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Abstract. Pitts and Stark’s ν-calculus is a paradigmatic total language for studying the problem of
contextual equivalence in higher-order languages with name generation. Models for the ν-calculus
that validate basic equivalences concerning names may be constructed using functor categories or
nominal sets, with a dynamic allocation monad used to model computations that may allocate fresh
names. If recursion is added to the language and one attempts to adapt the models from (nominal) sets
to (nominal) domains, however, the direct-style construction of the allocation monad no longer works.
This issue has previously been addressed by using a monad that combines dynamic allocation with
continuations, at some cost to abstraction.

This paper presents a direct-style model of a ν-calculus-like language with recursion using the
novel framework of proof-relevant logical relations, in which logical relations also contain objects
(or proofs) demonstrating the equivalence of (the semantic counterparts of) programs. Apart from
providing a fresh solution to an old problem, this work provides an accessible setting in which to
introduce the use of proof-relevant logical relations, free of the additional complexities associated with
their use for more sophisticated languages.

Introduction

Reasoning about contextual equivalence in higher-order languages that feature dynamic allocation
of names, references, objects or keys is challenging. Pitts and Stark’s ν-calculus boils the problem
down to its purest form, being a total, simply-typed lambda calculus with just names and booleans
as base types, an operation new that generates fresh names, and equality testing on names. The full
equational theory of the ν-calculus is surprisingly complex and has been studied both operationally
and denotationally, using logical relations [Sta94, PS98], environmental bisimulations [BK13] and
nominal game semantics [AGM+04, Tze12].
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Even before one considers the ‘exotic’ equivalences that arise from the (partial) encapsulation
of names within closures, there are two basic equivalences that hold for essentially all forms of
generativity:

(let x⇐new in e) = e, provided x is not free in e. (Drop)
(let x⇐new in let y⇐new in e) = (let y⇐new in let x⇐new in e) (Swap).

The (Drop) equivalence says that removing the generation of unused names preserves behaviour;
this is sometimes called the ‘garbage collection’ rule. The (Swap) equivalence says that the order in
which names are generated is immaterial. These two equations also appear as structural congruences
for name restriction in the π-calculus.

Denotational models for the ν-calculus validating (Drop) and (Swap) may be constructed using
(pullback-preserving) functors in SetW, where W is the category of finite sets and injections [Sta94],
or in FM-sets [GP02]. These models use a dynamic allocation monad to interpret possibly-allocating
computations. One might expect that moving to CpoW or FM-cpos would allow such models to adapt
straightforwardly to a language with recursion, and indeed Shinwell, Pitts and Gabbay originally
proposed [SPG03] a dynamic allocation monad over FM-cpos. However, it turned out that the
underlying FM-cppo of the proposed monad does not actually have least upper bounds for all finitely-
supported chains. A counter-example is given in Shinwell’s thesis [Shi04, page 86]. To avoid the
problem, Shinwell and Pitts [Shi04, SP05] moved to an indirect-style model, using a continuation

monad [PS98]: (−)>>
de f
= (− → 1⊥)→ 1⊥ to interpret computations. In particular, one shows that

two programs are equivalent by proving that they co-terminate when supplied with the same (or
equivalent) continuations. The CPS approach was also adopted by Benton and Leperchey [BL05],
and by Bohr and Birkedal [BB06], for modelling languages with references.

In the context of our on-going research on the semantics of effect-based program transformations
[BKHB06], we have been led to develop proof-relevant logical relations [BHN14]. These interpret
types not merely as partial equivalence relations, as is commonly done, but as a proof-relevant
generalization thereof: setoids. A setoid is like a category all of whose morphisms are isomorphisms
(a groupoid) with the difference that no equations between these morphisms are imposed. The objects
of a setoid establish that values inhabit semantic types, whilst its morphisms are understood as
explicit proofs of semantic equivalence. This paper shows how we can use proof-relevant logical
relations to give a direct-style model of a language with name generation and recursion, validating
(Drop) and (Swap). Apart from providing a fresh approach to an old problem, our aim in doing this
is to provide a comparatively accessible presentation of proof-relevant logical relations in a simple
setting, free of the extra complexities associated with specialising them to abstract regions and effects
[BHN14].

Although our model validates the two most basic equations for name generation, it is – like
simple functor categories in the total case – still far from fully abstract. Many of the subtler contextual
equivalences of the ν-calculus still hold in the presence of recursion; one naturally wonders whether
the more sophisticated methods used to prove those equivalences carry over to the proof-relevant
setting. We will show one such method, Stark’s parametric functors, which are a categorical version
of Kripke logical relations, does indeed generalize smoothly, and can be used to establish a non-trivial
equivalence involving encapsulation of fresh names. Moreover, the proof-relevant version is naturally
transitive, which is, somewhat notoriously, not generally true of ordinary logical relations.

Section 1 sketches the language with which we will be working, and a naive ‘raw’ domain-
theoretic semantics for it. This semantics does not validate interesting equivalences, but is adequate.
By constructing a realizability relation between it and the more abstract semantics we subsequently
introduce, we will be able to show adequacy of the more abstract semantics. In Section 2 we
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Γ, x : τ `v x : τ Γ `v b : bool Γ `v i : int
Γ, f : τ→ τ′, x : τ `c e : τ′

Γ `v rec f x = e : τ→ τ′

Γ `v v : int Γ `v v′ : int

Γ `v v + v′ : int

Γ `v v : τ Γ `v v′ : τ τ ∈ {int, name}

Γ `v v = v′ : bool

Γ `v v : τ

Γ `c v : τ

Γ `c new : name
Γ `c e : τ Γ, x : τ `c e′ : τ′

Γ `c let x⇐e in e′ : τ′
Γ `v v : τ→ τ′ Γ `v v′ : τ

Γ `c v v′ : τ′

Γ `v v : bool Γ `c e : τ Γ `c e′ : τ

Γ `c if v then e else e′ : τ

Figure 1: Typing rules for language with recursion and name generation.

introduce our category of setoids; these are predomains where there is a (possibly-empty) set of
‘proofs’ witnessing the equality of each pair of elements. We then describe pullback-preserving
functors from the category of worlds W into the category of setoids. Such functors will interpret
types of our language in the more abstract semantics, with morphisms between them interpreting
terms. The interesting construction here is that of a dynamic allocation monad over the category
of pullback-preserving functors. Section 7 shows how the abstract semantics is defined and related
to the more concrete one. Section 8 then shows how the semantics may be used to establish basic
equivalences involving name generation. Section 9 describes how proof-relevant parametric functors
can validate a more subtle equivalence involving encapsulation of new names.

1. Syntax and Semantics

We work with an entirely conventional CBV language, featuring recursive functions and base types
that include names, equipped with equality testing and fresh name generation (here + is just a
representative operation on integers):

τ := int | bool | name | τ→ τ′

v := x | b | i | rec f x = e | v + v′ | v = v′

e := v | new | let x⇐e in e′ | v v′ | if v then e else e′

Γ := x1 : τ1, . . . , xn : τn

The expression rec f x = e stands for an anonymous function which satisfies the recursive equation
f (x) = e where both x and f may occur in e. In the special case where f does not occur in e, the
construct degenerates to function abstraction. We thus introduce the abbreviation:

fun x.e , rec f x = e where f does not occur in e.

There are typing judgements for values, Γ `v v : τ, and computations, Γ `c e : τ, defined in an
unsurprising way; these are shown in Figure 1. We will often elide the subscript on turnstiles.
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We define a simple-minded concrete denotational semantics V·W for this language using predo-
mains (ω-cpos) and continuous maps. For types we take

VintW = Z VboolW = B VnameW = N

Vτ→ τ′W = VτW→ (N→ N × Vτ′W)⊥
Vx1 : τ1, . . . , xn : τnW = Vτ1W × · · · × VτnW

and there are then conventional clauses defining

VΓ `v v : τW : VΓW→ VτW and VΓ `c e : τW : VΓW→ (N→ N × VτW)⊥
Note that this semantics just uses naturals to interpret names, and a state monad over names to
interpret possibly-allocating computations. For allocation we take

VΓ `c new : nameW(η) = [λn.(n + 1, n)]

returning the next free name and incrementing the name supply. This semantics validates no
interesting equivalences involving names, but is adequate for the obvious operational semantics. Our
more abstract semantics, ~·�, will be related to V·W in order to establish its adequacy.

2. Setoids

We define the category of setoids, Std, to be the exact completion of the category of predomains,
see [CFS87, BCRS98]. We give here an elementary description of this category using the language
of dependent types. A setoid A consists of a predomain |A| and for any two x, y ∈ |A| a set A(x, y)
of “proofs” (that x and y are equal). The set of triples X = {(x, y, p) | p ∈ A(x, y)} must itself be a
predomain, i.e., there has to be an order relation ≤ such that (X,≤) is a predomain. The first and second
projections out of the set of triples must be continuous. Furthermore, there are continuous functions
rA : Πx ∈ |A|.A(x, x) and sA : Πx, y ∈ |A|.A(x, y)→ A(y, x) and tA : Πx, y, z.A(x, y)×A(y, z)→ A(x, z),
witnessing reflexivity, symmetry and transitivity; note that, unlike the case of groupoids, no equations
involving r, s and t are imposed.

We should explain what continuity of a dependent function like t(−,−) is: if (xi)i and (yi)i
and (zi)i are ascending chains in A with suprema x, y, z and pi ∈ A(xi, yi) and qi ∈ A(yi, zi) are
proofs such that (xi, yi, pi)i and (yi, zi, qi)i are ascending chains, too, with suprema (x, y, p) and
(y, z, q) then (xi, zi, t(pi, qi)) is an ascending chain of proofs (by monotonicity of t(−,−)) and its
supremum is (x, z, t(p, q)). Formally, such dependent functions can be reduced to non-dependent
ones using pullbacks, that is t would be a function defined on the pullback of the second and first
projections from {(x, y, p) | p ∈ A(x, y)} to |A|, but we find the dependent notation to be much
more readable. If p ∈ A(x, y) we may write p : x ∼ y or simply x ∼ y. We also omit | − |
wherever appropriate. We remark that “setoids” also appear in constructive mathematics and formal
proof, see e.g., [BCP03], but the proof-relevant nature of equality proofs is not exploited there and
everything is based on sets (types) rather than predomains. A morphism from setoid A to setoid
B is an equivalence class of pairs f = ( f0, f1) of continuous functions where f0 : |A| → |B| and
f1 : Πx, y ∈ |A|.A(x, y)→ B( f0(x), f0(y)). Two such pairs f , g : A→ B are identified if there exists a
continuous function µ : Πa ∈ |A|.B( f0(a), g0(a)).

The following is folklore, see also [BCRS98].

Proposition 2.1. The category of setoids is cartesian closed. Cartesian product is given pointwise.
The function space A⇒ B of setoids A and B is given as follows: the underlying predomain |A⇒ B|
comprises pairs ( f0, f1) which are representatives of morphisms from A to B. That is, f0 : |A| → |B|
and f1 : Πx, y ∈ |A|.A(x, y)→ B( f0(x), f0(y)) are continuous functions with the pointwise ordering.
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The proof set (A ⇒ B)(( f0, f1), ( f ′0 , f ′1)) comprises witnesses of the equality of ( f0, f1) and ( f ′0 , f ′1)
qua morphisms, i.e., continuous functions µ : Πa ∈ |A|.B( f0(a), f ′0(a)).

Proof. The evaluation morphism (A ⇒ B) × A −→ B sends ( f0, f1) and a to f0(a). If h : C ×
A −→ B is a morphism represented by (h0, h1) then the morphism λ(h) : C −→ A ⇒ B may
be represented by (λ(h)0, λ(h)1) where λ(h)0(c) = ( f0, f1) and f0(a) = h0(c, a) and f1(a, a′, p) =

h1((c, a), (c, a′), (r(c), p)). Likewise, λ(h)1(c, c′, p) = µ where µ(a) = h1((c, a), (c′, a), (p, r(a))). The
remaining verifications are left to the reader.

Definition 2.2. A setoid D is pointed if |D| has a least element ⊥ and such that there is also a least
proof ⊥ ∈ D(⊥,⊥). If D is pointed we write ⊥ for the obvious global element 1→ D returning ⊥. A
morphism f : D→ D′ with D,D′ both pointed is strict if f⊥ = ⊥.

Theorem 2.3. Let D be a pointed setoid. Then there is a morphism of setoids Y : [D ⇒ D] → D
satisfying the following equations (written using λ-calculus notation, which is meaningful in cartesian
closed categories).

f (Y( f )) = Y( f ) (Fixpoint)
f (Y(g ◦ f )) = Y( f ◦ g) (Dinaturality)

f (Y(g)) = Y(h) if f is strict and f g = h f (Uniformity)
Y( f n) = Y( f ) (Power)

Y(λx. f (x, x)) = Y(λx.Y(λy. f (x, y))) (Diagonal)
Y(λ~x.~t(~x)) = 〈Y(s), . . . ,Y(s)〉 (Amalgamation)

when ti(y, . . . , y) = s(y) for i = 1, . . . , n and ~t = 〈t1, . . . , tn〉

Proof. To define the morphism Y suppose we are given f = ( f0, f1) ∈ |D⇒ D|. For each i ∈ N we
define di ∈ |D| by d0 = ⊥ and di+1 = f0(di). We then put Y( f ) = supi di.

Now suppose that f ′ = ( f ′0 , f ′1) ∈ |D ⇒ D| and q : f ∼ f ′, i.e., q : Πd.D( f0(d), f ′0(d)).
Let d′i be defined analogously to di so that Y( f ′) = supi d′i . By induction on i we define proofs
pi : di ∼ d′i . We put p0 = ⊥ (the least proof) and, inductively, pi+1 = t( f1(pi), q(d′i )) (transitivity).
Notice that f1(pi) : di+1 ∼ f0(d′i ) and q(d′i ) : f0(d′i ) ∼ d′i+1. Now let (d, d′, p) be the supremum of
the chain (di, d′i , pi). By continuity of the projections we have that d = Y( f ) and d′ = Y( f ′) and
thus p : Y( f ) ∼ Y( f ′). The passage from q to p witnesses that Y is indeed a (representative of a)
morphism.

Equations “Diagonal” and “Dinaturality” follow directly from the validity of these properties
for the least fixpoint combinator for cpos. For the sake of completeness we prove the second one.
Assume f , g ∈ |D ⇒ D| and let di = ( f0g0)i(⊥) and ei = (g0 f0)i(⊥). We have di ≤ f0(ei) and
f0(ei)) ≤ di+1. It follows that Y( f g) and Y(g f ) are actually equal. Equation “Fixpoint” is a direct
consequence of dinaturality (take g = id).

Amalgamation and uniformity are also valid for the least fixpoint combinator, but cannot be
directly inherited since the equational premises only holds up to ∼. As a representative example
we show amalgamation. So assume elements ti ∈ |Dn ⇒ D| and s ∈ |D ⇒ D| and proofs pk :
Πd.D((tk)0(d, . . . , d), s(d)). Consider di = ~ti

0(⊥, . . . ,⊥) and ei = si
0(⊥). By induction on i and using

the pk we construct proofs di ∼ (ei, . . . , ei). The desired proof of Y(~t) ∼ (Y(s), . . . ,Y(s)) is obtained
as the supremum of these proofs as in the definition of the witness that Y is a morphism above.

Equation “Power”, finally, can be deduced from amalgamation and dinaturality or alternatively
inherited directly from the least fixpoint combinator.

The above equational axioms for the fixpoint combinator are taken from Simpson and Plotkin
[SP00], who show that they imply certain completeness properties. In particular, it follows that the
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category of setoids is an “iteration theory” in the sense of Bloom and Ésik [BÉ93]. For us they are
important since the category of setoids is not cpo-enriched in any reasonable way, so that the usual
order-theoretic characterisation of Y is not available. Concretely, the equations help, for example, to
justify various loop optimisations when loops are expressed using the fixpoint combinator.

Definition 2.4. A setoid D is discrete if for all x, y ∈ D we have |D(x, y)| ≤ 1 and |D(x, y)| = 1 ⇐⇒
x = y.

Thus, in a discrete setoid proof-relevant equality and actual equality coincide and moreover any
two equality proofs are actually equal (i.e. we have proof irrelevance).

3. Finite sets and injections

Pullback squares are a central notion in our framework. As it will become clear later, they are
the “proof-relevant” component of logical relations. Recall that a morphism u in a category is a
monomorphism if ux = ux′ implies x = x′ for all morphisms x, x′. Two morphisms with common co-
domain are called a co-span and two morphisms with common domain are called span. A commuting
square xu = x′u′ of morphisms is a pullback if whenever xv = x′v′ there is unique t such that v = ut
and v′ = u′t. This can be visualized as follows:

w

w

x <<

w′
x′cc

w u′
;;

u
bb

·

v

QQ

v′

LL

t
OO

We write ^x x′
u u′ or w ^x x′

u u′w
′ (when w(′) = dom(x(′))) for such a pullback square. We call the common

codomain of x and x′ the apex of the pullback, written w, while the common domain of u, u′ is the
low point of the square, written w. A pullback square w ^x x′

u u′w
′ with apex w is minimal if whenever

there is another pullback w ^
x1 x′1
u u′w

′ over the same span and with apex w1, then there is a unique
morphism t : w→ w1 such that x1 = tx and x′1 = tx′.

A category has pullbacks if every co-span can be completed to a pullback, which is necessarily
unique up to isomorphism.

Definition 3.1. A category of worlds, C, is a category with pullbacks where any span u : w→ w, u′ :
w → w′ can be completed to a minimal pullback square. Furthermore, there is a subcategory I
of C full on objects which is a poset, i.e., |I(X,Y)| ≤ 1. The morphisms in I are called inclusions.
Moreover, any morphism u in C can be factored as i1; u1 and as u2; i2 where i1, i2 are inclusions and
u1, u2 are isomorphisms.

Proposition 3.2. In a category of worlds all morphisms are monomorphisms and if w ^x x′
u u′w

′ with
apex w is a minimal pullback then the morphisms x and x′ are jointly epic, i.e. for any f , g : w→ w1,
if f x = gx and f x′ = gx′, then f = g.

Proof. First we show that any morphism u : w → w′ is a monomorphism. Let w′ ^x x′
u u w′ be a

completion of the span u, u to a (minimal) pullback. If ua = ub =: h, then xh = x′h. So, the pullback
property furnishes a unique map c such that uc = h. Thus c = a = b, so u is a monomorphism.
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Now suppose that w ^x x′
u u′w

′ is a minimal pullback and f x = gx =: h and f x′ = gx′ =: h′. Then
we claim that w′ ^h h′

u u′w
′ is a pullback: if ht = h′t′, then since f , g are monomorphisms by the above,

we have xt = x′t′, so we can appeal to the pullback property of the original square.
Minimality of w′ ^x x′

u u w′ furnishes a unique map k such that h = kx and h′ = kx′. But since f
and g also have that property (h = f x and h′ = f x′ and similarly for g), we conclude f = g = k.

Proposition 3.3. The category W with finite sets of natural numbers as objects and injective functions
for morphisms and inclusions for the subcategory of inclusion (I) is a category of worlds.

Proof. Given f : X → Z and g : Y → Z forming a co-span in W, we form their pullback as

X
f −1

←−−− f X ∩ gY
g−1

−−→ Y . This is minimal when f X ∪ gY = Z. Conversely, given a span Y
f
←− X

g
−→ Z,

we can complete to a minimal pullback by

(Y \ f X) ] f X
[in1,in3◦ f −1]
−−−−−−−−−→ (Y \ f X) + (Z \ gX) + X

[in2,in3◦g−1]
←−−−−−−−−− (Z \ gX) ] gX

where [−,−] is case analysis on the disjoint union Y = (Y \ f X) ] f X. Thus a minimal pullback
square in W is of the form:

X′1 ∪ X′2

X1 � X′1

x 66

X2 � X′2

x′hh

X′1 ∩ X′2
u′
66

u
hh

The factorization property is straightforward.

An object w of W models a set of generated/allocated names, with injective maps corresponding
to renamings and extensions with newly generated names.

In W, a minimal pullback corresponds to a partial bijection between X1 and X2, as used in other
work on logical relations for generativity [PS93, BKBH07]. We write u : x ↪→ y to mean that u is
a subset inclusion and also use the notation x ↪→ y to denote the subset inclusion map from x to y.
Of course, the use of this notation implies that x ⊆ y. Note that if we have a span u, u′ then we can
choose x, x′ so that ^x x′

u u′ is a minimal pullback and one of x and x′ is an inclusion. To do that, we
simply replace the apex of any minimal pullback completion with an isomorphic one. The analogous
property holds for completion of co-spans to pullbacks.

In this paper, we fix the category of worlds to be W. The general definitions, in particular that of
setoid-valued functors that we are going to give, also make sense in other settings. For example, in
our treatment of proof-relevant logical relations for reasoning about stateful computation [BHN14],
we build a category of worlds from partial equivalence relations on heaps.

4. Setoid-valued functors

A functor A from the category of worlds W to the category of setoids comprises, as usual, for
each w ∈ W a setoid Aw, and for each u : w → w′ a morphism of setoids Au : Aw → Aw′

preserving identities and composition. This means that there exist continuous functions of type
Πa.Aw(a, (Aid) a); and for any two morphisms u : w→ w1 and v : w1 → w2 a continuous function
of type Πa.Aw2(Av(Au a), A(vu) a).

If u : w → w′ and a ∈ Aw we may write u.a or even ua for Au(a) and likewise for proofs in
Aw. Note that there is a proof of equality of (uv).a and u.(v.a). In the sequel, we shall abbreviate
‘setoid-valued functor(s)’ as ‘SVF(s)’.
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Intuitively, SVFs will become the denotations of types. Thus, an element of Aw is a value
involving at most the names in w. If u : w → w1 then Aw 3 a 7→ u.a ∈ Aw1 represents renaming
and possible weakening by names not “actually” occurring in a. Note that due to the restriction to
injective functions identification of names (“contraction”) is precluded. This is in line with Stark’s
use [Sta94] of set-valued functors on the category W to model fresh names.

Definition 4.1. We call an SVF, A, pullback-preserving if for every pullback square w ^x x′
u u′w

′ with
apex w and low point w the diagram Aw ^Ax Ax′

Au Au′Aw′ is a pullback in Std. This means that there is a
continuous function of type

Πa ∈ Aw.Πa′ ∈ Aw′.Aw(x.a, x′.a′)→ Σa ∈ Aw.Aw(u.a, a) × Aw′(u′.a, a′)

Thus, if two values a ∈ Aw and a′ ∈ Aw′ are equal in a common world w then this can only be
the case because there is a value in the “intersection world” w from which both a, a′ arise.

Note that the ordering on worlds and world morphisms is discrete, so continuity only involves
the Aw′(u.a, u.a′) argument.

The following proposition is proved using a pullback of the form ^u u
v v′ .

Proposition 4.2. If A is a pullback-preserving SVF, u : w→ w′ and a, a′ ∈ Aw, there is a continuous
function Aw′(u.a, u.a′)→ Aw(a, a′). Moreover, the “common ancestor” a of a and a′ is unique up to
∼.

All the SVFs that we define in this paper will turn out to be pullback-preserving. However,
for the results described in this paper pullback preservation is not needed. Thus, we will not use it
any further, but note that there is always the option to require that property should the need arise
subsequently.

Morphisms between functors are natural transformations in the usual sense; they serve to
interpret terms with variables and functions. In more explicit terms, a morphism from SVF A to
SVF B is an equivalence class of pairs e = (e0, e1) where e0 and e1 are continuous functions of the
following types:

e0 : Πw.Aw→ Bw
e1 : Πw.Πw′.Πx : w→ w′.Πa ∈ Aw.Πa′ ∈ Aw′.Aw′(x.a, a′)→ Bw′(x.e0(a), e0(a′))

Again, the requirements for continuity are simplified by the discrete ordering on worlds.
Two morphisms e = (e0, e1), e′ = (e′0, e

′
1) are identified if there is a continuous function:

µ : Πw.Πa ∈ Aw.Bw(e(a), e′(a))

where as in the case of setoids, we omit subscripts where appropriate. These morphisms compose in
the obvious way and so the SVFs and morphisms between them form a category.

5. Instances of setoid-valued functors

We now describe some concrete functors that will allow us to interpret types of the ν-calculus as
SVFs. The simplest one endows any predomain with the structure of an SVF where the equality is
proof-irrelevant and coincides with standard equality. The second one generalises the function space
of setoids and is used to interpret function types. The third one is used to model dynamic allocation
and is the only one that introduces proper proof-relevance.
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5.1. Base types. For each predomain D we can define a constant SVF, denoted D as well, with Dw
defined as the discrete setoid over D and Du as the identity. These constant SVFs serve as denotations
for base types like booleans or integers.

The SVF N of names is given by Nw = w where w on the right hand side stands for the
discrete setoid over the discrete predomain of names in w, and Nu = u for u : w → w′. Thus, e.g.
N{1, 2, 3} = {1, 2, 3}.

5.2. Cartesian closure. The category of SVFs is cartesian closed, which follows from well-known
properties of functor categories. The construction of product and function space follows the usual
pattern, but we give it here explicitly.

Let A and B be SVFs. The product A × B is given by taking a pointwise product of setoids.
For the sake of completeness, we note that (A × B)w = Aw × Bw (product predomain) and (A ×
B)w((a, b), (a′, b′)) = Aw(a, a′)× Bw(b, b′). This defines a cartesian product on the category of SVFs.
More generally, we can define the indexed product

∏
i∈I Ai of a family (Ai)i of SVFs. We write 1 for

the empty indexed product and () for the only element of 1w. Note that 1 is the terminal object in the
category of SVFs.

The function space A⇒ B is the SVF given as follows. |(A⇒ B)w| contains pairs ( f0, f1) where
f0(u) ∈ |Aw1 ⇒ Bw1| for each w1 and u : w→ w1. If u : w→ w1 and v : w1 → w2 then

f1(u, v) ∈ (Aw1 ⇒ Bw2)([Av⇒ Bw2] f0(vu), [Aw1 ⇒ Bv] f0(u))

where
[Av⇒ Bw2] : (Aw2 ⇒ Bw2)→ (Aw1 ⇒ Bw2)
[Aw1 ⇒ Bv] : (Aw1 ⇒ Bw1)→ (Aw1 ⇒ Bw2)

are the obvious composition morphisms.
A proof in (A ⇒ B)w(( f0, f1), ( f ′0 , f ′1)) is a function g that for each u : w → w1 yields a proof

g(u) ∈ (Aw1 ⇒ Bw1)( f0(u), f ′0(u)).
The order on objects and proofs is pointwise as usual. The following is now clear from the

definitions.

Proposition 5.1. The category of SVFs is cartesian closed.

We remark that cartesian closure of the category of SVFs is an instance of the general results
(see [nLa]) that ifD is cartesian closed and complete, then so isDC for any category C. Here beD
is the category of setoids described in Section 2.

Definition 5.2. An SVF D is pointed if Dw is pointed for each w and the transition maps Du : Dw→
Dw1 for u : w→ w1 are strict.

Theorem 5.3. If D is a pointed SVF then there exists a morphism Y : (D⇒ D)→ D satisfying the
equations from Theorem 2.3 understood relative to the cartesian closed structure of the category of
SVFs.

Proof. The fixpoint combinator on the level of SVFs is defined pointwise. Given world w and
( f0, f1) ∈ (D⇒ D)w we define

Yw( f0, f1) = Y( f0(idw))
where Y is the setoid fixpoint combinator from Theorem 2.3. The translation of proofs is obvious. We
need to show that this defines a natural transformation. So, let u : w→ w1 and ( f0, f1) ∈ (D⇒ D)w.
Put f := f0(idw) and g := f0(u). We need to construct a proof that Du(Y( f )) ∼ Y(g). Now, f1
furnishes a proof of (Du) f = g and Du is strict by assumption on D so that “Uniformity” furnishes
the desired proof.
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The laws from Theorem 2.3 can be directly inherited.

Definition 5.4. An SVF A is discrete if Aw is a discrete setoid for every world w.

The constructions presented so far only yield discrete SVFs, i.e., proof relevance is merely
propagated, but never actually created. This is not so for the next operator on SVFs, which is to
model dynamic allocation.

6. Dynamic AllocationMonad

Before we define the dynamic allocation monad we recall Stark’s [Sta94] definition of a dynamic
allocation monad for the category of set-valued functors on the category of worlds. For set-valued
functor A, Stark defines a set-valued functor T A by T Aw = {(w1, a) | w ⊆ w1, a ∈ Aw1}/∼ where
(w1, a) ∼ (w′1, a

′) iff there exist maps x : w1 → w, x′ : w′1 → w for some w satisfying x.i = x′.i′ and
x.a = x′.a′ where i : w ↪→ w1 and i′ : w ↪→ w′1 are the inclusion maps.

Our dynamic allocation monad for SVFs essentially mimics this definition, the difference being
that the maps i, i′ witnessing equivalence of elements now become proofs of ∼-equality. Additionally,
our definition is based on predomains and involves a bottom element for recursion.

6.1. Definition of the monad. Let A be an SVF. We put

|T Aw| = {(w1, a) | w ⊆ w1 ∧ a ∈ Aw1}⊥

Thus, a non-bottom element of T Aw consists of an extension of w together with an element of A
taken at that extension. Note that the extension is not existentially quantified, but an inherent part of
the element.

The ordering is given by (w1, a) ≤ (w′1, a
′) if w1 = w′1 and a ≤ a′ in Aw1 and of course, ⊥ is the

least element of T Aw.
The proofs are defined as follows. First, T Aw(⊥,⊥) = {⊥} and second, the elements of

T Aw((w1, a), (w′1, a
′)) are triples (x, x′, p) where x, x′ complete the inclusions u : w ↪→ w1 and

u′ : w ↪→ w′1 to a commuting square

w

w1

x ;;

w′1

x′cc

wR2
u
dd

�, u′
::

with w = cod(x) = cod(x′). The third component p then is a proof that a and a′ are equal
when transported to w, formally, p ∈ Aw(x.a, x′.a′). The ordering is again discrete in x, x′ and
inherited from A in p. Formally, ((w1, a), (w′1, a

′), (x, x′, p)) ≤ ((w1, b), (w′1, b
′), (x, x′, q)) when

(x.a, x′.a′, p) ≤ (x.b, x′.b, q) in Acod(x) and of course (⊥,⊥,⊥) is the least element. No ≤-relation
exists between triples with different mediating co-span. In particular, in an ascending chain of proofs
the witnessing spans are always the same, which is the intuitive reason why they can be patched
together to form a supremum.

Consider, for example, that w = {0}, w1 = {0, 1, 2}, w′1 = {0, 2, 3}. Then, both c = (w1, (0, 2))
and c′ = (w′1, (0, 3)) are elements of T (N × N)w, and (x, x′, p) ∈ T (N × N)w(c, c′) is a proof that the
two are equal where x : w1 → w = {0, 1, 2, 3} sends 0 7→ 0, 1 7→ 1, 2 7→ 2 and x′ : w′1 → w sends
0 7→ 0, 2 7→ 3, 3 7→ 2. The proof p is the canonical proof by reflexivity. Note that, in this case, the
order relation is trivial. It becomes more interesting when the type of values A is a function space.
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Next, we define the morphism part. Assume that u : w → q is a morphism in W. We want
to construct a morphism Au : T Aw → T Aq in Std. So let (w1, a) ∈ T Aw and i : w ↪→ w1 be the
inclusion. We complete the span i, u to a minimal pullback

w1
u1 // q1

w u
//?�

i

OO

q?
�

j

OO

with j an inclusion as indicated. We then define T Au(w1, a) = (q1, u1.a). We assume a function
that returns such completions to minimal pullbacks in some chosen way. The particular choice is
unimportant.

Picking up the previous example and letting u : w → q = {0, 1} be 0 7→ 1 then a possible
completion to a minimal pullback would be

w1 = {0, 1, 2}
07→1,1 7→2,27→3 // {0, 1, 2, 3} = q1

w = {0}
0 7→1

//
?�

i

OO

{0, 1} = q
?�

j

OO

Note that the following square where the additional name 1 in q is identified with a name already
existing in w1 is not a pullback

w1 = {0, 1, 2}
07→1,1 7→0,27→3 // {0, 1, 2, 3}

w = {0}
0 7→1

//
?�

i

OO

{0, 1} = q
?�

OO

(6.1)

Adding extra garbage into q1 like so would result in a pullback that is not minimal.

w1 = {0, 1, 2}
07→1,1 7→2,27→3 // {0, 1, 2, 3, 4, 5}

w = {0}
07→1

//
?�

i

OO

{0, 1} = q
?�

OO

If (x, x′, p) is a proof of (w1, a) ∼ (w′1, a
′) then we obtain a proof, (q′1, u

′
1.a
′), that T Au(w1, a) ∼

T Au(w′1, a
′) as follows. We first complete the span xi, u to a minimal pullback with apex q and

upper arrow u : cod(x) = w → q. Now minimality of the pullbacks apexed at q1 and q′1 furnishes
morphisms y : q1 → q and y′ : q′1 → q so that y j = y′ j′ (where j′ : q ↪→ q′1). We then have
(y, y′, u.p) : T Au(w1, a) ∼ T Au(w′1, a

′) as required. This shows that the passage (w1, a) 7→ (w′1, a
′)

actually does define a morphism of setoids.

w u // q

w′1

x′bb
u′1 // q′1

y′aa

w1

x

EE

u1
// q1

y

FF

w
�/

i′

??

?�
i
OO

u
// q
� /

j′

@@

?�
j
OO
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The functor laws amount to similar constructions of ∼-witnesses and are left to the reader. The
following is direct from the definitions.

Proposition 6.1. T is a strong monad on the category of SVFs. The unit sends v ∈ Aw to (w, v) ∈
(T A)w. The multiplication sends (w1, (w2, v)) ∈ (TT A)w to (w2, v) ∈ T Aw. The strength map sends
(a, (w1, b)) ∈ (A × T B)w to (w1, (a.i, b)) where i : w ↪→ w1.

Notice that if we had taken any arbitrary commuting square, like the one shown in Equation 6.1,
then preservation of proofs could not be guaranteed because names in extensions would be captured
in an arbitrary way. Requiring minimality, on the other hand, is merely a technical convenience.

6.2. Comparison with cpo-valued functors. The flawed attempt at defining a dynamic allocation
monad for FM-domains discussed by Shinwell [Shi04] and mentioned in the introduction can be
reformulated in terms of cpo-valued functors and further highlights the importance of proof-relevant
equality.

Given a cpo-valued functor A one may construct a poset-valued functor TspA which has for
underlying set equivalence classes of pairs (w1, a) with w ⊆ w1 and a ∈ Aw1. As in Stark’s definition
above, we have a (w1, a) ∼ (w′1, a

′) if there are morphisms x, x′ such that xi = x′i′ and x.a = x′.a′

where i : w→ w1, i′ : w→ w′1 are the inclusions. As for the ordering, the only reasonable choice is
to decree that on representatives (w1, a) ≤ (w′1, a

′) if x.a ≤ x′.a′ for some co-span x, x′ with xi = x′i′

where i, i′ are the inclusions as above. However, while this defines a partial order it is not clear why
it should have suprema of ascending chains because the witnessing spans might not match up so that
they can be pasted to a witnessing span for the limit of the chain. Indeed, Shinwell’s thesis [Shi04]
contains a concrete counterexample, which is due to Pitts.

In our notation, Pitts’s counterexample takes the following form. Define the cpo-valued functor
A by Aw := (P(w),⊆). So the elements of Aw are subsets of w ordered by inclusion, hence a finite
cpo. Let us now examine TspA. An element of TspAw is an ∼-equivalence class of pairs (w1,U) where
U ⊆ w1, w ⊆ w1. Furthermore, (w1,U) ∼ (w′1,U

′) whenever U = U′ and the ordering ≤ on TspAw is
(w1,U) ≤ (w′1,U

′) whenever U ⊆ U′. Let tn be the equivalence class of ({0, . . . , n−1}, {0, . . . , n−1}).
We have tn ∈ TspA∅ for all n and tn ≤ tm ⇐⇒ n ≤ m. From this it is clear that the ascending chain
t0 ≤ t1 ≤ · · · does not have a least upper bound in TspA∅ for if (w1,U) were such an upper bound
then |U | ≥ n would have to hold for all n.

The transition to proof relevance that we have made allows us to define the order on represen-
tatives as we have done and thus to bypass these difficulties. We view A above as an SVF with
underlying cpo Aw = w and, trivial, i.e., discrete equality. Now applying our dynamic allocation
monad T to A yields the SVF T Aw whose underlying cpo contains in addition to ⊥, pairs (w1,U)
where U ⊆ w1 with ordering (w1,U) ≤ (w′1,U

′) if w1 = w′1 and U ⊆ U′. A proof that an element
(w1,U) is equal to the element (w′1,U

′) is given by a triple (w2, u, u′) such that u : w1 → w2 and
u′ : w′1 → w2 and moreover u(U) = u′(U′). The ordering in these proofs is the discrete one. Now
the sequence shown above is not an ascending chain and thus is no longer a counter-example to
completeness.

7. Observational Equivalence and Fundamental Lemma

We now construct the machinery that connects the concrete language with the denotational machinery
introduced in Section 1. The semantics of types, written using ~·�, as SVFs is defined inductively as
follows:
• For basic types ~τ� is the corresponding discrete SVF.
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• ~τ→ τ′� is defined as the function space ~τ�→ T~τ′�, where T is the dynamic allocation monad.
• For typing context Γ we define ~Γ� as the indexed product of SVFs

∏
x∈dom(Γ)~Γ(x)�.

To each term in context Γ ` e : τ we can associate a morphism ~e� from ~Γ� to T~τ� by
interpreting the syntax in the category of SVFs using cartesian closure, the fixpoint combinator, and
the fact that T is a strong monad. We omit most of the straightforward but perhaps slightly tedious
definition and only give the clauses for “new” and “let” here:

~new�w = (w ∪ {n + 1}, n + 1)

where n = max(w) and max(w) = max({n | n ∈ w}), i.e., the greatest number in the world w.
If f1 : ~Γ� → T~τ1� and f2 : ~Γ, x:τ1� → T~τ2� are the denotations of Γ ` e1 : τ1 and

Γ, x:τ2 ` e2 : τ2 then the interpretation of let x⇐e1 in e2 is the morphism f : ~Γ�→ T~τ2� given
by

f = µ ◦ T f2 ◦ σ ◦ 〈idΓ, f1〉
where µ is the monad multiplication, σ is the monad strength and where we have made the simplifying
assumption that ~Γ, x:τ� = ~Γ�× ~τ�. Assuming that f1 and f2 now stand for the first components of
concrete representatives of these morphisms, one particular concrete representative of this morphism
(now also denoted f ) satisfies:

f w(γ) = f2(i.γ, a),where i is the inclusion w↪→w1 and f1w(γ) = (w1, a).

Our aim is now to relate these morphisms to the computational interpretation VeW.

Definition 7.1. For each type τ and world w we define two relations; the relation 
τw⊆ VτW × ~τ�w
and 
Tτ

w ⊆ (N→ (N × VτW)⊥) × T~τ�w by the following clauses.

b 
boolw b ⇐⇒ b = b
i 
intw i ⇐⇒ i = i
l 
namew k ⇐⇒ l = k
f 
τ→τ

′

w g ⇐⇒ ∀w1 ⊇ w.∀v.∀v.v 
τw1
v⇒ f (v) 
Tτ′

w1
g0(w↪→w1, v)

c 
Tτ
w c ⇐⇒

[c(max(w) + 1) = ⊥ ⇔ c = ⊥] ∧
[c(max(w) + 1) = (n1, v) ∧ c = (w1, v)⇒ n1 = max(w1) + 1 ∧ v 
τw1

v))].

Notice that Tτ is not part of the syntax, but T is a marker to distinguish the two relations defined
above.

The following lemma states that the realizability relation is stable with respect to enlargement of
worlds. It is needed for the “fundamental lemma” 7.3.

Lemma 7.2. Let τ be a type. If u : w ↪→ w1 is an inclusion as indicated and v 
τw v then v 
τw1
u.v,

too.

The proof is by a straightforward induction on types. Note, however, that the restriction to
inclusions is important for the cases of function type and the type name. We extend 
 to typing
contexts by putting

η 
Γ
w γ ⇐⇒ ∀x ∈ dom(Γ).η(x) 
Γ(x)

w γ(x)
for η ∈ VΓW and γ ∈ ~Γ�.

Theorem 7.3 (Fundamental lemma). Let Γ ` e : τ be a well typed term. There exists a representative
(c, ) of the equivalence class ~e� at world w such that if η 
Γ

w γ then VeWη 
Tτ
w c(γ).
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Proof. By induction on typing rules. We always chose for the representative the one given as witness
in the definition of ~e�. Most of the cases are straightforward. For illustration we show new and
let : As for new, we pick the representative c that at world w returns (w ∪ {max(w) + 1},max(w)).
Now, with c = VnewW, we have c(max(w)) = (max(w) + 1,max(w)) and c 
T N

w c holds, since
max(w ∪ {max(w) + 1}) = max(w) + 1.

Next, assume that Γ ` let x⇐e1 in e2 : τ2, where Γ ` e1 : τ1 and Γ, x : τ1 ` e2 : τ2. Choose,
according to the induction hypothesis appropriate representatives c1 of ~e1� and c2 of ~e2�. If η 
Γ

w γ

for some initial world w then we have (H1) Ve1Wη 
Tτ1
w c1(γ). If Ve1Wη(max(w) + 1) = ⊥ then

c1(γ) = ⊥, too, and the same goes for the interpretation of the entire let-construct. So suppose
that Ve1Wη(max(w) + 1) = (n1, v). By (H1), we must then have c1(γ) = (w1, v) where w ⊆ w1 and
n1 = max(w1) + 1 and v 
τ1

w1
v.

By Lemma 7.2 we then have η 
Γ
w1

i.γ where i : w ↪→ w1. Thus, by the induction hypothesis,
we get (H2) Ve2W(η[x 7→v]) 
Tτ2

w1
c2(i.γ[x 7→v]). Thus, putting c(γ) = c2(i.γ, v) furnishes the required

representative of ~let x⇐e1 in e2�(w).

Remark 7.4. Note that the particular choice of representative matters here. For example, if c0w =

(w ] {max(w) + 1,max(w) + 2},max(w) + 1) then there exists c1 such that (c0, c1) : 1 → T N and
(c0, c1) and ~new� are equal qua morphisms of SVFs. Yet, VnewW 1T N

w c0.
It would have been an option to refrain from the identification of ∼-related morphisms. The

formulation of the Fundamental Lemma would then have become slightly easier as we would have
defined ~e� so as to yield the required witnesses directly. On the other hand, the equational properties
of the so obtained category would be quite weak and in particular cartesian closure, monad laws,
functor laws, etc would only hold up to ∼. This again would not really be a problem but prevent the
use of standard category-theoretic terminology.

7.1. Observational Equivalence.

Definition 7.5. Let τ be a type. We define an observation of type τ as a closed term ` o : τ→ bool.
Two values v, v′ ∈ VτW are observationally equivalent at type τ if for all observations o of type
τ one has that VoW(v)(0) is defined iff VoW(v′)(0) is defined and when VoW(v)(0) = (n1, v1) and
VoW(v′)(0) = (n′1, v

′
1) then v1 = v′1.

Note that observational equivalence is a congruence since an observation can be extended by any
englobing context. We also note that observational equivalence is the coarsest reasonable congruence.

We now show how the proof-relevant semantics can be used to deduce observational equiva-
lences.

Theorem 7.6 (Observational equivalence). If τ is a type and v 
τ
∅

e and v′ 
τ
∅

e′ with e ∼ e′ in ~τ�∅
then v and v′ are observationally equivalent at type τ.

Proof. Let o be an observation at type τ. By the Fundamental Lemma (Theorem 7.3) we have
VoW 
τ→bool

∅
~o�.

Now, since e ∼ e′ we also have ~o�(e) ∼ ~o�(e′) and, of course, VoW(v) 
Tbool
∅

~o�(e) and
VoW(v′) 
Tbool

∅
~o�(e′).

Knowing ~o�(e) ∼ ~o�(e′)1, there are two cases. If ~o�(e)(0) and ~o�(e′)(0) both diverge, then
the same is true for VoW(v)(0) and VoW(v′)(0) by definition of 
Tbool. Alternatively, if ~o�(e)(0) =

( , , b, ) and ~o�(e′)(0) = ( , , b′, ) for booleans b, b′ then, by definition of ∼ at T~bool� we get

1More precisely, we are using the representative of the equivalence class given by Theorem 7.3.
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b = b′ and, again by definition of 
Tbool, this then implies that VoW(v)(0) = ( , b) and VoW(v)(0) =

( , b′) with b = b′, hence the claim.

8. Direct-Style Proofs

We now have enough machinery to provide direct-style proofs for equivalences involving name
generation.

If Γ ` e : τ and Γ ` e′ : τ, we say the equation Γ ` e = e′ : τ is semantically sound if ~e� = ~e′�
are equal morphisms from ~Γ� to ~τ�. If v = v′ can be derived by sound equations and congruence
rules, then ~v� and ~v′� are equivalent by Theorem 7.6. We omit the formal definition of such
derivations using an equational theory. We refer to [BHN14] for details on how this could be set up.

From the categorical properties of setoids the soundness of β, η, fixpoint unrolling and similar
equations is obvious. We now demonstrate the soundness of the more interesting equations involving
name generation.

8.1. Drop equation. We start with the following equation, which eliminates a dummy allocation:

(let x⇐new in e) = e, provided x is not free in e.

Formally we have Γ ` e : τ and, writing c for the LHS of the above equation, and c′ for the RHS, the
equation reads Γ ` c = c′ : τ. We have ~c′�w(γ) = (w1, v) for some extension w1 of w and v : ~τ�w1
and ~c�w(γ) = (w2, i.v) where w2 = w1 ∪ {max(w1) + 1} and i : w1 ↪→ w2.

Now it remains to construct a proof of (w1, v) ∼ (w2, v) ∈ T Aw, which should depend continu-
ously on γ. To that end, we consider the following pullback square, where the annotations above and
below the square are just to illustrate in which world the semantic values are:

~c′�γ v

w1 � r i
$$

w

88

&&
w2

w2
id

::

~c�γ i.v

Clearly we have i.v ∼ id.i.v and therefore the pullback above is a proof that (w1, v) ∼ (w2, v) ∈ T Aw.

8.2. Swap equation. Let us now consider the following equivalence where the order in which the
names are generated is switched:

(let x⇐new in let y⇐new in e) = (let y⇐new in let x⇐new in e).

Again, we write c for the LHS and c′ for the RHS. Let l1, l2, l′1, l
′
2 be the concrete locations allocated

by the left-hand-side and right-hand-side of the equation. In fact, l1 = max(w) + 1, l2 = l1 + 1 and
l′2 = l1 and l′1 = l2. We have ~c�γ = (w2, v), where ~e�(i.γ[x 7→ l1, y 7→ l2]) = (w2, v). We also have
~c′�γ, where ~e�(i′.γ[x 7→ l′2, y 7→ l′1]) = (w′2, v

′).
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Define s(l1) = l′2, s(l2) = l′1 and s � w = id. Naturality of ~e�, i.e., ~e� ◦ ~Γ, x, y�s ∼ T~t�s ◦ ~e�
furnishes a co-span x, x′ so that x.s2.v ∼ x′.v′ and xt = x′u′1 (III). Here s2, t is the completion of the
span s1, u1 to a minimal pullback as contained in the definition of T~τ�s.

~c�γ ~e�(i.γ[x 7→ l1, y 7→ l2]) v

w ∪ {l1, l2}

s1

��

� � u1 // w2

s2

��

w $
�

i 22

� z

i′ ,,

(I) (II) s2.v

w ∪ {l′1, l
′
2} � w

u′1
**

� �

t
// w3 x

##
~c�γ (III) w4

~e�(i′.γ[x 7→ l′2, y 7→ l′1]) w′2
x′
;;

v′

Notice that the square (I) commutes by definition of s1; the square (II) commutes because it is
a minimal pullback. As a results the entire diagram commutes. xs2u1 and x′u′1 is the proof that
~c�γ ∼ ~c′�γ.

This is essentially the same proof as given by Stark [Sta94], but now it also works in the presence
of recursion.

9. Proof-relevant parametric functors

The following equation (Stark’s “Equivalence 12”) cannot be validated in the functor category model
and nor is it valid in the category of SVFs.

(let n⇐new in fun x.x = n) = (fun x.false). (9.1)

The above is, nevertheless, a valid contextual equivalence. The intuition is that the name n generated
in the left-hand side is never revealed to the context and is therefore distinct from any name that the
context might pass in as argument to the function; hence, the function will always return false. To
justify this equivalence, Stark constructs a model based on traditional Kripke logical relations. He
also gives a category-theoretic version of that logical relation using so-called parametric functors. In
this section, we construct a proof-relevant version of these parametric functors, which will allow us
to justify the above equivalence in the presence of recursion and in direct style. In fact, this seems
to be the first time that this equivalence has been established in this setting; we are not aware of an
earlier extension of parametric functors to recursion.

We also show that the transition to proof relevance makes the induced logical relation transitive,
which is generally not the case for ordinary Kripke logical relations.

9.1. Spans of Worlds. We use capital letters S , S ′, . . . for spans of worlds. If S is the span

w
u
← w

u′
→ w′ then we use the notations S : w↔ w′ and w = dom(S ) (left domain), w′ = dom′(S )

(right domain), w = lop(S ) (low point), u = S .u, u′ = S .u′. For world w we denote r(w) : w↔ w the

identity span w
id
← w

id
→ w. If S : w ↔ w′ then s(S ) : w′ ↔ w is given by w′

S .u′
← lop(S )

S .u
→ w. If
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S : w ↔ w′ and S ′ : w′ ↔ w′′ then we define t(S , S ′) : w ↔ w′′ as w
S .u x
←− .

S ′.u′ x′
−→ w′′ where x, x′

complete S .u′ and S ′.u to a pullback square.

w w′ w′′

wS

cc ::

wS ′

99dd

w0

cc ::

We assume a fixed choice of such completions to pullback squares. We do not assume that the
t-operation is associative or satisfies any other laws.

Definition 9.1. A parametric square consists of two spans S : w ↔ w′ and S 1 : w1 ↔ w′1 and
two morphisms u : w→ w1 and u′ : w′ → w′1 such that there exists a morphism u making the two
squares in the following diagram pullbacks (thus in particular commute).

w u // w1

lop(S ) u
//

<<

!!

lop(S 1)

;;

""
w′ u′ // w′1

We use the notation (u, u′) : S → S 1 in this situation.

Note that the witnessing morphism u is uniquely determined since we can complete S 1 to a
pullback in which case u is the unique mediating morphism given by universal property of the latter
pullback.

The reader is invited to check that under the interpretation of spans as partial bijections the
presence of a parametric square (u, u′) : S → S ′ asserts that S ′ is obtained from S by consistent
renaming followed by the addition of links and “garbage”. In the following diagram the left diagram
is parametric and the right one is not. In particular, the value 2 is mapped to 2 and 3 in the diagram
to the right (as illustrated in red).

{0, 1, 2} u // {0, 1, 2, 3}

{0, 1}

==

[07→1,17→2] !!

{0, 1, 2}
[07→0,17→1,27→3]

::

[07→1,17→2,27→3]

$$
{0, 1, 2} u′ // {0, 1, 2, 3}

{0, 1, 2} u // {0, 1, 2, 3}

{0, 1}

==

[07→1,17→2] !!

{0, 1, 2}
[07→0,17→1,27→2]

::

[07→1,17→2,27→3]

$$
{0, 1, 2} u′ // {0, 1, 2, 3}

We also note that if S , S ′ : w↔ w′ then (id, id) : S → S ′ is a parametric square if and only if there
exists an isomorphism t : lop(S ) → lop(S ′) such that S ′.u t = S .u and S ′.u′ t = S .u′. In this case,
we call S and S ′ isomorphic spans and write S � S ′. Notice that for any span S : w↔ w′ we have
t(S , r(w′)) � S � t(r(w),w′) as well as other properties, such as associativity of t(·, ·) up to �.

Definition 9.2. A parametric functor is a set-valued functor on the category of worlds (a set Aw for
each world w and functorial transition functions Au : Aw→ Aw′ when u : w→ w′) together with a
relation AS ⊆ Aw × Aw′ for each span S : w↔ w′. It is required that Ar(w) is the equality relation
on Aw.
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9.2. Parametric Setoid-Valued Functors. Our aim is now to define a proof-relevant version of
parametric functors: parametric SVFs. One way to go about this would be to identify a relational
structure, i.e. an internal reflexive graph in the category of setoids, and then define parametric functors
in the way that outlined by Stark [Sta94, Section 4.3]. Here, we prefer to take a different approach
which gives a slightly richer structure. Namely, we consider relations that admit composition and
taking opposites. This will lead to a logical relation that is both transitive and symmetric, and it
appears that proof-relevance plays an important role in making that possible.

This construction could be given “decent categorical credentials” [Sta94, Section 4.3] by iden-
tifying an internal bicategory (as opposed to a reflexive graph) in the category of setoids, but we
prefer to give a direct and elementary presentation which has the additional advantage that we can
economise some data, namely the proof components of the relevant setoids, as those can be recovered
from the relational structure by taking the identity extension property (Ar(w) = id(Aw)) as the very
definition of (proof-relevant!) equality on the cpo Aw.

So, just like an SVF, a parametric SVF, A, specifies a predomain Aw for each w, and for each
u : w→ w′ a continuous function Au : Aw→ Aw′. This time, however, we have a “heterogeneous
equality” allowing one to compare elements of two different worlds without the need to transport them
to a larger common world as done in SVFs. Thus, a parametric SVF has for each span S : w↔ w′

and elements a ∈ Aw, a′ ∈ Aw′, a set of “proofs” AS (a, a′) asserting equality of these elements. As
in the case of SVFs, the set of tuples (S , a, a′, p) with p ∈ AS (a, a′) must carry a predomain structure.
We also require this semantic equality to be reflexive, symmetric and transitive in an heterogeneous
sense, thus employing the r, s, t operations on spans defined above. Furthermore, the transition
functions should behave functorially, as for SVFs, but this time in the sense of the “heterogeneous
equality”. Every SVF gives rise to a parametric SVF by instantiating the heterogeneous equality to
the larger world, but not all parametric SVFs are of this form (see Example 9.6).

Definition 9.3. A parametric SVF, A, consists of the following data.
(1) For each world w a predomain Aw.
(2) For each u : w→ w′ a continuous function Au : Aw→ Aw′. We use the notation u.a = Au(a).
(3) For each span S : w↔ w′ and a ∈ Aw and a′ ∈ Aw′ a set AS (a, a′) such that the set of quadruples

(S , a, a′, p) with p ∈ AS (a, a′) is a predomain with continuous second and third projections and
discrete ordering in the first component.

(4) For each parametric square (u, u′) : S → S ′ a continuous function

A(u, u′) : Πa ∈ Adom(S ).Πa′ ∈ Adom′(S ).AS (a, a′)→ AS ′(u.a, u′.a′)

(5) For each parametric square (id, id) : S → S ′ a continuous function

A(S , S ′) : Πa ∈ Adom(S ).Πa′ ∈ Adom′(S ).AS (a, a′)→ AS ′(a, a′)

(6) Continuous functions of the following types, witnessing reflexivity, symmetry and transitivity in
the “heterogeneous sense”:

Πw.Πa ∈ Aw.Ar(w)(a, a)
ΠS .Πa ∈ Adom(S ).Πa′ ∈ Adom(S ).AS (a, a′)→ As(S )(a′, a)
Πw w′ w′′.ΠS : w↔ w′.ΠS ′ : w′ ↔ w′′.Πa ∈ Aw.Πa′ ∈ Aw′.Πa′′ ∈ Aw′′.

AS (a, a′) × AS ′(a′, a′′)→ At(S , S ′)(a, a′′)

(7) Continuous functions of the following types, witnessing the functorial laws:

Πw.Πa ∈ Aw.Ar(w)(a, id.a)
Πw w1 w2.Πu : w→ w1.Πv : w1 → w2.Ar(w2)(v.u.a, (vu).a)
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By way of motivating axiom (5), suppose that S , S ′ : w↔ w′ are isomorphic spans between w
and w′ in the sense that (id, id) : S → S ′ where t is the isomorphism associated to (id, id). If we have
(an element of) AS (a, a′), then axiom (4) suffices to establish A(id, id)(a, a′) ∈ AS ′(id.a, id.a′). But
what we really want is (an element of) AS ′(a, a′), which is just what axiom (5) provides in the shape
of A(S , S ′)(a, a′). Without axiom (5), one can get quite close: using axioms (6) and (7) one can get
(an element of) At(r(w), t(S ′, s(r(w))))(a, a′), for example. But without explicitly postulating axiom
(5), as we do, or making extra assumptions on the t(−,−) or id.− operations, it seems impossible to
reach AS ′(a, a′). The following lemma is an instance of Axiom (5):

Lemma 9.4. If S � S ′ are isomorphic spans over w,w′, there is a continuous function of type:

Πa ∈ Aw.Πa′ ∈ Aw′.AS (a, a′)→ AS ′(a, a′)

Lemma 9.5. Let A be a parametric SVF. We have a continuous function of type:

Πa ∈ Aw.Πw1.Πu : w→ w1.AS (a, u.a)

where S is w
id
← w

u
→ w1.

Proof. We use the parametric square (id, u) : S 0 → S where S 0 is w
id
← w

id
→ w.

Every parametric SVF also is a plain SVF where we just define Aw(a, a′) = Ar(w)(a, a′) and
quotient the transition maps Au by pointwise ∼-equivalence.

But also every SVF A can be extended to a parametric SVF: first fix a particular choice of
transition functions Au : Aw→ Aw′ when u : w→ w′. Now define AS (a, a′) = Aw(x.a, x′.a′) where
w is the apex of a completion of S to a minimal pullback and x : dom(S )→ w, x′ : dom′(S )→ w
are the corresponding maps.

However, this correspondence is not one-to-one. For a concrete counterexample, consider the
following example which also lies at the heart of the justification of “Equivalence 12” with parametric
functors.

Example 9.6. The parametric SVF [N⇒B] is defined by [N⇒B]w = 2w (functions from w to
{true, false}) and

[N⇒B]S ( f , f ′) =

{?} if ∀n ∈ lop(S ). f (S .u(n)) = f ′(S .u′(n))
∅ otherwise

Now, let S be {0} ← ∅ → ∅ and put f (x) =“x=0” and f ′(x) = false. We have [N⇒B]S ( f , f ′), i.e.,
[N⇒B]S ( f , f ′) = {?}, thus f and f ′ are considered equal above span S . On the other hand, if we

complete S to a minimal pullback by {0}
1
→ {0}

x′
← ∅ then [N⇒B]r({0})( f , x′. f ) = ∅, i.e., f and f ′

are not equal when regarded over the least common world, namely {0}.

Definition 9.7. A parametric natural transformation, f , from parametric SVF A to B consists of
two continuous functions

f0 : Πw.Aw→ Bw
f1 : ΠS .Πa ∈ dom(S ).Πa′ : dom′(S ).AS (a, a′)→ BS ( f0dom(S )(a), f0dom′(S )(a′))

As usual we refer both f0 and f1 as f . Two parametric natural transformations f , f ′ : A → B are
identified if there is a continuous function of type

Πw.Πa ∈ Aw.Br(w)( f w(a), f ′w(a))

The identification of “pointwise equal” parametric natural transformations is meaningful as
follows:
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Lemma 9.8. Let f and f ′ be representatives of the same parametric natural transformation A→ B.
There then is a continuous function of the following type:

ΠS .Πa ∈ dom(S ).Πa′ ∈ dom′(S ).AS (a, a′)→ BS ( f dom(S )(a), f ′dom′(S )(a′))

Proof. Given S , a, a′, and p ∈ AS (a, a′) we obtain BS ( f dom(S )(a), f dom′(S )(a′)) and we also
obtain Br(dom′(S ))( f dom′(S )(a′), f dom′(S )(a′)) since f and f ′ are pointwise equal. We conclude
by transitivity and Lemma 9.4.

Lemma 9.9. If f : A→ B is a parametric natural transformation then there are continuous functions
of the following types

Πw w1.Πu : w→ w1.Πa ∈ Aw.Br(w1)(u. f w(a), f w1(u.a))
Πw.Πa a′ ∈ Aw.Ar(w)(a, a′)→ Br(w)( f w(a), f w(a′))

Proof. Fix u, a and w. Lemma 9.5 furnishes an element of AS (a, u.a) where S is w
1
← w

u
→ w1.

Since f is a parametric natural transformation, we then get an element of BS ( f w(a), f w1(u.a)). We
then get the desired element of Br(w1)(u. f w(a), f w1(u.a)) by applying parametricity of B to the
parametric square (u, 1) : S → r(w1).

Theorem 9.10. The parametric SVFs with parametric natural transformations form a cartesian
closed category with fixpoint operator obeying the laws from Theorems 2.3 & 5.3. There is a strong
monad T on this category where

T Aw = {(w1, a) | w ⊆ w1 ∧ a ∈ Aw1}⊥
T AS ((w1, a), (w′1, a

′)) = {(S 1 : w1 ↔ w′1, p)|(w↪→w1,w′↪→w′1) : S → S 1 ∧ p ∈ AS ′(a, a′)}

Proof (sketch). The interesting bit is the proof of transitivity for the monad, which seems to rely
in an essential manner on proof relevance. Suppose that S : w ↔ w′ and S ′ : w′ ↔ w′′ and that
(w1, a) ∈ T Aw and (w′1, a

′) ∈ T Aw′ and (w′′1 , a
′′) ∈ T Aw′′. Furthermore, suppose that (S 1, p) ∈

T AS ((w1, a), (w′1, a
′)) and (S ′1, p′) ∈ T AS ′((w′1, a

′), (w′′1 , a
′′)).

Now, by definition, we have S 1 : w1 ↔ w′1 and S ′1 : w′1 ↔ w′′1 and also p ∈ AS 1(a, a′) and
p′ ∈ AS ′1(a′, a′′). We thus obtain (an element of) At(S 1, S ′1)(a, a′′) and this, together with t(S 1, S ′1)
furnishes the required proof.

Remark 9.11. Notice that if the extensions w1 were existentially quantified, as in more traditional
non-proof-relevant formulations of Kripke logical relations (e.g. that of Stark [Sta94, Section 4.1]),
then the transitivity construction in the above proof would not have been possible because we would
have no guarantee that the existential witnesses used in the two assumptions are the same.

9.3. Private Name Equation. We now return to our motivating equivalence, illustrating that a
function value may encapsulate a freshly generated name without revealing it to the context:

(let n⇐new in λx.(x = n)) = (λx.false).
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Writing c and c′ for the LHS and RHS of the above, the equivalence proof is based on the following
diagram:

c λx.(x = l) x = l

∅ // {l} // {l} ∪ X ∪G

∅ //

==

!!

∅ //

66

))

X

77

((
∅ // ∅ // X ∪G′

c′ c′ = λx.false false

We show that c and c′ are equivalent in the trivial span to the left. For the generation of the fresh
value in c, we choose the extension of the worlds with the fresh value l, the second span shown in the
diagram. Now it remains to prove that λx.x = l and c′ are equivalent above the latter. This means that
for any extension of worlds, x = l and false should be related. Consider the extension of worlds
in the right-most span in the diagram above. The names in X denote the common names, while G
and G′ the spurious names created. Notice that l is not in the low point of the third span because the
squares with vertices ∅, X, {l} ∪ X ∪G, {l} and ∅, X, X ∪G′, ∅ are pullbacks as by Definition 9.1. Thus,
the value of x cannot be l and x = l is indeed equal to false.

10. Discussion

We have introduced proof-relevant logical relations and shown how they may be used to model and
reason about simple equivalences in a higher-order language with recursion and name generation.
A key innovation compared with previous functor category models is the use of functors valued in
setoids (which are here also built on predomains), rather than plain sets. One payoff is that we can
work with a direct style model rather than one based on continuations (which, in the absence of
control operators in the language, is less abstract).

The technical machinery used here is not entirely trivial, and the reader might be forgiven for
thinking it slightly excessive for such a simple language and rudimentary equations. However, our
aim has not been to present impressive new equivalences, but rather to present an accessible account
of how the idea of proof relevant logical relations works in a simple setting. The companion paper
[BHN14] gives significantly more advanced examples of applying the construction to reason about
equivalences justified by abstract semantic notions of effects and separation, but the way in which
setoids are used is there potentially obscured by the details of, for example, much more sophisticated
categories of worlds. Our hope is that this account will bring the idea to a wider audience, make the
more advanced applications more accessible, and inspire others to investigate the construction in
their own work.

Thanks to Andrew Kennedy for numerous discussions, to the referee who first suggested that we
write up the details of how proof-relevance applies to pure name generation, and to the referees of
the present paper for their many helpful suggestions.
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