ [0, n− 1] : (tk i(s) ∧ (s, s′) ∈ Ti)⇒ tk (i+1 mod n)(s
′)

6.3.3. Synthesis of Ideal-Stabilizing Systems. We now present the constraints specific to
Problem Statement 2. The only such constraints is related to the two LTL formulas ϕ and
ψ. To this end, we add the following to our SMT instance:

∀s ∈ S : ϕSMT ∧ ψSMT (6.13)

Example. We just present ψLME for Example 3.2, as ϕLME is similar to Example 3.1:

∀s ∈ S :
(

(∃i ∈ [0, |ΠT | − 1] : tk i(s)) ∧ (∀i ∈ [0, |ΠT | − 2] : ¬(tk i(s) ∧ tk (i+1)(s)))
)

∀s, s′ ∈ S : ∀i, j ∈ [0, |ΠT | − 1] : ¬tk i(s) ∧ (s, s′) ∈ Tj =⇒ γi(s
′) > γi(s)

∀s ∈ S : ∀i ∈ {0, |ΠT | − 1] : ¬tk i(s) =⇒ ∃j ∈ [0, |ΠT | − 1] :

∃s′ ∈ S : (s, s′) ∈ Tj
Note that adding a set of constraints to an SMT instance is equivalent to adding their
conjunction.

6.3.4. Synthesis of Monotonic-Stabilizing Systems. In order to synthesize a
monotonic-stabilizing protocol, we need to add a constraint to guarantee that in each
recovery path, each process executes at most once transition. In order to enforce this
property, for each process πi, we define a Boolean function

flag i : S 7→ {true, false}
and include the following constraint to the SMT instance:

∀s, s′ ∈ S : ∀i ∈ [0, |ΠT | − 1] : (¬LS (s) ∧ (s, s′) ∈ Ti) =⇒
(flag i(s) ∧ ¬flag i(s

′))
(6.14)

∀s ∈ S : ∀i, j ∈ {0, . . . , |ΠT | − 1} : (¬LS (s) ∧ i 6= j ∧ (s, s′) ∈ Tj ∧
¬flag i(s)) =⇒ ¬flag i(s

′)
(6.15)

The above two constraints guarantee that in every path starting from a state in ¬LS ,
each process executes at most once. This can easily be proved by contradiction. Assume
that in the set of executions of the resulting protocol, there exists a recovery path from a
state in ¬LS to a state in LS , in which a process (assume W.L.O.G πi) executes more than
once. Based on Constraint 6.14, each time πi executes a transition, the value of flag i should
change from true to false. First time, πi executes, this change in the value of flag i happens.
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Also, based on Constraint 6.15, it is guaranteed that in the execution of any other process,
flag i does not change. Now, based on Constraint 6.14, in the second execution of πi, flag i
should change from true to false. But we concluded that flag i is already set to false, and
cannot be changed by the execution of any other process, which is a contradiction.

7. Case Studies and Experimental Results

We used the Alloy [19] model finder tool for our experiments. Alloy performs relational
reasoning over quantifiers, which means that we did not have to unroll quantifiers over their
domains. Note that Alloy may convert the model into a SAT instance. The results presented
in this section are based on experiments on a machine with Intel Core i5 2.6 GHz processor
with 8GB of RAM. We report our results in both cases of success and failure for finding a
solution. Failure is due to the impossibility of self-, monotonic-, or ideal-stabilization for
certain problems. All of our case studies are available within our tool Assess [11]. We
present our results for self-, ideal-, and monotonic-stabilization in Sections 7.1, 7.2, and 7.3,
respectively.

7.1. Case Studies for Self-Stabilization.

7.1.1. Self-Stabilizing Token Ring. In Example 3.1, each process πi maintains a variable
xi with domain {0, 1, 2}. The read-set of a process is its own and its neighbors’ variables,
and its write-set contains its own variable. For example, in case of three processes for π1,
RT (1) = {x0, x1, x2} and WT (1) = {x1}. Token possession and mutual exclusion constraints
follow Example 3.1. Table 1 presents our results for different input settings. We present one
of the solutions we found for the asynchronous strong stabilizing token ring problem in a
ring of three processes 4. First, we present the interpretation functions for the uninterpreted
local predicates.

tk0 ⇔ x0 = x2, tk1 ⇔ x1 6= x0, tk2 ⇔ x2 6= x1

The synthesized solution for transition relations for each process is the following:

π0 : (x0 = x2) → x0 := (x0 + 1) mod 3

π1 : (x1 6= x0) → x1 := x0

π2 : (x2 6= x1) → x2 := x1

Note that our synthesized solution is identical to that of Dijkstra’s k-state solution. We
could not synthesize the three-state solution, as in this protocol, the token does not always
circulate in one direction (it changes its circulation direction), but we have this constraint
in ψfairness, as presented in Example 3.1.

4We manually simplified the output of Alloy for presentation, although this task can be also automated.
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# of Processes Self-Stabilization Timing Model Symmetry Time (sec)

3 strong asynchronous asymmetric 4.21

3 weak asynchronous asymmetric 1.91

4 strong asynchronous asymmetric 748.81

4 weak asynchronous asymmetric 100.03

Table 1: Results for synthesizing token ring.

# of Processes Self-Stabilization Timing Model Time (sec)

3 strong synchronous 0.84

4 strong synchronous 16.07

4 weak synchronous 26.8

Table 2: Results for synthesizing mutual exclusion on a tree (Raymond’s algorithm).

7.1.2. Mutual Exclusion in a Tree. In the second case study, the processes form a directed
rooted tree, and the goal is to design a self-stabilizing protocol, where at each state of LS ,
one and only one process is enabled. In this topology, each process πj has a variable hj with
domain {i | πi is a neighbor of πj} ∪ {j}. The problem specification is the following:

Safety: We assume each process πi is associated with an uninterpreted local predicate tk i,
which shows whether πi is enabled. Thus, mutual exclusion is the following formula:

ψsafety = ∃i ∈ [0, n− 1] : (tk i ∧ ∀j 6= i : ¬tk j)

Fairness: Each process πi is eventually enabled:

ψfairness = ∀i ∈ [0, n− 1] : (F tk i)

The formula, ψR given as input is ψR = ψsafety ∧ ψfairness.
Using the above specification, we synthesized a synchronous self-stabilizing systems,

which resembles Raymond’s mutual exclusion algorithm on a tree [26]. Table 2 shows the
experimental results. We present one of our solutions for token circulation on a tree, where
there is a root with two leaves. The interpretation functions for the uninterpreted local
predicates are as follows:

∀i : tk i ⇔ hi = i

Another part of the solution is the transition relation. Assume π0 to be the root
process, and π1 and π2 to be the two leaves of the tree. Hence, the variable domains are
Dh0 = {0, 1, 2}, Dh1 = {0, 1}, and Dh2 = {0, 2}. Fig. 2 shows the transition relation over
states of the form (h0, h1, h2) as well as pictorial representation of the tree and token, where
the states in LS are shaded.

7.2. Case Studies for Ideal-Stabilization.

7.2.1. Leader Election. In leader election, a set of processes choose a leader among themselves.
Normally, each process has a subset of states in which it is distinguished as the leader. In a
legitimate state, exactly one process is in its leader state subset, whereas the states of all
other processes are outside the corresponding subset.

We consider line and tree topologies. Each process has a variable ci and we consider
domains of size two and three to study the existence of an ideal-stabilizing leader election
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(1, 1, 2) (0, 0, 0) (2, 0, 2) (0, 1, 0)

(0, 1, 2)(1, 1, 0)

(2, 0, 0)

(2, 1, 0) (1, 0, 2) (0, 0, 2)

(2, 1, 2)

(1, 0, 0)

Figure 2: Self-stabilizing mutual exclusion in a tree of size 3 (Raymond’s algorithm).

# of Proc. Timing Model Topology Time (sec)

3 asynchronous line/2-state 0.034

4 asynchronous line/2-state 0.73

4 asynchronous line/3-state 115.21

4 asynchronous tree/2-state 0.63

4 asynchronous tree/3-state 12.39

Table 3: Results for ideal-stabilizing leader election.

protocol. To synthesize such a protocol, we associate an uninterpreted local predicate li for
each process πi, whose value shows whether or not the process is the leader. Based on the
required specification, in each state of the system, there is one and only one process πi, for
which li = true:

ψsafety = ∃i ∈ [0, n− 1] : (li ∧ ∀j 6= i : ¬lj)
The results for this case study are presented in Table 3. In the topology column, the structure
of the processes along with the domain of variables is reported. In the case of 4 processes on
a line topology and tree/2-state, no solution is found. The time we report in the table for
these cases are the time needed to report unsatisfiability by Alloy.

We present the asynchronous solution for the case of three processes on a line, where
each process πi has a Boolean variable ci. Since the only specification for this problem is
state-based (safety), there is no constraint on the transition relations, and hence, we only
present the interpretation function for each uninterpreted local predicate li.

l0 = (c0 ∧ ¬c1) l1 = (¬c0 ∧ ¬c1) ∨ (c1 ∧ ¬c2) l2 = (c1 ∧ c2)

7.2.2. Local Mutual Exclusion. Our next case study is local mutual exclusion, as discussed
in Example 3.2. We consider a line topology in which each process πi has a Boolean variable
ci. The results for this case study are presented in Table 4.

The solution we present for the local mutual exclusion problem corresponds to the
case of asynchronous system with four processes on a ring. Note that for each process πi,
when tk i is true, the transition Ti changes the value of ci. Hence, having the interpretation
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# of Proc. Timing Model Symmetry Time (sec)

3 asynchronous asymmetric 0.75

4 asynchronous asymmetric 24.44

Table 4: Results for synthesizing ideal stabilizing local mutual exclusion.

functions of tk i, the definition of transitions Ti are determined as well. Below, we present
the interpretation functions of the uninterpreted local predicates tk i.

tk0 = (c0 ∧ c1) ∨ (¬c0 ∧ ¬c1)

tk1 = (¬c0 ∧ c1 ∧ c2) ∨ (c0 ∧ ¬c1 ∧ ¬c2)

tk2 = (¬c1 ∧ c2 ∧ ¬c3) ∨ (c1 ∧ ¬c2 ∧ c3)

tk3 = (c2 ∧ c3) ∨ (¬c2 ∧ ¬c3)

7.3. Case Studies for Monotonic-Stabilization.

7.3.1. Maximal Independent Set. Given an undirected graph G = (V,E), we say that S ⊆ V
is an independent set of G, if no two vertices in S share an edge in E. The set S is a
maximal independent set (MIS), if it is not a proper subset of any other independent set. We
use a similar topology as used in the literature [27]. Assuming processes to be the vertices
of the graph, we consider a Boolean variable Ind i for each process πi. The value of Ind i
determines whether or not πi is part of the independent set or not. A legitimate state is the
one where processes with true values of their Ind variables form an independent set. For
example, considering a ring of four processes, the set of legitimate states can be specified by
the following predicate:

(Ind0(s) ∧ ¬Ind1(s) ∧ Ind2(s) ∧ ¬Ind3(s)) ∨
(¬Ind0(s) ∧ Ind1(s) ∧ ¬Ind2(s) ∧ Ind3(s))

In this case study, our goal is to synthesize monotonic-stabilizing MIS protocols for
ring topologies, where each process can read its own variable, as well as the variables of
its neighbors, and can only write to its own variable. The results of this case study are
presented in Table 5. The last column indicates whether or not Alloy is able to find a
solution. Note that since our method is complete, unsatisfiability means that there exists no
protocol satisfying the specified requirements. The following is the synthesized symmetric
asynchronous protocol for the case of three processes in a ring topology. Note that in the
case of symmetric protocol, all processes execute similarly.

πi : ¬Ind i ∧ ¬Ind l ∧ ¬Indr → Ind i := true

Ind i ∧ Ind l → Ind i := false

In the above synthesized protocol, r is the index of the right process, or r = (i+ 1) mod 3,
and l is the index of the left process, or l = (i− 1) mod 3. With a simple observation of
the above synthesized protocol, we can see that in any path starting from a non-legitimate
state, each process takes at most one action. We also present one of the solutions for the
case of 4 processes in a ring topology.
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# of Proc. Timing Model Symmetry Time (sec) Result

3 asynchronous asymmetric 0.35 sat

3 asynchronous symmetric 0.09 sat

3 synchronous asymmetric 0.08 sat

4 asynchronous asymmetric 1.35 sat

4 asynchronous symmetric 0.9 unsat

5 asynchronous asymmetric 6.33 sat

6 asynchronous asymmetric 63.24 sat

Table 5: Results for monotonic stabilizing maximal independent set in ring.

π0 : Ind0 ∧ Ind3 → Ind0 := false

π1 : ¬Ind1 ∧ ¬Ind2 → Ind1 := true

π2 : Ind2 ∧ Ind3 → Ind2 := false

Ind2 ∧ ¬Ind3 ∧ Ind1 → Ind2 := false

π3 : ¬Ind3 ∧ ¬Ind0 → Ind3 := true

¬Ind3 ∧ Ind0 ∧ ¬Ind2 → Ind3 := true

7.3.2. Maximal Independent Set in Unidirectional Rings. Yamauchi and Tixeuil [28] state
that monotonic stabilization requires additional information exchange between processes. In
our second case study, we attempt to limit information exchange in maximal independent
set and see whether we can still synthesize monotonic-stabilizing protocols for this problem.
We considered unidirectional rings for this case study. In other words, each process can
only read its own variable and the variable of its left process, and can write to its own
variable. For example, for a ring of three processes, Rπ0 = {Ind0, Ind2} and Wπ0 = {Ind0}.
The results for this case study are presented in Table 6. As can be seen, for the case of
asymmetric asynchronous topologies, a protocol is found for rings of even size (4 and 6),
but not for rings of odd size (3 and 5). Although, our solution is not general, but it can
give an intuition to protocol designers for a general monotonic-stabilizing protocol to solve
maximal independent in unidirectional rings. For the case of synchronous protocol with
three processes, we synthesized the following solution:

π0 : true → Ind0 := false

π1 : true → Ind1 := false

π2 : true → Ind2 := true

As can be simply observed, the synthesized topology takes every state (legitimate or
non-legitimate) to one state 〈false, false, true〉. A question that may raise for the reader is
that why a similar protocol does not work in the case of asynchronous systems. The answer
is that in the case of asynchronous systems, each step of the system is the execution of
exactly one process, and hence, one execution of such a protocol may take the system from
LS to a non-legitimate state (closure violation). For example, asynchronous execution of
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# of Proc. Timing Model Symmetry Time (sec) Result

3 asynchronous asymmetric 0.06 unsat

3 asynchronous symmetric 0.05 unsat

3 synchronous asymmetric 0.07 sat

4 asynchronous asymmetric 0.74 sat

4 asynchronous symmetric 0.44 unsat

5 asynchronous asymmetric 8.73 unsat

6 asynchronous asymmetric 85.14 sat

Table 6: Results for monotonic stabilizing maximal independent set in unidirectional ring.

the synthesized actions for the synchronous case will take the system from 〈true, false, false〉,
which is legitimate to 〈false, false, false〉, which is non-legitimate (the first action is taken).

7.3.3. Grundy Coloring. Our third case study is the problem of Grundy coloring. Considering
a graph G = (V,E), and a coloring function

color : V → [1, k]

a vertex v ∈ V is called a Grundy node if

color(v) = min
{
l ∈ [1, k] | ∀u : (v, u) ∈ E =⇒ (color(u) 6= l)

}
Simply speaking, v is colored with the smallest color not taken by any neighbor. A Grundy
coloring for a graph is one in which every node is a Grundy node.

To synthesize a monotonic-stabilizing protocol for this problem, we consider a set of
processes as the nodes of the graph, such that each process has a color variable. The designer
can specify the domain of the color variables. Each process can read its own variable, and
the variables of its neighbors, and can write to its own variable. The set of legitimate states
are those, in which each process is a Grundy node. For example, considering a ring of 4
processes, where the domain of color variables is {1, 2, 3}, the set of legitimate states can be
specified by the following predicate:

∀i ∈ {0, 1, 2, 3} :
(
color i(s) 6= color (i+1 mod 4)(s)

)
∧(

color i(s) = 2 =⇒ (color (i+1 mod 4)(s) = 1 ∨ color (i−1 mod 4)(s) = 1)
)
∧(

color i(s) = 3 =⇒ ((color (i+1 mod 4)(s) = 2 ∨ color (i−1 mod 4)(s) = 2) ∧
(color (i+1 mod 4)(s) = 1 ∨ color (i−1 mod 4)(s) = 1))

)
Note that the last three lines of the above predicate are ensuring that the assigned color to
each node is the minimum available one. Our results for this case study are presented in
Table 7. Our synthesized protocol for the case of a symmetric protocol with three processes
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# of Proc. Timing Model Topology Symmetry Time (sec) Result

3 asynchronous ring asymmetric 3.02 sat

3 asynchronous ring symmetric 2.89 sat

3 synchronous ring asymmetric 4.29 sat

3 asynchronous line asymmetric 3.93 sat

4 asynchronous ring asymmetric 102.46 sat

4 asynchronous ring symmetric 152.69 unsat

4 asynchronous line asymmetric 144.16 sat

Table 7: Results for monotonic stabilizing Grundy coloring.

in a ring is the following:

πi : (color i = 1) ∧ (color l 6= 2) ∧ (color r = 1) → color i := 2

(color i = 1) ∧ (color l = 2) ∧ (color r = 1) → color i := 3

(color i = 3) ∧ (color l = 3) ∧ (color r 6= 2) → color i := 2

(color i = 3) ∧ (color l = 2) ∧ (color r = 3) → color i := 1

(color i = 2) ∧ (color l = 2) ∧ (color r = 3) → color i := 1

(color i = 2) ∧ (color l 6= 3) ∧ (color r = 2) → color i := 3

In the above synthesized protocol, r is the index of the right process, or r = (i+ 1) mod 3,
and l is the index of the left process, or l = (i− 1) mod 3. Note that in this case, Grundy
coloring is the same as the three-coloring problem [17].

We also present our synthesized model for the case of asynchronous protocol with 4
processes in a line topology:

π0 : (color0 6= 1) ∧ (color1 = 3) → color0 := 1

(color0 = 3) ∧ (color1 = 1) → color0 := 2

π1 : (color0 = 3) ∧ (color1 = 2) → color1 := 3

(color0 = 2) ∧ (color1 = 2) → color1 := 1

(color0 = 1) ∧ (color1 6= 3) ∧ (color2 = 2) → color1 := 3

(color0 = 1) ∧ (color1 = 1) ∧ (color2 6= 2) → color1 := 3

π2 : (color1 = 3) ∧ (color2 6= 2) ∧ (color3 = 1) → color2 := 2

(color1 6= 2) ∧ (color2 = 1) ∧ (color3 = 2) → color2 := 2

(color1 6= 3) ∧ (color2 = 1) ∧ (color3 = 1) → color2 := 2

(color1 = 1) ∧ (color2 = 3) ∧ (color3 6= 2) → color2 := 2

π3 : (color2 6= 1) ∧ (color3 6= 1) → color3 := 1

(color2 = 1) ∧ (color3 = 3) → color3 := 1

8. Discussion

In this section, we address a few points often raised about this line of work.
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8.1. Applicability. First, notice that a user of our technique has to give the network
topology in terms of read/write restrictions as input. This in turn means that the user
has to choose a set of variables and their domains. Although choosing variables and their
domains may seem challenging, in most cases, the user can have educated guesses about the
variables and their domains from the specification (similar to programming practices), as in
the maximal matching example. This process may involve some trial and error though. For
example, one can start by assigning each process a Boolean variable, and if no solution is
found, increase the number of variables or their domains (increase the local state space of
each process).

8.2. Scalability. It is obvious that scalability is an issue in this method. However, note
that although our case studies deal with synthesizing a small number of processes (due to
the high complexity of synthesis), having access to a solution for a small number of processes
may give key insights to designers of self-stabilizing protocols to generalize the protocol for
any number of processes. For example, our method can be applied in cases where there
exists a cut-off point [20], and we can theoretically prove that the solution works for any
number of processes. Also, in cases, where we find that there is no solution for the problem,
this may be a hint for a general impossibility result.

One way to improve scalability is by using a counterexample-guided inductive synthesis
loop, where an over-approximation is quickly synthesized and then later refined by identifying
counterexamples.

8.3. The Choice of SMT-solver. It is noteworthy to mention that we have conducted
experiments using Z3 [5] and Yices [9] SMT solvers as well, and in the majority of our cases
studies, Alloy was the fastest model solver. We should also mention that the maximum
number of processes in the system we could synthesize differs from problem to problem. This
number solely depends on the complexity of the input specification and, hence, the SMT
instance. That means there is no fixed maximum number of processes that this method can
handle. Note that the maximum number reported in this paper is the maximum number of
processes we could find a solution for each case study in less than an hour.

8.4. Synthesis under Worst-Case Recovery Time Constraint. There are quantitative
metrics in stabilizing systems that are as crucial as closure and convergence in practice. One
of these metrics is recovery time, which is essentially the length of the path starting in a
state in ¬LS and ending in a state in LS . Recovery time is crucial in designing stabilizing
systems for some applications, such as in network protocols. In such applications, it may not
be desirable for the recovery time to exceed a specific number of steps, say w. Thus, we can
include a constraint based on the “worst-case recovery time” to our model. The constraint
is the following:

∀s ∈ S : (0 ≤ γ(s)) ∧ (γ(s) ≤ w) (8.1)

Based on the above constraint, since γ is incremented in every step, and its range is w,
the worst-case recovery time in the synthesized system cannot exceed w.
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9. Related Work

9.1. Bounded Synthesis. In bounded synthesis [15], given is a set of LTL properties, a
system architecture, and a set of bounds on the size of process implementations and their
composition. The goal is to synthesize an implementation for each process, such that their
composition satisfies the given specification. The properties are translated to a universal
co-Büchi automaton, and then a set of SMT constraints are derived from the automaton.
Our work is inspired by this idea for finding the SMT constraints for strong convergence
and also the specification of legitimate states. For other constraints, such as the ones for
synthesis of weak convergence, asynchronous and symmetric systems, we used a different
approach from bounded synthesis. The other difference is that the main idea in bounded
synthesis is to put a bound on the number of states in the resulting state-transition systems,
and then increase the bound if a solution is not found. In our work, since the purpose is to
synthesize a self-stabilizing system, the bound is the number of all possible states, derived
from the given topology.

9.2. Synthesis of Self-Stabilizing Systems. In [21], the authors show that adding strong
convergence is NP-complete in the size of the state space, which itself is exponential in the
number of variables of the protocol. Ebnenasir and Farahat [10] also proposed an automated
method to synthesize self-stabilizing algorithms. Our work is different in that the method
in [10] is not complete for strong self-stabilization. This means that if it cannot find a
solution, it does not necessarily imply that there does not exist one. However, in our method,
if the SMT-solver declares “unsatisfiability”, it means that no self-stabilizing algorithm that
satisfies the given input constraints exists. A complete synthesis technique for self-stabilizing
systems is introduced in [22]. The limitations of this work compared to ours is: (1) unlike the
approach in [22], we do not need the explicit description of the set of legitimate states, and
(2) the method in [22] needs the set of actions on the underlying variables in the legitimate
states. We also emphasize that although our experimental results deal with small numbers
of processes, our approach can give key insights to designers of self-stabilizing protocols to
generalize the protocol for any number of processes [20].

Another line of research is the work in [2]. The authors in this paper also introduce a
technique to synthesize self-stabilizing protocols based on bounded synthesis, but their main
focus is on Byzantine failures. To this end, they use a counterexample-guided inductive
synthesis loop for networks of fixed size.

9.3. Automated Addition of Fault-Tolerance. The proposed algorithm in [4] synthe-
sizes a fault-tolerant distributed algorithm from its fault-intolerant version. The distinction
of our work with this study is (1) we emphasize on self-stabilizing systems, where any system
state could be reachable due to the occurrence of any possible fault, (2) the input to our
problem is just a system topology, and not a fault-intolerant system, and (3), the proposed
algorithm in [4] is not complete. Bonakdarpour and Kulkarni studied the complexity of syn-
thesizing timed multi-phased fault recovery in [3]. Finally, we introduced efficient symbolic
heuristics for timed multi-phase recovery in [12].
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10. Conclusion

In this paper, we proposed an automated SMT-based technique for synthesizing self-, ideal-,
and monotonic-stabilizing algorithms. The required input to our approach is a high-level
specification of the algorithm, given in the linear temporal logic (LTL) and the network
topology. In the particular case of self-stabilization, this means that the detailed description
of the set of legitimate states is not required. This relaxation is significantly beneficial, as
developing a detailed predicate for legitimate states can be a tedious task. Our approach
is sound and complete for finite-state systems; i.e., it ensures correctness by construction
and if it cannot find a solution, we are guaranteed that there does not exist one. We
demonstrated the effectiveness of our approach by automatically synthesizing Dijkstra’s
token ring, Raymond’s mutual exclusion, and ideal-stabilizing leader election and local
mutual exclusion algorithms as well as monotonic-stabilizing maximal independent set and
Grundy coloring.

We note that our approach can be easily extended to incorporate additional properties of
self-stabilizing systems. For instance, one can impose a worst-case recovery time constraint
by putting an upperbound on the number of recovery steps. This can be simply achieved by
including a constraint on the γ function (i.e., Constraint 8.1).

For future, we plan to work on synthesis of probabilistic self-stabilizing systems. Another
challenging research direction is to devise synthesis methods where the number of distributed
processes is parameterized as well as cases where the size of state space of processes is infinite.
We note that parameterized synthesis of distributed systems, when there is a cut-off point is
studied in [20]. Our goal is to study parameterized synthesis for self-stabilizing systems, and
we plan to propose a general method that works not just for cases with cut-off points. We
would also like to investigate the application of techniques such as counterexample-guided
inductive synthesis to improve the scalability of the synthesis process.
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