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ABSTRACT. Kleisli simulation is a categorical notion introduced by Hasuo to verify finite
trace inclusion. They allow us to give definitions of forward and backward simulation for
various types of systems. A generic categorical theory behind Kleisli simulation has been
developed and it guarantees the soundness of those simulations with respect to finite trace
semantics. Moreover, those simulations can be aided by forward partial execution (FPE)—a
categorical transformation of systems previously introduced by the authors.

In this paper, we give Kleisli simulation a theoretical foundation that assures its
soundness also with respect to infinitary traces. There, following Jacobs’ work, infinitary
trace semantics is characterized as the “largest homomorphism.” It turns out that soundness
of forward simulations is rather straightforward; that of backward simulation holds too,
although it requires certain additional conditions and its proof is more involved. We also
show that FPE can be successfully employed in the infinitary trace setting to enhance
the applicability of Kleisli simulations as witnesses of trace inclusion. Our framework is
parameterized in the monad for branching as well as in the functor for linear-time behaviors;
for the former we mainly use the powerset monad (for nondeterminism), the sub-Giry
monad (for probability), and the lift monad (for exception).

1. INTRODUCTION

1.1. Language Inclusion. Language inclusion of transition systems is an important prob-
lem in both qualitative and quantitative verification. In a qualitative setting the problem is
concretely as follows: for given two nondeterministic systems X and ), check if L(X') C L())—
that is, if the set of words generated by X is included in the set of words generated by
Y. In a typical usage scenario, X is a model of the implementation in question while ) is
a model that represents the specification of X. More concretely, ) is a system such that
L(Y) is easily seen not to contain anything “dangerous”—therefore the language inclusion
L(X) C L(Y) immediately implies that L(X’) contains no dangerous output, either. Such a
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Figure 1: Examples of nondeterministic and probabilistic automata

situation can also arise in a quantitative setting where a specification is about probability,
reward, and so on.

Example 1.1. In Figure 1 are four examples of transition systems: X and ) are qualita-
tive /nondeterministic; Z and W exhibit probabilistic branching. We shall denote the finite
language of a system A by L*(A) and the infinitary' one by L>(A). We define that a
generated finite word is one with a run that ends with the termination symbol v'.

In the nondeterministic setting, languages are sets of words. We have L*(X) = {b} C
{b,ab,aab, ...} = L*(}), i.e. finite language inclusion from X to ). However abb... € L>®(X)
while abb... ¢ L>*(Y), hence infinitary language inclusion fails.

In the probabilistic setting, languages are naturally probability distributions over words;
and language inclusion refers to the pointwise order between probabilities. For example
L*(Z) = [b+ t,ba — &, baa — o,...] and L*(W) = [b+— 3,ba — L baa — §,.. ]; since
the former as&gns no greater probabilities to all the words, we say that the finite language
of Z is included in that of W. This quantitative notion of trace inclusion is also useful in
verification: it gives e.g. an upper bound for the probability for something bad.

Finally, the infinitary languages for probabilistic systems call for measure-theoretic
machinery since, in most of the cases, any infinite word gets assigned the probability
0 (which is also the case in Z and W). Here it is standard to assign probabilities to
cylinder sets rather than to individual words; see e.g. [BKOS] An example of a cylinder
set is {aw | w € {a,b,c}*}. The language L°°(Z) assigns 5 to it, while L*° (W) assigns 0;
therefore we do not have infinitary language inclusion from Z to W.

1.2. Simulation. There are many known algorithms for checking language inclusion. A
well-known one for NFA is a complete one that reduces the problem to emptiness check;
however it involves complementation, hence determinization, that incurs an exponential
blowup.

One of the alternative approaches to language inclusion is by simulation. In the
simulation-based verification we look for a simulation, that is, a witness for stepwise language
inclusion. The notion of simulation is commonly defined so that it implies (proper, global)
language inclusion—a property called soundness. Although its converse (completeness)
fails in many settings, such simulation-based approaches tend to have an advantage in
computational cost. One prototype example of such simulation notions is forward and
backward simulation by Lynch and Vaandrager [LV95], for nondeterministic automata. They
are shown in [LV95] to satisfy soundness with respect to finite traces: explicitly, existence
of a forward (or backward) simulation from X to ) implies L*(X) C L*(Y) where the

INote that in this paper, the word “infinitary” means “possibly infinite” and does not mean all the
behaviors have an infinite length. For example, in Figure 1, L®(X’) includes a finite-length word b and
L™ (X) assigns a probability & L tob.
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languages L*(X) and L*()) collects all the finite words generated. The simulations are also
shown in [LV95] to be partly sound with respect to infinite traces: i.e. existence of a forward
(or backward, under the additional assumptions of image-finite and total) simulation from
X to Y implies L°(X) C L*°()) where the languages L*°(X) and L>°()) collects all the
infinitary words.

1.3. Kleisli Simulation and Finite Trace. Kleisli simulation [Has06, Has10, UH14,
UH17] is a categorical generalization of these notions of forward and backward simulation
by Lynch and Vaandrager. It builds upon the use of coalgebras in a Kleisli category,
in [HJS07, Jac04, PT99], where they are used to characterize finite traces. Specifically:

e A branching system X is represented as an F'-coalgebra ¢ : X + F X in the Kleisli category
KC6(T), for a suitable choice of a functor F' and a monad 7". Here F' and T" are parameters
that determine the (linear-time) transition type and the branching type, respectively, of
the system X. Examples are:

— F =1+ % x (_) (terminate, or (output and continue)) and the powerset monad
T =P on Sets (nondeterminism), if X is a nondeterministic automaton (with explicit
termination);

— the same functor F' = 1 4+ ¥ x (_) and the sub-Giry monad T = G [Gir82] on the
category Meas of measurable spaces and measurable functions, for their probabilistic
variant; and

— the same functor F' = 1+ X x (_) and the lift monad T = L on Sets for automata
with exception.

e In [HJS07], under certain conditions on F' and T, it is shown that a final F-coalgebra in
KL(T) arises as a lifting of an initial F-algebra in Sets. Moreover, it is observed that
the natural notion of “finite trace semantics” or “(finite) languages” is captured by a
unique homomorphism via finality. This works uniformly for a wide variety of systems, by
changing F' and T

It is shown in [Has06] that, with respect to this categorical modeling of finite traces [HJS07],
both forward and backward Kleisli simulation are indeed sound. This categorical background
allows us to instantiate Kleisli simulation for various concrete systems—including both qual-
itative and quantitative ones—and obtain simulation notions whose soundness with respect
to finite traces comes for free [Has06, Has10]. Like many other notions of simulation, the
resulting simulation notion sometimes fails to be complete. This drawback of incompleteness

with respect to finite traces can be partly mended by forward partial execution (FPE), a

transformation of systems introduced in [UH14] (and its extended version [UH17]) that

potentially increases the likelihood of existence of simulations.

1.4. Contributions. While the automata-theoretic simulations in [LV95] are known to be
useful for checking both finite and infinitary trace inclusion, their coalgebraic generalization
(Kleisli simulation) has been applied only to the finite trace setting. In this paper we continue
our series of work [Has06, Has10, UH14, UH17] and study the relationship between Kleisli
simulations and infinitary traces. This turns out to be more complicated than we had
expected, a principal reason being that infinitary traces are less well-behaved than finite
traces (the latter being characterized simply by finality).

For a suitable coalgebraic modeling of infinitary traces we principally follow [Jac04]—also
relying on observations in [Cirl0, KK13]—and characterize infinitary traces in terms of
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monad ﬁnlte trace lnﬁnltal“y tl“ace

branching type T [Has06] [current work]
fwd. sim. fwd. sim.

nondeterministic P bwd. sim. | TIF-bwd. sim.
fwd. sim. fwd. sim.

probabilistic g bwd. sim. | total bwd. sim.
fwd. sim. fwd. sim.

with exception L bwd. sim. | total bwd. sim.

Table 1: Three different settings

largest homomorphisms. More specifically, we lift a final F-coalgebra in Sets to the Kleisli
category K/(T') and prove that the latter admits a largest homomorphism. In this paper
we (principally) work with: the powerset monad P (on Sets), the sub-Giry monad G (on
Meas), and the lift monad £ (on Sets) as a monad T for branching (see Table 1); and a
polynomial functor F' for linear-time behaviors.

Here are our concrete contributions. For each of the above combinations of T" and F":

e We show that forward Kleisli simulations are sound with respect to inclusion of infinitary
languages. The proof of this general result is not hard, exploiting the above coalgebraic
modeling of infinitary languages as largest homomorphisms.

e We show that backward simulations are sound too, although here we have to impose
suitable restrictions, namely totality and image-finiteness. The soundness proofs are much
more involved, too, and call for careful inspection of the construction of infinitary trace
semantics. The proofs are given separately for T'= P, and for T'= G and L, because of
differences in the relevant constructions (see Remark 5.1).

o We show that forward partial execution (FPE)—a transformation from [UH14, UH17| that
aids discovery of forward or backward simulations—is applicable also to the current setting
of infinitary trace inclusion. More specifically we prove: soundness of FPE (discovery of a
simulation after FPE indeed witnesses infinitary language inclusion); and its adequacy
(FPE does not destroy simulations that are already there). Suitable restrictions, totality
and image-finiteness, are imposed on the simulating system in order to ensure the adequacy
with respect to backward simulation.

Organization. Section 2 is devoted to categorical preliminaries; we fix notations there. In
Section 3 we review the previous works that we rely on, namely coalgebraic infinitary trace
semantics [Jac04], Kleisli simulation [Has06, Has10, UH14, UH17], and FPE [UH14, UH17].
Our technical contributions are in the subsequent sections: in Section 4 we study the
nondeterministic setting (i.e. the powerset monad P on Sets and a polynomial functor F);
Section 5 is for the probabilistic setting (where the monad T is the sub-Giry monad G); and
Section 6 is for systems with exception (where T is the lift monad £).

Some definitions and results in Sections 4-5 are marked with . Those marked ones are
essentially results for specific settings (namely 7= P and T' = G) but formulated in general
terms with an arbitrary 7" subject to certain axioms. We do so in the hope that the axioms
thus identified will help to discover new instances. Indeed, the results in Section 6 for T'= L
are derived from the general results developed in Section 5.

Compared to the earlier version [UH15] of this paper, the current version additionally
contains the following materials.
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e Section 2.2 is added, where preliminaries about ranked alphabet and infinitary trees are
given.

e We added sections where coincidence between the coalgebraic definition and the automata-
theoretic definition of infinitary language is presented. Namely: Section 4.4 is for nonde-
terministic setting, Section 5.4 is for probabilistic setting, and Section 6.4 for the setting
where the system can abort with an exception.

e In [UH15] we mainly used two monads—P and G. Now one additional monad—the

lift monad L—is also discussed in this paper. Moreover, a brief discussion about the

subdistribution monad D is added, too.

We added some examples that are absent in [UH15].

We added proofs that are omitted in [UH15].

2. PRELIMINARIES

2.1. Categorical Preliminaries.

Definition 2.1. A polynomial functor F' on Sets is defined by the following BNF notation:
F:u=id | A| Fy x Fy | [1;c; Fi- Here A € Sets and I is a countable set.

The notion of polynomial functor can be also defined for Meas—the category of
measurable spaces and measurable functions between them.

Definition 2.2. A (standard Borel) polynomial functor F on Meas is defined by the
following BNF notation: F' =:= id | (A,84) | F1 x Fy | [1;c; Fi. Here I is a countable
set; and we require that (A,F4) € Meas is a standard Borel space (see e.g. [Do094]).
The o-algebra §rx associated to FX is defined in the obvious manner. Namely: for
F =id, §rx = §x; for FF = (A,Fa), Srx = Fa; for FF = F| x Fy, §Frx is the smallest
o-algebra that contains A; x Ay for all Ay € §px and Ay € Fp,x; for for F' = [[,.; Fi,
Srx = {llic; 4i | Ai € Frx}

On arrows, F' acts in the same manner as a polynomial functor on Sets.

In what follows, a standard Borel polynomial functor is often called simply a polynomial
functor.

The technical requirement of being standard Borel in the above will be used in the
probabilistic setting of Section 5 (it is also assumed and exploited in [Cirl0] and in [Sch09]
that we rely on). A standard Borel space is a measurable space induced by a Polish space;
for further details see e.g. [Do094].

We go on to introduce monads T for branching. We principally use three monads—the
powerset monad P on Sets, the sub-Giry monad G on Meas, and the lift monad L on Sets.
The monad G is an adaptation of the Giry monad [Gir82] and inherits most of its structure
from the Giry monad; see Remark 2.7.

Definition 2.3 (monads P, G and £). The powerset monad is the monad (P,n”, u”) on
Sets such that PX = {A C X} and Pf(A) = {f(z) | = € A}. Its unit is given by the
singleton set 7% (z) = {z} and its multiplication is given by pX (M) = U e 4.
The sub-Giry monad is the monad (G, 79, u9) on Meas such that
e G(X,8x) = (GX,8¢x), where the underling set GX is the set of all subprobability measures
on (X,Fx). The latter means those measures which assign to the whole space X a value
in the unit interval [0, 1].
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The o-algebra §gx on GX is the smallest o-algebra such that, for all S € §x, the function
evg : GX — [0, 1] defined by evg(P) = P(S) is measurable.

Qf( )(S) = v(f~1(S)) where f: (X,Fx) — (Y,Sy) is measurable, v € GX, and S € Fy.
77(X;§ () Is given by the Dirac measure: ngX SX)(yc)(S) is 1 if x € S and 0 otherwise.

'“(gX,gX)( )(S) = fQ(X,SX) evs d¥ where ¥ € G2X, S € §x and evg is defined as above.

The lift monad is a monad (£, 1", u*) on Sets such that £LX = {1} + X, Lf(y) = f(y)
if y # 1 and Lf(y) = L otherwise. Its unit is given by n% (z) =  and its multiplication is

given by p4%(2) = 2.
A monad gives rise to a category called its Kleisli category (see e.g. [Mac78]).

Definition 2.4 (Kleisli category KC¢(T")). Given a monad (7,7, ) on a category C, the
Kleisli category for T is the category K¢(T') whose objects are the same as those of C, and
for each pair of objects X, Y, the homset K/(T)(X,Y) is given by C(X,TY). An arrow in
KU(T) is referred to as a Kleisli arrow, and depicted by X + Y for distinction from C. Note
that it is nothing but an arrow X — TY in the base category C.

Moreover, for two sequential Kleisli arrows f: X+ Y and g : Y+ Z, their composition
is given by pz oT'go f and denoted by g ® f. The Kleisli inclusion functor is the functor
J:C — KUT) such that JX = X and Jf =ny o f for f: X - Y in C.

It is known that a functor F : C — C canonically lifts to a functor F : K4(T) — K¢(T),
given that there exists a natural transformation A : F'T' = T'F that is compatible with the
unit and the multiplication of T

Lemma 2.5 (distributive law, [Mul93]). Let T' be a monad and F be an endofunctor on a

category C. The following conditions are equivalent

(1) The functor F can be lifted to the Kleisli category KU(T'): namely, there exists a functor
F : KUT) — KUT) such that FoJ=JoF.

(2) There exists a natural transformation X : FT = TF such that the following diagrams
commute for all X € C.

— B FTX FT2X X, TpTX T>T2FX
\ lA X FMXJ lMFX
TFX FTX Ax TFX
Such \ is called a distributive law. []

Throughout this paper, we fix the orders on homsets of K¢(P), K{(G) and Kl(L) as
follows.

Definition 2.6 (order enrichment of IC/(P), Kl(G) and Kl(L)). We define an order on
KU{P)(X,Y) by: f C gif and only if Vo € X. f(x) C g(z). For K{(G)(X,Y) we define:
f E gif and only if Vo € X.VA € Fy. f(z)(4) < g(z)(A). Here the last < is the usual
order in the unit interval [0, 1]. We define an order on K¢(L)(X,Y) by f C g if and only if
Ve e X. f(x) = Lor f(z) = g(z).

Remark 2.7. The sub-Giry monad G is an adaptation of the Giry monad from [Gir82];
in the original Giry monad one only allows (proper) probability measures, i.e. measures
that map the whole space to 1. We work with the sub-Giry monad because, without this
relaxation from probability to subprobability, the order structure in Definition 2.6 is reduced
to the equality.
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2.2. Ranked Alphabet and Infinitary Trees. There is a natural correspondence between
polynomial functors and ranked alphabets. In this paper a functor F' for the (linear-time)
transition type is restricted to a polynomial one; this means that we are dealing with
(T-branching) systems that generate trees over some ranked alphabet. Here we collect some
standard notions and notations on (the conventional presentation of) such finite/infinite
trees; they will be used later in showing that our coalgebraic infinitary traces indeed capture
infinitary tree languages of such systems.
Trees are labeled with letters from an alphabet.

Definition 2.8. A ranked alphabet is a family ¥ = (3, )ne,, of sets. A standard Borel ranked
alphabet is a family ¥ = ((En,g’n))n ., of standard Borel spaces. The index n € w is called
an arity.

€

For the definition of infinitary trees we follow [Cou83]. Each node labeled with a letter
a € Y, of arity n has n children. The idea of k-prefix trees, presented below, is introduced
in [ENI71]. It can be regarded as a finite tree of depth k that is obtained by truncating an
infinitary tree.

Definition 2.9. Let ¥ = (3,,)new be a ranked alphabet. A X-labeled infinitary tree is a
pair (D, 1) of a domain D C N* and a labeling function | : D — |, c,, £ such that:

e the domain D is prefix-closed (i.e. Va € N*.Vi € N. ai € D = « € D), nonempty, and
downward-closed (i.e. Va e N*.Vie N.ai € D = Vj <i.aj € D); and

e for all & € D such that (o) € ¥, and i € N, i € D if and only if 0 <i <n — 1.

For k € w, a X-labeled k-prefix tree is a pair (D,l) of a domain D and a labeling function

I:D — J,c, Xn such that:

e if K =0 then D is an empty set and if & > 0 then D C {J,,_; N%

e the domain D is prefix-closed, nonempty, and downward-closed; and

e for & € D such that || < k—1 and (o) € ¥, and i € N, ai € D if and only if
0<i<n—-1

Here k is called the depth of (D,1). We write Trees(X) and Tree®(X) for the sets of all

>-labeled infinitary trees and Y-labeled k-prefix trees, respectively.

A k-prefix tree t = (D, 1) € Tree® () is called a prefiz of a tree t' = (D', 1') € Trees(Z)U
Upsg Tree® (2) if D € D’ and I(a) = I'(@) holds for all o € D. We write t < ¢/ if  is a
prefix of #. For t € Tree® (%), a cylinder set induced by t is the set cyl(t) C Trees (X) that
is defined by cyl(t) = {t' € Treex(X) | t < t'}.

For t = (D,l) € Treex(X) and o € D, the a-th subtree of t is a Y-labeled infinitary tree
ta = (Dasla) € Trees(X) where Dy = {5 € N* | aff € D} and [o(5) = l(af).

In later sections we will use an infinitary tree automaton—an automaton that generates
Y.-labeled trees. Note that an infinitary tree automaton might output a finite-depth tree
whose leaves are labeled with 0-ary letters a € ¥y (cf. footnote 1 on page 2). Especially
when X = {v'} and X; = 0 for all ¢ > 2, an infinitary tree automaton can be regarded as
an automaton that generates words instead of trees. We call such an automaton infinitary
automaton (suppressing the word “tree”).

Remark 2.10. As described above, we regard infinitary tree automata as generative
ones that output trees throughout this paper. Another characterization of behaviors of
infinitary tree automata is to regard them as reactive ones that accept trees. These two
characterizations coincide in the nondeterministic setting. In contrast, they are distinguished
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in the probabilistic setting: in the former case, an automaton randomly outputs a tree while
in the latter case, an automaton assigns a probability where the tree is accepted to each tree.

A system that generates ¥-labeled infinitary trees will later be represented as an Fx-
coalgebra on the Kleisli category of some monad where Fy, is a lifting of Fx. Here the
functor Fyx is a polynomial functor defined as follows.

Definition 2.11. For a ranked alphabet ¥ = (3,),c,, we define Fy, : Sets — Sets by
Fy =11,,c, Zn x (_)". For a standard Borel ranked alphabet ¥ = ((En, Sn))new’ we define
Fy : Meas — Meas by Fy =[], (30, 8n) x (L))"

3. INFINITE TRACES, KLEISLI SIMULATIONS AND COALGEBRAS IN K/(T")

In this section we review some categorical constructs, the relationship among which lies at the
heart of this paper. They are namely: coalgebraic infinitary trace semantics [Jac04], Kleisli
simulation [Has06, Has10, UH14, UH17] and forward partial execution (FPE) [UH14, UH17].

The following situation is identified in [Jac04] (see also Section 4.4, Section 5.4 and
Section 6.4): the largest homomorphism to a certain coalgebra (that we describe below)
coincides with the standard, conventionally defined notion of infinitary language, for a variety
of systems. An instance of it is shown to arise, in [Jac04], when C = Sets, T'= P and F is
a polynomial functor. In Section 4 we will give another proof for this fact; the new proof
will serve our goal of showing soundness of backward simulations.

Definition 3.1 (infinitary trace situation). Let F' be an endofunctor and 7' be a monad on

a category C. We assume that each homset of the Kleisli category KC¢(T') carries an order L.

The functor F' and the monad 1" constitute an infinitary trace situation with respect to C if

they satisfy the following conditions.

e There exists a final F-coalgebra ( : Z — FZ in C.

e There exists a distributive law \ : FT = TF, yielding a lifting F on K¢(T) of F by
Lemma 2.5.

e For each coalgebra ¢ : X -+ FX in KU(T), the lifting J¢ : Z-+ FZ of ¢ admits the largest
homomorphism. That is, there exists a homomorphism tr*°(c) : X+ Z from ¢ to J¢ such
that, for any homomorphism f from ¢ to J{, f C tr*°(c) holds.

In [Has06, Has10, UH14, UH17] we augment a coalgebra with an explicit arrow for
initial states. The resulting notion is called a (T, F')-system.
Definition 3.2 ((7, F')-systems and their infinitary trace semantics,
[HJS07, Jac04]). Let C be a category with a final object 1 € C. A
(T, F)-system is a triple X = (X, s,c¢) consisting of a state space
X € C, a Kleisli arrow s : 1+ X for initial states, and c: X+ FX 1, - Jc
for transition. £ (c)

Let us assume that the endofunctor F' and the monad T on C X ~~r~r~Z
constitute an infinitary trace situation. The coalgebraic infinitary %

trace semantics of a (T, F)-system X = (X, s, ¢) is the Kleisli arrow

tr(c) ® s : 1+ Z where tr*°(c) is the largest homomorphism in 1

Definition 3.1 (see the diagram, in IC¢(T"), on the right). Recall that

® denotes composition in K/(T') (Definition 2.4).
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Suppose that we are given two (7, F)-systems X = (X,s,c¢) and YV = (Y,t,d). Let
us say we aim to prove the inclusion between infinitary trace semantics, that is, to show
tr°(c) ® s C tr°(d) ® t with respect to the order in the homset C/(T")(1, Z). Our goal in
this paper is to offer Kleisli simulations as a sound means to do so.

The notions of forward and backward Kleisli simulation are introduced in [Has06]
as a categorical generalization of forward or backward simulations in [LV95]. They are
defined as Kleisli arrows between (the state spaces of) two (7', F)-system that are subject
to certain inequalities—in short they are laz/oplaz coalgebra homomorphisms. In [Has06]
they are shown to be sound with respect to finite trace semantics—the languages of finite
words, concretely, and the unique arrow to a lifted initial algebra (that is a final coalgebra,
see [HJS07] and the introduction), abstractly. In this paper we are interested in their relation
to infinitary trace semantics.

Definition 3.3 (forward and backward Kleisli simulation, [Has06]). Let __ T
F be an endofunctor and T be a monad on C such that each homset £'X ¢———FY
of KU(T') carries an order C. Let X = (X,s,¢) and Y = (Y,t,d) be %c c ‘A“d
(T, F')-systems. X <_¢ Yy
A forward Kleisli simulation from X to Y is a Kleisli arrow f: Y+ X C .
s c
1

that satisfies the following conditions (see the diagram):

sCfot, and cO fC Ffod.

We write X Cg Y if there exists a forward simulation from X to Y. FX FY
A backward Kleisli simulation from X to Y is a Kleisli arrow b: X+ Y ¢ b L %d
that satisfies the following conditions (see the diagram): X —Y

bosCt, and FbOcL dOb. SLf t

We write X Cg Y if there exists a backward simulation from X to V.

Forward partial execution (FPE) is a transformation of (7, F')-systems introduced
in [UH14] (and its extended version [UH17]) for the purpose of aiding discovery of Kleisli
simulations. Intuitively, it “executes” the given system by one step.

Definition 3.4 (FPE, [UH14, UH17]). Let F be an endofunctor and 7' be a monad on C.
Forward partial execution (FPE) is a transformation that takes a (7', F')-system X = (X, s :
1+ X,c: X+ FX) as input, and returns a (7, F)-system Xrpg = (FX,cOs: 1+ FX, Fc:
FX -+ F2X) as output.

It is shown in [UH17] that FPE is a valid technique for establishing inclusion of finite
trace semantics, in the technical senses of soundness and adequacy. Soundness asserts that
discovery of a Kleisli simulation after applying FPE indeed witnesses trace inclusion between
the original systems; adequacy asserts that if there is a Kleisli simulation between the original
systems, then there is one, too, between the transformed systems. In this paper, naturally,
we wish to establish the same results for infinitary trace semantics.

4. SYSTEMS WITH NONDETERMINISTIC BRANCHING

In the rest of the paper we develop a coalgebraic theory of infinitary traces and (Kleisli)
simulations—the main contribution of the paper. We do so separately for the nondeterministic
setting (T = P), for the probabilistic setting (7' = G), and for the setting where the system
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can abort with an exception (7" = £). This is because of the difference in the constructions
of infinitary traces, and consequently in the soundness proofs.

In this section we focus on the nondeterministic setting; we assume that F'is a polynomial
functor on Sets.

4.1. Construction of Infinitary Traces. We start with showing that the combination of
polynomial F' and T' = P constitute an infinitary trace situation (Definition 3.1). This is
already known from [Jac04]. The proof in [Jac04] combines fibrational intuitions with some
constructions that are specific to Sets. Here we present a different proof. It exploits an
order-theoretic structure of the Kleisli category /C¢(P); this will be useful later in showing
soundness of (restricted) backward simulations. Our proof also paves the way to the
probabilistic case in Section 5.

In fact, our proof for infinitary trace situation is stated axiomatically, in the form of the
following proposition. (Recall that statements marked with  are axiomatic ones.) This is
potentially useful in identifying new examples other than the combination of polynomial
F and T = P (although we have not yet managed to do so). Its proof is essentially the
construction of a greatest fixed point by transfinite induction [CCT79].

Proposition 4.1.F Let C be a category, F be an endofunctor on C, and T be a monad on
C. Assume the following conditions.

(1) There ezists a final F-coalgebra ¢ : Z — FZ in C.

(2) There erists a distributive law X : FT = TF, yielding a lifting F on K¢(T) of F.

(3) For each X,Y € KU(T), the homset K¢(T)(X,Y) carries a partial order C. Moreover,
F'’s action on arrows, as well as composition of arrows in K(T), is monotone with
respect to this order.

(4) For each X,Y € KU(T), every (possibly transfinite) decreasing sequence in K€(T)(X,Y)
has the greatest lower bound. That is: let a be a ordinal and (gi : X+ Y )icq be a family
of arrows such that i <j implies g; 3 g;. Then their infimum [|i_, gi exists.

(5) For each X € C, the homset K(T')(X,Z) has the largest element T x 7.

Then T and F constitute an infinitary trace situation with respect to C.

Proof. Let ¢ : X -+ FX be an F-coalgebra in K/(T). We shall construct the largest
homomorphism tr*°(c) : X+ Z from ¢ to J(, by transfinite induction.

We define an endofunction ®, : KU(T)(X, Z) — KUT)(X,Z) by ®.(f) = J( 'O Ffoec.
By the monotonicity of Kleisli composition ® and the functor F' (Assumption (3)), ®. is also
monotone. For each ordinal a, we define ®%(T x z) € K{(T)(X, Z) by transfinite induction
on a as follows:
e ®NTxz) = Txz
e For a successor ordinal a, (T x z) = ®.(®2 (T x z)); and
e For a limit ordinal a, ®%(Tx,z) = [|iq ®L(T x,z) (cf. Assumption (4)).
We define | to be the smallest ordinal such that the cardinality of [ is greater than that
of K¢(T)(X,Z). Then from [CCT79], ®L(T x z) is the greatest fixed point of ®.. Note that
a Kleisli arrow is a homomorphism from ¢ to J¢ if and only if it is a fixed point of ®..
Therefore ®.(T x z) is the largest homomorphism from ¢ to J¢. []

Note that the w°P-continuity—preservation of the greatest lower bound of a decreasing
sequence—of composition ® in /(T is not assumed. This is because P—our choice for T'
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in this section—does not satisfy it, while it satisfies w-continuity—preservation of the least
upper bound of an increasing sequence. Indeed, consider f : X + Y and a decreasing sequence
(9i : Y =+ Z)icw, both in K(P). Then we have (([N;c,9i) © f) (z) = Uyes@) MNicw 9i(¥)
while ([N;co,(9i © f)) () = Nicw Uyef() 9i(y), and these two are not equal in general. This
failure of w°P-continuity prevents us from applying the (simpler) Kleene fized-point theorem,
in which induction terminates after w steps. The following examples show that there does
exist a nondeterministic automaton for which the largest homomorphism is obtained after
steps bigger than w.

Example 4.2. In the construction of the largest homomorphism in Proposition 4.1, we need
w + 1 steps for the nondeterministic automaton X on the left below. We need 2w + 1 steps
for Y on the right below. In a similar manner, for an arbitrary ordinal a, we can construct
an automaton where a steps are needed.

y

\/aM o<7o<—o
Vo oo \
V 0

It is easy to check that all the assumptions in Proposition 4.1 are satisfied by polynomial
F and T = P. Therefore we have the following result that is the main theorem of this
section.

Theorem 4.3. The combination of polynomial F' and T = P constitute an infinitary trace
situation.

Proof. We show that F' and P satisfy Assumptions (1)—(5) in Proposition 4.1.

It is known that Assumption (1) is satisfied [AK79]. It is known that Assumption (2)
is also satisfied [HJS07, Lemma 2.4]. It is easy to see that F' and P on Sets satisfy the
Assumptions (3) and (4) where the infimum is given by intersection. It is also easy to see
that Assumption (5) is satisfied; Tx z : X+ Z is given by Tx z(z) = Z for all z € X.

Therefore by Proposition 4.1, F' and P constitute an infinitary trace situation. []

4.2. Kleisli Simulations for Nondeterministic Systems. In this section we prove that
forward and backward Kleisli simulations can be used to witness infinitary trace inclusion.
This fact is already shown in [LV95] for nondeterministic word automata. The coalgebraic
theory developed in this section is a generalization of the results in [LV95] because it is
applicable also to nondeterministic tree automata.

4.2.1. Forward Simulations. Soundness of forward simulation is not hard; we do not have to
go into the construction in Proposition 4.1.

Theorem 4.4. Given two (P, F)-systems X = (X, s,c) and Y = (Y,t,d), X Cg Y implies
tro(c) © s C tre(d) O t. []

The proof, much like Proposition 4.1, is formulated as a general result, singling out
some sufficient axioms.
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Lemma 4.5." Let F be an endofunctor and T be a monad on C; assume further that

they constitute an infinitary trace situation (with respect to C). We assume the following

conditions.

(1) Each homset of KL(T) is w-complete, that is, each increasing w-sequence in it has the
least upper bound.

(2) Composition ® of arrows in KU(T) and F’s action on arrows are both w-continuous (i.e.
they preserve the least upper bound of an increasing w-sequence).

For two (T, F)-systems X = (X, s,¢) and Y = (Y,t,d), if f : Y- X is a forward simulation

from X to Y, then tr*°(c) ® f C tr°(d). As a consequence we have tr*°(c) ® s C tr*°(d) ® t.

Proof. Let ¢ : Z — F'Z be a final F-coalgebra in C. We define a function ®, : KUT)(Y, Z) —
KUT)(Y,Z) by ®4(9) = J(~! ® Fg ® d; note that ¢ is a final coalgebra and hence an
isomorphism. Then

()0 f=JC O Fr®(c) 0co f (tr*°(c) is a homomorphism)
CJC'OFre(c) o Ffod (f is a forward simulation)
=4(tr*°(c) © f) (by definition of ®y-).

By the assumption that F and the composition are
monotone, @4 is also monotone. Therefore by repeatedly _
applying @4 to the both sides of the above inequality, we = ; f(trJO(c)) Fz
obtain an increasing sequence tr*°(c)© f C ®4(tr*(c)0f) C % | % = %}(
PA(tre(c) © f) T .-+ in KUT)(Y, Z). v { .

As KUT)(Y, Z) is w-complete, the least upper bound W
|lic, @ (tr*(c) ® f) exists. By the assumption that F t - s
and ® are both w-continuous, ®; is also w-continuous. 1
Therefore we have ®(| |;_, ®“(tr°(c) ® f)) = | ];c,, T (tr(c) © f) = [;=, D (tr°(c) ® f).
This means that | |,_, ®*(tr>(c) ® f) is a fixed point of @y, hence a homomorphism from
d to JC. As tr*°(d) is the largest homomorphism from d to J¢, this implies tr*°(c) ® f C
L;< @ (tr>°(c)® f) C tr*°(d). Combining with the assumption that f is a forward simulation
(specifically its condition on initial states), we have tr*°(c)®s C tr*°(c) 0 fOt C tre(d)ot. [

F(tr>(d))

It is known from [HJS07] that the combination of polynomial F' and T' = P satisfy the
conditions of Lemma 4.5. Hence we obtain Theorem 4.4, i.e. soundness of forward simulation
in the nondeterministic setting.

4.2.2. Backward Simulations. Next we wish to establish soundness of backward Kleisli
simulations with respect to infinitary traces (for finite traces it is shown in [Has06]). In fact,
the desired soundness fails in general: here are counterexamples.

Example 4.6. There exists a (not total) backward simulation from the nondeterministic
automaton X to ) below. Concretely, the backward simulation b : {zo, 1,22} = P({yo,v1})
is given by b(xo) = {yo}, b(x1) = {y1} and b(z2) = (). However, the simulated automaton X
outputs an infinite word aaa ... while ) does not. Therefore the infinitary traces of X are
not included in those of V.
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There exists a (not image- ﬁmte backward simulation from Z to W below. Concretely,
the backward snnulatlon b: {20, zl} — P({ww, wo, w1, ...}) is given by b(z9) = {w,} and
b(z1) = {wo, w1, ...}. However, trace inclusion from Z to W does not hold.

Nevertheless, for nondeterministic word automata, it is known that imposing certain
restrictions (totality and image-finiteness) leads to soundness of backward simulation [LV95].
In this section, for (P, F')-system with polynomial F', we prove a similar result in general
coalgebraic terms. This allows us to use (restricted) backward simulation to check language
inclusion between not only nondeterministic word automata but also nondeterministic tree
automata. Moreover, this also gives us an idea about how we should impose restriction to
make backward simulation sound in the probabilistic setting (Section 5.2.2).

Definition 4.7 (totality, image-finiteness, TIF-backward simulation). Let X = (X s, ¢) and
Y = (Y,t,d) be (P, F)-systems. A backward simulation b : X+ Y from X to Y is total if
b(x) # 0 for all z € X; it is image-finite if b(z) C Y is finite for all x € X. If b satisfies both
of the two conditions, it is called a TIF-backward simulation. We write X EEF Y if there
exists a TIF-backward simulation from X to ).

Theorem 4.8 (soundness of C5¥). For two (P, F)-systems X = (X, s,c) and Y = (Y,t,d),
X CEF Y implies tr>°(c) ® s C tr*°(d) O t.

The proof of Theorem 4.8 is, yet again, via the following axiomatic development. We
first characterize totality and image-finiteness using categorical terms.

Definition 4.9 (TIF-backward simulation, generally).” Let F be an endofunctor and T be

a monad on C that satisfy the conditions in Proposition 4.1 with respect to C. For two

(T, F)-systems X = (X, s,c¢) and Y = (Y, t,d), a TIF-backward simulation from X to ) is a

backward simulation b : X -+ Y that satisfies the following conditions.

(1) The arrow b: X —+ Y satisfies Ty, z ©b= T x 7 for any Z € K{(T).

(2) Precomposing b: X -+ Y preserves the greatest lower bound of any decreasing transfinite
sequence. That is, let A € K(T'), a be an ordinal, and (g; : Y+ A)i<q be a family of
Kleisli arrows such that i <j implies g; 2 gj. Then we have [ic,(gi © b) = ([icq gi) © b.

We write X EEIF Y if there exists a TIF-backward simulation from X to V.

Assumption (2) of Definition 4.9 resembles how “finiteness” is formulated in category
theory, e.g. in the definition of finitely presented objects.

This general TIF-backward simulation satisfies soundness. For its proof we have to look
into the inductive construction of the largest homomorphism in Proposition 4.1.
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Lemma 4.10." Let F and T be as in Proposition 4.1. For two (T, F)-systems X = (X, s, ¢)
and Y = (Y,t,d), X CE¥ Y (in the sense of Definition 4.9) implies tr*°(c) C tr*°(d) ® b.
Furthermore it follows that tr*°(c) ® s C tr°(d) © t.

Proof. Let ( : Z — FZ be afinal F-coalgebra in C. We define FTx.z
®, : KUT)(X,Z) = KUT)(X,Z) and &4 : KUT)(Y,Z) — e

Ke(T)(Y,Z) as in the proof of Proposition 4.1. Moreover, FX f}b Ty,
in the same manner as in the proof of Proposition 4.1, for {t C C% C JC{’%
p g

each ordinal a, we define ®¢(Tx, z) : X+ Z and ®§( Tyz
Y - Z by transfinite induction on a. As we have seen in \/ zZ
the proof of Proposition 4.1, there exist ordinals [, and [4
such that tr°(c) = qﬂcc(TX,Z) and tr°(d) = ®4(Ty.z). Let o
[ = max([, ;). We shall now prove by transfinite induction that, for each a, we have
YT x,z) C 25(Ty,z) © b; this will yield our goal by taking a = [.

For a = 0, from Assumption (1) of Definition 4.9, we have ®%(Tx z) = Txz =
Tyz0b=®5(Tyz) ®b.

Assume that a is a successor ordinal and ®¢™(Tx z) C @5 *(Ty,z) ©® b. Then

P Tx,z) T JCtoe f(q)z_l("l’yz)) OFboOc (by induction hypothesis)
cCJ¢ o F((I)Z_l(TY,Z)) ©dob (b is a backward simulation)
=03(Tyz)®b (by definition) .

Let a be a limit ordinal and assume that ®.(Tx z) C ®4(Ty,z) ®b for all i < a. Then

PTx,z) Ef licq ( v(Ty,z)® b) (by induction hypothesis)
=05(Tyz)®b (by Assumption (2) of Definition 4.9) .

Thus tr*°(c) C tr*°(d) ® b. The last claim follows from b’s condition on initial states. [

Next we show that a TIF-backward simulation in the specific sense of Definition 4.7 is
also a TIF-backward simulation in the general sense of Definition 4.9. To this end, we first
prove the following “pigeon-hole” sublemma.

Sublemma 4.11. Let a be a limit ordinal, C be a finite set and f:a — C. Then
JeeC. Vi<a. db>i. f(b)=c.

Proof. For each ¢ € C, we define A, Caby A. = {0 € a| f(?) = ¢}. We prove the statement
by contradiction. Assume the negation of the claim, that is,

Vee C. Jie<a. Vb >i. f(b)#c.

This is equivalent to assuming that for all ¢ € C, there exists i, < a such that for all j € A,
j < ic holds. Then Lljech <i. < aforall ce C. As C is finite and | J .- Ac = a, this
implies a = | |;_,j = l.cclica, i < Ueecic < a. This contradicts and the statement is
proved. L]

Lemma 4.12. In Definition 4.9, let T' =P and F be a polynomial functor. Assumption (1)
is satisfied if b(x) # O for each x € X ; Assumption (2) is satisfied if b(x) is finite for each
zeX.
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Proof. Assume that b(z) # 0 for all z € X. To show that Assumption (1) in Definition 4.9
is satisfied, it suffices to prove z € Ty z ® b(x) for all z € Z and x € X. By the assumption,
there exists y € Y such that y € b(z). Therefore for all z € Z, 2z € Ty z(y) C Ty,z ® b(x).

Assume that b(x) is finite for all z € X. Note that [ ],_,(ga © b)(®) = [Nicq Uyep(z) 9:(¥)
while ([Ti.,9) © b(z) = Uyebz) Nica 9i(y). As it is easily shown that the latter is al-
ways included in the former, it suffices to prove that z € Uyeb(x) gi(y) implies z €
Uyeb(x) Nica 9:(Y)-

If 2 € Mica Uyep() 9i(y), then for all i < a, there exists y; € b(x) such that 2 € gi(ys).
As b(x) is assumed to be finite, from Sublemma 4.11, we have

Jy eb(x). Vi<a Fj>i zegly).

As i < j implies gi J g, z € g(y) implies z € gi(y). Therefore z € Uy ep) Nica 9:(Y)
holds. []

Proof of Theorem 4.8. Immediate from Lemma 4.10 and Lemma 4.12. ]

Even with the additional constraints of totality and image-finiteness, backward Kleisli
simulations seems to be a viable method for establishing infinitary trace inclusion, because
there exists a pair of nondeterministic automata such that a TIF-backward simulation can
prove trace inclusion between them but a forward simulation cannot. An example of such a
pair of automata is shown below.

Example 4.13. The infinitary traces of the nondeterministic automata X below are included
in the infinitary traces of ). There exists no forward simulation from X to ) while a TIF-
backward simulation does exist.

X Y

c c_%¢a
o o / (\
dCo 04— 0+ dCO O <
K
b I

4.3. Forward Partial Execution for Nondeterministic Systems. Recall that in Defini-
tion 3.4, we have reviewed forward partial execution (FPE) [UH14, UH17]—a transformation
of coalgebraic systems that potentially increases the likelihood of existence of simulations.
We now apply FPE in the current setting of nondeterminism and infinitary traces. We
follow the setting in [UH17] for the finite traces, and formulate FPE’s “correctness” in the
following theorem.

Theorem 4.14. Let F' be a polynomial functor on Sets. For (P, F)-systems X = (X, s, c)
and Y = (Y, t,d), the following hold.
(1) (a) (soundness of FPE for forward simulation) Xepg Tg Y implies tr°(c) © s C
tre(d) o t.
(b) (adequacy of FPE for forward simulation) X Cg Y implies Xepg Cp V.

(2) (a) (soundness of FPE for backward simulation) X CEY YVepe implies tr>°(c) ® s C
tre(d) ©t.
adequacy o or backward simulation C implies C FPE,
b) (ad f FPE for backward simulation) X CEY Y implies X CEF )
assuming that the following hold.
(i) d(y) #0 forally €Y.
(i) d(y) is finite for ally € Y.
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Informally: soundness means that discovery of a simulation after applying FPE still
witnesses the trace inclusion between the original systems; and adequacy means that the
relationship Cg (or CEF) is not destroyed by application of FPE. The theorem also implies
that FPE must be applied to the “correct side” of the desired trace inclusion L (X') C L*°()):
X in the search for a forward simulation; and ) in the search for a backward one.

Note that the adequacy property is independent from the choice of trace semantics (finite
or infinitary). Therefore the statement (1b) of Theorem 4.14 is the same as its counterpart
in [UH17]. For the statement (2b), however, we have to check that the TIF restriction (that
is absent in [UH17]) is indeed carried over.

In [UH17] it is shown that FPE can indeed create a simulation that does not exist between
the original systems. Its practical use is witnessed by experimental results in [UH14, UH17],
where FPE was used in verifications of security protocols. It would not be hard to observe
the same in the current setting for infinitary traces.

For the proof of Theorem 4.14, once again, we turn to an axiomatic development.

Theorem 4.15 (FPE and forward simulation).! Let F be an endofunctor and T be a monad
on C, as in Lemma 4.5 (that is, they constitute an infinitary trace situation and satisfy the
two additional assumptions.) Let X = (X, s,¢) and Y = (Y, t,d) be (T, F)-systems. Then
(1) (soundness for forward simulation) Xepg Cg Y implies tr*°(c) ©® s C tr>°(d) © t.

(2) (adequacy for forward simulation) X Cg ) implies Xepg Cp V.

Proof. (1)(soundness).

F(tr>e(c))

FX F/F_&\FZ RO Fy
F(tr>(Fc))

C = jkFC = {’JC = d%
tr°°(Fc)

Let ¢ : Z — FZ be a final F-coalgebra. By definition, Xrpg = (FX,c® s, Fc). Assume
Xrpe CF V. Then by soundness of a forward Kleisli simulation, we have:

X(Fe)® (cos)Ctre(d) ot . (4.1)
As tr*°(c¢) is a homomorphism from ¢ to J¢, we have:
tr°(c) = (JO) T O F(tr (c)) Oc. (4.2)

Here (J¢)~! ® F(tr*°(c)) is a homomorphism from an F-coalgebra Fc: F X -+ F’X to JC
because of the following equation.

JCO ((JOT O F(tr™(c)) = F(tr>(c))
F((JOT 0 F{re(c) ®c) (by (4.2))
=F((JO) @ F(tr*(c)) ® F(c)
As tr°(Fc) is the largest homomorphism from Fc to J¢, we have:

(JO PO F(tr*(c) C tre(Fc). (4.3)
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From the equations (4.1-4.3), tr>°(c) ® s C tr*°(d) ® t follows.

(2)(adequacy). Let f: Y+ X be a forward Kleisli simulation Py Fe Fy
from X to ). Then we have:
Feo(cOf)CFcoO(Ffod =F(cof)o F% = % = %
and FX 4% Xt
cOsEco(fot)=(cof)ot.
Hence ¢® f : Y+ FX is a forward simulation from Xgpg to \\ % //
). ] 1

Theorem 4.16 (FPE and backward simulation).” Let F' be an endofunctor and T be a
monad on C that satisfy the conditions in Proposition 4.1 (hence those in Lemma 4.10). Let
X =(X,s,¢) and Y = (Y,t,d) be (T, F)-systems.
(1) (soundness for backward simulation) X C5Y Vepe implies tr*°(c) ® s C tr*°(d) @ t.
(2) (adequacy for backward simulation) X CEY Y implies X CTEY Vepe if the following
conditions are satisfied.
(a) The coalgebra d :Y + FY satisfies Tryz0d=Tyz.
(b) Precomposing d preserves the greatest lower bound of a (possibly transfinite) de-
creasing sequence.

Proof. (1) (soundness).

Let b : X + FY be a TIF-backward simulation from X to Vrpe. Then by soundness of
TIF-backward simulation, we have:

tr(c) @ s Ctr°(Fd) @ (d O t). (4.4)

It is easy to see that d : Y -+ FY is a forward simulation from Yrpg to ). Therefore by
soundness of forward simulation, we have:

P(Fd)® (d®t) Ctr(d) Ot. (4.5)
From the inequalities (4.4) and (4.5), we have tr™°(c) ©® s C tr>°(d) © t.

(2) (adequacy). Let b: X+ Y be a TIF-backward sim- 7y
ulation from X to ). In a similar manner to the proof %
X

1=

b

of Theorem 4.15 (1), we can prove that d ® b : X + FY
is a backward simulation from X to Vrpe. Moreover, the

Assumptions (2a) and (2b) imply that d ® b satisfy Assump- B
tions (1) and (2) in Definition 4.9. Therefore d ® b is a %//
TIF-backward simulation from X to YVrpE. (] s 1 dot
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Proof of Theorem 4.14. (1) is immediate from Theorem 4.15. In a similar manner to
Lemma 4.12, we can prove (2) using Theorem 4.16. ]

4.4. Coincidence between Automata-theoretic and Coalgebraic Infinitary Trace
Semantics. In this section we give a sanity-check result for the coalgebraic infinitary trace
semantics that is defined in Section 4.1. Namely, for nondeterministic systems, we show a
coincidence between: the coalgebraic infinitary trace semantics formalized in the previous
section; and the (infinitary) tree language that is defined using automata-theoretic terms.
Here we formalize the latter as follows (Recall the notations from Section 2.2).

Definition 4.17. Let ¥ be a ranked alphabet. A (P, Fx)-system X = (X s,¢) is called a

Y -labeled nondeterministic tree automaton. For a Y-labeled infinitary tree ¢t = (D,[) and

a state € X, a run tree of X from x that generates t is a (X)neo-labeled? infinitary tree

t, = (D,l,), with the same domain as ¢, such that:

e /.(¢) = x; and

e for any element a € D of the common domain, assume that I(a) = a € ¥, [, (o) = y and
l(ai) = y; for each i € {0,...,n—1}. Then (a,¥o,...,Yn—1) € c(y) holds.

For a state z € X, the infinitary language of X from z is the set L (X, z) C Trees(X) that

is defined by L>®(X,z) = {t € Trees(X) | there is a run tree of X’ from x that generates t}.

The infinitary language of X is the set L>°(X) = UxES(*) L>(X,z), where x denotes the

unique element of a singleton 1.

The following is the main result of this section.

Proposition 4.18. Let ¥ be a ranked alphabet. The carrier set of a final Fx-coalgebra is
given by Treex(X). Moreover for a ¥-labeled nondeterministic tree automaton X = (X, s,c),
we have tr*°(c)(x) = L>®(X,x) for all x € X, and hence tr>°(c) ® s(x) = L>®(X).

Proof. We define an arrow ¢ : Treeo(X) — Fx. (Tree (X)) in Sets by ((¢) = (a, (to, .- - ,tn-1))
for each t € Treex(X) such that t = (D,l), a = l(e) € X,, and the i-th subtree of
t is t;. It is known that ¢ is a final Fx-coalgebra (see e.g. [RT93]). We show that

L>®(X,_): X+ Treex(X) is the largest homomorphism from ¢ to J¢.
We first show that L*°(X,_) is a homomorphism. For z € X, we have:

(FsL®(X, ) ® c(x)

= (FRL™(X,_)) ({(a,xo,...,%l) ’

new, ac€ Xy,

= (a,to,...,tn,l) (a,iL'o,...,.’IJn_l) EC(I’),
320, Tn1 € X, t; € L>®(X,z;) for each i

n € w,l(e) € Ly,
dz Tno1 € X ((
0y---sdbn— . l(Z

nNEWaE Y, Ty,...,Tn1 € X,
(a7x07"'axn—l) € C(I’)

= J¢ [ {(D,1) € Trees (X) ), 05+ -+, Tn—1) € c(z), >

€
) € L>®(X,x;) for each i

2Note that (X)new is the ranked alphabet X’ = (3, )nee such that X/, = X for each n € w.
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n e w,l(e) € Ly,

(l({:‘), Lo, .- - 7xn71) € C(l’),

for each i, there is a run tree
tri of X from z; that
generates i-th subtree t; of ¢

= J(({t € Treess(X) | there exists a run tree ¢, of X from z that generates ¢})
= (JCOL®X,_))(z).

Therefore L>°(X,_) is a homomorphism from ¢ to J¢.

It remains to prove that L>°(X, _) is the largest homomorphism. Let g : X + Trees (%)
be a homomorphism from ¢ to J¢. We fix z € X and t = (D,!) € g(x), and show that
t € L>*(X,x). To this end, it suffices to construct a run tree ¢, = (D,l,) of X from x
that generates t. For each a € D, we define a state I,(a) € X such that ¢, € g(I,(a)) by
induction on the length of « as follows.

=JOl DD eTreess (D) | g e x,

e If o = ¢, we define it by [, (a) = z. By the assumption, t, =t € g(z) = g(l,(a)).
e Let [(a) € X, and assume that t, € g(I,(«)). As g is a homomorphism from ¢ to J¢,
to € g(l-(a)) = J(71 ® Frg ® c(l-(a)). By the definition of ¢, this means that there exist
a family of states xg,...,x,—1 such that (I(a),zg,...,2n-1) € ¢(l.(a)) and t,; € g(z;) for
each i € {0,...,n — 1}. We define I, (at) by I,(ai) = ;.
By the axiom of dependent choice, this I, is well-defined. Moreover, by its construction,
(D,l,) is a run tree of X from x that generates ¢t. Therefore ¢t € L*°(X, x).
Therefore g C L*>°(X,_ ) holds, and L> (X, _) is the largest homomorphism from ¢ to J¢.
Hence we have tr*°(c) = L*>°(X, _). This immediately implies tr*°(c) ® s(x) = L*°(X). [
Hence the coalgebraic definition of infinitary trace semantics in Definition 3.2 indeed
characterizes the languages of Y-labeled nondeterministic tree automata in Definition 4.17.

5. SYSTEMS WITH PROBABILISTIC BRANCHING

We now turn to probabilistic systems. They are modeled as (G, F)-systems in the category
Meas. Here we establish largely the same statements as in Section 4, but many constructions
and proofs are different. Throughout this section F' is assumed to be a (standard Borel)
polynomial functor on Meas (Definition 2.2).

5.1. Construction of Infinitary Traces. In this section, like in Section 4.1, we establish
an infinitary trace situation.

Our goal is to construct the largest homomorphism from an F-coalgebra c in to a lifted
final coalgebra J( : Z-+ FZ in K¢(G); we do so inductively, much like in the nondeterministic
setting (Section 4.1), starting from the top element and going down along a decreasing
sequence.

Remark 5.1. Compared to the nondeterministic case (T' = P), major differences are as

follows.

e Composition of Kleisli arrows is w°P-continuous in K¢(G) (see Theorem 5.3 later). This is
an advantage, because we can appeal to the Kleene fixed point theorem and we only need
inductive construction up-to w steps (while, for P, we needed transfinite induction).
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e A big disadvantage, however, is the absence of the top element Tx 7 in K¢(T)(X, Z).
One can imagine a top element T x 7 to assign 1 to every event—this is however not a
(probability) measure.

To cope with the latter challenge, we turn to the Fx < X
final F-sequence in Meas that yields a final F'-coalgebra ‘\iro NG
as its limit. Instead of using a sequence like T J &(T) 3 J[ 8@ L e
<o in KUT)(X, Z) (where the largest element T does 2 5 o
not exist anyway), we use a decreasing sequence that ¥ oge ¥+ J
goes along the final sequence, which is known to yield a

final F-coalgebra [Sch09]. Once the largest element along the sequence is obtained, we can
construct the largest homomorphism from it in a similar manner to [Cir10].

The precise construction is found in the proof of the following proposition.

Proposition 5.2.1 Let C be a category, F be an endofunctor on C, and T be a monad on
C where each homset of KU(T') carries an order C. We assume the following conditions.

(1) The category C has a final object 1; the final w°P-sequence 1 oy e g2y F LA
has a limit (Z, (i : Z — F'1)icw); and moreover, F' preserves this limit. Hence the l@mzt
carries a final F-coalgebra [AKT9].

(2) There erists a distributive law X : FT = TF, yielding a lifting F on K¢(T) of F.

(3) For X,Y € KU(T'), every decreasing w°P-sequence fo J fi J ... in K¢T)(X,Y) has the
greatest lower bound [,c,, fi. Moreover, composition of arrows in K{(T) and F’s action
on arrows are both w°P-continuous. That is, for each g : Z-+ X and h : Y+ W, we have
g®(|—|i€w fl) :Hlew(QQfZ (|—|z€w fl)Qh |_|z€w(fl®h) and F(l—liew fz) = H@ew(Ffz)

(4) The lifting J(x) of the unique arrow to 1 is the largest element of K{(T)(X,1).

(5) The functor J lifts the limit in Assumption (1) to a 2-limit. Namely, for any cone

(X, (m; : X+ F'1);e,) over the sequence 1 Al AL S , there uniquely

exists | : X + Z such that m; = Jv; © 1 holds for each i € w. Moreover, if I! : X + Z
satisfies Jy; ©I' C Jv; 1 for each i € w, then I C 1 holds.

Then F and T constitute an infinitary trace situation with respect to C.

In more elementary terms, Assumption (5) of Proposition 5.2 asserts that: J lifts the
limit Z; and the lifted limit satisfies a stronger condition of preserving the order between
cones to the order between mediating maps.

Intuitively, Assumptions 1, 3 and 5 together ensure that we can “transfer” the greatest
element J(!x) in K(T')(X, 1) (Assumption 4) to the greatest homomorphism from ¢ to J¢.

Proof. Let ¢: X+ FX be a F-coalgebra in K{(T). -
We first construct a cone (X, (a; : X+ Fll)i@) over the sequence FX —+—F1

1% T TR B TR L To this end, we start with defining C]AL f”Fl
an arrow ap : X —+ 1. Let us define a function ¥, : K{(T)(X,1) — X 41
KUT)(X,1) by Uo(f) = Jlp1 © Ff ® ¢ (see the diagram on the right). As composition
in K¢(T) and F’s action on arrows are both monotone (by Assumption (3)), ¥, is also
monotone. Moreover, as J!x is the largest element in C/(T')(X, 1) (Assumption (4)), we have
Jlx J V. (J!x). Therefore by repeatedly applying ¥. to the both sides of the inequality, we
obtain a decreasing sequence J!x 3 W (J!x) I U2(J!x) 3
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e PE(J!x) : X+ 1 exists; we write
U« (Jlx) for the greatest lower bound. Here, as composition of arrows in K¢(T) and F’s
action on arrows are both w°P-continuous, W, is also w°P-continuous. Therefore by the
Kleene fixed point theorem, ¥¥(J!x) is the greatest fixed point of W,.

By Assumption (3), their greatest lower bound [ ],

Using this greatest fixed point, for each i < w, we define an arrow a; : X + 71
inductively as follows:

ap=VYJ!x) and a1 =Fa;Oc. (5.1)

Then we can prove «; = FiJ!m ® a1 for all ¢ € w by induction on ¢ as follows. For i = 0,
we have:

P © a1 = Jlp O F(YE(Jlx)) @ c (by definition)
= W (VI (J!x)) (by definition)
= ¥ (Jlx) (¥ (J!x) is a fixed point)
= (by definition).

For the step case, assume that Q; = i Jr1 © ajy1. Applymg F and composing ¢ from the

right, we have a; 11 = Fr J'1 ® ai42. Hence we have a; = ' J‘F1 ® 41 for all ¢ € w. This

2
means that (X, (a; : X+ F' 1)zew) is a cone over the sequence 1 ¢ il 3 R A L

Therefore by Assump‘mon (5), there exists a unique mediating arrow [ : X - Z from the
cone (X, (a;)icw) to the (Z, (Jvi)icw), on the one hand.

— —2 -3
c — Fc __ Fc _ Fc
X ——F——TFx i X % FPx——
/ \\Of/o - \\ljao — Flay = \{Sao
I
J!F'l —_ JF!Fl . JF21F1 . JFS!F1
CO i Fl | ’1 | Fre—+—
\ _ _ _
\ %!Z = /]F!Z - JF2l, T /ZJF3!Z
v
7z : I = 2 % Ty —t—
J¢ FZz JF¢ Fz JF2%¢ 2z JF3¢

On the other hand, J¢(~'® Fl®c is also a mediating arrow from (X, (o;)icw) to (Z, (J7:)icw)-
Indeed, for all ¢ € w, we have:

Jvi © (J(fl OFloc) = FHlJ!Fl OFJyoFloc (¢ is a mediating arrow)
=F' im0 Faoc (I is a mediating arrow)
= FH— J'm e 041 (by definition of Oéi—i-l)
= (X, (@i)iew) is a cone) .

Hence by the uniqueness of the mediating arrow, we have | = J("!® Fl® c and [ is a
homomorphism from c to j(.
To conclude the proof, we have to show that [ the largest homomorphism from ¢ to J¢.

Let g: X+ Z bea homomorphism from ¢ to J¢. We construct a cone (X, (3 : X+ F'1)ies,)

over the sequence 1 e E e T JS—!—Fl -+ by B = Jv; ®g. Then we can prove that

B; C «; for all i € w by induction on ¢ as follows.
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For i = 0, we have:

Ue(Bo)=Jlp1 ©FJy©Fgoec (by definition)
=Jlpi ©FJywoJ(oOg (g is a homomorphism)
=JlpOJFywyo0J(Oyg (F is a lifting of F)
=Jy0Og (1 is a final object in C)
= B (by definition).
Therefore fy is a fixed point of ¥.. As ap = V¥ (J!x) is the greatest fixed point of V., we
have 3y C ap.
Assume f3; C «;. Then
Bit1=J7i+1Og (by definition)
=JFy,0J(Og (¢ is a mediating arrow)
=FJy0J(og (F is a lifting of F')
=FJy®oFgoec (g is a homomorphism)
=FB®Oc¢ ((X, (Bi)iew) is a cone)
CFa;®c (by the induction hypothesis and that F is monotone))
= iyl (by definition) .

Hence 3; C «; holds for all i € w. This implies Jy; © g C Jv; ©1 for all i € w. As
(Z,(Jv; : Z-+ F'1)cy) is a 2-limit (Assumption (5)), we have g C .

T

X : FX — FXT—— =7 F
// \/\QZ k. \l(\};gFZJF | Fﬁ2
5 _

Therefore [ is the largest homomorphism from ¢ to J¢. []

Now we show that polynomial F' and T' = G constitute an infinitary trace situation.
To this end, we have to check that polynomial ' and T = G satisfy the assumptions in
Proposition 5.2. The most nontrivial is Assumption (5); there we rely on results in [Sch09]
for the fact that a limit is lifted to a limit. That the latter is indeed a 2-limit is not hard,
exploiting suitable monotonicity.

Theorem 5.3. The combination of polynomial F' and T = G constitute an infinitary trace
situation.

Proof. We show that F' and G satisfy Assumptions (1)—(5) in Proposition 5.2.

It is known that Assumption (1) is satisfied [Sch09].

It is also known that a distributive law X\ : F'G = GF exists [Cirl0]. Therefore
Assumption (2) is satisfied.
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Now we prove that Assumption (3) is satisfied. Assume that a family (f; : (X, Fx)—+
(Y, 8v))icw of Kleisli arrows constitutes a decreasing sequence. We can define their greatest
lower bound [ |;c,, fi : X+ Y in a pointwise manner: for € X and A € §y,

([ £)(@)(4) = tim (f()(4)).

Zew 1— 00
It is easy to see that polynomial F' preserves this pointwise greatest lower bound. Measura-
bility of [ ],c,, fi and w°P-continuity of Kleisli composition can be proved in a similar manner
to the proof of [BMP14, Proposition 9.

It is easy to see that Assumption (4) is satisfied.

Finally, we prove that Assumption (5) is satisfied. If F'1 is empty, then the limit Z
is also empty and Assumption (5) is satisfied. Assume that F'1 is not empty. It is known
that the sub-Giry monad G preserves a limit over an w°P-sequence consisting of standard
Borel spaces and surjective measurable functions [Sch09, Corollary 1]. In the current setting,
F'1 is a standard Borel space for all i € w because: 1 is standard Borel; %, is standard
Borel for each n € w; and standard Borel spaces are closed under countable coproducts and
countable limits [Kec95, 12.B]. Moreover, it is easy to see that F'lj is surjective for each
1 € w because gy : F'1 — 1 is a surjective function and the polynomial functor F' preserves
epimorphisms. Therefore by [Sch09, Corollary 1], the limit (Z, (vy; : Z — F'1);e,,) over the

| | 2|
final w°P-sequence 1 £ F1 e pa Fem g preserved by G. This immediately implies

that J : Meas — K/(G) preserves the limit. It is easy to see that the resulting limit is a
2-limit.
Hence by Proposition 5.2, F' and G constitute an infinitary trace situation. []
We will later discuss another pair of a functor and a monad that can also model
probabilistic systems in Section 5.5. The proof that the pair constitutes an infinitary trace
situation is very different from the one for polynomial F' and T' = G above, because the
axiomatic results in Proposition 4.1 and Proposition 5.2 are not applicable.

5.2. Kleisli Simulations for Probabilistic Systems.

5.2.1. Forward Sitmulations. Soundness of forward simulation, in the current probabilistic
setting, follows immediately from the the axiomatic development in Lemma 4.5.

Theorem 5.4. Given two (G, F')-systems X = (X, s,c¢) and Y = (Y, t,d), X Cg Y implies
tro(c) @ s Ctre(d) O t.

Proof. In a similar manner to the proof of Theorem 5.3, we can show that F' and G satisfy
the assumptions in Lemma 4.5. Therefore the statement is immediate from Lemma 4.5. []

Example 5.5. We define a ranked alphabet ¥ = (3,,)new by Yo = {a}, X2 = {b} and
Y; =0 for each i € N\ {0,2}. We define (G, Fy)-systems X = (X, s,¢) and Y = (Y, t,d) as
follows:

o X = ({w1, 22, 3}, P{z1, 22, z3}) and Y = ({y1, y2}, P{y1, y2}) -

o s({z1}) = s({zs}) = 5, s({z2}) = 0, t({yn}) = 1 and t({gn}) = 0.
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o c(z1)({a}) = c(zs)({a}) =0, c(z2)({a}) = 1, d(y1)({a}) =0, d(y2)({a}) = 1,
((z, 2, 2") € {(z1, 21, 32), (x1, 23, 2)})
((z, ', 2") € {(x3, w2, 21), (x3, 2, 23)}) and

1
2
c(@)({(b,2',2")}) =4 &
0

otherwise)

(
dy){(b,y,y")}) = {% ((w, v, y") € {(y1, 91, 92), (1, ¥2,51)})

0 (otherwise).
We can illustrate X and Y as follows. Here z 2% v means ¢(z)({a}) = p or d(z)({a}) =
and 2250271 means c(2)({(b, z1,22)}) = p or d(z)({(b, z1,22)}) = p.

X @)ty Y @y
N A

o
Dl
S
(S
—
o=
(=
o z
=
S
. :D\
o
ol

—
-

We define a Kleisli arrow f: Y-+ X in K{(G) as follows:

1 x xr1,T r =2
f<y1><{x}>={g e linmh) o f(ya)({w})Z{(l] o)

(otherwise) (otherwise) .

Then f is a forward simulation from X" to )). By Theorem 5.4, we have tr*°(c)®s C tr*°(d) ©t.

5.2.2. Backward Sitmulations. We turn to backward simulations. Similarly to the nonde-
terministic setting (Section 4.2.2), we have to impose a certain restriction on backward
Kleisli simulations to ensure soundness. By the feature of G that composition in K¢(G)
is w°P-continuous—a feature absent in K¢(P)—the image-finiteness condition is no longer
needed.

Definition 5.6 (total backward simulation). Let X = (X, s,¢) and Y = (Y,¢,d) be (G, F)-
systems. A backward simulation b: X+ Y from X to ) is total if b(z)(Y) =1 for all x € X.
We write X EE Y if there exists a total backward simulation from X to ).

Theorem 5.7 (soundness of C3). For two (G, F)-systems X = (X, s,¢) and Y = (Y, t,d),
X ETB Y implies tr*°(c) © s C tr>°(d) O t. (]

The proof of Theorem 5.7 is via the following axiomatic development.

Definition 5.8 (total backward simulation, generally).” Let F' be an endofunctor and T
be a monad on C that satisfy the conditions in Proposition 5.2 with respect to C. For two
(T, F)-systems X = (X, s,¢) and YV = (Y, t,d), a total backward simulation from X to ) is a
backward simulation b : X + Y that satisfies the following condition:

(1) The arrow b: X+ Y satisfies Jly @ b= Jlx. Here ly: Y — 1 is the unique function.

We write X EE Y if there exists a total backward simulation from X to ).
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This general total backward simulation satisfies soundness. For its proof we have to look
into the inductive construction of the largest homomorphism in Section 5.1 (Proposition 5.2).

Lemma 5.9.1 Let F and T be as in Proposition 5.2. For two (T, F)-systems X = (X, s, c)
and Y = (Y,t,d), X CZ Y (in the sense of Definition 5.8) implies tr>°(c) C tr*°(d) ® b.
Furthermore it follows that tr°(c) ® s C tr>°(d) © t.

Proof. We prove tr*°(c) C tr*°(d) ® b along the construction of tr*°(c) and tr*°(d) in the
proof of Proposition 5.2. . '

For each i € w, we define ¥, (J!x) : X + 1 and ¥} (Jly) : Y+ 1 as in the proof of
Proposition 5.2. We first prove Wi (J!x) C W4(Jly) ® b for all i € w by induction on i as
follows.

If i = 0, by Assumption (1) in Definition 5.8, we have U% (Jlx) = U9 (Jly) @ b.

Let i > 0 and assume that Wi~ (J!x) C W' (J!y) © b. Then

Vi(Jlx) = Jlp 0 F(USH(Jlx)) @ d (by definition of ¥, )
CJlp O FW N (Jly)oFboe (by induction hypothesis)
CJlp O F@ N (Jly)©@d®b  (bis a backward simulation)
=Uy(Jly) @b (by definition of ¥y).

Therefore we have Wi (J!x) C W4(Jly) ®b for all i € w.

Now let (X, (o : X+ Fil)i@,) and (Y, (@) : Y+ Fil)i@)) be cones over the sequence

J!Fl - JF!FI =2 JF2!F1 . .
1% F1 "« F'1 "« .- they are defined by the equation (5.1) in the proof of

Proposition 5.2. Recall that tr*°(c) : X -+ Z is the unique mediating arrow from the cone
(X, (aF : X+ F'1)jey) to the 2-limit (Z, (J; : Z-+ F '1)icy), and similarly tr°(d) : Y+ Z
is the unique mediating arrow from (Y, () : Y F'1);e,) to the same 2-limit. Note here
that for each ¢ € w, we have:
Jyi ® (tr2(d) ©b) = (Jyu otr*(d) ob = o) ©b.

Therefore tr°(d) ©® b : X+ Z is the unique mediating arrow from a cone (X, (af @b: X+
fll)iew) to (Z,(Jvi: Z—+ le)fi@,). We prove a;X C 043/ @ b for all i € w by induction on i
as follows:
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For i = 0, we have:

o = |_| Th(Jlx) (by definition)
(IS
C [ |(wi(ty) ©b) (by (5.2))
€W
= (l_l Uh(Jly)) @b (by Assumption (3) of Proposition 5.2)
€W
=a) ©b (by definition) .

Let i > 0 and assume that a;¥ | C o) ; ©b. Then
af =Fa oc (by definition)
CFal {0FbGOc (by induction hypothesis and the monotonicity of F')
CFal,0dob (b is a backward simulation)
=al ©b (by definition).

Therefore we have al-X C azY ©bforalli ew. As (Z,(Jvi: Z—+ Fil)iew) is a 2-limit,
this implies tr*°(c) C tr*°(d) @ b.
The last claim follows from b’s condition on initial states. []

Lemma 5.10. In Definition 5.8, if T = G and F is a polynomial functor, Assumption (1)
is satisfied if b(x)(Y) =1 for each z € X.

Proof. We assume that b(z)(Y) = 1 for each = € X. By the definition of multiplication u9
of the sub-Giry monad (see Definition 2.3), for = € X, we have:

(Jly ©b)(z)(1) = b(z)(151(1) = b(x) (V) =1 = Jlx(2)(1).
Therefore Assumption (1) is satisfied. ]

Proof of Theorem 5.7. In Lemma 5.10 we prove that a total backward simulation in the
specific sense of Definition 5.6 is also a total backward simulation in the general sense of
Definition 5.6. Therefore Lemma 5.9 yields trace inclusion. L]

Example 5.11. We continue Example 5.5. The arrow f : Y-+ X in Example 5.5 is also a
total backward simulation from ) to X'. By Theorem 5.7, this implies tr*°(c) ©s J tr*°(d) ©t,
and therefore together with the forward simulation in Example 5.5, we have tr*°(c) © s =
tre(d) o t.

5.3. Forward Partial Execution for Probabilistic Systems.

Theorem 5.12. Let F' be a polynomial functor on Meas. For (G, F)-systems X = (X, s, ¢)
and Y = (Y, t,d), the following hold.
(1) (a) (soundness of FPE for forward simulation) Xepg Ty Y implies tr°(c) © s C
tre(d) o t.
(b) (adequacy of FPE for forward simulation) X Cg Y implies Xepg Cp V.

(2) (a) (soundness of FPE for backward simulation) X T Yepe implies tr*°(c) © s
tre(d) ©t.

1M
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adequacy o or backward simulation C implies X & EPE, ASSuUmMing
b) (ad f FPE for backward ! X CL Y implies X CH )
that: d(y)(FY) =1 forally €Y. []

The item (1) for forward simulations follows immediately from Theorem 4.15. For the
relationship to backward simulations, we develop the following general result that can be
proved in a similar manner to the proof of Theorem 4.14.

Theorem 5.13 (FPE and backward simulation).! Let F' be an endofunctor and T be a

monad on C that satisfy the conditions in Proposition 5.2 (hence those in Lemma 5.9). Let

X =(X,s,¢) and Y = (Y, t,d) be (T, F)-systems.

(1) (soundness for backward simulation) X Cf YVepe implies tr*°(c) ® s C tr°(d) © t.

(2) (adequacy for backward simulation) X TL Y implies X Cf YVepe, assuming that: the
coalgebra d : Y + FY satisfies J\py ©d = Jly. O]

5.4. Coincidence between Automata-theoretic and Coalgebraic Infinitary Trace
Semantics. In this section we again give a sanity-check result like in Section 4.4. Namely,
we show a coincidence between coalgebraic infinitary trace semantics that is defined in
Section 5.1, and infinitary language that is defined using automata-theoretic terms. Although
its statement is a sanity-check, the result requires somewhat delicate treatment of measure-
theoretic structures. We first describe the definition of the latter.

In this section, for simplicity, we assume that both the state space (X,Fx) and all
components (3,,§y,) in the ranked alphabet ¥ = ((2,, Sgn))n@) are countable sets with
the discrete o-algebras. It is not difficult to generalize the results in this section for automata
labeled with a general standard Borel ranked alphabet .

Definition 5.14. Let ¥ = ((En, PE"))new be a standard Borel ranked alphabet such that
all 3, are countable sets equipped with the discrete o-algebras. A Y-labeled probabilistic
tree automaton is a (G, Fy)-system X = (X, s, ¢) where X is a countable set equipped with
the discrete o-algebra.

For a given X-labeled probabilistic tree automaton X = (X, s,c), we now define its
automata-theoretic (infinitary) language. It is defined as a probability measure L*°(X) on a
set Treeo (X) of infinitary trees. The definitions are all as usual.

Definition 5.15. For a standard Borel ranked alphabet ¥ = ((X,,, P3,))necw, we define
a set Sy € P(Treeso(X)) by Sy = {cyl(t) | k € w,t € Tree®(X)}, where cyl(t) is from
Definition 2.9. A o-algebra §~ on Trees(X) is the smallest o-algebra that contains Sy.

To define a probability measure L*°(X’) on a measurable space (Trees(X), Foo), We have
to fix a value L>°(X')(A) for each A € . As is standard, by Carathéodory’s extension
theorem (see e.g. [ADDO00]), it suffices to fix a value L>°(X)(A) for all cylinders A = cyl(t)
in a “compatible” manner.

To this end, we first review the notion of branching process (see e.g. [Har64]). It is used
to fix the value L>®(X)(Treesx (X)) (note that Treex(X) is a cylinder set induced by the
O-prefix tree). Intuitively the value is probability with which the probabilistic automaton
does not abort.

Definition 5.16. A branching process is a pair A = (I', 7) consisting of a finite set I" of
types, and a transition function 7 : T x I'* — [0,1] such that > cp.(z,a) =1 forallz €T
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A branching process A and an initial process xo € I' give rise to a Markov chain Ma 4,
such that: the state space is a set I'* of population of processes; the transition function
Tm I x I' — [0, 1] is given by

m((zo ... wno1), B) = Z H T(x4, Bi);
BoysPn—1€* 1<i<n—1
s.t. B=Po..-Bn-1
and the initial state is a singleton tuple (z(). Here juxtaposition f...5,-1 denotes the
concatenation of tuples. For a pair of types zg,xz € I', the probability of reaching x from
xg is the value Reach(A, xg,x) € [0,1] with which a population that has a type x in it is
reached in Ma 4.

Intuitively, in every transition of a branching process, each process in the population
gives birth to child processes randomly. The probability that a process x gives birth to
children represented by a population « € T'* is given by 7(zx, ).

From a given X-labeled probabilistic tree automaton X, we can obtain a branching
process Ay by adding a new process L that means aborting of the system, and by “forgetting”
the labels on transitions.

Definition 5.17. For a Y-labeled probabilistic tree automaton X = (X, s, ¢), its skeleton is
a branching process Ay = (I'x,7x) where 'y = X + {1} and 7y is defined as follows.

>oaes, c@)({(a, zo, ... 201)}) (€ X, 0= (z0,...,201) € X¥)

(. a) = 1—256)(*7'(:13,6) (re X,a= (1))
o 1 (z € {L},a = (1))
0 (otherwise)

Now we are ready to define a value L (X')(cyl(t)) for each prefix tree ¢. In particular,
the value L>®(X)(Trees (X)) is defined as the probability with which the state L is not
reached from z in the skeleton Ay.

Proposition 5.18. Let X = (X, s,c) be a X-labeled probabilistic tree automaton. For a
state x € X, a natural number k € w and a k-prefix tree t € Treek(E), we define the value
vz (t) € 10,1] by induction on k as follows.

o If k=0, then vy(t) =1 — Reach(Ax,x,L).

o Let k>0. Ift =(D,l), l(e) =a € Xy, and t; is the i-th subtree of t, then:

n—1
ve(t)= Y (c(x)({(a,a:o,...,xn_l)})-Hl/xi(ti)).
=0

iEo,...,:E’,L71€X
Then for each x € X, there exists a unique probability measure L (X, x) on (Trees(2), Foo)
such that L (X, x)(cyl(t)) = vy (t).

This proposition is proved using Carathéodory’s extension theorem and the following
“compatibility” lemma.

Lemma 5.19. In Proposition 5.18, for all k € w and t € Treek(E), we have:

S vals) =wa(t). (5.3)

s€ Treekt1(D)
s.t. t=<s
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Proof. For a (k4 1)-prefix tree s = (Ds, ls) € Tree*T1(X), we write as for I5(¢) and ng for
the arity of a5 (i.e. as € ¥,,,). We prove the equation (5.3) by induction on k.
If £k =0, as t and all the subtrees of s except for s itself are 0-prefix trees, we have:

Z vz (S)

s€Treek (%)
s.t. t=<s

ns—1

- ¥ > @)({las oz} - T vailsi)
1=0

s€Tree! ()  Z0,-Tng—1€X

(by definition of v,(s))

00 n—1
= Z Z Z c(z)({(a,z0,...,zp-1)}) - H Uy, (i)
i=0

n=0a€%, xg,...,tn_1€X

oo n—1
=>. > > c@)({(axo,....zn0)}) - [T(1 - Reach(An, 25, 1)
n=0a€X, xg,....,.en_1€X =0

(s; € Tree?(X) for each 4)

|
—

n

= Z Z Ta(z, (T, ..., Tn-1)) - (1 — Reach(Ay,z;, L))

n=020,....tn_1€X i=0
(by definition of 7y of Ay)
=1— Reach(Ax,z, 1) (by definition of branching process)
= v (t) (by definition of v, (t)).

Next, let & > 0 and assume that ZUeTreek(E) st. u<v Vo(V) = vz(u) holds for all u €

Tree* " 1(¥) and 2 € X. Let t = (D,l) € Tree®(X), a = I(¢) and a € %,. Moreover,
let t; be the i-th subtrees of t € Tree*(X). Then:

Z vy (8)

s€Treekt1(x)
s.t. t<s

= Z Z (c(x) ({(a,zo,...,2n-1)}) - 1:[ in(si)>

s€Treeft1(X) 0, Tn—1€X
s.t. t=<s

(by definition of v,(s))

n—1
- ¥ c(x)({(a, 20, ..., xn_1)}) - > ] vei(s)
=0

z0,...,.xn_1€X s€TreeP (D)
s.t. t=<s

n—1
= >y c(z)({(a,z0, ..., Tno1)}) - > Y e

%0, Tn—1€X spE€Tree® (3) Sn—1€Treek(x) =0
s.t. to=so S.t. th—1=8n—1
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({s € Tree"* (%) | t < s} = [[15 {si € Tree! (D) | t; < s;})

n—1
= > |@U@ao o)) [T X v

0,y Tn—1€EX 1=0 5,cTree® ()
s.t. t;<s;

(s; does not appear in v (s;) if i # j)

n—1
= Z (c(m) ({(a,z0,...,2n-1)}) - H Vg, (tz)> (by induction hypothesis)
=0

0,y Tn—1E€X

= vy (t) (by definition of v,(t)).
Therefore D~ cyeeh+1(x) st. t<s Va(8) = Va(t) holds for all k € w and ¢ € Tree®(t). ]

Proof of Proposition 5.18. Immediate from Carathéodory’s extension theorem [ADDO00] and
Lemma 5.19. L]

Definition 5.20. Let X = (X, s,c) be a ¥-labeled probabilistic tree automaton. For a
state © € X, the infinitary language of X from z is a probability measure L*°(X,z) on
(Treex (X)), Foo) in Proposition 5.18. The infinitary language of X is a probability measure
L>(X) on a (Treex(X), §o0) that is defined by L>®(X)(A) = > cx s(¥)(z) - L=(X,x)(A)
for A € .

The following is the main result of this section.

Proposition 5.21. The carrier of a final Fx-coalgebra in Meas is isomorphic to (Trees (), Foo ),
and for a X-labeled probabilistic tree automaton X = (X, s,c), tr*°(c)(z) = L>®(X,x) holds
for all x € X. Furthermore it follows that tr*™° ® s(c)(x) = L*>(X).

To prove this proposition, we use the lemma below that states that the unreachable
probability of a branching process can be calculated as the greatest fixed point of a certain
function. It is a direct consequence of the well-known result that the reachability probability
of a Markov chain can be calculated as the least fixed point of a certain function (see
e.g. [BK08, Theorem 10.15]). A generalized statement of the following lemma (one for
branching Markov decision processes) is given in [ESY15]. In the rest of this section, for a
vector v € [0,1]% and x € X, v, denotes the a-th element of v.

Lemma 5.22. Let A = (I',7) be a branching process and y € T'. We define a function
P, :[0,1]F = [0, 1" as follows:

n—1
(Py(v))gc = Z 7(z, (0. .. Tp-1)) - H Va, -
i=0

nEw, £g,...,.tn—1€l" s.t.

) ¢ {x()v ce :377L71}
As Py is a monotone function, Py has the greatest fized point v¥™** € [0, 1. Then
1 — Reach(A, z,y) = (v/™), . O

Proof of Proposition 5.21. We define an arrow ¢ : (Trees(2), Foo) = Fx(Trees(X), Foo) in
Meas in a similar manner to the final Fx-coalgebra in Sets (see Proposition 4.18): namely,
¢(t) = (a,(to,...,tn—1)). (Here t = (D,l), a =l(e) € ¥, and for each i € {0,...,n — 1},
ti = (D, l;) where D; = {o € N* | i € D} and [;(«) = I(icr).) It is easy to see that ¢
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is a measurable function. It is also easy to see that ( is a final Fx-coalgebra: the unique
homomorphism from a coalgebra is given in the same way as the final Fx-coalgebra in Sets.
Next we show that a function L*°(X, _) : X+ Treex(X) in Definition 5.20 is the largest
homomorphism from ¢ to J{. As X is equipped with the discrete o-algebra, L>®(X,_) is
indeed an arrow in Meas.
Let v € [0,1]X be the greatest fixed point of a function P : [0,1]%X — [0,1]¥ that is
defined as follows (much like in Lemma 5.22):

o] n—1
PW),=>_ > ( > (@) ({(a,zo, .., xn_l}))> ] ve. - (5.4)
=0

n=0zg,....,.tpn—1EX \a€EX,

Recall that L>® (X, z)(Treex (X)) is defined by L>®(X, z)(Treex (X)) = 1 — Reach(Ay, z, L).
Therefore by Lemma 5.22, we have L™(X, z)(Treex (X)) = (v"*),.

We first show that L>°(X, _) is a homomorphism. By Carathéodory’s extension theorem,
it suffices to prove the following equation for all k € w and t € Tree®(X).

(JCTH O FeL®(X, _) 0 ¢)(x) (eyl(t)) = L¥(X, z)(cyl(t))

We prove this equation by induction on k.
If k£ =0, then as cyl(t) = Trees(X), we have:

(J¢CTH O Fe(L®(X, 1)) ©¢)(a) (eyl(t))

00 n—1
= Z Z Z (c(x)({(a, zo, . .. ,azn_l})) . H L>°(Xx, azi)(Treeoo(E))>

n=0zg,....,tn—1€EX a€X,, =0

.- n—1
— Z Z Z (c(:c)({(a,:co, e Tno1))) - H(Vma)()xi)

n=0 Io,...,xnfléX ac€dy, i=0
= (P(v™)), (by definition of P)
= (V") (as Vax is a fixed point of P),

on the one hand. On the other hand, we have shown that
L=(X,z) (eyl(t)) = (vI™™)s.

Therefore we have (J¢1 @ FL®(X, ) ®c)(z)(cyl(t)) = L®(X, z)(cyl(t)) for t € Tree’(L).
Let k > 0 and t = (D, 1) € Tree**1() where I(¢) = a € %,,. Moreover, let t; be the i-th
subtree of ¢ where 0 < ¢ <n — 1. Then

(Jg—l OFS(L®(X,_)) o c) () (cyl())

n—1
= Y c@{(axo,...,xa1)}) - [ L2, 2:) (exl(ts)) (by definition of ¢)
TOyeeesTp—1E€X =0
= L>®(X,x)(cyl(t)) (by definition of L>® (X, x)).

Therefore we have (J(T'OFL>®(X, _)®c)(x)(cyl(t)) = L®(X,z)(cyl(t)) for t € Treef+1(%).
Hence L*°(X,_) is a homomorphism from ¢ to J(.
It remains to show that L>°(X,_) is the largest homomorphism. Let g : X + Trees (%)
be a homomorphism from ¢ to J{. By monotonicity of the extension of a measure, it suffices



32 NATSUKI URABE AND ICHIRO HASUO

to prove g(z)(cyl(t)) < L®(X,z)(cyl(t)) forallz € X, k€ wand t € Tree®(X). We prove
this by induction on k.
If k£ =0, then cyl(t) = Treex(X). Hence we have:

9(x)(cyl(t))
= (JC_1 ® Frg ® ¢)(z)(Treess (X)) (g is a homomorphism)

= Z Z (Z C(w)({(a,wo, . ,xn_1)})> . 1:[ g(xi)(Treeoo(E)) .

n=0xzg,....tn_1EX \a€EX, =0

Here we define a vector w € [0, 1]X by w, = g(x)(Trees (X)) for each x € X. The equation
above implies that w is a fixed point of P defined in (5.4). As v™® is the greatest fixed
point of P, we have g(x)(Trees (X)) = w, < (V) = L (X, x)(Treex(X)).

Let k£ > 0 and assume that g(x)(cyl(s)) < L*(X,z)(cyl(s)) holds for all x € X and
s € Tree* " 1(X). Let t = (D,l) € Tree®(X) and I(¢) = a € %,. We write t; for the i-th
subtree of t. Then

g9(z)(cyl(t))
= (‘]C_l © Frg © C) (z)(cyl(t)) (g is a homomorphism)

n—1
= Y (C(l’)({(avfcov oz} - ] g(mi)(cyl(ti))>
=0

n—1
< ) (c(:c)({(a,xo,...,:cn1)})~HL°°(X,xi)(cyl(ti)))

Z0yeeyTy—1 i=0
(by induction hypothesis)
= (JCTOFS(L™(X, ) @c)(2)(cyl(t)) (by definition of Fy)
= L=(X,z)(cyl(t) (L>(X,_) is a homomorphism) .

)
Therefore we have g(z)(cyl(t)) < L=(X,z)(cyl(t)) for t € Tree®(X).
Hence L*™°(X,_) is the largest homomorphism from ¢ to J¢ and therefore tr*°(c) =
L*>°(X,_). This immediately implies tr*°(c) ® s(x) = L*>°(X). ]

5.5. Another Modeling of Probabilistic Branching: Subdistribution Monad. In
the previous sections we used the sub-Giry monad G and a (standard Borel) polynomial
functor F' on Meas to model probabilistic systems. In this section, we discuss another pair—
a polynomial functor F' and the subdistribution monad D on Sets—that can also model
probabilistic systems. For a given set X € Sets, DX is the set of (discrete) subdistributions
over X.

Definition 5.23 (subdistribution monad). A subdistribution monad is a monad (D, n?, uP)
on Sets such that

DX ={p: X = [0,1] | Xpex p(z) <1},

* Df(p)(y) = Dpep-1(y P(@),

1 (y=uz)

) and
0 (otherwise),

o nR(z)(y) =
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o 1R(®)(2) = T pepx 20) ().

Definition 5.24 (order enrichment of K¢(D)). We define an order on K¢(D)(X,Y) by fC g
if and only if Vo € X.Vy € Y. f(x)(y) < g(z)(y).

Next, we show that F% in Definition 2.11 and the subdistribution monad D constitute
an infinitary trace situation by giving an explicit definition of the largest homomorphism.

Proposition 5.25. Let 3 be a ranked alphabet and Fx, be the functor on Sets defined in
Definition 2.11. Then Fx, and the subdistribution monad D constitute an infinitary trace
situation.

Proof. Let ( : Treex(X) — Fx (Trees (X)) be a final Fy-coalgebra in Sets that we defined
in the proof of Proposition 4.18. For an Fx-coalgebra c : X + Fx X, we construct the largest
homomorphism h : X+ Trees (X) from ¢ to J¢.

To this end, for z € X, an integer k € w and a k-prefix tree t € Tree®(X), we first define
a value &, (t*) € [0,1] by induction on & as follows:
e for k=0, &.(t) =1, and
e for k> 0,

n—1
GW)= Y (@) (a0, zn1) - [] &(t) (5.5)
=0

$07~~-7In71€X
where ¢t = (D, 1) € Tree®(%), a = I¥(¢) € &, and t; is the i-th subtree of ¢.

For t' € Trees(X) and k € w, let prefix; (') = (prefix,(D’), prefix;(I')) be the unique k-
prefix tree that is a prefix of t’. We define h : X - Treeso () by h(z)(t) = limg_ 00 & (prefix,(t)).

AS D cw 2oaes, 2owonan1ex C(@)(a; 2o, ..., zn—1) < 1, the sequence (fx(preﬁxk(t)))kew is
decreasing with respect to k. Therefore this h is well-defined.

We first show that this A is a homomorphism. For all x € X, n € w and t = (D,l) €
Trees (X) such that I(¢) = a € ¥, and i-th subtree of ¢ is ¢;, we have:

(J¢CT O Fshoc)(z)(t)

n—1
= Z c(x)(a,zg, ..., Tpo1) - H h(z)(t;) (by definition of ()
=0

n—1
= Z c(z)(a,zpy ..., Tn-1) - H kli)ngo &, (prefix,(¢;))  (by definition of h)
=0

ZQyeeryLp—1€X

n—1
= kli)nso Z c(x)(a,xgy .., Tp-1) H &, (prefix (t;))
T0yeeesTp—1E€X =0
= lim &, (prefix,(t)) (by definition of &)
k—ro0
= h(z)(t) (by definition of h) .

To conclude the proof, we show that h is the largest homomorphism. Let g : X —+
Trees (X) be a homomorphism from ¢ to J¢. We prove g(z)(t) < h(z)(t) for all z € X and
t € Treex(X). To this end, we first prove g(z)(t) < &, (prefix,(t)) for all k € w, x € X and
t € Tree(X) by induction on k.

If £ = 0 then for all x and ¢, we have g(x)(t) < 1 = & (prefix,(t)).
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Let k£ > 0 and assume that g(x)(t) < &;(prefix,_,(¢)) for all  and ¢. Then
g()(t)

= (J¢T @ Fag®c)(z)(t) (g is a homomorphism)
n—1

= Z c(x)(a,zg, ..., Tn-1)" H g(x;)(t;) (by definition of ()
0,y Tp—1€X =0
n—1

< Z c(x)(a,zo,...,xn-1) | | & (prefix,_,(t;)) (by induction hypothesis)
T,y Tp—1€X 1=0

=&, (t) (by definition of &)

Hence for all z and ¢, we have g(x)(t) < limg_,o & (prefix, () = h(z)(t). ]

In the proof above, we have constructed infinitary traces for 7' = D in concrete terms.
It is rather different from the axiomatic proofs for 7' = P (Theorem 4.3) and 7' = G
(Theorem 5.3): It is because infinitary traces for 7' = D does not follow from either of our
general axiomatic results (Proposition 4.1 or Proposition 5.2).

It is easy to see that there exists X and Z in Sets such that K¢(D)(X, Z) does not have
Tx,z. Therefore we cannot construct the largest homomorphism by using Proposition 4.1.
Neither can we use Proposition 5.2. In fact Assumption (5) fails. Indeed,
let F' be an endofunctor on Sets that is defined by F(_) = {p,q} x (_). X

Then the limit of the final w°P-sequence 1 £ pr R pry 7 dHois s C °© i) a3
given by (Z,(vi : Z — F'1);e,,) where Z = {p, q}w and ’yi(aoal...) = T
apaj . ..a;—1. Hence the carrier of the final F-coalgebra ( is given by Z. We define X € K¢(D)
and ¢: X+ FX by X = {*} and c(x)(a,*) = 3 where a € {p,¢q}. It is not so hard to see
that the largest homomorphism tr*°(c) : X+ Z from ¢ to J( is given by tr*°(c)(z)(w) =0
for each w € Z = {p, q}* . However, we cannot obtain this tr*(c) with the procedure in the
proof of Proposition 5.2. A

For each i € w, we inductively define o : X - F'1 by ao = Jlx and a;41 = Fo; ® c.

. £ F2|
It is easy to see that (X, (e;);ew) 18 a cone over a sequence 1 i o Ry o I

However, it is also easy to see that there does not exist f : X+ Z such that Jv; © f = ;.

As a consequence, we can construct the largest homomorphism from c¢ to J{ neither
by using the construction in Proposition 4.1 nor Proposition 5.2. This prevents us from
applying the general theories for Kleisli simulations in Sections 4-5.

The resulting infinitary trace semantics in Proposition 5.25 has limited use, however,
due to the discrete nature of an arrow X — D (Treex(2)). That is, it assigns a probability
to each single tree, and the probability is most of the time 0 (see Example 1.1).

6. SYSTEMS WITH EXCEPTION

In this section, we focus on systems that possibly abort with exception. They are modeled
as (L, F')-systems in the category Sets, where L is from Definition 2.3. Here the categor-
ical/axiomatic results in Section 5 are applicable. Therefore, much like for G, forward or
total backward simulations (see Section 5.2) witness trace inclusion. In this section, we
assume that F' is a polynomial functor on Sets.
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6.1. Construction of Infinitary Traces. In this section, we prove the same results
as Sections 4.1 and 5.1 for T' = L. To this end, we rely on Proposition 5.2 (but not
Proposition 4.1, since £X does not have the greatest element).

Theorem 6.1. The combination of polynomial F' and T = L constitute an infinitary trace
situation.

Proof. We show that A polynomial functor F' on Sets and a lift monad £ satisfy Assump-
tions (1)—(5) in Proposition 5.2 with respect to the order in Definition 2.6.

It is easy to see that F' and £ on Sets satisfy the Assumptions (1) and (4).

It is known that Assumption (2) is satisfied [HJS07, Lemma 2.4].

To prove that Assumption (3) is satisfied, it suffices to show that for all z € X,
[Micw(9:i © b)(x) = L if and only if ([,c,, i) © b(x) = L. If b(x) = L, then we have
[Nicw(9i ©b)(x) = ([ ;e 9:) © b(x) = L. If b(x) # L, we have:

[1@iob)(@) =L e Jicwgbx)=Le[|gaba)=Le ([ |aob)) =1L,
(S (S €W
Hence Assumption (3) is satisfied in both cases.
As a connected limit and a coproduct commute in Sets [ABLR02], the Kleisli inclusion
functor J : Sets — KC/(T') preserves w°P-limit. It is easy to see that this limit is a 2-limit.
Therefore Assumption (5) is satisfied. ]

6.2. Kleisli Simulation for Systems with Exception. It is known that a polynomial
F and L satisfy the assumptions of Lemma 4.5 [Has06]. Hence we can use forward Kleisli
simulation to check infinitary trace inclusion between tree automata with exception.

For an (L, Fx)-system, as we have seen in Theorem 6.1, the largest homomorphism can
be constructed using Proposition 5.2. Therefore from Lemma 5.9, we can use total backward
simulation (Definition 5.8) to check infinitary trace inclusion between (£, Fx;)-systems. For
(L, Fx,)-systems the totality means the following.

Proposition 6.2. In Definition 5.8, if T' = L and F is a polynomial functor, then Assump-
tion (1) is satisfied if b(x) # L for allx € X.

Proof. Let * be the unique element of the final object 1. By the assumption we have
b(x) # L. Therefore we have x =ly (b(x)) = Jly @ b(x) for all x € X. This concludes the
proof. L]

6.3. Forward Partial Execution for Systems with Exception. From Theorem 4.15,
soundness and adequacy of FPE for forward simulation hold for (£, F')-systems.

By the construction of the largest homomorphism, soundness and adequacy of FPE
for backward simulation hold if the simulating automaton satisfies the assumptions in
Theorem 5.13(2). It is easy to see that the assumptions can be described as follows.

Proposition 6.3. If T = L and F is a polynomial functor, the assumption in Theo-
rem 5.13(2) is satisfied if d(y) # L for eachy €Y. []
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6.4. Coincidence between Automata-theoretic and Coalgebraic Infinitary Trace
Semantics. The same results as in Sections 4.4 and 5.4 can be shown also for T' = L.

Automata-theoretically, an (£, Fx)-system X = (X, s,¢) can be regarded almost as a
deterministic automaton that outputs infinite trees, except that at each stage of its behavior,
the transition function ¢ : X — LFx» X can output L and abort. In that aborting case, the
output of X is undefined; this automata-theoretic characterization of X naturally induces a
function L>®(X,_): X — {L} 4+ Treex(X). It is straightforward to see that this function
coincides with the largest homomorphism tr*°(c) : X — LTrees(X) from ¢ to J¢, which
defines coalgebraic infinitary trace semantics.

7. RELATED WORK

In this paper, for a coalgebraic modeling of infinitary traces, we followed [Jac04] where a
Kleisli category is used. In [JSS12], an approach towards a coalgebraic characterization
of finite traces via an Filenberg-Moore category is introduced. We used “Kleisli approach”
because of its potential for an extension to Biichi or parity automata. The extension
seems difficult for Eilenberg-Moore approach because the approach is based on (generalized)
determinization of systems, and it is well-known that determinization of Biichi automata
strictly decreases its expressive power.

The construction of the largest homomorphism given in Proposition 5.2 is based on the
one in [Cirl0]. The latter imposes some technical conditions on a monad 7', including a
“totality” condition that excludes T"= P from its instances (while the nonempty powerset
monad is an instance). Our assumption of lifting to a 2-limit (Assumption (5) in Proposi-
tion 5.2) is inspired by a condition in [Cir10], namely that the limit Z is lifted to a weak
limit in C/(T). It is not the case that Proposition 5.2 subsumes the construction in [Cir10]:
the former does not apply to the nonempty powerset monad (but our Proposition 4.1 does
apply to it).

In [KK13], an explicit description of a (proper, not weakly) final F-coalgebra is given for
Fe{Yx(_),1+Xx(_)}and T € {G,G—1}. Here G_; is the Giry monad and restricts G
to proper, not sub-, distributions. We do not use their (proper finality) results for modeling
of infinitary traces, because: 1) if T'= G then the final coalgebras do not coincide with the
set of infinitary words; and 2) if T'= G_; then language inclusion is reduced to the equality.
We are skeptical about the value of developing simulation-based methods for the latter
degenerate case, one reason being that trace equivalence is often much easier than trace
inclusion. For example, finite trace inclusion for probabilistic systems is undecidable [BC03]
while trace equivalence is decidable [KMO™11].

In [Sch09], it is shown that: a limit of an w°P-sequence consisting of standard Borel
spaces and surjective measurable functions is preserved by a polynomial functor F' (where
constants are restricted to standard Borel spaces), and also by G. It is also shown there
that such a polynomial functor F' preserves standard Borel spaces, and so does G. These
facts imply the existence of a final GF-coalgebra in Meas for every polynomial functor F'.
Note however that this final GF-coalgebra captures (probabilistic) bisimilarity, not trace
semantics.
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8. CONCLUSIONS AND FUTURE WORK

We have shown that the technique forward and backward Kleisli simulations [Has06] and
that of FPE [UH14, UH17]—techniques originally developed for witnessing finite trace
inclusion—are also applicable to infinitary trace semantics. We followed [Jac04] (and
also [Cir10, KK13]) to characterize infinitary trace semantics in coalgebraic terms, on which
we established properties of Kleisli simulations such as soundness. We developed our theory
for three classes of instances: nondeterministic systems, probabilistic ones and ones with
exception. These three turn out to result from two categorical principles that are rather
different (see Remark 5.1).

There are some directions for future work. In [UH14] (and its extended version [UH17]),
in addition to FPE, a transformation called backward partial exzecution (BPE) is introduced.
Similarly to FPE, BPE can also aid forward and backward Kleisli simulation for finite traces
in the sense that it satisfy soundness and adequacy. However, BPE is only defined for
word automata (with T-branching) and not generally for (7', F')-systems. Defining BPE
categorically and proving its soundness and adequacy with respect to infinitary traces,
possibly restricting to word automata, is one of the future work.

In this paper, we used Kleisli simulation to compare simple automata where an infinite-
depth tree is accepted if it only has an infinite path on the automata. More complex
automata for infinite-length words have been introduced, such as Biichi automata and parity
automata. Extending the notion of Kleisli simulation so that such automata with complex
accepted conditions can be compared is one of the directions of future work.

Another direction is implementation and experiments. As forward and backward Kleisli
simulations in this paper are defined in almost the same way as [UH14, UH17], we can use
the implementation already developed there.
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