
Logical Methods in Computer Science
Vol. 14(3:8)2018, pp. 1–51
https://lmcs.episciences.org/

Submitted Jul. 22, 2016
Published Aug. 20, 2018

THE RECURSION HIERARCHY FOR PCF IS STRICT

JOHN LONGLEY

School of Informatics, University of Edinburgh, 10 Crichton Street, Edinburgh EH8 9AB, UK
e-mail address: jrl@staffmail.ed.ac.uk

Abstract. We consider the sublanguages of Plotkin’s PCF obtained by imposing some
bound k on the levels of types for which fixed point operators are admitted. We show that
these languages form a strict hierarchy, in the sense that a fixed point operator for a type
of level k can never be defined (up to observational equivalence) using fixed point operators
for lower types. This answers a question posed by Berger. Our proof makes substantial use
of the theory of nested sequential procedures (also called PCF Böhm trees) as expounded
in the recent book of Longley and Normann.

1. Introduction

In this paper we study sublanguages of Plotkin’s functional programming language PCF,
which we here take to be the simply typed λ-calculus over a single base type N, with constants

n̂ : N for each n ∈ N , suc, pre : N→ N ,
ifzero : N→ N→ N→ N , Yσ : (σ → σ)→ σ for each type σ .

As usual, we will consider this language to be endowed with a certain (call-by-name)
operational semantics, which in turn gives rise to a notion of observational equivalence for
PCF programs.

We define the level lv(σ) of a type σ inductively by

lv(N) = 0 , lv(σ → τ) = max (lv(σ) + 1, lv(τ)) ,

and define the pure type k of level k ∈ N by

0 = N , k + 1 = k → N .

Modifying the definition of PCF so that the constants Yσ are admitted only for types σ
of level ≤ k, we obtain a sublanguage PCFk for any k ∈ N. Our main result will be that
for each k, the expressive power of PCFk+1 strictly exceeds that of PCFk: in particular,
there is no closed term of PCFk that is observationally equivalent to Yk+1. (Fortunately,
‘observational equivalence’ has the same meaning for all the languages in question here,
as will be explained in Section 2.) This answers a question posed explicitly by Berger in
[Ber99], but present in the folklore at least since the early 1990s. It is worth remarking that

Key words and phrases: higher types, recursion, fixed point operator, definability, PCF.
Revised, corrected and expanded version of Informatics Research Report EDI-INF-RR-1421, University of

Edinburgh, 2015.

LOGICAL METHODSl IN COMPUTER SCIENCE DOI:10.23638/LMCS-14(3:8)2018
c© John Longley
CC© Creative Commons

https://lmcs.episciences.org/
http://creativecommons.org/about/licenses

2 JOHN LONGLEY

the situation is quite different for various extensions of PCF considered in the literature,
in which one may restrict to recursions at level 1 types without loss of expressivity (see
Subsection 2.4).

We can phrase our result more denotationally in terms of the type structure SF of
(PCF-)sequential functionals or its effective substructure SFeff. As will be reviewed in
Section 2, the latter may be conveniently characterized up to isomorphism as the closed term
model for PCF modulo observational equivalence. Our result can therefore be understood
as saying that more elements of SFeff (and hence of SF) are denotable in PCFk+1 than in

PCFk. From this we may easily infer that there is no finite ‘basis’ B ⊆ SFeff relative to
which all elements of SFeff are λ-definable (see Corollary 2.3 below).

The models SF and SFeff are extensional : elements of type σ → τ can be considered
as mathematical functions mapping elements of type σ to elements of type τ . Whilst our
theorem is naturally stated in terms of these extensional models, its proof will make deep
use of a more intensional model which yields SF as its extensional quotient. This intensional
model of PCF has been considered many times before in the literature, for instance as the
PCF Böhm tree model of Amadio and Curien [AC98], and it is known to be isomorphic
to the game models of PCF given by Abramsky, Jagadeesan and Malacaria [AJM00] and
by Hyland and Ong [HO00]. In this paper, we choose to work with the nested sequential
procedure (NSP) presentation of this model, as studied in detail in the recent book of Longley
and Normann [LN15]. (We will touch briefly on the possible use of other presentations for
this purpose in Section 7.) We shall denote the NSP model by SP0; its construction will be
reviewed in Section 2, but in the meantime, let us offer a high-level overview of our proof
method without assuming detailed knowledge of this model.

As a motivating example, fix k ∈ N, and consider the PCF term

Φk+1 : (N→ k + 1→ k + 1)→ N→ k + 1

given informally by

Φk+1 g n = g n (Φk+1 g (n+ 1)) = g n (g (n+ 1) (g (n+ 2) (g · · ·))) ,
or more formally by

Φk+1 = λgn. YN→k+1 (λfm. gm (f(m+ 1)))n ,

where f has type N→ k + 1. Clearly, Φk+1 is a term of PCFk+1; however, we will be able
to show that the element of SF that Φk+1 defines is not denotable in PCFk.

What is the essential feature of this function that puts it beyond the reach of PCFk?
To get a hint of this, we may observe from the informal definition above that Φk+1 seems
implicitly to involve an infinite nested sequence of calls to its argument g, and indeed the
NSP model makes this idea precise. Furthermore, each call to g involves an argument of
type level k + 1 resulting from another such call. Broadly speaking, we shall refer to such a
sequence of nested calls (subject to certain other conditions) as a k+1-spine in the NSP
associated with Φk+1. As a second example, we can see from the natural recursive definition
of Yk+1 itself that this too involves a spine of this kind:

Yk+1 h = h(Yk+1 h) = h(h(h(· · ·))) .

where h has type k + 1→ k + 1. In fact, we may view Yk+1 as a ‘special case’ of Φk+1, since

Yk+1 h is observationally equivalent to Φk+1 (λn.h) 0̂.

RECURSION HIERARCHY FOR PCF 3

A suitable general definition of k+1-spine turns out to be quite delicate to formulate;
but having done this, it will be possible to prove that no PCFk-denotable NSP contains a
k+1-spine (Theorem 4.5). This will be proved by induction on the generation of such NSPs:
in essence, we have to show that none of the generating operations for the interpretations of
PCFk terms are capable of manufacturing spinal NSPs out of non-spinal ones. This already
suffices to show that within the intensional model SP0, the evident procedure for Yk+1 is
denotable in PCFk+1 but not in PCFk.

However, this does not yet establish our main theorem, which concerns not SP0 but its
extensional quotient SF. For this purpose, we undertake a closer analysis of the function
Φk+1 defined above: we show that not only the NSP arising from the above definition, but
any extensionally equivalent NSP, must necessarily involve a k+1-spine. This shows that,
within SF (or SFeff), the functional given by Φk+1 is not denotable in PCFk. This establishes
Berger’s conjecture that the languages PCFk form a strict hierarchy.

Since Φk+1 is definable from YN→k+1, the above shows that the element YN→k+1 ∈ SF is
not PCFk-denotable. To complete the picture, however, we would also like to know that
the simpler element Yk+1 ∈ SF is not PCFk-denotable. We show this via a more refined
version of the above analysis which is of some interest in its own right. Just as PCF is
‘stratified’ into sublanguages PCFk, we show that each PCFk may be further stratified into
sublanguages PCFk,1,PCFk,2, . . . on the basis of the ‘width’ of the types σ for which Yσ is
permitted (see Definition 6.1). An easy adaptation of our earlier proofs then shows that, for
any l, there are operators Yσ in PCFk,l+2 that are not denotable in PCFk,l (the appearance
of l + 2 is admittedly a curiosity here). Since all these Yσ are themselves readily definable
from Yk+1, it follows that Yk+1 ∈ SF itself is not denotable in PCFk,l for any l, and hence
not in PCFk. This finer analysis illustrates the remarkable richness of structure that SF has
to offer.

The paper is organized as follows. In Section 2 we recall the necessary technical
background on PCF and on the models SP0 and SF, fleshing out many of the ideas outlined
above. In Section 3 we obtain a convenient inductive characterization of the class of
procedures denotable in (the ‘oracle’ version of) PCFk, framed in terms of constructions on
the procedures themselves. In Section 4 we introduce the central concept of a k+1-spinal
procedure, and show using our inductive characterization that no PCFk-denotable procedure
can be k+1-spinal (this is the most demanding part of the proof). As noted above, this
already shows that PCFk+1 denotes more elements of SP0 than PCFk does. In Section 5
we obtain the corresponding result for SF, showing that the element Φk+1 ∈ SF, and hence
YN→k+1 ∈ SF, is not PCFk-denotable. In Section 6 we adapt our methods to the more
fine-grained hierarchy of languages PCFk,l that takes account of the widths of types; this
enables us to show also that Yk+1 ∈ SF is not PCFk-denotable. We conclude in Section 7
with a discussion of related and future work.

2. Background

We here summarize the necessary definitions and technical background from [LN15], especially
from Chapters 6 and 7.

2.1. The language PCF. In [Sco93], Scott introduced the language LCF for computable
functionals of simple type. This language is traditionally called PCF when equipped with a
standalone operational semantics as in Plotkin [Plo77]. We will work here with the same

4 JOHN LONGLEY

version of PCF as in [LN15], with the natural numbers as the only base type. Our types σ
are thus generated by

σ ::= N | σ → σ ,

and our terms will be those of the simply typed λ-calculus constructed from the constants

n̂ : N for each n ∈ N ,
suc, pre : N→ N ,

ifzero : N→ N→ N→ N ,
Yσ : (σ → σ)→ σ for each type σ .

We often abbreviate the type σ0 → · · · → σr−1 → N to σ0, . . . , σr−1 → N or just ~σ → N. As
usual, we write Γ `M : σ to mean that M is a well-typed term in the environment Γ (where
Γ is a finite list of typed variables). Throughout the paper, we shall regard the type of a
variable x as intrinsic to x, and will often write xσ to indicate that x carries the type σ. For
each k ∈ N, the sublanguage PCFk is obtained by admitting the constants Yσ only for types
σ of level ≤ k.

We endow the class of closed PCF terms with the following small-step reduction rules:

(λx.M)N M [x 7→ N] , ifzero 0̂ λxy.x ,

suc n̂ n̂+ 1 , ifzero n̂+ 1 λxy.y ,

pre n̂+ 1 n̂ , YσM M(YσM) .

pre 0̂ 0̂ ,

We furthermore allow these reductions to be applied in certain term contexts. Specifically,
the relation is inductively generated by the rules above along with the clause: if M M ′

then E[M] E[M ′], where E[−] is one of the contexts

[−]N , suc [−] , pre [−] , ifzero [−] .

We write ∗ for the reflexive-transitive closure of . If Q is any closed PCF term of type
N, it is easy to check that either Q ∗ n̂ for some n ∈ N or the (unique) reduction path
starting from Q is infinite.

This completes the definition of the languages PCF and PCFk. Whilst the language
PCF0 is too weak for programming purposes (it cannot even define addition), it is not hard
to show that even PCF1 is Turing-complete: that is, any partial computable function N⇀ N
is representable by a closed PCF1 term of type N→ N.

We will also refer to the non-effective language PCFΩ (or oracle PCF) obtained by
extending the definition of PCF with a constant Cf : N→ N for every set-theoretic partial
function f : N⇀ N, along with a reduction rule Cf n̂ m̂ for every n,m such that f(n) = m.

(In PCFΩ, the evaluation of a closed term Q : N may fail to reach a value n̂ either because it
generates an infinite computation, or because it encounters a subterm Cf (n) where f(n) is

undefined.) The languages PCFΩ
k are defined analogously.

If M,M ′ are closed PCFΩ terms of the same type σ, and L is one of our languages
PCFk, PCFΩ

k , PCF, PCFΩ, we say that M,M ′ are observationally equivalent in L, and
write M 'L M ′, if for all closed program contexts C[−σ] : N of L and all n ∈ N, we have

C[M] ∗ n̂ iff C[M ′] ∗ n̂ .

(It makes no difference to the relation 'L whether we take C[−] to range over single-hole or
multi-hole contexts.)

RECURSION HIERARCHY FOR PCF 5

Fortunately, it is easy to show that all of the above languages give rise to exactly the
same relation 'L. Indeed, it is immediate from the definition that if L,L′ are two of our
languages and L ⊇ L′, then 'L⊆'L′ ; it therefore only remains to verify that M 'PCF0 M

′

implies M 'PCFΩ M ′. We may show this by a ‘syntactic continuity’ argument, exploiting

the idea that any of the constants Yσ or Cf in PCFΩ can be ‘approximated’ as closely as
necessary by terms of PCF0. Specifically, let us write ⊥ for the non-terminating program
Y0(λx0.x) : N (a term of PCF0), and for any type σ write ⊥σ for the term of type σ of the
form λ~x.⊥. For any j ∈ N, we may then define PCF0 terms

Y (j)
σ = λfσ→σ. f j(⊥σ) ,

C
(j)
f = λn. case n of (0⇒ f̂(0) | · · · | j − 1⇒ ̂f(j − 1)) ,

where we use some evident syntactic sugar in the definition of C
(j)
f . For any PCFΩ term

M , let M (j) denote the ‘approximation’ obtained from M by replacing all occurrences of

constants Yσ, Cf by Y
(j)
σ , C

(j)
f respectively. It is then not hard to show that for closed Q : N,

we have

Q ∗ n̂ iff ∃j. Q(j) ∗ n̂ .

From this it follows easily that if C[−] is an observing context of PCFΩ that distinguishes

M,M ′, then some approximation C(j)[−] (a context of PCF0) also suffices to distinguish
them. This establishes that 'PCF0 ⊆ 'PCFΩ . We may therefore write ' for observational
equivalence without ambiguity.

In fact, an even more restricted class of observing contexts suffices for ascertaining
observational equivalence of PCFΩ terms. The well-known (equational) context lemma, due to
Milner [Mil77], states that M 'M ′ : σ0, . . . , σr−1 → N iff M,M ′ have the same behaviour in
all applicative contexts of PCF—that is, if for all closed PCF terms N0 : σ0, . . . , Nr−1 : σr−1,
we have

MN0 . . . Nr−1
∗ n iff M ′N0 . . . Nr−1

∗ n .

Furthermore, using the above idea of approximation, it is easy to see that we obtain exactly
the same equivalence relation if we allow the Ni here to range only over closed PCF0

terms—this gives us the notion of PCF0 applicative equivalence, which we denote by ∼0.
We have concentrated so far on giving a purely operational description of PCF. We are

now able to express the operational content of our main theorems as follows. As in Section 1,
we define the type k by 0 = N, k + 1 = k → N; we shall write k simply as k where there is
no risk of confusion.

Theorem 2.1. For any k ≥ 1, there are functionals definable in PCFk+1 but not in PCFΩ
k .

More specifically:

(i) There is no closed term M of PCFΩ
k such that M ' YN→(k+1) (or equivalently M ∼0

YN→(k+1)).

(ii) There is even no closed M of PCFΩ
k such that M ' Yk+1.

We shall obtain part (i) of this theorem at the end of Section 5, then in Section 6 resort to a
more indirect method to obtain the stronger statement (ii). The theorem also holds when
k = 0, but this rather uninteresting case does not require the methods of this paper; it will
be dealt with in Subsection 2.5.

6 JOHN LONGLEY

Theorem 2.1 can be construed as saying that in a suitably pure fragment of a functional
language such as Haskell, the computational strength of recursive function definitions
increases strictly as the admissible type level for such recursions is increased. The point
of the formulation in terms of ∼0 is to present our result in as manifestly strong a form
as possible: there is no M ∈ PCFk that induces the same partial function as Yk+1 even on
closed PCF0 terms.

A more denotational formulation of our theorem can be given in terms of the model
SF of sequential functionals, which we here define as the type structure of closed PCFΩ

terms modulo observational equivalence. Specifically, for each type σ, let SF(σ) denote
the set of closed PCFΩ terms M : σ modulo '. It is easy to check that application of
PCFΩ terms induces a well-defined function · : SF(σ → τ) × SF(σ) → SF(τ) for any σ, τ ;
the structure SF then consists of the sets SF(σ) along with these application operations.
Using the context lemma, it is easy to see that SF(N) ∼= N⊥ = N t {⊥}, and also that SF is
extensional : if f, f ′ ∈ SF(σ → τ) satisfy f · x = f ′ · x for all x ∈ SF(σ), then f = f ′. Thus,
up to isomorphism, each SF(σ → τ) may be considered simply as a certain set of functions
from SF(σ) to SF(τ).

Any closed PCFΩ term M : σ naturally has a denotation [[M]]SF in SF(σ), namely its
own equivalence class. We may therefore restate Theorem 2.1 as:

Theorem 2.2. Suppose k ≥ 1.

(i) The element [[YN→(k+1)]]
SF is not denotable in PCFΩ

k .

(ii) Even [[Yk+1]]SF is not PCFΩ
k -denotable.

It follows immediately that in any other adequate, compositional model of PCFΩ (such as
Scott’s continuous model or Berry’s stable model), the element [[Yk+1]] is not PCFΩ

k -denotable,

since the equivalence relation on PCFΩ terms induced by such a model must be contained
within '.

By taking closed terms of PCF rather than PCFΩ modulo observational equivalence,
we obtain the type structure SFeff of effective sequential functionals, which can clearly
be seen as a substructure of SF. Although the above constructions of SF and SFeff are
syntactic, there are other more mathematical constructions (for instance, involving game
models [AJM00, HO00]) that also give rise to these structures, and experience suggests
that these are mathematically natural classes of higher-order functionals. We now see that
Theorem 2.2(i) implies an interesting absolute property of SFeff, not dependent on any choice
of presentation for this structure or any selection of language primitives:

Corollary 2.3 (No finite basis). There is no finite set B of elements of SFeff such that all

elements of SFeff are λ-definable relative to B. In other words, the cartesian category of
PCF-computable functionals is not finitely generated.

Proof. Suppose B = {b0, . . . , bn−1} were such a set. For each i, take a closed PCF term
Mi denoting bi. Then the terms M0, . . . ,Mn−1 between them contain only finitely many
occurrences of constants Yσ, so these constants are all present in PCFk for large enough
k. But this means that b0, . . . , bn−1, and hence all elements of SFeff, are PCFk-denotable,
contradicting Theorem 2.2(i).

RECURSION HIERARCHY FOR PCF 7

2.2. The model SP0. We turn next to an overview of the nested sequential procedure (or
NSP) model, denoted by SP0. Further details and motivating examples are given in [LN15].
In some respects, however, our presentation here will be more formal than that of [LN15]:
in particular, our discussion of bound variables and α-conversion issues will be somewhat
more detailed, in order to provide a solid foundation for the delicate syntactic arguments
that follow.

The ideas behind this model have a complex history. The general idea of sequential
computation via nested oracle calls was the driving force behind Kleene’s later papers
(e.g. [Kle85]), although the concept did not receive a particularly transparent or definitive
formulation there. Many of the essential ideas of NSPs can be found in early work of
Sazonov [Saz76], in which a notion of Turing machine with oracles was used to characterize
the ‘sequentially computable’ elements of the Scott model. NSPs as we study them here
were first explicitly introduced in work on game semantics for PCF—both by Abramsky,
Jagadeesan and Malacaria [AJM00] (under the name of evaluation trees) and by Hyland and
Ong [HO00] (under the name of canonical forms). In these papers, NSPs played only an
ancillary role; however, it was shown by Amadio and Curien [AC98] how (under the name
of PCF Böhm trees) they could be made into a model of PCF in their own right. Similar
ideas were employed again by Sazonov [Saz07] to give a standalone characterization of the
class of sequentially computable functionals. More recently, Normann and Sazonov [NS12]
gave an explicit construction of the NSP model in a somewhat more semantic spirit than
[AC98], using the name sequential procedures. As in [LN15], we here add the epithet ‘nested’
to emphasize the contrast with other flavours of sequential computation.1

As in [LN15], our NSPs are generated by means of the following infinitary grammar,
interpreted coinductively. Here ⊥ is a special atomic symbol and n ranges over natural
numbers.

Procedures: p, q ::= λx0 · · ·xr−1. e
Expressions: d, e ::= ⊥ | n | case a of (i⇒ ei | i ∈ N)

Applications: a ::= x q0 · · · qr−1

Here we write (i⇒ ei | i ∈ N) to indicate an infinite sequence of ‘branches’: (0⇒ e0 |
1⇒ e1 | 2⇒ e2 | · · ·).

We will use vector notation to denote finite (possibly empty) lists of variables or
procedures: ~x, ~q. Our convention will be that a list ~x must be non-repetitive, though a list
~q need not be. We may use t to range over NSP terms of any of the above three kinds; note
that a ‘term’ is formally a (possibly infinite) syntax tree as generated by the above grammar.
A procedure λ~x.⊥ will often be abbreviated to ⊥.

For the most part, we will be working with terms modulo (infinitary) α-equivalence, and
most of the concepts we introduce will be stable under renamings of bound variables. Thus,
a statement t = t′, appearing without qualification, will mean that t, t′ are α-equivalent
(although we will sometimes write = as =α if we wish to emphasize this). When we wish to
work with terms on the nose rather than up to =α, we shall refer to them as concrete terms.

If each variable is assigned a simple type over N, then we may restrict our attention to
well-typed terms. Informally, a term will be well-typed unless a typing violation occurs at
some particular point within its syntax tree. Specifically, within any term t, occurrences of

1A major theme of [LN15] is that NSPs serve equally well to capture the essence of PCF computation
and that of Kleene’s S1–S9 computability; this is one reason for preferring a name that is not biased towards
PCF.

8 JOHN LONGLEY

procedures λ~x.e (of any type), applications x~q (of the ground type N) and expressions e (of
ground type) have types that are related to the types of their constituents and of variables
as usual in type λ-calculus extended by case expressions of type N. We omit the formal
definition here since everything works in the expected way; for a more precise formulation
see [LN15, Section 6.1.1].

If Γ is any environment (i.e. a finite non-repetitive list of variables), we write Γ ` e and
Γ ` a to mean that e, a respectively are well-typed with free variables in Γ. We also write
Γ ` p : τ when p is well-typed in Γ and of type τ .

We shall often refer to variable environments that arise from combining several lists
of variables, which may be represented by different notations, e.g. Γ, V, ~x. Since such
environments are required to be non-repetitive, we take it to be part of the content of
a typing judgement such as Γ, V, ~x ` t (: τ) that the entire list Γ, V, ~x is non-repetitive.
However, the order of variables within an environment will typically be of much less concern
to us (clearly our typing judgements Γ ` T (: τ) are robust under permutations of Γ), and we
will sometimes abuse notation by identifying a finite set Z of variables with the list obtained
from some arbitrary ordering of it.

It will also be convenient to place another condition on concrete well-typed terms (not
imposed in [LN15]) in order to exclude variable hiding. Specifically, we shall insist that if
Γ ` t (: τ) then no variable of Γ appears as a bound variable within t, nor are there any
nested bindings within t of the same variable x. (Clearly any concrete term not satisfying
this restriction is α-equivalent to one that does.) This will help to avoid confusion in the
course of some delicate arguments in which questions of the identity of variables are crucial.

With these ideas in place, we may take SP(σ) to be the set of well-typed procedures of
type σ modulo =α, and SP0(σ) ⊆ SP(σ) the subset constituted by the closed procedures
(i.e. those that are well-typed in the empty environment). By inspection of the grammar for
procedures, it is easy to see that SP0(N) ∼= N⊥.

As in [LN15], we shall need to work not only with NSPs themselves, but with a more
general calculus of NSP meta-terms designed to accommodate the intermediate forms that
arise in the course of computations:

Meta-procedures: P,Q ::= λ~x.E
Meta-expressions: D,E ::= ⊥ | n | case G of (i⇒ Ei | i ∈ N)

Ground meta-terms: G ::= E | x ~Q | P ~Q

Here again, ~x and ~Q denote finite lists. We shall use T to range over meta-terms of any of
the above three kinds; once again, a meta-term is formally a syntax tree as generated by the
above grammar. (Unless otherwise stated, we use uppercase letters for general meta-terms
and lowercase ones for terms.) Once again, we will normally work with meta-terms up to
(infinitary) α-equivalence, but may also work with concrete meta-terms when required.

The reader is warned of an ambiguity arising from the above grammar: a surface form
λ.E may be parsed either as a meta-procedure λ~x.E with ~x empty, or as a ground meta-term

(λ~x.E) ~Q with both ~x, ~Q empty. Formally these are two quite distinct meta-terms, bearing
in mind that meta-terms are officially syntax trees. To remedy this ambiguity, we shall

therefore in practice write ‘()’ to indicate the presence of an empty argument list ~Q to a
meta-procedure P , so that the ground meta-term above will be written as (λ.E)(). In the
absence of ‘()’, a surface form λ.E should always be interpreted as a meta-procedure.

Meta-terms are subject to the expected typing discipline, leading to typing judgements
Γ ` P : σ, Γ ` E, Γ ` G for meta-procedures, meta-expressions and ground meta-terms

RECURSION HIERARCHY FOR PCF 9

respectively. Again we omit the details: see [LN15, Section 6.1.1]. We shall furthermore
require that well-typed concrete meta-terms are subject to the no-variable-hiding condition.
We will sometimes write e.g. Γ ` P to mean that P is a well-typed meta-procedure in
environment Γ, if the type itself is of no particular concern to us.

There is an evident notion of simultaneous capture-avoiding substitution T [~x 7→ ~Q]
for well-typed concrete terms. Specifically, given Γ, ~x ` T (: τ) and Γ, ~y ` Qi : σi for each

i < r, where ~x = xσ0
0 , . . . , x

σr−1

r−1 , we will have Γ, ~y ` T [~x 7→ ~Q] (: τ). Note that this may
entail renaming of bound variables both within T (in order to avoid capture of variables in
~y) and in the Qi (in order to maintain the no-hiding condition for variables bound within
T). The details of how this renaming is performed will not matter, provided that for each

T, ~x, ~Q as above we have a determinate choice of a suitable concrete term T [~x 7→ ~Q], so that
multiple appearances of the same substitution will always yield the same result. We also
note that substitution is clearly well-defined on α-equivalence classes. Finally, we will say a

substitution [~x 7→ ~Q] covers a set V of variables if V consists of precisely the variables ~x.
As a mild extension of the concept of meta-term, we have an evident notion of a

meta-term context C[−]: essentially a meta-term containing a ‘hole’ −, which may be
of meta-procedure, meta-expression or ground meta-term type (and in the case of meta-
procedures, will carry some type σ). Our convention here is that a meta-term context
C[−] is permitted to contain only a single occurrence of the hole −. Multi-hole contexts
C[−0,−1, . . .] will occasionally be used, but again, each hole −i may appear only once.

By the local variable environment associated with a concrete meta-term context Γ ` C[−],
we shall mean the set X of variables x bound within C[−] whose scope includes the hole, so
that the environment in force at the hole is Γ, X. (The no-variable-hiding convention ensures
that X and indeed Γ, X is non-repetitive.) Although in principle local variable environments
pertain to particular choices of concrete contexts, most of the concepts that we define using
such environments will be easily seen to be invariant under renamings of bound variables.

Next, there is a concept of evaluation whereby any concrete meta-term Γ ` T (: σ)
evaluates to an ordinary concrete term Γ `�T� (: σ). To define this, the first step is to
introduce a basic reduction relation b for concrete ground meta-terms, which we do by the
following rules:

(b1): (λ~x.E) ~Q b E[~x 7→ ~Q] (β-rule).
(b2): case ⊥ of (i⇒ Ei) b ⊥.
(b3): case n of (i⇒ Ei) b En.
(b4): case (case G of (i⇒ Ei)) of (j ⇒ Fj) b case G of (i⇒ case Ei of (j ⇒Fj)).

Note that the β-rule applies even when ~x is empty: thus, (λ.2)() b 2.
From this, a head reduction relation h on concrete meta-terms is defined inductively:

(h1): If G b G
′ then G h G

′.
(h2): If G h G

′ and G is not a case meta-term, then

case G of (i⇒ Ei) h case G′ of (i⇒ Ei) .

(h3): If E h E
′ then λ~x.E h λ~x.E′.

Clearly, for any meta-term T , there is at most one T ′ with T h T
′. We call a meta-term

a head normal form if it cannot be further reduced using h. The possible shapes of head

normal forms are ⊥, n, case y ~Q of (i⇒ Ei) and y ~Q, the first three optionally prefixed by
λ~x (where ~x may contain y).

We now define the general reduction relation inductively as follows:

10 JOHN LONGLEY

(g1): If T h T
′ then T T ′.

(g2): If E E′ then λ~x.E λ~x.E′.
(g3): If Qj = Q′j except at j = k where Qk Q′k, then

x~Q x~Q ′ ,

case x ~Q of (i⇒ Ei) case x ~Q ′ of (i⇒ Ei) .

(g4): If Ei = E′i except at i = k where Ek E′k, then

case x ~Q of (i⇒ Ei) case x ~Q of (i⇒ E′i) .

It is easy to check that this reduction system is sound with respect to the typing rules. We
emphasize that the relation is defined on concrete meta-terms, although it is clear that it
also gives rise to a well-defined reduction relation on their α-classes. An important point
to note is that modulo the obvious inclusion of terms into meta-terms, terms are precisely
meta-terms in normal form, i.e. those that cannot be reduced using . (For example, the
meta-procedure λ.2 is in normal form, though the ground meta-term (λ.2)() is not.) We
write ∗ for the reflexive-transitive closure of .

The above reduction system captures the finitary aspects of evaluation. In general,
however, since terms and meta-terms may be infinitely deep, evaluation must be seen as an
infinite process. To account for this infinitary aspect, we use some familiar domain-theoretic
ideas.

We write v for the evident syntactic orderings on concrete meta-procedures and on
ground meta-terms: thus, T v U iff T may be obtained from U by replacing zero or more
ground subterms (perhaps infinitely many) by ⊥. It is easy to see that for each σ, the set of
all concrete procedure terms of type σ forms a directed-complete partial order under v.

By a finite (concrete) term t, we shall mean one generated by the following grammar,
this time construed inductively:

Procedures: p, q ::= λx0 . . . xr−1. e
Expressions: d, e ::= ⊥ | n | case a of (0⇒ e0 | · · · | r − 1⇒ er−1)

Applications: a ::= x q0 . . . qr−1

We regard finite terms as ordinary NSP terms by identifying the conditional branching
(0⇒ e0 | · · · | r − 1⇒ er−1) with

(0⇒ e0 | · · · | r − 1⇒ er−1 | r ⇒ ⊥ | r + 1⇒ ⊥ | · · ·) .
We may now explain how a general meta-term T evaluates to a term �T�. This will

in general be an infinite process, but we can capture the value of T as the limit of the finite
portions that become visible at finite stages in the reduction. To this end, for any concrete
meta-term T we define

⇓fin T = {t finite | ∃T ′. T ∗ T ′ ∧ t v T ′} .
It is not hard to check that for any meta-term T , the set ⇓fin T is directed with respect to
v (see [LN15, Proposition 6.1.2]). We may therefore define �T�, the value of T , to be
the ordinary concrete term

�T� =
⊔

(⇓fin T) .

Note in passing that the value �G� of a ground meta-term G may be either an expression
or an application. In either case, it is certainly a ground meta-term. It is also easy to see
that � λ~x.E �= λ~x.�E�, and that if T ∗ T ′ then �T�=�T ′�.

RECURSION HIERARCHY FOR PCF 11

Whilst we have defined our evaluation operation �−� for concrete meta-terms, it is
clear that this induces a well-defined evaluation operation on their α-classes, and for the
most part this is all that we shall need. We also note that the syntactic ordering v on
concrete terms induces a partial order v on their α-classes, and that each SP(σ) and SP0(σ)
is directed-complete with respect to this ordering.

In the present paper, an important role will be played by the tracking of variable
occurrences (and sometimes other subterms) through the course of evaluation. By inspection
of the above rules for , it is easy to see that if T T ′, then for any occurrence of a (free
or bound) variable x within T ′, we can identify a unique occurrence of x within T from
which it originates (we suppress the formal definition). The same therefore applies whenever
T ∗ T ′. In this situation, we may say that the occurrence of x within T ′ is a residual of
the one within T , or that the latter is the origin of the former. Note, however, that these
relations are relative to a particular reduction path T ∗ T ′: there may be other paths from
T to T ′ for which the origin-residual relation is different.

Likewise, for any occurrence of x within �T�, we may pick some finite t v�T�
containing this occurrence, and some T ′ w t with T ∗ T ′; this allows us to identify a
unique occurrence of x within T that originates the given occurrence in �T�. It is routine
to check that this occurrence in T will be independent of the choice of t and T ′ and of
the chosen reduction path T ∗ T ′; we therefore have a robust origin-residual relationship
between variable occurrences in T and those in �T�.

A fundamental result for NSPs is the evaluation theorem, which says that the result of
evaluating a meta-term is unaffected if we choose to evaluate certain subterms ‘in advance’:

Theorem 2.4 (Evaluation theorem). If C[−0,−1, . . .] is any meta-term context with count-
ably many holes and C[T0, T1, . . .] is well-formed, then

� C[T0, T1, . . .]� = � C[�T0�,�T1�, . . .]� .

The proof of this is logically elementary but administratively complex: see [LN15,
Section 6.1.2].

One further piece of machinery will be useful: the notion of hereditary η-expansion,
which enables us to convert a variable x into a procedure term (written xη). Using this, the
restriction that variables may appear only at the head of applications can be seen to be
inessential: e.g. the ‘illegal term’ fx may be replaced by the legal term fxη. The definition
of xη is by recursion on the type of x: if x : σ0, . . . , σr−1 → N, then

xη = λzσ0
0 . . . z

σr−1

r−1 . case xz
η
0 . . . z

η
r−1 of (i⇒ i) .

In particular, if x : N then xη = λ. case x of (i ⇒ i). The following useful properties of
η-expansion are proved in [LN15, Lemma 6.1.14]:

Lemma 2.5. � xη~q � = case x~q of (i⇒ i), and � λ~y. p~y η � = p.

The sets SP(σ) may now be made into a total applicative structure SP by defining

(λx0 · · ·xr.e) · q = λx1 · · ·xr.� e[x0 7→ q]� .

Clearly the sets SP0(σ) are closed under this application operation, so we also obtain an
applicative substructure SP0 of SP. It is easy to check that application in SP is monotone
and continuous with respect to v. It is also shown in [LN15, Section 6.1.3] that both SP
and SP0 are typed λ-algebras: that is, they admit a compositional interpretation of typed
λ-terms that validates β-equality. (The relevant interpretation of pure λ-terms is in fact

12 JOHN LONGLEY

given by three of the clauses from the interpretation of PCFΩ as defined in Subsection 2.3
below.)

2.3. Interpretation of PCF in SP0. A central role will be played by certain procedures
Yσ ∈ SP0((σ → σ)→ σ) which we use to interpret the PCF constants Yσ (the overloading of
notation will do no harm in practice). If σ = σ0, . . . , σr−1 → N, we define Yσ = λgσ→σ.Fσ[g],
where Fσ[g] is specified corecursively up to α-equivalence by:

Fσ[g] =α λxσ0
0 . . . x

σr−1

r−1 . case g (Fσ[g]) xη0 · · ·x
η
r−1 of (i⇒ i) .

(A concrete representative of Fσ[g] satisfying the no-hiding condition will of course feature
a different choice of bound variables x0, . . . , xr−1 at each level.) We may now give the
standard interpretation of PCFΩ in SP. To each PCFΩ term Γ ` M : σ we associate a
procedure-in-environment Γ ` [[M]]SPΓ : σ (denoted henceforth by [[M]]Γ) inductively as
follows:

[[xσ]]Γ = xη

[[n̂]]Γ = λ.n

[[suc]]Γ = λx. case x of (i⇒ i+ 1)

[[pre]]Γ = λx. case x of (0⇒ 0 | i+ 1⇒ i)

[[ifzero]]Γ = λxyz. case x of (0⇒ case y of (j ⇒ j)

| i+ 1⇒ case z of (j ⇒ j))

[[Yσ]]Γ = Yσ

[[Cf]]Γ = λx. case x of (i⇒ f(i))

[[λxσ.M]]Γ = λx.[[M]]Γ,x

[[MN]]Γ = [[M]]Γ · [[N]]Γ

(In the clause for Cf , we interpret f(i) as ⊥ whenever f(i) is undefined.)

The following key property of [[−]]SP is shown as Theorem 7.1.16 in [LN15]:

Theorem 2.6 (Adequacy). For any closed PCFΩ term M : N, we have M ∗ n̂ iff
[[M]] = λ.n.

We may now clarify the relationship between SP0 and SF. First, there is a natural
‘observational equivalence’ relation ≈ on each SP0(σ), defined by

q ≈ q′ iff ∀r ∈ SP0(σ → N). r · q = r · q′ .
It is not hard to see that if p ≈ p′ ∈ SP0(σ → τ) and q ≈ q′ ∈ SP0(σ) then p · q ≈
p′ · q ≈ p′ · q′ ∈ SP0(τ). Explicitly, the first of these equivalences holds because for any
r ∈ SP0(τ → N) we have (using Lemma 2.5) that

r · (p · q) = (λx.r(λ~z.xq~z η)) · p = (λx.r(λ~z.xq~z η)) · p′ = r · (p′ · q) ,
while the second equivalence holds because for any r ∈ SP0(τ → N) we have

r · (p′ · q) = (λy.r(λ~z.p′yη~z η)) · q = (λy.r(λ~z.p′yη~z η)) · q′ = r · (p′ · q′) .
We thus obtain a well-defined applicative structure SP0/≈ as a quotient of SP0; we write
θ : SP0 → SP0/≈ for the quotient map.

It turns out that up to isomorphism, this structure SP0/≈ is none other than SF. Indeed,
in [LN15] this was taken as the definition of SF, and the characterization as the closed term

RECURSION HIERARCHY FOR PCF 13

model of PCFΩ modulo observational equivalence proved as a consequence. In order to fill
out the picture a little more, we will here exhibit the equivalence of these two definitions as
a consequence of the following non-trivial fact, given as Corollary 7.1.34 in [LN15]:2

Theorem 2.7. For every p ∈ SP0(σ), there is a closed PCFΩ term M : σ such that [[M]] ≈ p.

Proposition 2.8. (SP0/≈) ∼= SF, via an isomorphism that identifies θ([[M]]SP) with [[M]]SF

for any closed PCFΩ term M .

Proof. For any element x ∈ SP0/≈, we may take p ∈ SP0 with θ(p) = x, then by Theorem 2.7
take M closed with [[M]] ≈ p; we then have that θ([[M]]) = x. In this way, each SP0(σ)/≈
corresponds bijectively to the set of closed PCFΩ terms M : σ modulo some equivalence
relation ∼.

Recall now that ' denotes observational equivalence in PCFΩ. To see that ∼⊆',
suppose M ∼ M ′, and let C[−] be any suitable observing context of PCFΩ. By the
compositionality of [[−]]SP, we obtain some [[C]] ∈ SP0 such that [[C[M]]] = [[C]] · [[M]] and
similarly for M ′. But M ∼M ′ means that [[M]] ≈ [[M ′]], whence by the definition of ≈ we
conclude that [[C[M]]] = [[C[M ′]]] at type N. So by Theorem 2.6 we have C[M] ∗ n̂ iff
C[M ′] ∗ n̂. Since C[−] was arbitrary, we have shown that M 'M ′.

To see that '⊆∼, suppose M 'M ′ : σ. It will suffice to show that [[M]] ≈ [[M ′]]. So
suppose r ∈ SP0(σ → N), and using Theorem 2.7, take a PCFΩ term R such that [[R]] ≈ r.
Then r · [[M]] = [[R]] ·M = [[RM]] at type N, and similarly for M ′. But since M 'M ′, we have
RM ∗ n iff RM ′ ∗ n, whence [[RM]] = [[RM ′]] by Theorem 2.6. Thus r · [[M]] = r · [[M ′]],
and we have shown [[M]] ≈ [[M ′]].

Since each SF(σ) consists of closed PCFΩ terms M : σ modulo ', we have established a
bijection (SP0(σ)/≈) ∼= SF(σ) for each σ. Moreover, both [[−]]SP and θ respect application,
so it follows that (SP0/≈) ∼= SF, and it is immediate by construction that θ([[M]]SP) is
identified with [[M]]SF.

As we have already seen in Subsection 2.1, Milner’s context lemma for PCFΩ implies
that SF is extensional. From this and Proposition 2.8, we may now read off the following
useful characterization of the equivalence ≈:

Lemma 2.9 (NSP context lemma). Suppose p, p′ ∈ SP0(σ0, . . . , σr−1 → N). Then p ≈ p′ iff

∀q0 ∈ SP0(σ0), . . . , qr−1 ∈ SP0(σr−1). p · q0 · . . . · qr−1 = p′ · q0 · . . . · qr−1 .

We shall also make use of the observational ordering on SF and the associated preorder
on SP. Let v be the usual information ordering on SF(N) ∼= N⊥, and let us endow each
SF(σ) with the partial order � defined by

x � x′ iff ∀h ∈ SF(σ → N), n ∈ N. h · x v h · x′ .
It is easy to see that the application operations · are monotone with respect to �. Moreover,
Milner’s context lemma also exists in an inequational form which says, in effect, that if
f, f ′ ∈ SF(σ0, . . . , σr−1 → N) then

f � f ′ iff ∀y0 ∈ SF(σ0), . . . , yr−1 ∈ SF(σr−1). f · y0 · . . . · yr−1 v f ′ · y0 · . . . · yr−1 .

2What is actually shown in [LN15] is that every element of SP0 is denotable on the nose in a language
PCF + byval , with a certain choice of denotation for the constant byval . Since the latter satisfies [[byval]] ≈
[[λf N→NxN. ifzero x (fx)(fx)]], the present Theorem 2.7 follows easily.

14 JOHN LONGLEY

Thus, if elements of SF(σ → τ) are considered as functions SF(σ)→ SF(τ), the partial order
� coincides with the pointwise partial order on functions.

We write � also for the preorder on each SP0(σ) induced by � on SF: that is, p � p′

iff θ(p) � θ(p′). Furthermore, we extend the use of the notations ≈, � in a natural way
to open terms (in the same environment), and indeed to meta-terms: e.g. we may write
~x ` P � P ′ to mean � λ~x.P � �� λ~x.P ′ �.

Clearly p ≈ p′ iff p � p′ � p. The following is also now immediate:

Lemma 2.10. Suppose p, p′ ∈ SP0(σ) where σ = σ0, . . . , σr−1 → N. Then the following are
equivalent:

(i) p � p′.
(ii) ∀r ∈ SP0(σ → N). r · p v r · p′.
(iii) ∀q0 ∈ SP0(σ0), . . . , qr−1 ∈ SP0(σr−1). p · q0 · . . . · qr−1 v p′ · q0 · . . . · qr−1.

We conclude this subsection by reformulating some of the major milestones in our proof
using the notation now available. Specifically, in Sections 3 and 4 we will show the following:

Theorem 2.11. For any k ≥ 1, the element [[Yk+1]] ∈ SP0 is not PCFΩ
k -denotable (whence

neither is [[Y0→(k+1)]]).

In Section 5 we will go on to show that no Z ≈ [[Y0→(k+1)]] can be PCFΩ
k -denotable,

establishing Theorem 2.2(i). In Section 6 we will resort to a more refined version of our
methods to show the same for Yk+1; this will establish Theorem 2.2(ii).

2.4. The embeddability hierarchy. The following result will play a crucial role in this
paper:

Theorem 2.12 (Strictness of embeddability hierarchy). In SF, no type k + 1 can be a
pseudo-retract of any finite product Πiσi where each σi is of level ≤ k. More formally, if z
is a variable of type k + 1 and each xi a variable of type σi, there cannot exist procedures

z ` ti : σi , ~x ` r : k + 1

such that z ` r[~x 7→ ~t] � zη.

If in the above setting we had z ` r[~x 7→ ~t] ≈ zη, we would call k + 1 a retract of Πiσi.
In Appendix A we will show that the notions of retract and pseudo-retract actually coincide,
since z ` p � zη implies z ` p ≈ zη. However, this fact will not be needed for the main
results of this paper.

In our statement of Theorem 2.12, we have referred informally to a product Πiσi which
we have not precisely defined (although the formal statement of the theorem gives everything
that is officially necessary). One may readily make precise sense of this product notation
within the Karoubi envelope K(SF) as studied in [LN15, Chapter 4]: for instance, it is not
hard to show that any finite product of level ≤ k types can be constructed as a retract of
the pure type k + 1. In the present paper, however, references to product types may be
taken to be purely informal and motivational.

The proof of Theorem 2.12 appears in [LN15, Section 7.7], but because of its crucial
role in the paper we reprise it here with some minor stylistic improvements.

Proof. By induction on k. For the case k = 0, we note that N→ N cannot be a pseudo-retract
of any Nr, since (for example) the set of maximal elements in SF(N→ N) is of larger cardinality

RECURSION HIERARCHY FOR PCF 15

than the set of all elements of SF(N)r. (Alternatively, one may note that N → N is not a
retract of Nr, since the former contains strictly ascending chains of length r + 2 while the
latter does not; then use the method of Appendix A in the easy case k = 1 to show that any
pseudo-retraction of the relevant type would be a retraction.)

Now assume the result for k − 1, and suppose for contradiction that z ` ti and ~x ` r
exhibit k + 1 as a pseudo-retract of Πiσi where each σi is of level ≤ k. Let v =� r[~x 7→ ~t]�,
so that z ` v � zη, whence � v[z 7→ u]�� u for any u ∈ SP0(k + 1). We first check that
any v with this latter property must have the syntactic form λfk. case zp of (· · ·) for some
p of type k. Indeed, it is clear that v does not have the form λf.n or λf.⊥, and the only
other alternative form is λf. case fp′ of (· · ·). In that case, however, we would have

� v[z 7→ λwk.0]� · (λyk−1.⊥) = ⊥ ,
contradicting � v[z 7→ λwk.0]� · (λyk−1.⊥) � (λw.0)(λy.⊥) = 0.

We now focus on the subterm p in v = λfk. case zp of (· · ·). The general direction of
our argument will be to show that λfk.p represents a function of type k → k that dominates
the identity, and that moreover our construction of v as � r[~x 7→ ~t]� can be used to split
this into functions k → Πjρj and Πjρj → k where the ρj are of level ≤ k − 1, contradicting
the induction hypothesis. An apparent obstacle to this plan is that z as well as f may
appear free in p; however, it turns out that we still obtain all the properties we need if we
specialize z here (somewhat arbitrarily) to λw.0.

Specifically, we claim that λf.� p[z 7→ λw.0]�� idk. By Lemma 2.10, it will suffice
to show that � p[f 7→ q, z 7→ λw.0] �� q for any q ∈ SP0(k). The idea is that if it is
not, then (ignoring the presence of z in p for now) we may specialize z to some u that will
detect the difference between p[f 7→ q] and q, so that the subterm ‘zp’ within v will yield ⊥,
contradicting that z ` v � zη. We can even allow for the presence of z in p by a suitably
careful choice of u.

Again by Lemma 2.10, it suffices to show that� p[f 7→ q, z 7→ λw.0]� · s � q ·s for any
s. So suppose q · s = λ.n whereas� p[f 7→ q, z 7→ λw.0]� · s 6= λ.n for some s ∈ SP0(k−1)
and n ∈ N. Take u = λg. case gs of (n⇒ 0), so that u · q′ = ⊥ whenever q′ · s 6= λ.n. Then
u � λw.0 by Lemma 2.10, so we have � p[f 7→ q, z 7→ u]� · s 6= λ.n since λ.n is maximal
in SP0(N). By the definition of u, it follows that � (zp)[f 7→ q, z 7→ u] �= ⊥, whence
� v[z 7→ u]� · q = ⊥, whereas u · q = 0, contradicting � v[z 7→ u]�� u. This completes
the proof that λf.� p[z 7→ λw.0]� � idk.

Next, we show how to split the function represented by this procedure so as to go
through some Πjρj as above. Since � r[~x 7→ ~t] �= λf. case zp of (· · ·), we have that

r[~x 7→ ~t] reduces in finitely many steps to a head normal form λf. case zP of (· · ·) where
� P �= p. By working backward through this reduction sequence, we may locate the
ancestor within r[~x 7→ ~t] of this head occurrence of z. Since z does not appear free in
r, this occurs within some ti, and clearly it must appear as the head of some subterm
case zp′ of (· · ·). Now since ti has type σi of level ≤ k, and z : k + 1 is its only free variable,
it is easy to see that all bound variables within ti have pure types of level < k. Let x′0, x

′
1, . . .

denote the finitely many bound variables that are in scope at the relevant occurrence of zp′,
and suppose each x′j has type ρj of level < k. By considering the form of the head reduction

16 JOHN LONGLEY

sequence r[~x 7→ ~t] ∗h λf. case zP of (· · ·), we now see that P has the form p′[~x ′ 7→ ~T]

where each Tj : ρj contains at most f and z free.3

Writing ∗ for the substitution [z 7→ λw.0], define procedures

fk ` t′j =� T ∗j � : ρj , ~x ′ ` r′ =� p′∗ � : k .

Then � r′[~x ′ 7→ ~t ′]� coincides with the term � λf. P ∗ �= λf.�p∗�, which dominates
the identity as shown above. Thus k is a pseudo-retract of Πjρj , which contradicts the

induction hypothesis. So k + 1 is not a pseudo-retract of Πiσi after all, and the proof is
complete.

As an aside, we remark that for several extensions of PCF studied in the literature,
the situation is completely different, in that the corresponding fully abstract and universal
models possess a universal simple type υ of which all simple types are retracts. It follows
easily in these cases that one can indeed bound the type levels of recursion operators without
loss of expressivity. For example:

• In the language PCF + por + exists considered by Plotkin [Plo77], the type N → N is
universal, and the proof of this shows that every program in this language is observationally
equivalent to one in PCF1 + por + exists. (This latter fact was already noted in [Plo77].)
• In PCF + catch (a slight strengthening of Cartwright and Felleisen’s language SPCF

[CF92]), the type N→ N is again universal, and again the sublanguage PCF1 + catch has
the same expressive power.
• In the language PCF +H of Longley [Lon02], the type (N→ N)→ N is universal, but even

here, all constants Yσ with lv(σ) > 1 are dispensable.

Further details of each the above scenarios may be found in [LN15]. These facts may
offer some indication of why a ‘cheap’ proof of our present results in the setting of pure PCF
is not to be expected.4

2.5. Other sublanguages of PCF. Our main theorems establish a hierarchy of languages
PCF1 < PCF2 < · · · . Before proceeding further, however, we pause to clarify the relationship
between PCF0 and PCF1, and also to survey some of the interesting territory that lies
between them, in order to situate our theorems within a wider picture.

On the one hand, PCF0 is a rather uninteresting language. As regards the elements
of SF that it denotes, it is equivalent in expressivity to PCF⊥, a variant of PCF0 in which
we replace Y0 by a constant ⊥ (denoting ⊥ ∈ SF(N)). This is clear since Y0 and ⊥ are
interdefinable: we have ⊥ = Y0(λx.x), and it is easy to see that Y0 = λf.f⊥ (in SF). By a
syntactic analysis of the possible normal forms of type 1 in PCF⊥, one can show that these
are very weak languages that do not even define addition.

However, such an analysis is unnecessary for our purposes, since there are more interesting
languages that clearly subsume PCF0 but are known to be weaker than PCF1. For instance,

3The reader wishing to see a more formal justification for this step may consult the proof of Lemma 4.3(i)
below.

4That PCF manifests greater structural complexity than many stronger languages is also a moral of
Loader’s undecidability theorem for finitary PCF [Loa01]. However, the complexity we explore here seems
quite orthogonal to that exhibited by Loader: we are concerned purely with ‘infinitary’ aspects of definability,
the entire finitary structure being already represented by our PCF0.

RECURSION HIERARCHY FOR PCF 17

Berger [Ber99] considered the language T0 +min, where T0 (a fragment of Gödel’s System T)
is the λ-calculus with first-order primitive recursion over the natural numbers:

0̂ : N , suc : N→ N , rec0 : N→ (N→ N→ N)→ (N→ N) ,

and min is the classical minimization (i.e. unbounded search) operator of type (N→ N)→ N.
On the one hand, it is an easy exercise to define ⊥ in T0 + min, and to define both rec0

and min in PCF1. On the other hand, Berger showed that the PCF1-definable functional
Φ0 : (N→ N→ N)→ (N→ N) given by

Φ0 g n = g n (Φ0 g (n+ 1)) ,

is not expressible in T0 + min.5 As already indicated in Section 1, this functional and its
higher-type analogues will play a crucial role in the present paper.

This situation is revisited in [LN15, Section 6.3] from the perspective of substructures of
SP0. It is shown that T0 + min, and indeed the whole of T + min, can be modelled within
the substructure SP0,lwf of left-well-founded procedures, whereas the above functional Φ0 is
not representable by any such procedure; thus Φ0 is not expressible in T + min. (The reader
may wish to study these results and proofs before proceeding further, since they provide
simpler instances of the basic method that we will use in this paper.) At third order, there
are even ‘hereditarily total’ functionals definable in PCF1 but not by higher-type iterators,
one example being the well-known bar recursion operator (see [Lon18]).

Even weaker than T0 + min is the language of (strict) Kleene primitive recursion plus
minimization, denoted by Klexmin in [LN15]; this again subsumes PCF0. It is shown in
[LN15] that the computational power of Klexmin coincides with that of computable left-
bounded procedures; this is used to show, for example, that even rec0 is not computable in
Klexmin. We find it reasonable to regard left-bounded procedures as embodying the weakest
higher-order computability notion of natural interest that is still Turing complete.

3. Sequential procedures for PCFk terms

For the remainder of the paper, we take k to be some fixed natural number greater than 0.
In this section we give a direct inductive characterization of the PCFΩ

k -denotable elements

of SP by making explicit how our interpretation works for terms of PCFΩ
k . The first point

to observe is that we may restrict attention to PCFΩ
k terms in long βη-normal form: that is,

terms in β-normal form in which every variable or constant z of type σ0, . . . , σr−1 → N is
fully applied (i.e. appears at the head of a subterm zN0 . . . Nr−1 of type N). Moreover, an
inductive characterization of the class of such terms is easily given.

Proposition 3.1.

(i) A procedure Γ ` p : σ is denotable by a PCFΩ
k term Γ ` M : σ iff it is denotable by

one in long βη-normal form.
(ii) The class of long βη-normal forms of PCFΩ

k is inductively generated by the following
clauses:
(1) If Γ ` Ni : σi is a normal form for each i < r and xσ0,...,σr−1→N ∈ Γ, then

Γ ` xN0 . . . Nr−1 : N is a normal form (note that r may be 0 here).
(2) If Γ, xσ `M : τ is a normal form then so is Γ ` λx.M : σ → τ .
(3) The numeric literals Γ ` n̂ : N are normal forms.

5Berger actually considered denotability in the Scott model, but his argument applies equally to SF.

18 JOHN LONGLEY

(4) If Γ ` M : N is a normal form then so are Γ ` suc M : N, Γ ` pre M : N and
Γ ` Cf M : N for any f : N⇀ N.

(5) If Γ ` M : N, Γ ` N : N and Γ ` P : N are normal forms, then so is Γ `
ifzero M N P : N.

(6) If σ = σ0, . . . , σr−1 → N is of level ≤ k and Γ ` M : σ → σ and Γ ` Ni : σi are
normal forms, then Γ ` YσMN0 . . . Nr−1 : N is a normal form.

Proof.

(i) It is a well-known property of simply typed λ-calculi that every term M is βη-equivalent
to one in long βη-normal form: indeed, we may first compute the β-normal form of M
and then repeatedly apply the η-rule to expand any subterms that are not already
fully applied. Moreover, it is shown in [LN15, Theorem 6.1.18] that SP is a λη-algebra,
so that if Γ `M =βη M

′ then [[M]]Γ = [[M ′]]Γ in SP. This establishes the claim.
(ii) This is clear from the fact that no application may be headed by a λ-abstraction and

that all occurrences of variables and constants must be fully applied.

It follows that the class of PCFΩ
k -denotable procedures may be generated inductively by a

set of clauses that mirror the above formation rules for long βη-normal PCFΩ
k terms. We

now consider each of these formation rules in turn in order to spell out the corresponding
operation at the level of NSPs. In Section 4 we will show that these operations cannot give
rise to k+1-spinal procedures, from which it will follow that no PCFΩ

k -denotable procedure
can be k+1-spinal.

For the first three formation rules, the effect on NSPs is easily described:

Proposition 3.2.

(i) If Γ ` xN0 . . . Nr−1 : N in PCFΩ, then

[[xN0 . . . Nr−1]]Γ = case x[[N0]]Γ · · · [[Nr−1]]Γ of (j ⇒ j) .

(ii) If Γ ` λx.M : σ → τ in PCFΩ, then [[λx.M]]Γ = λx. [[M]]Γ,x.
(iii) [[n̂]]Γ = λ.n.

Proof. Part (i) is easy using the definition of [[−]] and Lemma 2.5, and parts (ii) and (iii)
are part of the definition of [[−]].

As regards the formation rules for suc, pre, Cf and ifzero, the situation is again fairly
straightforward, although a little more machinery is needed:

Definition 3.3.

(i) The set of rightward (occurrences of) numeral leaves within a term t is defined
inductively by means of the following clauses:
(1) A term n is a rightward numeral leaf within itself.
(2) Every rightward numeral leaf within e is also one within λ~x.e.
(3) Every rightward numeral leaf in each ei is also one in case a of (i⇒ ei).

(ii) If t is a term and ei an expression for each i, let t[i 7→ ei] denote the result of replacing
each rightward leaf occurrence i in t by the corresponding ei.

Lemma 3.4. � case d of (i⇒ ei)� = d[i 7→ ei] for any expressions d, ei.

RECURSION HIERARCHY FOR PCF 19

Proof. For each c ∈ N, define a ‘truncation’ operation −(c) on expressions as follows:

n(c) = n , ⊥(c) = ⊥ ,
case a of (i⇒ ei)

(0) = ⊥ ,

case a of (i⇒ ei)
(c+1) = case a of (i⇒ e

(c)
i) .

Then clearly d =
⊔
c d

(c) and d[i 7→ ei] =
⊔
c d

(c)[i 7→ ei]. Moreover, we may show by
induction on c that

� case d(c) of (i⇒ ei)� = d(c)[i 7→ ei] .

The case c = 0 is trivial since d(0) can only have the form n or ⊥. For the induction step,
the situation for d = n,⊥ is trivial, so let us suppose d = case a of (j ⇒ fj). Then

� case d(c+1) of (i⇒ ei)�

= � case (case a of (j ⇒ f
(c)
j)) of (i⇒ ei)�

= case a of (j ⇒� case f
(c)
j of (i⇒ ei)�)

= case a of (j ⇒ (f
(c)
j [i 7→ ei])) by the induction hypothesis

= (case a of (j ⇒ f
(c)
j))[i 7→ ei]

= d(c+1)[i 7→ ei] .

Since �−� is continuous, the proposition follows by taking the supremum over c.

From this lemma we may now read off the operations on NSPs that correspond to
clauses 4 and 5 of Proposition 3.1(ii):

Proposition 3.5.

(i) If Γ `M : N in PCFΩ, then [[Cf M]]Γ = [[M]]Γ[i 7→ f(i)] (understanding f(i) to be ⊥
when i 6∈ dom f); similarly for suc and pre.

(ii) If Γ `M : N, Γ ` N : N and Γ ` P : N, then [[ifzero M N P]]Γ = [[M]]Γ[0 7→ d, i+1 7→ e]
where [[N]]Γ = λ.d and [[P]]Γ = λ.e.

Proof.

(i) The definition of [[−]] yields

[[Cf M]]Γ = � λ. case [[M]]Γ of (i⇒ f(i))� ,

and by Lemma 3.4 this evaluates to [[M]]Γ[i 7→ f(i)]. Likewise for suc and pre.
(ii) The definition of [[−]] yields

[[ifzero M N P]]Γ = � λ. case [[M]]Γ of (0⇒ d | i+ 1⇒ e)� ,

and by Lemma 3.4 this evaluates to [[M]]Γ[0 7→ d, i+ 1 7→ e].

It remains to consider the formation rule involving Yσ. It will be convenient to regard the
NSP for YMN0 . . . Nr−1 as a result of plugging some simpler NSPs together, in the sense
indicated by the following definition. Here and later, we shall follow the convention that
Greek capitals Γ,∆ denote arbitrary environments, while Roman capitals Z,X, V denote
lists of variables of type level ≤ k. (Of course, the idea of plugging can be formulated without
any restrictions on types, but we wish to emphasize at the outset that only pluggings at
level ≤ k will feature in our proof.)

20 JOHN LONGLEY

Definition 3.6 (Plugging). Suppose given the following data:

• a variable environment Γ,
• a finite list Z of ‘plugging variables’ z of level ≤ k, disjoint from Γ,
• a root expression Γ, Z ` e,
• a substitution ξ assigning to each zσ ∈ Z a procedure Γ, Z ` ξ(z) : σ.

In this situation, we define the (k-)plugging ΠΓ,Z(e, ξ) (often abbreviated to Π(e, ξ)) to
be the meta-term obtained from e by repeatedly expanding variables z ∈ Z to ξ(z). To
formalize this, let T ◦ denote the meta-term obtained from T by replacing each ground type

subterm z ~Q (where z ∈ Z) by ⊥. We may now define, up to α-equivalence,

Π0(e, ξ) = e ,

Πm+1(e, ξ) = Πm(e, ξ)[z 7→ ξ(z) for all z ∈ Z] ,

Π(e, ξ) =
⊔
m

Πm(e, ξ)◦ ,

where
⊔

denotes supremum with respect to the syntactic order on meta-terms.

It is easy to see that ΠΓ,Z(e, ξ) is well-typed in environment Γ. Note that some renaming
of bound variables will typically be necessary in order to realize ΠΓ,Z(e, ξ) as a concrete
term conforming to the no-variable-hiding condition; we will not need to fix on any one
particular way of doing this.

The operation on NSPs corresponding to clause 6 of Proposition 3.1(ii) may now be
described as follows:

Proposition 3.7. Suppose that σ = σ0, . . . , σr−1 → N is of level ≤ k and that Γ `
YσMN0 . . . Nr−1 in PCFΩ

k , where [[M]]Γ = λzσ.p = λzσxσ0
0 · · ·x

σr−1

r−1 . e and [[Ni]]Γ = qi
for each i. Then

[[YσMN0 . . . Nr−1]]Γ = λ.� ΠΓ,Z(e, ξ)�
where Z = z, x0, . . . , xr−1, ξ(z) = p, and ξ(xi) = qi for each i.

Proof. Note that in this instance of plugging, the repeated substitutions are needed only
for the sake of the term ξ(z) which may contain z free—only a single substitution step is
needed for the plugging variables xi, since the qi contain no free variables from Z. We may
thus rewrite ΠΓ,Z(e, ξ) as

ΠΓ,~x,Z′(e, ξ
′) [~x 7→ q] ,

where Z ′ = {z} and ξ′(z) = p. The proposition will therefore follow easily (with the help of
Theorem 2.4) once we know that

[[YσM]]Γ = λ~x. � ΠΓ,~x,Z′(e, ξ
′)� .

To see this, write Yσ = λg.Fσ[g] where Fσ[g] = λ~x. case g (Fσ[g]) ~x η of (i ⇒ i) as at the
start of Section 2.3. Then clearly

[[YσM]]Γ = (λg.Fσ[g]) · (λz.p) = � Fσ[λz.p]� .

Here the meta-term Fσ[λz.p] is specified corecursively (up to α-equivalence) by

Fσ[λz.p] = λ~x. case (λz.p) (Fσ[λz.p]) ~x η of (i⇒ i)

That is, Fσ[λz.p] coincides with the meta-term G =
⊔
mG

m, where

G0 = ⊥σ , Gm+1 = λ~x. case (λz.p)Gm ~x η of (i⇒ i) .

RECURSION HIERARCHY FOR PCF 21

We may now compare this with the meta-term H =
⊔
mH

m, where

H0 = ⊥σ , Hm+1 = λ~x. e[z 7→ Hm] .

Noting that (λz.p)Gm ~x η e[z 7→ Gm, ~x 7→ ~x η], we have by Lemmas 2.5 and 3.4 that

� Gm+1 � = � λ~x. e[z 7→ Gm]�
whence by Theorem 2.4 and an easy induction we have � Gm �=� Hm � for all m.
Hence �G�=�H�.

Moreover, it is immediate from the definition that H coincides with the meta-term
λ~x.ΠΓ,~x,Z′(e, ξ

′) mentioned earlier. We thus have

[[YσM]]Γ = � Fσ[λz.p]� = �G� = �H� = λ~x. � ΠΓ,~x,Z′(e, ξ
′)�

and the proof is complete. (We have glossed over some fine details of variable renaming here,
but these are easily attended to.)

Combining Propositions 3.2, 3.5 and 3.7 with Proposition 3.1, the results of this section
may be summarized as follows.

Theorem 3.8. The class of PCFΩ
k -denotable procedures-in-environment Γ ` p is the class

generated inductively by the following rules:

(1) If Γ ` qi is denotable for each i < r and x ∈ Γ, then

Γ ` λ. case xq0 . . . qr−1 of (j ⇒ j)

is denotable.
(2) If Γ, x ` p is denotable, then Γ ` λx.p is denotable.
(3) Each Γ ` λ.n is denotable.
(4) If Γ ` p is denotable and f : N ⇀ N, then Γ ` p[i 7→ f(i)] is denotable. (The

constructions for suc and pre are special cases of this).
(5) If Γ ` p, Γ ` λ.d and Γ ` λ.e are denotable, then Γ ` p[0 7→ d, i+ 1 7→ e] is denotable.
(6) If Γ ` λzσxσ0

0 · · ·x
σr−1

r−1 .e is denotable where σ = σ0, . . . , σr−1 → N is of level ≤ k, and
Γ ` qi : σi is denotable for each i < r, then

Γ ` λ.� ΠΓ,Z(e, ξ)�
is denotable, where Z = z, ~x is disjoint from Γ, ξ(z) = λ~x.e, and ξ(xi) = qi for each i.

To conclude this section, we introduce a useful constraint on NSPs which, although not
satisfied by all PCFΩ

k -denotable procedures, will hold for all those that we will need to
consider in the course of our main proofs. As we shall see, this constraint will interact well
with the inductive rules just presented.

Referring back to the examples in Section 1, we see that the recursive definitions of
both Yk+1 and Φk+1 involved a variable g of type level k + 2. It is therefore natural that
our analysis will involve the consideration of terms in which such a variable g appears free.
However, it will turn out that apart from this one designated variable, our terms need never
involve any other variables of level > k, and this has a pleasant simplifying effect on our
arguments. This motivates the following definition:

Definition 3.9. Suppose g is a variable of type level k + 2.

(i) An environment Γ is (g-)regular if Γ contains g but all other variables in Γ are of type
level ≤ k.

22 JOHN LONGLEY

(ii) A meta-term T is regular if all free and bound variables within T are of level ≤ k,
except possibly for free occurrences of g.

(iii) A meta-term-in-environment Γ ` T is regular if both Γ, T are regular.

There is a useful alternative characterization of regularity in the case of normal forms:

Proposition 3.10. A term-in-environment Γ ` t is regular iff Γ is regular and t is not a
procedure of type level ≥ k + 2.

Proof. The left-to-right implication is trivial, since a procedure of level ≥ k + 2 would have
the form λ~x. · · · where at least one of the xi was of level ≥ k + 1. For the converse, suppose
Γ is regular and t is not a procedure of level ≥ k + 2. Then t contains no free variables of
level ≥ k other than g, so we just need to show that all variables bound by a λ-abstraction
within t are of level ≤ k. Suppose not, and suppose that λ~x.e is some outermost subterm of
t with lv(~x) > k. Then λ~x.e cannot be the whole of t, since t would then be a procedure of
level > k + 1. Since t is a normal form, the subterm λ~x.e (of level > k + 1) must therefore
occur as an argument to some variable w of level > k + 2. But this is impossible, since Γ
contains no such variables, nor can such a w be bound within t, since the relevant subterm
λ~w.d would then properly contain λ~x.e, contradicting the choice of the latter.

Let us now consider how the inductive clauses of Theorem 3.8 may be used to generate
regular procedures-in-environment Γ ` t. The following gives a useful property of derivations
involving these clauses:

Proposition 3.11. If Γ ` t is regular and PCFΩ
k -denotable, then any inductive generation

of the denotability of Γ ` t via the clauses of Theorem 3.8 will consist entirely of regular
procedures-in-environment.

Proof. It suffices to observe that for each of the six inductive clauses (regarded as rules),
if the conclusion is a regular procedure-in-environment then so are each of the premises.
For clause 1, this is clearly the case because the qi are subterms of the procedure in the
conclusion. For clause 2, we note that if λx.p is regular then so is p, and moreover x has level
≤ k so that Γ, x is regular. Clauses 3 and 4 are trivially handled. For clause 5, we not that if
Γ ` p[0 ` d, i+ 1 7→ e] is regular then Γ ` p, Γ ` λ.d and Γ ` λ.e are immediately regular by
Proposition 3.10 (regardless of whether any leaves 0 or i+1 appear in p). Likewise, for clause
6, we note that under the given hypotheses, both λz~x.e and each qi are of level ≤ k+1; hence
if Γ is regular then immediately Γ ` λz~x.e and Γ ` qi are regular by Proposition 3.10.

In particular, let us consider again the construction of the procedure Yk+1 as λg.Fk+1[g],
where

Fk+1[g] = λxk. case g (Fk+1[g])xη of (i⇒ i) .

It is clear by inspection that g ` Fk+1[g] is regular; hence, if it were PCFΩ
k -denotable, then

Proposition 3.11 would apply. We shall show, however, that a purely regular derivation via
the clauses of Theorem 3.8 cannot generate ‘spinal’ terms such as Fk+1[g]; hence g ` Fk+1[g]
is not PCFΩ

k -denotable. This will immediately imply that Yk+1 itself is not PCFΩ
k -denotable

(Theorem 2.11), since the only means of generating non-nullary λ-abstractions is via clause
2 of Theorem 3.8.

RECURSION HIERARCHY FOR PCF 23

4. PCFΩ
k -denotable procedures are non-spinal

In this section, we will introduce the crucial notion of a (k+1-)spinal term, and will show
that the clauses of Theorem 3.8 (in the regular case) are unable to generate spinal terms
from non-spinal ones. Since the procedure Fk+1[g] will be easily seen to be spinal, this will
establish Theorem 2.11.

More specifically, we will actually introduce the notion of a g-spinal term, where g is a
free variable which we treat as fixed throughout our discussion. We shall do this first for the
case

g : (k + 1)→ (k + 1)

as appropriate for the analysis of Fk+1[g] and hence of Yk+1. Later we will also consider a
minor variation for g of type N→ (k+ 1)→ (k+ 1), as appropriate to the definition of Φk+1

given in Section 1. In both cases, we shall be able to dispense with the term ‘k+1-spinal’,
since the type level k + 1 may be read off from the type of g.

Some initial intuition for the concept of spinality was given in Section 1. We now
attempt to provide some further motivation by examining a little more closely the crucial
difference between Yk+1 and Yk (say) that we are trying to capture.

The most obvious difference between these procedures is that Yk+1 involves an infinite
sequence of nested calls to a variable g : (k + 1)→ (k + 1), whereas Yk does not. One’s first
thought might therefore be to try and show that no procedure involving an infinite nesting
of this kind can be constructed using the means at our disposal corresponding to PCFΩ

k

terms.
As it stands, however, this is not the case. Suppose, for example, that upk : k → k + 1

and downk : k + 1 → k are PCF0 terms defining a standard retraction k C k + 1. More
specifically, let us inductively define

up0 = λx0.λz0.x , down0 = λy1. y 0̂ ,
upk+1 = λxk+1.λzk+1. x(downk z) , downk+1 = λyk+2.λwk. y(upk w) .

Now consider the PCFk program

Zk+1 = λg : (k + 1)→ (k + 1). upk (Yk (downk ◦ g ◦ upk)) .

This is essentially just a representation of Yk modulo our encoding of type k in type k + 1.
A simple calculation shows that the NSPs for Yk+1 and Zk+1 are superficially very similar
in form, both involving an infinite sequence of nested calls to g : (k + 1)→ (k + 1). (These
NSPs are shown schematically in Figure 1 for the case k = 2.) We will therefore need to
identify some more subtle property of NSPs that differentiates between Yk+1 and Zk+1.

The intuitive idea will be that in the NSP for Zk+1, the full potency of g as a variable
of type k + 1→ k + 1 is not exploited, since both the input and output of g are ‘funnelled’
through the simpler type k. Such funnelling will inevitably entail some loss of information,
as Theorem 2.12 tells us that the type k cannot fully represent the structure of the type
k + 1. A useful mental picture here is that of a (k + 1)-dimensional space being ‘flattened’
down to a k-dimensional one. Broadly speaking, then, we shall want to define a g-spinal
term to be one containing an infinite sequence of nested calls to g but with no essential
‘flattening’ of the arguments. It will then be the case that Yk+1 is g-spinal, but Zk+1 is not.

We now approach the formal definition of a g-spinal term, generalizing the structure
exhibited by the terms Fk+1[g]. To get our bearings, let us examine the form of these terms

24 JOHN LONGLEY

λg. x. case g () () of (i => i)λ

3Y :

x’. case g () () of (i => i)λ

λ x’’. case g () () of (i => i)

z. case y (.z) of (i => i)λλ

y. case x’’ () of (i => i)λ

z. case y (.z) of (i => i)λλ

y. case x’ () of (i => i)λ

z. case y (.z) of (i => i)λλ

y. case x () of (i => i)λ

....

λg. x. case g () () of (i => i)λ

3

x’. case g () () of (i => i)λ

λ x’’. case g () () of (i => i)

λλ

y. case x’’ () of (i => i)λ

λλ

y. case x’ () of (i => i)λ

λλ

y. case x () of (i => i)λ

....

Z :

z. case y (.0) of (i => i)

z. case y (.0) of (i => i)

z. case y (.0) of (i => i)

Figure 1: The NSPs for Y3 and Z3. Here λ.z abbreviates λ. case z of (i⇒ i).

one more time. Note that Fk+1[g] has the form λxk.H[g, x], where

H[g, x] = case g(λx′.H[g, x′])xη of (· · ·) .
Spinal expressions of this kind, in which the topmost g of the spine appears at the very
head of the expression, will be referred to as head-spinal. In fact, we shall say that H[g, x] is
head-spinal with respect to the variable x, since as noted above, it is significant here that
x is passed to g with no ‘flattening’ (in the form of the procedure xη). As a first attempt,
then, one might hazard that we should define a concept of head-spinality relative to a type k

RECURSION HIERARCHY FOR PCF 25

variable coinductively as follows: an expression e is g-head-spinal w.r.t. x if it is of the form

case g(λx′.e′)xη of (· · ·)
where e′ is itself g-head-spinal w.r.t. x.

In fact, in order for the set of non-spinal terms to have appropriate closure properties,
we shall need to relax this definition in two ways. Firstly, we allow λx′.e′ to be replaced by
λx′.E[e′] where E[−] is any expression context: that is, we allow the head-spinal subterm
e′ to appear at positions other than the head of this procedure. Secondly, we allow xη to
be replaced by a procedure term o that can be specialized to (something close to) xη: the
intuition is that any such o will embody the whole content of x with no flattening.

This leads us, at last, to the following definition. Note that this makes reference to
the technical notion of an x, V -closed substitution, the explanation of which we shall defer
to Definition 4.2 below. This entails that the notion of head-spinality needs to be defined
relative to a certain set V of variables as well as a type k variable x. We shall adopt the
convention that any environment denoted by Γ will be g-regular (and hence will contain g);
recall that Roman letters such as V,X,Z always denote lists of variables of level ≤ k (which
may also contribute to the environments we consider).

Definition 4.1 (Spinal terms). Suppose g has type (k + 1) → (k + 1). Suppose Γ ` e is
g-regular, and that xk ∈ Γ and V ⊆ Γ.

(i) In this situation, we coinductively declare e to be g-head-spinal with respect to x, V iff
e has the form

case g(λx′.E[e′])o of (· · ·)
where E[−] is an expression context, and
(1) for some x,V -closed substitution ◦ covering the free variables of o other than x,

we have o◦ � xη,
(2) e′ is g-head-spinal with respect to x′, V ′, where V ′ is the local variable environment

for E[−]. (Clearly e′ will automatically be g-regular in some Γ′ that contains both
x′ and V ′.)

In other words, we take ‘e is g-head-spinal w.r.t. x, V ’ to be the largest relation that
satisfies the above statement.

(ii) In the above setting, we may also refer to the application g(λx′.E[e′])o itself as
g-head-spinal w.r.t. x, V .

(iii) We say a term t is g-spinal if it contains a subexpression that is g-head-spinal w.r.t.
some x, V .

Whilst this definition makes use of local variable environments which in principle pertain to
concrete terms, it is easily seen that the notion of g-spinal term is α-invariant. Since we are
taking g to be fixed throughout the discussion, we will usually omit mention of it and speak
simply of spinal and head-spinal terms, and of regular (meta-)terms and environments.

In condition 1, one might have expected to see o◦ ≈ xη, but it turns that the argument
goes through most smoothly with � in place of ≈. In Appendix A we will see that o◦ � xη
is actually equivalent to o◦ ≈ xη, although this is somewhat non-trivial to show and is not
needed for our main proof.

It remains to define the notion of an x, V -closed substitution. Suppose that ◦ = [~w 7→ ~r]
is some substitution proposed for use in condition 1 of Definition 4.1(i). Since we are wishing
to compare o◦ with xη, it is natural to require that the ~r contain no free variables other than
x. However, what we want to ensure here is intuitively that the whole unflattened content

26 JOHN LONGLEY

of x is present in o itself rather than simply being introduced by the substitution. This can
be ensured if we allow x as a free variable only in procedures ri of type level < k: such
procedures can only introduce ‘flattened’ images of x, since the x is here being funnelled
through a type of level ≤ k − 1.

For technical reasons, we furthermore need to restrict such occurrences of x to those
ri substituted for variables wi in a certain set V , which in practice will consist of variables
bound between one spinal occurrence of g and the next (as can be seen from the specification
of V ′ above). The necessity for the set V is admittedly difficult to motivate at this point: it
is simply what the details of the proof seem to demand (see the last page of the proof of
Lemma 4.4).

Definition 4.2. If x is a variable of type k and V a set of variables, a substitution
◦ = [~w 7→ ~r] is called x,V -closed if the ri contain no free variables, except that if wi ∈ V
and lv(wi) < k then ri may contain x free.

It is worth remarking that if we were only interested in showing the non-definability of
Yk+1 as an element of SP0, one could do without the notion of x,V -closedness altogether, and
more simply require in Definition 4.1 that ◦ is closed (and moreover that �o◦�= xη on the
nose). The weaker definition we have given is designed with the proof of non-definability in
SF in mind: we will be able to show in Section 5 that every (simple) procedure representing
the functional Φk+1 ∈ SF is spinal in this weaker sense.6

We now digress briefly to explain the small modification of this machinery that we will
need in Section 5. Since our purpose there will be to analyse the functional Φk+1 which
we defined in Section 1, we shall be working in a setup in which the global variable g has
the slightly different type 0→ (k + 1)→ (k + 1). In this setting, we may vary the above
definition by coinductively declaring e to be g-head-spinal w.r.t. x, V iff e has the form

case gb(λx′.E[e′])o of (· · ·)
where b is a procedure term of type 0 and conditions 1 and 2 above are also satisfied. Subject
to this adjustment, all the results and proofs of the present section go through in this
modified setting, with the extra argument b playing no active role. For the remainder of
this section, we shall work with a global variable g of the simpler type (k + 1)→ (k + 1), on
the understanding that the extra arguments b can be inserted where needed to make formal
sense of the material in the modified setting. We do not expect that any confusion will arise
from this.

Clearly g ` Fk+1[g] is spinal. The main result of this section will be that every PCFΩ
k -

denotable procedure Γ ` p is non-spinal (Theorem 4.5). We shall establish this by induction
on the generation of denotable terms as in Theorem 3.8, the only challenging case being the
one for rule 6, which involves plugging. Here we require some technical machinery whose
purpose is to show that if the result of a plugging operation is spinal, then a spinal structure
must already have been present in one of the components of the plugging: there is no way
to ‘assemble’ a spinal structure from material in non-spinal fragments.

The core of the proof will consist of some lemmas developing the machinery necessary for
tackling rule 6. We start with some technical but essentially straightforward facts concerning
evaluation and the tracking of subterms and variable substitutions.

6It can be shown using Theorem 2.12 that if o◦ � xη where ◦ is x,V -closed, then at least one x in �o◦�
must originate from o rather than from ◦. We have not actually settled the question of whether there
are procedures o such that o◦ � xη for some x,V -closed ◦ but not for any closed ◦; fortunately this is not
necessary for the purpose of our proof.

RECURSION HIERARCHY FOR PCF 27

Lemma 4.3. Suppose that
Γ ` � K[d]� =α K ′[c]

where K[−],K ′[−] are concrete meta-term contexts with local environments ~v,~v ′ respectively,
and Γ, ~v ` d = case gpq of (· · ·), Γ, ~v ′ ` c = case gp′q′ of (· · ·) are concrete expressions.
Suppose also that:

(1) Γ ` K[d] is regular,
(2) in the evaluation above, the head g of c originates from that of d.

Then:

(i) There is a substitution † = [~v 7→ ~s] of level ≤ k arising from the β-reductions in the
above evaluation, with Γ, ~v ′ ` ~s regular, such that Γ, ~v ′ ` gp′q′ =α�(gpq)†�, whence
�d†� is of form case gp′q′ of (· · ·) up to =α.7

(ii) If furthermore c is head-spinal w.r.t. some x, V , then also � d† � is head-spinal w.r.t.
x, V .

(iii) If K[−] contains no β-redexes P ~Q with P of type level k+ 1, then † is trivial for level
k variables: that is, there is an injection ι mapping each level k variable vi ∈ ~v to a
variable ι(vi) ∈ ~v ′ such that si = ι(vi)

η.

In reference to part (iii), recall that substitutions v 7→ vη have no effect on the meaning
of a term, as established by Lemma 2.5. Note that the environments ~v,~v ′, and hence the
injection ι, will in general depend on the concrete choice of K[d] and K ′[c]. However, for
the purpose of proving the theorem, it is clearly harmless to assume that K ′[c] is, on the
nose, the concrete term obtained by evaluating K[d]. In this case, we will see from the proof
below that each ι(vi) will be either vi itself or a renaming of vi arising from the evaluation.

Proof.

(i) We first formulate a suitable property of terms that is preserved under all individual
reduction steps. Let K[−], d, p, q and ~v be fixed as above, and suppose that

K0[case gP 0Q0 of (· · ·)] K1[case gP 1Q1 of (· · ·)]
via a single reduction step, where the g on the right originates from the one on the
left, and moreover K0, P 0, Q0 enjoy the following properties (we write ~v 0 for the local
environment for K0[−]):
(1) Γ ` K0[case gP 0Q0 of (· · ·)] is regular.
(2) There exists a substitution †0 = [~v 7→ ~s 0] (with Γ, ~v 0 ` ~s 0 regular) such that
� gP 0Q0 �=α� (gpq)†0 �.

We claim that K1, P 1, Q1 enjoy these same properties w.r.t. the local environment ~v 1

for K1[−]. For property 1, clearly K1[case gP 1Q1 of (· · ·)] cannot contain variables
of level > k other than g, because K0[case gP 0Q0 of (· · ·)] does not. For property 2,
we define the required substitution †1 = [~v 7→ ~s 1] by cases according to the nature of
the reduction step:
• If the subexpression case gP 0Q0 of (· · ·) is unaffected by the reduction (so that
P 0 = P 1 and Q0 = Q1), or if the reduction is internal to P 0, Q0 or to the rightward

7Note that although both � d†� and c have the form case gp′q′ of (· · ·), they will in general have
different case-branches, for instance when K[−] is of the form case − of (· · ·).

28 JOHN LONGLEY

portion (· · ·), or if the reduction has the form

case (case gP 0Q0 of (i⇒ E0
i)) of (j ⇒ Fj)

case gP 0Q0 of (i⇒ case E0
i of (j ⇒ Fj))

then the conclusion is immediate, noting that ~v 1 = ~v 0 and taking †1 = †0.

• If the reduction is for a β-redex (λ~x.E)~R where the indicated subexpression
case gP 0Q0 of (· · ·) lies within some Ri, we may again take †1 to be †0, with
obvious adjustments to compensate for any renaming of bound variables within Ri
or ~s 0. In this case ~v 1 may contain more variables than ~v 0, but we will still have
that Γ, ~v 1 ` ~s 1 once these renamings have been effected.

• If the reduction is for a β-redex (λ~x.E)~R where case gP 0Q0 of (· · ·) lies within E,

then P 1 = P 0[~x 7→ ~R ′] and Q1 = Q0[~x 7→ ~R ′] for some ~R ′ =α
~R. In this case, the

local environment ~v 1 for K1[−] will be ~v 0−~x (perhaps modulo renamings of the v0
i),

so that the conclusion follows if we take †1 = [~v 7→ ~s 1] where s1
i =� s0

i [~x 7→ ~R ′]�
for each i (modulo the same renamings). Note here that Γ, ~v 1 ` ~s 1 is regular since
~R is regular by condition 1 of the hypothesis.
Now in the situation of the lemma we will have some finite reduction sequence

K[case gpq of (· · ·)] ∗ K ′′[case gP ′Q′ of (· · ·)] ,
where, intuitively, K ′′[−] is fully evaluated down as far as the hole. More formally,
there is a finite normal-form context t[−] v K ′′[−] containing the hole in K ′′[−] such
that t[−] v K ′[−]; from this we may also see that � P ′�= p′, �Q′�= q′ and
�K ′′[−]�= K ′[−]. Moreover, we now see that K, p, q themselves trivially satisfy
the above invariants if we take † = [~v 7→ ~v η] (Lemma 2.5 is used here). We therefore
infer by iterating the argument above that K ′′, P ′, Q′ also satisfy these invariants
with respect to some † = [~v 7→ ~s] with Γ, ~v ′ ` ~s regular. (The environment Γ, ~v ′

is correct here, as K ′[−],K ′′[−] have the same local environment.) We now have
gp′q′ =� gP ′Q′ �=α� (gpq)† �. That the ~v are of level ≤ k is automatic, because
K[d] is regular. It also follows immediately that �d†� has the stated form.

(ii) If c is head-spinal w.r.t. x, V , then we see from Definition 4.1 that gp′q′ and hence
� d† �= case gp′q′ of (· · ·) are head-spinal w.r.t. x, V .

(iii) From the proof of (i), we see that in the reduction of K[case gpq of (· · ·)] to
K ′′[case gP ′Q′ of (· · ·)], any vi ∈ ~v can be tracked through the local environments for
the intermediate contexts K0[−],K1[−], . . . until (if ever) it is a substitution variable
for a β-reduction. For those vi that never serve as such a variable, it is clear from the
construction that vi gives rise to some variable ι(vi) ∈ ~v ′ (either vi itself or a renaming

thereof), and that si = v†i = ι(vi)
η. We wish to show that all vi ∈ ~v of level k are in

this category.
Recalling that ~v is the local environment for K[−], any vi ∈ ~v of level k is bound

by the leading λ of some meta-procedure P within K[−] of level k + 1. By hypothesis,
this P does not occur in operator position; nor can it occur as an argument to another
λ-abstraction within K[−], since this would require a bound variable of level ≥ k + 1.
It must therefore occur as a level k + 1 argument to g, so that we have a subterm
g(λvi.E[−]) · · · . But this form of subterms is stable under reductions, since g is a global
variable; it follows easily that this subterm has a residual g(λv′i.E

′[−]) · · · in each of

RECURSION HIERARCHY FOR PCF 29

the intermediate reducts (where v′i is either vi or a renaming thereof), and thus that
vi and renamings thereof never serve as substitution variables for β-reductions.

Thus, in the setting of the above lemma, if c is head-spinal then d can be specialized and
evaluated to yield a head-spinal term via the substitution [~v 7→ ~s]. However, we wish to
show more, namely that in this setting, d itself is already a spinal term, so that the ~s make
no essential contribution to the spinal structure. (This will give what we need in order to
show that k-pluggings cannot manufacture spinal terms out of non-spinal ones.) This is
shown by the next lemma, whose proof forms the most complex and demanding part of the
entire argument. The main challenge will be to show that all the head-spinal occurrences of
g in � d[~v 7→ ~s]� originate from d rather than from ~s. The reader is advised that great
care is needed as regards which variables can appear free where, and for this reason we shall
make a habit of explicitly recording the variable environment for practically every term or
meta-term that we mention.

Lemma 4.4. Suppose we have regular terms

Γ, ~v ` d = case gpq of (· · ·) , Γ, ~v ′ ` ~s , lv(~v), lv(~v ′) ≤ k ,
where Γ, ~v ′ `� d[~v 7→ ~s]� is head-spinal with respect to some x, V . Then d itself is spinal.

Proof. We begin with some informal intuition. The term � d[~v 7→ ~s]�, being head-spinal,
will be of the form

Γ, ~v ′ ` t = case g (λx′. E[case gF ′o′ of (· · ·)]) o of (· · ·) ,
where o′◦ � x′η for some ◦ (and likewise for o and x). Here the head g of t clearly originates
from that of d; likewise, the λx′ originates from the leading λ of p within d, rather than
from ~s. Suppose, however, that the second displayed spinal occurrence of g in t originated
from some si rather than from d. In order to form the application of this g to o′, the whole
content of x′η would in effect need to be passed in to si when d and ~s are combined. But
this is impossible, since the arguments to si are of level < k, so by Theorem 2.12 we cannot
funnel the whole of x′η through them: that is, the interface between d and ~s is too narrow
for the necessary interaction to occur. (The situation is made slightly more complex by the
fact that some components of ◦ might also involve x′, but the same idea applies.) It follows
that the second spinal g in t originates from d after all. By iterating this argument, we can
deduce that all the spinal occurrences of g, and indeed the entire spinal structure, comes
from d.

We now proceed to the formal proof. By renaming variables if necessary, we may assume
for clarity that the same variable is never bound in two places within the entire list of terms
d,~s, and that all bound variables within d,~s are distinct from those of ~v and ~v ′.

Let † = [~v 7→ ~s], and let us write the subterm p appearing within d as Γ, ~v ` λx′k.e,
where Γ, ~v, x′ ` e is regular. Then

� d† � = case g (λx′.� e† �)� q† � of (· · ·) ,
and since �d†� is head-spinal by hypothesis, � e†� will be some term Γ, x′, ~v ′ ` E[c],
where Γ, x′, ~v ′, ~y ′ ` c = case gF ′o′ of (· · ·) is itself head-spinal with respect to x′ and ~y ′.
(Here ~y ′ denotes the local environment for E[−], so that Γ, x′, ~v ′, ~y ′ contains no repetitions.)
We will first show that the head g of c comes from e rather than from †; we will later show
that the same argument can be repeated for lower spinal occurrences of g.

Claim 1: In the evaluation �e†�= E[c], the head g of c originates from e.

30 JOHN LONGLEY

Proof of Claim 1: Suppose for contradiction that the head g of c originates from some
substituted occurrence of an si within e†, say as indicated by e† = D[si] and si = L[d′],
where Γ, x′, ~v ′ ` D[−], Γ, ~v ′ ` si, and Γ, ~v ′, ~z ` d′ = case gp′q′ of (· · ·). (Here ~z is the local
variable environment for L[−]; note that ~z is disjoint from Γ, x′, ~v ′, but may well overlap
with ~y ′.) Then

Γ, x′, ~v ′ ` �e†� = � D[L[d′]]� = E[c] ,

where the head g in d′ is the origin of the head g in c. We will use this to show that a
head-spinal term may be obtained from d′ via a substitution of level < k; this will provide
the bottleneck through which x′η is unable to pass.

We first note that the above situation satisfies the conditions of Lemma 4.3, where we take
the Γ,K, d,K ′, c of the lemma to be respectively (Γ, x′, ~v ′), D[L[−]], d′, E, c. Condition 1
of the lemma holds because Γ, ~v, x′ ` e and Γ, ~v ′ ` ~s are clearly regular, whence so is
Γ, x′, ~v ` e† = D[L[d′]]; condition 2 is immediate in the present setup.

We conclude that there is a substitution [~y 7→ ~t] (called [~v 7→ ~s] in the statement of
Lemma 4.3) with ~y the local environment for D[L[−]] and Γ, x′, ~v ′, ~y ′ ` ~t (recalling that
~y ′ are the local variables for E[−]), such that � d′[~y 7→ ~t]� is head-spinal and indeed of
the form case gF ′o′ of (· · ·) with F ′, o′ as above. Furthermore, the only β-redexes in e†

are those arising from the substitution †, with some sj of level k as operator. There are

therefore no β-redexes in e† with a substitution variable of level k, so by Lemma 4.3(iii), the
substitution [~y 7→ ~t] is trivial for variables of level k. Note also that ~y (the environment for
D[L[−]]) subsumes ~z (the environment for L[−]); it is disjoint from Γ, x,~v ′ but may well
overlap with ~y ′.

Let us now split the substitution [~y 7→ ~t] as [~y + 7→ ~t+, ~y − 7→ ~t−], where ~y + consists of
the variables in ~y of level k, and ~y − consists of those of level < k. As we have noted, the
substitution for ~y + is trivial: that is, there is a mapping associating with each yj ∈ ~y + a
variable ι(yj) ∈ ~y ′ such that tj = ι(yj)

η.
Taking stock, we have that

Γ, x′, ~v ′, ~y ′ ` � d′[~y 7→ ~t]� = case gF ′o′ of (· · ·) ,
Γ, ~v ′, ~z ` d′ = case gp′q′ of (· · ·) ,

Γ, x′, ~v ′, ~y ′ ` ~t ,

where [~y 7→ ~t] is trivial for level k variables, and gF ′o′ is head-spinal w.r.t. x, ~y ′. From this
we may read off that

Γ, x′, ~v ′, ~y ′ ` � q′[~y 7→ ~t]� = o′ .

Since ~y subsumes ~z, we may henceforth regard q′ as a term in environment Γ, ~v ′, ~y. (This is
compatible with the no-variable-hiding condition: our conventions ensure that the variables
of ~y − ~z come from d rather than si and so do not appear bound in q′.) We may harmlessly
write q′[~y 7→ ~t] as above, even though there are variables of ~y that cannot appear in q′.

Since x′ does not occur free in q′, each free occurrence of x′ in o′ above must originate
from some tj ∈ ~t, which must furthermore have some type ρj of level < k, since if tj had level
k then we would have tj = ι(yj)

η which does not contain x′ free. In fact, we may decompose

the substitution [~y 7→ ~t] as [~y + 7→ ι(~y +)η] followed by [~y − 7→ ~t−], since none of variables of
~y − appear free in the ι(yj)

η for yj ∈ ~y +. Setting q′∗ =� q[~y + 7→ ι(~y +)η]� (so that q′∗ is

just q′ with the variables in ~y + rewritten via ι), we therefore have � q′∗[~y − 7→ ~t−]�= o′.

RECURSION HIERARCHY FOR PCF 31

Thus:

Γ, ~v ′, ι(~y +), ~y − ` q′∗ : k ,

Γ, x,~v ′, ~y ′ ` tj : ρj for tj ∈ ~t− ,
Γ, x,~v ′, ~y ′ ` � q′∗[~y − 7→ ~t−]� = o′ .

Since o′◦ � x′η for a suitable x′, ~y ′-closed substitution ◦ (as part of the fact that �d†�
is head-spinal), the above already comes close to exhibiting k as a pseudo-retract of a level
< k product type, contradicting Theorem 2.12. To complete the argument, we must take
account of the effect of ◦, which we here write as [~w 7→ ~r] (we may assume that ~w is exactly
Γ, ~v ′, ~y ′). Reordering our variables, we may now write x, ~w ` ~t−.

Next, let us split ◦ into two independent parts: a substitution [~w + 7→ ~r +] covering the
variables in Γ, ~v ′, ~y ′ of level ≥ k, and [~w − 7→ ~r −] covering those of level < k. Since ◦ is

x′, ~y ′-closed, we have ` ~r + and x′ ` ~r −. Now set q′o =� q′∗[~w + 7→ ~r +]�, so that ~u− ` q′o

where ~u− consists of the variables of Γ, ~v ′, ~y of level < k. The idea is that ~u− ` q′o may
now serve as one half of a suitable pseudo-retraction. For the other half, let [~u− 7→ ~a−]
denote the effect of the substitution [~y − 7→ ~t−] followed by ◦ = [~w 7→ ~r] (the order is
important here as ~y − and ~w may overlap). Since ~u− ⊆ ~y ∪ ~w and x, ~w ` ~t− and x ` ~r, this
substitution does indeed cover at least the variables of ~u− and we have x ` ~a−. We may

now verify that ~u− ` q′o and x ` ~a− constitute a pseudo-retraction as follows:

x′ ` � q′
o
[~u− 7→ ~a−]�

= � q′∗[~w + 7→ ~r +][~y − 7→ ~t−][~w 7→ ~r]�
= � (q′∗[~y − 7→ ~t−])[~w 7→ ~r]�
= � o′

◦ � � x′
η
.

As regards the second equation here, the first substitution [~w + 7→ ~r +] may be safely omitted
as ~w + and ~y − are disjoint and the terms ~r + do not contain any of the ~w + or ~y − free.
We therefore have k as a pseudo-retract of a product of level < k types. This contradicts
Theorem 2.12, so the proof of Claim 1 is complete.

We may therefore suppose that in the evaluation � e†�= E[c], the originating oc-
currence of the head g in c is as indicated by Γ, x′, ~v ` e = C[d′], where Γ, x′, ~v,~v ′′ ` d′ =
case gp′q′ of (· · ·). (Here ~v ′′ is the local environment for C[−]. The symbols d′, p′, q′ are
available for recycling now that the proof of Claim 1 is complete.)

In order to continue our analysis to greater depth, note that we may write

Γ, x′, ~v ′ ` �e†� = � (λ~v. C[d′])~s� = E[c] ,

where c is head-spinal w.r.t. x′, ~y ′, and the head g of d′ is the origin of the head g of c.
(Recall that ~y ′ is the local environment for E[−] and that Γ, x′, ~v ` e = C[d′] is regular,
whence lv(~v ′′) ≤ k.)

We claim that once again we are in the situation of Lemma 4.3, taking Γ,K, d,K ′, c
of the lemma to be respectively (Γ, x′, ~v ′), (λ~v. C[−])~s, d′, E, c. Condition 2 of the lemma
is immediate in the present setup; for condition 1, we again note that Γ, x′, ~v ′ ` C[d′] = e
and Γ, ~v ′ ` ~s are regular, so by Proposition 3.10 contain no bound variables of level > k;
hence the same is true for (λ~v. C[d′])~s. Applying Lemma 4.3, we obtain a substitution
†′ = [~v + 7→ ~s+] of level ≤ k (with ~v + = ~v,~v ′′), where Γ, x′, ~v ′, ~v + ` d′ and Γ, x′, ~v ′, ~y ′ ` ~s+

32 JOHN LONGLEY

are regular, such that
Γ, x′, ~v ′, ~y ′ ` � d′[~v + 7→~s+]�

is head-spinal w.r.t. x′, ~y ′, and indeed of the form case gF ′o′ of (· · ·) with F ′, o′ as above.
(We may in fact write just Γ, x′, ~v + ` d′ since, by assumption, the variables of ~v ′ do not
overlap with the free or bound variables of d so do not appear in d.) We may also read off

that � (p′)†
′ �= F ′ and � (q′)†

′ �= o′. As regards the substitution †
′

= [~v + 7→ ~s+], it
is clear that this extends [~v 7→ ~s] since the evaluation of (λ~v. C[d′])~s starts by β-reducing

this term. Moreover, the argument of Lemma 4.3(iii) shows that †
′

is trivial for any level k
variables in ~v ′′, as C[−] is in normal form.

We are now back precisely where we started, in the sense that d′, ~v +, ~s+ themselves
satisfy the hypotheses of Lemma 4.4, with (Γ, x′) now playing the role of Γ and (~v ′, ~y ′) that
of ~v ′. Explicitly, we have regular terms

Γ, x, ~v + ` d′ = case gp′q′ of (· · ·) , Γ, x, ~v ′, ~y ′ ` ~s+

(so that lv(~v +), lv(~v ′, ~y ′) ≤ k) where Γ, x, ~v ′, ~y ′ `� d′[~v + 7→ ~s+] � is head-spinal w.r.t.
x′, ~y ′. We can therefore iterate the whole of the above argument to obtain an infinite
descending chain of subterms

Γ, ~v ` d = case gpq of (· · ·) , p = λx′. C[d′] ,
Γ, ~v, x′, ~v ′′ ` d′ = case gp′q′ of (· · ·) , p′ = λx′′. C ′[d′′] ,

Γ, ~v, x′, ~v ′′, x′′, ~v ′′′′ ` d′′ = case gp′′q′′ of (· · ·) , p′′ = λx′′′. C ′′[d′′′] ,
· · · · · ·

along with associated substitutions †, †
′
, †
′′
, . . . applicable to d, d′, d′′, . . . respectively, such

that �p†�, � (p′)†
′�, � (p′′)†

′′�, . . . coincide with the successive procedure subterms

F, F ′, F ′′, . . . from the spine of the original term �d†�, and likewise �q†�, � (q′)†
′�,

� (q′′)†
′′�, . . . coincide with o, o′, o′′

We cannot quite conclude that d is head-spinal, because the critical x in q† might
originate not from q but from a level k term in ~s (for example). However, we can show that
this problem does not arise for q′, q′′, . . ., essentially because x′, x′′, . . . are bound locally
within p. We will in fact show that d′ is head-spinal w.r.t. x′, ~v ′′, where ~v ′′ is the local
environment for C[−]; this will imply that d is spinal. In the light of Definition 4.1, it will be

sufficient to show that (q′)◦
′ � x′η for some x′, ~v ′′-closed specialization ◦

′
covering the free

variables of q′ except x′ (namely those of Γ, ~v,~v ′′); the same argument will then obviously
apply also to q′′, q′′′,

Recall that Γ, ~v,~v ′′, x′ ` q′ and Γ, ~v ′, ~y ′, x′ ` o′. Since gF ′o′ is head-spinal w.r.t. x, ~y ′,
we may as before take ◦ = [~w 7→ ~r] x′, ~y ′-closed such that o′◦ � x′η, where ~w = Γ, ~v ′, ~y ′ and
x′ ` ~r. Now define

◦′ = [~v 7→ ~s ◦, ~v ′′ 7→ (~s ′′)◦, ~w Γ 7→ ~r Γ]

(where we write ~s+ as ~s,~s ′′, and ~w Γ 7→ ~r Γ denotes the restriction of ◦ to Γ). This covers
the free variables of q′ except x′, and we have x′ ` ~s ◦, (~s ′′)◦, ~r Γ because ~w ` ~s,~s ′′ and x ` ~r.
Moreover, we have

q′◦
′

= (q′[~v + 7→ (~s+)◦])[~w Γ 7→ ~r Γ] = (q′†
′
)◦ ≈ o◦ � x′η

since (~s+)◦ contains no free variables except x. To check that ◦
′

is x′, ~v ′′-closed, it remains

to show that that u◦
′

may contain x′ free only when u ∈ ~v,′′ and u is of level < k. (Indeed,
it is because of the possibility of x′ occurring free in these terms that the machinery of
x, V -closed substitutions is necessary at all.) The remaining cases are handled as follows:

RECURSION HIERARCHY FOR PCF 33

• The terms ~s exist in environment Γ, ~v ′, so do not involve x′ or any of the variables of ~y ′.
Since ◦ is x′, ~y ′-closed, it follows that the terms ~s ◦ do not involve x′.
• For any variables v ∈ ~v ′′ of level k, we have v†

′
= vη which contains no free variables of

level < k, so that (v†
′
)◦ cannot involve x′.

• The ~r Γ cannot involve x′, since ◦ is x′, ~y ′-closed and Γ is disjoint from ~y ′.

This completes the verification that d is spinal.

From the above lemma we may immediately conclude, for example, that in the setting
of Lemma 4.3(ii) the term d is spinal.

We are now ready for the main result of this section:

Theorem 4.5. Every PCFΩ
k -denotable procedure Γ ` p is non-g-spinal where g : (k + 1)→

(k + 1).

Proof. In the light of Section 3, it will suffice to show that the clauses of Theorem 3.8 cannot
generate spinal terms from non-spinal ones. For clauses 1–5 this is very easily seen. For
clause 6, it will be sufficient to show that non-spinal terms are closed under k-plugging, and
it is here that the machinery of Lemmas 4.3 and 4.4 comes into play.

Suppose that t =� ΠΓ,Z(e, ξ)� where Γ, Z ` e and Γ, Z ` ξ(z) for each z ∈ Z. For later
convenience, to each zi ∈ Z let us associate the procedure Γ ` ri =� ΠΓ,Z(ξ(zi), ξ)�; it is
then clear from the definition of plugging and the evaluation theorem that t =� e[~z 7→ ~r]�
and that ri =� ξ(zi)[~z 7→ ~r]� for each i.

It will be natural to frame the argument contrapositively. Suppose that t is spinal,
i.e. t contains some head-spinal expression c at position K[−]. We shall focus on the head
occurrence of g in c. Clearly this occurrence must originate from one of the ingredients
Γ, Z ` e or Γ, Z ` ξ(z) of the plugging ΠΓ,Z(e, ξ); let us denote this ingredient by Γ, Z ` t0.
We will show that t0 itself is spinal.

Suppose that the relevant occurrence of g in t0 is as indicated by

Γ, Z ` t0 = L[d] , Γ, Z,~v ` d = case gpq of (· · ·) ,
where ~v is the local environment for L[−]. Writing ? for [~z 7→ ~r], we have that � Π(t0, ξ)�
=� t?0 �; and if C[−] is the context encapsulating the remainder of the plugging Π(e, ξ),
then we may write

Γ ` K[c] = t = � C[Π(t0, ξ)]� = � C[t?0]� = � C[L?[�d?�]]� ,

where
�d?� = case g �p?��q?� of (· · ·) .

We claim that we are in the situation of Lemma 4.3, taking Γ,K, d,K ′, c of the lemma to
be respectively Γ, C[L?[−]],�d?�,K, c. Condition 1 of the lemma holds because C[t?0]
is constructed by substitution from normal-form terms of level ≤ k, and condition 2 is
immediate in the present setup.

By Lemma 4.3, we may therefore conclude that for a suitable substitution [~v 7→ ~s] with
Γ, ~v ′ ` ~s regular, Γ `�� d?� [~v 7→ ~s] � is head-spinal. (Note that the local variables
of C[−] do not appear in d?, because Γ, Z ` t0 and Γ ` ~r.) Equivalently, we may say that
� d[~v + 7→ ~s+]� is head-spinal, where

[~v + 7→ ~s+] = [~z 7→ ~r, ~v 7→ ~s] ,

so that Γ, ~v ′ ` ~s+ and lv(~v +), lv(~v ′) ≤ k. (Note that the ~z do not appear free in ~s, nor the
~v in ~r.)

34 JOHN LONGLEY

Since Γ, Z, V ` d and Γ, ~v ′ ` ~s+ are regular, we are in the situation of Lemma 4.4,
so may conclude that d itself is spinal, and hence that t0 is spinal. We have thus shown
that k-plugging cannot assemble spinal terms from non-spinal ones, and this completes the
proof.

In particular, since the procedure g ` Fk+1[g] mentioned at the start of the section is
spinal, we may conclude that this procedure is not PCFΩ

k -denotable, and hence neither is
the procedure Yk+1. This establishes Theorem 2.11.

We conclude the section by mentioning some minor variations on Theorem 4.5 that we
will require below. First, as already indicated, the whole of the above proof goes through
for the modified notion of spinal term appropriate to a variable g : 0→ (k + 1)→ (k + 1).
Secondly, the theorem also holds for an innocuous extension of PCFΩ

k with a constant
byval : (N→ N)→ N→ N, whose denotation in SP0 we take to be

λfx. case x of (i⇒ case fi of (j ⇒ j)) .

To see that the proof of Theorem 4.5 goes through in the presence of byval , it suffices
simply to add an extra clause to the inductive proof noting that the procedure for byval
is non-spinal. This mild extension will allow a significant simplification of the forms of
procedures that we need to consider in Section 5.8

5. Non-definability in the extensional model

To obtain corresponding non-definability results for SF rather than SP0, one must show
not only that the canonical procedures Yτ considered above are not PCFΩ

k -denotable, but
also that no extensionally equivalent procedures are. It is easy to see that there are indeed
many other procedures Z with the same extension as Yτ . To give a trivial example, we may
present the canonical procedure Yk+1 as λgx.C[g, x], where

C[g, x] = case A[g, x] of (i⇒ i) , A[g, x] = g(λx′.C[g, x′])xη .

However, another candidate for the fixed point operator is

Z0 = λgx. case A[g, x] of (i⇒ C[g, x]) .

Intuitively, this computes the desired value twice, discarding the first result.
As a slightly more subtle example, consider the procedure

Z1 = λgx. case g(λx′.case A[g, x] of (i⇒ C[g, x′]))xη of (k ⇒ k) .

Here, within the λx′ subterm, we have smuggled in a repetition of the top-level compu-
tation A[g, x] before proceeding to evaluate what is really required. The effect is that
λx′.case A[g, x] of (i ⇒ C[g, x′]) may be extensionally below λx′.C[g, x′], and this may
indeed affect the result when g is applied. However, this can only happen when Yk+1gx is
undefined anyway, so it is easy to see that Z1 as a whole will have the same extension as
Yk+1.

8The operator byval plays a major role in [LN15, Section 7.1], where it is shown that every element of
SP0 is denotable in PCFΩ + byval . The sense in which it is innocuous is that its denotation in SF coincides
with that of λfx. ifzero x (fx)(fx); thus byval adds nothing to the expressivity of PCFΩ

k as regards SF.

RECURSION HIERARCHY FOR PCF 35

Yet another way to construct procedures extensionally equivalent to Yk+1 is to vary the
subterms of the form xη (where x has type k). For instance, in the case k = 1, we could
replace xη by an extensionally equivalent term such as

X0 = λy0. x(λ. case y of (0⇒ case x(λ.0) of (j ⇒ 0) | i+ 1⇒ i+ 1)) .

This is different in character from the previous examples: rather than simply repeating the
computation of xyη, we are performing the specific computation x(λ.0) which we can see to
be harmless given that this point in the tree has been reached. Clearly, such ‘time-wasting’
tricks as the above may be combined and elaborated to yield more complex examples of
procedures equivalent to Y .

However, all of the above are rather innocuous variations and do not really yield a
fundamentally different method of computing fixed points. For example, the bodies of both
Z0, Z1 are still head-spinal terms, and it is essentially the spines that are really computing
the desired fixed point by the canonical method. This suggests that we should try to show
that every procedure extensionally equivalent to Yk+1 is spinal; from this it would follow
easily by Theorem 4.5 that the fixed point functional Yk+1 in SF is not denotable in PCFΩ

k .
Unfortunately, we are currently unable to show this in the case of Yk+1: indeed,

the syntactic analysis of procedures Z ≈ Yk+1 appears to present considerable technical
difficulties. We shall establish the result for Y0→(k+1), although even here, it is simplest to
concentrate not on Y0→(k+1) itself, but on a certain functional that is readily definable from
it, namely the functional Φk+1 introduced in Section 1. Nonetheless, the above examples of
‘time-wasting’ procedures illustrate some of the situations that our proof will need to deal
with, and they may help to motivate some of the technical machinery that follows.

Specifically, within PCFk+1, let us define

Φk+1 : (0→ (k + 1)→ (k + 1))→ (0→ (k + 1))

Φk+1 g
0→(k+1)→(k+1) = Y0→(k+1) (λf0→(k+1).λn. g n (f(suc n))) ,

so that informally
Φk+1 g n = g n (g (n+ 1) (g (n+ 2) (· · ·))) .

For the rest of this section we will write Φk+1 simply as Φ. For each n ∈ N, let g ` Φn[g] =
Φ g n̂ : k + 1, and let pn ∈ SP(k + 1) be the canonical NSP for Φn[g] (that is, the one arising
from the above PCF definition via the standard interpretation in SP0). These procedures
may be defined simultaneously by:

g ` pn = λxk. case g (λ.n) pn+1 x
η of (i⇒ i) : k + 1 .

By a syntactic analysis of the possible forms of (simple) procedures g ` q ≈ pn,
we will show that any such q is necessarily spinal. Here we have in mind the modified
notion of spinal term that is applicable to terms involving a global variable g : ρ, where
ρ = 0→ (k+ 1)→ (k+ 1) (see the explanation following Definition 4.1). Using Theorem 4.5
(adapted to this modified setting), it will then be easy to conclude that within SF, the
element [[λg.Φ0[g]]], and hence Y0→(k+1) itself, is not PCFΩ

k -denotable in SF.
To show that any q ≈ pn is head-spinal, our approach will be as follows. First, we show

that any such q must broadly resemble pn in at least its top-level structure, in that q must
have the form λx. case garo of (· · ·), where the arguments a, r, o are closely related to the
corresponding arguments (λ.n), pn+1, x

η occurring within pn. We do this by showing that
if q were to deviate in any way from this prescribed form, we would be able to cook up
procedures G ∈ SP0(ρ) and X ∈ SP0(k) manifesting an extensional difference between q

36 JOHN LONGLEY

and pn, i.e. such that q[g 7→ G]X 6≈ pn[g 7→ G]X. (Contrary to our usual convention, we
will here use the uppercase letters G,X to range over normal-form closed procedures that
may be substituted for g, x respectively.) In particular, we shall establish a sufficiently close
relationship between r and pn+1 that the same analysis can then be iterated to arbitrary
depth, showing that q has a spinal structure as required.

The main complication is that r need not superficially resemble pn+1, since within r,
the crucial application of g that effectively computes the value of pn+1 may be preceded
by other ‘time-wasting’ applications of g (the idea is illustrated by the example Z1 above).
However, it turns out that such time-wasting subterms ga1r1o1 must be of a certain kind if
the extensional behaviour q ≈ pn is not to be jeopardized: in particular, the first argument
a1 must evaluate to some i < n. (As in the example of Z1, the idea is that if the subterm
ga1r1o1 merely repeats some ‘outer’ evaluation, it will make no overall difference to the
extension if the evaluation of this subterm does not terminate.) In order to formulate
the relationship between r and pn+1, we therefore need a means of skipping past such
time-wasting applications in order to reach the application of g that does the real work. We
achieve this with the help of a masking operator µn,n′ , which (for any n ≤ n′) overrides the
behaviour of g on numerical arguments n ≤ i < n′ with a trivial behaviour returning the
dummy value 0.

We now proceed to our formal development. As a brief comment on notation, we recall
from Section 2 that the relations ≈ and � of observational equivalence and inequality make
sense not just for elements of SP0 but for arbitrary meta-terms (including applications),
closed or otherwise. Throughout this section, for typographical convenience, we will tend to
express the required relationships mostly at the level of meta-terms, writing for instance
pq ≈ λ.n rather than the equivalent � pq �= λ.n or p · q = λ.n. We shall also perpetrate
other mild abuses of notation, such as writing a procedure λ.n simply as n (except for
special emphasis), λ~x.⊥ as ⊥, xη as x, a meta-expression case A of (i⇒ i) just as A, and
abbreviating a substitution [g 7→ G, x 7→ X] to [G,X].

We shall say that G ∈ SP0(0 → (k + 1) → (k + 1)) is strict if G⊥ro ≈ ⊥ for any r, o.
Clearly, G is strict iff G ≈ λizx. case i of (j ⇒ G(λ.j)zηxη). In connection with meta-terms
with free variable g, we shall write T ≈′ T ′ to mean that T [g 7→ G] ≈ T ′[g 7→ G] for all
strict G; the notation �′ is used similarly. We shall actually analyse the syntactic forms of
procedures g ` q based on the assumption that q �′ pn, where pn is the canonical procedure
for Φn[g] as above.

We shall say a procedure g ` q is simple if for every application garo appearing within q,
the first argument a is just a numeral λ.n. The following observation simplifies our analysis
of terms considerably; it uses the operator byval and its NSP interpretation, as introduced
at the end of Section 4.

Proposition 5.1. If there is a procedure g ` q �′ pn-denotable in PCFΩ
k , then there is a

simple procedure g ` q′ �′ pn denotable in PCFΩ
k + byval .

Proof. Suppose g ` q is PCFΩ
k -denotable where q �′ pn, and write

S[g] = λizx. case i of (j ⇒ g(λ.j)zηxη) .

It is easy to see that
S[g] = [[λizx. byval (λj.gjzx) i]]g .

Take g ` q′ =� q[g 7→ S[g]] �, so that q′ is denotable in PCFΩ
k + byval . Then q ≈′ q′

since S[G] ≈ G for all strict G, so q′ �′ pn. Finally, q′ is clearly simple: every occurrence

RECURSION HIERARCHY FOR PCF 37

of g within q[g 7→ S[g]] has a numeral as its first argument, so the same will be true of
� q[g 7→ S[g]]�.

For any n ≤ n′, let us define the masking µn,n′(g) of g to be the following procedure
term (here ρ = 0→ (k + 1)→ (k + 1)):

gρ ` µn,n′(g) = λizx. case i of (n⇒ 0 | · · · | n′ − 1⇒ 0 | − ⇒ gizx) : ρ .

(The wildcard symbol ‘−’ covers all branch indices not covered by the preceding clauses.) We
may also write µn,n′(P) for µn,n′(g)[g 7→ P] if P is any meta-procedure of type ρ. We write
µn,n+1 simply as µn; note also that µn,n(g) ≈′ g. Clearly µn(µn+1(· · · (µn′−1(g)) · · ·)) ≈
µn,n′(g).

We shall say that a closed meta-term ` P : ρ is trivial at n if P (λ.n)⊥⊥ ≈ 0. Note that
µn,n′(G) is trivial at each of n, . . . , n′−1 for any closed G; indeed, G is trivial at n, . . . , n′−1
iff G �′ µn,n′(G).

The following lemma now implements our syntactic analysis of the top-level structure of
simple procedures q �′ pn.

Lemma 5.2. Suppose g ` q is simple and q �′ pn. Then q has form λxk. case garo of (· · ·),
where:

(1) a = λ.n,
(2) o[g 7→ G] � xη whenever ` G is trivial at n,
(3) r[g 7→ µn(g), x 7→ X] �′ pn+1 for any X.

Proof. Suppose q = λxk.e. Clearly e is not constant since q � pn; and if e had head
variable x, we would have q[g 7→ λizx. case i of (− ⇒ 0)](λw.⊥) = ⊥, whereas pn[g 7→
λizx. case i of (− ⇒ 0)](λw.⊥) = 0, contrary to q �′ pn. So e has form case garo of (· · ·).

For claim (1), we have a = λ.m for some m ∈ N because q is simple. Suppose that
m 6= n, and consider

G′ = λizx. case i of (n⇒ 0 | − ⇒ ⊥) .

Then for any X, clearly q[G′]X ≈ ⊥, whereas pn[G′]X ≈ G′(λ.n)(· · ·)X ≈ 0, contradicting
q �′ pn. Thus a = λ.n.

For claim (2), suppose that G(λ.n)⊥⊥ ≈ 0 but not o[G] � xη; then we may take
X ∈ SP0(k) and u ∈ SP0(k − 1) such that Xu ≈ l ∈ N but o[G,X]u 6≈ l. Now define

G′ = λizx. case i of (j ⇒ case xu of (l⇒ Gjzx | − ⇒ ⊥)) .

Then G′ � G, so o∗u 6≈ l where ∗ = [G′, X]; hence G′a∗r∗o∗ ≈ ⊥ and so q[G′]X ≈ ⊥. On
the other hand, we have

pn[G′]X ≈ case G′(λ.n)p∗n+1X of (i⇒ i)

≈ case Xu of (l⇒ G(λ.n)p∗n+1X) ≈ 0 ,

contradicting q �′ pn (note that G′ is strict). Thus o[G] � xη.
For claim (3), suppose that pn+1[G]X ′ ≈ l for some strict G ∈ SP0(ρ) and X ′ ∈ SP0(k).

We wish to show that r[µn(G), X]X ′ ≈ l for any X. Suppose not, and consider

G′ = λizx. case i of (n⇒ case zX ′ of (l⇒ 0 | − ⇒ ⊥) | − ⇒ Gizx) .

38 JOHN LONGLEY

Then G′ � µn(G), so r[G′, X]X ′ 6≈ l. Moreover, since a = λ.n by claim 1, we see that
G′a∗r∗o∗ ≈ ⊥, where ∗ = [G′, X], so that q[G′]X ≈ ⊥. On the other hand, we have

pn[G′]X ≈ case G′(λ.n)p∗n+1X of (i⇒ i)

≈ case p∗n+1X
′ of (l⇒ 0) .

Here, since pn+1 does not contain x free, we have p∗n+1 = pn+1[G′]. But it is easy to see
that pn+1[G′] ≈ pn+1[G], since every occurrence of g within pn+1 is applied to λ.n′ for some
n′ > n, and for all such n′ we have G′(λ.n′) ≈ G(λ.n′). (Since pn+1 contains infinitely many
applications of g, an appeal to continuity is formally required here.) But pn+1[G]X ′ ≈ l by
assumption; thus p∗n+1X

′ ≈ l, allowing us to complete the proof that pn[G′]X ≈ 0. Once
again, this contradicts q �′ pn, so claim 3 is established.

In the light of Appendix A, one may strengthen claim 2 of the above lemma by writing
o[g 7→ G] ≈ xη. This gives a fuller picture of the possible forms of terms q ≈ pn, but is not
needed for showing that such q are spinal.

We have now almost completed a circle, in the sense that claim 3 tells us that the
procedure � r[g 7→ µn(g), x 7→ X] � itself satisfies the hypothesis for q (with n + 1 in
place of n). However, there still remains a small mismatch between the hypothesis and the
conclusion, in that claim 3 concerns not r itself but rather � r[g 7→ µn(g)]�. (In the light
of claim 3, the variable x may be safely ignored here.) This mismatch is repaired by the
following lemma, which lends itself to iteration to any depth. Note the entry of a term
context E[−] here.

Lemma 5.3. Suppose g ` q is simple and q[g 7→ µn,n′(g)] �′ pn′. Then q has the form

λxk. E[case garo of (· · ·)], where:

(1) E[−] has empty local variable environment,
(2) a = λ.n′,
(3) o[g 7→ G] � xη whenever ` G is trivial at n, · · · , n′,
(4) r[g 7→ µn,n′+1(g), x 7→ X] �′ pn′+1 for any X.

Proof. Let q′ =� q[g 7→ µn,n′(g)]�. Under the above hypotheses, we have by Lemma 5.2
that q′ is of the form λx. case ga′r′o′ of (· · ·), where a′ = λ.n′, o′[g 7→ G] � xη whenever G
is trivial at n′, and r′[g 7→ µn′(g)] �′ pn′+1. Write q as λx.E[case garo of (· · ·)] where the
displayed occurrence of g originates the head g of q′ via the substitution † = [g 7→ µn,n′(g)].

Suppose that the hole in E[−] appeared within an abstraction λy.−; then the hole
in E[g 7→ µn,n′(g)][−] would likewise appear within such an abstraction. Moreover, the
evaluation of q[g 7→ µn,n′(g)] consists simply of the contraction of certain expressions
µn,n′(g)(λ.m)r′′o′′ to either 0 or g(λ.m)r′′o′′, followed by reductions case 0 of (i⇒ ei) e0;
thus, any residue in q′ of the critical g identified above will likewise appear underneath λy.
But this is impossible, because the head g of q′ is a residue of this g by assumption. This
establishes condition (1).

In the light of this, by Lemma 4.3(i) we have a′ ≈ a†, o′ ≈ o† and r′ ≈ r†. But since q is
simple, a is a numeral, so a = λ.n′, giving condition (2). For condition (3), suppose G is
trivial at n, . . . , n′. Then G � µn,n′+1(G), so that

o[g 7→ G] � o[g 7→ µn,n′(µn′(G))] ≈ o†[g 7→ µn′(G)] ≈ o′[g 7→ µn′(G)] � xη ,

since µn′(G) is trivial at n′. Condition (4) also holds since r′[g 7→ µn′(g)] ≈ r†[g 7→ µn′(g)] ≈
r[g 7→ µn,n′+1(g)], where r′[g 7→ µn′(g)] �′ pn′+1.

RECURSION HIERARCHY FOR PCF 39

Corollary 5.4. If g ` q is simple and q �′ pn, then q is spinal (in the modified sense).

Proof. Since condition 3 of the above lemma matches its hypotheses, starting from the
assumption that q ≈′ q[g 7→ µn,n(g)] �′ pn, we may apply the lemma iteratively to obtain
a spinal structure as prescribed by Definition 4.1 (subject to the relevant adjustments for
g : 0 → (k + 1) → (k + 1)). Note that at each level, a suitable substitution ◦ will be the
closed one that specializes g to λizx.0 (which is trivial at all n), and all variables xk other
than the innermost-bound one to ⊥.

Thus, if there exists a PCFΩ
k -denotable procedure t ≈ λg.p0, for instance, then by

Proposition 5.1 there is also a simple such procedure t′ denotable in PCFΩ
k + byval , and by

Corollary 5.4, this t′ will be spinal in the modified sense. But this contradicts Theorem 4.5
(understood relative to the modified setting, and applied to PCFΩ

k + byval as indicated at

the end of Section 4). We conclude that no t ≈ λg.p0 can be PCFΩ
k -denotable. Since the

interpretation of PCFΩ
k in SF factors through SP0, this in turn means that within the model

SF, the element [[λg.Φ0[g]]] is not denotable in PCFΩ
k . On the other hand, this element is

obviously denotable relative to Y0→(k+1) ∈ SF even in PCF1, so the proof of Theorems 2.1(i)
and 2.2(i) is complete. This establishes Berger’s conjecture, and also suffices for Corollary 2.3.

6. Extensional non-definability of Yk+1

We have so far shown that the element Y0→(k+1) ∈ SF is not PCFΩ
k -denotable. We shall

now refine our methods slightly to show that even Yk+1 ∈ SF is not PCFΩ
k -denotable. Since

k + 1 is clearly a PCF0-definable retract of every level k + 1 type, this will establish that no
Yσ ∈ SF where lv(σ) = k + 1 is denotable in PCFΩ

k .
The idea is as follows. Within each type level k ≥ 1, we can stratify the types into

sublevels (k, l) where l = 1, 2, . . ., essentially by taking account of the ‘width’ of the type
as well as its depth. We thus obtain a sublanguage PCFΩ

k,l of PCFΩ
k by admitting Yσ only

for types σ of sublevel (k, l) or lower. We show that, roughly speaking, all our previous
methods can be adapted to show that for a given k, the languages PCFΩ

k,l for l = 1, 2, . . .

form a strict hierarchy. (This is true as regards definability in SP0; for SF, we will actually
show only that PCFΩ

k,l is strictly weaker than PCFΩ
k,l+2.) This more refined hierarchy is of

some interest in its own right, and illustrates that the structure of SF is much richer than
that manifested by the pure types.9

Any term of PCFΩ
k will be a term of some PCFΩ

k,l. Previously we showed only that no
such term could define Y0→(k+1) ∈ SF; however, we now see that there is actually plenty of

spare headroom between PCFΩ
k,l and the pure type k+ 1. Specifically, there are operators Yσ

in PCFΩ
k,l+2 that are not PCFΩ

k,l-denotable; and since all such σ are of level ≤ k and are thus

easily seen to be retracts of k + 1, we may conclude that Yk+1 ∈ SF is not PCFΩ
k -denotable.

The following definition sets out the finer stratification of types that we shall use.

Definition 6.1.

(i) The width w(σ) of a type σ is defined inductively as follows:

w(N) = 0 , w(σ0, . . . , σr−1 → N) = max(r, w(σ0), . . . , w(σr−1)) .

9This contrasts with the situation for extensional total type structures over N, for example. There, under
mild conditions, every simple type is isomorphic to a pure type: see Theorem 4.2.9 of [LN15].

40 JOHN LONGLEY

For k, l ≥ 1, we say σ has sublevel (k, l) if lv(σ) = k and w(σ) = l. If σ = N, we simply
say that σ has sublevel 0. We order sublevels in the obvious way: 0 is the lowest
sublevel, and (k, l) < (k′, l′) if either k < k′ or k = k′ and l < l′.

(ii) For each k, l we define a type ρk,l by:

ρ0,l = N , ρk+1,l = ρk,l, . . . , ρk,l → N (l arguments) .

When k, l ≥ 1, we may call ρk,l the homogeneous type of sublevel (k, l).

The following facts are easily established. Here we shall say that σ is a simple retract of τ if
there is a PCF0-definable retraction σ C τ within SP0.

Proposition 6.2.

(i) For k ≥ 1, every type of sublevel (k, l) or lower is a simple retract of ρk,l. Hence, for
all k ≥ 0, for every finite list of types σi of level ≤ k, there is some l such that each σi
is a simple retract of ρk,l.

(ii) Every finite product of level ≤ k types is a simple retract of k + 1.
(iii) If σ is a simple retract of τ , then Yσ is PCF0-definable from Yτ in SP0.

Proof.

(i) The first claim (for k ≥ 1) is easy by induction on k, and the second claim (which is
trivial when k = 0) follows easily.

(ii) By induction on k. The case k = 0 is easy. For k ≥ 1, suppose σ0, . . . , σm−1 are
level ≤ k types, where σi = τi0, . . . , τi(ni−1) → N for each i. Here the τij are of level
at most k − 1, so by (i), we may choose l such that each τij is a simple retract
of ρk−1,l. Taking n = maxi ni, we then have that each σi is a simple retract of
ρk−1,l, . . . , ρk−1,l → N (with n arguments). The product Πiσi is therefore a simple
retract of the type σ = N, ρk−1,l, . . . , ρk−1,l → N. But by the induction hypothesis,

the product of N, ρk−1,l, . . . , ρk−1,l is a simple retract of k whence σ itself is a simple

retract of k + 1.
(iii) is left as an easy exercise.

Next, we adapt the proof of Theorem 2.12 to establish the crucial gap between ρk,l and ρk,l+1.
This gives an indication of how our methods may be used to map out the embeddability
relation between types in finer detail, although we leave an exhaustive investigation of this
to future work.

Theorem 6.3. Suppose k ≥ 1. Within SF, the type ρk,l+1 is not a pseudo-retract of any
finite product of types of sublevel ≤ (k, l) or lower.

Proof. In view of Proposition 6.2(i), it will suffice to show that ρk,l+1 is not a pseudo-retract
of a finite power of ρk,l. We argue by induction on k. The arguments for both the base
case k = 1 and the step case k > 1 closely parallel the argument for the step case in
Theorem 2.12, so we treat these two cases together as far as possible, omitting details that
are easy adaptations of those in the earlier proof.

Suppose for contradiction that there were procedures

zρ ` ti : σ (i < m) , xσ0 , . . . , x
σ
m−1 ` r : ρ ,

where ρ = ρk,l+1, σ = ρk,l, such that z ` r[~x 7→ ~t] � zη. Let v =� r[~x 7→ ~t] �, so
that z ` v � zη. As in the proof of Theorem 2.12, one may show that v has the form
λf0 . . . fl. case zp0 . . . pl of (· · ·) where pi[z 7→ λ~w.0] � fi for each i. Next, we note

RECURSION HIERARCHY FOR PCF 41

that r[~x 7→ ~t] reduces to a head normal form λf0 . . . fl. case zP0 . . . Pl of (· · ·) where
� Pi �= pi for each i; moreover, the ancestor of the leading z here must lie within some ti,

say at the head of some subterm z ~P ′, where ~P is an instance of ~P ′ via some substitution †.
At this point, the arguments for the base case and step case part company. In the

base case k = 1, we have that zρ ` ti : σ where ρ = Nl+1 → N and σ = Nl → N; thus there
are no bound variables within ti except the top-level ones—say w0, . . . , wl−1, all of type

N. So in fact † has the form [~w 7→ ~W] for certain meta-terms fN0 , . . . , f
N
l , z ` Wj : N. Now

consider the terms f0, . . . , fl ` ~W ∗ and ~w ` ~P ′∗, writing ∗ for the substitution [z 7→ λw.0].

These compose to yield ~f `� ~P ∗ �=� ~p ∗ �� f , so we have expressed Nl+1 as a
pseudo-retract of Nl within SF. As already noted in the course of the proof of Theorem 2.12,
this is impossible.

For the step case k > 1, we proceed much as in the proof of Theorem 2.12, using
the substitution † to express ρk−1,l+1 as a retract of a finite product of types of sublevel
(k − 1, l) or lower, contrary to the induction hypothesis. We leave the remaining details as
an exercise.

We now outline how the ideas of Sections 3, 4 and 5 may be adapted to show that
Yρk,l+1

∈ SP0 is not PCFΩ
k,l-denotable. We assume that k ≥ 2 for the time being (the case

k = 1 will require special treatment). The adaptations are mostly quite systematic: the type
ρk,l+1 now plays the role of k + 1; types of sublevel ≤ (k, l) play the role of types of level

≤ k; ρk−1,l+1 plays the role of k; and types of sublevel ≤ (k − 1, l) play the role of types of
level < k. Since the proof we are adapting is quite lengthy, we leave many routine details to
be checked by the reader.

First, the evident adaptation of Definition 3.6 yields a notion of k, l-plugging where the
plugging variables are required to be of sublevel ≤ (k, l), and we thus obtain an inductive
characterization of the PCFΩ

k,l-denotable procedures analogous to Theorem 3.8. We also
adapt the notion of regular meta-term as follows:

Definition 6.4. Suppose g : ρk,l+1 → ρk,l+1 for k, l ≥ 1. An environment Γ is g-(k, l-)regular
if Γ contains g but no other variables of sublevel > (k, l). A meta-term T is g-regular if it
contains no variables of sublevel > (k, l) except possibly for free occurrences of g. We say
Γ ` T is g-regular if both Γ and T are g-regular.

Next, we proceed to the ideas of Section 4. Our convention here will be that Γ ranges
over regular environments, and Roman capitals V,Z range over sets of variables of sublevel
≤ (k, l). The notions of x, V -closed substitution and spinal term carry over as follows:

Definition 6.5. Suppose g : ρk,l+1 → ρk,l+1 where k ≥ 2 and l ≥ 1.

(i) If ~x is a list of variables of type ρk−1,l+1 and V a set of variables of sublevel ≤ (k, l), a
substitution ◦ = [~w 7→ ~r] is called ~x, V -closed if the ri contain no free variables, except
that if wi ∈ V and wi is of sublevel ≤ (k − 1, l) then ri may contain the ~x free.

(ii) Suppose Γ ` e is g-k, l-regular and ~x, V ⊆ Γ. We coinductively declare e to be
g-head-spinal w.r.t. ~x, V iff e has the form case g(λ~x ′.E[e′])~o of (· · ·), where E[−] is
an expression context, and
(1) for some ~x, V -closed specialization ◦ covering the free variables of ~o other than

those of ~x, we have ~o ◦ � ~x η,
(2) e′ is g-head-spinal w.r.t. ~x ′, V ′, where V ′ is the local variable environment for

E[−].

42 JOHN LONGLEY

(iii) We say a regular term Γ ` t is g-spinal if it contains a g-head-spinal subexpression
w.r.t. some ~x, V .

Lemma 4.3 and its proof go through with the above adaptations; here the local environments
~v,~v ′ are now of sublevel ≤ (k, l), and part (iii) of the lemma now states that if K[−] contains
no redexes with operator of sublevel > (k, l), then the substitution † is trivial for variables
of sublevel ≥ (k− 1, l+ 1). The crucial Lemma 4.4, which forms the heart of our proof, now
translates as follows:

Lemma 6.6. Suppose g : ρk,l+1 → ρk,l+1 and we have g-regular terms

Γ, ~v ` d = case gpq of (· · ·) , Γ, ~v ′ ` ~s ,
where ~v,~v ′ are of sublevel ≤ (k, l), and Γ, ~v ′ `� d[~v 7→ ~s]� is g-head-spinal with respect
to some ~x, V . Then d itself is g-spinal.

The entire proof of this lemma translates systematically according to the correspondences
we have indicated, invoking Theorem 6.3 for the fact that ρk−1,l+1 is not a pseudo-retract of
a product of sublevel ≤ (k − 1, l) types. The analogue of Theorem 4.5 now goes through
readily, so we obtain:

Theorem 6.7. If k ≥ 2 and l ≥ 1, every PCFΩ
k,l-denotable procedure is non-g-spinal where

g : ρk,l+1 → ρk,l+1.

As in our original proof, we will actually use a version of this theorem for the modified
notion of spinal term that incorporates the extra argument b, and for the extension of PCFΩ

k,l

with the operator byval .
To adapt the material of Section 5, we now take g to be a variable of type 0→ ρk,l+1 →

ρk,l+1, and argue that the PCFk,l+2-denotable element Φ = λg. Y0→ρk,l+1
(λfn. g n (f(suc n)))

within SF is not PCFΩ
k,l-denotable. The proof is a completely routine adaptation of that in

Section 5. Since Y0→ρk,l+1
is readily definable from Yk+1 by Proposition 6.2, this implies

that Yk+1 ∈ SF is not PCFΩ
k,l-denotable. We have thus shown:

Theorem 6.8.

(i) For k ≥ 2 and l ≥ 1, the element Y0→ρk,l+1
∈ SF is denotable in PCFk,l+2 but not in

PCFΩ
k,l.

(ii) For k ≥ 2, the element Yk+1 ∈ SF is not denotable in PCFΩ
k .

A slightly different approach is needed for the case k = 1. This is because at level 0 our only
type is N, so we are unable to make a distinction between sublevels l and l + 1. To establish
Lemma 6.6 in this case, we again wish to show that we cannot pass in the content of the
relevant ~x ′ to the relevant si, but now the idea is to appeal to the fact that ~x ′ consists of
l+ 1 variables of type N, whereas si accepts at most l arguments of type N. (We have already
seen that Nl+1 cannot be a retract of Nl.) However, we also need to exclude the possibility
that the substitution ◦ is being used to import some components of ~x ′. We can achieve this
if we require ◦ to be actually closed rather than just ~x ′, V ′-closed, and it turns out that this
is permissible if we also tighten our notion of spinal term slightly, essentially to ensure that
no intermediate applications of g appear in between those declared to constitute the spine
of the term:

Definition 6.9. Suppose g : ρ1,l+1 → ρ1,l+1 where l ≥ 1.

RECURSION HIERARCHY FOR PCF 43

Suppose Γ ` e is g-1, l-regular and ~x ⊆ Γ. We coinductively declare e to be strongly
g-head-spinal w.r.t. ~x iff e has the form case g(λ~x ′.E[e′])~o of (· · ·), where E[−] is an
expression context, and

(1) the hole within E[−] does not itself occur within an application gpq,
(2) for some closed substitution ◦ covering the free variables of ~o other than those of ~x, we

have ~o ◦ � ~x η,
(3) e′ is strongly g-head-spinal w.r.t. ~x ′.

The notion of strongly g-spinal term follows suit.

The counterpart of Lemma 4.3 goes through as expected, although without part (iii):
the relevant sublevel distinction does not exist at type level 0, and we cannot conclude that
the substitution in question is trivial for all variables of type N. We may now indicate the
required changes to Lemma 6.6 and its proof:

Lemma 6.10. Suppose g : ρ1,l+1 → ρ1,l+1 and we have 1, l-regular terms

Γ, ~v ` d = case gpq of (· · ·) , Γ, ~v ′ ` ~s ,
where ~v,~v ′ are of sublevel ≤ (1, l), and Γ, ~v ′ `� d[~v 7→ ~s]� is strongly g-head-spinal with
respect to some ~x. Then d itself is strongly g-spinal.

Proof. The proof of Lemma 4.4 up to the end of the proof of Claim 1 adapts straightforwardly,
and is somewhat simplified by the fact that the substitution ◦ is closed. As sketched above,
the crucial contradiction is provided by the fact that Nl+1 is not a pseudo-retract of Nl in SF.

For the remainder of the proof, the key point to note is that ~v ′′ (the local environment
for C[−]) is actually empty in this case. This is because C[−] is in normal form and contains
no free variables of level ≥ 2 except g, so any λ-term containing the hole would need to
appear as an argument to g. It would then follow that the hole within E[−] lay within an
argument to some occurrence of g, as precluded by the definition of strongly spinal term.

It follows trivially that the ~x ′, ~v ′′-closed substitution ◦
′

constructed at the very end of
the proof is actually closed. Moreover, the spinal structure of d′ identified by the proof cannot
contain any intermediate applications of g, since these would give rise under evaluation to
intermediate applications of g in the spine of � d[~v 7→ ~s]� as precluded by Definition 6.9.
Thus, the identified spinal structure in d′ is actually a strongly spinal structure, and the
argument is complete.

A trivial adaptation of the proof of Theorem 4.5 now yields:

Theorem 6.11. No PCFΩ
1,l-denotable procedure can be strongly g-spinal where g : ρ1,l+1 →

ρ1,l+1.

As before, this adapts easily to a variable g of type 0→ ρ1,l+1 → ρ1,l+1. From here on,
we again follow the original proof closely. The only additional point to note is that in place
of Corollary 5.4 we now require that any simple g ` q with q �′ pn must be strongly spinal,
but this is already clear from the proof of Lemma 5.3. We therefore have everything we
need for:

Theorem 6.12.

(i) For any l ≥ 1, YNl+2→N ∈ SF is not denotable in PCFΩ
1,l.

(ii) Y2 ∈ SF is not denotable in PCFΩ
1 .

The proof of Theorems 2.1 and 2.2 is now complete.

44 JOHN LONGLEY

7. Related and future work

7.1. Other hierarchies of Y-combinators. There have been a number of previous results
from various research traditions showing that in some sense the power of level k recursions
increases strictly with k. Whilst many of these results look tantalizingly similar to ours,
it turns out on inspection that their mathematical substance is quite different, and we do
not expect any substantial technical connections with our own work to be forthcoming.
Nonetheless, it is interesting to see how strikingly different ideas and methods arising in
other contexts can lead to superficially similar results.

Previous results to the effect that Y -combinators for level k + 1 are not definable
from those for level k have been obtained by Damm [Dam82] and Statman [Sta04]. It is
convenient to discuss the latter of these first. Statman works in the setting of the simply
typed λY -calculus, essentially the pure λ-calculus extended with constants Yσ : (σ → σ)→ σ
and reduction rules YσM M(YσM). He gives a succinct proof that Yk+1 is not definable
from Yk up to computational equality, based on the following idea. If Yk+1 were definable
from Yk, it would follow that the recursion equation Yk+1g = g(Yk+1g) could be derived with
only finitely many uses of the equation YkM = M(YkM) (say m of them). It would then
follow, roughly speaking, that mn recursion unfoldings for Yk would suffice to fuel n recursion
unfoldings for Yk+1. On the other hand, it can be shown that the size of normal-form terms
definable using n unfoldings of Yk+1 (as a function of the size of the starting term) grows
faster than can be accounted for with mn unfoldings of Yk.

The language λY is seemingly less powerful than PCF,10 although this is perhaps not the
most essential difference between Statman’s work and ours. More fundamentally, Statman’s
method establishes the non-definability only up to computational equality (that is, the
equivalence relation generated by the reduction rules), whereas we have been concerned with
non-definability modulo observational (or extensional) equivalence. Even for non-denotability
in SP0, an approach along Statman’s lines would be unlikely to yield much information,
since there is no reason why the number of unfoldings of Yk required to generate the NSP
for Yk+1 to depth n should not grow dramatically as a function of n.

A result very similar to Statman’s was obtained earlier in Damm [Dam82], but by a much
more indirect route as part of a far-reaching investigation of the theory of tree languages. In
Damm’s setting, programs are recursion schemes—essentially, families of simultaneous (and
possibly mutually recursive) defining equations in typed λ-calculus—but in essence these
can be considered as terms of λY relative to some signature consisting of typed constants.
(Actually, Damm’s λ-terms involve a restriction to derived types, which has the effect of
limiting attention to what are elsewhere called safe recursion schemes.) Any such program
can be expanded to an infinite tree (essentially a kind of Böhm tree), and Damm’s result
(Theorem 9.8 of [Dam82]) is that if programs are considered up to tree equality, then safe
level k + 1 recursions give more expressive power than safe level k ones. Damm’s result is
thus distinguished from Statman’s in two ways: by the restriction to safe recursion schemes,
and by the use of tree equality in place of the stricter computational equality. This latter
point brings Damm’s work somewhat closer in spirit to our work: indeed, in the case of pure
λY , tree equality agrees with equality of innocent strategies if the base type is interpreted
as a certain trivial game—or equivalently with equality in a variant of our SP0 with no

10One might consider translating PCF into λY by representing natural numbers as Church numerals;
however, it appears that predecessor is not λY -definable for this representation.

RECURSION HIERARCHY FOR PCF 45

ground type values. However, in the case of a signature for PCF, tree equality will still
be considerably more fine-grained than equality in SP0, let alone in SF, since in effect the
PCF constants are left uninterpreted. It therefore seems unlikely that an approach to our
theorems via Damm’s methods is viable.

The strictness of the recursion scheme hierarchy was further investigated by Ong [Ong06],
who used innocent game semantics to show that the complexity of certain model checking
problems for trees generated by level k recursions increases strictly with k. It was also
shown by Hague, Murawski, Ong and Serre [HMOS08] that the trees generated by level k
recursion schemes (with no safety restriction) were precisely those that could be generated by
collapsible pushdown automata of order k. Later, Kartzow and Parys [KP12] used pumping
lemma techniques to show that the collapsible pushdown hierarchy was strict, hence so was
the recursion scheme hierarchy with no safety restriction. Again, despite the intriguing
parallels to our work, these results appear to be manifesting something quite different: in
our setting, the power of level k recursion has nothing to do with the ‘difficulty of computing’
the relevant NSPs in the sense of automata theory, since the full power of Turing machines
is required even at level 1.

Also of interest is the work of Jones [Jon01] from the functional programming community.
Jones’s motivation is close to ours in that he seeks to give mathematical substance to the
programming intuition that some (combinations of) language features yield ‘more expressive
power’ than others. As Jones notes, an obvious obstacle to obtaining such results is that all
programming languages of practical interest are Turing complete, so that no such expressivity
distinctions are visible at the level of the (first-order) computable functions. Whereas we have
responded to this by considering the situation at higher types, where genuine expressivity
differences do manifest themselves, Jones investigates the power of (for example) recursion
at different type levels in the context of a restricted language of ‘read-only’ or ‘cons-free’
programs. Amongst other results, he shows that in such a language, if data values and
general recursion of type level k ≥ 1 are admitted, then the computable functions from lists
of booleans to booleans are exactly the expktime computable ones. These results inhabit a
mathematical territory very different from ours, although yet again, the basic moral that
the power of recursion increases strictly with its type level shines through.

7.2. Relationship to game semantics. Next, we comment briefly how our work relates
to the known game models of PCF [AJM00, HO00]. It is known that these models are in
fact isomorphic to our SP0, although the equivalence between the game-theoretic definition
of application and our own is mathematically non-trivial (see [LN15, Section 7.4]). This
raises the obvious question of whether our proofs could be conducted equally well, or better,
in a game-semantical setting.

Whilst a direct translation is presumably possible, our present impression is that the
sequential procedure presentation, and our calculus of meta-terms in particular, allows
one to see the wood for the trees more clearly, and also to draw more easily on familiar
intuitions from λ-calculus. However, a closer look at game-semantical approaches would be
needed in order to judge whether either approach really offers some genuine mathematical
or conceptual advantage over the other.

7.3. Sublanguages of PCF: further questions. We now turn our attention to some
potential extensions and generalizations of our work.

46 JOHN LONGLEY

So far, we have worked mainly with a coarse stratification of types in terms of their
levels, although we have illustrated in Section 6 how finer stratifications are also possible.
Naturally, there is scope for a still more fine-grained analysis of types and the relative
strength of their Y -combinators; this is of course closely related to the task of mapping out
the embeddability relation between types (as in Subsection 2.4) in finer detail.

Even at level 1, there is some interest here. Our analysis in Section 6 has shown that,
for l ≥ 1,

• the element YNl+1→N ∈ SP0 is not PCFΩ
0 -definable from YNl→N,

• the element YNl+2→N ∈ SF is not PCFΩ
0 -definable from YNl→N.

However, this leaves us with a small gap for SF: e.g. we have not shown either that
YN→N is strictly weaker than YN2→N or that YN2→N is strictly weaker than YN3→N, although
according to classical logic, at least one of these must be the case. (This is reminiscent
of some well-known situations from complexity theory.) We expect that a more delicate
analysis will allow us to fill this gap. One can also envisage an even more fine-grained
hierarchy obtained by admitting other base types such as the booleans or unit type.

A closely related task is to obtain analogous results for the call-by-value interpretation
of the simple types (as embodied in Standard ML, for example). As is shown in [LN15,
Section 4.3], a call-by-value (partial) type structure SFv can be constructed by fairly general
means from SF: here, for example, SFv(1) consists of all partial functions N ⇀ N rather
than (monotone) total functions N⊥ → N⊥, and SFv(2) consists of partial functions NN

⊥ ⇀ N.
From known results on the interencodability of call-by-name and call-by-value models (see

[LN15, Section 7.2]), it is easy to read off the analogue of Corollary 2.3 for SFeff
v ; however,

more specific results on the relative strengths of various Y -combinators within SFv would
require some further reworking of our arguments.

Of course, one can also pose relative definability questions for other elements besides
Y -combinators. For instance, it is natural to consider the higher-order primitive recursors
recσ of System T, as well as the closely related iterators iterστ :

recσ : σ → (σ → N→ σ)→ N→ σ ,

iterστ : (σ → (σ + τ))→ σ → τ .

The idea behind the latter is to embody the behaviour of a while construct for imperative-style
loops with state σ and exit type τ .11

It is shown in [LN15, Section 6.3] that each recσ may be interpreted by a left-well-founded
procedure (cf. Subsection 2.5), and it is not hard to check that the same is true for each
iterστ . Furthermore, it is clear that all left-well-founded procedures are non-spinal, so it
requires only the addition of an easy base case in the proof of Theorem 4.5 to show that
Yk+1 cannot be defined even in PCFΩ

k extended with all primitive recursors and iterators.
(Actually, we can dispense with the primitive recursors here, as it is straightforward to define
them from suitable iterators.)

The dual question, roughly speaking, is whether any or all of the recursors recσ or
iterators iterσN for types σ of level k+ 1 are definable in PCFk. We conjecture that they are
not, and that this could be shown by suitably choosing a substructure of SP0 so as to exclude
such iterσN. (This would incidentally answer Question 2 of [Ber99, Section 5].) One could
also look for substructures that more precisely determine the strength of various bar recursion

11The sum type σ + τ is not officially part of our system, but can (for any given σ, τ) be represented as a
retract of some existing simple type.

RECURSION HIERARCHY FOR PCF 47

operators or the fan functional. All in all, our experience leads us to expect that many
further substructures of SP0 should be forthcoming, leading to a harvest of non-definability
results exhibiting a rich ‘degree structure’ among PCF-computable functionals.

Another very natural kind of question is the following: given a particular sublanguage L
of PCF, what is the simplest possible type for an element of SFeff that is not denotable in L?
Or to look at it another way: given a type σ, what is the smallest natural sublanguage of PCF
that suffices for defining all elements of SFeff(σ)? Here the analysis of [LN15, Section 7.1]
yields several positive definability results, whilst the analysis of the present paper provides
ammunition on the negative side. The current state of our knowledge is broadly as follows.
As in [LN15], we write Klexmin of the language of Kleene µ-recursion: this is equivalent (in
its power to denote elements of SF) to PCF0 extended with a strict primitive recursor for
ground type and a strict iterator for ground type, but with no form of general recursion.

• For first-order types σ, even Klexmin suffices for defining all elements of SFeff(σ); likewise,

the oracle version KlexminΩ
suffices for SF(σ).

• For second-order types σ of the special form (N → N)r → N, KlexminΩ
still suffices for

SF(σ); however, this result is non-constructive, and Klexmin does not suffice for SFeff(σ).
(We draw here on some recent work of Dag Normann [Nor16].)

• For general second-order types, KlexminΩ
no longer suffices, but the languages PCF1,

PCFΩ
1 suffice for SFeff, SF respectively—indeed, even the single recursion operator YN→N

is enough here.
• For third-order types, we do not know whether PCF1 suffices (for SFeff). We do know

that PCF2 suffices, and that YN→N alone is not enough.
• For types of level k ≥ 4, PCFk−3 does not suffice, but PCFk−2 does.

Again, there is scope for a more fine-grained view of the hierarchy of types.

7.4. Other languages and models. We have so far concentrated almost entirely on PCF-
style sequential computation. To conclude, we briefly consider which other notions of
higher-order computation are likely to present us with an analogous situation.

As already noted at the end of Subsection 2.4, several extensions of PCF studied in
the literature present a strikingly different picture: in these settings, universal types exist
quite low down, and as a consequence, only Y -combinators of low type (along with the other
constants of the language) are required for full definability. There is, however, one important
language which appears to be more analogous to pure PCF in these respects, namely an
extension with local state (essentially Reynolds’s Idealized Algol). This language was studied
in [AM99], where a fully abstract game model was provided (consisting of well-bracketed
but possibly non-innocent strategies). Unpublished work by Jim Laird has shown that there
is no universal type in this setting. We would conjecture also that the recursion hierarchy
for this language is strict, where we consider expressibility modulo observational equivalence
in Idealized Algol. This would constitute an interesting variation on our present results.

Related questions also arise in connection with total functionals. Consider, for exam-
ple, the type structure Ct of total continuous functionals, standardly constructed as the
extensional collapse (relative to N) of the Scott model PC of partial continuous functionals.
It is shown by Normann [Nor00] that every effective element of Ct is represented by a
PCF-denotable element of PC, and the proof actually shows that PCF1 suffices here. (The
further generalization of these ideas by Longley [Lon07] makes some use of second-order
recursions as in PCF2; we do not know whether these can be eliminated.) Thus, in this

48 JOHN LONGLEY

setting, only recursions of low type are needed to obtain all computable functionals. Similar
remarks apply to the total type structure HEO, obtained as the extensional collapse of PCeff.

On the other hand, one may consider the Kleene computable functionals over Ct, or
over the full set-theoretic type structure S, as defined by the schemes S1–S9. As explained
in [LN15, Chapter 6], sequential procedures can be seen as abstracting out the algorithmic
content common to both PCF-style and Kleene-style computation (note that Kleene’s S9
in some sense does duty for the Y -combinators of PCF). This naturally suggests that our
strict hierarchy for PCF may have an analogue for the Kleene computable functionals (say
over S or Ct), where at level k we consider the evident restriction of S9 to types of level ≤ k.
We conjecture that this is indeed the case, although the required counterexamples may be
more difficult to find given that we are limited to working with total functionals.

Acknowledgements

I am grateful to Ulrich Berger, Mart́ın Escardó, Dag Normann and Alex Simpson for
valuable discussions and correspondence, and to Luke Ong and Colin Stirling for helping me
to navigate the existing literature on λY and recursion schemes (as discussed in Section 7).
Many of the participants in the Domains XII workshop in Cork and the Galop XI workshop
in Eindhoven also offered helpful comments; thanks in particular to Neil Jones for drawing
his work to my attention. Finally, I thank the anonymous referees for their careful work on
the paper and their valuable suggestions; these have resulted in significant improvements in
both the overall architecture and the formal details.

References

[AJM00] Samson Abramsky, Radha Jagadeesan, and Pasquale Malacaria. Full abstraction for PCF.
Information and Computation, 163:409–470, 2000.

[AM99] Samson Abramsky and Guy McCusker. Game semantics. In H. Schwichtenberg and U. Berger,
editors, Computational Logic: Proceedings of the 1997 Marktoberdorf Summer School, pages 1–56,
Springer, 1999.

[AC98] Roberto Amadio and Pierre-Louis Curien. Domains and Lambda Calculi. Cambridge Tracts in
Theoretical Computer Science 46, Cambridge University Press, 1998.

[Ber99] Ulrich Berger. Minimisation vs. recursion on the partial continuous functionals. In P. Gärdenfors,
J. Woleński, and K. Kijania-Placek, editors, In the Scope of Logic, Methodology and Philosophy
of Science, volume 1 of the 11th International Congress of Logic, Methodology and Philosophy of
Science, Cracow, August 1999, pages 57–64. Kluwer, Dordrecht, 2002.

[CF92] Robert Cartwright and Matthias Felleisen. Observable sequentiality and full abstraction. In
Proceedings of the 19th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, pages 328–342, ACM Press, New York, 1992.

[Dam82] Werner Damm. The IO- and OI-hierarchies. Theoretical Computer Science, 20:95–207, 1982.
[HMOS08] Matthew Hague, Andrzej S. Murawski, C.-H. Luke Ong, and Olivier Serre. Collapsible pushdown

automata and recursion schemes. In Proceedings of the 23th Annual IEEE Symposium on Logic
in Computer Science, pages 452–461, IEEE Computer Society, 2008.

[HO00] J. Martin E. Hyland and C.-H. Luke Ong. On full abstraction for PCF: I, II, and III. Information
and Computation, 163:285–408, 2000.

[Jon01] Neil D. Jones. The expressive power of higher-order types, or, life without CONS. Journal of
Functional Programming, 11:5–94, 2001.

[KP12] Alexander Kartzow and Pawel Parys. Strictness of the collapsible pushdown hierarchy. In B.
Rovan, V. Sassone, and P. Widmayer, editors, Mathematical Foundations of Computer Science
2012, LNCS 7464, pages 566-577, Springer, 2012.

RECURSION HIERARCHY FOR PCF 49

[Kle85] Stephen Cole Kleene. Unimonotone functions of finite types (Recursive functionals and quantifiers
of finite types revisited IV). In A. Nerode and R.A. Shore, editors, Proceedings of the AMS-
ASL Summer Institute on Recursion Theory, pages 119–138, American Mathematical Society,
Providence, 1985.

[Kri12] Lars Kristiansen. Higher types, finite domains and resource-bounded Turing machines. Journal
of Logic and Computation, 22(2):281–304, 2012.

[Loa01] Ralph Loader. Finitary PCF is not decidable. Theoretical Computer Science, 266:341–364, 2001.
[Lon02] John R. Longley. The sequentially realizable functionals. Annals of Pure and Applied Logic,

117(1):1–93, 2002.
[Lon07] John R. Longley. On the ubiquity of certain total type structures. Mathematical Structures in

Computer Science, 17(5):841–953, 2007.
[Lon18] John R. Longley. Bar recursion is not computable via iteration. Computability, to appear, 2018.

Available from arxiv.org/abs/1804.07277.
[LN15] John Longley and Dag Normann. Higher-Order Computability. Theory and Applications of

Computability, Springer, 2015.
[Mil77] Robin Milner. Fully abstract models of typed λ-calculi. Theoretical Computer Science, 4(1):1–22,

1977
[Nor00] Dag Normann. Computability over the partial continuous functionals. Journal of Symbolic Logic,

65(3):1133–1142, 2000.
[Nor16] Dag Normann. The sequential functionals of type (ι→ ι)n → ι form a dcpo for all n ∈ N. Logical

Methods in Computer Science, this volume, 2018.
[NS12] Dag Normann and Vladimir Yu. Sazonov. The extensional ordering of the sequential functionals.

Annals of Pure and Applied Logic, 163(5):575–603, 2012.
[Ong06] C.-H. Luke Ong. On model-checking trees generated by higher-order recursion schemes. In

Proceedings of the 21st Annual IEEE Symposium on Logic in Computer Science, pages 81–90,
IEEE Computer Society, 2006.

[Plo77] Gordon D. Plotkin. LCF considered as a programming language. Theoretical Computer Science,
5(3):223–255, 1977.

[Saz76] Vladimir Yu. Sazonov. Expressibility in D. Scott’s LCF language. Algebra and Logic, 15(3):192–206,
1976.

[Saz07] Vladimir Yu. Sazonov. An inductive definition and domain theoretic properties of fully abstract
models of PCF and PCF+. Logical Methods in Computer Science, 3(3), 50 pages, 2007.

[Sco93] Dana S. Scott. A type-theoretical alternative to ISWIM, CUCH, OWHY. In A collection of
contributions in honor of Corrado Böhm on the occasion of his 70th birthday. Edited version of an
unpublished note first circulated in 1969. Theoretical Computer Science, 121(1-2):411–440, 1993.

[Sta04] Rick Statman. On the λY calculus. Annals of Pure and Applied Logic, 130:325–337, 2004.

Appendix A. Super-identity procedures

In the course of our main proof, we have frequently encountered assertions of the form
p � xη for various procedures xk ` p. Although not necessary for our main argument, it is
natural to ask whether there are any such procedures other than those for which p ≈ xη. The
following theorem shows that the answer is no: in other words, no procedure λx.p : k → k
can extensionally ‘improve on’ the identity function. We here present this as a result of some
interest in its own right, whose proof is perhaps less trivial than one might have expected.

Recall that � denotes the extensional order on SF, as well as the associated preorder
on SP0. Within SF, we will write f ≺ f ′ to mean f � f ′ but f 6= f ′; we also write f]f ′ to
mean that f, f ′ have no upper bound with respect to �.

We shall call an element of SP0 finite if it is a finite tree once branches of the form
i⇒ ⊥ have been deleted. We say an element of SF is finite if it is represented by some finite
element of SP0. We write SP0,fin(σ),SFfin(σ) for the set of finite elements in SP0(σ), SF(σ)
respectively.

50 JOHN LONGLEY

Theorem A.1.

(i) If f ∈ SFfin(k) and f ≺ f ′, then there exists f ′′]f ′ with f ≺ f ′′.
(ii) If Φ ∈ SF(k → k) and Φ � id, there can be no f ∈ SF(k) with Φ(f) � f ; hence

Φ = id.

Proof.

(i) The cases k = 0, 1 are easy, so let us assume k ≥ 2. Suppose f ≺ f ′ where f is
finite. Then for some g ∈ SF(k − 1) we have f(g) = ⊥ but f ′(g) = n ∈ N, say, and by

continuity in SP0 we may take g here to be finite. Take p, q ∈ SP0,fin representing f, g
respectively; we may assume that p, q are ‘pruned’ so that every subtree containing no
leaves m ∈ N must itself be ⊥.

Case 1: g(⊥k−2) = a ∈ N. In this case, we may suppose that q = λx.a. Consider
the computation of p · q. Since all calls to q trivially evaluate to a, this computation
follows the rightward path through p consisting of branches a⇒ · · · . But since p is
finite and p · q = ⊥ (because f(g) = ⊥), this path must end in a leaf occurrence of ⊥
within p. Now extend p to a procedure p′ by replacing this leaf occurrence by some
n′ 6= n; then clearly p′ · q = n′. Taking f ′′ to be the function represented by p′, we then
have f � f ′′ and f ′′(g) = n′] n = f ′(g), so f ′′]f ′ (whence also f ′′ 6= f so f ≺ f ′′).

Case 2: g(⊥k−2) = ⊥. Take N larger than n and all numbers appearing in p, q.
Define p′ w p as follows: if p = λx.⊥, take p′ = λx.N , otherwise obtain p′ from p by
replacing each case branch j ⇒ ⊥ anywhere within p by j ⇒ N whenever j ≤ N .
Extend q to q′ in the same way. Note in particular that every case subterm within
p′, q′ will now be equipped with a branch N ⇒ N .

Now consider the computation of p · q. Since p, q are finite and f(g) = ⊥, this
evaluates to an occurrence of ⊥ which originates from p or q. Since no numbers
> N ever arise in the computation, this occurrence of ⊥ cannot be part of a branch
j ⇒ ⊥ for j > N , so will have been replaced by N in p′ or q′. Now suppose that
we head-reduce pq until ⊥ first appears in head position, and let U be the resulting
meta-term. Then it is easy to see that p′q′ correspondingly reduces to a meta-term
U ′ with N in head position. (Formally, we reason here by induction on the length of
head-reduction sequences not involving the rule for case ⊥ of (· · ·).)

We now claim that p′ · q′ = N . Informally, this is because the head occurrence of N
in U ′ will be propagated to the top level by the case branches N ⇒ N within both p′

and q′. More formally, let us define the set of meta-expressions led by N inductively
as follows:
(1) N is led by N .
(2) If E is led by N , then so is case E of (i⇒ Di).
We say that an NSP meta-term T is saturated at N if every case subterm within T
has a branch N ⇒ E where E is led by N . Clearly p′q′ is saturated at N , and it is
easy to check that the terms saturated at N are closed under head reductions; thus
U ′ is saturated at N . But we have also seen that U ′ has N in head position, so is led
by N . Finally, an easy induction on term size shows that every finite meta-term that
is led by N and saturated at N evaluates to N itself. This shows that p′ · q′ = N .

To conclude, let f ′′, g′ be the functions represented by p′, q′ respectively, so that
f � f ′′ and g � g′. Then f ′(g′) = n, but p′′ · q = N so f ′′(g′) = N 6= n, whence f ′′]f ′

(and also f ′′ 6= f so f ≺ f ′′).

RECURSION HIERARCHY FOR PCF 51

(ii) Suppose Φ � id and Φ(f) � f for some f . Again by continuity, we may take f to be
finite. Then by (i), we may take f ′′ � f such that f ′′]Φ(f). But this is impossible
because Φ(f ′′) � f ′′ and Φ(f ′′) � Φ(f). Thus Φ = id .

It is easy to see that the above theorem holds with any finite type over N in place of k.
However, it will trivially fail if the unit type U is admitted as an additional base type: e.g.
the function (λx.>) ∈ SF(U→ U) strictly dominates the identity. An interesting question is
whether the theorem holds for all finite types over the type B of booleans: note that the
above proof fails here since it requires the base type to be infinite. For comparison, we
mention that in other models of computation, improvements on the identity are sometimes
possible for such types. For example, if σ = B→ B, then a functional of type σ → σ strictly
dominating the identity exists in the Scott model. Indeed, such a function J can be defined
in PCF augmented with the parallel conditional pif , e.g. as

J = λfσ.λxB. vote(f(x), f(tt), f(ff)) .

Here vote is Sazonov’s voting function, definable by

vote(x, y, z) = pif (x, pif (y, tt , z), pif (y, z,ff)) .

The point is that J will ‘improve’ the function λx. if (x, tt , tt) to λx.tt . We do not know
whether phenomena of this kind can arise within the model SF.

This work is licensed under the Creative Commons Attribution License. To view a copy of this
license, visit https://creativecommons.org/licenses/by/4.0/ or send a letter to Creative
Commons, 171 Second St, Suite 300, San Francisco, CA 94105, USA, or Eisenacher Strasse
2, 10777 Berlin, Germany

	1. Introduction
	2. Background
	2.1. The language PCF
	2.2. The model SP0
	2.3. Interpretation of PCF in SP0
	2.4. The embeddability hierarchy
	2.5. Other sublanguages of PCF

	3. Sequential procedures for PCF k terms
	4. PCF Omega k denotable procedures are non-spinal
	5. Non-definability in the extensional model
	6. Extensional non-definability of Y k+1
	7. Related and future work
	7.1. Other hierarchies of Y-combinators
	7.2. Relationship to game semantics
	7.3. Sublanguages of PCF: further questions
	7.4. Other languages and models

	Acknowledgements
	References
	Appendix A. Super-identity procedures

