Logical Methods in Computer Science
Vol. 8 (2:10) 2012, pp. 1-51 Submitted Nov. 11, 2011
www.lmcs-online.org Published Jun. 19, 2012

DYNAMIC DEPENDENCY PAIRS
FOR ALGEBRAIC FUNCTIONAL SYSTEMS *

CYNTHIA KOP AND FEMKE VAN RAAMSDONK

Faculty of Sciences, VU University, De Boelelaan 1081a, 1081 HV Amsterdam, The Netherlands
e-mail address: kop@few.vu.nl, femke@few.vu.nl

ABSTRACT. We extend the higher-order termination method of dynamic dependency pairs
to Algebraic Functional Systems (AFSs). In this setting, simply typed lambda-terms with
algebraic reduction and separate (3-steps are considered. For left-linear AFSs, the method
is shown to be complete. For so-called local AFSs we define a variation of usable rules and
an extension of argument filterings. All these techniques have been implemented in the
higher-order termination tool WANDA.

1. INTRODUCTION

An important method to (automatically) prove termination of first-order term rewrite
systems is the dependency pair approach by Arts and Giesl [2]. This approach transforms a
term rewrite system into groups of ordering constraints, such that rewriting is terminating
if and only if the groups of constraints are (separately) solvable. These constraints can
be simplified using for instance argument filterings and usable rules [2], 1T}, [15]. Various
optimisations of the method have been studied, see for example [14} [10].

This paper contributes to the study of dependency pairs for higher-order rewriting. It is
not easy to adapt the approach to a higher-order setting, primarily due to the presence of
B-reduction. A first, very natural extension to Nipkow’s HRSs (higher-order rewrite systems)
is given in [35], but it relies on the subterm property. Due to this property it is impossible
to define optimisations like argument filterings. Moreover, unlike the first-order case, the
method is not complete: a terminating system may well have an infinite dependency chain.

Since then, the focus of higher-order dependency pairs has been on the so-called static
style. This style imposes limitations on the rewrite rules which allow the subterm property
to be dropped. For static dependency pairs, too, there are no completeness results available.

Here we return to the original, dynamic style of dependency pairs, and show how the
subterm property can be weakened. We introduce variations of usable rules and argument

1998 ACM Subject Classification: F4.1,F4.2.
Key words and phrases: higher-order rewriting, termination, dynamic dependency pairs.
* Extended version of [24].
This research is supported by the Netherlands Organisation for Scientific Research (NWO-EW) under
grant 612.000.629 (Higher-Order Termination).

|IEE| LOGICAL METHODS © C. Kop and F. van Raamsdonk
IN COMPUTER SCIENCE DOI:10.2168/LMCS-8 (2:10) 2012 @ |Creative Commons|

http://creativecommons.org/about/licenses

2 C. KOP AND F. VAN RAAMSDONK

filterings, and use weakly monotonic algebras and recursive path orderings to orient the
resulting constraints. While special interest is reserved for the class of so-called local systems,
the core technique is defined without restrictions, and is complete for left-linear systems.

Unlike previous approaches, we do not consider rewriting modulo 8/n (Nipkow’s HRSs
[30]), but with S-reduction as a separate step (Jouannaud and Okada’s AFSs [1§]). Although
higher-order path orderings are commonly studied in the setting of AFSs [19, 4], and it is
the only style of higher-order rewriting which currently appears in the annual termination
competition [38], there is so far little work on dependency pairs for this formalism.

This paper is an extended version of [24], with complete proofs and some new features.

Paper Setup We briefly discuss the ideas from studies of dependency pairs for HRSs and
also for applicative systems in Section[2] In Section [3] we recapitulate the AFS formalism, and
in Section [4] we give a brief overview of the dependency pair framework for first-order term
rewriting. Basic (unrestricted) definitions of higher-order dependency pairs, dependency
chains, the dependency graph and reduction orderings are discussed in Section

In order to obtain stronger results, we then introduce a restriction “local”, which many
common AFSs satisfy, and define formative rules (a variation of usable rules) for local AFSs.
We show how the results from Section [5| can be strenghtened for local systems.

To find reduction orderings for dependency pair constraints, Section [7] discusses two
approaches: first, we will see how dependency pairs interact with weakly monotonic algebras,
and then we define argument functions, a generalisation of argument filterings.

In Section [§] we discuss some improvements when dealing with non-collapsing dependency
pairs; for example, in this setting we can use the subterm criterion and usable rules. Section[J]
summarises all results, both for local and non-local systems, in a ready-to-use algorithm.

In Section [10| we discuss how the theory in this paper can be used for polymorphic and
otherwise infinite systems, and how the static and dynamic dependency pair approaches can
be combined. Experimental results with our tool WANDA are presented in Section [T1}

2. BACKGROUND AND RELATED WORK

In this section, we discuss the existing work on higher-order dependency pairs.

The existing work on higher-order dependency pairs can roughly be split along two axes.
On the one axis, the higher-order formalism; we distinguish between applicative rewriting,
rewriting modulo 8 (HRSs), and with § as a separate step (AFSs). On the other the style of
dependency pairs, with common styles being dynamic and static. Figure [l| gives an overview.

‘ Applicative HRS AFS
Dynamic | [25] [1] 135] [23] 124] this paper
Static | [27] [28] 3] [34] [26] [36] [3]
Other | [16] - -

Figure 1: Papers on Higher Order Dependency Pairs

The dynamic and static approach differ in the treatment of leading variables in the right-hand
sides of rules (subterms z - s1---s, with n > 0 and x a free variable). In the dynamic
approach, such subterms lead to a dependency pair; in the static approach they do not.
First-order techniques like argument filterings, the subterm criterion and usable rules are
easier to extend to a static approach, while equivalence results tend to be limited to the
dynamic style. Static dependency pairs rely on certain restrictions on the rules.

DYNAMIC HIGHER-ORDER DEPENDENCY PAIRS 3

Dependency pairs for applicative term rewriting In applicative systems, terms are
built from variables, constants and a binary application operator. Functional variables may
be present, as in x - a, but there is no abstraction, as in Ax.x. There are various styles of
applicative rewriting, both untyped, simply typed, and with alternative forms of typing.

A dynamic approach was defined both for untyped and simply-typed applicative systems
n [25], along with a definition of argument filterings. A first static approach appears in [27]
and is improved in [28]; the method is restricted to ‘plain function passing’ systems where,
intuitively, leading variables are harmless. Due to the lack of binders, it is also possible to
eliminate leading variables by instantiating them, as is done for simply-typed systems in [1];
in [I6], an uncurrying transformation from untyped applicative systems to normal first-order
systems is used. These techniques have no parallel in rewriting with binders.

Unfortunately, strong though the results for applicative systems may be, they are not
directly useful in the setting of AFSs, since termination may be lost by adding A-abstraction
and S-reduction. For example, the simply-typed applicative system app- (abs- F) -2 — F -z,
with F' : ¢t =-¢ a functional variable, x : ¢ a variable, and app : t=t=-¢, abs : (t=1) =1
constants, is terminating because in every step the size of a term decreases. However, adding
A-abstraction and -reduction destroys this property: with w = abs- (Ax.app - x - x) we have
app-w-w=app-(abs- (A\x.app -z -x)) -w— (Ax.app -z -x) - w — app - w - w.

Let us move on to rewriting with binders; most results here are on Nipkow’s HRSs.

Dynamic Dependency Pairs for HRSs A first definition of dependency pairs for HRSs
is given in [35]. Here termination is not equivalent to the absence of infinite dependency
chains, and a term is required to be greater than its subterms (the subterm property), which
makes many optimisations impossible. In [23] (extended abstract) we have discussed how
the subterm property may be weakened by posing restrictions on the rules, and in [24], the
short version of this paper, we have explored an extension of the dynamic approach to AFSs.

Static Dependency Pairs for HRSs The static approach in [27] is moved to the setting
of HRSs in [26], and extended with argument filterings and usable rules in [36]. The static
approach omits dependency pairs f jj(l_’) ~» x - with z a variable, which avoids the need for
a subterm property, but it allows bound variables to become free in the right-hand side of a
dependency pair. The technique is restricted to plain function passing HRSs. A system with
for instance the (terminating) rule h(g(Az. F(x))) — F(a) cannot be handled. Moreover,
the approach is not complete: a terminating AFS may have a static dependency chain.

The definitions for HRSs [35, 26] do not immediately carry over to AFSs, since AFSs may
have rules of functional type, and S-reduction is a separate rewrite step. A short paper by
Blanqui [3] introduces static dependency pairs on a form of rewriting which includes AFSs,
but it poses some restrictions, such as base-type rules. The present work considers dynamic
dependency pairs for AFSs and is most related to [35], but is adapted for the different
formalism. Our method conservatively extends the one for first-order rewriting and provides
a characterisation of termination for left-linear AFSs. We have chosen for a dynamic rather
than a static approach because, although the static approach is stronger when applicable,
the dynamic definitions can be given without restrictions. The restrictions we do provide, to
weaken the subterm property and enable for instance argument filterings, are optional. We
will say some words about integrating the static and dynamic approaches in Section [10}

4 C. KOP AND F. VAN RAAMSDONK

3. PRELIMINARIES

In this section, we present the formalism of Algebraic Functional Systems (AFSs).

We consider higher-order rewriting as defined originally by Jouannaud and Okada [I§],
also called Algebraic Functional Systems (AFSs). Terms are built from simply-typed
variables, abstraction and application (as in the simply-typed A-calculus), and also from
function symbols which take a fixed number of arguments. Terms and matching are modulo
«, and every AFS contains the S-reduction rule. Several variations of the definition of AFSs
exist; here we roughly follow [37, Chapter 11.2.3], which coincides with the format currently
used in the higher-order category of the annual termination competition [38].

Types and Terms Assuming a set B of base types, the set of simple types (or just types) is
generated using the binary type constructor =, according to the following grammar:

T:=B|T=T

The arrow operator is right-associative. Types are denoted by o,7,... and base types
by ¢,k.... A type with at least one occurrence of = is called a functional type. A type
declaration is an expression of the form [0 X ... X 0] =7 with 7 and all o; types; we write
just 7 if n = 0. Type declarations are not types, but are used for typing purposes.

We assume a set V, consisting of for each type infinitely many typed variables, written
as x,v, z,.... We further assume a set F, disjoint from V, consisting of function symbols,
equipped with a type declaration, and written as f, g, ... or using more suggestive notation.
To stress the type (declaration) of a symbol a we may write a : 0. The set of terms over F
consists of expressions s for which we can infer s : o for some type o using the clauses:

(var) T:0o ifr:0€V

(app) s-t:T ifs:o=7andt:o

(abs) AL.S:0=T ifr:ceVands:7

(fun) f(s1,-uy8n) T if filorx...xopn]|=7€Fand s1:01,...,8,:0p

Terms built using these clauses are called respectively a variable, an application, an ab-
straction, and a functional term. Note that a function symbol f : [o7 X ... X 0,] =7 takes
exactly n arguments, and 7 may be a functional type. The A binds occurrences of variables
as in the A-calculus, and term equality is modulo a-conversion (bound variables may be
renamed). A variable in s which is not bound by some X is free, and the set of free variables
of s is denoted by FV(s). Application is left-associative. Let head() denote the head of an
application, so head(s -t) = head(s) and head(s) = s for non-applications.

A substitution [:= §], with & and § non-empty finite vectors of equal length, is the
homomorphic extension of the type-preserving mapping Z +— § from variables to terms.
Substitutions are denoted -y, d, and the result of applying 7 to a term s is denoted sy. The
domain dom(vy) of v = [Z := §] is {Z¥}. Substituting does not capture free variables.

Let O, : 0 be a fresh symbol for every type o. A context C]] is a term with a single
occurrence of some O,. The result of the replacement of O, in C[] by a term s : o is denoted
by C|[s]. Such replacements may capture free variables. For example, (Az.y)[y := x| = A\z. z,
but for C[] = Az. O, we have Clz| = A\z. z.

We say t is a subterm of s, notation s > ¢, if s = C[t] for some context C. If in addition
C # O,, then t is a strict subterm of s, notation s > t.

Rules and Rewriting A rewrite rule over a set of function symbols F is a pair of terms
I — r over F such that [and r have the same type, and all free variables of r also occur in

DYNAMIC HIGHER-ORDER DEPENDENCY PAIRS 5

[. In [2I] some termination-preserving transformations on the general format of AFS-rules
are presented. Using these results, we can additionally assume that a left-hand side [is of
the form f(ly,...,0n) lpt1 - Ly (with m > n > 0), and does not contain subterms of the
form (Az.s)-t. (Many AFSs are defined in this way already.) Note that we do not assume
n-normal or n-exanded forms, and that we may have rules of functional type.
Given a set of rewrite rules R, the rewrite relation —x on terms is given by:

(rule) Clly] —r C[rv] with [— r € R, C a context, v a substitution

(beta) Cl(Az.s)-t] —r C[s[z:=1]]
We sometimes use the notation s —4 t for a rewrite step using (beta). A headmost step is
a reduction s =g t using either clause, where C' has the form O, - s1 - -+ s, with n > 0.

An algebraic functional system (AFS) is a pair (F,R) consisting of a set of function
symbols F and a set R of rewrite rules over F; it is often specified by giving only R.

A function symbol f is a defined symbol of an AFS if there is a rule with left-hand side
flly, .o) - lps1 -+ - U, and a constructor symbol if not. The sets of defined and constructor
symbols are denoted by D and C respectively. A rewrite rule [— r is left-linear if every
variable occurs at most once free in [; an AFS is left-linear if all its rewrite rules are. A rule
[— r is collapsing if head(r) is a variable. A term s is called terminating if every reduction
sequence starting in s is finite; an AFS is terminating if all its terms are.

We assume that an AFS has only finitely many rules. In Section we shortly discuss
how to use dependency pairs to prove termination of AFSs with infinitely many rules.

Example 3.1. The following AFS twice is the running example of this paper. It has the
following four function symbols: o : nat, s : [nat] = nat, | : [nat] = nat, and twice : [nat =
nat]= nat=-nat. There are three rewrite rules:

o) — o
I(s(n)) — s(twice(Az.1(z)) - n)
twice(F) — My.F-(F-y)

Recall that we also have S-reduction steps. The symbol | represents the identity function on
natural numbers. This system is terminating, but this is not trivial to prove; neither recursive
path orderings like HORPO [19] and CPO [4], nor a static dependency pair approach, can
handle the second I-rule, due to the subterm I(x). The static approach gives a constraint
1(s(n)) = 1*(x), which is impossible to satisfy because > must be closed under substitution,
and s(n) might be substituted for the free variable z. CPO gives a similar problem.

4. THE FIRST-ORDER DEPENDENCY PAIR APPROACH

In this section, we recall the dependency pair approach for first-order rewriting. We emphasise
those parts which are relevant for our higher-order approach.

We assume that first-order term rewrite systems (TRSs) are already known; they can
also be thought of as AFSs where all function symbols have a type declaration [o X ...xo0]=0
and where terms are formed without clauses (abs) and (app). In this section we recall
those definitions and results from the theory of dependency pairs for TRSs that we will
generalize or adapt to the higher-order setting in this paper. The definitions here are close to
those in [I3]; our set-up is in between the one for the dependency pairs approach [2] and the
dependency pairs framework [10]. This section is also meant to give additional background
for those not familiar with dependency pairs.

6 C. KOP AND F. VAN RAAMSDONK

4.1. Motivation. Two important properties of the termination method using dependency
pairs are that it is suitable for automation, and that it can be used to prove termination of
TRSs which are not simply terminating. A (well-known) example of such a TRS is:

minus(z,0) — x quot(o,s(y)) — o
minus(s(x),5(y) — minus(z,y) quot(s(x),s(y)) — s(quot(minus(z,y),s(y)))
A TRS is simply terminating if it can be proved terminating using a reduction ordering = (a

well-founded ordering on terms which is both monotonic and closed under substitution) that
satisfies the subterm property, which means that f(s1,...,s,) = s; for every i € {1,...,n}.

4.2. Dependency Pairs. An intuition behind the dependency pair approach is to identify
those parts of the right-hand sides of rewrite rules which may give rise to an infinite reduction.
Suppose we have a minimal non-termating term ¢, so a non-terminating term where all proper
subterms are terminating. An infinite reduction from ¢ has the form ¢t —* lv — ry — ...
with [— r a rewrite rule. Then, a minimal non-terminating subterm of v has as root-symbol
a defined symbol from the pattern of r. Thus, we are interested in subterms of right-hand
sides of rewrite rules with a defined symbol at the root. Such subterms are called candidate
terms of r.

We obtain F* by adding to each symbol f in the signature F of a first-order TRS a
symbol f# with the same arity. The dependency pairs of a rewrite rule f(ly,...,1,) — r are
all pairs fi(ly,...,0,) ~ g*(p1, ..., pm) With 7 > g(p1,...,pm), and g a defined symbol, and
g(p1,...,pm) not a subterm of some ;. The set of all dependency pairs of a TRS (F,R) is
denoted by DP(R).

The quot-example has the following dependency pairs:

minus®(s(z),s(y)) ~ minusf(z,y)
quot®(s(z),s(y)) ~ quotf(minus(z,y),s(y))
quotf(s(z),s(y)) ~ minusf(z,y)

The first and third rewrite rule do not give dependency pairs, because their right-hand sides
do not contain defined symbols. The fourth rule gives two different dependency pairs.

A dependency chain is a sequence [(I; ~ p;, si,t;) | i € N], such that for all 4
(1) i ~ p; € DP(R):
(2) s; = l;7y; and t; = p;y; for some substitution 7;;
(3) t; —>7€ Sit1-
Since t; has the form f#(#) and the marked symbol f* is not used in any rule, the reduction
t; =% si+1 does not use headmost steps. The chain is minimal if all ¢; are terminating
under —x. Termination of a TRS can be characterized using dependency chains:

Theorem 4.1 ([2]). A TRS is terminating if and only if it does not admit a minimal
dependency chain.

A higher-order generalization of this result is provided in Theorems [5.7] and

Example 4.2. The TRS nats(n) — cons(n,nats(s(n))) has an infinite dependency chain

(nats®(n) ~» natsf(s(n)) , nats®(o) , natsf(s(0)))
(natsf(n) ~» nats®(s(n)) , natsf(s(o)) , nats¥(s(s(0)))),

corresponding to the infinite reduction nats(o) — nats(s(o)) — nats(s(s(0))) — ...

DYNAMIC HIGHER-ORDER DEPENDENCY PAIRS 7

4.3. Using a Reduction Pair. A TRS without infinite dependency chain is terminating.
Absence of infinite dependency chains can be demonstrated with a reduction pair. This is a
pair (=, >) of a quasi-order and a well-founded order, such that:

> and > are compatible: either > - > is included in >, or = - > is;

e = and > are both stable (preserved under substitution);

> is monotonic (if s = ¢, then C[s] = C[t]).

Theorem 4.3 ([2]). A TRS is terminating, if there exists a reduction pair (=, >) such that
I > p for all dependency pairs l ~ p, and |l = r for all rulesl — r.

Example 4.4. The quot example is terminating if there is a reduction pair satisfying:

minus(z,0) > = minusf(s(z),s(y)) > minus?(z,y)
minus(s(z),s(y)) > minus(z,y) quot(s(z),s(y)) > quotf(minus(z,y),s(y))
quot(o,s(y)) = o quoti(s(x),s(y)) > minusf(z,y)
quot(s(z),s(y)) = s(quot(minus(z,y),s(y)))

These constraints are oriented with a polynomial interpretation with [minus(z,y)] =
[minust(z,y)] = [2], [quot(z,y)] = [quoth(z,y)] =[] + [y], [s(x)] = [z] +1, [o] = 0:

xr > r+1 > =z
z+1 > =z z+y+2 > xz4+y+1
y+1 > 0 r+y+2 > z
r+y+2 > r+y+2

Note that we needed dependency pairs to use an interpretation like this: the resulting
ordering > is not monotonic, since [minus(s,t)] = [minus(s,u)] even if ¢ > w.

Rather than orienting all dependency pairs at once, we can use a step by step approach.
Let a set of dependency pairs P be called chain-free if there is no minimal dependency chain
using only pairs in PH Note that () is chain-free. The following result has Theorem as
a higher-order counterpart.

Theorem 4.5. A set P = P1 W Py is chain-free if Ps is chain-free, and there is a reduction
pair (=, %) such thatl > p forl~p € P1,l =p forl~pEPyandl =r forl - r e R.

4.4. Argument Filterings. In order to obtain a reduction pair, there are two ways we
could go: either we use approaches like the polynomial interpretations given in Example [£.4]
which directly give us a pair (=, >) (where > may be non-monotonic), or we use an existing
reduction ordering or pair and adapt it with argument filterings. An argument filtering

is a function 7 which maps terms of the form f(z1,...,z,) with f € F¥ either to a term
fx(xiy, ..., x;,) or to one of the x;. An argument filtering is applied to a term as follows:
ﬁ(f(sh R Sn)) - fﬂ(ﬁ(sh)a <o 7ﬁ(sim))) if ’/T(f(f)) - fﬁ(miu ce 7xim)
T(f(s1,0--,80) = T(si) if 7(f(%)) = =
T(r) = = if x a variable

Phrased differently, 7(f(s1,...,81)) = 7(f(21,...,2n))[x1 :=T(s1),..., 2y := T(sy)]. Note
that an argument filtering works both on unmarked and on marked symbols.

Using argument filterings, we can eliminate troublesome subterms of the dependency
pair constraints. To this end, we use the following result, which corresponds to Theorem

n the language of [10], this corresponds to finiteness of the DP problem (P, (), R,minimal).

8 C. KOP AND F. VAN RAAMSDONK

Theorem 4.6. Given a reduction pair (>,>) and an argument filtering 7, define: s = t iff
w(s) >7(t) and s =t iff w(s) > 7(t). Then (=,>) is a reduction pair.

Example 4.7. Recall the constraints given in Example We use the argument filtering
with m(minus(z,y)) = =, w(quot(x,y)) = quot (z) and 7(f(Z)) = fr(Z) for all other
symbols. By Theorem it suffices to find a reduction ordering satisfying:

x >z minus (s;(z),s:(y)) > minush(z,y)
sz(x) > = quott (s (z),s:(y)) > quott(z,s:(y))
quot_(or) > og quott (sy(x),sx(y)) > minus? (z, Y)
quot,(sr(x)) = sx(quot,(x))

These altered constraints can easily be satisfied with a lexicographic path ordering.

4.5. The Subterm Criterion. An alternative to reduction pairs, which often suffices to

eliminate some dependency pairs and is typically easy to check, is the subterm criterion.
A function v that assigns to every n-ary dependency pair symbol f* one of its argument

positions is said to be a projection function. We extend v to a function on terms by defining:

T(fH(s1,...,50)) = si if v(f¥) =i
Theorem 4.8. A set of dependency pairs P = P1 W Pa is chain-free if Pa is chain-free,
and moreover there is a projection function v such that U(l) > U(p) for all dependency pairs
l~pePyand v(l) =7(p) for alll ~ p € Ps.

This holds because for all s; and ¢; in a dependency chain, 7(s;) and 7(t;) are strict
subterms, and therefore terminating under —x U >; see also Theorem

The subterm criterion is not sufficient to show termination of the quot example, but at
least we can use it to eliminate some dependency pairs; choosing v(minus?) = v(quot?) = 2:

D(minust(s(z),s(y))) = s(y) > vy = ﬁ(minusﬁ(w,y))
v(quot®(s(z),s(y))) = s(y) = s(y) = v(quot(minus(z,y),s(y)))
v(quoti(s(z),s(y))) = s(y) > y = v(ninusi(z,y))

This shows that the TRS quot is non-terminating if and only if there is no dependency chain
where every step uses the dependency pair quotf(s(z),s(y)) ~ quotf(minus(z,y),s(y)).

4.6. The Dependency Graph. To determine whether a system has a dependency chain,
it makes sense to ask what form such a chain would have. This question is studied with a
dependency graph, a graph with as nodes
the dependency pairs of R and an edge

from [~ p to u ~ v if py =% ud for C[minusﬁ(s(x),s(y)) ~ minusﬁ(a:,y)J
some substitutions v, d. See for example T
the dependency graph of the quot-TRS. [§ o j
t
If there is a dependency chain quot(s(z), s(y)) ~ minus*(z, y)
[(pi,siyt;) | @ € N], then there is an edge T

in the graph from each p; to p;+1. Since C[quotﬁ(s(x),s(y)) ~ quotf(minus(z, y),s(y))]
the graph is finite, a dependency chain
corresponds to a cycle in the graph.

By definition, if a set of dependency pairs is chain-free, then the same holds for any
subset. Since a dependency graph might have exponentially many cycles, modern approaches
typically consider only mazimal cycles, also called strongly connected components (SCCs).

DYNAMIC HIGHER-ORDER DEPENDENCY PAIRS 9

Theorem 4.9. R is terminating iff every SCC of its dependency graph is chain-free.

This result is extended to AFSs in Lemma [5.12] The dependency graph is not in general
computable, which is why approzimations are often used. An approximation of a dependency
graph G is a graph with the same nodes as G, but which may have additional edges.

The dependency graph of our running example quot has two cycles. In order to
prove termination, it is sufficient to find a reduction pair such that minus?(s(z),s(y)) >
minusf(z,y) and [= r for all rules, and a(nother) reduction pair with quot®(s(z),s(y)) =
quot?(minus(z,y),s(y)) and [= r for all rules. The fact that we can deal with groups of
dependency pairs separately can make it significantly simpler to find reduction pairs.

Extending Theorem we can iterate over a dependency graph approximation, and
obtain the following algorithm (whose higher-order counterpart is presented in Section E[):

Theorem 4.10 ([14]). A TRS is terminating if and only if this can be demonstrated with
the following algorithm.:

(1) calculate dependency pairs, find an approzimation G for the dependency graph;

(2) if G has no cycles, the TRS is terminating; otherwise, choose an SCC P

(3) try finding a projection function v such that (1) >v(p) for at least some | ~ p € P and
(1) > U(p) for the rest; if this succeeds, remove the strictly oriented pairs from G and
continue with 2.

(4) find a reduction pair (>=,>) such that 1 = r for all rules | — r, and for all dependency
pairs L ~ p € P either | = p orl > p; at least one pair must be oriented with = (**);

(5) remove the dependency pairs which were oriented with = from G; continue with @

(**) To find (=, >) we may for instance use argument filterings.

4.7. Usable Rules. We discuss one more optimisation. In the algorithm of Theorem [4.10
we consider in every iteration for a strongly connected component P all rewrite rules. Instead,
we can restrict attention to the rules that may be relevant for constructing a dependency
chain using dependency pairs from P. To this end the concept of usable rules is defined.

First we need some definitions. We denote by f J,s g that there is a rewrite rule
fly, ...) = Clg(r1,...,rm)]. The reflexive-transitive closure of J,, is denoted by J7..
Overloading notation, we write s J7_ ¢ if there is a symbol f in the term s such that f 37 g.
So if not s 7}, g, then s cannot reduce to a term containing the symbol g.

Definition 4.11. The set of usable rules of a term s, notation UR(s), consists of rules

=

g(l) = r € R, where s J7, g. For a set of dependency pairs P, let UR(P) = U, ,cp UR(p).

Using a reasoning originally due to Gramlich [12], it is shown in [I3] that if P is not
chain-free, then there is a dependency chain over P where the reduction t; —* s;11 uses only
the rules in UR(P) U {p(x,y) — =, p(z,y) — y} for some fresh symbol p (these two rules
are usually considered harmless). Thus, in each iteration of the algorithm of Theorem m
we only have to prove [> r for the usable rules of P, rather than for all rules.

5. THE BASIC HIGHER-ORDER DEPENDENCY PAIR APPROACH

In this section we define a basic dependency pair approach for AFSs. We show that an AFS
is terminating if it does not have a minimal dependency chain, and that for left-linear AFSs,
the absence of (minimal) dependency chains characterises termination. As in the first-order
case, we organise the dependency pairs in a graph, and explain how to use reduction pairs.

10 C. KOP AND F. VAN RAAMSDONK

When extending the first-order dependency pair approach to AFSs, new issues arise:

e collapsing rules: non-termination might also be caused by a higher-order variable being
instantiated. For example, the right-hand side of the non-terminating rule f(g(F'),z) — F-z
doesn’t even have defined symbols;

e dangling variables: given a rule £(o) — g(A\z.£(x)), the bound variable z should probably
not become free in the corresponding dependency pair;

e rules of functional type may lead to non-termination only because of their interaction with
the (applicative) context they appear in;

e typing issues: to be able to use the usual term orderings, both sides of a dependency
pair (or the constraints generated from it) should have, usually, the same type modulo
renamings of base types.

Typing issues will be addressed in Section for the other problems we have to take
precautions already in the definition of dependency pairs.

5.1. Dependency Pairs. In order to define dependency pairs, we first pre-process the
rewrite rules and define candidate terms. The complete definition of dependency pairs may
at first seem somewhat baroque; this is partly because we have to work around the issues
of functional rules and dangling variables, and partly because of several optimisations we
include to obtain an easier result system.

Pre-processing Pre-processing the rewrite rules is done by completion:

Definition 5.1 (Pre-processing Rules). An AFS is completed by adding for each rule
of the form [— Axy...xz,.r, with r not an abstraction, the following n rewrite rules:
l-x1 > Xz xpry ooy Loxy ooy — T

Note that completing an AFS has no effect on termination, since the added rules can be
simulated by at most n + 1 steps using only the original rules.

Example 5.2. The system twice from Example is completed by adding the rewrite rule
twice(F)-n — F - (F -n).

In the remainder of the paper, we assume that all AFSs are completed.

To understand why completion is necessary, consider the AFS with a single rule f(o) —
Azx.f(z) - z. The term f(o) in this AFS is terminating, but there is an infinite reduction
f(o) -0 = (Az.f(z) -x) -0 = f(0) -0 — Rules like this might complicate the analysis
of dependency chains, because the important step does not happen at the top. The pre-
processing makes sure that it could also be done with a topmost step: f(o) - o self-reduces
with a single step using the new rule f(o) - — f(x) - which was added by completion.

It is worth noting that we did not add new rules for all functional rules, only for those
where the right-hand side is an abstraction. A rule f(o) — f(A) of functional type is left
alone. This is an optimisation: it would be natural to add a rule f(o) - x — f(A) - z, but this
might give a dependency pair (o) - ~» A* which won’t be needed. Instead of completing
this rule, we will later add a special dependency pair for it.

Candidate terms In the first-order definition of dependency pairs, we identify subterms
that may give rise to an infinite reduction. Taking subterms in a system with binders is
well-known to be problematic because bound variables may become free. One solution is to

DYNAMIC HIGHER-ORDER DEPENDENCY PAIRS 11

substitute fresh constants in the place of a bound variable which would otherwise become
free. In this way, F' - c is a “subterm” of A\x. F'- (F'- z). This is the approach we take here.

We assume for every type o a fresh symbol ¢, : . Sometimes the sub-script indicating
the type is omitted. The set of all those symbols is denoted by C. The symbols c, are used
to replace bound variables which become free by taking a subterm.

Definition 5.3 (Candidate Terms). Let r be a term in an AFS. A subterm ¢ of r is a
candidate term of r if either ¢t = f(t1,...,tm) - tm+1---tn, with f a defined symbol and
n>m>0,ort=x-t;---t, with free in r and n > 0.

If ¢ is a candidate term of r, and {z1 : 01,...,2, : 0,} is the set of variables which
occur bound in r but free in ¢, then t[x; :=cyy, ..., 2y = Cp,] is a closed candidate term of
r. We denote the set of closed candidate terms of r by Cand(r).

In the AFS twice we have Cand(F-(F-m)) = {F-(F-m), F-m} and Cand(s(twice(Az. |(x))-
n)) = {twice(Az. (z)) -n, twice(Az. (z)), I(cnat)}. If f is a defined symbol, then the candidate
terms of f(a) -b-c-d are f(a), f(a)-b, f(a)-b-cand f(a)-b-c-d. Note that for example
x -y is not a candidate term of g(Ax.x - y) because = occurs only bound.

Dependency Pairs As in the first-order case, the definition of dependency pair uses
marked function symbols. Let F# = FU{f!: 0| f:0 € D}, so F extended with for every
defined symbol f a marked version f* with the same type declaration. We denote by]-"g
the union of F# and C. The marked counterpart of a term s, notation sf, is fﬁ(sl, ey 8p) if
s = f(s1,...,5,) with f in D, and just s otherwise. For example, (twice(F))! = twice’(F)
and (twice(F) - m)* = twice(F) - m. Applications are not marked.

Definition 5.4 (Dependency Pair). The set of dependency pairs of a rewrite rule [— r,

notation DP(I — r), consists of:

e all pairs I ~ pf with p € Cand(r) such that p is no strict subterm of I;

e if [has a functional type o1 =...=0,=1¢ (n > 1) and head(r) is either a variable or a
term f(8) with f € D: all pairs [-y; -+ -y ~ r-y1 -y, with k € {1,...,n} and all y;
are fresh variables.

We use DP(R) (or just DP if R is clear from context) for the set of all dependency pairs of

rewrite rules of an AFS R.

Example 5.5. The set of dependency pairs of the AFS twice consists of:
(s(n)) ~ twice(Az.1(x))-n twice?(F) ~» F - (F - cpat)
5(s(n)) ~ twice*(\z. I(x)) twice*(F) ~ F-cpat
1#(s(n)) ~ I*(cnat) twice(F)-m ~ F-(F-m)
twice(F)-m ~ F-m
The last two dependency pairs originate from the rule added by completion.

The second form of dependency pair deals with functional rules whose right-hand side
is not an abstraction. To illustrate why they are necessary, consider the system with
function symbols A : [o]=0=-0 and B : [o= 0] =0, and one rewrite rule: A(B(F)) — F.
This system has no dependency pairs of the first kind, but does admit a two-step loop:
s:=ABAz.Az)-x)) -B(Az.A(z) - x) = (Az. A(z) - z) - B(Az. A(x) -) =3 5. The rule does
have a dependency pair of the second form, A(B(F)) -z~ F - x.

12 C. KOP AND F. VAN RAAMSDONK

Comparing our approach to static dependency pairs as defined in [26], the two main
differences are that we avoid bound variables becoming free, and that we include collapsing
dependency pairs, where the right-hand side is headed by a variable.

5.2. Dependency Chains. We can now investigate termination using dependency chains:

Definition 5.6. A dependency chain is an infinite sequence [(p;, S;,t;) | i € N] such that
for all 4:
(1) p; € DP U {beta};
(2) if p; = l; ~ p; € DP then there exists a substitution v such that s; = ;v and t; = p;y;
(3) if p; = beta then s; = (Az.u) - v-w; - - - wy and either

(a) k>0 and t; = ulx :=v] - wy -+ - wg, or

(b) k =0 and there exists a term w such that «>w and 2 € FV (w) and t; = w¥[z := v],

but w # x;
(4) t; —>2<n Si+1-
A step —, is obtained by rewriting some u; inside a term of the form f(uq,...,uy) -

Upg1 - Um. If t; = s;41, then also t; —7, s;y1, regardless of whether ¢; has this form. A
dependency chain is minimal if the strict subterms of each t¢; are terminating under —5.

This definition corresponds to the first-order definition, except that a case for S-reduction
is used, and that we explicitly require that ¢; —7 s;;1: this is necessary because ¢; may be
an application rather than a functional term, and consequently may not be marked.

Theorem 5.7. If R is non-terminating, there is a minimal dependency chain over DP(R).

Proof. Given any non-terminating term, let ¢_; be a minimal-sized subterm that is still
non-terminating (g—1 is MNT, or Minimal Non-Terminating). We make the observations:

(i) If an MNT term is reduced at a non-top position, the result is either also MNT, or
terminating. This holds because, if ¢ = C[s] —r C[t] because s —x t, and ¢ is
non-terminating, then so is s, contradicting minimality of ¢ unless C' = O,

(i) If u =}, v, then uf - v¥. This holds by the nature of an internal step.

For any i € NU {—1}, let ¢; be a MNT term, and ¢; = qg. Then ¢; is not an abstraction,
as abstractions can only be reduced by reducing their immediate subterm, contradicting
minimality. For the same reason ¢; cannot have the form z - u; - - - u,, with = a variable, or
flut, ... up) - Upt1 - upy with f a constructor symbol. What remains are the forms:

(A) ¢ = (Az.u)-v-wy-- - wy;

(B) ¢ = f(vi,...,vn) - Upg1 - vy with f € D.

We consider an infinite reduction starting in ¢;. By minimality of ¢; eventually a headmost
step must be taken. In case (A) this must be a S-step because the left-hand sides of rules
have the form f(I1)-lz; therefore, the reduction has the form g, =% (Az.) 0w - w], —p
W[z =] -w]---w, - ... Since also ulz = v] - wy -+ wp, =% U[r =] w]---w), the
immediate beta-reduct of ¢; is non-terminating as well. There are two sub-cases:

e If n > 0, this reduct is MNT by (i); in this case choose ¢; 1 := u[z := v] - wy - - - wy, and
let pit1, Sit1,ti+1 := beta, u;, u;+1. Note that sgﬂ = s;41 and t§+1 = t;11, and that case
of the definition of a dependency chain is satisfied.

DYNAMIC HIGHER-ORDER DEPENDENCY PAIRS 13

o If n =0, let w be a minimal-sized subterm of u where w[x := v] is still non-terminating.
By minimality of ¢; both w and v are terminating, so F'V (w) contains x, but not w = x.
Since w is not a variable, (w[z := v])* = w¥[x := v]. By minimality of w, also w[x := v] is
MNT (its direct subterms have the form w'[z := v] for a subterm w’ of w). Case [3b|is
satisfied with w;+1 := wlz := v] and piy1, Sit1, ti+1 := beta, u;, ugﬂ.

Note that in both sub-cases, case |§| is also satisfied, since t; = s;41.

In case (B), ¢; = f(vi,...,Upn) - Unt1 -+ Um, we can always find a rule | — r and term

q; = ly - vj, vy, such that ¢; —7, ¢;, and ry - v’ - vy, is still non-terminating. Choose

Siv1 = qgﬁ; requirement M| from Definition is satisfied by (ii). Since the rules were
completed, we can assume that either m = j or r is not an abstraction: if r = Az.r’ and
m > j then rvy - v} 41Uy, is a f-redex, and (like above) may be reduced immediately
without losing termination; the same result would have been obtained with the rule -z — r’.
If m > j, then by (i) ry- v} ;- vy, is MNT. Consequently, head(ry) cannot be a
variable or a functional term g(w) with g a constructor symbol: either vy is headed by
an abstraction, or by a functional term with root symbol in D. Since r itself is not an
abstraction, its head must be a variable or a functional term with defined root symbol. Either
Way, pig1 =1 Tjq1- Ty ~> T+ Tjp1 - Ty 18 a dependency pair. Let g1 := r'y-v;-H RV
and t;11 := ¢;+1 (which equals qf 41 as this is an application). Requirement [2|is satisfied.
Finally, if m = j, then ¢/ = Iy and 7 is non-terminating. Let p be the smallest subterm
of r such that p[Z :=]y is non-terminating, where {Z} = FV (p) \ FV(r). Then p is not
a variable, for each y(x) is a subterm of [y, and therefore terminating (and the ¢, do not
reduce). Thus, the immediate subterms of p[Z := ¢} all have the form p/[Z := ¢]y with p>p/,
and are therefore terminating by minimality of p: p[Z :=]y is MNT. As observed before,
this can only be the case if this term is headed by an abstraction or by a functional term with
a defined root symbol. And that can only be the case if p is either headed by a functional
term with defined root symbol, or is an application headed by a variable which is free in r (as
r has no subterms (Az.u) - v). Thus, p[Z :=] is a closed candidate term of r. As p[Z :=]~y
is non-terminating, it is not a strict subterm of the MNT term lv, so pj1 := If ~ plZ = E]ﬂ
is a dependency pair. Choose ¢;y1 := p[Z := c]y and t;41 = qf_H = p[# := ¥y (since
p|Z :=] is not a variable). We see that in this case, too, requirement [2|is satisfied.]

Example 5.8. As we will see, twice does not admit a dependency chain. As an example of
a system which does admit one, consider the AFS with the following three rules:
f(o) = g(Az.£(z),a) g(F,b) - F-o a—b
This system has four dependency pairs:
£%(0) ~ g*(\z. £(2), 2) £%(0) ~ £¥(cpat) £%(0) ~ a g (F,b)~ F-o
The rules admit an infinite reduction: f(o) — g(Az.f(z),a) — g(Az. £f(x),b) = (A\z.£(z)) -

o —g £(0) — ...; following the steps in the proof of Theorem (starting with £(0)) we
obtain the following dependency chain:

(£%0)~ g*(\z.f(2),a) , £*(o) , g\ f(z),a)),
(g(F,b)~ F-o , gﬁ()\x.f(a:),b) , (\x.f(z),a)-0),
(beta , (Azr.f(z),a) 0 (o))
(£%0) ~ g*(\z.f(z),a) , £%(o) , g\ f(z),a)),

14 C. KOP AND F. VAN RAAMSDONK

Note that between the first and second step, a —, step is done to reduce a to b. Also note
that in the third triple we use case [3b| from Definition with w = £(z).

The converse of Theorem does not hold. Consider for instance the AFS with symbols
A : [natxnat]=-nat and B : [nat=-nat=-nat| = nat, and a single rule: A(z,z) — B(Ayz.A(y, 2)).
This (terminating!) AFS has a dependency pair A*(x,x) ~ A*(Cpat, Cnat), Which gives a
dependency chain A*(cpat, Cnat) ~> A#(Cnat, Cnat) ~ - - .

We could try solving this problem by slightly altering the definition of closed candidate
terms: instead of substituting a variable x : ¢ by a symbol c¢,, we could have replaced it
with a symbol c,, substituting all bound variables with different symbols. This choice was
made in for example the first definition of dependency pairs for HRSs [35]. But even with
this change, Theorem does not give an equivalence. Consider for instance the AFS with
the following rules:

f(z,y,s(2)) — glh(z,y), \u.f(u,z,z2))
h(z,z) — f(z,s(x),s(s(x)))
This system has three dependency pairs:

fi(x,y,5(2)) ~ hi(z,y)
iz, y,5(2)) ~ flcy,z,2)
hi(z,2) ~ fi(z,s(x),s(s(x)))

We get the following dependency chain: f#(c,,s(cy),s(s(cu))) ~ f4(cu, Cu,s(cu)) ~ h¥(cu, cu)
~ f¥(cy,s(cy),s(s(cy))) ~ ... However, the AFS is terminating, intuitively because the
bound variable destroys matching possibilities with the non-left-linear rule.

For this reason, we have chosen to use the more elegant method with symbols c, instead
of the slightly more powerful, but also a fair bit more cumbersome, c,. The latter style is
less pleasant because of a-conversion: for example, Cand(f(Az. g(z))) should contain g(c,)
for all variables y. Thus, to preserve correctness of definitions and proofs, we would have to
jump through a few hoops. However, all results in this paper also go through with such a
definition; this was for instance explored in the shorter version of this paper [24].

The crucial point of both examples above is the combination of bound variables and non-
left-linear rules. However, for left-linear AFSs, no such counterexample exists. Intuitively,
this holds because replacing variables by a symbol ¢, that does not occur in any left-hand
side does not affect applicability of any rule. Thus, a dependency chain effectively produces
an infinite reduction |s;| —x - > [t;| =% [si+1| (where |u| replaces any f* in a term u by its
unmarked counterpart), and this implies the existence of an infinite —% reduction.

Theorem 5.9. A left-linear AFS R is terminating if and only if it does not admit a
(minimal) dependency chain.

Proof. Theorem [5.7] gives one direction. For the other direction, assume a left-linear AFS
R and suppose we have an infinite dependency chain (minimal or not). We construct an
infinite — -> sequence, following roughly the intuition above. We note:

(1) If [is a linear term not containing any symbols c,, and - is a substitution whose domain
contains only variables in [, and if [y = s[¥ := c] for some term s and set of variables
{#}, then there is a substitution ¢ such that [§ = s and v = §[Z := c].

(2) If s[Z := €] =R t, then there exists some ¢’ such that s =5 t’ and ¢'[7 :=] = t.

(3) If [z := &) = C[t], then there are C" and t’ such that s = C'[t/] and ¢'[¥ :=¢&] = t.

DYNAMIC HIGHER-ORDER DEPENDENCY PAIRS 15

states that, if a linear term [(typically the left-hand side of a rule) matches a term s
with some c-symbols in it, it also matches s with those symbols replaced by variables.

This holds by induction on I, assuming linearity over dom(y): the cases where [is a
variable are straightforward (if I € dom(y) take § = [l := s], otherwise let 0 := (), if [is an
abstraction Az.!’ the induction hypothesis suffices (z cannot occur in domain or range of d,
for then it would also hold for 7), and if [is an application or functional term we use the
linearity. For example the functional case, if | = f(l,...,[,), then let y; be the restriction of
v to FV(l;) for 1 <i < n; by the induction hypothesis we find suitable J;, and by linearity
of [each of those [; has different variables, so § := d; U ... U §, is well-defined.

states that, if a term with some variables replaced by c-symbols reduces, then the
original term reduces in a similar way. This holds by induction on the size of s. When the
reduction is done in a subterm, the statement follows easily with the induction hypothesis
(immediate subterms of s := ¢] have the form §'[Z := €] with s> ', so the induction
hypothesis is applicable). In the base case, a [-step is easy, and if, for some rule [— r and
substitution +y, the term s[# := ¢] = Iy, then by left-linearity of R we may use : there is a
substitution ¢ such that s = 1§ —g rd =: t; certainly rd[Z := ¢] = ry =t as required.

follows by induction on the size of C: if C is the empty context take t' := s,
otherwise use the induction hypothesis; for instance if C[] = f(u1,...,D;]],...,un), then
s= f(s1,...,8,...,5p) (with each s;[Z := c] = u;), and by the induction hypothesis on s;
there are D}, t' such that C' := f(s1,...,D},...,s,) and t’ satisfy the requirement.

Now suppose there is a dependency chain [(p;, s;,t;) | i € N|, and define s{, := |so| (that is,
sp with all marks removed). For all i € N, suppose s}[zp :=C,...,z;_1 := ¢] = |s;|. Whether
pi is beta or a dependency pair, |s;| —-r C;[u;] for some term u; and context C;, such that
|ti| = ;[:= & for some variables #;. By (2)), (3) also s; = C/[u}] and uj[z) :=C,..., &} ==
c] = |ti|. By (2) we can find s, such that uj =% s ; and s [20 :=C,..., T := c] = [si11].
Thus, s} is non-terminating: sy —% C{[s}] =% CH[C1[sh] =% - - O

5.3. The Dependency Graph. As in the first-order case, we use a dependency graph to
organise the dependency pairs. The notions are very similar to the first-order definitions.

The dependency graph of an AFS R is a graph with the dependency pairs of R as nodes,
and an edge from node [~ p to node I’ ~ p if either head(p) is a variable, or there are
substitutions v and ¢ such that py —% ;, I0.

Example 5.10. The dependency graph of the AFS twice:

(F(s(n)) ~ F(cnar)
) T
[twice(F) -m~> F-(F-m)

2
twice!(F) ~ F - (F - Cnat)J

\
>€Iﬂ(s(n)) ~> twiceﬁ()\x. |($))]

wice(F) -m~ F -m twice?(F) ~ F - cnatj
O -

(F(s(n)) ~ twice(\z. I(x)) -
\[t

A cycle is a set C of dependency pairs such that between every two pairs p,m € C there
is a non-empty path in the graph using only nodes in C. A cycle that is not contained in

16 C. KOP AND F. VAN RAAMSDONK

any other cycle is called a strongly connected component (SCC). To prove termination we
must show that cycles in a dependency graph are “chain-free” (see Theorem . The
requirement to add an edge from any node of the form [~ z-ry -- -7, (with z a variable) to
all other nodes is necessary by clause [3b] in Definition 5.6} a dependency chain could have a
dependency pair of the form [~» x - 7 followed by beta, and then any other dependency pair.
Hence a rule with leading free variables in the right-hand side gives rise to many cycles.

A set of dependency pairs P is called chain-free if there is no minimal dependency chain
using only dependency pairs in P U {beta}.

Lemma 5.11.) is chain-free.

Proof. Given a dependency chain with all p; = beta, each s; =3 Cj[s;+1] for some context
C;, contradicting termination of the simply-typed A-calculus. []

Because the dependency graph cannot be computed in general, it is common to use
approzimations of the dependency graph, which have the same nodes but possibly more edges.
A brute method to find an approximation is to have an edge between [~» p and I’ ~ p/ if
either the head of p is a variable, or if p and I both have the form f(s1,...,85) * Snt1° " Sm
for the same function symbol f. It is interesting to study more sophisticated methods to
find approximations, but this is left for future work.

As stated in Section [3 we assume a finite set of rules, which leads to a finite set of
dependency pairs. In Section [10.2| we will say a few words on extending the technique to
systems with infinitely many rules (without having to deal with an infinite graph).

Lemma 5.12. Let G be an approzimation of the dependency graph of an AFS R. Suppose
that every SCC in G is chain-free. Then R is terminating.

Proof. Since DP is finite, any (minimal) dependency chain [(p;, s;,t;) | i € N] has at least
one dependency pair p; which occurs infinitely often. Note that if n < m then there is a
path in G from p,, to pp, (if pp, pm # beta). Therefore, there is a path in G from p; to itself,
and hence p; is on a cycle. Let C be the SCC containing p;. Then all p; with j > ¢ and
p;j # beta are in C: from each such p; there is a path to p; and back. But then, {p; | j > i}
is a minimal dependency chain in C, so C is not chain-free, contradicting the assumption!
Thus, there is no dependency chain, and therefore by Theorem R is terminating. [

Example 5.13. The dependency graph (approximation) of twice from Example has
only one SCC:
1(s(n)) ~ twice(Az.l(z)) n twice*(F) ~ F-(F - cpat)
l(s(n)) ~ twice!(\z.I(z)) twice (F) ~ F - cpat
twice(F)-m ~ F-(F-m) twice(F)-m ~ F-m

Therefore twice is terminating if this set, which we shall call Ciyjice, is chain-free.

5.4. Reduction Triples. The challenge, then, is to prove that given sets of dependency
pairs are chain-free. We use the following definition:

Definition 5.14. A reduction triple consists of a quasi-ordering >, a sub-relation =1 of >,
and a well-founded ordering >, all defined on terms built over]-"5, such that:

(1) > and > are compatible: either = - = C = or = - = C >;

(2) >, »=1 and > are all stable (closed under substitution);

DYNAMIC HIGHER-ORDER DEPENDENCY PAIRS 17

(3) =1 is monotonic: (if s =1 t and s,t share a type, then C[s] >=; C[t] for all C[]);
(4) > contains beta (always (Az.s) -t =1 s[z :=t]).

A reduction pair is a pair (=, =) such that (>, >,) is a reduction triple; this corresponds
to the first-order notion of a reduction pair. The reduction triple is a generalisation of this
notion, where > itself is not required to be monotonic; we will need a non-monotonic =
in Section to compare terms with different types. This notion of a reduction triple is
similar to the one which appears in [15].

To deal with subterm reduction in dependency chains, an additional definition is needed.

Definition 5.15 (Limited Subterm Property). = has the limited subterm property if the
following requirement is satisfied: for all variables x and terms s,t,u such that s> u > x,
there is a substitution y such that (\x.s) -t = uf[z := t]y.

Intuitively, the substitution v can be used to replace free variables in « which are bound
in s by the corresponding constants c,. However, we will also use a more liberal replacement
of those variables, hence the general ~.

The following theorem shows how reduction triples are used with dependency pairs.

Theorem 5.16. A set P = Py W Py of dependency pairs is chain-free if Po is chain-free,
and there is a reduction triple (=, =1, >) such that:

Il=p foralll~ p e Py,

e [=p foralll~ p € Po,

el =17 foralll 5> reR,

e cither P is non-collapsing or > has the limited subterm property.

Here, a set P of dependency pairs is called non-collapsing if all elements of P are non-
collapsing. Symmetrically, P is collapsing if it contains at least one collapsing pair I — z - .

Proof. Towards a contradiction, suppose there is such a reduction triple (=, =1,), but P
admits a minimal dependency chain; since Ps is chain-free, infinitely many p; are in P;.

If P is non-collapsing, then the chain may start with some beta steps, but once some
pi € DP, all p; with j > 4 must also be in DP, because the head of each ¢; is a functional
term, rather than an abstraction. Thus, for each j either s; = t; = sj41, or (if p; € P1) even
sj > t; = s;y1, contradicting well-foundedness of > (the latter happens infinitely often).

Alternatively, suppose P is collapsing, and > has the limited subterm property. Let
[(pi,si ti) | i > j] be a dependency chain over P; if p; € Py then s; > t; = sj11, if p; € Pa
then s; = t; = s;41 and if p; = beta then (by the limited subterm property) there is a
substitution d such that s; > ¢;6 > s;416. Since [(p;, $;9,t;0) | i > j+1] is also a dependency
chain we can continue this reasoning recursively. We obtain a decreasing > sequence with
infinitely many > steps, which contradicts well-foundedness of .]

Theorem can be used to prove that every SCC in the dependency graph approxim-
ation of an AFS is chain-free; termination follows with Lemma [5.12] In Section [J] we will
give an algorithm similar to the algorithm in Theorem {4.10

Example 5.17. Termination of twice is proved if there is a reduction triple (>, =1, =) with
the limited subterm property, such that [=1 r for all rules, and [> p for every dependency
pair in Cuwice from Example (choosing Py = (), which is chain-free).

For left-linear AFSs, where the existence of a minimal dependency chain characterises
termination by Theorem a terminating AFS always has a suitable reduction pair.

18 C. KOP AND F. VAN RAAMSDONK

Theorem 5.18. A left-linear AFS is terminating if and only if there is a reduction triple
(=,>=1,>) such that l > p for every L~ p € DP, and | =1 r for everyl — r € R, and = has
the limited subterm property.

Proof. By Lemma/[5.12] and Theorem [5.16] termination of R follows if such a reduction triple
exists. For the other direction, let s = ¢ if |s] =% [t], and let s = t if [s| (=g D)7 [¢],
where I is the (reflexive) subterm relation where bound variables which become free are
replaced with symbols ¢,, and |u| removes marks from u. It is evident that (>=,>,>) is
a reduction triple, that [> p for all dependency pairs [~ p and [> r for all rules | — 7.
Moreover, = has the limited subterm property with v the substitution [j := c]. L]

5.5. Type Changing. The situation so far is not completely satisfactory, because both >
and > may have to compare terms of different types. Consider for example the dependency
pair twice’ (F) ~» F - cpat, where the left-hand side has a functional type and the right-hand
side does not. Moreover, the comparison in the definition of limited subterm property may
concern terms of different types. This is problematic because term orderings do not usually
relate terms of arbitrary different types; neither any version of the higher-order path ordering
[19, [4] nor monotonic algebras [32] are equipped to do this.

A solution is to manipulate the ordering requirements. Let (>,) be a reduction pair
(so a pair such that (>, >=,>) is a reduction triple). Define >, >; and > as follows:

e s >t if there are fresh variables z1,...,, and terms uq, ..., u,, such that s-x1---x, >
t-uy---uy and both sides have some base type;
e s >t if there are fresh variables x1,...,z, and terms u1,...,u,, such that s-zy---x, Rt-

U1 -+ + Uy, and both sides have some base type; here R is the union of =, > - = and = - >;
e s> tif s >t and s and t have the same type.

Lemma 5.19. (>,>1,>) as generated from a reduction pair (>=,>) is a reduction triple.

Proof. We make the following observations:

(1) if s >1 ¢ then by monotonicity s& = t&;

(2) if s > t then for any @ there are ¥ such that s- 4 > ¢ - ¢ (by stability of >);

(3) if s > t then for any @ there are ¥ such that either s- @ = ¢t-Yors-u > >t -9 or

s-U = - = t- U (by stability of both > and >).

Each of the required properties on >, >1, and > now follows easily from the properties on
= and . For example transitivity of >: if s > ¢ > u, then there are terms ¢ such that
s-Z > t-v, and by there are terms such that ¢- ¥ > w-; by transitivity of >, therefore,
$-T = u-w, so s > u. Well-foundedness of > follows from and well-foundedness of . For
stability, note that if s > ¢ and + is a substitution, then for fresh variables Z (which do not
occur in domain or range of v) also s-Z >t -9, so (sy) - &= (s- &)y = (t-)y = (ty) - (T);
stability of > is similar. > is included in > by , and contains beta because > does. For
compatibility, and for transitivity of >, we use a case distinction on which form of > is used,
and transitivity of both > and >, as well as compatibility between the two. L]

DYNAMIC HIGHER-ORDER DEPENDENCY PAIRS 19

The relations > and > are not necessarily computable, but they do not need to be: we
will only use specific instances. To prove some set of dependency pairs P chain-free, we
can choose for every pair [~» p € P a corresponding base-type pair [~ p, and prove either
I =porl>p. For example, we could assign | :==1-21---x, and p:=p-Cy, - Co,,. This is
the choice we will use in examples in this paper. Other choices for p are also possible.

We assume a systematic way of choosing l ~ D given | ~» p.

To make sure that > has the limited subterm property, we consider a base-type version
of subterm reduction, which has a strong relation with g-reduction.

Definition 5.20. ' is the relation on base-type terms (and >' its reflexive closure) generated
by the following clauses:

o (\z.8) -t~ -ty > uif s[xi=tg] -ty ---t, > u

o f(s1y...ySm) -t -ty >y if s; - €' u for some i

o s-ty---t, > uift;-c>'u for some i (s may have any form).

Here, s-Cis a term s applied to constants ¢, of the right types. We say (>,) respects > if
>' is contained in (= U »=)*. Note that, since = contains beta, the first clause is not likely
to give problems. > is interesting because if s > ¢ and s has base type, then there are terms
u1,...,u, and a substitution v on domain FV (t)\ FV(s) such that s >'ty-uy---u, (this
is easy to see with induction on the size of s). Consequently, > has the limited subterm
property if (>=,>) respects >' and f(&) = f4(&) for all f € D (the marking property).
Using Theorem and the reduction triple generated from a reduction pair, we obtain:

Theorem 5.21. A set of dependency pairs P = Py WPy is chain-free if Py is chain-free and
there is a reduction pair (>, >) such that:

(1) I =P for all l ~ p € Py;
(2) 1= for all l ~ p € Py;
B) l=7r foralll - reR;
(4) if P is collapsing, then (=, =) respects ', and f(Z) = f4(Z) for all f € D.

Note that the theorem does not use the generated (and possibly not computable) triple
directly; we prove [> p or | > p for a specific choice of [and p. The generated triple is
merely used in the reasoning that justifies Theorem

Example 5.22. To prove that Cuice is chain-free it suffices to find a reduction pair (>, >)
such that [> r for all rules, (>, =) respects >' and satisfies the marking property, and:

l#(s(n)) = twice(Az.l(x))-n twice*(F) -z = F-(F - cpat)
#(s(n)) > twice!(A\z.1()) - cpar twice*(F) -z > F - cpat
twice(F)-m > F-(F-m) twice(F)-m > F-m

This completes the basis of dynamic dependency pairs for AFSs.

At this point, we might ask: what have we gained? Is it easier to use Theorem [5.2]]
than to use a conventional approach like CPO [4]? Can we even find a reduction pair which
respects >'? And if so, couldn’t we use the same reduction pair without dependency pairs?

The answer to these questions will be explored in the coming sections. First (Section @,
we will consider an extension limited to fully extended, left-linear AFSs. With this restriction,
we can weaken the limited subterm property, and obtain a variation of usable rules. Next, in
Section [7] we will study two ways to find a suitable reduction pair: using interpretations in

20 C. KOP AND F. VAN RAAMSDONK

a weakly monotonic algebra, and argument functions, a generalisation of argument filterings.
Finally, in Section [§ we will see additional ways to prove chain-freeness of a set P if P is
non-collapsing. All results are combined in the algorithm of Section [9]

6. DEPENDENCY PAIRS FOR LocAL AFSs

In this section we consider local AFSs, and define formative rules for local AFSs. We add
tags to symbols below a A, and prove that we only need the limited subterm property for
tagged symbols. We use this to weaken the requirements on a reduction pair.

The limited subterm property is weaker than the requirements used in Theorem [5.21
subterm reduction only has to be done following S-reduction. That is, we only need it for
terms which occur below a A-abstraction, when a bound variable is substituted.

To exploit this property, we will pay special attention to local AFSs. In a local AFS we
can (mostly) avoid reducing terms below an abstraction. Knowing this, the limited subterm
property only requires that f(s1,...,8n) " Snt1- - Sm = 8; - C for symbols f which cannot, at
that time, be reduced anyway. This makes it possible to use for instance argument filterings,
as we will see in this section and Section [7.2} As a bonus, locality also allows us to define
formative rules, a variation of usable rules. These are discussed in Section [6.4]

6.1. Intuition. The idea to tag symbols and rules in order to weaken the limited subterm
property originates in the notion of weak reductions, defined in [6] (following a definition
from Howard in 1968). A weak reduction in the A-calculus does not use steps between a
A-abstraction and its binder. This notion generalises to AFSs in the obvious way.

Consider AFSs where the left-hand sides of all rules are linear (so no free variables occur
more than once), and free of abstractions (so the A symbol does not occur in them). This
limitation is not as strong as it might seem at first; the S-reduction “rule” is not included in
this. As it turns out, we can prove the following statement:

Claim: in a left-linear, and left-abstraction-free AFS, if there is a minimal dependency
chain, then there is one where the reduction t; =7 s;y1 always uses only weak steps.

To see why this matters, let us consider a colouring of the function symbols. In a given
term s, make all symbol occurrences either red or green: red if the symbol occurs between
an abstraction and its binder, green otherwise. So if s = C[f(t1,...,t,)], make the f red if
some t; contains freely a variable which is bound in s, green if not. We say s is well-coloured
if it uses this colouring. Colour the rules in the same way; by the restrictions, the left-hand
sides are entirely green, while the right-hand sides may contain red symbols.

Now consider a weak reduction step on a well-coloured term. If the term is reduced by
a coloured rule, then the result is also well-coloured. If the term is reduced with a S-step,
then the result may have some red symbols outside an abstraction; however, it can become
well-coloured again by painting these red symbols green. We never have to paint green
symbols red. Inventing notation, we can summarise this as follows:

Claim: if s =R weak t, then colour(s) —x © = ake_green colour(t).

Combining the two claims, we can colour dependency chains. In the beta-with-subterm
step , which led to the need for the limited subterm property, we take a term which
was originally below an abstraction, reduce it to a subterm which still contains the bound
variable, and substitute it. Importantly, the subterm clause u > v can be derived with steps
Ax.sD> s, 8182 8; and f(s1,...,8,) > si, where the f is always a red symbol.

colour

DYNAMIC HIGHER-ORDER DEPENDENCY PAIRS 21

Considering the red and green symbols as different symbols altogether (related only by
the make_green rules) we thus see that it will not give problems to use an argument filtering,
provided we use it only for the green symbols!

This summarises the ideas which we shall use to simplify the limited subterm property. Since
colours do not work well in papers, we will use tags: a red symbol f corresponds with a
symbol f~, and a green symbol remains unchanged. Moreover, if we focus on the colours,
and forget about the weak reductions, it turns out that we do not need to require that the
left-hand sides of rules contain no A-abstractions at all: it suffices if the rules are local.

6.2. Local AFSs. Both to weaken the limited subterm property, and for formative rules,
we shall restrict attention to so-called local AFSs where, intuitively, matching is purely local.
This means that to apply a rule we do not have to check whether two subterms are equal, or
whether a symbol occurs in a subterm. Locality combines the restrictions that the system is
left-linear and fully extended. A left-linear, left-abstraction-free AFS is always local.

The locality restriction appears in the literature both for HRSs [31], 5], where a pattern
is called local if it is fully extended and linear, and for combinatory reduction systems
(CRSs) in [29]; the latter definition is slightly different but has a similar underlying intuition.
The definition for AFSs here follows [31, [5], although the definition of full-extendedness is
technically (but not conceptually) different from the one for HRSs. We will use locality to
be able to (mostly) postpone reductions below an abstraction. In the explanations below,
we will argue that left-linearity and full-extendedness are both necessary to do this.

Left-linearity When a system is not left-linear, a reduction deep inside a term may be
needed to create a topmost redex. For instance, consider the non-left-linear AFS with rules
{f(z,z) — b,a — b}. In the reduction f(Az.a, Az.b) — f(Az.b, Az.b) — b a reduction below
an abstraction is necessary to create the syntactic equality required for the f-rule. Thus,
this step cannot be postponed.

Full-Extendedness We say a term [is fully extended if free variables in [do not occur
below an abstraction; a rule [— r is called fully extended if [is.

For the intuition of this restriction, consider a rule f(Ax.y) — y. This rule does not
match a term f(Az.s(x)), since y cannot be instantiated with s(x), as x is bound. Nor does
f(Az. F' -) match this term, since s(x) does not instantiate the application F'-x. Whenever
the left-hand side of a rule contains a free variable below an abstraction, this variable matches
only subterms which do not contain the abstraction-variable. Therefore, such a rule could
require a reduction deep inside a term to create a topmost redex. For example, in an AFS
with rules {f(Az.y) — v, g(z,y) — a}, we cannot postpone the first step in the reduction
f(Az.h(Ay.g(x,y))) — f(Az.h(Ay.a)) — h(A\y.a), as it is needed to create the second redex.

This notion of fully extended mostly corresponds with the definition for HRSs; there,
however, a rule f(Az. F' - z) — r does match f(Az.s(x)), so such rules are also accepted.

Definition 6.1. An AFS (F,R) is local if all | — r € R are left-linear and fully extended.

Example 6.2. Our running example, Riwice, 1S local, since all left-hand sides of rules are
linear and fully extended (in fact, they contain no abstractions at all).

To demonstrate the prominence of local AFSs, in the 2011 version of the Termination
Problem Data Base, used in the annual termination competition [38], 138 out of 156
benchmarks in the higher-order category are local (in fact, these are all left-abstraction-free).

22 C. KOP AND F. VAN RAAMSDONK

6.3. Tagging Unreducable Symbols. Obviously, when there are rules where the left-
hand side contains an abstraction, such as f(Az.g(z), F') — r, it may be impossible to avoid
reducing inside an abstraction in order to create a redex. However, the colouring intuition
still goes through; we merely need to “paint symbols green” a few times more.

Following the colouring intuition, we will mark all function symbols which occur between
a A-abstraction and its binder with a special tag (“colouring red”). The symbol can only be
reduced by removing the tag first (“painting green”).

Definition 6.3. Let F~ be the set {f~ : 0| f : 0 € F}, so a set containing a “tagged”
symbol f~ for all function symbols f € F. For a set of variables Z, define tag, as follows:
tagz(z) = =
) = G
tagz(s-t) = tagz(s) - tagz(t)
) = Ar.tagzy(y(s)
) = { f(tagz(s1),. . tagz(sn)) if FV(f(5))NZ =
[(tagz(s1), ... tagz(sn)) if FV(f(5)NZ#
We denote tag(s) := tagy(s). Define R*& := {l — tagy(r) |l = r € R}U{f (21,...,2n) —
fley,..o xn) | f- € F L

Note that, apart from the untagging rules, R*& isn’t all that different from R: tag(r) is
almost exactly r, only the symbols below an abstraction may be marked with a — sign.

0
0

Example 6.4. tag(f(\z.g(z,g(0)))) = f(Az. g (z,g(0))).

Example 6.5. Consider our running example Riyice (With completed rules):

(o) — o twice(F) — Ay. F-(F-y)
I(s(n)) — s(twice(Az.l(z))-n twice(F)-m — F-(F-m)

We have seen that Riwice is local. R'¥& consists of the following rules:

(o) — o twice(F) — My.F-(F-y)
I(s(n)) — s(twice(Az.17(x)) -n) twice(F)-n — F-(F-n)
oo — o s'(n) — s(n)
I=(n) — I(n) twice (F) — twice(F)

That is, the rules from R, with a tag added to the | symbol which occurs below an abstraction,
and furthermore the untagging rules. In termination proofs we can typically ignore the rules
f~ (&) — f(&) where f~ does not occur in the right-hand side of any rule (in this example:
o~ — o0, s~ (n) — s(n) and twice™ (F,n) — twice(F,n)), as they have little function.

In the proofs later on in this section, we will use the following properties of R':

Lemma 6.6. tagy y (5) —jue tagx(s) for any set of rules R; if the variables in'Y don’t
occur in s even tagy y(s) = tagy(s).

Proof. Easy induction on the size of s; we only use the untagging rules [~ (%) — f(Z). O

DYNAMIC HIGHER-ORDER DEPENDENCY PAIRS 23

Lemma 6.7. tag(s)y"™€ = tag(sy) where y*8 = [z := tag(y(x)) | # € dom(~)].

Proof. We prove by induction on the size of s: for any set of variables Z, whose members
do not occur in either domain or range of v, we have tag,(s)7"8 = tag,(s7).

If s is a variable not in dom(~y), both sides are just s.

If s is a variable in dom(vy), we must see that tag(v(s)) = tag,(v(s)), which holds by
the second part of Lemma

If s is an application ¢ - u, then tag,(s)v'™8 = (tag,(t)7"€) - (tag,(u)7**8), which by the
induction hypothesis equals tag(ty) - tag(uy) = tag((tv) - (uy)) = tag(sy).

If s = f(s1,...,5,) the induction hypothesis on each of the s; also suffices because
ZNFV(s)=ZnNFV(sy), which is easy to see by the requirements on Z.

Finally, if s = Ay. ', then tag,(s)7"® = (\y. tag 71 (5))7%8 = Ay. (tagzuqyy (5)778),
which by the induction hypothesis equals \y.tag,, {y}(s’ v) = tag,(s7y) as required.]

Lemma 6.8. If Z is a set of variables, s,t terms and x a variable not in Z or FV(t), then
tag () (8)[:= tag ()] =R tagz(s[x :=1]) for any set of rules R.

Proof. By induction on the size of s.

If s = x, then both sides are equal to tag,(¢).

If s is another variable y, then both sides are just y.

If s = u-v we use the induction hypothesis: tagz ;) (s)[x := tagz(t)] = tag gy (u)[z :=
tagz (1)) - tagzu(ey (V)@ = tagy(t)] i tagz(ulz = t]) - tagz(v]z = t]) = tagy(u[z =
t] - vl :=t]) = tag,(s[x :=t]).

If s = A\y.u, we use the second part of Lemma tag 7 (0 (s)[z = tagx(t)] =
Y. tag 7 (a,yy (u) [z == tagy(t)], which by Lemmaequals AY-tag 704z, (W)[2 = tag zupy (1))
—rug AY- tagzuyy (ulz = 1t]) = tagz(s[z :=t]) by the induction hypothesis.

Finally, if s = f(u1,...,uy), then there is little to do if x does not occur in s: by the
second part of Lemma tag (. (8)[z = tagy(t)] = tag,(s)[x := tagy(t)] and since x does
not occur in either s or tagy,(s), this is exactly tag,(s[z := t]). So assume that = € FV(s);
then tagy (. (s)[x := tagy(t)] = [~ (tagzu(ey (w1), - - -, 18z (2} (un)) [:= tagy(t)], which by
the induction hypothesis reduces to f~(tag,(u1[z :=t]),...,tag,(u,[z := t])). If variables
of Z occur in s[x := t] this is exactly tag,(s[x := t]), otherwise it reduces in one step to
ftaggz(ui[z :=t]), ... tag (us[z :=t])) = tag,(s). [

The following lemma expresses that a reduction to a term of a certain form [can be
done by only reducing subterms headed by untagged (“green”) symbols. Later on, we will
use this to see that the reduction ¢; —% s;41 in a dependency chain can be assumed to
reduce only untagged symbols.

Lemma 6.9. Let R be a local AFS, | a linear, fully extended term and v a substitution on
domain FV(l). If s is terminating and s —% lv, then there is a substitution § such that
tag(s) —iue 1078, where 08 = [x :=tag(d(x)) | « € dom(0)], and é(x) =% v(x) for all x.

Proof. Towards an induction hypothesis, we will prove the lemma for a term [which is linear
and fully extended in the variables in dom(7), and such that dom(v) C FV(l); [may have
more variables which do not occur in this domain, and which it is not necessarily linear and
fully extended in. We use induction first on s, using —x Ur> (this is well-founded because s
is terminating by assumption), second on the length of the reduction s —% l7.

24 C. KOP AND F. VAN RAAMSDONK

First suppose [is a variable in dom(y), so v = [l := ~(l)]. Choose 6(I) = s. Then
certainly 6(1) =% (1), and tag(s) —%ue tag(s) = 10%€. If [is a variable not in dom(y), and
s =3 ly = [without headmost steps, then v is empty and s = [; indeed tag(s) = [—Jug [

Next, let [be an abstraction Az. !’ and suppose s = Az. s’ and s’ =} I'y. Since [is fully
extended in the variables of dom(+y), this I’ contains no variables in dom(+); that is, v is
empty, and we must see that tag(s) —7% [. By the induction hypothesis tag(s’) =% I’, and
therefore indeed tag(s) = \z.tagy,)(s) —juwe Av.tag(s’) by Lemma —org AT =1

Ifl = f(lh,...,lp) and s = f(s1,...,sn) and each s; =% l;7y, then by linearity of I each [;
has different variables (at least, insofar as dom(7y) is concerned). We can write v = y1U. . .Uy,
with each ; the restriction of v to dom(l;); all ; have disjunct domains. Then also s; =% l;vs,
so by the induction hypothesis there are d1,...,d, such that each tag(s;) —ju lﬁ;ag, and
always 0;(x) =% vi(z). The induction step holds with ¢ := §; U ... Ud,.

If I =1 -l and s = s1 - s3 and each s; —% [;7y, we use linearity in the same way.

If none of these cases hold, the reduction s —% Iy must use a headmost step, so
5 —x U —R v —p I, and either:

e u=(Ar.w) qo- g and v =w[z :=qo] - q1 -+ ¢ (n > 0), or
eu=10y-q - gyandv=r"y-q - -q, for somel! 1" v q,...,q, (n >0)
We can safely assume that the reduction s —% u does not use any headmost steps.

In the first case, s must have the form (Az.w') - ¢ ---¢, with w' —% w and each
¢; =% ¢;. But then also w'[z := q(] - ¢} - - - ¢}, = v =% I7; by the first induction hypothesis
we find a suitable ¢ such that s =g w'[z = q)] - ¢} - - - @}, = Tgeag 10%E.

In the second case, let I” := [- xy---x, for fresh variables x1,...,x,, and let " :=
Y U[z1:=q1, ..., = qp]. Since I’ — " is a rule, I” is both linear and fully extended, and
the reduction to ”+” = wu is shorter than the original reduction; by the second induction
hypothesis we find x such that tag(s) =% X8 = I'x"€ - (21x") - - - (2, X"®8), where each
x(y) reduces to 7' (y) for y € dom(y'), and x(z;) =% ¢-

Now, I"x"€ —pwg tag(r’)x™8 - (Fx'?8), which by Lemma = tag(r'y) - (¥x™8) =
tag((r’ - ©)x). By simply removing all tags, every —gue step can be translated to a —73 step
on untagged terms, and therefore we also see that s =% "x = (r - Z)x, and by the choice
of x we know: (r-Z)x —% (r'Y")-q —% ly. Therefore we can apply the first induction
hypothesis, and see that tag(s) =g tag((r - ©)x) =g 10%8, for a suitable 4. O

In Section [6.5] Lemma [6.9) will play an essential role in the construction of a “tagged
dependency chain”. But first, let us consider formative rules, another gain from locality.

6.4. Formative Rules. Recall that in the first-order setting it is not required to prove
I = r for all rewrite rules: to prove that a set of dependency pairs P is chain-free it suffices
to consider only its usable rules. The definition of usable rules cannot easily be extended to
our setting, because we normally have to deal with collapsing dependency pairs. Therefore
we take a different approach with the same goal of restricting attention to rules which are in
some way relevant to a set of dependency pairs. Where usable rules are defined from the
right-hand sides of dependency pairs, our formative rules are based on the left-hand sides.

The intuition behind formative rules is that (due to left-linearity and full-extendedness),
only the formative rules of some rule [— r can contribute to the creation of its pattern.

We consider a fixed set of rules R, which has already been completed. The formative
rules are a subset of R™, which is the set RU{l @1 -2p > 7 212 |l 57 €R, all x;
fresh variables, r not an abstraction and [- x; - - - x,, well-typed}.

DYNAMIC HIGHER-ORDER DEPENDENCY PAIRS 25

Definition 6.10 (Formative Rules). Let X be a set of variables, and s a f-normal term
(that is, s has no subterms (Az.t) - u) such that for any subterm z -t of s with x € V, either
x is not free in s, or z € X. Let Symbx(s) be recursively defined as follows:

Symbx(Ay.s:0) = {(ABS,0)} U Symbxyy(s)

Symbx (f(s1,...,8n) Snt1---Sm:0) = {{f,o)}USymbx(s1)U...U Symbx(sm)
Symbx(y-s1---sp:0) = {(VAR,o) U Symbx(s1)U...U Symbx(sm)
(ye X, n>0)

Symbx(y) = 0 (yeV\X)

Note that in a local AFS, all left-hand sides of the rules satisfy these constraints for X = ().

For a € FU{ABS, VAR}, we say a term s : o has form {a,o) if either a = ABS and s
is an abstraction, or a € F and s can be written a(f) - @, or s = x - £ for some variable z
(and a may be anything). A pair (a,0) with a € F U {ABS, VAR} is called a typed symbol.

For two typed symbols A, B, write A Ty, B if there is a rule | — r € R such that r
has form A, and B € Symby(l). Let E}ko denote the reflexive-transitive closure of Cy,.

The formative symbols of a term s are those typed symbols B such that A E}o B for
some A € Symby(s) (if defined).

The formative rules of a term s, notation FR(s), are those rules [— r € R™" such that
r has form B for some formative symbol B of s.

The set of formative rules of a dependency pair, FR(f(l1,...,ln) - lnt1 - lm ~ D), i8
defined as |y <;<,,, FR(l;). For a set P of dependency pairs, FR(P) = U, ep FR(L ~ p).

Note that in a finite system it is easy to calculate the formative symbols of a term, and
consequently the formative rules can be found automatically.

Example 6.11. Recall the rules for the (completed) system twice:
(A) (o) — o (@) twice(F) — Ay.F-(F-y)
(B) I(s(n)) — s(twice(Azx.l(z))-n) (D) twice(F)-m — F-(F-m)
Here RT = R. In this context, let [= s(n). Then Symby(l) = {(s,nat)}, and:
e (B) and (D) both have form (s, nat), so (s, nat) Ty, (s, nat), (I, nat), (twice, nat)
e (D) also has forms (I, nat) and (twice, nat), but no other rules do
Thus, the formative symbols of [are exactly (s, nat), (l,nat) and (twice, nat). (B) and (D),
but not (A) and (C), are formative rules of [. Observing that a dependency pair with left-

hand side twice(F) - n or twice*(F) has no formative rules (since Symby(F) = Symby(n) = 0),
the formative rules of the SCC Ciyice from Example are (B) and (D).

Example 6.12. For an example that uses multiple types, and more rules of functional type,
consider the system with symbols

cons : [(nat=-nat) X funlist]=funlist nil : funlist
head : [funlist]=nat=-nat tail : [funlist]=funlist
true : bool false : bool
test : [nat=-nat|=bool s : [nat]=nat
if : [bool X (nat=-string) X (nat=-string)|=-nat=-string
And rules:
(A) if(true, F1,Fy) — F) (D) head(cons(F,t)) — F
(B) if(false, F1,[y) — Fy (E) tail(cons(F,t)) — t

(@) test(Az.s(x)) — true

26 C. KOP AND F. VAN RAAMSDONK

For R", we add the rules:
(F) if(true,Fl,Fg) -
(G) if(false,F1,F)-x
(H) head(cons(F,t))-z — F-x

This is a contrived example, to demonstrate all aspects of formative rules in one system. We

consider the formative rules of the dependency pair if(true, Fy, F) - x ~ F} - . That is,
FR(true), since the free variables Fi, F5, x do not have formative rules. We observe:

T
T

g

—
—

o Symby(true) = (true, bool)

e rule (C) is the only rule with form (true,bool), so (true,bool) Ly, (test,bool),
(ABS,nat=-nat), (s, nat), (VAR, nat), that is, the elements of Symbg(test(Az.s(x)));

e (ABS,nat=nat) Cy, (head, nat=>nat), (cons, funlist) by rule (D), and rule (H) has both
form (s,nat) and (VAR, nat), so these two Cy, (head, nat), (cons, funlist); no other rule
has a form (test, bool), (ABS, nat=-nat), (s,nat) or (VAR, nat)

e (D) also has form (head, nat=-nat) (but we already know that all symbols in the left-hand
side are formative symbols of true), and only (E) has form (cons, funlist), so the latter
Cy (tail, funlist), (cons,funlist)

e Hence, the formative symbols of the given dependency pair are:

(true,bool), (test,bool), (s, nat), (VAR, nat), (head, nat), (cons, funlist), (tail,
funlist), (ABS, nat=-nat), (head, nat=-nat).

The formative rules are therefore (C), (D), (E) and (H).
For formative rules we have a result very similar to Lemma both in nature and in proof.

Lemma 6.13. Suppose R is local, and let | be a B-normal, linear, fully extended term,
which does not have leading free variables. Let y be a substitution with domain FV (1), and
s a term which is terminating over —x, and suppose s —5 ly. Then there is a substitution
d on FV (1) such that s —Fr@) 0, and moreover each d(x) =% v(x).

Proof. We will prove something slightly stronger, which implies the lemma. Let X be a set
of variables, and [a S-normal term, linear in FV(I)\ X, and such that if a free variable x
occurs inside an abstraction, or at the head of an application in [, then x € X. Let v be a
substitution with domain FV (I) \ X, and s a terminating term such that s =% lv.

Let FSx (1) denote the set of typed symbols B such that A C7, B for some A € Symbx (1),
and FRx (1) is the set of rules I’ — 7’ in R" such that ' has form B for some B € FSx(l).
We will find a substitution 6 on FV(I) \ X such that s —FR() 16, and always §(x) =% v(z).

It is clear that, for X = (), the definitions of FRx(l) and FR(l) coincide. Thus, the case
X = () implies the lemma — but for the induction step we will need a larger X.

Before proving this claim, let us make the following observations:

(1) if Symbx(s) C Symby-(t), then FSx(s) C FSy(t), so FRx(s) C FRy(t)
(2) if the variables of Y do not occur in s, then Symb .y (s) = Symbx(s)
(3) if s>tand Y = FV(t) \ FV(s), then Symbx_y(t) C Symbx(s)

(4) if u —» v € FRx(s), then FSy(u) C FSx(s)

All of these are obvious by considering the respective definitions.

Now we have all the preparations to prove the required result, using induction on s with
—r U>. Because the rules have been completed and [is S-normal, we can first transform
the reduction s —% [y into a reduction which never takes a headmost step with a rule
I = Ax.r’ which is not also a topmost step (we can replace these steps one by one, and by

DYNAMIC HIGHER-ORDER DEPENDENCY PAIRS 27

induction on s with —% we eventually obtain a reduction without such steps). Having done
this, we use a second induction, on the length of the reduction s —% [v. Now, we can prove
the claim. Consider the form of [.

If [is a variable in dom(7y), then vy = [l := ~({)]; choosing ¢ := [l := s| we are done.

fl=x-1y---l, withox € X, and s =x 515, and each s; —% [;7y, then by linearity
of [over dom(y) we can write v = 7, U. ..U, where ~; is the restriction of v to FV(l;). By
the induction hypothesis we can find 41, ..., J, such that each s; %}Rx(li) l;0; and 6; =% ;.
Choose ¢ := 61 U...U d,; this is well-defined because all §; have disjunct domains. By
and each FRx(l;) € FRx(l), so indeed s —FRx (1) 16, and also each 0(x) =% v(x).

IEFl=f(li,....0n) lny1--lp, and s = f(S1,...,5m) - Smy1- - Sp and each s; =% 1;7,
we use linearity in almost exactly the same way.

If | = Az.l' and s = Az. s’ and s’ =7 'y, then by assumption the term !’ contains only
variables in X, so dom(y) = (; we must show that s’ %*FRX(l) I'. By , and , it
suffices if s %*Fqu{z}(l’) I’, and this is exactly what the induction hypothesis gives us!

By the restrictions on [, it must have one of the forms above; if we are not yet done,
therefore, the reduction s —7 [y uses a headmost step.

If s has the form (Az.t) - u - ¥, then the first headmost step must be a f-step: s =%
Az.t) - -0 —g t'[r =] v —7 ly; we might as well -reduce immediately, and have
s =gt i=u] -7 =5 t'r=u]- u —} 17; the first induction hypothesis gives a suitable J.

If s does not have this form, there is at least one headmost step which is not a S-reduction.
The reduction has a form s =% t =g u =% Iy, where t ="y - vy - v, =g 'Y - v1--- v,
for some rule I” — 1/, substitution 7 and terms v1,...,v, (n > 0); we can choose t,u in
such a way that the reduction v —% Iy does not contain any headmost steps other than
perhaps -steps. Let I” := 1 -2y -z, and v := v’ - 21 --- 2, for suitably typed fresh
variables x1,...,2n; then I” — r” is in RT, because we have made sure that either ' is
not an abstraction, or n = 0. Let 7" := v U [z1 := v1,...,2, := v,]. Then t = 1"+

*

and u = r"’9". Applying the second induction hypothesis on the reduction s —% "", we

find some substitution y such that s —>}R®(l,,) U'x =»r "'x =% r"v" =% ly. Note that

FRy(I") CRT, and that —x+ defines the same relation as —x. Thus, s =% I"x =g r"x;
we can apply the first induction hypothesis to find a suitable § such that r”y —>}Rx(l) 19.
Suppose I” — 1" € FRx(l). Then by () and (I), also FRy(I") C FRx(l), so we have a
reduction s —>*FRX(Z) "X = rry) "X —>}RX(Z) 16, and we are done. To see that this is indeed
the case, first suppose that head(r’) is a variable. Whatever the form of [is (since I ¢ dom(7)),
Symb x (1) contains a pair (f, o), where o is the type of [(and also the type of s, I and "),
and f € FU{ABS, VAR}. We immediately see that I” — r” € FRx(l). Alternatively, if
head(r") is a function symbol, then u is not a S-redex; as the reduction u —% Iy does not
use other headmost steps, we have u —>>7"Q7m ly,and I = f(l1,...,lk) - lgs1 -+~ L, where f is
also the head-symbol of /. But then (f,o) € Symby (1), so also I” — " € FRx(l). OJ

Of course, Lemma [6.13] and Lemma can be combined: the latter doesn’t care
which rules it is given, so if s —% [y, then there are J,x such that s H*FR(l) 16, and
tag(s) —FR()E X" and each x(z) —FRO) d(xz) =% v(x). In the following, we will use this
combination of lemmas to see that, for local AFSs, a dependency chain can be assumed to
use tagged steps and formative rules in the reduction ¢; _>7z,m Sit1-

28 C. KOP AND F. VAN RAAMSDONK

Comment: The formative rules technique is also applicable to first-order rewriting, in
particular for many-sorted TRSs (or for innermost rewriting where types may be added
by [7]). However, we have not yet investigated whether the technique leads to an improvement
in current state-of-the-art termination provers.

6.5. Revised Dependency Pair Results for Local AFSs. We may now revise the
results from Section [5] to take locality into account. As before, we assume that the rules
in R are all completed, and let DP be the dependency pairs of R. Because of Lemmas
and we can consider an alternative definition of dependency chain.

Definition 6.14. A tagged dependency chain is a sequence [(p;, si,t;) | ¢ € N] with for all 4:

(1) p; € DP U {beta}
(2) if p; = l; ~ p; € DP then s; = [;7'*8 and t; = tag(p;)"€ for some substitution ~y
(3) if p; = beta then s; = tag((Azx.u) - v - wy - - - wy,) and either
(a) k>0 and t; = tag(ufz :=v] - wy - - - wy), or
(b) k = 0 and there exists a term w such that u>w and x € FV (w) and t; = tag(w*[z :=
v]), but w # x

. * .
(4) ti =Fp,,)ein Sitl

A tagged dependency chain is minimal if untag(u) is terminating under —x for all strict
subterms u of each t; (where untag() removes the — tags).

This definition is similar to the original definition of a dependency chain, but uses tags
for s; and ¢; and limits the rules in the —} reduction to the formative rules of the pattern
which is created. We obtain the following variation of Theorem [5.9

Theorem 6.15. A local AFS R is non-terminating if and only if it admits a minimal tagged
dependency chain.

Proof. If we remove the tags from a tagged dependency chain, we obtain a normal dependency
chain. Since local AFSs are left-linear, Theorem [5.9 provides one direction.

For the other direction, we follow the proof of Theorem in each step i we have a
minimal non-terminating, untagged term ¢;, and t; = tag(qi}j). If head(q;) is an abstraction we
follow the proof of Theorem [5.7] to find g;41; the requirements of Definition [6.14] are satisfied
for s;11 :=tag(q;) and ;41 := tag(qgﬂ). Otherwise, let ¢; = f(vi,...,0m) * Umt1 " Un.

Since g; is MNT, an infinite —7%-reduction starting in ¢; must eventually take a headmost
step, say ¢; =R i 17 Vjyq o vy (With k > m), where [— r € R and 7y - vj -+ - vy, is still
non-terminating. Write [= f(l}, ce Zm) Lyg1 - I; by left-linearity all l}- have disjunct free
variables. Applying Lemmas and on each of the v; and le (with the suitable part ~;

of 7), such a redex can be reached with tagged steps and formative rules: tag(v;) —>’}R (Yo
J

l}é;ag, and 0; —% ;. Choosing 0 := 01U...Ud, we have that 70-vgy1 - vp =5 ry-v) - vy,
is still non-terminating. Let ¢} := 10 - vpy1 -+ Uy, and sj41 1= 108 - tag(vis1) - - - tag(vm)
and continue the proof as before; in the resulting dependency pair ;11 ~» pj41 all l~J are
immediate subterms of I; 11, so FR(Z}-) C FR(lj41 ~ pit1). We have ¢; 1 = |pi+1|x for some
substitution x, so t;11 := tag(gi+1) = tag(pi+1)x"™€ as required, by Lemma O

DYNAMIC HIGHER-ORDER DEPENDENCY PAIRS 29

Example 6.16. Consider once more the non-terminating system from Example [5.§]
f(o) — g(Az.f(zx),a) gF,b) - F-0o a — D
Noting that R'™€ consists of the rules

flo) — g(\z.f (z),a) g(F,b) — F-o
a — b 7 (x) — f(x)
as well as some other rules h™ (¥) — h(¥), we have the following tagged dependency chain:
(£H0) ~ g*(\z.t7(z),a), (o), g'(\z.t"(z),a))
(g(F,b)~ F-o, g(Az.f7(x),b), (Az.f7(z))-0)
(beta, (Az.£7(z)) -0, £(o0))
((o) ~ g(a. £ (x),a), T(0), g (.1 (),2))

Here, the beta step uses case [3b| with w = £(x).

As in Section [5| we consider the dependency graph of R. A set P C DP is tagged-chain-free if
there is no minimal tagged dependency chain using only dependency pairs from P, and beta.
As before,) is tagged-chain-free, and R is terminating if and only if every SCC in a graph
approximation is tagged-chain-free. Thus, we can use reduction triples which orient the
parts of a tagged dependency chain. Importantly, this affects the limited subterm property.

Definition 6.17 (Tagged Subterm Property). > has the tagged subterm property if the
following requirement is satisfied: for all variables x and terms s,t,u such that s> u > x,
there is a substitution v such that tag((\x. s) - t) = tag(uf[z := t]y).

As we will see shortly, the tagged subterm property is an improvement over the limited
subterm property because we do not have to take the subterms of untagged functional terms
f(8). Tt is easy to adapt the proof of Theorem to obtain the following result:

Theorem 6.18. A set P = P1 U Py of dependency pairs is tagged-chain-free if Po is
tagged-chain-free and there is a reduction triple (=, 1, >) such that:

1 > tag(p) for alll~p € Py;

l = tag(p) for alll~> p € Py;

| =1 tag(r) for alll — r € FR(P);

J=(@) =1 (@) for all f~ € F~;

either P is non-collapsing or = has the tagged subterm property.

Proof. If the properties above are satisfied, then every minimal tagged dependency chain over
P leads to an infinite decreasing >-chain, contradicting well-foundedness of . The elements
of this proof are straightforward, following the proof of Theorem [5.16] except perhaps for
the proof that there is a substitution ¢ such that s; = t;0 when s; = tag((Az.u) - v - @) and
either t; = tag(qf[x := v]) (if [&] = 0 and u > q > z), or t; = tag(u[z := v] - ©).

The first case of this holds by the tagged subterm property: tag(s;) = tag((Az.u) - v) =
tag(qf[x := v]y) for some ~, and this equals tag(q*[x := v])7'*® by Lemma let § := ~'8,

For the second case, tag(s;) = (A\z.tag,y(u)) - tag(v) - tag(w) = tag,) (u)[z := tag(v)] -
tag(w) (since =1 includes beta), = tag(ulzx := v]) - tag(w) = tag(t;) by Lemma and
because always f~ (&) =1 f(Z). O

30 C. KOP AND F. VAN RAAMSDONK

Theorem also has a counterpart: if a local AFS is non-terminating, then there
is a reduction triple which satisfies the constraints of Theorem for P =Py = DP: if
(=, >1,>) is the reduction triple from Theorem [5.18] let s R’ ¢ if untag(s) R untag(t). Then
(»', =], >") satisfies the required properties.

Theorem [6.18] is comparable to Theorem [5.16] and as before, the result is likely not immedi-
ately usable due to typing problems. Moreover, it is not obvious that the tagged subterm
property is really weaker than the limited subterm property. So to complete the work, we
re-examine the results of Section To start, let us reconsider the definition of >'.

Definition 6.19 (Refinement of >'). Let S be a special set of function symbols. > is the
relation on base-type terms (and > its reflexive closure) generated by the following clauses:
o (\z.s)-tg-- -ty > uif sz :=1tg] ty---t, > u
o f(s1,...,8m) t1--tp,D%uifs;-c>uand f €S «— here we differ from 1!
o 5.ty ---t, > uift;-c>%u (s may have any form)

Note that our original definition of >' is just a special case of this definition; ' can be

described as 7. For local AFSs, we can limit ourselves to >, shortly denoted >~.
In correspondence with Theorem [5.21} we derive the following result:

Theorem 6.20. A set of dependency pairs P = Py W Py is tagged-chain-free if Po is
tagged-chain-free and there is a reduction pair (=,>) such that:
1) 1 = tag(p) for all l~ p € Py;

(
(2) 1= tag(p) for all I ~ p € Po;

(3) | = tag(r) for alll — r € FR(P);
(4

(

) [T (x1, .) = f(21,... @) forall f~ € F~;
5) if P is collapsing, then (=) respects >, and f~(Z) = f4(Z) for all f € D.
Proof of Theorem [6.20, Let (=, >) be a reduction pair satisfying the requirements in the
Theorem, and let (>,>1,>) be the reduction triple generated by (>, >) as defined in
Section This triple clearly satisfies the first four requirements of Theorem [6.18] For the
last one, let P be collapsing; we must see that > has the tagged subterm property.

So let z, s, ¢, u be given such that s> ur>xz. We must see that (Az. tagy,y(s)) tag(t) ¢ (>
U »=)* tag(uf[z := t]y) - ¥ for some substitution v with = ¢ dom() and some terms #. Since
~ contains beta and tagg,,(s - §) = tagg,(s) - ¥ it suffices if we can prove that for all
base-type terms g with ¢ > u >z we have: tagg,(q)[r := tag(t)] (= U =) tag(uf[z := t]y) -
for some ~y, . This gives what we need by choosing ¢ = s - . We prove this statement by
induction on ¢, ordered with >~ (it is easy to see that this relation is well-founded).

Note (**): tagy,)(w) = tag(w) by Lemma and because always ¢~ (2) = g(2).

For the base case, let ¢ = u - vy ---v;, for some terms @. Then tagy,;(q)[z = tag(t)] =
tagy,y (u)[z := tag(t)] - vy - - - vy, Where each v = tagy,y (v;)[z := tag(t)]. Since u >z we know
that tag,y(u) = tag(uf): either u does not have the form f(uy,...,uy,) with f € D, in
which case tag, (u) = tag(u) = tag(u®) by (**), or u does have this form and tagp,y(u) =
f(taggay (), ... tag ey (um)) = f~(tag(w