
Logical Methods in Computer Science
Vol. 9(3:01)2013, pp. 1–44
www.lmcs-online.org

Submitted Nov. 15, 2012
Published Jul. 4, 2013

GRAPH LOGICS WITH RATIONAL RELATIONS ∗

PABLO BARCELÓ a, DIEGO FIGUEIRA b, AND LEONID LIBKIN c

a Department of Computer Science, University of Chile
e-mail address: pbarcelo@dcc.uchile.cl

b,c Laboratory for Foundations of Computer Science, University of Edinburgh
e-mail address: {dfigueir, libkin}@inf.ed.ac.uk

Abstract. We investigate some basic questions about the interaction of regular and ra-
tional relations on words. The primary motivation comes from the study of logics for
querying graph topology, which have recently found numerous applications. Such logics
use conditions on paths expressed by regular languages and relations, but they often need
to be extended by rational relations such as subword or subsequence. Evaluating formulae
in such extended graph logics boils down to checking nonemptiness of the intersection of
rational relations with regular or recognizable relations (or, more generally, to the gener-
alized intersection problem, asking whether some projections of a regular relation have a
nonempty intersection with a given rational relation).

We prove that for several basic and commonly used rational relations, the intersec-
tion problem with regular relations is either undecidable (e.g., for subword or suffix, and
some generalizations), or decidable with non-primitive-recursive complexity (e.g., for sub-
sequence and its generalizations). These results are used to rule out many classes of graph
logics that freely combine regular and rational relations, as well as to provide the sim-
plest problem related to verifying lossy channel systems that has non-primitive-recursive
complexity. We then prove a dichotomy result for logics combining regular conditions on
individual paths and rational relations on paths, by showing that the syntactic form of
formulae classifies them into either efficiently checkable or undecidable cases. We also give
examples of rational relations for which such logics are decidable even without syntactic
restrictions.

2012 ACM CCS: [Theory of computation]: Formal languages and automata theory; Theory and
algorithms for application domains—Database theory—Database query languages (principles); Design and
analysis of algorithms.

Key words and phrases: Regular relations; Rational relations; Recognizable relations; intersection prob-
lem; RPQ; graph databases; non primitive recursive.
∗ This is the full version of the conference paper [3].

a,b,c Partial support provided by Fondecyt grant 1110171 for Barceló and EPSRC grants G049165 and J015377
for Figueira and Libkin.

LOGICAL METHODSl IN COMPUTER SCIENCE DOI:10.2168/LMCS-9(3:01)2013
c© P. Barceló, D. Figueira, and L. Libkin
CC© Creative Commons

http://creativecommons.org/about/licenses

2 P. BARCELÓ, D. FIGUEIRA, AND L. LIBKIN

1. Introduction

The motivation for the problems investigated in this paper comes from the study of logics for
querying graphs. Such logics form the basis of query languages for graph databases, that
have recently found numerous applications in areas including biological networks, social
networks, Semantic Web, crime detection, etc. (see [1] for a survey) and led to multiple
systems and prototypes. In such applications, data is usually represented as a labeled
graph. For instance, in social networks, people are nodes, and labeled edges represent
different types of relationship between them; in RDF – the underlying data model of the
Semantic Web – data is modeled as a graph, with RDF triples naturally representing labeled
edges.

The questions that we address are related to the interaction of various classes of re-
lations on words, for instance, rational relations (examples of those include subword and
subsequence) or regular relations (such as prefix, or equality of words). An example of a
question we are interested in is as follows: is it decidable whether a given regular relation
contains a pair (w,w′) so that w is a subword/subsequence of w′? Problems like this are
very basic and deserve a study on their own, but they are also necessary to answer questions
on the power and complexity of querying graph databases. We now explain how they arise
in that setting.

Logical languages for querying graph data have been developed since the late 1980s
(and some of them became precursors of languages later used for XML). They query the
topology of the graph, often leaving querying data that might be stored in the nodes to a
standard database engine. Such logics are quite different in their nature and applications
from another class of graph logics based on spatial calculi [11, 18]. Their formulae combine
various reachability patterns. The simplest form is known as regular path queries (RPQs)
[17, 16]; they check the existence of a path whose label belongs to a regular language. Those
are typically used as atoms and then closed under conjunction and existential quantification,
resulting in the class of conjunctive regular path queries (CRPQs), which have been the
subject of much investigation [9, 19, 22]. For instance, a CRPQ may ask for a node v such
that there exist nodes v1 and v2 and paths from v to vi with the label in a regular language
Li, for i = 1, 2.

The expressiveness of these queries, however, became insufficient in applications such
as the Semantic Web or biological networks due to their inability to compare paths. For
instance, it is a common requirement in RDF languages to compare paths based on specific
semantic associations [2]; biological sequences often need to be compared for similarity,
based, for example, on the edit distance.

To address this, an extension of CRPQs with relations on paths was proposed [4].
It used regular relations on paths, i.e., relations given by synchronized automata [21, 23].
Equivalently, these are the relations definable in automatic structures on words [5, 7, 8].
They include prefix, equality, equal length of words, or fixed edit distance between words.
The extension of CRPQs with them, called ECRPQs, was shown to have acceptable com-
plexity (NLogSpace with respect to data, PSpace with respect to query).

However, the expressive power of ECRPQs is still short of the expressiveness needed in
many applications. For instance, semantic associations between paths used in RDF applica-
tions often deal with subwords or subsequences, but these relations are not regular. They are
rational: they are still accepted by automata, but those whose heads move asynchronously.

GRAPH LOGICS WITH RATIONAL RELATIONS 3

Adding them to a query language must be done with extreme care: simply replacing regular
relations with rational in the definition of ECRPQs makes query evaluation undecidable!

So we set out to investigate the following problem: given a class of graph queries, e.g.,
CRPQs or ECRPQs, what happens if one adds the ability to test whether pairs of paths
belong to a rational relation S, such as subword or subsequence? We start by observing
that this problem is a generalization of the intersection problem: given a regular relation R,
and a rational relation S, is R∩S 6= ∅? It is well known that there exist rational relations S
for which it is undecidable [6]; however, we are not interested in artificial relations obtained
by encoding PCP instances, but rather in very concrete relations used in querying graph
data.

The intersection problem captures the essence of graph logics ECRPQs and CRPQs
(for the latter, when restricted to the class of recognizable relations [6, 15]). In fact, query
evaluation can be cast as the generalized intersection problem. Its input includes an m-ary
regular relation R, a binary rational relation S, and a set I of pairs from {1, . . . ,m}. It
asks whether there is a tuple (w1, . . . , wm) ∈ R so that (wi, wj) ∈ S whenever (i, j) ∈ I.
For m = 2 and I = {(1, 2)}, this is the usual intersection problem.

Another motivation for looking at these basic problems comes from verification of lossy
channel systems (finite-state processes that communicate over unbounded, but lossy, FIFO
channels). Their reachability problem is known to be decidable, although the complexity is
not bounded by any multiply-recursive function [14]. In fact, a “canonical” problem used
in reductions showing this enormous complexity [13, 14] can be restated as follows: given a
binary rational relation R, does it have a pair (w,w′) so that w is a subsequence of w′? This
naturally leads to the question whether the same bounds hold for the simpler instance of
the intersection problem when we use regular relations instead of rational ones. We actually
show that this is true.

Summary of results. We start by showing that evaluating CRPQs and ECRPQs extended
with a rational relation S can be cast as the generalized intersection problem for S with
recognizable and regular relations respectively. Moreover, the complexity of the basic in-
tersection problem is a lower bound for the complexity of query evaluation.

We then study the complexity of the intersection problem for fixed relations S. For
recognizable relations, it is well known to be efficiently decidable for every rational S. For
regular relations, we show that if S is the subword, or the suffix relation, then the problem is
undecidable. That is, it is undecidable to check, given a binary regular relation R, whether
it contains a pair (w,w′) so that w is a subword of w′, or even a suffix of w′. We also present
a generalization of this result.

The analogous problem for the subsequence relation is known to be decidable, and, if
the input is a rational relation R, then the complexity is non-multiply-recursive [13]. We
extend this in two ways. First, we show that the lower bound remains true even for regular
relations R. Second, we extend decidability to the class of all rational relations for which
one projection is closed under subsequence (the subsequence relation itself is trivially such,
obtained by closing the first projection of the equality relation).

In addition to establishing some basic facts about classes of relations on words, these
results tell us about the infeasibility of adding rational relations to ECRPQs: in fact
adding subword makes query evaluation undecidable, and while it remains decidable with
subsequence, the complexity is prohibitively high.

4 P. BARCELÓ, D. FIGUEIRA, AND L. LIBKIN

So we then turn to the generalized intersection problem with recognizable relations,
corresponding to the evaluation of CRPQs with an extra relation S. We show that the
shape of the relation I holds the key to decidability. If its underlying undirected graph
is acyclic, then the problem is decidable in PSpace for every rational relation S (and for
a fixed formula the complexity drops to NLogSpace). In the cyclic case, the problem
is undecidable for some rational relation S. For relations generalizing subsequence, we
have decidability when I is a DAG, and for subsequence itself, as well as for suffix, query
evaluation is decidable regardless of the shape of CRPQs.

Thus, under the mild syntactic restriction of acyclicity of comparisons with respect to
rational relations, such relations can be added to the common class CRPQ of graph queries,
without incurring a high complexity cost.

Organization. We give basic definitions in Section 2 and define the main problems we study
in Section 3. Section 4 introduces graph logics and establishes their connection with the
(generalized) intersection problem. Section 5 studies decidable and undecidable cases of the
intersection problem. Section 6 looks at the case of recognizable relations and CRPQs and
establishes decidability results based on the intersection pattern.

2. Preliminaries

Let N = {1, 2, . . . }, [i..j] = {i, i+1, . . . , j} (if i > j, [i..j] = ∅), [i] = [1..i]. Given, A,B ⊆ N,
an increasing function f : A→ B is one such that f(i) ≥ f(j) whenever i > j. If f(i) > f(j)
we call it strictly increasing.

Alphabets, languages, and morphisms. We shall use letters Σ, Γ to denote finite alphabets.
The set of all finite words over an alphabet Σ is denoted by Σ∗. We write ε for the empty
word, w ·w′ for the concatenation of two words, and |w| for the length of a word w. Given
a word w ∈ Σ∗, w[i..j] stands for the substring in positions [i..j], w[i] for w[i..i], and w[i..]
for w[i..|w|]. Positions in the word start with 1.

If w = w′ · u · w′′, then

• u is a subword of w (also called factor in the literature, written as u � w),
• w′ is a prefix of w (written as w′ �pref w), and
• w′′ is a suffix of w (written as w′′ �suff w).

We say that w′ is a subsequence of w (also called subword embedding or scattered subword
in the literature, written as w′ v w) if w′ is obtained by removing some letters (perhaps
none) from w, i.e., w = a1 . . . an, and w′ = ai1ai2 . . . aik , where 1 ≤ i1 < i2 < . . . < ik ≤ n.

If Σ ⊂ Γ and w ∈ Γ∗, then by wΣ we denote the projection of w on Σ. That is, if
w = a1 . . . an and ai1 , . . . , aik are precisely the letters from Σ, with i1 < . . . < ik, then
wΣ = ai1 . . . aik .

Recall that a monoid M = 〈U, ·, 1〉 has an associative binary operation · and a neutral
element 1 satisfying 1x = x1 = x for all x (we often write xy for x · y). The set Σ∗ with
the operation of concatenation and the neutral element ε forms a monoid 〈Σ∗, ·, ε〉, the free
monoid generated by Σ. A function f : M →M ′ between two monoids is a morphism if it
sends the neutral element of M to the neutral element of M ′, and if f(xy) = f(x)f(y) for
all x, y ∈M . Every morphism f : 〈Σ∗, ·, ε〉 →M is uniquely determined by the values f(a),

GRAPH LOGICS WITH RATIONAL RELATIONS 5

for a ∈ Σ, as f(a1 . . . an) = f(a1) · · · f(an). A morphism f : 〈Σ∗, ·, ε〉 → 〈Γ∗, ·, ε〉 is called
alphabetic if f(a) ∈ Γ ∪ {ε}, and strictly alphabetic if f(a) ∈ Γ for each a ∈ Σ, see [6].

A language L is a subset of Σ∗, for some finite alphabet Σ. It is recognizable if there
is a finite monoid M , a morphism f : 〈Σ∗, ·, ε〉 → M , and a subset M0 of M such that
L = f−1(M0).

A language L is regular if there exists an NFA (non-deterministic finite automaton)
A = 〈Q,Σ, q0, δ, F 〉 such that L = L(A), the language of words accepted by A. We use the
standard notation for NFAs, where Q is the set of states, q0 is the initial state, F is the set
of final states, and δ ⊆ Q× Σ×Q is the transition relation.

A language is rational if it is denoted by a regular expression; such expressions are built
from ∅, ε, and alphabet letters by using operations of concatenation (e · e′), union (e ∪ e′),
and Kleene star (e∗). It is of course a classical result of formal language theory that the
classes of recognizable, regular, and rational languages coincide.

Recognizable, regular, and rational relations. While the notions of recognizability, regular-
ity, and rationality coincide over languages L ⊆ Σ∗, they differ over relations over Σ, i.e.,
subsets of Σ∗ × . . .× Σ∗. We now define those (see [6, 12, 15, 21, 23, 34]).

Since 〈Σ∗, ·, ε〉 is a monoid, the product (Σ∗)n has the structure of a monoid too. We
can thus define recognizable n-ary relations over Σ as subsets R ⊆ (Σ∗)n so that there exists
a finite monoid M and a morphism f : (Σ∗)n → M such that R = f−1(M0) for some
M0 ⊆ M . The class of n-ary recognizable relations will be denoted by RECn; when n is
clear or irrelevant, we write just REC.

It is well-known that a relation R ⊆ (Σ∗)n is in RECn iff it is a finite union of the sets
of the form L1 × . . .× Ln, where each Li is a regular language over Σ, see [6, 21].

Next, we define the class of regular relations. Let ⊥ 6∈ Σ be a new alphabet letter, and
let Σ⊥ be Σ∪{⊥}. Each tuple w̄ = (w1, . . . , wn) of words from Σ∗ can be viewed as a word
over Σn

⊥ as follows: pad words wi with ⊥ so that they all are of the same length, and use
as the kth symbol of the new word the n-tuple of the kth symbols of the padded words.
Formally, let ` = maxi |wi|. Then w1 ⊗ . . .⊗ wn is a word of length ` whose kth symbol is
(a1, . . . , an) ∈ Σn

⊥ such that

ai =

{
the kth letter of wi if |wi| ≥ k
⊥ otherwise.

We shall also write ⊗w̄ for w1 ⊗ . . . ⊗ wn. We define πi(u1 ⊗ · · · ⊗ uk) = ui for all i ∈ [k].
A relation R ⊆ (Σ∗)n is called a regular n-ary relation over Σ if there is a finite automaton
A over Σn

⊥ that accepts {⊗w̄ | w̄ ∈ R}. The class of n-ary regular relations is denoted by
REGn; as before, we write REG when n is clear or irrelevant.

Finally, we define rational relations. There are two equivalent ways of doing it. One
uses regular expressions, which are now built from tuples ā ∈ (Σ ∪ {ε})n using the same
operations of union, concatenation, and Kleene star. Binary relations �suff , �, and v
are all rational: the expression

(⋃
a∈Σ(ε, a)

)∗ ·
(⋃

a∈Σ(a, a)
)∗

defines �suff , the expression(⋃
a∈Σ(ε, a)

)∗ ·
(⋃

a∈Σ(a, a)
)∗ ·

(⋃
a∈Σ(ε, a)

)∗
defines �, and the expression

(⋃
a∈Σ(ε, a) ∪

(a, a)
)∗

defines v.
Alternatively, n-ary rational relations can be defined by means of n-tape automata,

that have n heads for the tapes and one additional control; at every step, based on the
state and the letters it is reading, the automaton can enter a new state and move some (but

6 P. BARCELÓ, D. FIGUEIRA, AND L. LIBKIN

not necessarily all) tape heads. The classes of n-ary relations so defined are called rational
n-ary relations; we use the notation RATn or just RAT, as before.

Relationships between classes of relations. While it is well known that REC1 = REG1 =
RAT1, we have strict inclusions

RECk (REGk (RATk

for every k > 1 (see for example [6]). For instance, �pref ∈ REG2 − REC2 and �suff ∈
RAT2 − REG2.

The classes of recognizable and regular relations are closed under intersection; however
the class of rational relations is not. In fact, one can find R ∈ REG2 and S ∈ RAT2 so that
R ∩ S 6∈ RAT2. However, if R ∈ RECm and S ∈ RATm, then R ∩ S ∈ RATm.

Binary rational relations can be characterized as follows [6, 30]. A relation R ⊆ Σ∗×Σ∗

is rational iff there is a finite alphabet Γ, a regular language L ⊆ Γ∗ and two alphabetic
morphisms f, g : Γ∗ → Σ∗ such that R = {(f(w), g(w)) | w ∈ L}. If we require f and g to
be strictly alphabetic morphisms, we get the class of length-preserving regular relations, i.e.,
R ∈ REG2 so that (w,w′) ∈ R implies |w| = |w′|. Regular binary relations are then finite
unions of relations of the form {(w · u,w′) | (w,w′) ∈ R, u ∈ L} and {(w,w′ · u) | (w,w′) ∈
R, u ∈ L}, where R ranges over length-preserving regular relations, and L over regular
languages.

Properties of classes of relations. Since relations in REC and REG are given by NFAs, they
inherit all the closure/decidability properties of regular languages. If R ∈ RAT, then each
of its projections is a regular language, and can be effectively constructed (e.g., from the
description of R as an n-tape automaton). Hence, the nonemptiness problem is decidable
for rational relations. However, testing nonemptiness of the intersection of two rational
relations is undecidable [6]. Also, for R,R′ ∈ RAT, the following are undecidable: checking
whether R ⊆ R′ or R = R′, universality (R = Σ∗ × Σ∗), and checking whether R ∈ REG or
R ∈ REC [6, 12, 28].

Remark. We defined recognizable, regular, and rational relations over the same alphabet,
i.e., as subsets of (Σ∗)n. Of course it is possible to define them as subsets of Σ1 × . . .×Σn,
with the Σi’s not necessarily distinct. Technically, there are no differences and all the results
will continue to hold. Indeed, one can simply consider a new alphabet Σ as the disjoint
union of Σi’s, and enforce the condition that the ith projection only use the letters from Σi

(this is possible for all the classes of relations we consider). In fact, in the proofs we shall
be using both types of relations.

GRAPH LOGICS WITH RATIONAL RELATIONS 7

Well-quasi-orders. A well-quasi-order ≤ ⊆ A×A is a reflexive and transitive relation such
that for every infinite sequence (ai)i∈N over A there are i < j with ai ≤ aj . We will make
use of the following two lemmas.

Lemma 2.1 (Higman’s Lemma [25]). For every alphabet Σ, the subsequence relation v ⊆
Σ∗ × Σ∗ is a well quasi-order.

Lemma 2.2 (Dickson’s Lemma [20]). For every well-quasi-order ≤ ⊆ A × A, the product
order ≤k ⊆ Ak × Ak (where (a1, . . . , ak) ≤k (a′1, . . . , a

′
k) iff ai ≤ a′i for all i ∈ [k]) is a

well-quasi-order.

3. Generalized intersection problem

We now formalize the main technical problem we study. Let R be a class of relations over
Σ, and S a class of binary relations over Σ. We use the notation [m] for {1, . . . ,m}. If R
is an m-ary relation, S is a binary relation, and I ⊆ [m]2, we write R ∩I S for the set of
tuples (w1, . . . , wm) in R such that (wi, wj) ∈ S whenever (i, j) ∈ I.

The generalized intersection problem (R ∩I S)
?
= ∅ is defined as:

Problem: (R ∩I S)
?
= ∅

Input: an m-ary relation R ∈ R,
a relation S ∈ S, and I ⊆ [m]2

Question: is R ∩I S 6= ∅?
If S = {S}, we write S instead of {S}. We write GenIntS(R) for the class of all

problems (R ∩I S)
?
= ∅ where S is fixed, i.e., the input consists of R ∈ R and I. As

was explained in the introduction, this problem captures the essence of evaluating queries
in various graph logics, e.g., CRPQs or ECRPQs extended with rational relations S. The
classes R will typically be REC and REG.

If m = 2 and I = {(1, 2)}, the generalized intersection problem becomes simply the
intersection problem for the classes R and S of binary relations:

Problem: (R∩ S)
?
= ∅

Input: R ∈ R and S ∈ S
Question: is R ∩ S 6= ∅?

The problem (REC ∩ S)
?
= ∅ is decidable for every rational relation S, simply by

constructing R ∩ S, which is a rational relation, and testing its nonemptiness. However,

(REG∩S)
?
= ∅ could already be undecidable (we shall give one particularly simple example

later).

4. Graph logics and the generalized intersection problem

In this section we show how the (generalized) intersection problems provide us with upper
and lower bounds on the complexity of evaluating a variety of logical queries over graphs.
We start by recalling the basic classes of logics used in querying graph data, and show that
extending them with rational relations allows us to cast the query evaluation problem as
an instance of the generalized intersection problem. The key observations are that:

8 P. BARCELÓ, D. FIGUEIRA, AND L. LIBKIN

• the complexity of GenIntS(REC) and (REC∩S)
?
= ∅ provide an upper and a lower bound

for the complexity of evaluating CRPQ(S) queries; and
• for ECRPQ(S), these bounds are provided by the complexity of GenIntS(REG) and of

(REG ∩ S)
?
= ∅.

The standard abstraction of graph databases [1] is finite Σ-labeled graphs G = 〈V,E〉, where
V is a finite set of nodes, or vertices, and E ⊆ V ×Σ×V is a set of labeled edges. A path ρ
from v0 to vm in G is a sequence of edges (v0, a0, v1), (v1, a1, v2), · · · , (vm−1, am−1, vm) from
E, for some m ≥ 0. The label of ρ, denoted by λ(ρ), is the word a0 · · · am−1 ∈ Σ∗.

The main building blocks for graph queries are regular path queries, or RPQs [17]; they

are expressions of the form x
L→ y, where L is a regular language. We normally assume that

L is represented by a regular expression or an NFA. Given a Σ-labeled graph G = 〈V,E〉,
the answer to an RPQ above is the set of pairs of nodes (v, v′) such that there is a path ρ
from v to v′ with λ(ρ) ∈ L.

Conjunctive RPQs, or CRPQs [9, 10, 16] are the closure of RPQs under conjunction
and existential quantification. Formally, they are expressions of the form

ϕ(x̄) = ∃ȳ
m∧

i=1

(ui
Li−→ u′i) (4.1)

where variables ui, u
′
is come from x̄, ȳ. The semantics naturally extends the semantics of

RPQs: ϕ(ā) is true in G iff there is a tuple b̄ of nodes such that for every i ≤ m and every
vi, v

′
i interpreting ui and u′i, respectively, we have a path ρi between vi and v′i whose label

λ(ρi) is in Li.
CRPQs can further be extended to compare paths. For that, we need to name path

variables, and choose a class of allowed relations on paths. The simplest such extension is
the class of CRPQ(S) queries, where S is a binary relation over Σ∗. Its formulae are of the
form

ϕ(x̄) = ∃ȳ
(m∧

i=1

(ui
χi:Li−→ u′i) ∧

∧

(i,j)∈I

S(χi, χj)
)

(4.2)

where I ⊆ [m]2. We use variables χ1, . . . , χm to denote paths; these are quantified exis-
tentially. That is, the semantics of G |= ϕ(ā) is that there is a tuple b̄ of nodes and paths
ρk, for k ≤ m, between vk and v′k (where, as before, vk, v

′
k are elements of ā, b̄ interpreting

uk, u
′
k) such that (λ(ρi), λ(ρj)) ∈ S whenever (i, j) ∈ I. For instance, the query

∃y, y′
(
(x

χ:Σ∗a−→ y) ∧ (x
χ′:Σ∗b−→ y′) ∧ χ v χ′

)

finds nodes v so that there are two paths starting from v, one ending with an a-edge, whose
label is a subsequence of the other one, that ends with a b-edge.

The input to the query evaluation problem consists of a graph G, a tuple v̄ of nodes,
and a query ϕ(x̄); the question is whether G |= ϕ(v̄). This corresponds to the combined
complexity of query evaluation. In the context of query evaluation, one is often interested
in data complexity, when the typically small formula ϕ is fixed, and the input consists of
the typically large graph (G, v̄). We now relate it to the complexity of GenIntS(REC).

Lemma 4.1. Fix a CRPQ(S) query ϕ as in (4.2). Then there is a DLogSpace algorithm
that, given a graph G and a tuple v̄ of nodes, constructs an m-ary relation R ∈ REC so that

the answer to the generalized intersection problem (R ∩I S)
?
= ∅ is ‘yes’ iff G |= ϕ(v̄).

GRAPH LOGICS WITH RATIONAL RELATIONS 9

Proof. Given a Σ-labeled graph G = 〈V,E〉 and two nodes v, v′, we write A(G, v, v′) for G
viewed as an NFA with the initial state v and the final state v′ (that is, the set of states is
V , the transition relation is E, and the alphabet is Σ). The language of such an automaton,
L(A(G, v, v′)), is the set of labels of all paths between v and v′.

Now consider a CRPQ(S) query ϕ(x̄) given by

∃ȳ
(m∧

i=1

(ui
χi:Li−→ u′i) ∧

∧

(i,j)∈I

S(χi, χj)
)
,

as in (4.2). Suppose we are given a graph G as above and a tuple of nodes v̄, of the same
length as the length of x̄. The DLogSpace algorithm works as follows.

First we enumerate all tuples b̄ of nodes of G of the same length as ȳ; since ϕ is fixed,
this can be done in DLogSpace. For each b̄, we construct an m-ary relation Rb̄ in REC as
follows. Let ni and n′i be the interpretations of ui and u′i, when x̄ is interpreted as v̄ and ȳ
as b̄. Then

Rb̄ =

m∏

i=1

(L(A(G,ni, n
′
i)) ∩ Li).

Note that it can be constructed in DLogSpace; indeed each coordinate of Rb̄ is simply
a product of the automaton A(G,ni, n

′
i) and a fixed automaton defining Li. Next, let

R =
⋃
b̄Rb̄. This is constructed in DLogSpace too. Now it follows immediately from the

construction that R ∩I S 6= ∅ iff for some b̄, there exist paths ρi between ni, n
′
i, for i ≤ m,

such that (λ(ρl), λ(ρj)) ∈ S whenever (l, j) ∈ I, i.e., iff G |= ϕ(v̄).

Conversely, the intersection problem for recognizable relations and S can be encoded
as answering CRPQ(S) queries.

Lemma 4.2. For any given binary relation S, there is a CRPQ(S) query ϕ(x, x′) and
a DLogSpace algorithm that, given a relation R ∈ REC2, constructs a graph G and two
nodes v, v′ so that G |= ϕ(v, v′) iff R ∩ S 6= ∅.
Proof. Let R be in REC2. It is given as

⋃n
i=1(Li × Ki), where the Lis and the Kis are

regular languages over Σ. These languages are given by their NFAs which we can view as
Σ-labeled graphs. Let 〈Vi, Ei〉 be the underlying graph of the NFA defining Li, such that vi0
is the initial state, and Fi is the set of final states. Likewise, let 〈Wi, Hi〉 be the underlying
graph of the NFA defining Ki, such that wi0 is the initial state, and Ci is the set of final
states.

We now construct the graph G. Its labeling alphabet is the union of Σ and {#, $, !}.
Its set of vertices is the disjoint union of all the Vis, Wis, as well as two distinguished nodes
start and end. Its edges include all the edges from Eis and His, and the following:

• #-labeled edges from start to each initial state, i.e., to each v0
i and w0

i for all i ≤ n.
• $-labeled edges between the initial states of automata with the same index, i.e., edges

(vi0, $, w
i
0) for all i ≤ n.

• !-labeled edges from final states to end, i.e., edges (v, !, end), where v ∈ ⋃i≤n Fi∪
⋃
i≤nCi.

10 P. BARCELÓ, D. FIGUEIRA, AND L. LIBKIN

We now define a CRPQ(S) query ϕ(x, y) (omitting path variables for paths that are
not used in comparisons):

∃x1, x2, z1, z2




x
#→ x1 ∧ x

#→ x2

∧ x1
$→ x2

∧ x1
χ:Σ∗→ z1 ∧ x2

χ′:Σ∗→ z2

∧ z1
!→ y ∧ z2

!→ y
∧ S(χ, χ′)




The query says that from start, we have #-edges to the initial states vi0 and wi0: they
must have the same index since there is a $-edge between them. From there we have two
paths, ρ and ρ′, corresponding to the variables χ and χ′, which are Σ-labeled, and thus are
paths in the automata for Li and Ki, respectively. From the end nodes of those paths we
have !-edges to end, so they must be final states; in particular, λ(ρ) ∈ Li and λ(ρ′) ∈ Ki. We
finally require (λ(ρ), λ(ρ′)) ∈ S, i.e., (λ(ρ), λ(ρ′)) ∈ (Li×Ki)∩S. Hence, if G |= ϕ(start, end)
then for some i ≤ n we have two words (w,w′) that belong to (Li×Ki)∩S, i.e., R∩S 6= ∅.
Conversely, if R ∩ S 6= ∅, then (Li ×Ki) ∩ S 6= ∅ for some i ≤ n, and the witnessing paths
of the nonemptiness of (Li ×Ki) ∩ S will witness the formula ϕ(start, end) (together with
initial states of the automata of Li and Ki and some of their final states).

Combining the lemmas, we obtain:

Theorem 4.3. Let K be a complexity class closed under DLogSpace reductions. Then:

(1) If the problem GenIntS(REC) is in K, then data complexity of CRPQ(S) queries is in
K; and

(2) If the problem (REC ∩ S)
?
= ∅ is hard for K, then so is data complexity of CRPQ(S)

queries.

We now consider extended CRPQs, or ECRPQs, which enhance CRPQs with regular re-
lations [4], and prove a similar result for them, with the role of REC now played by REG.
Formally, ECRPQs are expressions of the form

ϕ(x̄) = ∃ȳ
(m∧

i=1

(ui
χi:Li−→ u′i) ∧

k∧

j=1

Rj(χ̄j)
)

(4.3)

where each Rj is a relation from REG, and χ̄j a tuple from χ1, . . . , χm of the same arity
as Rj . The semantics of course extends the semantics of CRPQs: the witnessing paths
ρ1, . . . , ρm should also satisfy the condition that for every atom R(ρi1 , . . . , ρil) in (4.3), the
tuple (λ(ρi1), . . . , λ(ρil)) is in R.

Finally, we obtain ECRPQ(S) queries by adding comparisons with respect to a relation
S ∈ RAT, getting a class of queries ϕ(x̄) of the form

∃ȳ
(m∧

i=1

(ui
χi:Li−→ u′i) ∧

k∧

j=1

Rj(χ̄j) ∧
∧

(i,j)∈I

S(χi, χj)
)

(4.4)

Similarly to the case of CRPQs, we can establish a connection between data complexity of
ECRPQ(S) queries and the complexity of the generalized intersection problem:

Theorem 4.4. Let K be a complexity class closed under DLogSpace reductions. Then:

GRAPH LOGICS WITH RATIONAL RELATIONS 11

(1) If the problem GenIntS(REG) is in K, then data complexity of ECRPQ(S) queries is
in K; and

(2) If the problem (REG ∩ S)
?
= ∅ is hard for K, then so is data complexity of ECRPQ(S)

queries.

Similarly to the proof of Theorem 4.3, the result will be an immediate consequence of two
lemmas. First, evaluation of ECRPQ(S) queries is reducible to the generalized intersection
problem for regular relations.

Lemma 4.5. Fix an ECRPQ(S) query ϕ as in (4.4). Then there is a DLogSpace algo-
rithm that, given a graph G and a tuple v̄ of nodes, constructs an m-ary relation R ∈ REG so

that the answer to the generalized intersection problem (R ∩I S)
?
= ∅ is ‘yes’ iff G |= ϕ(v̄).

Conversely, the intersection problem for regular relations and S can be encoded as
answering ECRPQ(S) queries.

Lemma 4.6. For each binary relation S, there is an ECRPQ(S) query ϕ(x, x′) and a
DLogSpace algorithm that, given a relation R ∈ REG2, constructs a graph G and two
nodes v, v′ so that G |= ϕ(v, v′) iff (R ∩ S) 6= ∅.

The proof of Lemma 4.5 is almost the same as the proof of Lemma 4.1: as before,
we enumerate tuples b̄, construct relations Rb̄ and R =

⋃
b̄Rb̄, but this time we take the

product of this recognizable relation with regular relations mentioned in the query. Since
the query is fixed, and hence we take a product with a fixed number of fixed automata,
such a product construction can be done in DLogSpace. The result is now a regular m-ary
relation. The rest of the proof is exactly the same as in Lemma 4.1.

We now prove Lemma 4.6. Let R ∈ REG2 be given by an NFA over Σ⊥ × Σ⊥ whose
underlying graph is GR = 〈VR, ER〉, where ER ⊆ VR× (Σ⊥×Σ⊥)×VR. Let v0 be its initial
state, and let F be the set of final states.

We now define the graph G. Its labeling alphabet Γ is the disjoint union of Σ⊥ × Σ⊥,
the alphabet Σ itself, and a new symbol #. Its nodes V include all nodes in VR and two
extra nodes, vf and v′. The edges are:

• all the edges in ER;
• edges (v,#, vf) for every v ∈ F ;
• edges (v′, a, v′) for every a ∈ Σ.

We now define two regular relations over Γ. The first, R1, consists of pairs (w,w′), where
w ∈ (Σ⊥ × Σ⊥)∗ and w′ ∈ Σ∗. Furthermore, w is of the form w′ ⊗ w′′ for some w′′ ∈ Σ∗.
It is straightforward to check that this relation is regular. The second one, R2, is the same
except w is of the form w′′ ⊗ w′. In other words, the first component is w1 ⊗ w2, and the
second is either w1 or w2, for R1 or R2, respectively.

Next, we define the ECRPQ(S) ϕ(x, y):

∃x1, y1, x2, y2, z




x
χ:Σ⊥×Σ⊥→ z ∧ z

#→ y

∧ x1
χ1:Σ∗→ y1 ∧ x2

χ2:Σ∗→ y2

∧ R1(χ, χ1) ∧ R2(χ, χ2) ∧ S(χ1, χ2)




Note that when this formula is evaluated over G, with x interpreted as v0 and y interpreted
as vf , the paths χ1 and χ2 can have arbitrary labels from Σ∗. Paths χ can have arbitrary
labels over Σ⊥ × Σ⊥; however, since they start in v0 and must be followed by an #-edge,
they end in a final state of the automaton for R, and hence labels of these paths are precisely

12 P. BARCELÓ, D. FIGUEIRA, AND L. LIBKIN

words in Σ⊥×Σ⊥ of the form w1⊗w2, where (w1, w2) ∈ R. Now R1 ensures that the label of
χ1 is w1 and that the label of χ2 is w2. Hence the labels of χ1 and χ2 are precisely the pairs
of words in R, and the query asks whether such a pair belongs to S. Hence, G |= ϕ(v0, vf)
iff R ∩ S 6= ∅. It is straightforward to check that the construction of G can be carried out
in DLogSpace. This proves the lemma and the theorem.

Thus, our next goal is to understand the behaviors of the generalized intersection prob-
lem for various rational relations S which are of interest in graph logics; those include
subword, suffix, subsequence. In fact to rule out many undecidable or infeasible cases it is
often sufficient to analyze the intersection problem. We do this in the next section, and
then analyze the decidable cases to come up with graph logics that can be extended with
rational relations.

5. The intersection problem: decidable and undecidable cases

We now study the problem (REG∩S)
?
= ∅ for binary rational relations S such as subword and

subsequence, and for classes of relations generalizing them. The input is a binary regular
relation R over Σ, given by an NFA over Σ⊥×Σ⊥. The question is whether R∩S 6= ∅. We
also derive results about the complexity of ECRPQ(S) queries. For all lower-bound results
in this section, we assume that the alphabet contains at least two symbols.

As already mentioned, there exist rational relations S such that (REG ∩ S)
?
= ∅ is

undecidable. However, we are interested in relations that are useful in graph querying, and
that are among the most commonly used rational relations, and for them the status of the
problem was unknown.

Note that the problem (REC ∩ S)
?
= ∅ is tractable: given R ∈ REC, the relation R ∩ S

is rational, can be efficiently constructed, and checked for nonemptiness.

5.1. Undecidable cases: subword and relatives. We now show that even for such
simple relations as subword and suffix, the intersection problem is undecidable. That is,
given an NFA over Σ⊥ × Σ⊥ defining a regular relation R, the problem of checking for the
existence of a pair (w,w′) ∈ R with w �suff w

′ or w � w′ is undecidable.

Theorem 5.1. The problems (REG ∩ �suff)
?
= ∅ and (REG ∩ �)

?
= ∅ are undecidable.

As an immediate consequence of this, we obtain:

Corollary 5.2. The query evaluation problem for ECRPQ(�suff) and ECRPQ(�) is un-
decidable.

Thus, some of the most commonly used rational relations cannot be added to ECRPQs
without imposing further restrictions.

We skip the proof of Theorem 5.1 for the time being and concentrate first on how to
obtain a more general undecidability result out of it. As we will see below, the essence of the
undecidability result is that relations such as �suff and � can be decomposed in a way that
one of the components of the decomposition is a graph of a nontrivial strictly alphabetic
morphism. More precisely, let R · R′ be the binary relation {(w · w′, u · u′) | (w, u) ∈
R and (w′, u′) ∈ R′}. Let Graph(f) be the graph of a function f : Σ∗ → Σ∗, i.e.,
{(w, f(w)) | w ∈ Σ∗}.

GRAPH LOGICS WITH RATIONAL RELATIONS 13

Proposition 5.3. Let R0, R1 be binary relations on Σ such that R0 is recognizable and its
second projection is Σ∗. Let f be a strictly alphabetic morphism that is not constant (i.e.
the image of f contains at least two letters). Then, for S = R0 ·Graph(f) ·R1, the problem

(REG ∩ S)
?
= ∅ is undecidable.

Note that both �suff and � are of the required shape: suffix is ({ε} ×Σ∗) ·Graph(id) ·
({ε} × {ε}), and subword is ({ε} × Σ∗) · Graph(id) · ({ε} × Σ∗), where id is the identity
alphabetic morphism.

Proofs of Theorem 5.1 and Proposition 5.3. We present the proof for the suffix relation
�suff . The proofs for the subword relation, and more generally, for the relations contain-
ing the graph of an alphabetic morphism follow the same idea and will be explained after
the proof for �suff . The proof is by encoding nonemptiness for linearly bounded automata
(LBA). Recall that an LBA A has a tape alphabet Γ that contains two distinguished sym-
bols, α and β, which are the left and the right marker. The input word w ∈ (Γ− {α, β})∗
is written between them, i.e., the content of the input tape is α · w · β. The LBA behaves
just like a Turing machine, except that when it is reading α or β, it cannot rewrite them,
and it cannot move left of α or right of β. The problem of checking whether the language
of a given LBA is nonempty is undecidable.

We encode this as follows. The alphabet Σ is the disjoint union of the tape alphabet Γ
of the LBA A, the set of its states Q, and the designated symbol $ (we assume, of course,
that these are disjoint). A configuration C of the LBA consists of the tape content a0 . . . an,
where a0 = α and an = β, and all the ais, for 0 < i < n, are letters from Γ − {α, β}, the
state q, and the position i, for 0 ≤ i ≤ n, that the head is pointing to. We encode this as a
word

wC = $a0 . . . ai−1qai . . . an$ ∈ Σ∗

of length n + 4. Of course if the head is pointing to α, the configuration is $qa0 . . . an$.
Note that if we have a run of the LBA with configurations C0, C1, . . ., then the lengths of
all the wCis are the same.

Next, note that the relation

RAimm = {(wC , wC′) | C ′ is an immediate successor of C}
is regular (in fact such a relation is well-known to be regular even for arbitrary Turing
machines [5, 7, 8]). Since all configurations are of the same length, we obtain that the
relation

R′A = {(wC0wC1 . . . wCm , wC′1 . . . wC′m) | C ′i+1 is an immediate successor of Ci for i < m}
is regular too (since only one configuration in the first projection does not correspond to
a configuration in the second projection). By taking the product with a regular language
that ensures that the first symbol from Q in a word is q0, and the last such symbol is from
F , we have a regular relation

RA =

{
(wC0wC1 . . . wCm , wC′1 . . . wC′m)

∣∣∣∣
C ′i+1 is an immediate successor of Ci for i < m;
C0 is an initial configuration ;
Cm is a final configuration

}

which can be effectively constructed from the description of the LBA.
Now assume that RA ∩ �suff is nonempty. Then, since all encodings of configurations

are of the same length, it must contain a pair (wC0wC1 . . . wCm , wC1 . . . wCm) such that Ci+1

14 P. BARCELÓ, D. FIGUEIRA, AND L. LIBKIN

is an immediate successor of Ci for all i < m. Since C0 is an initial configuration and Cm is
a final configuration, this implies that the LBA has an accepting computation. Conversely,
if there is an accepting computation with a sequence of configurations C0, C1, . . . , Cm of the
LBA, then the pair (wC0wC1 . . . wCm , wC1 . . . wCm) is both in RA and in the suffix relation.
Hence, RA ∩ �suff is nonempty iff there is an accepting computation of the LBA, proving
undecidability.

The proof for the subword relation is practically the same. We change the definition
of relation RA so that there is an extra $ symbol inserted between wC0 and wC1 , and two
extra $ symbols after wCm in the first projection; in the second projection we insert extra
two $ symbols before wC′1 and after wC′m . Note that the relation remains regular: even if
the components are not fully synchronized, at every point there is a constant delay between
them (either 2 or 1), and this can be captured by simply encoding one or two alphabet
symbols into the state. Since in each word there are precisely two places where the subword
$$$ appears, the subword relation in this case becomes the suffix relation, and the previous
proof applies.

The same proof can be applied to deduce Proposition 5.3. Note that we can encode
letters of alphabet Σ within the alphabet {0, 1} so that the encodings of each letter of Σ
will have the same length, namely dlog2(|Γ|+ |Q|+ 1)e. Then the same proof as before will
apply to show undecidability over the alphabet {0, 1}, since the encodings of configurations
still have the same length.

Since R0 is regular, it is of the form
⋃
i Li ×Ki, and by the assumption,

⋃
iKi = Σ∗.

Thus, the encoding of the initial configuration will belong to one of the Kis, say Kj . We
then take a fixed word w0 ∈ Lj and assume that the second component of the relation
starts with w0 (which can be enforced by the regular relation). Likewise, we take a fixed
pair (w1, w2) ∈ R1, and assume that w1 is the suffix of the first component of the relation,
and w2 is the suffix of the second. This too can be enforced by the regular relation.

Now if we have a non-constant alphabetic morphism f , we have two letters, say a and
b, so that f(a) 6= f(b). We now simply use these letters, with a playing the role of 0,
and b playing the role of 1 in the first projection of relation R, and f(a), f(b) playing the
roles of 0 and 1 in the second projection, to encode the run of an LBA as we did before.
The only difference is that instead of a sequence of $ symbols to specify the positions of
the encoding we use a (fixed-length) sequence that is different from w0, w1, w2 above, to
identify its position uniquely. Then the proof we have presented above applies verbatim.

5.2. Decidable cases: subsequence and relatives. We now show that the intersection
problem is decidable for the subsequence relation v and, much more generally, for a class
of relations that do not, like the relations considered in the previous section, have a “rigid”
part. More precisely, the problem is also decidable for any relation so that its projection
on the first component is closed under subsequence. However, the complexity bounds are
extremely high. In fact we show that the complexity of checking whether (R ∩ v) 6= ∅,
when R ranges over REG2, is not bounded by any multiply-recursive function. This was
previously known for R ranging over RAT2, and was viewed as the simplest problem with
non-multiply-recursive complexity [13]. We now push it further and show that this high
complexity is already achieved with regular relations.

GRAPH LOGICS WITH RATIONAL RELATIONS 15

Some of the ideas for showing this come from a decidable relaxation of the Post Cor-
respondence Problem (PCP), namely the regular Post Embedding Problem, or PEPreg, in-
troduced in [13]. An instance of this problem consists of two morphisms σ, σ′ : Σ∗ → Γ∗

and a regular language L ⊆ Σ∗; the question is whether there is some w ∈ L such that
σ(w) v σ′(w) (recall that in the case of the PCP the question is whether σ(w) = σ′(w) with
L = Σ+). We call w a solution to the instance (σ, σ′, L). The PEPreg problem is known to
be decidable, and as hard as the reachability problem for lossy channel systems [13] which
cannot be bounded by any primitive-recursive function —in fact, by any multiply-recursive
function (a generalization of primitive recursive functions with hyper-Ackermannian com-
plexity, see [31]). More precisely, it is shown in [32] to be precisely at the level Fωω of the
fast-growing hierarchy of recursive functions [29, 31].1

The problem PEPreg is just a reformulation of the problem (RAT ∩ v)
?
= ∅. Indeed,

relations of the form {(f(w), g(w)) | w ∈ L}, where L ⊆ Σ∗ ranges over regular languages
and f, g over morphisms Σ∗ → Γ∗ are precisely the relations in RAT2 [6, 30]. Hence,

(RAT ∩ v)
?
= ∅ is decidable, with non-multiply-recursive complexity.

Proposition 5.4 ([13]). (RAT ∩ v)
?
= ∅ is decidable, non-multiply-recursive.

We show that the lower bound already applies to regular relations.

Theorem 5.5. The problem (REG∩v)
?
= ∅ is decidable, and its complexity is not bounded

by any multiply-recursive function.

The proof of the theorem above will be shown further down, after some preparatory
definitions and lemmas are introduced.

It is worth noticing that one cannot solve the problem (REG∩v)
?
= ∅ by simply reducing

to nonemptiness of rational relations due to the following.

Proposition 5.6. There is a binary regular relation R such that (R ∩ v) is not rational.

Proof. Let Σ = {a, b}, and consider the following regular relation,

R = {(am, bm · am′) | m,m′ ∈ N}.
Note that the relation R ∩ v is then {(am, bm · am′) | m,m′ ∈ N,m′ ≥ m}. We show that
R ∩ v is not rational by means of contradiction. Suppose that it is, and let A be an NFA
over {a, b, ε} × {a, b, ε} that recognizes R ∩ v. Suppose Q is the set of states of A, and
|Q| = n.

Consider the following pair

(an+1, bn+1 · an+1) ∈ R ∩ v.
Then there must be some u ∈ ({a, b, ε} × {a, b, ε})∗ such that

(π1(u), π2(u)) = (an+1, bn+1 · an+1)

and u ∈ L(A). Let ρA : [0..|u|]→ Q be the accepting run of A on u, and let 1 ≤ i1 < · · · <
in+1 ≤ |u| be such that π2(u[ij]) = a for all j ∈ [n+1]. Clearly, among ρA(i1), . . . , ρA(in+1)
there must be two repeating elements by the pigeonhole principle. Let 1 ≤ j1 < j2 ≤ n+ 1

1In this hierarchy—also known as the Extended Grzegorczyk Hierarchy—, the classes of functions Fα
are closed under elementary-recursive reductions, and are indexed by ordinals. Ackermannian complexity
corresponds to level α = ω, and level α = ωω corresponds to some hyper-Ackermannian complexity.

16 P. BARCELÓ, D. FIGUEIRA, AND L. LIBKIN

be such elements, where ρA(ij1) = ρA(ij2). Hence u′ = u[1..ij1 − 1] · u[ij2 ..] ∈ L(A), and
therefore (

π1(u′), π2(u′)
)
∈ R ∩ v.

Notice that π2(u′) = bn+1 · an+1−(j2−j1). But by definition of R ∩ v we have that π1(u′) =
an+1 with n + 1 − (j2 − j1) ≥ n + 1, which is clearly false. The contradiction comes from
the assumption that R ∩ v is rational.

As already mentioned, the decidability part of Theorem 5.5 follows from Proposition 5.4.

We prove the lower bound by reducing PEPreg into (REG ∩ v)
?
= ∅.

This reduction is done in two phases. First, we show that there is a reduction from
PEPreg into the problem of finding solutions of PEPreg with a certain shape, which we
call a strict codirect solutions (Lemma 5.7). Second, we show that there is a reduction
from the problem of finding strict codirect solutions of a PEPreg instance into (REG ∩
v)

?
= ∅ (Proposition 5.8). Both reductions are elementary and thus the hardness result of

Theorem 5.5 follows.
In the next section we define the strict codirect solutions for PEPreg, showing that we

can restrict to this kind of solutions. In the succeeding section we show how to reduce the

problem into (REG ∩ v)
?
= ∅.

5.2.1. Codirect solutions of PEPreg. There are some variations of the PEPreg problem that
result being equivalent problems. These variations restrict the solutions to have certain
properties. Given a PEPreg instance (σ, σ′, L), we say that w ∈ L with |w| = m is a codirect
solution if there are (possibly empty) words v1, . . . , vm such that

1. vk v σ′(w[k]) for all 1 ≤ k ≤ m,
2. σ(w[1..m]) = v1 · · · vm, and
3. |σ(w[1..k])| ≥ |v1 · · · vk| for all 1 ≤ k ≤ m.

If furthermore

4. |σ(w[1..k])| > |v1 · · · vk| for all 1 ≤ k < m,

we say that it is a strict codirect solution. In this case we say that the solution w is witnessed
by v1, . . . , vm. In [13] it has been shown that the problem of whether an instance of the
PEPreg problem has a codirect solution is equivalent to the problem of whether it has a
solution. Moreover, it can be shown that this also holds for strict codirect solutions.

Lemma 5.7. The problem of whether a PEPreg instance has a strict codirect solution is as
hard as whether a PEPreg instance has a solution.

Proof. We only show how to reduce from finding a codirect solution problem to finding a
strict codirect solution problem. The other direction is trivial, since a strict codirect solution
is in particular a solution. Let (σ, σ′, L) be a PEPreg instance, and w ∈ L be a codirect
solution with |w| = m, minimal in size, and witnessed by v1, . . . , vk. Let A = (Q,Σ, q0, δ, F)
be an NFA representing L, where |Q| = n. Let ρ : [0..m]→ Q be an accepting run of A on w.
Let 0 ≤ k1 < · · · < kt ≤ m be all the elements of {s ≥ 0 : |σ(w[1..s])| = |v1 · · · vs|}. Observe
that k1 = 0, and kt = m by condition 2. It is not difficult to show that by minimality of m
there cannot be more than n indices.

Claim 5.0.1. t ≤ n.

GRAPH LOGICS WITH RATIONAL RELATIONS 17

Proof. Suppose ad absurdum that t ≥ n + 1. Then, there must be two kl < kl′ such that
ρ(kl) = ρ(kl′). Hence, w′ = w[1..kl] ·w[kl′+1..] ∈ L is also a codirect solution, contradicting
that w is a minimal size solution.

Let L[q, q′] be the regular language denoted by the NFA (Q,Σ, q, δ, {q′}).
Claim 5.0.2. For every i < t, (σ, σ′, L[ρ(ki), ρ(ki+1)]) has a strict codirect solution.

Proof. We show that for every i < t, w[ki+1..ki+1] is a solution for (σ, σ′, L[ρ(ki), ρ(ki+1)]),
witnessed by vki+1, . . . , vki+1

.
Clearly, condition 1 still holds. Further, since

|σ(w[1..ki])| = |v1 · · · vki | and |σ(w[1..ki+1])| = |v1 · · · vki+1
|,

we have that |σ(w[ki + 1..ki+1])| = |vki+1 · · · vki+1
| and then

σ(w[ki + 1..ki+1]) = vki+1 · · · vki+1
,

verifying condition 2.
Finally, by the fact that ki and ki+1 are consecutive indices we cannot have some k′

with ki + 1 < k′ < ki+1 so that |σ(w[ki + 1..k′])| = |vki+1 · · · vk′ | since it would imply
|σ(w[1..k′])| = |v1 · · · vk′ | and in this case k′ ≥ ki+1. Then, conditions 3 and 4 hold.

Therefore, we obtain the following reduction.

Claim 5.0.3. (σ, σ′, L) has a codirect solution if, and only if, there exist {q1, . . . , qt} ⊆ Q
with q1 = q0 and qt ∈ F , such that for every i, (σ, σ′, L[qi, qi+1]) has a strict codirect
solution.

This reduction being exponential is outweighed by the fact that we are dealing with a
much harder problem.

With the help of Lemma 5.7 we prove Theorem 5.5 in the next section.

5.2.2. Proof of Theorem 5.5. Since decidability follows from Proposition 5.4, we only show
the lower bound. To this end, we show how to code the existence of a strict codirect solution

as an instance of (REG ∩ v)
?
= ∅.

Proposition 5.8. There is an elementary reduction from the existence of strict codirect

solutions of PEPreg into (REG ∩ v)
?
= ∅.

Given a PEPreg instance (σ, σ′, L), remember that the presence of a strict codirect
solution enforces that if there is a pair (u, v) = (σ(w), σ′(w)) with w ∈ L and u v v, it is
such that for every proper prefix u′ of u the smallest prefix v′ of v such that u′ v v′ must be
so that |v′| > |u′|. In the proof, we convert the rational relation R = {(σ(w), σ′(w)) | w ∈ L}
into a length-preserving regular relation R′ over an extended alphabet Γ ∪ {#}, defined as
the set of all pairs (u, v) ∈ (Γ ∪ {#})∗ × (Γ ∪ {#})∗ so that |u| = |v| and (uΓ, vΓ) ∈ R. If
we now let R′′ to be the regular relation R′ · {(ε, v) | v ∈ {#}∗}, we obtain that:

(i) if w ∈ R′′ ∩ v then w′ ∈ R ∩ v, where w′ is the projection of w onto Γ∗ × Γ∗; and
(ii) if there is some strict codirect solution w′ ∈ R ∩ v, then there is some w ∈ R′′ ∩ v

such that w′ is the projection of w onto Γ∗ × Γ∗.

18 P. BARCELÓ, D. FIGUEIRA, AND L. LIBKIN

Whereas (i) is trivial, (ii) follows from the fact that w′ is a strict codirect solution. If
w′ = (u, v) ∈ R′′, where f(w) = (u)Γ, g(w) = (v)Γ, the complication is now that, since
u ∈ Γ∪{#}, it could be that u 6v v just because there is some # in u that does not appear
in v. But we show how to build (u, v) such that whenever u[i] = # forces v[j] = # with
j > i then we also have that u[j] = #. This repeats, forcing v[k] = # for some k > j and so
on, until we reach the tail of v that has sufficiently many #’s to satisfy all the accumulated
demands for occurrences of #.

Proof of Proposition 5.8. Let (σ, σ′, L) be a PEPreg instance. For every a ∈ Σ, consider
the binary relation Ra consisting of all pairs (u, u′) ∈ (Γ ∪ {#})∗ × (Γ ∪ {#})∗ such that
uΓ = σ(a), u′Γ = σ′(a) and |u| = |u′|. Note that Ra is a length-preserving regular relation.
Let R′ be the set of pairs (u1 · · ·um, u′1 · · ·u′m) such that there exists w ∈ L where |w| = m
and (ui, u

′
i) ∈ Rw[i] for all i. Note that R′ is still a length-preserving regular relation.

Finally, we define R as the set of pairs (u, u′ · u′′) such that (u, u′) ∈ R′ and u′′ ∈ {#}∗. R
is no longer a length-preserving relation, but it is regular. Observe that if R ∩ v 6= ∅, then
(σ, σ′, L) has a solution. Conversely, we show that if (σ, σ′, L) has a strict codirect solution,
then R ∩ v 6= ∅.

Suppose that the PEPreg instance (σ, σ′, L) has a strict codirect solution w ∈ L with
|w| = m, witnessed by v1, . . . , vm. Assume, without any loss of generality, that σ and σ′

are alphabetic morphisms and that m > 1. We exhibit a pair (u, u′) ∈ R such that u v u′.
We define (u, u′) = (u1 · · ·um, u′1 · · ·u′m · u′m+1), where (ui, u

′
i) ∈ Rw[i] for every i ≤ m, and

u′m+1 ∈ {#}∗. In order to give the precise definition of (u, u′), we need to introduce some
concepts first.

Let σ#(a) ∈ Γ∪{#} be # if σ(a) = ε, or σ(a) otherwise; likewise for σ′#. By definition
of strict codirect solution, we have the following.

Claim 5.0.4. σ(w[1]) ∈ Γ.

Proof. Indeed, if σ(w[1]) 6= Γ, then σ(w[1]) = ε and |σ(w[1])| = 0, and then condition 4 of
strict codirectness stating that |σ(w[1])| > |v1|, would be falsified.

Let us define the function g : [m] → [m] so that g(i) is the minimum j such that
v1 · · · vj = σ(w[1..i]). Note that there is always such a j, since |σ(w[1..i])| > 0 by Claim 5.0.4.
Now we show some easy properties of g, necessary to correctly define the witnessing pair
(u, u′) ∈ R such that u v u′.
Claim 5.0.5. g(i) > i for all 1 ≤ i < m, and g(m) = m.

Proof. Let g(i) = j and hence |σ(w[1..i])| = |v1 · · · vj |. First, notice that |v1 · · · vj | =
|σ(w[1..i])| ≥ |v1 · · · vi| by condition 3 of codirectness, and then that j ≥ i. If i < m,
|v1 · · · vi| < |σ(w[1..i])| by condition 4, and thus |v1 · · · vi| < |v1 · · · vj | which implies i < j.
If i = m, then j = i by the fact that j ≥ i = m.

Claim 5.0.6. g is increasing: g(i) ≥ g(j) if i ≥ j.
Proof. Given m ≥ i ≥ j ≥ 1, we have that

|v1 · · · vg(i)| = |σ(w[1..i])| (by definition of g)

≥ |σ(w[1..j])| (since i ≥ j)
= |v1 · · · vg(j)| (by definition of g)

which implies that g(i) ≥ g(j).

GRAPH LOGICS WITH RATIONAL RELATIONS 19

Observation 5.1. For all i ≤ m, if σ(w[i]) ∈ Γ then σ(w[i]) = σ′(w[g(i)]).

The most important pairs of positions (i, j) ∈ [m]× [m] that witness u v u′, are those
so that j = g(i) and σ(w[i]) 6= ε. Once those are fixed, the remaining elements in the
definition of g are also fixed. Let us call G to this set, and let us state some simple facts
for later use.

G = {(i, g(i)) ∈ [m]× [m] | σ(w[i]) ∈ Γ}
Observation 5.2. For every (i, j), (i′, j′) ∈ G, if i 6= i′ then j 6= j′. In other words, g
restricted to {i | σ(w[i]) ∈ Γ} is injective.

Claim 5.2.1. Given i, j with (i, j) ∈ G and i < m, then |σ(w[i..j])| ≥ 2.

Proof. This is because i < j by Claim 5.0.5, σ(w[i]) ∈ Γ by definition of G, and σ(w[j]) =
σ(w[g(i)]) ∈ Γ by definition of g.

Since our coding uses the letter # as some sort of blank symbol, it will be useful to
define the factors ũ1, ũ2, . . . of u that contain exactly one letter from Γ. We then define ũi
as the maximal prefix of ui · · ·um belonging to the following regular expression: Γ · {#}∗.

We are now in good shape to define precisely uj , u
′
j for every j ∈ [m]. For every j < m,

• if (i, j) ∈ G for some i, then

u′j = ũi and uj = σ#(w[j]) · u′j [2..]; and

• if there is no i so that (i, j) ∈ G, then

(uj , u
′
j) = (σ#(w[j]), σ′#(w[j])).

And on the other hand, (um, u
′
m) = (σ#(w[m]), σ′#(w[m])) and u′m+1 = #|u1···um|. Figure 1

contains an example with all the previous definitions. Notice that the definition of uj makes
use of ũj and the definition of ũj seems to make use of uj . We next show that in fact ũj
does not depend on uj , and that the strings above are well defined.

Observation 5.3. For i < m, ũi is a prefix of ui · · ·ug(i)−1.

Proof. By Claim 5.0.5 and Claim 5.2.1, σ(w[i..g(i)]) contains at least two elements and
hence ui · · ·ug(i) contains at least two elements from Γ, namely ui[1] and ug(i)[1]. Then, ũi
cannot contain ui · · ·ug(i)−1 · (ug(i)[1]) as a prefix.

By the above Observation 5.3, to compute ũi we only need uj ’s and u′j ’s with j < i,

and hence (u, u′) is well defined.

Observation 5.4. All the ui’s, u
′
i’s and ũi’s are of the form a ·# · · ·# or # · · ·#, for a ∈ Γ.

From the definition of (u, u′) we obtain the following.

Observation 5.5. For every n ≤ m,

(1) |(u1 · · ·un)Γ| = {i ∈ [n] | ∃j.(i, j) ∈ G} = |σ(w[1..n])|, and
(2) |(u′1 · · ·u′n)Γ| = {j ∈ [n] | ∃i.(i, j) ∈ G} = |σ′(w[1..n])|.

We now show that (u, u′) ∈ R and that u v u′.
Claim 5.5.1. (u, u′) ∈ R.

20 P. BARCELÓ, D. FIGUEIRA, AND L. LIBKIN

ũ₁ ũ₂ ũ₃ ũ₄ ũ₅ ũ₈ ũ₉ ũ₁₁

u₁₀ u₁₁ u₁₂ u₁₃ u₁₄ u₁₅u₁ u₂ u₃ u₄ u₅ u₆ u₇ u₈ u₉

u'₁₇u'₁₀u'₁₁ u'₁₆u'₁₂ u'₁₃u'₁₄u'₁₅u'₁ u'₂ u'₃ u'₄ u'₅ u'₆ u'₇ u'₈ u'₉

a a b a b a c a # c b c # b a

u

u' # # # # # # # # # # # # # # # # #

a b # a c # # a b # a # # # ## # # # # # # # # # # #

#

a b a c a b a

a a b a b a c a c b c b a

a b a c a b a
v₁ v₂ v₃ v₄ v₅ v₆ v₇ v₈ v₉ v₁₀ v₁₁ v₁₂ v₁₃ v₁₄ v₁₅ v₁₆

σ(w)

σ'(w)

G�

#

#

u₁₆

� �� �� �� �

���� ����

���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ����

��
���� ���� ����

� �� �� �� � � �� � � �� �

���� ���� ����
�������� ���� ���� ����

�

Figure 1: Exemplary reduction from PEPreg to (REG∩v)
?
= ∅, for the case σ(w) = abacaba,

σ′(w) = aababacacbcba.

Proof. Note that ui = σ#(w[i]) for all i and then (ui)Γ = σ(w[i]).
We also show that (u′i)Γ = σ′(w[i]). If u′j is such that there is no (i, j) ∈ G, or j = m,

then it is plain that (u′j)Γ = σ′(w[j]) by definition of u′j . On the other hand, if u′j = ũi for

(i, j) ∈ G, then

(u′j)Γ = (ũi)Γ = (ui)Γ = (ui[1])Γ (by Observation 5.4)

= (σ(w[i]))Γ (by def. of ui)

= σ(w[i]) (since σ(w[i]) ∈ Γ by def. of G)

= σ′(w[g(i)]) = σ′(w[j]). (by Observation 5.1)

Thus, every (ui, vi) with i ≤ m is such that (ui)Γ = σ(w[i]) and (u′i)Γ = σ′(w[i]), meaning
that (ui, vi) ∈ Rw[i] for every i ≤ m. Hence, we have that (u1 · · ·um, u′1 · · ·u′m) ∈ R′ and
since u′m+1 ∈ {#}∗, (u, u′) ∈ R.

Next, we prove that u v u′, but before doing so, we need an additional straightforward
claim. Let {i1 < · · · < i|G|} = {i | (i, g(i)) ∈ G}. Note that i1 = 1 by Claim 5.0.4.

Claim 5.5.2. ij+1 ≤ g(ij)

Proof. By means of contradiction, suppose g(ij) < ij+1. Then,

|σ(w[1..g(ij)])| = |{i ∈ [g(ij)] | ∃j.(i, j) ∈ G}| (by Observation 5.5.1)

= |{i ∈ [g(ij)] | ∃j.(i, j) ∈ G}| (since g(ij) < ij+1)

= |σ′(w[1..g(ij)])|. (by Observation 5.5.2)

In other words, there is some k < m such that |σ(w[1..k])| = |σ′(w[1..k])|. This is in
contradiction with condition 4 of strict codirectness. Hence, g(ij) ≥ ij+1.

GRAPH LOGICS WITH RATIONAL RELATIONS 21

Claim 5.5.3. u v u′.
Proof. We factorize u = û1 · · · û|G| and we show that each ûi is a substring of u′ that appears
in an increasing order.

We define ûj = uij · · ·ui(j+1)−1 for every j < |G|, and û|G| = ui|G| · · ·um. Hence, the
ûi’s form a factorization of u. Indeed, this is the unique factorization in which each ûi is of
the form b ·# · · ·# for b ∈ Γ.

For every j < |G|, we show that ûj v u′g(ij).
ûj = uij · · ·ui(j+1)−1

v uij · · ·ug(ij)−1 (by Claim 5.5.2)

v ũij (by Observation 5.3)

= ũg−1(g(ij)) (by Observation 5.2)

= u′g(ij) (by def. of u′)

On the other hand, û|G| v u′g(i|G|)
· u′m+1 = u′m · u′m+1. By Claim 5.0.6, g is increasing.

Hence, u v u′.
By Claims 5.5.1 and 5.5.3, we conclude that R ∩ v 6= ∅.

5.2.3. Subsequence-closed relations. The next question is how far we can extend the decid-

ability of (RAT ∩ v)
?
= ∅. It turns out that if we allow one projection of a rational relation

to be closed under taking subsequences, then we retain decidability.
Let R ⊆ Σ∗ × Γ∗ be a binary relation. Define another binary relation

Rv = {(u,w) | u v u′ and (u′, w) ∈ R for some u′}
Then the class of subsequence-closed relations, or SCR, is the class {Rv | R ∈ RAT}. Note
that the subsequence relation itself is in SCR, since it is obtained by closing the (regular)
equality relation under subsequence. That is, v = {(w,w) | w ∈ Σ∗}v. Not all rational
relations are subsequence-closed (for instance, subword is not).

The following summarizes properties of subsequence-closed relations.

Proposition 5.9.

(1) SCR (RAT.
(2) SCR 6⊆ REG and REG 6⊆ SCR.
(3) A relation R is in SCR iff {w⊗w′ | (w,w′) ∈ R} is accepted by an NFA A = 〈Q,Σ⊥ ×

Σ⊥, q0, δ, F 〉 such that (q, (a, b), q′) ∈ δ implies (q, (⊥, b), q′) ∈ δ for all q, q′ ∈ Q and
a, b ∈ Σ⊥. We call an automaton with such property a subsequence-closed automaton.

Note that (3) is immediate by definition of Rv, (1) is a consequence of (3), and (2) is due
to the fact that v is not regular and that, for example, the identity {(u, u) | u ∈ Σ∗} is not
a subsequence-closed relation.

When an SCR relation is given as an input to a problem, we assume that it is represented
as a subsequence-closed automaton as defined in item (3) in the above proposition.

Note also that (SCR ∩ SCR)
?
= ∅ is decidable in polynomial time: if R,R′ ∈ SCR and

R∩R′ 6= ∅, then (ε, w) ∈ R∩R′ for some w, and hence the problem reduces to simple NFA
nonemptiness checking.

The main result about SCR relations generalizes decidability of (RAT ∩ v)
?
= ∅.

22 P. BARCELÓ, D. FIGUEIRA, AND L. LIBKIN

Theorem 5.10. The problem (RAT ∩ SCR)
?
= ∅ is decidable, with non-mutiply recursive

complexity.

In order to prove Theorem 5.10 we use Lemmas 5.11 and 5.12, as shown below. But
first we need to introduce some additional terminology. We say that (A0,A1) is an instance

of (RAT ∩ SCR)
?
= ∅ over Σ,Γ if A1 is a subsequence-closed automaton over Σ⊥ × Γ⊥, and

A0 is a NFA over Σ⊥ × Γ⊥. Given a (RAT ∩ SCR)
?
= ∅ instance (A0,A1) over Σ,Γ, we say

that (w1, w2) is a solution if w1, w2 ∈ (Σ⊥ × Γ⊥)∗, w1 ∈ L(A1), w2 ∈ L(A0). We say that a
solution (w0, w1) of an instance (A0,A1) over Σ,Γ is synchronized if π2(w0) = π2(w1). We

write (RAT ∩ SCR)syn ?
= ∅ for the problem of whether there is a synchronized solution.

Lemma 5.11. There is a polynomial-time reduction from the problem (RAT ∩ SCR)
?
= ∅

into (RAT ∩ SCR)syn
?
= ∅.

Proof. We show that (RAT ∩ SCR)
?
= ∅ is reducible to the problem of whether there exists

a synchronized solution of (RAT ∩ SCR)
?
= ∅. Suppose that (A0,A1) is an instance of

(RAT ∩ SCR)
?
= ∅ over the alphabets Σ,Γ. Consider the automata A′0,A′1 as the result of

adding all transitions (q, (⊥,⊥), q) for every possible state q to both automata. It is clear
that the relations recognized by these remain unchanged, and that A′0 is still a subsequence-
closed automaton. Moreover, this new instance has a synchronized solution if there is any,
as stated in the following claim.

Claim 5.5.4. There is a synchronized solution for (A′0,A′1) if, and only if, there is a solution
for (A0,A1).

The ‘only if’ part is immediate. For the ‘if’ part, let (w0, w1) be a solution for (A0,A1).
Let w0 = w0,1 · · ·w0,n, w1 = w1,1 · · ·w1,n be factorizations of w0 and w1 such that for every
i ∈ {0, 1}, π2(wi,1) is in {⊥}∗; and for each j > 1, i ∈ 0, 1, π2(wi,j) is in Γ · {⊥}∗. It is plain
that there is always such factorization and that it is unique.

For every j ∈ [n], we define w′0,j = w0,j · (⊥,⊥)k and w′1,j = w1,j · (⊥,⊥)−k, with

k = |w1,j | − |w0,j |, where we assume that (⊥,⊥)m with m ≤ 0 is the empty string. We
define w′0 = w′0,1 · · ·w′0,n, w′1 = w′1,1 · · ·w′1,n. Note that (w′0, w

′
1) is a solution of (A′0,A′1)

since it is the result of adding letters (⊥,⊥) to (w0, w1), which is also a solution of (A′0,A′1).
We have that π2(w′0) = π2(w′1), and therefore that (w′0, w

′
1) is a synchronized solution for

(A′0,A′1).

Lemma 5.12. There is a polynomial-time reduction from (RAT ∩ SCR)syn
?
= ∅ into (RAT∩

v)
?
= ∅.

Proof. The problem of finding a synchronized solution for A0,A1 can be then formulated as
the problem of finding words v, u0, u1 ∈ Σ∗⊥ with |v| = |u0| = |u1|, so that (u0⊗v, u1⊗v) is a
solution. We can compute an NFA A over Σ2

⊥×Γ⊥ from A0,A1, such that (u0, u1, v) ∈ L(A)
if, and only if, u0 ⊗ v ∈ L(A1) and u1 ⊗ v ∈ L(A0). Consider now an automaton A′ over
Σ2
⊥ such that L(A′) = {(u0, u1) | ∃v (u0, u1, v) ∈ L(A)}. It corresponds to the rational

automaton of the projection onto the first and second components of the ternary relation
of A, and it can be computed from A in polynomial time. We then deduce that there exists
u0 ⊗ u1 ∈ L(A′) so that (u0)Σ v (u1)Σ if, and only if, there is v ∈ Γ∗⊥ with |v| = |u0| = |u1|
so that u0 ⊗ v ∈ L(A0) and u1 ⊗ v ∈ L(A1), where (u0)Σ v (u1)Σ. But this condition is in
fact equivalent to R0 ∩R1 6= ∅ (where Ri = {((u)Σ, (v)Σ) | u⊗ v ∈ L(Ai)}), since

GRAPH LOGICS WITH RATIONAL RELATIONS 23

• if ((u1)Σ, (v)Σ) ∈ R1 and (u0)Σ v (u1)Σ, then ((u0)Σ, (v)Σ) ∈ R1 (since R1 ∈ SCR) and
hence ((u0)Σ, (v)Σ) ∈ R0 ∩R1; and
• if R0 ∩ R1 6= ∅, then there exists a synchronized solution (u0 ⊗ v, u1 ⊗ v) of A0,A1; in

other words, there are |v| = |u0| = |u1| so that u0 ⊗ v ∈ L(A0), u1 ⊗ v ∈ L(A1), and
(u0)Σ = (u1)Σ.

We have thus reduced the problem to an instance of (RAT∩v)
?
= ∅: whether there is (u, v)

in the relation denoted by A′ so that u v v.

Proof of Theorem 5.10. The decidability part of Theorem 5.10 follows as a corollary of
Lemmas 5.11 and 5.12, and Proposition 5.4. Of course the complexity is non-multiply-

recursive, since the problem subsumes (REG ∩ v)
?
= ∅ of Theorem 5.5.

Coming back to graph logics, we obtain:

Corollary 5.13. The complexity of evaluation of ECRPQ(v) queries is not bounded by
any multiply-recursive function.

Another corollary can be stated in purely language-theoretic terms.

Corollary 5.14. Let C be a class of binary relations on Σ∗ that is closed under intersection
and contains REG. Then the nonemptiness problem for C is:

• undecidable if � or �suff is in C;
• non-multiply-recursive if v is in C.

5.3. Discussion. In addition to answering some basic language-theoretic questions about
the interaction of regular and rational relations, and to providing the simplest yet problem
with non-multiply-recursive complexity, our results also rule out logical languages for graph
databases that freely combine regular relations and some of the most commonly used ra-
tional relations, such as subword and subsequence. With them, query evaluation becomes
either undecidable or non-multiply-recursive (which means that no realistic algorithm will
be able to solve the hard instances of this problem).

This does not yet fully answer our questions about the evaluation of queries in graph
logics. First, in the case of subsequence (or, more generally, SCR relations) we still do not
know if query evaluation of ECRPQs with such relations is decidable (i.e., what happens
with GenIntS(REG) for such relations S).

Even more importantly, we do not yet know what happens with the complexity of
CRPQs (i.e., GenIntS(REC)) for various relations S. These questions are answered in the
next section.

6. Restricted logics and the generalized intersection problem

The previous section already ruled out some graph logics with rational relations as either
undecidable or decidable with extremely high complexity. This was done merely by ana-
lyzing the intersection problem for binary rational and regular relations. We now move to
the study of the generalized intersection problem, and use it to analyze the complexity of
graph logics in full generality. We first deal with the generalization of the decidable case
(SCR relations), and then consider the problem GenIntS(REC), corresponding to CRPQs
extended with relations S on paths.

24 P. BARCELÓ, D. FIGUEIRA, AND L. LIBKIN

6.1. Generalized intersection problem and subsequence. We know that (REG∩v)
?
=

∅ is decidable, although not multiply-recursive. What about its generalized version? It turns
out it remains decidable.

Theorem 6.1. The problem GenIntv(REG) is decidable. That is, there is an algorithm
that decides, for a given m-ary regular relation R and I ⊆ [m]2, whether R ∩I v 6= ∅.
Proof. Let k ∈ N, I ⊆ [k]× [k] and R ∈ REGk be an instance of the problem. Let us define
G = {(w1, . . . , wk) | ∀(i, j) ∈ I, wi v wj}. We show how to compute if R ∩ G is empty or

not. Let A = (Q, (Σ⊥)k, q0, δ, F) be a NFA over (Σ⊥)k corresponding to R, for simplicity
we assume that it is complete. Remember that every w ∈ L(A) is such that πi(w) is in
Σ∗; {⊥}∗ for every i ∈ [k].

Given u, v ∈ Σ∗, we define u \ v as u[i..], where i is the maximal index such that
u[1..i − 1] v v. In other words, u \ v is the result of removing from u the maximal prefix
that is a subsequence of v.

We define a finite tree t whose every node is labeled with

• a depth n ≥ 0,
• k words w1, . . . , wk ∈ Σn

⊥,
• for every (i, j) ∈ I, a word αij ∈ Σ∗, and
• a state q ∈ Q.

For a node x we denote these labels by x.n, x.w1, . . . , x.wk, x.αij for every (i, j) ∈ I
and x.q respectively. The tree is such that the following conditions are met.

• The root is labeled by x.n = 0, x.w1 = · · · = x.wk = ε, for very (i, j) ∈ I, x.αij = ε, and
x.q = q0.
• A node x has a child y in t if and only if
− y.n = x.n+ 1,
− x.wi = y.wi[1..y.x− 1] for every i ∈ [k],
− there is a transition (x.q, ā, y.q) ∈ δ with ā = (y.wi[y.n])i∈[k], and
− y.αij = (wi)Σ \ (wj)Σ for every (i, j) ∈ I.
• A node x is a leaf in t if and only if is final or saturated (as defined below).

A node x is final if x.q ∈ F and x.αij = ε for all (i, j) ∈ I. It is saturated if it is not
final and there is an ancestor y 6= x such that y.q = x.q and y.αij v x.αij for all (i, j) ∈ I.

Lemma 6.2. The tree t is finite and computable.

Proof. The root is obviously computable, and for every branch, one can compute the list of
children nodes of the bottom-most node of the branch. Indeed these are finite and bounded.
The tree t cannot have an infinite branch. If there was an infinite branch, then as a result
of Higman’s Lemma cum Dickson’s Lemma (and the Pigeonhole principle) there would be
two nodes x 6= y, where x is an ancestor of y, x.q = y.q, and for all (i, j) ∈ I, x.αij v y.αij .
Therefore, y is saturated and it does not have children, contradicting the fact that x and y
are in an infinite branch of t. Since all the branches are finite and the children of any node
are finite, by Kőnig’s Lemma, t is finite, and computable.

Lemma 6.3. If t has a final node, R ∩G 6= ∅.
Proof. If a leaf x is final, consider all the x.n ancestors of x: x0, . . . , xn−1, such that xi.n = i
for every i ∈ [n−1]. Consider the run ρ : [0..x.n]→ Q defined as ρ(x.n) = x.q and ρ(i) = xi.q
for i < x.n. It is easy to see that ρ is an accepting run of A on x.w1⊗. . .⊗x.wk and therefore

GRAPH LOGICS WITH RATIONAL RELATIONS 25

that ((x.w1)Σ, . . . , (x.wk)Σ) ∈ R. On the other hand, for every (i, j) ∈ I, (x.wi)Σ v (x.wj)Σ

since αij = ε. Hence, ((x.w1)Σ, . . . , (x.wk)Σ) ∈ G and thus R ∩G 6= ∅.
Lemma 6.4. If all the leaves of t are saturated, R ∩G = ∅.
Proof. By means of contradiction suppose that there is w = w1 ⊗ · · · ⊗ wk ∈ (Σk

⊥)∗ such
w ∈ L(A) through an accepting run ρ : [0..n]→ Q, and for every (i, j) ∈ I, (wi)Σ v (wj)Σ.
Let |w| = n be of minimal size.

By construction of t, the following claims follow.

Claim 6.0.5. There is a maximal branch x0, . . . , xm in t such that x`.n = `, x`.wj =
wj [1..`], x`.q = ρ(`) for every ` ∈ [0..m] and j ∈ [k].

Claim 6.0.6. For every ` ∈ [0..m] and (i, j) ∈ I,

x`.αij · (wi[`+ 1..])Σ v (wj [`+ 1..])Σ, (6.1)

(wi[1..`− |x`.αij |])Σ v (wj [1..`])Σ. (6.2)

Since we assume that all the leaves of t are saturated, in particular xm is saturated and
there must be some m′ < m such that xm and xm′ verify the saturation conditions.

Consider the following word.

w′ = w[1..m′] · w[m+ 1..]

The run ρ trimmed with the positions [m′ + 1..m] is still an accepting run on w′ (since
ρ(m′) = ρ(m)), and therefore ((π1(w′))Σ, . . . , (πk(w

′))Σ) ∈ R.
For an arbitrary (i, j) ∈ I, we show that (πi(w

′))Σ v (πj(w
′))Σ. First, note that by

(6.2) we have that

(πi(w
′)[1..m′ − |xm′ .αij |])Σ = (wi[1..m

′ − |xm′ .αij |])Σ

v (wj [1..m
′])Σ (by (6.2))

= (πj(w
′)[1..m′])Σ.

Since xm′ and xm verify the saturation conditions, xm′ .αij v xm.αij . Therefore,

(πi(w
′)[m′ − |xm′ .αij |+ 1..])Σ = (πi(w

′)[m′ − |xm′ .αij |+ 1..m′])Σ · (πi(w′)[m′ + 1..])Σ

= xm′ .αij · (wi[m+ 1..])Σ

v xm.αij · (wi[m+ 1..])Σ (since xm′ .αij v xm.αij)
v (wj [m+ 1..])Σ (by (6.1))

= (πj(w
′)[m′ + 1..])Σ

Hence, we showed that there are some `, `′ such that (πi(w
′)[1..`])Σ v (πj(w

′)[1..`′])Σ and
(πi(w

′)[`+ 1..])Σ v (πj(w
′)[`′+ 1..])Σ, for ` = m′−|xm′ .αij | and `′ = m′. Thus, (πi(w

′))Σ v
(πj(w

′))Σ.
This means that ((π1(w′))Σ, . . . , (πk(w

′))Σ) ∈ G and thus ((π1(w′))Σ, . . . , (πk(w
′))Σ) ∈

R ∩G. But this cannot be since |w′| < |w| and w is of minimal length. The contradiction
arises from the assumption that R ∩G 6= ∅. Then, R ∩G = ∅.

Hence, by Lemmas 6.2, 6.3 and 6.4, R ∩G 6= ∅ if and only if t has a final node, which
is computable.

26 P. BARCELÓ, D. FIGUEIRA, AND L. LIBKIN

Corollary 6.5. The query evaluation problem for ECRPQ(v) queries is decidable.

Of course the complexity is extremely high as we already know from Corollary 5.13.

Note that while the intersection problem of v with rational relations is decidable, as is
GenIntv(REG), we lose the decidability of GenIntv(RAT) even in the simplest cases that
go beyond the intersection problem (that is, for ternary relations in RAT and any I that
does not force two words to be the same).

Proposition 6.6. The problem (RAT ∩I v)
?
= ∅ is undecidable even over ternary relations

when I is one of the following:

(1) {(1, 2), (2, 3)},
(2) {(1, 2), (1, 3)}, or
(3) {(1, 2), (3, 2)}.
Proof. The three proofs use a reduction from the PCP problem. Recall that this is defined
as follows. The input are two equally long lists u1, u2, . . . , un and v1, v2, . . . , vn of strings
over alphabet Σ. The PCP problems asks whether there exists a solution for this input, that
is, a sequence of indices i1, i2, . . . , ik such that 1 ≤ ij ≤ n (1 ≤ j ≤ k) and ui1ui2 · · ·uik =
vi1vi2 · · · vik .

(1) {(1, 2), (2, 3)}: The proof goes by reduction from an arbitrary PCP instance given by
lists u1, . . . , un and v1, . . . , vn of strings over alphabet Σ. The following relation

R = {(ui1 · · ·uim , vi1 · · · vim , ui1 · · ·uim) | m ∈ N and i1, . . . , im ∈ [n]}
is rational and R ∩ {(x, y, z) | x v y v z} is non-empty if and only if the instance has a
solution.

(2) {(1, 2), (1, 3)}: The proof again goes by reduction from an arbitrary PCP instance given
by lists u1, . . . , un and v1, . . . , vn of strings over alphabet Σ. For simplicity, and without
any loss of generality, we assume that |ui|, |vi| ≤ 1 for every i. Let Σ̂ = {â | a ∈ Σ}, and for
every w = a1 · · · a` ∈ Σ∗, let ŵ = â1 · · · â`. Consider

R = {(x, y, z) | m ∈ N, i1, . . . , im ∈ [n], w1, w
′
1, . . . , wm+1, w

′
m+1 ∈ Σ∗,

x = ui1 v̂i1ui2 v̂i2 · · ·uim v̂im ,
y = w′1ûi1w

′
2 · · ·w′mûimw′m+1,

z = ŵ1vi1ŵ2 · · · ŵmvimŵm+1}
which is a rational relation. Note that there is some (x, y, z) ∈ R with x v y if and only if
there is some vi1 · · · vim v ui1 · · ·uim . Similarly for x v z. Therefore, there is (x, y, z) ∈ R
with x v y, x v z if and only if vi1 · · · vim = ui1 · · ·uim for some choice of i1, . . . , im.

(3) {(1, 2), (3, 2)}: This is similar to (2), but this time we consider the following rational
relation.

R = {(x, y, z) | m ∈ N, i1, . . . , im ∈ [n], w1, w
′
1, . . . , wm+1, w

′
m+1 ∈ Σ∗,

y = ui1 v̂i1ui2 v̂i2 · · ·uim v̂im ,
x = w′1ûi1w

′
2 · · ·w′mûimw′m+1,

z = ŵ1vi1ŵ2 · · · ŵmvimŵm+1}
Analogously as before, there is (x, y, z) ∈ R with x v y, z v y if and only if the PCP
instance has a solution.

GRAPH LOGICS WITH RATIONAL RELATIONS 27

6.2. Generalized intersection problem for recognizable relations. We now consider
the problem of answering CRPQs with rational relations S, or, equivalently, the problem
GenIntS(REC). Recall that an instance of such a problem consists of an m-ary recognizable
relation R and a set I ⊆ [m]2. The question is whether R∩I S 6= ∅, i.e., whether there exists
a tuple (w1, . . . , wm) ∈ R so that (wi, wj) ∈ S whenever (i, j) ∈ I. It turns out that the
decidability of this problem hinges on the graph-theoretic properties of I. In fact we shall
present a dichotomy result, classifying problems GenIntS(REC) into PSpace-complete and
undecidable depending on the structure of I.

Before stating the result, we need to decide how to represent a recognizable relation R.
Recall that an m-ary R ∈ REC is a union of relations of the form L1× . . .×Lm, where each
Li is a regular language. Hence, as the representation of R we take the set of all such Lis
involved, and as the measure of its complexity, the total size of NFAs defining the Lis.

With a set I ⊆ [m]2 we associate an undirected graph GI whose nodes are 1, . . . ,m
and whose edges are {i, j} such that either (i, j) ∈ I or (j, i) ∈ I. We call an instance of

(REC ∩I S)
?
= ∅ acyclic if GI is an acyclic graph.

Now we can state the dichotomy result.

Theorem 6.7.

• Let S be a binary rational relation. Then acyclic instances of GenIntS(REC) are de-
cidable in PSpace. Moreover, there is a fixed binary relation S0 such that the problem

(REC ∩I S0)
?
= ∅ is PSpace-complete.

• For every I such that GI is not acyclic, there exists a binary rational relation S such that

the problem (REC ∩I S)
?
= ∅ is undecidable.

Proof. For PSpace-hardness we can do an easy reduction from nonemptiness of the in-
tersection of m given NFA’s, which is known to be PSpace-complete [26]. Given m
NFAs A1, . . . ,Am, define the (acyclic) relation I = {(i, i + 1) | 1 ≤ i < m}. Then⋂
i L(Ai) is nonempty if and only if

∏
i L(Ai) ∩I S0 6= ∅, where S0 is the regular relation

{(w,w) | w ∈ Σ∗}.
For the upper bound, we use the following idea: First we show how to construct, in

exponential time, the following for each m-ary recognizable relation R, binary rational
relation S and acyclic I ⊆ [m]2: An m-tape automaton A(R,S, I) that accepts precisely
those w̄ = (w1, . . . , wm) ∈ (Σ∗)m such that w̄ ∈ R and (wi, wj) ∈ S, for each (i, j) ∈ I.
Intuitively, A(R,S, I) represents the “synchronization” of the transducer that accepts R
with a copy of the 2-tape automaton that recognizes S over each projection defined by the
pairs in I. Such synchronization is possible since I is acyclic. Hence, in order to solve
GenIntS(REC) we only need to check A(R,S, I) for nonemptiness. The latter can be done
in PSpace by the standard “on-the-fly” reachability analysis. We proceed with the details
of the construction below.

Recall that rational relations are the ones defined by n-tape automata. We start by
formally defining the class of n-tape automata that we use in this proof. An n-tape au-
tomaton, n > 0, is a tuple A = (Q,Σ, Q0, δ, F), where Q is a finite set of control states, Σ

is a finite alphabet, Q0 ⊆ Q is the set of initial states, δ : Q× (Σ∪ {ε})n → 2Q×([n]∪{[n]}) is
the transition function with ε a symbol not appearing in Σ, and F ⊆ Q is the set of final
states. Intuitively, the transition function specifies how A moves in a situation when it is in
state q reading symbol ā ∈ Σn: If (q′, j) ∈ δ(q, ā), where j ∈ [n], then A is allowed to enter
state q′ and move its j-th head one position to the right of its tape. If (q′, [n]) ∈ δ(q, ā)

28 P. BARCELÓ, D. FIGUEIRA, AND L. LIBKIN

then A is allowed to enter state q′ and move each one of its heads one position to the right
of its tape.

Given a tuple w̄ = (w1, . . . , wn) ∈ (Σ∗)n such that wi is of length pi ≥ 0, for each
1 ≤ i ≤ n, a run of A over w̄ is a sequence q0 P0 q1 P1 · · · qk−1 Pk−1 qk, for k ≥ 0, such that:

(1) qi ∈ Q, for each 0 ≤ i ≤ k,
(2) q0 ∈ Q0,
(3) Pi is a tuple in ([p1] ∪ {0})× · · · × ([pn] ∪ {0}), for each 0 ≤ i ≤ k − 1 (intuitively, the

Pi’s represent the positions of the n heads of A at each stage of the run. In particular,
the j-th component of Pi represents the position of the j-th head of A in stage i of the
run),

(4) P0 = (b1, . . . , bn), where bi := 0 if wi is the empty word ε (that is, pi = 0) and bi := 1
otherwise (that is, the run starts by initializing each one of the n heads to be in the
initial position of its tape, if possible),

(5) Pk−1 = (p1, . . . , pn), that is, the run ends when each head scans the last position of its
head, and

(6) for each 0 ≤ i ≤ k − 1, if Pi = (r1, . . . , rn) and
(

(π1(w̄))[r1], . . . , (πn(w̄))[rn]
)

= (a1, . . . , an),

where we assume by definition that w[0] = ε, then δ(qi, (a1, . . . , an)) contains a pair of
the form (qi+1, j) such that:
(a) if i < k− 1 then j ∈ [n] and Pi+1 is the tuple (r1, . . . , rj−1, rj + 1, rj+1, . . . , rn). In

such case we say that (qi+1, Pi+1) is a valid transition from (qi, Pi) over w̄ in the
j-th head, and

(b) if i = k− 1 then j = [n]. This is a technical condition that ensures that each head
of A should leave its tape after the last transition in the run is performed.

That is, each run is forced to respect the transition function δ when the n-tape automa-
ton A is in state q reading the symbols in the corresponding positions of its n heads.
Further, the positions of the n heads are updated in the run also according to what is
allowed by δ. Notice that each transition in a run moves a single head, except for the
last one that moves all of them at the same time.

The run is accepting if qk ∈ F (that is, A enters an accepting state after each one of its
heads scans the last position of its own tape).

Each n-tape automaton A defines the language L(A) ⊆ (Σ∗)n of all those w̄ = (w1, . . . ,
wn) ∈ (Σ∗)n such that there is an accepting run of A over w̄. It can be proved with
standard techniques that languages defined by n-ary rational relations are precisely those
defined by n-tape automata. Notice that there is an alternative, more general model of
n-tape automata that allows each transition to move an arbitrary number of heads. It is
easy to see that this model is equivalent in expressive power to the one we present here,
as transitions that move an arbitrary number of heads can easily be encoded by a a series
of single-head transitions. We have decided to use this more restricted version of n-tape
automata here, as it will allow us simplifying some of the technical details in our proof.

Now we continue with the proof that the problem GenIntS(REC) can be solved in
PSpace if I is acyclic (that is, it defines an acyclic undirected graph). The main technical
tool for proving this is the following lemma:

Lemma 6.8. Let R be an m-ary relation in REC, S a binary rational relation, and I a
subset of [m] × [m] that defines an acyclic undirected graph. It is possible to construct,

GRAPH LOGICS WITH RATIONAL RELATIONS 29

in exponential time, an m-tape automaton A(R,S, I) such that the language defined by
A(R,S, I) is precisely the set of words w̄ = (w1, . . . , wm) ∈ (Σ∗)m such that w̄ ∈ R and
(wi, wj) ∈ S for all (i, j) ∈ I.

We start by proving the lemma. The intuitive idea is that A(R,S, I) is an m-tape
automaton that at the same time recognizes R and represents the “synchronization” of the
|I| copies of the 2-tape automaton S over the projections corresponding to the pairs in I.
Since I is acyclic, such synchronization is possible.

Assume that |I| = `. Let t1, . . . , t` be an arbitrary enumeration of the pairs in I. Also,
assume that the recognizable relation R is given as

⋃

i

Ni1 × · · · × Nim ,

where each Nij is an NFA over Σ (without transitions on the empty word). Assume that

the set of states of Nij is Uij , its set of initial states is U0
ij

and its set of final states is UFij .

Further, assume that the 2-tape transducer S is given by the tuple (QS ,Σ, Q
0
S , δS , Q

F
S),

where QS is the set of states, the set of initial states is Q0
S , the set of final states is QFS ,

and δS : QS × (Σ ∪ {ε}) × (Σ ∪ {ε}) → 2Q×({1,2}∪{{1,2}}) is the transition function. We
take |I| = ` disjoint copies S1, . . . , S` of S, such that Si, for each 1 ≤ i ≤ `, is the tuple
(QSi ,Σ, Q

0
Si
, δSi , Q

F
Si

). Without loss of generality we assume that if ti = (j, j′) ∈ [m]× [m]

then δSi is a function from QSi × (Σ ∪ {ε})× (Σ ∪ {ε}) into 2Q×({j,j′}∪{{j,j′}}). We can do
this because I is acyclic, and hence j 6= j′.

The m-tape automaton A(R,S, I) is defined as the tuple (Q,Σ, Q0, δ, F), where:

(1) The set of states Q is
⋃

i

(
Ui1 × · · · × Uim ×QS1 × · · · ×QS`

)
.

(2) The initial states in Q0 are precisely those in
⋃

i

(
U0
i1 × · · · × U0

im ×Q0
S1
× · · · ×Q0

S`

)
.

(3) The final states in F are precisely those in
⋃

i

(
UFi1 × · · · × UFim ×QFS1

× · · · ×QFS`
)
.

(4) The transition function δ : Q×(Σ∪{ε})m → 2Q×([m]∪{[m]}) is defined as follows on state
q̄ ∈ Q and symbol ā ∈ (Σ ∪ {ε})m. Assume that q̄ = (ui1 , . . . , uim , q1, . . . , q`), where
uij ∈ Uij for each 1 ≤ j ≤ m, and qj ∈ QSj for each 1 ≤ j ≤ `. Further, assume that
ā = (a1, . . . , am), where aj ∈ (Σ ∪ {ε}) for each 1 ≤ j ≤ m. Then δ(q̄, ā) consists of all
pairs of the form

(
(u′i1 , . . . , u

′
im
, q′1, . . . , q

′
`), j

)
, for j ∈ [m], such that:

(a) u′ik = uik for each k ∈ [m] \ {j}, and there is a transition in Nij from uij into u′ij
labeled aj ; and

(b) for each 1 ≤ k ≤ `, if tk is the pair (k1, k2) ∈ [m] × [m] then the following holds:
(1) If j 6∈ {k1, k2} then qk = q′k, and (2) if j ∈ {k1, k2} then (q′k, j) belongs to
δSk(qk, (ak1 , ak2)),

plus all pairs of the form
(
(u′i1 , . . . , u

′
im
, q′1, . . . , q

′
`), [m]

)
such that:

(a) for each 1 ≤ k ≤ m there is a transition in Nik from uik into u′ik labeled ak; and

30 P. BARCELÓ, D. FIGUEIRA, AND L. LIBKIN

(b) for each 1 ≤ k ≤ `, if tk is the pair (k1, k2) ∈ [m]× [m] then (q′k, {{k1, k2}}) belongs
to δSk(qk, (ak1 , ak2)).

Intuitively, δ defines possible transitions of A(R,S, I) that respect the transition func-
tion of each one of the copies of S over its respective projection. Further, while scanning
its tapes the automaton A(R,S, I) also checks that there is an i such that for each
1 ≤ j ≤ m the j-th tape contains a word in the language defined by Nij .

Clearly, A(R,S, I) can be constructed in exponential time from R, S and I. Notice, however,
that states of A(R,S, I) are of polynomial size.

We prove next that for every w̄ = (w1, . . . , wm) ∈ (Σ∗)m it is the case that w̄ is
accepted by A(R,S, I) if and only if w̄ belongs to the language of R and (wi, wj) ∈ S, for
each (i, j) ∈ I.

=⇒) Assume first that w̄ = (w1, . . . , wm) ∈ (Σ∗)m is accepted by A(R,S, I). It is easy to
see from the way A(R,S, I) is defined that, for some i, the projection of the accepting run
of A(R,S, I) on each 1 ≤ j ≤ m defines an accepting run of Nij over wj . Further, for each
(j, k) ∈ I it is the case that the projection of the accepting run of A(R,S, I) on (j, k) defines
an accepting run of S over (wj , wk). We conclude that w̄ belongs to the language of R and
(wj , wk) ∈ S, for each (j, k) ∈ I.

⇐=) Assume, on the other hand, that w̄ = (w1, . . . , wm) ∈ (Σ∗)m belongs to the language
of R and (wi, wj) ∈ S, for each (i, j) ∈ I. Further, assume that the length of wi is pi ≥ 0,
for each 1 ≤ i ≤ m. We prove next that w̄ is accepted by A(R,S, I).

Since w̄ ∈ R it must be the case that w̄ is accepted by Ni1 × · · · ×Nim , for some i. Let
us assume that

ρij := uij ,0 (1)uij ,1 (2) · · · uij ,pj−1 (pj) uij ,pj
is an accepting run of the 1-tape automaton Nij over wj , for each 1 ≤ j ≤ m. Since for
every tj (1 ≤ j ≤ `) of the form (k, k′) ∈ [m]× [m] it is the case that (wk, wk′) ∈ S, there is
an accepting run

λj := qj,0 Pj,0 qj,1 Pj,1 · · · qj,rj Pj,rj qj,rj+1

of Sj over (wk, wk′). We then inductively define a sequence

q̄0 P0 q̄1 P1 · · ·
where each q̄j is a state of Q and each Pj is a tuple in ([p1] ∪ {0}) × · · · × ([pm] ∪ {0}), as
follows:

(1) q̄0 := (ui1,0, . . . , uim,0, q1,0, . . . , q`,0).
(2) P0 = (b1, . . . , bm), where bi := 0 if wi is the empty word and bi := 1 otherwise.
(3) Let j ≥ 0. Assume that q̄j = (ui1 , . . . , uim , q1, . . . , q`), where each uik is a state in Nik

and each qk is a state in Sk, and that Pj = (r1, . . . , rm) ∈ ([p1]∪{0})×· · ·×([pm]∪{0}).
If for every 1 ≤ k ≤ m it is the case that rk = pk then the sequence stops. Otherwise

it proceeds as follows.
If for some 1 ≤ k ≤ m it is the case that uik(rk) is not a subword of the accepting

run ρik ,2 or that for some 1 ≤ k ≤ ` such that tk = (k1, k2) ∈ [m] × [m] it is the case
that qk(rk1 , rk2) is not a subword of the accepting run λk,

3 then the sequence simply
fails.

2Notice that ρik is a word in the language defined by (Uik · [pk])∗ · Uik , and hence it is completely
well-defined whether a word in Uik · [pk] is or not a subword of ρik .

3This is well-defined for essentially the same reasons given in the previous footnote.

GRAPH LOGICS WITH RATIONAL RELATIONS 31

Otherwise check whether there is a 1 ≤ k ≤ m such that the following holds:
(a) rk 6= pk.
(b) For each pair tk1 ∈ I of the form (k, k′) ∈ [m]× [m] it is the case that if q′k1

(r′k, r
′
k′)

is the subword in QSk1
· ([pk] × [pk′]) that immediately follows qk1(rk, rk′) in the

run λk1 ,4 then r′k = rk + 1, and r′k′ = rk′ .
(c) For each pair tk1 ∈ I of the form (k′, k) ∈ [m]× [m] it is the case that if q′k1

(r′k′ , r
′
k)

is the subword in QSk1
· ([pk′] × [pk]) that immediately follows qk1(rk′ , rk) in the

run λk1 , then r′k = rk + 1, and r′k′ = rk′ .
Intuitively, this states that we can move the k-th head of A(R,S, I) and preserve the
transitions on each run of the form λk1 such that Sk1 is a copy of S that has one of its
components reading tape k.

If no such k exists the sequence fails. Otherwise pick the least 1 ≤ k ≤ m that satisfies
the conditions above, and continue the sequence by defining the pair (q̄j+1, Pj+1) as
(

(ui1 , · · · , uik−1
, u′ik , uik+1

, · · · , uim , q′1, · · · , q′`), (r1, · · · , rk−1, rk + 1, rk+1, · · · , rm)
)
,

where the following holds:
(a) u′ik(rk + 1) is the subword in Uik · [pk] that immediately follows uik(rk) in ρik .

(b) For each pair tk1 ∈ I of the form (k, k′) ∈ [m]× [m], it is the case that q′k1
satisfies

that q′k1
(rk + 1, rk′) is the subword in QSk1

· ([pk]× [pk′]) that immediately follows

qk1(rk, rk′) in the run λk1 .
(c) For each pair tk1 ∈ I of the form (k′, k) ∈ [m]× [m], it is the case that q′k1

satisfies

that q′k1
(rk′ , rk + 1) is the subword in QSk1

· ([pk′]× [pk]) that immediately follows

qk1(rk′ , rk) in the run λk1 .
(d) For each pair tk1 ∈ I of the form (k′, k′′) ∈ [m]× [m] such that k′ 6= k and k′′ 6= k,

it is the case that q′k1
= qk1 .

In this case we say that (q̄j+1, Pj+1) is obtained from (q̄j , Pj) by performing a transition
on the k-th head.

We first prove by induction the following crucial property of the sequence q̄0P0q̄1P1 · · · :
The sequence does not fail at any stage j ≥ 0. Clearly, the sequence does not fail in stage
0 given by pair (q̄0, P0). Assume now by induction that the sequence has not failed until
stage j ≥ 0 given by pair (q̄j , Pj), and, further, that the sequence does not stop in stage j.
We prove next that the sequence does not fail in stage j + 1.

If the sequence stops in stage j + 1 it clearly does not fail. Assume then that the
sequence does not stop in stage (j + 1). Also, assume that qj = (ui1 , . . . , uim , q1, . . . , q`),
where each uik is a state in Nik and each qk is a state in Sk. Further, assume that Pj =
(r1, . . . , rm) ∈ ([p1] ∪ {0}) × · · · × ([pm] ∪ {0}). Since the sequence did not stop in stage
j it must be the case that for every 1 ≤ k ≤ m the sequence uik(rk) is a subword of the
accepting run ρik , and that for every 1 ≤ k ≤ ` such that tk = (k1, k2) ∈ [m] × [m] the
sequence qk(rk1 , rk2) is a subword of the accepting run λk.

Assume that (q̄j+1, Pj+1) is obtained from (q̄j , Pj) by performing a transition on the
k-th head, for 1 ≤ k ≤ m. Then the pair (q̄j+1, Pj+1) is of the form:

(
(u′i1 , · · · , u′ik , · · · , u

′
im , q

′
1, · · · , q′`), (r′1, · · · , r′k, · · · , r′m)

)
,

4Notice, since A(R,S, I) does not allow empty transitions, that q′k1(r′k, r
′
k′) is well-defined since the

subword qk1(rk, rk′) appears exactly once in the run λk1 and, further, qk1(rk, rk′) is followed in λk1 by a
subword in QSk1

· ([pk]× [pk′]) because rk 6= pk.

32 P. BARCELÓ, D. FIGUEIRA, AND L. LIBKIN

where the following holds:

(1) u′ik′ = uik′ , for each k′ ∈ [m] \ {k},
(2) u′ik(rk + 1) is the subword in Uik · [pk] that immediately follows uik(rk) in ρik ,

(3) r′k′ = rk′ , for each k′ ∈ [m] \ {k},
(4) r′k = rk + 1,
(5) for each pair tk1 ∈ I of the form (k, k′) ∈ [m]× [m], it is the case that q′k1

satisfies that

q′k1
(rk + 1, rk′) is the subword in QSk1

· ([pk]× [pk′]) that immediately follows qk1(rk, rk′)
in the run λk1 ,

(6) for each pair tk1 ∈ I of the form (k′, k) ∈ [m]× [m], it is the case that q′k1
satisfies that

q′k1
(rk′ , rk + 1) is the subword in QSk1

· ([pk′]× [pk]) that immediately follows qk1(rk′ , rk)
in the run λk1 , and

(7) for each pair tk1 ∈ I of the form (k′, k′′) ∈ [m]× [m] such that k′ 6= k and k′′ 6= k, it is
the case that q′k1

= qk1 .

Then, by inductive hypothesis, it is the case that for every k′ ∈ [m] \ {k} the sequence
u′ik′ (r

′
k′) is a subword of the accepting run ρik′ . For the same reason, for every 1 ≤ k′ ≤ `

such that tk′ = (k1, k2) ∈ [m]× [m], k1 6= k and k2 6= k, it is the case that q′k′(r
′
k1
, r′k2

) is a

subword of the accepting run λk′ . Further, simply by definition u′ik(r′k) is a subword of the

accepting run ρik . Also, by definition, for each pair tk1 ∈ I of the form (k′, k) ∈ [m]× [m],
it is the case that q′k1

(r′k′ , r
′
k) is a subword of the accepting run λk1 , and, similarly, for each

pair tk1 ∈ I of the form (k, k′) ∈ [m]× [m], it is the case that q′k1
(r′k, r

′
k′) is a subword of the

accepting run λk1 . Hence, in order to prove that the sequence does not fail in stage j + 1
it is enough to show that there is an 1 ≤ h ≤ m such that some pair of the form (q̄, P),
where q̄ ∈ Q and P ∈ ([p1]∪ {0})× · · · × ([pm]∪ {0}), can be obtained from (q̄j+1, Pj+1) by
performing a transition on the h-th head.

Since the sequence does not stop in stage j + 1, the set H = {1 ≤ h′ ≤ m | r′h′ 6= ph′}
must be nonempty. Let h1 be the least element in H. Since the underlying undirected graph
of I is acyclic, the connected component of I to which h1 belongs is a tree T . Without loss
of generality we assume that T is rooted at h1.

We start by trying to prove that there is pair of the form (q̄, P), where q̄ ∈ Q and
P ∈ ([p1]∪{0})×· · ·× ([pm]∪{0}), that can be obtained from (q̄j+1, Pj+1) by performing a
transition on the h1-th head. If this is the case we are done and the proof finishes. Assume
otherwise. Then we can assume without loss of generality that there is a pair of the form
tk′ ∈ I of the form (h1, h2) ∈ [m]× [m] such that the subword in QSk′ · ([ph1]× [ph2]) that
immediately follows q′k′(r

′
h1
, r′h2

) in the run λk′ is of the form q′′k′(r
′
h1
, r′h2

+ 1). (That is,

the run λk′ continues from q′k′(r
′
h1
, r′h2

) by moving its second head). The other possibility
is that there is a pair of the form tk′′ ∈ I of the form (h2, h1) ∈ [m] × [m] such that the
subword in QSk′′ · ([ph2] × [ph1]) that immediately follows q′k′′(r

′
h2
, r′h1

) in the run λk′′ is of

the form q′′k′′(r
′
h2

+ 1, r′h1
). But this case is completely symmetric to the previous one.

We then continue by trying to show that there is pair of the form (q̄, P), where q̄ ∈ Q
and P ∈ ([p1]∪{0})×· · ·×([pm]∪{0}), that can be obtained from (q̄j+1, Pj+1) by performing
a transition on the h2-th head. If this is the case then we are ready and the proof finishes.
Assume otherwise. Then again we can assume without loss of generality that there is
a pair of the form tk′′ ∈ I of the form (h2, h3) ∈ [m] × [m] such that the subword in
QSk′′ · ([ph2] × [ph3]) that immediately follows q′k′′(r

′
h2
, r′h3

) in the run λk′′ is of the form

GRAPH LOGICS WITH RATIONAL RELATIONS 33

q′′k′′(r
′
h2
, r′h3

+ 1). (That is, the run λk′′ continues from q′k′′(r
′
h2
, r′h3

) by moving its second
head).

Since T is acyclic and finite, if we iteratively continue in this way from h2 we will
either have to find some h ∈ H such that there is pair of the form (q̄, P), where q̄ ∈ Q and
P ∈ ([p1]∪{0})×· · ·× ([pm]∪{0}), that can be obtained from (q̄j+1, Pj+1) by performing a
transition on the h-th head, or we will have to stop in some h ∈ H that is a leaf in T . But
clearly for this h it must be possible to show that there is pair of the form (q̄, P), where
q̄ ∈ Q and P ∈ ([p1] ∪ {0})× · · · × ([pm] ∪ {0}), that can be obtained from (q̄j+1, Pj+1) by
performing a transition on the h-th head. This shows that the sequence does not fail in
stage j + 1.

We now continue with the proof of the first part of the theorem. Since the sequence
does not fail, and from stage j into stage j+1 the position of at least one head moves to the
right of its tape, the sequence must stop in some stage j ≥ 0 with associated pair (q̄j , Pj).
Then Pj = (p1, . . . , pm). Assume that q̄j = (ui1 , . . . , uim , q1, . . . , q`), where each uik is a
state in Nik and each qk is a state in Sk. Then, from the properties of the sequence, it must
be the case that uik(pk) appears as a subword in the accepting run ρik , for each 1 ≤ k ≤ m,
and for each 1 ≤ k ≤ ` such that tk = (k1, k2) ∈ [m] × [m] it is the case that qk(pk1 , pk2)
appears as a subword in the accepting run λk. Hence uik = uik,pk−1 and qk = qk,rk .

It easily follows from the definition of the sequence (q̄0, P0)(q̄1, P1) · · · and the transition
function δ of A(R,S, I), that the following holds for each k < j: If (q̄k+1, Pk+1) is obtained
from (q̄k, Pk) by performing a transition on the k′-the head, 1 ≤ k′ ≤ m, then (q̄k+1, Pk+1)
is a valid transition from (q̄k, Pk) over w̄ in the k′-th head. Further, assume that

ā =
(

(π1(w̄))[p1], . . . , (πn(w̄))[pn]
)
,

then δ(q̄j , ā) contains a pair of the form (q̄j+1, {[m]}), where:

q̄j+1 :=
(
ui1,p1 , · · · , uim,pm , q1,r1+1, · · · , q`,r`+1

)
.

Clearly, q̄j+1 ∈ F (that is, q̄j+1 is a final state of A(R,S, I)) and we conclude that
q̄0P0q̄1P1 · · · q̄jPj q̄j+1 is an accepting run of A(R,S, I) over w̄, which was to be proved.

We now explain how Theorem 6.7 follows from Lemma 6.8. The lemma tells us that
in order to solve acyclic instances of GenIntS(REC) we can construct, from the m-ary
recognizable relation R, the binary rational relation S and the acyclic I ⊆ [m] × [m], the
m-tape automaton A(R,S, I), and then check A(R,S, I) for nonemptiness. The latter can
be done in polynomial time in the size of A(R,S, I) by performing a simple reachability
analysis in the states of A(R,S, I). This gives us a simple exponential time bound for
the complexity of solving acyclic instances of GenIntS(REC). However, as we mentioned
before, each state in A(R,S, I) is of polynomial size. Thus, checking whether A(R,S, I)
is nonempty can be done in nondeterministic PSpace by using a standard “on-the-fly”
construction of A(R,S, I) as follows: Whenever the reachability algorithm for checking
emptiness of A(R,S, I) wants to move from a state r1 of A(R,S, I) to a state r2, it guesses
r2 and checks whether there is a transition from r1 to r2. Once this is done, the algorithm
can discard r1 and follow from r2. Thus, at each step, the algorithm needs to keep track of at
most two states, each one of polynomial size. From Savitch’s theorem, we know that PSpace
equals nondeterministic PSpace. This shows that acyclic instances of GenIntS(REC) can
be solved in PSpace.

34 P. BARCELÓ, D. FIGUEIRA, AND L. LIBKIN

The proof of the second part of the theorem is by an easy reduction from the PCP
problem (e.g. in the style of the proof of the second part of Theorem 6.10).

6.3. CRPQs with rational relations. The acyclicity condition gives us a robust class
of queries, with an easy syntactic definition, that can be extended with arbitrary rational
relations. Note that acyclicity is a very standard restriction imposed on database queries to
achieve better behavior, often with respect to complexity; it is in general known to be easy
to enforce syntactically, and to yield benefits from both the semantics and query evaluation
point of view. This is the approach we follow here.

Recall that CRPQ(S) queries are those of the form

ϕ(x̄) = ∃ȳ
(m∧

i=1

(ui
χi:Li−→ u′i) ∧

∧

(i,j)∈I

S(χi, χj)
)
,

see (4.2) in Sec.4. We call such a query acyclic if GI , the underlying undirected graph of I,
is acyclic.

Theorem 6.9. The query evaluation problem for acyclic CRPQ(S) queries is decidable
for every binary rational relation S. Its combined complexity is PSpace-complete, and data
complexity is NLogSpace-complete.

Proof. We provide a nondeterministic PSpace algorithm that solves the query evaluation
problem when we assume the query to be part of the input (i.e. combined complexity).
Then the result will follow from Savitch’s theorem, that states that PSpace equals nonde-
terministic PSpace.

Given a graph G, a tuple ā of nodes, and acyclic CRPQ(S) query of the form

ϕ(x̄) = ∃ȳ
(m∧

i=1

(ui
ρi:Li−→ u′i) ∧

∧

(i,j)∈I

S(ρi, ρj)
)
,

the algorithm starts by guessing a polynomial size assignment b̄ for the existentially quanti-
fied variables of ϕ(x̄), that is, the variables in ȳ. It then checks that G |= ψ(ā, b̄), assuming
that ψ(x̄, ȳ) is the CRPQ(S) formula

(m∧

i=1

(ui
ρi:Li−→ u′i) ∧

∧

(i,j)∈I

S(ρi, ρj)
)
.

If this is the case the algorithm accepts and declares that G |= ϕ(ā). Otherwise it rejects
and declares that G 6|= ϕ(ā).

By using essentially the same techniques as in the proof of Lemma 4.1, one can show
that there is a polynomial time translation that, given G and ψ(ā, b̄), constructs an acyclic
instance of GenIntS(REC) such that the answer to this instance is ‘yes’ iff G |= ψ(ā, b̄).
From Theorem 6.7 we know that acyclic instances of GenIntS(REC) can be solved in
PSpace, and hence that the algorithm described above can be performed in nondetermin-
istic PSpace.

With respect to the data complexity, we start with the following observation. Acyclic
instances of GenIntS(REC) can be solved in NLogSpace for m-ary relations in REC, if we
assume m to be fixed. The proof of this fact mimicks the proof of the PSpace upper bound
in Theorem 6.7, but this time we assume the arity of R to be fixed. In such case A(R,S, I)

GRAPH LOGICS WITH RATIONAL RELATIONS 35

is of polynomial size, and each one of its states is of logarithmic size. We can easily check
A(R,S, I) for nonemptiness in NLogSpace in this case, by performing a standard “on-the-
fly” reachability analysis.

We provide an NLogSpace algorithm that solves the query evaluation problem when
we assume the query to be fixed (i.e. data complexity). Consider a fixed acyclic CRPQ(S)
query of the form

ϕ(x̄) = ∃ȳ
(m∧

i=1

(ui
ρi:Li−→ u′i) ∧

∧

(i,j)∈I

S(ρi, ρj)
)
.

Given a graph G and tuple ā of nodes, the algorithm constructs (using the proof of Lemma
4.1) in deterministic logarithmic space an acyclic instance of GenIntS(REC), given by
recognizable relation R of fixed arity m (this follows from the fact that ϕ(x̄) is fixed), and
fixed I ⊆ [m] × [m], such that the answer to this instance is ‘yes’ iff G |= ϕ(ā). Since
the arity of R is fixed, our previous observation tells us that we can solve the instance of
GenIntS(REC) given by R and I in NLogSpace. But NLogSpace reductions compose,
and hence the data complexity of the query evaluation problem for CRPQ(S) queries is
also NLogSpace.

Thus, we get not only the possibility of extending CRPQs with rational relations but
also a good complexity of query evaluation. The NLogSpace-data complexity matches
that of RPQs, CRPQs, and ECRPQs [16, 17, 4], and the combined complexity matches
that of first-order logic, or ECRPQs without extra relations.

The next natural question is whether we can recover decidability for weaker syntactic
conditions by putting restrictions on a class of relations S. The answer to this is positive
if we consider directed acyclicity of I, rather than acyclicity of the underlying undirected
graph of I. Then we get decidability for the class of SCR relations. In fact, we have a
dichotomy similar to that of Theorem 6.7.

Theorem 6.10.

• Let S be a relation from SCR. Then (REC ∩I S)
?
= ∅ is decidable in NExptime if I is a

directed acyclic graph.

• There is a relation I with a directed cycle and S ∈ SCR such that (REC ∩I S)
?
= ∅ is

undecidable.

Proof. We start by proving the first item. In order to do that, we first prove a small model

property for the size of the witnesses of the instances in (REC ∩I S)
?
= ∅, when S is a relation

in SCR and I is a DAG. Let R be an m-ary recognizable relation, m > 0, and I ⊆ [m]× [m]
that defines a DAG. Assume that both R and S are over Σ. Then the following holds:
Assume R ∩I S 6= ∅. There is w̄ = (w1, . . . , wm) ∈ (Σ∗)m of at most exponential size that
is accepted by R and such that (wi, wj) ∈ S, for each (i, j) ∈ I. We prove this small model
property by applying usual cutting techniques.

Assume that R is given as ⋃

i

Ni1 × · · · × Nim ,

where each Nij is an NFA over Σ. Further, assume that S is given as one of the 2-tape
NFAs used in the PSpace upper bound of Theorem 6.7. That is, S defined by the tuple
(QS ,Σ, Q

0
S , δS , Q

F
S), where QS is the set of states, the set of initial states is Q0

S , the set of

36 P. BARCELÓ, D. FIGUEIRA, AND L. LIBKIN

final states is QFS , and δS : QS × (Σ∪ {ε})× (Σ∪ {ε})→ 2Q×({1,2}∪{{1,2}}) is the transition
function. Assume also that there is ū = (u1, . . . , um) ∈ (Σ∗)m that is accepted by R such
that (ui, uj) ∈ S, for each (i, j) ∈ I. Then ū is accepted by Ni1 × · · · × Nim , for some i.

Since I is a DAG it has a topological order on [m]. We assume without loss of generality
that such topological order is precisely the linear order on [m]. We prove the following
invariant on 1 ≤ ` ≤ m: There exists w̄ = (w1, . . . , wm) ∈ (Σ∗)m such that (1) w̄ is
accepted by R, (2) (wj , wk) ∈ S, for each (j, k) ∈ I, and (3) each w`′ with `′ ≤ ` is of at
most exponential size. Clearly this proves our small model property on ` = m. The proof
is by induction.

The basis case is ` = 1. We start from ū and “cut” its first component in order to
satisfy the invariant. By using standard pumping techniques it is possible to show that
there is a subsequence w1 of u1 of size at most O(|Ni1 |) that is accepted by Ni1 . Clearly the
tuple (w1, u2, . . . , um) belongs to R. Further, for each pair of the form (1, j) in I it is the
case that (w1, uj) ∈ S. This is the case because (u1, uj) ∈ S, u1 v wj and S ∈ SCR. Notice
that we do not need to consider pairs of the form (j, 1) since we are assuming that the
linear order on [m] is a topological order of I. This implies that (w1, u2, . . . , um) satisfies
our invariant on ` = 1.

Assume now that the invariant holds for ` < m. Then there exists w̄ = (w1, . . . , wm) ∈
(Σ∗)m such that (1) w̄ is accepted by R, (2) (wj , wk) ∈ S, for each (j, k) ∈ I, and (3) each
w`′ with `′ ≤ ` is of at most exponential size. We proceed to “cut” w`+1 while preserving
the invariant. Let I(` + 1) be {1 ≤ j ≤ ` | (j, ` + 1) ∈ I}. Let ρj be an accepting run
of S over (wj , w`+1), for each j ∈ I(` + 1). Further, let P be the set of all positions
1 ≤ k ≤ |w`+1| such that for some j ∈ I(` + 1) the accepting run ρj contains a subword
of the form q (k′, k) q′ (k′ + 1, k), where q, q′ ∈ QS and 1 ≤ k′ ≤ |wj |. That is, P defines
the set of positions over w`+1, in which the accepting run ρj of S over (wj , w`+1), for some
j ∈ I(` + 1), makes a move on the head positioned over wj . Intuitively, these are the
positions of w`+1 that should not be “cut” in order to maintain the invariant. Notice that
the size of P is bounded by s := Σ1≤`′≤`|w`′ |, and hence from the inductive hypothesis the
size of P is exponentially bounded.

By using standard pumping techniques it is possible to show that there is a subsequence
w′`+1 of w`+1 of size at most |Ni`+1

| · |P| · |I(`+ 1) · |QS | · |Σ|+ 2, such that w′`+1 is accepted
by Ni`+1

and (wj , w
′
`+1) is accepted by S, for each j ∈ I(`+ 1). Assume this is not the case,

and that the shortest subsequence w′`+1 of w`+1 that satisfies this condition is of length
strictly bigger than |Ni`+1

| · |P| · |I(` + 1)| · |QS | · |Σ| + 2. Then there exist two positions
1 ≤ i < j ≤ |w`+1| such that (i) k 6∈ P, for each i ≤ k ≤ j, (ii) the labels of i and j in w`+1

coincide, (iii) the run ρs assigns the same state to both i and j, for each s ∈ I(`+ 1), and
(iv) some accepting run of N`+1 assigns the same state to both i and j. Let w′′`+1 be the
subsequence of w′`+1 that is obtained by cutting all positions i ≤ k ≤ j− 1. Clearly, w′′`+1 is
shorter than w′`+1 and is accepted by N`+1. Further, (ws, w

′′
`+1) is accepted by S, for every

s ∈ I(` + 1). This is because (ws, w
′
`+1) is invariant with respect to the accepting run ρs,

for each s ∈ I(` + 1), as the cutting does not include elements in P (that is, we only cut
elements in which ρs does not need to synchronize with the head positioned over ws) and
ρs assigns the same state to both i and j, which have, in addition, the same label. This is
a contradiction.

We claim that w̄′ = (w1, . . . , w`, w
′
`+1, w`+2, · · · , wm) ∈ (Σ∗)m satisfies the invariant.

Clearly, w̄′ is accepted by R since w′`+1 is accepted by Ni`+1
and, by inductive hypothesis, wj

GRAPH LOGICS WITH RATIONAL RELATIONS 37

is accepted by Nij , for each j ∈ [m]\{`+1}. Further, simply by definition it is the case that
(wj , w

′
`+1) ∈ S, for each j ∈ I(`+1). Moreover, (w′`+1, wj) ∈ S, for each (`+1, j) ∈ I, simply

because w′`+1 v w`+1 and S ∈ SCR. The remaining pairs in I are satisfied by induction
hypothesis. Finally, w′`+1 is of size at most O(|Ni`+1

| · |P| · |I(`+ 1)| · |QS | · |Σ|), and hence,
by inductive hypothesis, it is of size at most exponential. By inductive hypothesis, each w`′
with `′ ≤ ` is of size at most exponential.

It is now simple to prove the first part of the theorem using the small model property.
In fact, in order to check whether R ∩I S 6= ∅, for S ∈ SCR, we only need to guess an
exponential size witness w̄, and then check in polynomial time that it satisfies R and each
projection in I satisfies S. This algorithm clearly works in nondeterministic exponential
time.

Now we prove the second item. We reduce from the PCP problem. Assume that
the input to PCP are two equally long lists a1, a2, . . . , an and b1, b2, . . . , bn of strings over
alphabet Σ. Recall that we want to decide whether there exists a solution for this input, that
is, a sequence of indices i1, i2, . . . , ik such that 1 ≤ ij ≤ n (1 ≤ j ≤ k) and ai1ai2 · · · aik =
bi1bi2 · · · bik .

Assume without loss of generality that Σ is disjoint from N. Corresponding to every
input a1, a2, . . . , an and b1, b2, . . . , bn of PCP over alphabet Σ, we define the following:

• An alphabet Σ(n) := Σ ∪ {1, 2, . . . , n};
• a regular language Ra,n := (

⋃
1≤i≤n ai · i)∗;

• a regular language Rb,n := (
⋃

1≤j≤n bj · j)∗.
Consider a ternary recognizable relation R over alphabet Σ(n) ∪ {?, †}, where ? and †

are symbols not appearing in Σ(n), defined as
(
? ·Σ∗

)
×
(
† ·Ra,n

)
×
(
† ·Rb,n

)
.

Further, consider a binary relation S over (Σ(n) ∪ {?, †})∗ defined as the union of the
following sets:

(1) {(w,w′) ∈ († · (Σ(n))∗)× († · (Σ(n))∗) | w{1,...,n} v w′{1,...,n}}.
(2) {(w,w′) ∈ († · (Σ(n))∗)× (? · Σ∗) | wΣ v w′Σ}.
(3) {(w,w′) ∈ (? · Σ∗)× († · (Σ(n))∗) | wΣ v w′Σ}.
The intuition is that S takes care that indices in the sequences are consistent. It is easy to
see that S is a rational relation, which implies that Sv is in SCR.

From input a1, . . . , an and b1, . . . , bn to the PCP problem, we construct an instance of
GenIntSv(REC) defined by the recognizable relation R and

I = {(1, 2), (2, 1), (1, 3), (3, 1), (2, 3), (3, 2)}.
We claim that R ∩I S 6= ∅ if and only if the PCP instance given by lists a1, . . . , an and
b1, . . . , bn has a solution.

Assume first that R ∩I S 6= ∅. Hence there are words w1 ∈ (? · Σ∗), w2 ∈ († · Ra,n)
and w3 ∈ († · Rb,n), such that (wi, wj) belongs to Sv, for each (i, j) ∈ I. Since (2, 3) ∈ I,
it must be the case that (w2, w3) belongs to Sv. Thus, since the first symbol of both w2

and w3 is †, it must be the case that (w2){1,...,n} v (w3){1,...,n}. For the same reasons, and
given that (3, 2) ∈ I, it must be the case that (w3){1,...,n} v (w2){1,...,n}. We conclude that
(w2){1,...,n} = (w3){1,...,n}.

38 P. BARCELÓ, D. FIGUEIRA, AND L. LIBKIN

Since (1, 2) ∈ I, it must be the case that (w1, w2) belongs to Sv. Thus, since the first
symbol of w1 is ? and the first symbol of w2 is †, it must be the case that (w1)Σ v (w2)Σ.
For the same reasons, and given that (2, 1) ∈ I, it must be the case that (w2)Σ v (w1)Σ.
We conclude that (w1)Σ = (w2)Σ.

Mimicking the same argument, but this time using the fact that {(1, 3), (3, 1)} ⊆ I, we
conclude that (w1)Σ = (w3)Σ. But then (w2)Σ = (w3)Σ (because (w1)Σ = (w2)Σ).

Assume (w2){1,...,n} = (w3){1,...,n} = i1i2 · · · in, where each ij ∈ [n]. Then from the
fact that (w2)Σ = (w3)Σ we conclude that ai1ai2 · · · ain = bi1bi2 · · · bin , and hence that the
instance of the PCP problem given by a1, . . . , an and b1, . . . , bn has a solution.

The other direction, that is, that the fact that the instance of the PCP problem given
by a1, . . . , an and b1, . . . , bn has a solution implies that R∩I S 6= ∅, can be proved using the
same arguments.

In particular, if we have a CRPQ(S) query of the form

∃ȳ
(m∧

i=1

(ui
χi:Li−→ u′i) ∧

∧

(i,j)∈I

S(χi, χj)
)
,

where I is acyclic (as a directed graph) and S ∈ SCR, then query evaluation has NExptime
combined complexity.

The proof of this result is quite different from the upper bound proof of Theorem 6.7,
since the set of witnesses for the generalized intersection problem is no longer guaranteed
to be rational without the undirected acyclicity condition. Instead, here we establish the
finite-model property, which implies the result.

Also, as a corollary to the proof of Theorem 6.10, we get the following result:

Proposition 6.11. Let S ∈ SCR be a partial order. Then GenIntS(REC) is decidable in
NExptime.

Proof. As in the previous proof, we start by proving a small model property for the size of
the witnesses of the instances in GenIntS(REC), for S a partial order in SCR. Let R be an
m-ary recognizable relation, m > 0, and I ⊆ [m]× [m]. Assume that both R and S are over
Σ. Then the following holds: Assume R∩I S 6= ∅. There is w̄ = (w1, . . . , wm) ∈ (Σ∗)m of at
most exponential size that is accepted by R and such that (wi, wj) ∈ S, for each (i, j) ∈ I.
We prove this small model property by applying usual cutting techniques.

Assume that R is given as ⋃

i

Ni1 × · · · × Nim ,

where eachNij is an NFA over Σ. Further, assume that S is given as the 2-tape transducer S

defined by the tuple (QS ,Σ, Q
0
S , δS , Q

F
S), where QS is the set of states, the set of initial states

is Q0
S , the set of final states is QFS , and δS : QS× (Σ∪{ε})× (Σ∪{ε})→ 2Q×({1,2}∪{{1,2}}) is

the transition function. Assume also that there is ū = (u1, . . . , um) ∈ (Σ∗)m that is accepted
by R and such that (ui, uj) ∈ S, for each (i, j) ∈ I. Then ū is accepted by Ni1 × · · · ×Nim ,
for some i.

Let I+ be the transitive closure of I. Notice, since S defines a partial order over Σ∗,
that (uj , uk) ∈ S, for each (j, k) ∈ I+. Further, for every pair (j, k) ∈ [m] × [m] such that
{(j, k), (k, j)} ⊆ I+ we must have that uj = uk. We need to maintain such equality when

GRAPH LOGICS WITH RATIONAL RELATIONS 39

applying our cutting techniques over ū. In order to do that we define an equivalence relation
EI over [m] as follows:

EI := {(j, k) ∈ [m]× [m] | j = k or {(j, k), (k, j)} ⊆ I+}.
Hence EI contains all pairs (j, k) ∈ [m]× [m] such that I implies uj = uk. Take the quotient
[m]/EI , and consider the restriction I([m]/EI) of I over [m]/EI , defined in the expected way:
([j]EI , [k]EI) ∈ I([m]/EI) if and only if (j′, k′) ∈ I, for some j′ ∈ [j]EI and k′ ∈ [k]EI . Notice
that I([m]/EI) defines a DAG over [m]/EI .

Consider now a new input to GenIntS(REC), given this time by I([m]/EI) ⊆ ([m]/EI)×
([m]/EI), and the recognizable relation R′ defined as

∏

[j]EI∈[m]/EI

M[j]EI
i ,

where M[j]EI
i =

⋂
k∈[j]EI

Nik . Notice that this new input may be of exponential size in the

size of R.
Assume that [m]/EI consists of p ≤ m equivalence classes and, without loss of generality,

that these correspond to the first p indices of [m]. Hence each product in R′ is of the form∏Mi1 × · · · ×Mip , whereMij is defined as the intersection of all NFAs in the equivalence
class [j]EI . Also, I([m]/EI) is the restriction of I to [p]× [p]. Then it must be the case that
(u1, . . . , up) ∈ (Σ∗)p belongs to R′ and (uj , uk) ∈ S, for each (j, k) ∈ I([m]/EI). Further,
from every witness to the fact that R′∩I([m]/EI)S 6= ∅ we can construct in polynomial time a
witness to the fact that R∩IS 6= ∅. Hence, in order to prove our small model property it will
be enough to prove the following: There is w̄ = (w1, . . . , wp) ∈ (Σ∗)p of at most exponential
size (in R) that is accepted by R′ and such that (wj , wk) ∈ S, for each (j, k) ∈ I([m]/EI).

The latter can be done by mimicking the inductive proof of the first part of Theorem
6.10. We only have to deal now with the issue that some of the NFAs that define R′ may be
exponential in the size of R. However, by following the inductive proof one observes that
this is not a problem, and that the same exponential bound holds in this case.

It is now simple to prove the first part of the theorem using the small model property.
In fact, in order to check whether R ∩I S 6= ∅, for S a partial order in SCR, we only need
to guess an exponential size witness w̄, and then check in exponential time that it satisfies
R and each projection in I satisfies S. This algorithm clearly works in nondeterministic
exponential time.

By applying similar techniques to those in the proof of Theorem 6.9 we obtain the
following.

Corollary 6.12. If S ∈ SCR is a partial order, then CRPQ(S) queries can be evaluated
with NExptime combined complexity. In particular, CRPQ(v) queries have NExptime
combined complexity.

We do not have at this point a matching lower bound for the complexity CRPQ(v)
queries. Notice that an easy PSpace lower bound follows by a reduction from the intersec-
tion problem for NFAs, as the one presented in the proof of Theorem 6.7.

The last question is whether these results can be extended to other relations considered
here, such as subword and suffix. We do not know the result for subword (which appears
to be hard), but we do have a matching complexity bound for the suffix relation.

40 P. BARCELÓ, D. FIGUEIRA, AND L. LIBKIN

Proposition 6.13. The problem GenInt�suff
(REC) is decidable in NExptime. In partic-

ular, CRPQ(�suff) queries can be evaluated with NExptime combined complexity.

Proof. We only prove that GenInt�suff
(REC) is decidable in NExptime. The fact that

CRPQ(�suff) queries can be evaluated with NExptime combined complexity follows easily
from this by applying the same techniques as in the proof of Theorem 6.9.

We start by proving a small model property for the size of the witnesses of the instances
in GenInt�suff

(REC). Let R be an m-ary recognizable relation, m > 0, and I ⊆ [m]× [m].
Assume that both R and �suff are over Σ. Then the following holds: Assume it is the case
that R∩I {�suff} 6= ∅. There is w̄ = (w1, . . . , wm) ∈ (Σ∗)m of at most exponential size that
is accepted by R and such that wi �suff wj , for each (i, j) ∈ I. We prove this small model
property by applying cutting techniques.

Assume that R is given as ⋃

i

Ni1 × · · · × Nim ,

where each Nij is an NFA over Σ. We assume, without loss of generality, that I defines
a DAG over [m] × [m]. In fact, assume otherwise; that is, I does not define a DAG over
[m]× [m]. Since �suff defines a partial order over Σ∗, we can always reduce in polynomial
time the instance of GenInt�suff

(REC) given by R and I to an “equivalent” instance of
GenInt�suff

(REC) given by recognizable relation R′ of arity m′ ≤ m and I ′ ⊆ [m′] × [m′]
such that I ′ defines a DAG. We already showed how to do this for an arbitrary partial order
over Σ∗ in the proof of Proposition 6.11, so we prefer not to repeat the argument here,
and simply assume that I defines a DAG over [m] × [m]. Since I defines a DAG it has a
topological order over [m]. We assume without loss of generality that such topological order
is precisely the linear order on [m].

Assume then that there is ū = (u1, . . . , um) ∈ (Σ∗)m that is accepted by R and such
that ui �suff uj , for each (i, j) ∈ I. Then ū is accepted by Ni1 × · · · × Nim , for some i.
Assume that the length of uj is pj ≥ 0, for each 1 ≤ j ≤ m. Our goal is to “cut” ū in order
to obtain an exponential size witness to the fact that R ∩I {�suff} 6= ∅.

We recursively define the set Mk of marked positions in string uk, 1 ≤ k ≤ m, as
follows:

• No position in u1 is marked.
• For each 1 < k ≤ m the set Mk of marked positions in uk is defined as the union of

the marked positions in uk with respect to j, for each j < k such that (j, k) ∈ I, where
the latter is defined as follows. Assume that Mj is the set of marked positions in uj .
Then the set Mk of positions 1 ≤ ` ≤ pk that are marked in uk with respect to j is
{r + pk − pj | r = 1 or r ∈Mj}. (Notice that pk − pj ≥ 0 since uj �suff uk, and hence
1 ≤ r + pk − pj ≤ pk for each r ∈Mj and for r = 1).

Intuitively, Mk consists of those positions 1 ≤ ` ≤ pk such that for some j < k with
(j, k) ∈ I+, where I+ is the transitive closure of I, it is the case that that uk = uk[1, `−1]·uj .
Or, in other words, the fact that uj �suff uk starts to be “witnessed” at position ` of uk. We
assume theMk’s to be linearly ordered by the restriction of the linear order 1 < 2 < · · · < m
to Mk. By a simple inductive argument it is possible to prove that the size of Mk is
polynomially bounded in m, for each 1 ≤ k ≤ m.

Since uj �suff uk, for each (j, k) ∈ I, this implies that the labels in some positions of
uj are preserved in the respective positions of uk that witness the fact that uj �suff uk.
The important thing to notice is that, since we are dealing with �suff , the following holds:

GRAPH LOGICS WITH RATIONAL RELATIONS 41

For each position p that is “copied” from uj into uk in order to satisfy uj �suff uk, the
distance from p to the last element of uj equals the distance from the copy of p in uk to
the last position of uk. That is, distances to the last element of the string are preserved
when copying positions (and labels) in order to satisfy I. We need to take care of this
information when “cutting” ū in order to obtain an exponential size witness for the fact
that R∩I {�suff} 6= ∅. In order to do this we define for each 0 ≤ r ≤ max {pk | 1 ≤ k ≤ m},
a binary relation

r
⇀ on {u1, . . . , um} such that uj

r
⇀ uk if pj − r > 0 and (j, k) ∈ I. This

implies that position pj − r of uj is “copied” as position pk − r of uk in order to satisfy the
fact that uj �suff uk.

But in order to consistently “cut” ū, we need to preserve the suffix relation both with
respect to forward and backward edges of the graph defined by I. In order to do that we

define
r

 as (

r
⇀ ∪ (

r
⇀)−1). Further, since �suff is a partial order over Σ∗, and hence it

defines a transitive relation, it is important for us also to consider the transitive closure

(
r

)+ of the binary relation

r

. Intuitively, uj(

r

)+uk, for 1 ≤ j, k ≤ m, if position pj − r

of uj has to be “copied” into position pk − r of uk in order for ū to satisfy the pairs in I
with respect to �suff .

Let t := |Ni1 | · |Ni2 | · · · |Nim | and s := (
∑

1≤k≤m |Mk|) + 1. We claim the following:

There is w̄ = (w1, . . . , wm) ∈ (Σ∗)m such that: (1) w̄ is accepted by R, (2) wi �suff wj , for
each (i, j) ∈ I, and (3) for each 1 ≤ k ≤ m the number of positions in wk between any two
consecutive positions in Mk is bounded by s · t · 2m · |Σ|m. This clearly implies our small
model property.

Assume that ū does not satisfy this. Then there exists 1 ≤ j ≤ m and two consecutive
positions p and p′ inMj , such that the number of positions in uj between p and p′ is bigger
than s · t · 2m · |Σ|m. But this implies that there are two positions pj − r and pj − r′ (r > r′)
between p and p′ in uj such that the following hold:

(1) {1 ≤ k ≤ m | uj(
r

)+uk} = {1 ≤ k ≤ m | uj(

r′

)+uk}. Intuitively, this says that the
set of strings in which position pj − r of uj is “copied” coincides with the set of strings
in which position pj − r′ of uj is “copied”.

(2) For each k such that uj(
r

)+uk it is the case that neither pk− r nor pk− r′ is a marked

position in Mk, and there is no marked position in Mk in between pk − r and pk − r′
in uk.

(3) The state assigned by the accepting run of Nij over uj to position pj − r of uj is the
same than the one assigned to position pj − r′.

(4) The state assigned by the accepting run of Nik over uk to the “copy” pk − r of position

pj − r over uk, for each k such that uj(
r

)+uk, is the same than the one assigned to the

“copy” pk − r′ of position pj − r′ over uk.
(5) The symbol in position pj − r of uj is the same as the symbol in position pj − r′ of uj .

(6) For each k such that uj(
r

)+uk it is the case that the symbol in position pk − r of uk

is the same as the symbol in position pk − r′ of uk.

Intuitively, this states that if we “cut” the string uj from position pj − r + 1 to pj − r′,
and string uk from position pk − r + 1 to pk − r′, for each k such that uj(

r

)+uk, then the

resulting ū′ = (u′1, . . . , u
′
m) ∈ (Σ)m satisfies the following: (1) ū′ is accepted by R, and (2)

for each (j, k) ∈ I it is the case that u′j �suff u
′
k. We formally prove this below. Notice for

the time being that this implies our small model property. Indeed, if we recursively apply

42 P. BARCELÓ, D. FIGUEIRA, AND L. LIBKIN

this procedure to ū we will end up with w̄ = (w1, . . . , wm) ∈ (Σ∗)m such that: (1) w̄ is
accepted by R, (2) wj �suff wk, for each (j, k) ∈ I, and (3) for each 1 ≤ k ≤ m the number
of positions in wk between any two consecutive positions inMk is bounded by s ·t ·2m · |Σ|m.

Let ū′ = (u′1, . . . , u
′
m) ∈ (Σ)m be the result of applying once the cutting procedure

described above to ū = (u1, . . . , um), starting from string ūj by cutting positions from
pj − r + 1 to pj − r′ (r > r′). It is not hard to see that ū′ is accepted by R, since each
uk has been cut in a way that is invariant with respect to the accepting run of Nik over
uk. Assume that (`, k) ∈ I. We need to prove that u′` �suff u′k. If u` = u′` and uk = u′k
then u′` �suff u

′
k by assumption. Assume then that at least one of u` and uk has been cut.

Suppose first that u` has been cut from position p` − r + 1 to position p` − r′ in order to

obtain u′`. Then uj(
r

)+u` and uj(

r′

)+u`. Clearly, it is also the case that u`
r

 uk and

u`
r′

 uk, which implies that uj(
r

)+uk and uj(

r′

)+uk. Thus, uk is also cut from position
pk − r + 1 to pk − r′ in order to obtain u′k, and hence u′` �suff u′k. Suppose, on the other
hand, that u` has not been cut but uk has been cut from position pk − r + 1 to position
pk − r′ in order to obtain u′k. We consider three cases:

(1) r′ > pj − 1. Then clearly u′k �suff u
′
j .

(2) r′ ≤ pj −1 and r > pj −1. This cannot be the case since then either pk− r′ is a marked
position inMk (when r′ = pj − 1), or pk − r and pk − r′ have a marked position inMk

in between (namely, pk − pj + 1). Any of these contradicts the fact that a cutting of uk
could be applied from position pk − r to position pk − r′ in order to obtain u′k.

(3) r′ < pj − 1 and r ≥ pj − 1. Similar to the previous one.

(4) r < pj − 1. But then clearly u`
r

 uk and u`

r′

 uk, which implies that uj(
r

)+u`

and uj(
r′

)+u`. This implies that u` should have also been cut from position p` − r to
position p` − r′ in order to obtain u′`, which is a contradiction.

We can finally prove the theorem using the small model property. In fact, in order to check
whether R ∩I {�suff} 6= ∅ we only need to guess an exponential size witness w̄, and then
check in polynomial time that it satisfies R and each projection in I satisfies �suff . This
algorithm clearly works in nondeterministic exponential time.

7. Conclusions

Motivated by problems arising in studying logics on graphs (as well as some verification
problems), we studied the intersection problem for rational relations with recognizable and
regular relations over words. We have looked at rational relations such as subword �,
suffix �suff , and subsequence v, which are often needed in graph querying tasks. The main
results on the complexity of the intersection and generalized intersection problems, as well
as the combined complexity of evaluating different classes of logical queries over graphs are
summarized in Fig. 2. Several results generalizing those (e.g., to the class of SCR relations)
were also shown. Two problems related to the interaction of the subword relation with
recognizable relations remain open and appear to be hard.

From the practical point of view, as rational-relation comparisons are demanded by
many applications of graph data, our results essentially say that such comparisons should
not be used together with regular-relation comparisons, and that they need to form acyclic
patterns (easily enforced syntactically) for efficient evaluation.

GRAPH LOGICS WITH RATIONAL RELATIONS 43

R ∈ REC R ∈ REG R ∈ RAT

(R ∩ �)
?
= ∅ undecidable undecidable

(R ∩ �suff)
?
= ∅ Ptime (cf. [6]) undecidable undecidable

(R ∩ v)
?
= ∅ decidable, NMR decidable, NMR [13]

(R ∩I �)
?
= ∅ ? undecidable

(R ∩I �suff)
?
= ∅ NExptime undecidable undecidable

(R ∩I v)
?
= ∅ NExptime decidable, NMR

S = v S = �suff S = � S arbitrary in RAT
ECRPQ(S) decidable, NMR undecidable undecidable undecidable
CRPQ(S) NExptime NExptime ? undecidable

acyclic CRPQ(S) PSpace PSpace PSpace PSpace

Figure 2: Complexity of the intersection and generalized intersection problems, and com-
bined complexity of graph queries for subword (�), suffix (�suff), and subsequence
(v) relations. NMR stands for non-multiply-recursive lower bound.

So far we dealt with the classical setting of graph data [1, 9, 10, 16, 17] in which the
model of data is that of a graph with labels from a finite alphabet. In both graph data
and verification problems it is often necessary to deal with the extended case of infinite
alphabets (say, with graphs holding data values describing its nodes), and languages that
query both topology and data have been proposed recently [24, 27]. A natural question is
to extend the positive results shown here to such a setting.

References

[1] R. Angles, C. Gutiérrez. Survey of graph database models. ACM Computing Surveys 40(1), 2008.
[2] K. Anyanwu, A. P. Sheth. ρ-Queries: enabling querying for semantic associations on the semantic web.

12th International World Wide Web Conference (WWW), pages 690–699, 2003.
[3] P. Barceló, D. Figueira, L. Libkin. Graph Logics with Rational Relations and the Generalized Inter-

section Problem. 27th Annual IEEE Symposium on Logic in Computer Science (LICS), pages 115–124,
2012.

[4] P. Barceló, L. Libkin, A. W. Lin, P. Wood. Expressive languages for path queries over graph-structured
data. ACM Transactions on Database Systems, 37(4) (2012).

[5] M. Benedikt, L. Libkin, T. Schwentick, L. Segoufin. Definable relations and first-order query languages
over strings. Journal of the ACM 50(5):694-751, 2003.

[6] J. Berstel. Transductions and Context-Free Languages. B. G. Teubner, 1979.
[7] A. Blumensath and E. Grädel. Automatic structures. 15th Annual IEEE Symposium on Logic in Com-

puter Science (LICS), pages 51–62, 2000.
[8] V. Bruyère, G. Hansel, C. Michaux, R. Villemaire. Logic and p-recognizable sets of integers. Bulletin

of the Belgium Mathematical Society 1, 191–238, 1994.
[9] D. Calvanese, G. de Giacomo, M. Lenzerini, M. Y. Vardi. Containment of conjunctive regular path

queries with inverse. 7th International Conference on Principles of Knowledge Representation and Rea-
soning (KR), pages 176–185, 2000.

[10] D. Calvanese, G. de Giacomo, M. Lenzerini, M. Y. Vardi. View-based query processing and constraint
satisfaction. 15th Annual IEEE Symposium on Logic in Computer Science (LICS), pages 361-371, 2000.

[11] L. Cardelli, P. Gardner, G. Ghelli. A spatial logic for querying graphs. 29th International Colloquium
on Automata, Languages and Programming (ICALP), pages 597-610, 2002.

44 P. BARCELÓ, D. FIGUEIRA, AND L. LIBKIN

[12] O. Carton, C. Choffrut, S. Grigorieff. Decision problems among the main subfamilies of rational rela-
tions. Informatique Théorique et Applications, 40, pages 255–275, 2006.

[13] P. Chambart, Ph. Schnoebelen. Post embedding problem is not primitive recursive, with applications
to channel systems. 27th International Conference on the Foundations of Software Technology and
Theoretical Computer Science (FSTTCS), pages 265–276, 2007.

[14] P. Chambart, Ph. Schnoebelen. The ordinal recursive complexity of lossy channel systems. 23rd Annual
IEEE Symposium on Logic in Computer Science (LICS), pages 205–216, 2008.

[15] C. Choffrut. Relations over words and logic: a chronology. Bulletin of the EATCS 89, 159–163, 2006.
[16] M. P. Consens, A. O. Mendelzon. GraphLog: a visual formalism for real life recursion. 9th ACM

Symposium on Principles of Database Systems (PODS), pages 404–416, 1990.
[17] I. Cruz, A. Mendelzon, P. Wood. A graphical query language supporting recursion. ACM Special Interest

Group on Management of Data (SIGMOD), pages 323-330, 1987.
[18] A. Dawar, P. Gardner, G. Ghelli. Expressiveness and complexity of graph logic. Information and Com-

putation 205, pages 263-310, 2007.
[19] A. Deutsch, V. Tannen. Optimization properties for classes of conjunctive regular path queries. 8th

International Workshop on Database Programming Languages (DBPL), pages 21–39, 2001.
[20] L. E. Dickson. Finiteness of the odd perfect and primitive abundant numbers with n distinct prime

factors. The American Journal of Mathematics, 35(4), pages 413–422, 1913.
[21] C. Elgot and J. Mezei. On relations defined by generalized finite automata. IBM Journal of Research

and Development 9, pages 47–68, 1965.
[22] D. Florescu, A. Levy, D. Suciu. Query containment for conjunctive queries with regular expressions.

17th ACM Symposium on Principles of Database Systems (PODS), pages 139–148, 1998.
[23] C. Frougny and J. Sakarovitch. Synchronized rational relations of finite and infinite words. Theoretical

Computer Science 108, pages 45–82, 1993.
[24] O. Grumberg, O. Kupferman, S. Sheinvald. Variable automata over infinite alphabets. 4th International

Conference on Language and Automata Theory and Applications (LATA), pages 561–572, 2010.
[25] G. Higman. Ordering by divisibility in abstract algebras. Proceedings of the London Mathematical So-

ciety (3), 2(7), pages 326–336, 1952.
[26] D. Kozen. Lower bounds for natural proof systems. 18th Annual Symposium on Foundations of Com-

puter Science (FOCS), pages 254-266, 1977.
[27] L. Libkin, D. Vrgoč. Regular path queries on graphs with data. 15th International Conference on

Database Theory (ICDT), 2012.
[28] L. Lisovik. The identity problem for regular events over the direct product of free and cyclic semigroups.

Doklady Akad. Nauk Ukr., ser. A, 6 (1979), 410–413.
[29] M.H. Löb and S.S. Wainer. Hierarchies of number theoretic functions, I. Archiv fr mathematische Logik

und Grundlagenforschung, 13:39–51, 1970.
[30] M. Nivat. Transduction des langages de Chomsky. Annales de l’Institut Fourier 18 (1968), 339–455.
[31] H. Rose. Subrecursion: Functions and Hierarchies. Clarendon Press, 1984.
[32] S. Schmitz and Ph. Schnoebelen Multiply-Recursive Upper Bounds with Higman’s Lemma. 38th Inter-

national Colloquium on Automata, Languages and Programming (ICALP), pages 441–452, 2011.
[33] Ph. Schnoebelen. Verifying lossy channel systems has nonprimitive recursive complexity. Information

Processing Letters 83, pages 251-261, 2002.
[34] W. Thomas. Infinite trees and automaton-definable relations over ω-words. Theoretical Computer Sci-

ence 103, pages 143–159, 1992.

This work is licensed under the Creative Commons Attribution-NoDerivs License. To view
a copy of this license, visit http://creativecommons.org/licenses/by-nd/2.0/ or send a
letter to Creative Commons, 171 Second St, Suite 300, San Francisco, CA 94105, USA, or
Eisenacher Strasse 2, 10777 Berlin, Germany

	1. Introduction
	2. Preliminaries
	3. Generalized intersection problem
	4. Graph logics and the generalized intersection problem
	5. The intersection problem: decidable and undecidable cases
	5.1. Undecidable cases: subword and relatives
	5.2. Decidable cases: subsequence and relatives
	5.3. Discussion

	6. Restricted logics and the generalized intersection problem
	6.1. Generalized intersection problem and subsequence
	6.2. Generalized intersection problem for recognizable relations
	6.3. CRPQs with rational relations

	7. Conclusions
	References

