
Logical Methods in Computer Science
Volume 15, Issue 4, 2019, pp. 4:1–4:16
https://lmcs.episciences.org/

Submitted Dec. 08, 2016
Published Oct. 29, 2019

ON FREE ω-CONTINUOUS AND REGULAR ORDERED ALGEBRAS
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Abstract. We study varieties of certain ordered Σ-algebras with restricted completeness
and continuity properties. We give a general characterization of their free algebras in terms
of submonads of the monad of Σ-coterms. Varieties of this form are called quasi-regular.
For example, we show that if E is a set of inequalities between finite Σ-terms, and if Vω
and Vreg denote the varieties of all ω-continuous ordered Σ-algebras and regular ordered
Σ-algebras satisfying E, respectively, then the free Vreg-algebra Freg(X) on generators X is
the subalgebra of the corresponding free Vω-algebra Fω(X) determined by those elements of
Fω(X) denoted by the regular Σ-coterms. This is a special case of a more general construc-
tion that applies to any quasi-regular family. Examples include the *-continuous Kleene
algebras, context-free languages, ω-continuous semirings and ω-continuous idempotent
semirings, OI-macro languages, and iteration theories.

1. Introduction

We are concerned with varieties of certain ordered Σ-algebras with restricted completeness
and continuity properties. There are many examples of such varieties; for example, the
star-continuous Kleene algebras satisfy the property that any regular set of elements (a set
definable by a regular expression) has a supremum. That is, if K is a star-continuous Kleene
algebra, R is the canonical interpretation of regular expressions over a finite alphabet A as
sets of strings over A, and I : A→ K is an interpretation in K, then sup{I(x) | x ∈ R(e)}
exists for any regular expression e. Star-continuity is axiomatized by a special case of this
property, namely that ab∗c = supn≥0 ab

nc for any a, b, c ∈ K. This axiom says that b∗ is the
supremum of the bn and that multiplication is continuous with respect to such suprema.

The completeness and continuity properties of this and similar examples are restricted in
the sense that not all suprema need exist, but only those that are definable by some syntactic
mechanism, depending on the variety. Other examples involve context-free languages, ω-
continuous semirings and ω-continuous idempotent semirings, OI-macro languages, and
iteration theories. We describe some of these in more detail in §6.

In this paper give a general account of the free algebras of such varieties in terms of
submonads of the monad of Σ-coterms. Varieties of this form are called quasi-regular. The
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intent is to provide a uniform framework in which to understand their completeness and
continuity properties from a concrete perspective. Additionally, we show how relations
between such varieties are reflected in relations between their free models; for example, we
show that if E is a set of inequalities between finite Σ-terms, and if Vω and Vreg denote the
varieties of all ω-continuous ordered Σ-algebras and regular ordered Σ-algebras satisfying
E, respectively, then the free Vreg-algebra Freg(X) on generators X is the subalgebra of the
corresponding free Vω-algebra Fω(X) determined by those elements of Fω(X) denoted by
the regular Σ-coterms. This is a special case of a more general construction that applies to
any quasi-regular family.

2. ω-Continuous Algebras

Let Σ be a ranked alphabet, which will be fixed throughout. A Σ-algebra is called ordered if
A is partially ordered by a relation ≤ with least element ⊥A and the algebraic operations
are monotone with respect to ≤; that is, if f ∈ Σn and ai, bi ∈ A with ai ≤ bi for 1 ≤ i ≤ n,
then fA(a1, . . . , an) ≤ fA(b1, . . . , bn). A morphism h : A → B of ordered Σ-algebras is a
strict monotone map that commutes with the algebraic operations:

a ≤ b⇒ h(a) ≤ h(b) h(⊥A) = ⊥B h(fA(a1, . . . , an)) = fB(h(a1), . . . , h(an))

for all a, b, a1, . . . , an ∈ A and f ∈ Σn, n ≥ 0. We denote this category by Σ-Alg.
For each set X, there is a free ordered Σ-algebra FTX freely generated by X. The

elements of FTX are represented by the finite partial Σ-terms over X; here partial means
that some subterms may be missing, which is the same as having the empty term ⊥FTX in
that position. When A is an ordered Σ-algebra, any function X → A extends uniquely to
a morphism FTX → A. Thus the functor FT : Set→ Σ-Alg is left adjoint to the forgetful
functor in the other direction.

An ordered Σ-algebra A is ω-continuous [10,18,20] if it is ω-complete and the operations
are ω-continuous. That is, any countable directed set (or countable chain) C has a supremum∨
C, and when n ≥ 0, f ∈ Σn, and Ci is a nonempty countable directed set for 1 ≤ i ≤ n,

then

fA(
∨
C1, . . . ,

∨
Cn) =

∨
{fA(x1, . . . , xn) | xi ∈ Ci, 1 ≤ i ≤ n}.

A morphism of ω-continuous Σ-algebras is an ω-continuous ordered Σ-algebra morphism.
The category of ω-continuous Σ-algebras is denoted Σ-Algω.

For each set X, there is a free ω-continuous Σ-algebra CTX freely generated by X.
The elements of CTX are the partial Σ-coterms over X (finite or infinite partial terms).
Formally, these are partial functions t : ω∗ ⇀ Σ +X with domain dom t such that

• dom t is prefix-closed, and
• if α ∈ ω∗, i ∈ ω, and αi ∈ dom t, then t(α) ∈ Σn for some n ≥ 1 and 0 ≤ i < n (that is,
t(α) 6∈ X ∪ Σ0).

The ordering is defined by:

s ≤ t ⇔ ∀α α ∈ dom s⇒ (α ∈ dom t ∧ s(α) = t(α));

that is, s can be obtained from t by erasing some subterms. The minimal element ⊥CTX

is the unique such function with domain ∅. The algebra FTX is the subalgebra of CTX
consisting of those elements with finite domain. As above, when t ∈ CTX and A is an
ω-continuous Σ-algebra, any set function X → A extends uniquely to a morphism CTX → A
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of ω-continuous Σ-algebras. Thus, as above, the functor CT : Set→ Σ-Algω is left adjoint to
the forgetful functor in the other direction.

Suppose that Xω is a fixed countably infinite set. A set E of formal inequalities t v t′
between terms in FTXω determines in the usual way a variety of ordered Σ-algebras, denoted
V, and a variety of ω-continuous Σ-algebras, devoted Vω. An ordered Σ-algebra A belongs
to V if h(s) ≤ h(t) in A for any morphism h : FTXω → A and s v t in E. The class Vω
contains all ω-continuous Σ-algebras in V.

It is known that free algebras exist in both V and Vω [6,20]. The free algebra F (X) in V
generated by a set X is the algebra of terms FTX modulo the least congruence containing
E and the inequalities of FTX. This is also the X-generated ordered subalgebra of the free
ω-continuous algebra Fω(X) in Vω. Moreover, Fω(X) is the completion of F (X) by ω-ideals
(see §3).

We note that one of our examples of §6, specifically Example 6.6, requires a typed or
multisorted signature Σ, effectively restricting terms FTX and coterms CTX to well-typed
submonads of the same. The exact requirement will be made clear in §6. The cited results
of [6, 20] are developed in the traditional untyped context for notational clarity, but it is
straightforward to check that they extend to the typed case needed for this example.

3. Free Extension

Every ordered algebra can be completed to an ω-continuous algebra by the method of
completion by ω-ideals. This construction constitutes a functor Iω : Σ-Alg→ Σ-Algω that is
left adjoint to the forgetful functor in the other direction. This result is well known and can
be proved by standard universal-algebraic argument [6, 20], which we outline here. We will
later give a somewhat more general construction called free extension that will allow us to
apply this idea more widely.

For C a subset of an ordered Σ-algebra A, define

C↓ = {c | ∃a ∈ C c ≤ a}.
A set C is an order ideal if it is nonempty, directed, and downward closed; that is, if for
any a, b ∈ C there exists c ∈ C such that a, b ≤ c, and a ∈ C whenever a ≤ b and b ∈ C,
i.e. C = C↓. An order ideal C ⊆ A is called an ω-ideal if it is countably generated; that is,
there is a countable directed set C0 ⊆ C such that C = C0↓. The set IωA of all ω-ideals
of A ordered by set inclusion ⊆ is an ω-complete poset with least element ⊥IωA = {⊥A}.
The supremum of an ω-ideal A of ω-ideals is the union

⋃
A. We can make IωA into an

ω-continuous algebra by defining

f IωA(C1, . . . , Cn) = {fA(a1, . . . , an) | ai ∈ Ci, 1 ≤ i ≤ n}↓, (3.1)

the order ideal generated by the set {fA(a1, . . . , an) | ai ∈ Ci, 1 ≤ i ≤ n}. The action of Iω
on morphisms h : A→ B is

Iωh : IωA→ IωB Iωh(C) = {h(c) | c ∈ C}↓.
The algebra A can be embedded in IωA by the ordered algebra morphism mapping

a ∈ A to the order ideal {a}↓ generated by a. This is the unit of the adjunction. The
structure IωA is the free completion of A to an ω-continuous ordered algebra [6, 20]. In
particular, CTX is isomorphic to Iω(FTX) for all X.

Ignoring the Σ-algebra operations for a moment, the essential structure of the functor Iω
as a completion procedure stems from a monad (Iω,

⋃
, {−}↓) on partial orders with ⊥, where
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⋃
: I2

ω → Iω and {−}↓ : Id→ Iω are natural transformations satisfying the usual monad laws.
Given (X,≤,⊥X), the monad produces the ω-complete structure (IωX,⊆,⊥IωX), where
⊥IωX = {⊥X}.

If Iω is applied to an ordered Σ-algebra A, the operations of Σ can be defined on IωA
by (3.1), and the operations so defined are monotone and ω-continuous: for A1, . . . ,An ∈
I2
ω(A),

f IωA(
⋃
A1, . . . ,

⋃
An)

= {fA(a1, . . . , an) | ai ∈
⋃
Ai, 1 ≤ i ≤ n}↓

= (
⋃
{{fA(a1, . . . , an) | ai ∈ Ci, 1 ≤ i ≤ n}↓ | Ci ∈ Ai, 1 ≤ i ≤ n})↓

=
⋃
{f IωA(C1, . . . , Cn) | Ci ∈ Ai, 1 ≤ i ≤ n}↓.

The equation (3.1) is essentially a distributive law [4] that transforms a term over ideals to
an ideal of terms, thereby allowing the algebraic operations of Σ to commute with suprema.

Example 3.1. The free ordered algebra FTX and the free ω-continuous ordered algebra
CTX are Eilenberg-Moore algebras for the partial term monad and partial coterm monad
for the signature Σ, respectively. These are monads on Set with components µ : CT2 → CT
and η : Id→ CT (and similarly for FT) defined as follows. For a set X and s ∈ CTX, define
var s = {α ∈ dom s | s(α) ∈ X}. For t ∈ CT2X, x ∈ X, and α, β ∈ ω∗,

dom(µX(t)) = dom t ∪ {αβ | α ∈ dom t, t(α) ∈ var t, β ∈ dom t(α)} dom(ηX(x)) = {ε}
µX(t)(α) = t(α), α ∈ dom t \ var t ηX(x)(ε) = x

µX(t)(αβ) = t(α)(β), α ∈ var t, β ∈ dom t(α)

An ω-ideal C ⊆ FTX is any nonempty downward-closed directed set. Any such set has a
supremum in CTX: (

∨
C)(α) = t(α) if t ∈ C and α ∈ dom t, or undefined if no such t exists.

The coterm
∨
C is well defined, as any two elements of C must agree on the intersection of

their domains, since C is directed.

More generally, let K be a submonad of Iω. The monad operations are the same as in
Iω. An ordered Σ-algebra A is said to be K-continuous if it is K-complete and the algebraic
operations are K-continuous. That is, all ideals in KA have suprema in A, and the algebraic
operations preserve suprema.

One can perform the same completion construction with K as with Iω, provided KA
forms a subalgebra of IωA under the operations (3.1); that is, the ω-ideal

fKA(C1, . . . , Cn) = {fA(a1, . . . , an) | ai ∈ Ci, 1 ≤ i ≤ n}↓ ∈ KA (3.2)

whenever C1, . . . , Cn ∈ KA. The resulting ordered Σ-algebra KA is called the free extension
of A by the monad K. It is not ω-continuous in general, but it is K-continuous; to wit, the
supremum of an ideal A ∈ K2A is

⋃
A, and the algebraic operations preserve them by the

same proof as with Iω above.
The free extension KA of A satisfies the following universal property analogous to [6,

Theorem 3.3] for K = Iω.

Theorem 3.2. Let A,B be ordered Σ-algebras, B K-continuous, and h : A→ B an ordered

Σ-algebra morphism. There is a unique K-continuous morphism ĥ : KA→ B that agrees

with h on A in the sense that ĥ ◦ {−}↓ = h.
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Proof. For C ∈ KA, define

ĥ(C) =
∨
{h(a) | a ∈ C}.

The supremum on the right-hand side exists since Kh(C) = {h(a) | a ∈ C}↓ ∈ KB and B

is K-complete. The map ĥ agrees with h on A since ĥ({a}↓) =
∨
{h(b) | b ∈ {a}↓} = h(a).

It is monotone, since if C ⊆ D, then

ĥ(C) =
∨
{h(a) | a ∈ C} ≤

∨
{h(a) | a ∈ D} = ĥ(D).

It is strict, since it agrees with h on A and h is strict.

To show that ĥ commutes with the algebraic operations,

ĥ(fKA(C1, . . . , Cn))

= ĥ({fA(a1, . . . , an) | ai ∈ Ci, 1 ≤ i ≤ n}↓) by definition of fKA

=
∨
{h(b) | b ∈ {fA(a1, . . . , an) | ai ∈ Ci, 1 ≤ i ≤ n}↓} by definition of ĥ

=
∨
{h(fA(a1, . . . , an)) | ai ∈ Ci, 1 ≤ i ≤ n}

=
∨
{fB(h(a1), . . . , h(an)) | ai ∈ Ci, 1 ≤ i ≤ n}

= fB(
∨
{h(a1) | a1 ∈ C1}, . . . ,

∨
{h(an) | an ∈ Cn}) since fB is K-continuous

= fB(ĥ(C1), . . . , ĥ(Cn)) by definition of ĥ.

To show that ĥ is K-continuous, we wish to show that for any A ∈ K2A,

ĥ(
⋃
A) =

∨
{ĥ(C) | C ∈ A}.

The supremum on the right-hand side exists since Kĥ(A) = {ĥ(C) | C ∈ A}↓ ∈ KB and B
is K-complete. Then∨

{ĥ(C) | C ∈ A} =
∨
{
∨
{h(a) | a ∈ C} | C ∈ A} =

∨
{h(a) | a ∈

⋃
A} = ĥ(

⋃
A).

Finally, we show that ĥ is unique. Let h′ : KA → B be any other K-continuous
morphism that agrees with h on A. Let C ∈ KA be arbitrary. Then C =

⋃
{{a}↓ | a ∈ C}

and

h′(C) = h′(
⋃
{{a}↓ | a ∈ C})

=
∨
{h′({a}↓) | a ∈ C} since h′ is K-continuous

=
∨
{h(a) | a ∈ C} since h′ agrees with h on A

= ĥ(C).

As C was arbitrary, h′ = ĥ.
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4. Quasi-Regular Families

In this section we study limited completeness and continuity conditions in which not all
suprema need exist, but only those of a certain syntactically restricted form.

For each set X, let ∆X denote an ordered subalgebra of CTX containing X. The set
∆X is a set of partial coterms closed under the algebraic operations Σ. Note that each finite
term in FTX is in ∆X, thus FTX ⊆ ∆X ⊆ CTX.

We further assume for all X and Y and for all ω-continuous morphisms h : CTX → CTY
with {h(x) | x ∈ X} ⊆ ∆Y that {h(t) | t ∈ ∆X} ⊆ ∆Y . A family of term algebras ∆X for
each set X satisfying this property is called a quasi-regular family.

Under these conditions, the functor ∆ (tacitly composed with the forgetful functor to
Set) determines a submonad (∆, µ, η) of the coterm monad. The monad operations are the
same, but with suitably restricted domain. Thus ηX : X → ∆X makes a singleton term
x out of an element x ∈ X, and µX : ∆2X → ∆X takes a coterm of coterms over X and
collapses it to a coterm over X, as described in Example 3.1.

Example 4.1. Two extremal examples of quasi-regular families are CTX, the partial
coterms over X, and FTX, the partial terms over X. These are the maximum and minimum
quasi-regular families, respectively, for a given signature Σ. The regular or algebraic
trees [10,20], or more generally, the set of regular (or rational) trees of order n [16, 17] also
form quasi-regular families. Also, the union of the n-regular trees over X for all n ≥ 0 is a
quasi-regular family. These examples are described more fully in §6.

Lemma 4.2. For any set Y , the set ∆Y is uniquely determined by ∆Xω.

Proof. Any injection h : X → Y lifts to a morphism ∆h : ∆X → ∆Y of ω-continuous
algebras. We claim that

∆Y = {∆h(t) | X ⊆ Xω, h : X → Y is an injection, t ∈ ∆X}.
The reverse inclusion holds by our assumption ∆h(∆X) ⊆ ∆Y . For the forward inclusion,
suppose s ∈ ∆Y . Then s ∈ ∆Y ′ for some finite or countable subset Y ′ ⊆ Y , as there are
at most countably many subterms of s. Let X ⊆ Xω be of the same cardinality as Y ′ and
let h : X → Y ′ be a bijection. Then ∆h−1(s) ∈ ∆Xω, h : X → Y is an injection, and
s = ∆h(∆h−1(s)).

Definition 4.3. For coterms s, t ∈ CTX, define s� t if s is finite, but agrees as a labeled
tree with t wherever it is defined; that is, s ∈ FTX and s ≤ t. For t ∈ CTX, the set
{s | s� t} forms an ω-ideal in FTX.

Definition 4.4. Let A be an ordered Σ-algebra. A set B ⊆ A is called a ∆-set if there is a
coterm t ∈ ∆A such that B = {sA | s � t}, where sA is the interpretation of the partial
term s in A. As the evaluation map s 7→ sA is monotone, B is a countable directed subset
of A, therefore its down-closure B↓ is an ω-ideal of A. A ∆-ideal is the down-closure of a
nonempty ∆-set B. We say that an ordered algebra A is ∆-regular if the suprema of all
∆-sets exist and the algebraic operations preserve the suprema of nonempty ∆-sets.

Note that ∆X itself is a ∆-regular algebra due to the fact that ∆ is a monad. We will
show that any ∆-regular algebra can be extended to an Eilenberg-Moore algebra for the
monad ∆. This means that the evaluation map εA : FTA→ A, εA(t) = tA can be extended
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to domain ∆A so that the following properties are satisfied:

∆2A ∆A

∆A A

∆εA

µA

εA

εA

A ∆A

A

ηA

idA
εA (4.1)

Moreover, there is a unique such extension making the evaluation map εA : ∆A → A a
∆-continuous Σ-algebra morphism.

Theorem 4.5. Let A be a ∆-regular algebra. Extend the evaluation map to domain ∆A by

tA =
∨
{sA | s� t}. (4.2)

The supremum exists by the assumption that A is ∆-regular. Then A with the extended
evaluation map εA(t) = tA for t ∈ ∆A is an Eilenberg-Moore algebra for the monad ∆.
Moreover, εA : ∆A→ A is a ∆-continuous Σ-algebra morphism, and is the unique extension
of εA : FTA→ A for which this is so.

Proof. We argue the latter statement first. The map εA is strict, as the term ⊥A evaluates
to itself. For monotonicity, let s, t ∈ ∆A, s ≤ t. By transitivity, u� s implies u� t, thus

sA =
∨
{uA | u� s} ≤

∨
{uA | u� t} = tA.

For ∆-continuity, if t ∈ ∆A then {s | s� t} is a ∆-set in ∆A and t =
∨
{s | s� t}, thus

tA =
∨
{sA | s� t} ⇔ (

∨
{s | s� t})A =

∨
{sA | s� t},

that is, the ∆-continuity condition for t is exactly (4.2). Thus the extension is ∆-continuous
and is unique.

Now we argue that the Eilenberg-Moore properties (4.1) hold. The right-hand property
holds since ηA(a) is the term a.

For the left-hand property, we wish to show that ∆εA(t)A = µA(t)A for t ∈ ∆2A. For
any such t, there exist u ∈ ∆X and h : X → ∆A such that t = ∆h(u), the coterm obtained
by simultaneously substituting h(x) for x in u for all x ∈ X.

Let us write h′ � h if h′(x) � h(x) for all x. If G is a collection of maps g : X → A
such that {g(x) | g ∈ G} has a supremum for all x, define (

∨
G)(x) =

∨
{g(x) | g ∈ G}.

By (4.2),

εA ◦ h =
∨
{εA ◦ h′ | h′ � h}.

It follows that for v ∈ FTX,

FT(εA ◦ h)(v)A = FT(
∨
{εA ◦ h′ | h′ � h})(v)A =

∨
{FT(εA ◦ h′)(v)

A | h′ � h}

since the algebraic operations of A preserve suprema of nonempty ∆-sets. Also,

∆εA(t) = ∆εA(∆h(u)) = ∆(εA ◦ h)(u)

s� ∆εA(t)⇔ s� ∆(εA ◦ h)(u)⇔ ∃v � u s = FT(εA ◦ h)(v),
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therefore

∆εA(t)A =
∨
{sA | s� ∆εA(t)} =

∨
{FT(εA ◦ h)(v)A | v � u}

=
∨
{
∨
{FT(εA ◦ h′)(v)

A | h′ � h} | v � u}

=
∨
{FT(εA ◦ h′)(v)

A | h′ � h, v � u}. (4.3)

Similarly,

s� µA(t)⇔ s� µA(∆h(u))⇔ ∃h′ � h ∃v � u s = µA(FTh′(v)),

therefore

µA(t)A =
∨
{sA | s� µA(t)} =

∨
{µA(FTh′(v))

A | h′ � h, v � u}. (4.4)

Thus (4.3) and (4.4) are equal provided

FT(εA ◦ h′)(v)
A

= µA(FTh′(v))
A

for any v ∈ FTX and h′ : X → FTA. But this is just the left-hand diagram of (4.1) for the
functor FT, which holds since A is an Eilenberg-Moore algebra for FT.

Definition 4.6. A ∆-algebra is an Eilenberg-Moore algebra for the monad ∆ on an ordered
set A with ⊥ such that the evalution map εA : ∆A → A is a ∆-continuous Σ-algebra
morphism (preserves suprema of ∆-sets in A). A morphism h : A → B of ∆-algebras is
a strict monotone function that commutes with the evaluation maps εA : ∆A → A and
εB : ∆B → B.

It follows that any morphism of ∆-algebras is ∆-continuous, as we now show.

Theorem 4.7. Let A and B be ∆-algebras and h : A→ B a ∆-algebra morphism. For any
∆-set D ⊆ A, its image {h(a) | a ∈ D} ⊆ B is a ∆-set in B, and

h(
∨
D) =

∨
{h(a) | a ∈ D}.

Proof. Let t ∈ ∆A such that D = {sA | s � t}. Then tA =
∨
D. We must show that

{h(sA) | s� t} is a ∆-set in B and

h(tA) =
∨
{h(sA) | s� t}.

Since h commutes with the evaluation maps, h(sA) = ∆h(s)B for any s ∈ FTA; thus

{h(sA) | s� t} = {∆h(s)B | s� t} = {uB | u� ∆h(t)},
and this is a ∆-set in B. Moreover,

h(tA) = ∆h(t)B =
∨
{uB | u� ∆h(t)} =

∨
{h(sA) | s� t}.

We have shown that every ∆-regular Σ-algebra extends canonically to a ∆-algebra.
Conversely, every ∆-algebra is ∆-regular: suprema of ∆-sets exist, as

∨
({sA | s� t}) = tA

for t ∈ ∆A, and the algebraic operations are ∆-continuous, since for t1, . . . , tn ∈ ∆A,

fA(
∨
{sA1 | s1 � t1}, . . . ,

∨
{sAn | sn � tn})

= fA(tA1 , . . . , t
A
n ) = f(t1, . . . , tn)A =

∨
{sA | s� f(t1, . . . , tn)}

=
∨
{f(s1, . . . , sn)A | si � ti, 1 ≤ i ≤ n} =

∨
{fA(sA1 , . . . , s

A
n ) | si � ti, 1 ≤ i ≤ n}.
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Thus the categories of ∆-algebras and ∆-regular algebras with strict ∆-continuous morphisms
are equivalent. Henceforth, we drop the “regular” and just call them ∆-algebras.

Example 4.8. An FT-algebra is just an ordered Σ-algebra. If ∆X is the collection of all
regular coterms over X (those with only finitely many subterms up to isomorphism), then a
∆-algebra is an ordered regular algebra [26,27]. If ∆X is the set of all regular coterms of
order n, n ≥ 0, then a ∆-algebra is an n-regular (or n-rational) algebra [16].

We have defined ∆-algebras A in terms of suprema of ∆-sets in A. However, one could
generalize the notion of ∆-set to include any set of terms with a supremum in ∆A.

Suppose that A is a ∆-algebra. A subset E ⊆ ∆A is said to be consistent if any two
elements of E, considered as labeled trees, agree wherever both are defined. That is, if
s, t ∈ E and α ∈ dom s∩dom t, then s(α) = t(α). Any consistent set has a unique supremum
in CTA.

We say that a set D ⊆ A is an extended ∆-set if there is a consistent set E ⊆ ∆A such
that

∨
E ∈ ∆A and D = {tA | t ∈ E}.

We state the following theorem without proof, but it is not difficult to prove using the
same technique as Theorems 4.5 and 4.7.

Theorem 4.9. The algebraic operations of any ∆-algebra and all ∆-algebra morphisms
preserve suprema of nonempty extended ∆-sets.

Every ∆-set is an extended ∆-set, so we can replace the definition of ∆-regular algebra by
the stronger property that suprema of all nonempty extended ∆-sets exist and are preserved
by the algebraic operations.

5. Main Result

We can introduce varieties of ∆-algebras defined by sets of inequalities between finite partial
terms in FTXω in the expected way.

Let Vω, V∆, and V be the varieties of all ω-continuous Σ-algebras, ∆-algebras, and
ordered Σ-algebras, respectively, defined by a set of inequalities between finite partial terms.
Let Fω(X) denote the free ω-continuous Σ-algebra on generators X in Vω (see [20]). Extend
Fω(X) to a CT-algebra as in Theorem 4.5, and let F∆(X) denote the ∆-subalgebra of Fω(X)
generated by X. The elements of F∆(X) are the elements of Fω(X) denoted by the coterms
in ∆X:

F∆(X) = {tFω(X) | t ∈ ∆X},

where tFω(X) is the value of t in Fω(X). Let F (X) denote the free ordered Σ-algebra on
generators X in V.

Theorem 5.1. F∆(X) is the free ∆-algebra in V∆ on generators X. It is isomorphic to the
completion of F (X) by ∆-ideals.

Proof. Since F∆(X) embeds in Fω(X) and Fω(X) ∈ Vω ⊆ V∆, we have that F∆(X) ∈ V∆

by Birkhoff’s theorem for ordered algebras [6].
Let A ∈ V∆ and h : X → A. Consider the completion IωA of A by ω-ideals, which is an

ω-continuous algebra in Vω [6, 20]. The function a 7→ {a}↓ embeds A in IωA, and implicitly
composing with this map allows us to view h as a function X → IωA. Since IωA ∈ Vω,

there is a unique extension of h to a morphism ĥ : Fω(X)→ IωA of ω-continuous algebras.
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The restriction of ĥ to F∆(X) is a ∆-algebra morphism F∆(X)→ IωA. Let Â denote the

image of F∆(X) under ĥ. Then Â is a ∆-subalgebra of IωA, and Â is in V∆ because it is a
homomorphic image of F∆(X), which is in V∆.

Finally, let
∨

: Â → A be the supremum operator. The elements of Â are ∆-ideals,
therefore their suprema exist and lie in A. The map

∨
, being a component of the counit

of the completion construction, is a morphism of ∆-algebras; that is, a strict monotone
function that preserves suprema of ∆-sets and commutes with the algebraic operations.

The restriction of ĥ composed with
∨

is the required unique extension of h to a morphism
F∆(X)→ A of ∆-algebras.

We can also construct F∆(X) directly as the free extension of F (X) by ∆-ideals. Here
we use the general construction of §3. Let I∆ be the monad of ∆-ideals in F (X). We must
check that I∆ satisfies the condition (3.2). For ∆-ideals {sA | s� ti} ∈ I∆F (X) defined by
coterms t1, . . . , tn ∈ ∆F (X), 1 ≤ i ≤ n,

{fA(sA1 , . . . , s
A
n ) | sAi ∈ {sA | s� ti}, 1 ≤ i ≤ n}↓

= {f(s1, . . . , sn)A | si � ti, 1 ≤ i ≤ n}↓
= {uA | u� f(t1, . . . , tn)}↓ ∈ I∆F (X).

This allows algebraic operations on I∆F (X) to be defined as in (3.2) and extended as in
Theorem 4.5 to give a ∆-algebra. Moreover, again by Birkhoff’s theorem for ordered algebras,
I∆F (X) ∈ V∆ because it is a subalgebra of IωF (X) ∈ Vω ⊆ V∆ [6, 20].

We now argue that F∆(X) and I∆F (X) are isomorphic. Since I∆F (X) ∈ V∆ and
F∆(X) is free for that variety, there is a unique ∆-algebra morphism h : F∆(X)→ I∆F (X)
extending the identity on X. Conversely, since F∆(X) ∈ V∆ ⊆ V and F (X) is free in
V, there is a unique Σ-algebra morphism g : F (X) → F∆(X) extending the identity on
X. By Theorem 3.2, g extends to a ∆-continuous morphism ĝ : I∆F (X) → F∆(X). The
composition ĝ ◦ h : F∆(X) → F∆(X) is the unique morphism on F∆(X) extending the
identity on X, therefore must be the identity morphism. Likewise, by Theorem 3.2, the
composition h ◦ ĝ : I∆F (X)→ I∆F (X) is the unique ∆-continuous morphism on I∆F (X)
extending the identity on F (X), therefore must be the identity morphism. Thus h and ĝ
are inverses and F∆(X) and I∆F (X) are isomorphic.

6. Examples

Example 6.1. The free ω-continuous semiring on generators X is the semiring of power
series N∞〈〈X∗〉〉 with countable support having coefficients in N∞, where N∞ is obtained
from the semiring of natural numbers by adding a point at infinity; equivalently, the family
of finite and countably infinite multisets of strings in X∗. The free regular semiring over X

is the semiring Nalg
∞ 〈〈X∗〉〉 of all algebraic elements of N∞〈〈X∗〉〉, and the free linear semiring

is the semiring Nrat
∞ 〈〈X∗〉〉 of all rational elements of N∞〈〈X∗〉〉.

In these examples, the signature is +, ·, 0, 1. The free ω-continuous semiring N∞〈〈X∗〉〉 is
isomorphic to the ω-algebra of coterms CTX over this signature modulo the semiring axioms
and contains all suprema defined by coterms in CTX. Theorem 5.1 says that the algebraic

elements Nalg
∞ 〈〈X∗〉〉 are the images in N∞〈〈X∗〉〉 of the regular coterms RTX, those with

only finitely many distinct subterms up to isomorphism. The rational elements Nrat
∞ 〈〈X∗〉〉
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are the images of the linear coterms LTX, those defined as unrollings of finite systems of
linear affine equations of the form

x = a1y1 + · · ·+ anyn + b. (6.1)

Example 6.2. The free ω-continuous idempotent semiring on X is the semiring of all finite
and countable languages in X∗. The ω-continuous idempotent semirings are the same as
the closed semirings used in the study of shortest-path algorithms [3]. Here the signature is
again +, ·, 0, 1, although by the construction of Theorem 4.5, one can adjoin a countable
summation operator

∑
that takes the supremum of any countable set in the natural order

x ≤ y iff x+ y = y.

Example 6.3. The free star-continuous Kleene algebra on generators X is the algebra of
regular subsets of X∗ [22]. These are the rational elements of the previous example. This
is the free LT-algebra for LT the set of linear coterms described in (6.1). The signature
has been augmented with a star operation a∗ that gives the least solution of the equation
x = 1 + ax.

The completeness and continuity conditions imposed by (6.1) can be succinctly axiom-
atized by saying that for every a, b, c ∈ K, ab∗c is the supremum of {abnc | n ≥ 0} in the
natural order of the idempotent semiring. A Kleene algebra is called star-continuous when
it satisfies this condition. This is a special case of (6.1) corresponding to the system

x = ay y = by + c

which generates the regular coterm obtained by unwinding

·

a +

· c

b

The free ω-continuous idempotent semiring of Example 6.2 is the completion of the free
star-continuous Kleene algebra by countably generated star-ideals [22].

Example 6.4. As first observed by Mezei and Wright [24], the context-free languages are
the least solutions of finite systems of algebraic fixpoint equations of the form

x = f(y1, . . . , yn) (6.2)

in the idempotent semiring of languages. Such systems are essentially context-free grammars.
For example, the context-free language {anbn | n ≥ 0} is the least solution of the equation
x = axb+ 1 in this algebra, or in grammar form, S → aSb | ε.

The family of context-free languages is the free RT-algebra for RTX the set of regular
coterms over X defined by finite systems of equations of the form (6.2) in the variety of
idempotent semirings. For example, the fact that a least solution of x = axb+ 1 exists is
the completeness condition expressed by the regular coterm obtained by unwinding

+

· ε

a b
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This coterm must have an interpretation in the algebra and must be the supremum of all its
finite truncations. Furthermore, by composing a coterm on the left and right with arbitrary
c and d, the resulting coterm must also be the supremum of its truncations; this expresses
the continuity of multiplication with respect to definable suprema.

As in Example 6.3, the completeness and continuity conditions imposed by (6.2) can be
axiomatized by a special case, namely the µ-continuity axiom, which says that a(µx.b)c is
the supremum of {a(nx.b)c | n ≥ 0}, where 0x.b = ⊥, (n + 1)x.b = b[x/nx.b], and µx.b is
the least solution of the equation x = b [19].

Example 6.5. The free “1-regular” idempotent semiring over an alphabet X is the semiring
of OI-macro languages of Fischer [15], which are the same as the indexed languages of
Aho [2, 3]. These languages are quite useful in practice, as they capture some syntactic
properties that are inexpressible with context-free grammars; for example, that a variable
may only appear in the scope of its declaration [25]. Macro grammars allow these properties
to be specified syntactically and checked during the parsing phase of compilation.

Indexed languages are generated by indexed grammars in which the nonterminals are
tagged with a stack. Productions are of the form

A[σ]→ α[σ] A[σ]→ α[Fσ] A[Fσ]→ α[σ]

where A is a nonterminal symbol, σ is a stack (string of stack symbols), F is a stack symbol,
and α is a string of terminals and nonterminals. The notation α[σ] denotes the string of
terminals and tagged nonterminals in which every nonterminal in α is tagged with σ. A
string x of terminal symbols is in the language generated by the grammar provided S[] ∗→ x,
where S is a designated start symbol.

Indexed grammars can generate non-context-free languages. For example, here are
grammars for the sets {anbncn | n ≥ 0} and {a2n | n ≥ 0}, respectively:

S[σ]→ S[Fσ] | A[σ]B[σ]C[σ] S[σ]→ S[Fσ] | T [σ]

A[Fσ]→ aA[σ] A[]→ ε T [Fσ]→ T [σ]T [σ]

B[Fσ]→ bB[σ] B[]→ ε T []→ a

C[Fσ]→ cC[σ] C[]→ ε

The same class of languages are generated by OI-macro grammars [15]. These are grammars
whose nonterminals may have parameters. For example, the languages {anbncn | n ≥ 0} and
{a2n | n ≥ 0} are generated by the following two OI-macro grammars, respectively:

S → F (ε, ε, ε) S → F (a)

F (x, y, z)→ F (ax, by, cz) | xyz F (x)→ F (xx) | x
As with context-free grammars, indexed grammars and OI-macro grammars can be

viewed as schemes for generating a quasi-regular family of coterm algebras ∆X. For example,
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the coterms generated by the grammars above are, respectively,
+

· +
εε ε

·
·· · +

·
a ε b ε c ε

·· ·
a · b · c ·
a ε b ε c ε

+

a +

·
a a +

·
· ·

a a a a

(6.3)

These are non-regular trees representing the elements
∑∞

n=0 a
nbncn and

∑∞
n=0 a

2n of a
∆-regular algebra, respectively.

A context-free language is the frontier of a parse tree whose paths are elements of a
regular language. Similarly, an indexed language is the frontier of a parse tree whose paths
are elements of a context-free language. Iterating this idea, one arrives at a hierachy of
language families, which have been studied as a model of higher-order recursion and in
linguistics [5,8,9,11–14,16,17,21,26,27]. These families are defined in terms of finite systems
of higher-order fixpoint equations or nested stack automata. Such representations also
give rise to syntactically restricted completeness and continuity properties as expressed by
suitable submonads of CT.

Example 6.6. A final example is given by the category of (ordered) iteration theories [7],
ordered Lawvere theories equipped with a fixpoint operator (†) that provides solutions
to parameterized fixpoint equations. Iteration theories are a general class of models that
capture the equational properties of structures that arise in domain theory.

It is shown in [7] that the rational partial coterms over a signature Γ form an iteration
theory, and in fact the free ordered iteration theory on generators Γ. It is further shown
in [1] that the iteration theories are precisely the Eilenberg-Moore algebras for the rational
coterm monad on the category of signatures. Let us briefly explain these results and their
significance in the current context.

A Lawvere theory, as presented in [7], is a category with objects N and distinguished
associative coproduct + such that n = 1 + · · ·+ 1 (n times). The coprojections are denoted
inn

i , 1 ≤ i ≤ n, and the universal coproduct arrow is denoted [f1, . . . , fn] : n → m, where
fi : 1→ m, 1 ≤ i ≤ n. Lawvere theories are an abstraction of conventional algebraic varieties.
If Γ is a ranked alphabet and f ∈ Γn, then for any Γ-algebra A, the algebraic operation
fA : An → A is a morphism f : 1→ n in the corresponding Lawvere theory. A morphism
g : n→ m models an n-tuple of m-ary functions. Lawvere theories are traditionally defined
covariantly in terms of products instead of coproducts, but [7] prefers the contravariant
presentation for technical convenience.

An iteration theory is a Lawvere theory with an added fixpoint operator † satisfying
certain equations. The operator † can be applied to any morphism e : n→ n+ p and yields
a morphism e† : n→ p. This models the domain-theoretic construction of taking the least
fixpoint of a parameterized map

λx, y .eA(x, y) : An ×Ap → An
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with respect to induction variables x = x1, . . . , xn and parameters y = y1, . . . , yp to give

(e†)A = λy .fixx.eA(x, y) : Ap → An.

Iteration theories must satisfy a certain infinite set of equational axioms that essentially
characterize when two finite expressions with composition, cotupling, and † unwind to the
same regular coterm with composition and cotupling but without †. A key axiom is

n

n+ p

pe

e†

[e†, idp]

which asserts that e† is indeed a fixpoint. Other axioms handle the interaction of † with the
other operators and various structural properties.

Formally, the category of signatures Sgn is the category of ranked alphabets and rank-
preserving functions, or the slice category Set/N as described in [1]. The rational partial
coterms RTΓXω, where Xω = {x0, x1, . . .}, form an ordered iteration theory in which
the homsets n → m are n-tuples of coterms with variables among x0, . . . , xm−1 (recall
that rational coterms have only finitely many isomorphic subterms, so only finitely many
variables). The empty coterm can be used polymorphically at any type ⊥nm : n → m.
Composition is substitution and † gives the limit of the k-fold composition of a coterm with
itself for k = 0, 1, 2, . . . . This is the free iteration theory on generators Γ, which says that
the forgetful functor that discards all morphisms but those of type 1→ n has a left adjoint.
The composition of this left adjoint with the forgetful functor is the monad Rat : Sgn→ Sgn
that takes a ranked alphabet Γ to its rational partial coterms RTΓXω.

The most general category with the same monad is the category SgnRat of Rat-algebras.
It is shown in [1] that these are precisely the iteration theories. The restriction to rational
coterms, as opposed to all coterms, serves to limit the domain to those objects that have
finite representations and are thus computationally meaningful.

To explain how these results fit in the current context, we must first be careful about
the use of the word “signature” because there are two different notions of signature in play.
As used above, Γ represents a conventional ranked alphabet Γ = |Γ| → N for single-sorted
algebras, an object of the category Sgn = Set/N. These correspond to the sets X in Theorem
5.1.

The other notion of signature is the signature by which we form partial coterms. This
corresponds to the Σ in the sense of Σ-Alg as used throughout this paper. For Lawvere
theories, the operations are cotupling, coprojection, and composition. For iteration theories,
we add †. These are actually typed signatures with infinitely many operations at different
types, along with a set of typing rules for term formation. The types are n → m, the
types of morphisms of iteration theories. The typing rules are analogous to those for matrix
operations on non-square matrices or the operations of typed Kleene algebra [23].

We can form partial coterms with the operations of Lawvere theories, with cotupling
and composition at the internal nodes and elements of Γ, coprojections, and the empty term
acting as ⊥ at the leaves. These partial coterms form CT(Γ). The regular (or rational)
partial coterms form a submonad ∆ of CT, thus ∆(Γ) are the regular partial coterms over Γ.
Modulo the axioms of Lawvere theories, these form the free (ordered) iteration theory on
generators Γ, which is F∆(Γ). The operation † is defined as the limit of k-fold compositions
of a coterm with itself as described above. Theorem 5.1 says that this algebra is isomorphic
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to the completion of F (Γ) by regular ideals, where F (Γ) is the algebra of finite partial terms
modulo the axioms of Lawvere theories, the free algebra in V on generators Γ.

The notion of typed signature is not technically covered by the definition of signature
in §2, so for this example we do not work with the monads FT and CT on Set, but rather
with their well-typed submonads on Sgn. The category Sgn is a concrete category, meaning
that there is a faithful functor to Set, thus Sgn can be regarded as a subcategory of Set.
Its objects Γ are exactly those sets with the added typing information needed to allow the
typed operations of cotupling, composition, and † to be applied in a well-typed way. The
application of ∆ to such a set results in another signature in Sgn, so the monad ∆ on Set,
restricted to Sgn, lifts to a monad on Sgn. This is exactly the monad Rat.
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Mathematical Foundations of Computer Science (MFCS 2007), pages 240–252, Berlin, Heidelberg, August
2007. Springer.

[2] A. V. Aho. Indexed grammars—an extension of context-free grammars. J. Assoc. Comput. Mach.,
15(4):647–671, October 1968.

[3] A. V. Aho, J. E. Hopcroft, and J. D. Ullman. The Design and Analysis of Computer Algorithms. Addison
Wesley, 1975.

[4] J. Beck. Distributive laws. In Seminar on Triples and Categorical Homology Theory, volume 80 of Lecture
Notes in Mathematics, pages 119–140. Springer, 1969.

[5] D. B. Benson and I. Guessarian. Algebraic solutions to recursion schemes. J. Comput. Syst. Sci.,
35(3):365–400, 1987.

[6] S. L. Bloom. Varieties of ordered algebras. J. Comp. Syst. Sci., 13:200–212, 1976.
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