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Abstract. Using an iterative tree construction we show that for simple computable
subsets of the Cantor space Hausdorff, constructive and computable dimensions might be
incomputable.

Computable dimension along with constructive dimension was introduced by Lutz [Lut03a,
Lut03b] as a means for measuring the complexity of sets of infinite strings (ω-words). Since
then and prior to this constructive and computable dimension were investigated in connection
with Hausdorff dimension (for a detailed account see [DH10, Section 13]). The results of
[Hit05, Sta93, Sta07] show that the Hausdorff, constructive and computable dimensions
of automaton definable sets of infinite strings (regular ω-languages) are computable. In
contrast to this Ko [Ko98] derived examples of computable ω-languages with an incomputable
Hausdorff dimension.

In this paper we derive examples of computable ω-languages of a simple structure
which have not only incomputable Hausdorff dimension but also incomputable computable
dimension. To this end we use an iteration of finite trees which resembles the tree construction
of Furstenberg [Fur70] (see also [MSS18])

Lutz [Lut03a, Lut03b] defines computable and constructive dimension via σ-(super)gales.
Terwijn [Ter04, CST06] observed that this can also be done using Schnorr’s concept of
combining martingales with (exponential) order functions [Sch71, Section 17]. For the
computable ω-languages constructed in this paper we can show that Schnorr’s concept is in
some details more precise than Lutz’s approach.

1. Notation

In this section we introduce the notation used throughout the paper. By N = {0, 1, 2, . . .}
we denote the set of natural numbers, by Q the set of rational numbers, and R are the real
numbers.

Let X be an alphabet of cardinality |X| ≥ 2. By X∗ we denote the set of finite words
on X, including the empty word e, and Xω is the set of infinite strings (ω-words) over X.
Subsets of X∗ will be referred to as languages and subsets of Xω as ω-languages.

For w ∈ X∗ and η ∈ X∗ ∪ Xω let w · η be their concatenation. This concatenation
product extends in an obvious way to subsets W ⊆ X∗ and B ⊆ X∗ ∪Xω. We denote by
|w| the length of the word w ∈ X∗ and pref(B) is the set of all finite prefixes of strings in
B ⊆ X∗ ∪Xω.
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It is sometimes convenient to regard Xω as Cantor space, that is, as the product space
of the (discrete space) X. Here open sets in Xω are those of the form W ·Xω with W ⊆ X∗.
Closed are sets F ⊆ Xω which satisfy the condition F = {ξ : pref(ξ) ⊆ pref(F )}.

For a computable domain D, such as N, Q or X∗, we refer to a function f : D → R as left-
computable (or approximable from below) provided the set {(d, q) : d ∈ D∧ q ∈ Q∧ q < f(d)}
is computably enumerable. Accordingly, a function f : D → R is called right-computable
(or approximable from above) if the set {(d, q) : d ∈ D ∧ q ∈ Q ∧ q > f(d)} is computably
enumerable, and f is computable if f is right- and left-computable. If we refer to a function
f : D → Q as computable we usually mean that it maps the domain D to the domain Q,
that is, it returns the exact value f(d) ∈ Q. If D = N we write f as a sequence (qi)i∈N.

A real number α ∈ R is left-computable, right computable or computable provided the
constant function cα(t) = α is left-computable, right-computable or computable, respectively.
α ∈ R is referred to as computably approximable if α = limi→∞ qi for a computable sequence
(qi)i∈N of rationals. It is well-known (see e.g. [ZW01]) that there are left-computable which
are not right-computable and vice versa, and that there are computably approximable reals
which are neither left-computable nor right-computable.

The following approximation property is easily verified.

Property 1.1. Let (qi)i∈N be a computable family of rationals converging to α and let
(q′i)i∈N, q

′
i > 0, be a computable family of rationals converging to 0. If α is not right-

computable then there are infinitely many i ∈ N such that α− qi > q′i.

For, otherwise, α as the limit of (qi + q′i)i∈N would be right-computable.

2. Gales and Martingales

Hausdorff [Hau18] introduced a notion of dimension of a subset Y of a metric space which
is now known as its Hausdorff dimension, dimY ; Falconer [Fal03] provides an overview
and introduction to this subject. In the case of the Cantor space Xω, Lutz [Lut03b] (see
also [DH10, Section 13.2]) has found an equivalent definition of Hausdorff dimension via
generalisations of martingales.

Following Lutz a mapping d : X∗ → [0,∞) will be called an σ-supergale provided

∀w(w ∈ X∗ → |X|σ · d(w) ≥
∑
x∈X

d(wx)) . (2.1)

A σ-supergale d is called an σ-gale if, for all w ∈ X∗, Eq. (2.1) is satisfied with equality.
(Super)Martingales are 1-(super)gales.

From Eq. (2.1) one easily infers that if d,V : X∗ → [0,∞) satisfy

∀w(w ∈ X∗ → V(w)
|X|(1−σ)·|w|

= d(w)) (2.2)

then d is a σ-(super)gale if and only if V is a (super)martingale. Thus (super)gales can be
viewed as a combination of (super)martingales with exponential order functions in the sense
of Schnorr [Sch71, Section 17] (see also [Ter04, CST06] or [DH10, Section 13.3]).

Following Lutz [Lut03b] we define as follows.
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Definition 2.1. Let F ⊆ Xω. Then α is the Hausdorff dimension dimF of F provided
(1) for all σ > α there is a σ-supergale d such that ∀ξ(ξ ∈ F → lim sup

w→ξ
d(w) =∞), and1

(2) for all σ < α and all σ-supergales d it holds ∃ξ(ξ ∈ F ∧ lim sup
w→ξ

d(w) <∞).

If the ω-language F ⊆ Xω is closed in Cantor space and satisfies a certain balance
condition Theorem 4 of [Sta89] shows that the calculation of its Hausdorff dimension can be
simplified. For the purposes of our investigations the following special case will suffice.

Proposition 2.2. Let F ⊆ Xω be non-empty and satisfy the conditions
(1) F = {ξ : pref(ξ) ⊆ pref(F )} and
(2) |pref(F )∩w ·Xk| = |pref(F )∩ v ·Xk| for all k ∈ N and w, v ∈ pref(F ) with |w| = |v|.

Then dimF = lim inf
n→∞

log|X| |pref(F ) ∩Xn|
n

.

3. Iterative Tree Construction

The aim of this section is, given a sequence of rationals (qi)i∈N, 0 < qi < 1, to construct
an ω-language F ⊆ Xω with Hausdorff dimension dimF = lim infi→∞ qi satisfying the
conditions (1) and (2) of Proposition 2.2.

3.1. Preliminaries. As a preparation we show how to find sequences of natural numbers
(ki)i∈N and (`i)i∈N with appropriate properties such that qi = ki/`i.

Lemma 3.1. Let (qi)i∈N, 0 < qi < 1, qi 6= qi+1, be a family of positive rationals. Then
there are families of natural numbers (ki)i∈N, (`i)i∈N, (κi)i∈N, (pi)i∈N and (ri)i∈N, such that

qi = ki/`i, qi+1 =
ri · ki + κi · `i
ri · `i + pi · `i

where κi =
{

0, if qi > qi+1 and
pi, if qi < qi+1.

Moreover, for 0 ≤ t ≤ pi · `i we have qi ≥
ri · ki

ri · `i + t
≥ qi+1, if qi > qi+1 and (3.1)

qi ≤
ri · ki + t

ri · `i + t
≤ qi+1, if qi < qi+1. (3.2)

Proof. Let qi = ki/`i and qi+1 = a/b · qi =
a · ki
b · `i

, with a, b ∈ N \ {0}, a 6= b. Since 1 > qi+1

we have b · `i − a · ki = a · qi
qi+1
· (1− qi+1) · `i > 0.

Assume qi > qi+1. Then b > a and the equation
ri · ki + κi · `i
ri · `i + pi · `i

=
a · ki
b · `i

(3.3)

has the solutions ri = a, and pi = (b− a) = a · ( qi
qi+1
− 1) and κi = 0.

If qi < qi+1 then a > b and ri := b · `i − a · ki = a · ( qi
qi+1
· `i − ki) = a · qi · ( 1

qi+1
− 1) · `i

and pi = κi := (a− b) · ki = a · qi · (1− qi
qi+1

) · `i are solutions of Eq. (3.3).

1Here lim sup
w→ξ

d(w) is an abbreviation for lim
n→∞

sup{d(w) : w ∈ pref(ξ) ∧ |w| ≥ n}.
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In view of κi = 0 Eq. (3.1) is obvious. Eq. (3.2) follows inductively from k+1
`+1 ≥

k
`

whenever 0 ≤ k < `.

If the family (qi)i∈N is a computable one then the families in Lemma 3.1 can be chosen
to be computable. In addition, the values `i and `i+1/`i can be made arbitrarily large.

3.2. Tree construction. The ω-language F will be the limit of the following sequence of
finite trees Ti. These trees have a property similar to the one in Proposition 2.2 (2) which is
referred to as spherical symmetry in [Fur70].

We define the following auxiliary languages Ti ⊆ X`i and Ui ⊆ Xpi·`i .
Let T0 := Xk0 · 0`0−k0 or T0 := 0`0−k0 ·Xk0 and set

Ti+1 := T rii · Ui with Ui :=
{
Xpi·`i , if qi+1 ≥ qi and
{ui}, otherwise (3.4)

where ui ∈ Xpi is a fixed word. Then `i+1 = (ri+pi)·`i. Thus Ti+1 consists of a concatenation
of ri copies of Ti plus an appendix Ui of length pi · `i. The values ri and pi are referred to as
repetition or prolongation factors, respectively.

By induction one proves
|Ti| = |X|qi·`i . (3.5)

Property 3.2. The trees Ti have the following properties. Let ` ≤ `i.
(1) Prefix property: pref(Ti+1) =

⋃ri−1
j=0 T

j
i · pref(Ti) ∪ T

ri
i · pref(Ui),

(2) Extension property: pref(Ti) ∩X` = pref(Ti+1) ∩X`, and
(3) Spherical symmetry: pref(Ti) ∩X` = (pref(Ti) ∩X`−1) ·X or

|pref(Ti) ∩X`| = |pref(Ti) ∩X`−1|.

3.3. The infinite tree. We define our ω-language F having the properties mentioned in
Proposition 2.2 as F :=

⋂
i∈N Ti ·Xω where the family (Ti)i∈N satisfies Eq. (3.4).

Before we proceed to further properties of (Ti)i∈N and F we mention a general property.

Lemma 3.3. Let Ti ⊆ X∗, Ti+1 ⊆ Ti · X · X∗, Ti ⊆ pref(Ti+1) and F :=
⋂
i∈N Ti · Xω.

Then pref(F ) =
⋃
i∈N pref(Ti).

If, moreover, all Ti are finite then F := {ξ : ξ ∈ Xω ∧ pref(ξ) ⊆
⋃
i∈N pref(Ti)}.

Proof. In view of Ti+1 ⊆ Ti ·X ·X∗ we have Ti+1 ·Xω ⊆ Ti ·Xω and also |w| ≥ i for w ∈ Ti.
If w ∈ pref(F ) then w ∈ pref(ξ) where ξ ∈ F ⊆ Ti · Xω for i > |w|. Consequently,

w ∈ pref(Ti).
Using the condition Ti ⊆ pref(Ti+1), by induction we obtain that for every w ∈ pref(Ti)

there is an infinite chain (wj)j≥i such that wj ∈ Tj and w v wi @ wi+1 @ · · · . Thus there is
a ξ ∈ F with w @ ξ.

If the languages Ti are finite F =
⋂
i∈N Ti ·Xω is closed in the product topology of the

space Xω which implies F := {ξ : ξ ∈ Xω ∧ pref(ξ) ⊆ pref(F )}.

Lemma 3.3 shows that F := {ξ : ξ ∈ Xω ∧ pref(ξ) ⊆
⋃
i∈N pref(Ti)} for the family

(Ti)i∈N defined in Section 3.2.
From the spherical symmetry of Ti (see Property 3.2 (3)) the ω-language F =

⋂
i∈N Ti ·Xω

inherits the following balance property of Proposition 2.2 (2).
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Lemma 3.4. Let F =
⋂
i∈N Ti ·Xω where the Ti are defined by Eq. (3.4). Then for all k ∈ N

and w, v ∈ pref(F ) with |w| = |v| we have

|w ·Xk ∩ pref(F )| = |v ·Xk ∩ pref(F )| .

Proof. We proceed by induction on k. Let k = 1. Then for all w, v ∈ pref(F ) with |w| = |v|
either pref(F ) ∩X |u|+1 = (pref(F ) ∩X |u|) ·X or |pref(F ) ∩X |u|+1| = |pref(F ) ∩X |u||
(u ∈ {w, v}).

In the first case we have |w ·X ∩ pref(F )| = |X| = |v ·X ∩ pref(F )| and in the second
|w ·X ∩ pref(F )| = 1 = |v ·X ∩ pref(F )|.

Let the assertion be proved for k and all pairs u, u′ ∈ pref(F ) of the same length. Let
w, v ∈ pref(F ) with |w| = |v| and consider words w′, v′ ∈ Xk such that w ·w′, v ·v′ ∈ pref(F ).
Then from the spherical symmetry we obtain either pref(F )∩X |u|+1 = (pref(F )∩X |u|) ·X
or |pref(F ) ∩X |u|+1| = |pref(F ) ∩X |u|| for u ∈ {w · w′, v · v′} and we proceed as above.

Since, by our assumption |{w′ : |w′| = k ∧ w · w′ ∈ pref(F )}| = |{v′ : |v′| = k ∧ v · v′ ∈
pref(F )}|, the assertion follows.

As a consequence of Lemmas 3.3, 3.4 and Proposition 2.2 we obtain the following.

Corollary 3.5. Let F =
⋂
i∈N Ti ·Xω where the Ti are defined by Eq. (3.4). Then dimF =

lim inf
n→∞

log|X| |pref(F )∩Xn|
n .

Next we investigate in more detail the structure function sF : N → N where sF (`) :=
|pref(F ) ∩X`|. First, Lemma 3.3 implies

pref(F ) ∩X` = pref(Ti) ∩X` whenever ` ≤ `i . (3.6)

From Eqs. (3.4) and (3.5) and the properties of the tree family (Ti)i∈N we obtain for the
intervals `i ≤ ` ≤ `i+1:

Lemma 3.6. Let F =
⋂
i∈N Ti ·Xω where the Ti are defined by Eq. (3.4). Then the structure

function sF : N→ N satisfies the following relations.
(1) In the interval [j · `i, (j + 1) · `i] where j < ri:

sF (j · `i + t) = sF (`i)
j · sF (t) for 0 ≤ t ≤ `i

(2) In the subinterval [j · `i + j′ · `i−1, j · `i + (j′ + 1) · `i−1] where j′ < ri−1:

sF (j · `i + j′ · `i−1 + t) = sF (`i)
j · sF (`i−1)j

′ · sF (t) for 0 ≤ t < `i−1 .

(3) In the interval [ri · `i, `i+1]:

sF (ri · `i + t) =

{
sF (`i)

ri , if |Ui| = 1 and
sF (`i)

ri · |X|t, if Ui = Xpi·`i for 0 ≤ t ≤ pi · `i .

This yields the following connection to the values qi. In order to connect our considerations
to the application of Proposition 2.2 we consider the values of

log|X| sF (n)

n instead of sF (n).
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From Eqs. (3.6) and (3.5) we obtain
log|X| sF (j · `i)

j · `i
= qi . (3.7)

Now we use the identities of Lemma 3.6 and Eqs. (3.1) and (3.2) to bound
log|X| sF (`)

` in the
range `i ≤ ` ≤ `i+1 = ri · `i + ni · `i.

For `i ≤ ` < ri · `i we have ` = j · `i + j′ · `i−1 + t where 0 ≤ t < `i−1, and Lemma 3.6 (1)
and (2) yield

log|X| sF (`)

`
≥ j · `i

`
· qi +

j′ · `i−1
`

· qi−1

≥ j · `i + j′ · `i−1
`

·min{qi−1, qi} (3.8)

≥ (1− `i−1
`i

) ·min{qi−1, qi}

If ri · `i ≤ ` ≤ `i+1, that is, for ` = ri · `i + t where t ≤ `i+1 − ri · `i, following Eqs. (3.1) and
(3.2), respectively, we have according to Lemma 3.6 (3)

qi ≥
log|X| sF (`)

`
=

log|X| sF (ri · `i)
ri · `i + t

≥ qi+1 if qi > qi+1 (3.9)

qi ≤
log|X| sF (`)

`
=

log|X| sF (ri · `i) + t

ri · `i + t
≤ qi+1 if qi < qi+1 (3.10)

The considerations in Eqs. (3.7), (3.8), (3.9) and (3.10) show the following.

Lemma 3.7. If the sequence (`i)i∈N is chosen in such a way that lim inf
i→∞

`i−1

`i
= 0 then

lim inf
`→∞

log|X| sF (`)

` = lim inf
i→∞

qi .

Proof. In view of Eq. (3.7) the limit cannot exceed lim inf
i→∞

qi.

On the other hand, by Eqs. (3.8), (3.9) and (3.10), for `i ≤ ` ≤ `i+1, the intermediate
values satisfy

log|X| sF (`)

` ≥ (1− `i−1

`i
) ·min{qi−1, qi, qi+1}.

3.4. Monotone families (qi)i∈N. If the sequence (qi)i∈N is monotone we can simplify the
above considerations of Eq. (3.8).

Proposition 3.8. Let the sequence (qi)i∈N be monotone and limi→∞ qi = α.
(1) If (qi)i∈N is decreasing and T0 = Xk0 · 0`0−k0 then sF (`) ≥ |X|α·`, for all ` ∈ N.
(2) If (qi)i∈N is increasing and T0 = 0`0−k0 ·Xk0 then sF (`) ≤ |X|α·`, for all ` ∈ N.
Proof. If (qi)i∈N is decreasing we start with T0 = Xk0 ·0`0−k0 and have sF (`) ≥ |X|q0·` ≥ |X|α·`
for ` ≤ `0. Then we use Eqs. (3.6) and (3.4) and proceed by induction.

sF (j · `i + t) = sF (j · `i) · sF (t) ≥ |X|qi·`i · |X|α·t ≥ |X|α·` for j < ri. In the range
ri · `i ≤ ` ≤ `i+1 we have according to Eq. (3.9) sF (`) ≥ |X|qi+1·` ≥ |X|α·`.

If (qi)i∈N is increasing we start with T0 = 0`0−k0 ·Xk0 and have sF (`) ≥ |X|q0·` ≤ |X|α·`
for ` ≤ `0. Again we use Eqs. (3.6) and (3.4) and proceed by induction.

sF (j · `i + t) = sF (j · `i) · sF (t) ≤ |X|qi·`i · |X|α·t ≤ |X|α·` for j < ri. In the range
ri · `i ≤ ` ≤ `i+1 we have according to Eq. (3.10) sF (`) ≤ |X|qi+1·` ≤ |X|α·`.
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4. Incomputable dimensions

4.1. Hausdorff dimension. In this section we provide the announced examples. First we
have the following.

Lemma 4.1. If the sequence (qi)i∈N of rationals 0 < qi < 1, qi 6= qi+1, is computable then one
can construct an ω-language F ⊆ Xω according to the tree construction such that pref(F ) is
a computable language.

Proof. Construct from (qi)i∈N the numerator and denominator sequences (ki)i∈N and (`i)i∈N
and the corresponding sequences for the repetition and prolongation factors (ri)i∈N and
(pi)i∈N. Then in view of Eq. (3.4) the assertion is obvious.

Our lemma shows that the ω-language F ⊆ Xω has a very simple computable structure
(compare with [Sta07, Section 4.2]).

Next we show that the Hausdorff dimension of a computable ω-language F ⊆ Xω as in
Lemma 4.1 may be incomputable.

Theorem 4.2. If the sequence (qi)i∈N of rationals 0 < qi < 1, qi 6= qi+1, is computable and
α = lim infi→∞ qi then there is an ω-language F ⊆ Xω such that pref(F ) is a computable
language and dimF = α.

Proof. Construct from (qi)i∈N the numerator and denominator sequences (ki)i∈N and (`i)i∈N
such that lim infi→∞

`i
`i+1

= 0. Then the assertion follows from Lemmas 3.7, 4.1 and
Corollary 3.5.

Theorem 3.4 of [Ko98] proves a similar result where the achieved Hausdorff dimension
α is a computably approximable number. In [ZW01] it is shown that there are reals which
are not computably approximable of the form lim infi→∞ qi where (qi)i∈N is a computable
sequence.

4.2. Computable dimension. If we require the supergales in Definition 2.1 to be com-
putable mappings we obtain the definition of computable dimension dimcomp F of [Hit05,
Lut03b]. In view of Eq. (2.2) we may, as in Section 13.15 of [DH10], define the computable
dimension of an ω-language E ⊆ Xω via martingales.

Definition 4.3. Let F ⊆ Xω. Then α is the computable dimension of F provided
(1) for all σ > α there is a computable martingale V such that
∀ξ(ξ ∈ F → lim sup

w→ξ

V(w)
|X|(1−σ)·|w| =∞), and

(2) for all σ < α and all computable martingales V it holds
∃ξ(ξ ∈ F ∧ lim sup

w→ξ

V(w)
|X|(1−σ)·|w| <∞).

The inequality dimF ≤ dimcomp F is immediate.
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We associate with every non-empty ω-language E ⊆ Xω a martingale VE in the following
way.

Definition 4.4.

VE(e) := 1

VE(wx) :=

{
|X|

|pref(E)∩w·X| · VE(w), if x ∈ X and wx ∈ pref(E), and
0, otherwise.

In view of the spherical symmetry, for F defined as in Section 3.3, we obtain

VF (w) = |X||w|/sF (|w|), if w ∈ pref(F ) . (4.1)

Moreover, if pref(F ) is computable then sF and VF are computable mappings.

Theorem 4.5. If the sequence (qi)i∈N of rationals 0 < qi < 1, qi 6= qi+1, is computable and
α = lim infi→∞ qi then there is an ω-language F ⊆ Xω such that pref(F ) is a computable
language and dimF = dimcomp F = α.

Proof. We use the ω-language F defined in the proof of Theorem 4.2 and the associated
computable martingale VF .

Let σ > α = lim infi→∞ qi. Then (σ − qi) > (σ − α)/2 > 0 for infinitely many i ∈ N.
Since sF (`i) = |X|qi·`i (see Eq. (3.7)), we have VF (w)/|X|(1−σ)·|w| = |X|(σ−qi) ≥ |X|(σ−α)/2
for w ∈ pref(F ) ∩X`i . This shows lim supw→ξ VF (w)/|X|(1−σ)·|w| =∞ for all ξ ∈ F , that
is, dimcomp F ≤ α.

The other inequality follows from dimF ≤ dimcomp F and Theorem 4.2.

In certain cases we can achieve even the borderline value

lim sup
w→ξ

VF (w)
|X|(1−dimF )·|w| = lim sup

n→∞

|X|dimF ·n

sF (n)
=∞ for all ξ ∈ F . (4.2)

Theorem 4.6. Let (qi)i∈N, 0 < qi < 1, qi 6= qi+1, be a computable sequence of rationals with
lim infi→∞ qi = α. If α is not right-computable then there is an ω-language F ⊆ Xω such
that pref(F ) is a computable language, dimF = dimcomp F = α and Eq. (4.2) is satisfied.

Proof. We construct F as in the proof of Theorem 4.2 requiring additionally that `i ≥ i2.
Then pref(F ) is computable and dimF = dimcomp F = α. In view of Property 1.1 there
are infinitely many i ∈ N with α− 1

i > qi and, consequently, sF (`i) = |X|qi·`i ≤ |X|α·`i−`i/i.
This shows lim sup

n→∞

|X|α·n
sF (n)

≥ lim sup
i→∞

|X|`i/i =∞.

4.3. Comparison of gales and martingales. In this final part we compare the precision
with which (super)gales and martingales achieve the value of computable dimension of a
subset E ⊆ Xω. In Theorem 4.6 we have seen that there are ω-languages F ⊆ Xω such
that dimcomp F = α and lim supw→ξ VF (w)/|X|(1−α)·|w| = ∞ for all ξ ∈ F , that is, the
computable martingale VF “matches” exactly the value of the computable dimension of F .
The following theorem shows that this is, in some cases, not possible for supergales.

First, observe that, for σ′ ≥ σ any σ-supergale d : X∗ → [0,∞) is also a σ′-supergale.
Thus computable σ-supergales exist for all σ ∈ [0, 1].
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We define the cut point χd of a supergale d as the smallest value σ for which d can be
an σ-supergale.

χd := inf
{
σ : ∀w

(
|X|σ · d(w) ≥

∑
x∈X

d(wx)
)}

. (4.3)

If d is a computable mapping then χd as sup{q : q ∈ Q ∧ ∃w(|X|q · d(w) <
∑

x∈X d(wx))} is
a left-computable real number. For computable σ-gales d the cut point χd coincides with σ
and is necessarily a computable real.

Theorem 4.7. Let (qi)i∈N, 0 < qi < 1, qi 6= qi+1, be a computable sequence of rationals with
lim infi→∞ qi = α. If α is neither left- nor right-computable then there is an ω-language
F ⊆ Xω such that pref(F ) is a computable language, α = dimF = dimcomp F , Eq. (4.2) is
satisfied but there is no computable α-supergale with lim supw→ξ d(w) =∞ for all ξ ∈ F .

Proof. In view of the preceding Theorems 4.2 and 4.6 it suffices to show that under the
additional assumption that α is not left-computable no computable α-supergale satisfies
lim supw→ξ d(w) =∞ for all ξ ∈ F .

Assume the contrary. Since α is not left-computable, the cut point χd of the computable
α-supergale d cannot coincide with α. Hence α > χd, and we have some rational number
q, α > q > χd. Consequently, d is a q-supergale with lim supw→ξ d(w) = ∞ for all ξ ∈ F .
This contradicts q < α = dimcomp F

Since there are computably approximable reals which are neither right- not left-computable
Theorem 4.7 shows that in some cases Schnorr’s [Sch71] combination of martingales with
(exponential) order functions can be more precise than Lutz’s approach via supergales.

5. Concluding remark

As the constructive dimension of subsets of Xω is sandwiched between the computable and
the Hausdorff dimension ([Lut03a, Lut03b, Hit05]) the result of Theorem 4.5 holds likewise
for constructive dimension, too.
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