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Abstract. Unravelings are transformations from conditional term rewriting systems
(CTRSs) into unconditional term rewriting systems (TRSs) over extended signatures.
They are complete, but in general, not sound w.r.t. reduction. Here, soundness w.r.t.
reduction for a CTRS means that for every term over the original signature of the CTRS,
if the corresponding unraveled TRS reduces the term to a term over the original signa-
ture, then so does the original CTRS. In this paper, we show that an optimized variant of
Ohlebusch’s unraveling for deterministic CTRSs is sound w.r.t. reduction if the correspond-
ing unraveled TRSs are left-linear, or both right-linear and non-erasing. Then, we show
that soundness of the variant implies soundness of Ohlebusch’s unraveling, and show that
soundness of Marchiori’s unravelings for join and normal CTRSs also implies soundness of
Ohlebusch’s unraveling. Finally, we show that soundness of a transformation proposed by
Şerbănuţă and Roşu for deterministic CTRSs implies soundness of Ohlebusch’s unraveling.

1. Introduction

Unravelings are transformations from conditional term rewriting systems (CTRSs) into un-
conditional term rewriting systems (TRSs) over extended signatures of the original sig-
natures for the CTRSs. They are complete w.r.t. reduction sequences of the original
CTRSs [15], i.e., for every derivation of the CTRSs, there exists a corresponding derivation
of the unraveled TRSs. In this respect, the unraveled TRSs are over-approximations of
the original CTRSs w.r.t. reduction, and the unraveled TRSs are useful for analyzing the
properties of the original CTRSs, such as syntactic properties, modularity, and operational
termination since TRSs are in general much easier to handle than CTRSs.

Marchiori proposed unravelings for join and normal CTRSs in order to analyze ultra-
properties and modularity of the CTRSs [15], and he also proposed an unraveling for de-
terministic CTRSs (DCTRSs) [16]. The transformation technique used in his unravelings
originates from [4, 8]. Afterwards, Ohlebusch presented an improved variant of Marchiori’s

1998 ACM Subject Classification: F.4.2.
Key words and phrases: conditional term rewriting, program transformation.

∗ This research has been partially supported byMEXT KAKENHI #17700009, #20300010 and #21700011,
and Kayamori Foundation of Informational Science Advancement.

LOGICAL METHODS
l IN COMPUTER SCIENCE DOI:10.2168/LMCS-8 (3:04) 2012

c© N. Nishida, M. Sakai, and T. Sakabe
CC© Creative Commons

http://creativecommons.org/about/licenses


2 N. NISHIDA, M. SAKAI, AND T. SAKABE

unraveling for DCTRSs in order to analyze termination of logic programs [25]—Marchiori’s
and Ohlebusch’s unravelings are called sequential unravelings [10]. Termination of the un-
raveled TRSs is a sufficient condition for proving operational termination of the original
CTRSs [14]. Later, a variant of Ohlebusch’s unraveling was proposed in both [18] and [7].
This variant is sometimes called optimized, in the sense that the variable-carrying arguments
of U symbols introduced by means of the application of the unraveling are optimized, i.e.,
U symbols propagate only values received by variables that are referred later.

Although the mechanism of unconditional rewriting is much simpler than that of con-
ditional rewriting, the reduction of the unraveled TRS has never been used instead of the
original CTRS in order to reduce terms over the original signature, until being used in
program inversion methods [18, 22, 23] described later. This is because unravelings are
not sound w.r.t. reduction in general [15, 25] while they are complete. Here, soundness
w.r.t. reduction (simply, soundness) for a CTRS means that, for every term over the orig-
inal signature of the CTRS, if the unraveled TRS reduces the term to a term over the
original signature, then so does the original CTRS [15]. Several studies have been made
on soundness conditions of unravelings—some syntactic properties and particular reduction
strategies for the unraveled TRSs. Marchiori showed that his unraveling for normal CTRSs
is sound for left-linear ones [15], and he also showed that his unraveling for DCTRSs is
sound for DCTRSs that are semi-linear or confluent [16]. Nishida et al. showed that the
combined reduction restriction of the membership condition [34] and context-sensitive condi-
tion [13] determined by means of the application of the optimized unraveling is sufficient for
soundness [22]. Later, Schernhammer and Gramlich showed that the same context-sensitive
condition without the membership condition is sufficient for soundness of Ohlebusch’s un-
raveling [28, 29] and Gmeiner et al. showed that Marchiori’s unraveling for normal CTRSs
is sound for confluent, non-erasing, or weakly left-linear ones, and they presented some
properties that are not sufficient for soundness [9].

As another kind of transformation from CTRSs to TRSs, Şerbănuţă and Roşu proposed
a complete transformation (SR transformation) from strongly or syntactically DCTRSs into
TRSs [30, 31]. The SR transformation is sound if the DCTRSs are semi-linear or confluent,
where function symbols in the original signatures are completely extended by increasing the
arities of some function symbols. The SR transformation is based on Viry’s approach [35]
that is another direction of developing transformations from CTRSs into TRSs, and that has
been further studied in [1, 27]. The SR transformation provides computationally equivalent
TRSs to the original DCTRSs if the original DCTRSs are operationally terminating and
either semi-linear or (ground) confluent. On the other hand, the theoretical relationship
between the SR transformation and the existing unravelings has never been discussed.

In this paper, we show two sufficient conditions of DCTRSs for soundness of the op-
timized unraveling: one condition is ultra-left-linearity, i.e., that the unraveled TRSs are
left-linear, and the second condition is the combination of ultra-right-linearity and ultra-
non-erasingness, i.e., that the unraveled TRSs are right-linear and non-erasing. We also
provide necessary and sufficient conditions of DCTRSs under which the corresponding un-
raveled TRSs are left-linear, right-linear, and non-erasing, respectively. All the conditions
are syntactic and it is decidable whether a DCTRS satisfies the conditions. Moreover,
we show that soundness of the optimized unraveling implies soundness of Ohlebusch’s un-
raveling, i.e., if the optimized unraveling is sound for a DCTRS, then so is Ohlebusch’s
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unraveling. Finally, we show that soundness of the existing unravelings and the SR trans-
formation respectively imply soundness of Ohlebusch’s unraveling. This paper is different
from the preliminary version [24] in that we present

• abstract comparison methods for soundness of two transformations from CTRSs into
TRSs (Lemmas 5.3, 5.20 and Theorem 6.2),
• a comparison with other unravelings for join and normal DCTRSs (Subsection 5.3) in
terms of soundness, and
• a comparison with the SR transformation (Section 6) in terms of soundness.

The optimized unraveling has been employed in the (full or partial) program inversion
methods for constructor TRSs [18, 22, 23]. The methods first transform a constructor TRS
into a DCTRS that defines (full or partial) inverses of functions defined in the constructor
TRS, and then unravel the DCTRS into a TRS (see Example 3.2). The resulting TRS may
have extra variables since the intermediate DCTRS may have extra variables that occur on
the right-hand side, but not in the conditional part. For this reason, this paper allows TRSs
to have extra variables. In applying a rewrite rule, extra variables of the rule are allowed
to be instantiated with arbitrary terms. Since many instantiated terms of extra variables
are meaningless and sometimes cause non-termination, we limit reduction sequences to
meaningful ones by giving a restriction to reduction sequences of the resulting TRS. The
restriction is EV-safeness [20, 18, 21] that is a relaxed variant of the basicness property [11,
17] of reduction sequences: when a TRS has extra variables, any redex introduced by means
of extra variables is not reduced anywhere in the reduction sequences. In this paper, we
discuss soundness of unravelings w.r.t. EV-safe derivations of the unraveled TRSs.

It has been shown that the optimized unraveling is sound for the intermediate DCTRSs
of the inversion methods in [18, 22, 23], where conditional rules of the intermediate DCTRSs
are of the restricted form: l→ r ⇐ s1 ։ t1; . . . ; sk ։ tk where r, t1, . . . , tk are non-variable
constructor terms and s1, . . . , sk are rooted by defined symbols. Although the optimized
unraveling is known to be sound for the intermediate DCTRSs, studies on soundness con-
ditions of the (optimized) unraveling would be useful when the intermediate DCTRSs are
further transformed into more relaxed forms, e.g., DCTRSs obtained by removing a unary
tuple symbol tp1 (see Example 4.10). Roughly speaking, in applying the inversion method,
the resulting TRS is often right-linear if the input constructor TRS is left-linear. More-
over, the resulting TRS is non-erasing if the input constructor TRS is fully inverted, and,
in addition, the resulting TRS has no extra variable if the input is non-erasing. Note that
injective functions are often defined by non-erasing TRSs and the class of injective functions
is the most interesting as an object of program inversion. For the reasons mentioned above,
the sufficient conditions shown in this paper can be used to guarantee that the resulting
TRSs of the inversion method for left-linear constructor TRSs are definitely inverses of the
constructor TRSs (see Example 4.13).

As mentioned previously, Ohlebusch’s unraveling is sound for any DCTRS if we in-
troduce the particular context-sensitive restriction to the reduction of the corresponding
unraveled TRSs. Since recently context-sensitive reduction has been well investigated (e.g.,
techniques to prove context-sensitive termination) and its interpreter can be easily imple-
mented, the unraveled TRSs with the particular context-sensitivity can be used instead of
the original CTRSs to completely reduce terms over the original signature to terms over
the original signature. However, sufficient (syntactic) properties for soundness without the
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restriction to the reduction are useful for the use of the unraveled TRSs instead of the orig-
inal CTRSs since context-sensitivity makes the reduction more complicated than ordinary
reduction. Moreover, if the unraveling used in [18, 22, 23] is sound for the resulting TRS ob-
tained by the inversion method without context-sensitivity, then we can apply the restricted
version of completion [19] to the resulting TRS to make the resulting TRS convergent or
to provide useful information for transforming the intermediate DCTRS into an equivalent
functional program. For these reasons, soundness of unravelings without any restriction to
the reduction is meaningful in order to employ the reduction of the unraveled TRSs instead
of the original CTRSs.

In summary, the main contribution of this paper is to show the following:

• the optimized unraveling is sound for a DCTRS that is ultra-left-linear, or both ultra-
right-linear and ultra-non-erasing (Theorems 4.3, 4.9),
• soundness of the existing unravelings and the SR transformation respectively implies
soundness of Ohlebusch’s unraveling (Corollary 5.5 and Theorems 5.21, 6.12), and
• abstract comparison methods for soundness of two transformations from CTRSs into
TRSs (Lemmas 5.3, 5.20 and Theorem 6.2).

All the soundness conditions are summarized at the end of this paper (Table 1 in Subsec-
tion 6.4).

This paper is organized as follows. In Section 2, we recall basic notions and notations of
term rewriting. In Section 3, we review the existing unravelings for DCTRSs, and present
syntactic properties of DCTRSs for some ultra-properties. In Section 4, we show that
the optimized unraveling is sound for a DCTRS if the corresponding unraveled TRS is
left-linear, or both right-linear and non-erasing. In Section 5, we show that soundness
of the existing unravelings for join, normal, and deterministic CTRSs respectively implies
soundness of Ohlebusch’s unraveling. In Section 6, we compare soundness of Ohlebusch’s
unraveling with soundness of the SR transformation. In Section 7, we briefly describe related
work and summarize soundness conditions of unravelings and the SR transformation. In
Section 8, we conclude this paper and briefly describe future work on unravelings. Proofs
of some technical results are included in the appendix.

2. Preliminaries

In this section, we recall basic notions and notations of term rewriting [3, 26].
Let →L be a binary relation (over a set of A) with a label L. The reflexive closure of

→L is denoted by→=
L , the transitive closure of →L by→+

L , and the reflexive and transitive
closure of →L by →∗

L. The joinability relation w.r.t. →L is denoted by ↓L: ↓L = →∗
L · ←

∗
L.

An element a ∈ A is called a normal form w.r.t. →L (or w.r.t. L) if there exists no element
b ∈ A such that a →L b.

Throughout the paper, we use V as a countably infinite set of variables. Let F be a
signature, a finite set of function symbols each of which has its own fixed arity, and arity(f)
be the arity of function symbol f . The set of terms over F and V is denoted by T (F ,V), and
the set of variables appearing in any of terms t1, . . . , tn is denoted by Var(t1, . . . , tn). A term
t is called ground if Var(t) = ∅. A term is called linear if any variable occurs in the term at
most once, and called linear w.r.t. a variable if the variable appears at most once in t. The
set of positions of term t is denoted by Pos(t). The set of positions for function symbols in
t is denoted by PosF (t), and the set of positions for variables in t is denoted by PosV(t).
For term t and position p of t, the notation t|p represents the subterm of t at position p.
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The function symbol at the root position ε of term t is denoted by root(t). Given an n-hole
context C[ ] with parallel positions p1, . . . , pn, the notation C[t1, . . . , tn]p1,...,pn represents
the term obtained by replacing hole � at position pi with term ti for all 1 ≤ i ≤ n. We may
omit the subscription p1,...,pn from C[. . .]p1,...,pn . For positions p and p′ of a term, we write
p′ ≥ p if p is a prefix of p′ (i.e., there exists a sequence q such that pq = p′). Moreover, we
write p′ > p if p is a proper prefix of p′.

The domain and range of a substitution σ are denoted by Dom(σ) and Ran(σ), respec-
tively. We may denote σ by {x1 7→ t1, . . . , xn 7→ tn} if Dom(σ) = {x1, . . . , xn} and σ(xi) =
ti for all 1 ≤ i ≤ n. For a signature F , the set of substitutions whose ranges are over F and
V is denoted by Sub(F ,V): Sub(F ,V) = {σ | Ran(σ) ⊆ T (F ,V)}. For a substitution σ

and a term t, the application σ(t) of σ to t is abbreviated to tσ, and tσ is called an instance
of t. Given a set X of variables, σ|X denotes the restricted substitution of σ w.r.t. X: σ|X
= {x 7→ xσ | x ∈ Dom(σ) ∩X}. The composition σθ of substitutions σ and θ is defined as
x(σθ) = (xσ)θ.

A conditional rewrite rule over a signature F is a triple (l, r, c), denoted by l→ r ⇐ c,
such that the left-hand side l is a non-variable term in T (F ,V), the right-hand side r is a
term in T (F ,V), and the conditional part c is a sequence s1 ≈ t1; . . . ; sk ≈ tk of term pairs (k
≥ 0) where all of s1, t1, . . . , sk, tk are terms in T (F ,V). In particular, a conditional rewrite
rule is called unconditional if the conditional part is the empty sequence (i.e., k = 0), and we
may abbreviate it to l→ r. The conditional rewrite rule is called extended if the condition
“ l 6∈ V ” is not imposed. We sometimes attach a unique label ρ to the conditional rewrite
rule l → r ⇐ c by denoting ρ : l → r ⇐ c, and we use the label to refer to the rewrite
rule. The sets of variables in c and ρ are denoted by Var(c) and Var(ρ), respectively:
Var(s1 ≈ t1; . . . ; sk ≈ tk) = Var(s1, t1, . . . , sk, tk) and Var(ρ) = Var(l, r) ∪ Var(c). A
variable occurring in r or c is called an extra variables of ρ if it does not occur in l. The set
of extra variables of ρ is denoted by EVar(ρ): EVar(ρ) = (Var(r) ∪ Var(c)) \ Var(l).

A conditional term rewriting system (CTRS) over a signature F is a set of conditional
rules over F . In particular, a CTRS is called an EV-TRS if all of its rules are unconditional,
and called an extended CTRS (eCTRS) if the condition “ l 6∈ V ” of conditional rewrite rules
l → r ⇐ c is not imposed. Moreover, a CTRS is called an (unconditional) term rewriting
system (TRS) if every rule l → r ⇐ c in the CTRS is unconditional and satisfies Var(l) ⊇
Var(r). Note that an eCTRS is called an eTRS if all of its rules are unconditional. The
underlying unconditional system of a CTRS R is denoted by Ru: Ru = {l → r | l → r ⇐
c ∈ R}.

A CTRS R is called oriented if the symbol ≈ in the conditions of its rewrite rules is
interpreted as reachability : the reduction relation of R is defined as →R =

⋃
n≥0 →(n),R

where

• →(0),R = ∅, and
• →(i+1),R = →(i),R ∪ {(C[lσ]p, C[lσ]p) | ρ : l → r ⇐ s1 ≈ t1; . . . ; sk ≈ tk ∈ R, s1σ →

∗
(i),R

t1σ, . . . , skσ →
∗
(i),R tkσ} for i ≥ 0.

Rewrite rules l→ r ⇐ s1 ≈ t1; . . . ; sk ≈ tk of oriented CTRSs are written as l→ r ⇐ s1 ։

t1; . . . ; sk ։ tk. To specify the applied rule ρ and the position p where ρ is applied, we may
write→p,ρ or→p,R instead of→R. Moreover, we may write→>ε,R instead of→p,R if p > ε.
The parallel reduction ⇒R is defined as ⇒R = {(C[s1, . . . , sn]p1,...,pn , C[t1, . . . , tn]p1,...,pn) |
s1 →R t1, . . . , sn →R tn}. To specify the positions p1, . . . , pn in the definition, we may
write ⇒{p1,...,pn},R instead of ⇒R, and we may write ⇒>ε,R instead of ⇒R if pi > ε for all
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1 ≤ i ≤ n. Moreover, for a set P of parallel positions, we may write ⇒≥P,R instead of ⇒R

if, for each position pi ∈ {p1, . . . , pn}, there exists a position p ∈ P such that p ≤ pi.
For an eCTRS R, a substitution σ is called normalized w.r.t. R if xσ is a normal form

w.r.t. R for every variable x ∈ Dom(σ).
An (extended) conditional rewrite rule l → r ⇐ c is called

• left-linear (LL) if l is linear,
• right-linear (RL) if r is linear,
• non-erasing (NE) if Var(l) ⊆ Var(r),
• non-collapsing or non-right-variable (non-RV) if the right-hand side r is not a variable,
and
• non-left-variable (non-LV) if l is not a variable.

For a syntactic property P of conditional rewrite rules, we say that an eCTRS has the
property P if all of its rules have the property P, e.g., an eCTRS is called left-linear (LL)
if all of its rules are LL. Note that a non-LV eCTRS is a CTRS.

An (extended) conditional rewrite rule ρ : l → r ⇐ s1 ։ t1; . . . ; sk ։ tk is called
deterministic if Var(si) ⊆ Var(l, t1, . . . , ti−1) for all 1 ≤ i ≤ k. An (e)CTRS is called
deterministic, an (e)DCTRS for short, if all of its rules are deterministic. Conditional rule
ρ is classified according to the distribution of variables in the rule as follows:

• Type 1 if Var(r, s1, t1, . . . , sk, tk) ⊆ Var(l),
• Type 2 if Var(r) ⊆ Var(l),
• Type 3 if Var(r) ⊆ Var(l, s1, t1, . . . , sk, tk), and
• Type 4 otherwise.

An (eD)CTRS is called an i-(eD)CTRS if all of its rules are of Type i. An eDCTRS R is
called normal (or a normal CTRS ) if, for every rule l→ r⇐ s1 ։ t1; . . . ; sk ։ tk ∈ R, all
of t1, . . . , tk are ground normal forms w.r.t. Ru.

Let R be a CTRS over a signature F . The sets of defined symbols and constructors of
R are denoted by DR and CR, respectively: DR = {root(l) | l → r ⇐ c ∈ R} and CR =
F \ DR. Terms in T (CR,V) are constructor terms of R. R is called a constructor system if
all proper subterms of the left-hand sides in R are constructor terms of R.

Let R be a CTRS. Two conditional rewrite rules l1 → r1 ⇐ c1 and l2 → r2 ⇐ c2 in R
are called overlapping if there exists a context C[ ] and a non-variable term t such that l2 =
C[t] and l1 and t are unifiable, where we assume w.l.o.g. that these rules share no variable.
Then, a conditional pair of terms ((C[r1])θ, r2θ) ⇐ c1θ; c2θ is called a critical pair of R
where θ is a most general unifier of l1 and t. A critical pair (s, t) ⇐ c is called trivial if s
= t, and called infeasible if for any substitution σ, c contains a condition u ։ v such that
uσ 6→∗

R vσ [12] (cf., [26]).
Let F1,F2 be signatures, G ⊆ F1 ∩ F2, and →1,→2 be binary relations on terms in

T (F1,V) and T (F2,V), respectively. We say that →1 ⊆ →2 on terms in T (G,V) if, for all
terms s, t ∈ T (G,V), s →2 t whenever s →1 t.

3. Unravelings for Deterministic CTRSs

In this section, we first recall unravelings for DCTRSs, and then show some syntactic prop-
erties of DCTRSs, that are related to the syntactic properties of the unraveled TRSs. The
unravelings and some results in this section are straightforwardly extended to eDCTRSs.
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We first recall the notion of unravelings. A computable transformation U from eCTRSs
into eTRSs is called an unraveling if for every eCTRS R, we have →R ⊆ →

∗
U(R) and

U(R′ ∪ R) = R′ ∪ U(R) whenever R′ is an eTRS [15, 16].1 Unraveling U is called tidy if
it has compositionality (U(R1 ∪ R2) = U(R1) ∪ U(R2)), finiteness (if R is finite, then so
is U(R)), and emptiness (if R is empty, then so is U(R)) [15]. Let R be an eCTRS over a
signature F , and ⇒U(R) be a subrelation of →U(R). U is called sound w.r.t. reduction for
R w.r.t. ⇒U(R) (simulation-sound [21, 22], or simply sound for R w.r.t. ⇒U(R)) if ⇒∗

U(R)

⊆ →∗
R on terms in T (F ,V) (i.e., for all terms s, t in T (F ,V), if s ⇒∗

U(R) t, then s →
∗
R t).

U is called complete w.r.t. reduction for R w.r.t. ⇒U(R) (or simply complete for R w.r.t.
⇒U(R)) if →

∗
R ⊆ ⇒

∗
U(R) on terms in T (F ,V). We omit “w.r.t. →U(R)” if ⇒U(R) = →U(R).

Next, we recall an unraveling for DCTRSs, proposed by Ohlebusch [25] that is a natural
improvement of Marchiori’s unraveling [16]. For a finite set T = {t1, . . . , tn}, given some

fixed ordering ≺ such that t1 ≺ · · · ≺ tn,
−→
T denotes the unique sequence t1, . . . , tn of

elements in T .

Definition 3.1 (unraveling U [25]). Let R be an eDCTRS over a signature F . For every
conditional rule ρ : l→ r ⇐ s1 ։ t1; . . . ; sk ։ tk in R, we prepare k fresh function symbols
U

ρ
1 , . . . , U

ρ
k , called U symbols, that do not appear in F . We transform ρ : l → r ⇐ s1 ։

t1; . . . ; sk ։ tk into a set U(ρ) of k + 1 unconditional rewrite rules as follows:

U(ρ) =





l→ U
ρ
1 (s1,

−→
X1)

U
ρ
1 (t1,

−→
X1)→ U

ρ
2 (s2,

−→
X2)

...

U
ρ
k (tk,

−→
Xk)→ r





where Xi = Var(l, t1, . . . , ti−1) for all 1 ≤ i ≤ k. Note that U(l′ → r′) = {l′ → r′}. U is
extended to eDCTRSs (i.e., U(R) =

⋃
ρ∈R U(ρ)) and U(R) is an eTRS over the extended

signature FU(R) = F ∪ {U
ρ
i | ρ : l→ r ⇐ s1 ։ t1; . . . ; sk ։ tk ∈ R, 1 ≤ i ≤ k}.

It is clear that→R ⊆ →
∗
U(R), and U(R′⊎R) = R′∪U(R) if R′ is unconditional. Moreover, by

definition, U has compositionality, finiteness, and emptiness. Thus, U is a tidy unraveling
for eDCTRSs.

The variant Uopt of Ohlebusch’s unraveling U is proposed in both [18] and [7]. For a
conditional rewrite rule ρ : l → r ⇐ s1 ։ t1; . . . ; sk ։ tk, the set Uopt(ρ) of unconditional

rewrite rules is defined by replacing
−→
Xi in U(ρ) by

−−−−−−−−−−−−−−−−−−−−−−−−−−→
Xi ∩ Var(r, ti, si+1, ti+1, . . . , sk, tk) for

all 1 ≤ i ≤ k:

Uopt(ρ) =





l→ U
ρ
1 (s1,

−−−−−→
X1 ∩ Y1)

U
ρ
1 (t1,

−−−−−→
X1 ∩ Y1)→ U

ρ
2 (s2,

−−−−−→
X2 ∩ Y2)

...

U
ρ
k (tk,

−−−−−→
Xk ∩ Yk)→ r





where Yi = Var(r, ti, si+1, ti+1, . . . , sk, tk) for all 1 ≤ i ≤ k. Note that Uopt(R) is an eTRS
over the extended signature FUopt(R) where FUopt(R) = F ∪ {Uρ

i | ρ : l → r ⇐ s1 ։

1 In the original definition [15], not the property →R ⊆ →
∗
U(R) but the property ↓R ⊆ ↓U(R) is imposed.

Under this property, unravelings are not complete in general. For example, if →R ⊆ ←
∗
U(R), then U is an

unraveling. However, all the existing unravelings are designed so as to satisfy→R ⊆→
∗
U(R), that is implicitly

required of unravelings. For this reason, this paper imposes the more restrictive property →R ⊆ →
∗
U(R).
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t1; . . . ; sk ։ tk ∈ R, 1 ≤ i ≤ k}.2 Note also that Uopt is a tidy unraveling for eDCTRSs.
Yi above, the set of variables appearing in any of r, ti, si+1, ti+1, . . . , sk, tk, is the set of
variables that are referred after si is considered. Thus, Xi ∩ Yi is the set of variables that

appear in any of l, t1, . . . , ti−1 and also appear after si is considered, and hence
−−−−→
Xi ∩ Yi is

used for propagating only the variables that are referred later. On the other hand,
−→
Xi in

Definition 3.1 is used for propagating all the appeared variables. This is the only difference
between U and Uopt, and the reason why Uopt is sometimes called an optimized variant of
U. Note that all of the following are equivalent:

• R is of Type 3,
• U(R) has no extra variables, and
• Uopt(R) has no extra variables.

In the rest of the paper, unless noted otherwise, we use the label ρ for presenting a condi-
tional rewrite rule l→ r ⇐ s1 ։ t1; . . . ; sk ։ tk, and we denote the sets Var(l, t1, . . . , ti−1),
Var(r, ti, si+1, ti+1, . . . , sk, tk), and Xi ∩ Yi by Xi, Yi, and Zi, respectively.

Example 3.2. Consider the following TRS defining addition and multiplication of natural
numbers encoded as 0, s(0), s(s(0)), . . .:

R1 =





add(0, y)→ y

add(s(x), y)→ s(add(x, y))
mult(0, y)→ 0

mult(x, 0)→ 0

mult(s(x), s(y))→ s(add(mult(x, s(y)), y))





The inversion method in [18] inverts this TRS to the following DCTRS R2 where add
−1 and

mult−1 are function symbols that define the inverse relation of add and mult, respectively,3

and tp2 is a binary constructor for representing tuples of two terms:

R2 =





add−1(y)→ tp2(0, y)
add−1(s(z))→ tp2(s(x), y)⇐ add−1(z) ։ tp2(x, y)
mult−1(0)→ tp2(0, y)
mult−1(0)→ tp2(x, 0)

mult−1(s(z))→ tp2(s(x), s(y))⇐ add−1(z) ։ tp2(w, y); mult−1(w) ։ tp2(x, s(y))





This DCTRS is unraveled by U and Uopt as follows:

U(R2) =





...
add−1(s(z))→ U1(add

−1(z), z)
U1(tp2(x, y), z)→ tp2(s(x), y)

...
mult−1(s(z))→ U2(add

−1(z), z)
U2(tp2(w, y), z)→ U3(mult−1(w), z, w, y)

U3(tp2(x, s(y)), z, w, y)→ tp2(s(x), s(y))





2 The extended signatures FU(R) and FUopt(R) are not equivalent in terms of the arities of U symbols (see,
e.g., Example 3.2). We distinguish between these extended signatures since we deal with mappings from
T (FU(R),V) to T (FUopt(R),V) in Subsection 5.2.

3 As inverse computation of add(sm(0), sn(0)) →∗
R1

sm+n(0) and mult(sm(0), sn(0)) →∗
R1

sm×n(0), we

have the derivations add−1(sm+n(0)) →∗
R2

tp2(s
m(0), sn(0)) and mult−1(sm×n(0)) →∗

R2
tp2(s

m(0), sn(0)).
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Uopt(R2) =





...
add−1(s(z))→ U1(add

−1(z))
U1(tp2(x, y))→ tp2(s(x), y)

...
mult−1(s(z))→ U2(add

−1(z))
U2(tp2(w, y))→ U3(mult−1(w), y)

U3(tp2(x, s(y)), y)→ tp2(s(x), s(y))





Unravelings are not sound in general. The CTRS shown in the following example is a
counterexample against soundness of both U and Uopt.

Example 3.3 ([15, 26]). Consider the following 3-DCTRS R3 and its unraveled TRSs:

R3 =





f(x)→ x⇐ x։ e

g(d, x, x)→ A

h(x, x)→ g(x, x, f(k))



 ∪R0

U(R3) = Uopt(R3) =





f(x)→ U4(x, x)
U4(e, x)→ x

...




∪R0

where

R0 =

{
a→ c b→ c c→ e k→ l d→m

a→ d b→ d c→ l k→m

}

We have a reduction sequence of Uopt(R3) from h(f(a), f(b)) to A:

h(f(a), f(b))→∗
Uopt(R3)

h(U4(c, d),U4(c, d))→Uopt(R3) g(U4(c, d),U4(c, d), f(k))

→∗
Uopt(R3)

g(d,U4(l,m),U4(l,m))→Uopt(R3) A

However, we have no similar reduction sequence of R3, i.e., h(f(a), f(b)) 6→
∗
R3

A. Thus,
neither U nor Uopt is sound for R3. Note that being (ultra-)overlapping-systems is not
sufficient for soundness of Uopt and U since Uopt(R3) (= U(R3)) is an overlapping system.

Soundness of U can be recovered by restricting the reduction of the unraveled TRSs
to the context-sensitive reduction [13] with the replacement mapping determined by means
of the application of U [28, 29]: U is sound for a 3-DCTRS R if the reduction of U(R) is
restricted to context-sensitive rewriting with the replacement mapping µ such that µ(Uρ

i )
= {1} for any U symbol Uρ

i —the replacement mapping forbids reducing any redex inside
the second or later arguments of U symbols. This holds for Uopt by restricting the context-
sensitive reduction to the reduction with the membership condition [34], a very complicated
restriction that soundness of U does not require. In this respect, Uopt does not look like an
“optimized” variant of U. The following examples show that neither the context-sensitive
nor membership conditions above is sufficient on its own for soundness of Uopt.

Example 3.4. Consider the following DCTRS and its unraveled TRSs:

R4 =
{

f(x, y)→ x⇐ g(x) ։ z; g(y) ։ z g(x)→ c⇐ d ։ c
}

U(R4) =

{
f(x, y)→ U5(g(x), x, y) U5(z, x, y)→ U6(g(y), x, y, z) U6(z, x, y, z)→ x

g(x)→ U7(d, x) U7(c, x)→ c

}

Uopt(R4) =

{
f(x, y)→ U5(g(x), x, y) U5(z, x, y)→ U6(g(y), x, z) U6(z, x, z)→ x

g(x)→ U7(d) U7(c)→ c

}
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For the context-sensitive condition mentioned above, we forbid reducing any redex inside
the second or third arguments of U5 and U6. We have the derivation f(a, b) →∗

Uopt(R4)

U6(U7(d), a,U7(d)) →Uopt(R4) a under the context-sensitive condition, but this derivation is
not possible in R4. Therefore, the context-sensitive condition is not sufficient on its own for
soundness of Uopt. Note that the derivation f(a, b) →∗ a does not hold in U(R4) under the
context-sensitive condition, either, since f(a, b) can be reduced to both U6(U7(d, b), a, g(a))
and U6(U7(d, a), a,U7(d, b)), but they are not reduced any more.

Example 3.5. Consider the following DCTRS R5 and its unraveled TRSs:

R5 =
{

f(x)→ x⇐ x։ a; b ։ x a→ b
}

U(R5) = Uopt(R5) =
{

f(x)→ U8(x, x) U8(a, x)→ U9(b, x) U9(x, x)→ x . . .
}

For the membership condition, we forbid reducing any redex that has a proper subterm
containing U symbols. We have the derivation f(a) →∗

Uopt(R5)
U9(b, a) →Uopt(R5) U9(b, b)

→Uopt(R5) b under the membership condition, but this derivation is not possible in R5.
Therefore, the membership condition is not sufficient on its own for soundness of either
Uopt or U.

To analyze syntactic relationships between eDCTRS and the corresponding unraveled
eTRSs, we recall ultra-properties of DCTRSs [15, 16], extending them to eDCTRSs.

Definition 3.6 (ultra-property [15, 16]). Let P be a property on (extended) conditional
rewrite rules, and U be an unraveling. An (extended) conditional rewrite rule ρ is said to
be ultra-P w.r.t. U (U -P) if all the rules in U(ρ) satisfy the property P. An eDCTRS R is
said to be ultra-P w.r.t. U (U -P) if all the rules in R are U -P.

Example 3.7. The DCTRS R2 in Example 3.2 is non-LV and non-RV w.r.t. both U and
Uopt, but R2 is not U-LL, U-RL, or U-NE either, while R2 is Uopt-RL and Uopt-NE, but not
Uopt-LL.

Note that the Uopt-LL property is the same as semi-linearity in [16]. Roughly speaking, the
conditional parts of Uopt-LL conditional rules correspond to the let structures of functional
programs.

The Uopt-LL, Uopt-RL, and Uopt-NE properties of conditional rewrite rules are identical
with the following syntactic properties of DCTRSs, respectively.

Theorem 3.8. Let ρ : l → r ⇐ s1 ։ t1; . . . ; sk ։ tk be an extended deterministic condi-
tional rewrite rule. Then, all of the following hold:

(1) ρ is Uopt-LL iff all of l, t1, . . . , tk are linear and Var(ti) ∩Xi = ∅ for all 1 ≤ i ≤ k,
(2) ρ is Uopt-RL iff all of r, s1, . . . , sk are linear and Var(si) ∩ Yi = ∅ for all 1 ≤ i ≤ k,

and
(3) ρ is Uopt-NE iff Var(l) ⊆ Var(r, s1, . . . , sk) and Var(ti) ⊆ Var(r, si+1, . . . , sk) for all

1 ≤ i ≤ k.

Proof. The proof can be seen in Appendix A.1.
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The sufficient and necessary condition for the Uopt-NE property in Theorem 3.8 is equivalent
to the one shown in [18, 23] since the following are equivalent:

• Var(l) ⊆ Var(r, s1, t1, . . . , sk, tk) and Var(ti) ⊆ Var(r, si+1, ti+1, . . . , sk, tk) for all 1 ≤ i

≤ k, and
• Var(l) ⊆ Var(r, s1, . . . , sk) and Var(ti) ⊆ Var(r, si+1, . . . , sk) for all 1 ≤ i ≤ k.

Neither the second nor third claims in Theorem 3.8 holds for U (cf., Examples 3.2, 3.7),
while the first one holds for U. Quite restricted variants of the second and third claims hold
for U.

Theorem 3.9. Let ρ : l → r ⇐ s1 ։ t1; . . . ; sk ։ tk be an extended deterministic condi-
tional rewrite rule. Then, all of the following hold:

(1) ρ is U-LL iff all of l, t1, . . . , tk are linear and Var(ti) ∩Xi = ∅ for all 1 ≤ i ≤ k,
(2) ρ is U-RL iff r is linear and all of s1, . . . , sk are ground, and
(3) ρ is U-NE iff Var(l, t1, . . . , tk) ⊆ Var(r).

Proof. The proof can be seen in Appendix A.2.

Note that the U-LL and Uopt-LL properties are equivalent. Theorems 3.8, 3.9 lead to the
following relationship between the ultra-RL and ultra-NE properties w.r.t. U and Uopt.

Corollary 3.10. The U-RL and U-NE properties imply the Uopt-RL and Uopt-NE proper-
ties, respectively.

As for the non-LV and non-RV properties, we have the following relationships between
eDCTRSs and the corresponding unraveled eTRSs.

Proposition 3.11. Let U be either U or Uopt, R be an eDCTRS, and ρ be an (extended)
conditional rewrite rule. Then, all of the following hold:

• ρ is non-LV iff so is U(ρ),
• ρ is non-RV iff so is U(ρ),
• R is non-LV iff so is U(R), and
• R is non-RV iff so is U(R).

Proof. Trivial by definition.

We recognize from Proposition 3.11 that, for both U and Uopt, the non-LV and non-RV
properties are equivalent to the ultra-non-LV and ultra-non-RV properties, respectively.

4. Soundness of the Optimized Unraveling

In this section, we first show that the optimized unraveling Uopt is sound for Uopt-LL 3-
DCTRSs. Then, we show that Uopt is sound for DCTRSs that are both Uopt-RL and
Uopt-NE. Finally, we extend the result on soundness for Uopt-LL 3-DCTRSs to Uopt-LL
DCTRSs, i.e., Uopt is sound for a Uopt-LL DCTRS if the reduction of the corresponding
unraveled EV-TRS is restricted to EV-safe ones (see Definition 4.14). In the rest of this
paper, we write the terminology “RLNE” for “RL and NE”.
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4.1. Soundness on Ultra-Left-Linearity. In this subsection, we first show that the LL
property is not a soundness condition of either Uopt or U, and then we show that Uopt is
sound for Uopt-LL 3-DCTRSs. This result also holds for arbitrary DCTRSs under some
restriction to reduction. Although we first show the case of 3-DCTRSs to make the essen-
tial scheme of the proof clear, we will extend the result in this subsection to DCTRSs in
Subsection 4.4.

As described in Section 1, the LL property is a soundness condition for unravelings for
normal CTRSs. In contrast, the LL property is not a soundness condition for either Uopt

or U.

Example 4.1. Consider the following DCTRS obtained from R3 by left-linearizing:

R6 =





f(x)→ x⇐ x։ e

g(d, x, y)→ A⇐ y ։ x

h(x, y)→ g(x, y, f(k)) ⇐ y ։ x



 ∪R0

R6 is unraveled by Uopt and U to the following TRSs:

Uopt(R6) =





f(x)→ U10(x, x) U10(e, x)→ x

g(d, x, y)→ U11(y, x) U11(x, x)→ A

h(x, y)→ U12(y, x, y) U12(x, x, y)→ g(x, y, f(k))



 ∪R0

U(R6) =





f(x)→ U10(x, x) U10(e, x)→ x

g(d, x, y)→ U11(y, x, y) U11(x, x, y)→ A

h(x, y)→ U12(y, x, y) U12(x, x, y)→ g(x, y, f(k))



 ∪R0

As in Example 3.3, we have the derivations h(f(a), f(b))→∗
Uopt(R6)

A and h(f(a), f(b))→∗
U(R6)

A, but h(f(a), f(b)) cannot be reduced by R6 to A. Therefore, neither Uopt nor U is sound
for R6.

The LL property of normal CTRSs is equivalent to the Uopt-LL property since the right-
hand sides ni of conditions si ։ ni are ground. In contrast, the LL property of DCTRSs is
not equivalent to the ultra-LL property in general (see Uopt(R6) and U(R6) in Example 4.1).
Moreover, the LL property of the unraveled TRSs plays an important role in the existing
proof of soundness. Thus, the ultra-LL property seems a soundness condition for Uopt (and
also for U).

The soundness result of this subsection is a consequence of the following key lemma:
given a derivation s →∗

Uopt(R) tσ with s, t ∈ T (F ,V), the lemma guarantees the existence

of an intermediate term tθ ∈ T (F ,V) such that s →∗
R tθ →∗

Uopt(R) tσ and, moreover, tθ =

tσ whenever tσ ∈ T (F ,V).

Lemma 4.2. Let R be a Uopt-LL 3-eDCTRS over a signature F , s be a term in T (F ,V),
t be a linear term in T (F ,V), and σ be a substitution in Sub(FUopt(R),V). Suppose that R
is non-LV or non-RV. If s ⇒n

Uopt(R) tσ for some n ≥ 0, then there exists a substitution θ

in Sub(F ,V) such that

• s →∗
R tθ ⇒n′

≥PosV (t),Uopt(R) tσ for some n′ ≤ n, and

• if tσ ∈ T (F ,V), then tθ = tσ.

Proof. The proof can be seen in Appendix A.3.
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As a consequence of Lemma 4.2, we show the main theorem of this subsection.

Theorem 4.3. Uopt is sound for Uopt-LL 3-eDCTRSs that are non-LV or non-RV.

Proof. Let R be a 3-eDCTRS over a signature F , that is non-LV or non-RV. Suppose that
s →∗

Uopt(R) t and s, t ∈ T (F ,V). Since a single step of →Uopt(R) can be considered a single

step of the parallel reduction, we have the derivation s ⇒∗
Uopt(R) t. Let x be a variable and

σ be a substitution such that xσ = t. Then, it follows from Lemma 4.2 that s→∗
R xσ = t.

Example 4.4. Consider the following Uopt-LL and non-LV DCTRS to define a splitting
function split for lists of non-negative integers encoded as 0, s(0), . . ., e.g., split(3, [2, 5, 1, 4, 3])
= ([2, 1], [5, 4, 3]):

R7 =



split(x, nil)→ tp2(nil, nil)
split(x, cons(y, ys))→ tp2(zs1, cons(y, zs2))⇐ split(x, ys)։ tp2(zs1, zs2); le(x, y)։ true

split(x, cons(y, ys))→ tp2(cons(y, zs1), zs2)⇐ split(x, ys)։ tp2(zs1, zs2); le(x, y)։ false

le(0, y)→ true

le(s(x), 0)→ false

le(s(x), s(y))→ le(x, y)





R7 is unraveled by Uopt and U into the following TRSs:

Uopt(R7) =





...
split(x, cons(y, ys))→ U13(split(x, ys), x, y)

U13(tp2(zs1, zs2), x, y)→ U14(le(x, y), y, zs1, zs2)
U14(true, y, zs1, zs2)→ tp2(zs1, cons(y, zs2))
split(x, cons(y, ys))→ U15(split(x, ys), x, y)

U15(tp2(zs1, zs2), x, y)→ U16(le(x, y), y, zs1, zs2)
U16(false, y, zs1, zs2)→ tp2(cons(y, zs1), zs2)

...





We recognize from Theorem 4.3 that Uopt is sound for R7.

Due to the technical proof of Lemma 4.2, we assumed that eDCTRSs are non-LV or
non-RV. It is not known yet whether this assumption can be relaxed (removed) or not.
However, this assumption is not so restrictive since every DCTRS is non-LV. Theorem 4.3
is not a direct consequence of the result in [16] on soundness for Uopt-LL 3-DCTRSs since
U symbols introduced by Uopt have less arguments than those introduced by the unraveling
in [16].

4.2. Observing Unsoundness of Marchiori’s Counterexample to Soundness. In
the previous subsection, we conjectured and proved that the ultra-LL property is a sound-
ness condition of Uopt since the property is already known to be a soundness condition
of Marchiori’s unraveling for normal CTRSs. To find other soundness conditions, in this
subsection, we take a close look at the derivation h(f(a), f(b)) →∗

Uopt(R3)
A in Example 3.3,

observing the reason why Uopt is not sound for R3 in Example 3.3.
Recall the derivation h(f(a), f(b)) →∗

Uopt(R3)
A in Example 3.3:

h(f(a), f(b))→∗
Uopt(R3)

h(U4(c, d),U4(c, d))→Uopt(R3) g(U4(c, d),U4(c, d), f(k))

→∗
Uopt(R3)

g(d,U4(l,m),U4(l,m))→Uopt(R3) A
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To succeed in this derivation, the following subderivations are necessary:

• to apply the rule g(d, x, x)→ A, the subterm f(a) in the initial term is reduced to d,
• to apply the rule h(x, x) → g(x, x, f(k)), both the subterms f(a) and f(b) in the initial
term are reduced to the same term, and
• to apply the rule g(d, x, x) → A, both the subterm f(b) in the initial term and the term
f(k) derived from the application of h(x, x)→ g(x, x, f(k)) are reduced to the same term.

As a consequence, all of the terms f(a), f(b), and f(k) have to be reduced to the same term
d. However, this is impossible on the reduction of R3. Nevertheless, in the above derivation,
h(x, x) → g(x, x, f(k)) is applied after reducing f(a) and f(b) to U4(c, d): the U4(c, d), that
derives from f(a), is reduced to d, and the other U4(c, d), that derives from f(b), is reduced to
U4(l,m) in order to be the same as f(k). Finally, g(d, x, x)→ A is applied. These undesired
subderivations must be caused by the non-RL rule h(x, x) → g(x, x, f(k)) and the erasing
rule g(d, x, x)→ A in Uopt(R3). This stems from the following aspect:

• the application of h(x, x) → g(x, x, f(k)) to h(U4(c, d),U4(c, d)) keeps two occurrences of
U4(c, d) that are intermediate states of evaluating f(a) and f(b), respectively, and each of
occurrence has a capability to be reduced to a different term later although they should
be the same, and
• g(d, x, x)→ A erases the two occurrences of U4(l,m) as if they derive from the same term
(in fact, they derive from the terms f(b) and f(k), respectively, although f(b) and f(k)
should be reduced to different terms).

Viewed in this light, we conjecture that the RLNE property of the unraveled TRSs is a
sufficient condition for soundness of Uopt. Note that the above issue does not arise in the
case of ultra-LL DCTRSs since the LL property does not require equivalence at all between
subterms in redexes.

In the next subsection, we will prove the conjecture above, by reducing soundness for
a Uopt-RLNE DCTRS to that for a DCTRS obtained by simply inverting. The key feature
is that if a DCTRS is Uopt-NE, then,

• the unraveled TRS of the inverted one is equivalent to the inverted unraveled TRS of the
DCTRS, and
• the inverted one is Uopt-LL iff the DCTRS is Uopt-RL.

The converse of this approach is impossible since the first property above needs the Uopt-NE
property and not all Uopt-LL DCTRSs have the Uopt-NE property.

4.3. Soundness on Ultra-RLNE Property. In this subsection, we show that the op-
timized unraveling Uopt is sound for Uopt-RLNE DCTRSs. To prove it, we reduce the
soundness to that of Uopt for ultra-LL DCTRSs. Moreover, we provide examples showing
that neither Uopt-RL nor Uopt-NE properties is sufficient on its own for soundness of Uopt.

We first define the operation to transform eDCTRSs into eDCTRSs that define the
inverse relation of the former eDCTRSs. Note that the “inverse” here is slightly distinct
from “inverse” in the sense of program inversion.

Definition 4.5. Let ρ : l→ r ⇐ s1 ։ t1; . . . ; sk ։ tk be an (extended) conditional rewrite
rule. We define the operation (·)−1 as follows:

(l → r ⇐ s1 ։ t1; . . . ; sk ։ tk)
−1 = r → l ⇐ tk ։ sk; . . . ; t1 ։ s1.

This operation is extended to eDCTRSs as (R)−1 = {(ρ)−1 | ρ ∈ R}.
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For an eCTRS R, the inverse relation of →R is equivalent to the reduction of (R)−1.

Proposition 4.6. Let R be an eCTRS. Then, ←R = →(R)−1 .

Proof (Sketch). It suffices to show that ←(n),R = →(n),(R)−1 for all n ≥ 0. This can be
proved by induction on n.

Regarding the operation (·)−1 and the Uopt-NE property, the unraveled TRSs are equiv-
alent and we have dual relationships between the Uopt-LL and Uopt-RL properties and
between the non-LV and non-RV properties.

Theorem 4.7. Let R be an eDCTRS. Then, all of the following hold:

(1) R is Uopt-NE iff (R)−1 is a 3-eDCTRS,
(2) if R is Uopt-NE, then,

a. Uopt((R)
−1) = (Uopt(R))

−1 up to the renaming of U symbols ( i.e., Uρ
i = U

(ρ)−1

k−i+1 for
all 1 ≤ i ≤ k),

b. R is Uopt-LL iff (R)−1 is Uopt-RL, and
c. R is Uopt-RL iff (R)−1 is Uopt-LL,

(3) R is non-LV iff (R)−1 is non-RV, and
(4) R is non-RV iff (R)−1 is non-LV.

Proof. The proof can be seen in Appendix A.4.

Note that the claim (2)-a in Theorem 4.7 does not hold for U in general.

Example 4.8. Consider the following Uopt-NE 3-DCTRS R8 and its unraveled TRSs:

R8 = { f(x)→ c(x, y)⇐ g(x) ։ y; y ։ h(x) a→ b g(a)→ h(b) }

Uopt(R8) = U(R8) =





f(x)→ U17(g(x), x)
U17(y, x)→ U18(y, x, y)

U18(h(x), x, y)→ c(x, y)
...





The following TRS is obtained from R8 by applying (·)−1:

(R8)
−1 = { c(x, y)→ f(x)⇐ h(x) ։ y; y ։ g(x) b→ a h(b)→ g(a) }

The DCTRS (R8)
−1 is unraveled by Uopt and U as follows:

Uopt((R8)
−1) =





c(x, y)→ U18(h(x), x, y)
U18(y, x, y)→ U17(y, x)
U17(g(x), x)→ f(x)

...





U((R8)
−1) =





c(x, y)→ U18(h(x), x, y)
U18(y, x, y)→ U17(y, x, y)

U17(g(x), x, y)→ f(x)
...





We have that Uopt((R8)
−1) = (Uopt(R8))

−1, but U((R8)
−1) 6= (U(R8))

−1.

Finally, we show soundness of Uopt for a Uopt-RLNE eDCTRS R by reducing it to
soundness for the Uopt-LL eDCTRS (R)−1.
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Theorem 4.9. Uopt is sound for Uopt-RLNE eDCTRSs that are non-LV or non-RV.

Proof. Let R be a Uopt-RLNE eDCTRS over a signature F . Then, it follows from Theo-
rem 4.7 that (R)−1 is a Uopt-LL 3-eDCTRS which is non-RV or non-LV. Thus, it follows from
Theorem 4.3 that Uopt is sound for (R)−1, i.e.,→∗

Uopt((R)−1) ⊆ →
∗
(R)−1 on terms in T (F ,V).

It follows from Theorem 4.7 that Uopt((R)
−1) = (Uopt(R))

−1, and hence →∗
Uopt((R)−1) =

→∗
(Uopt(R))−1 . It follows from Proposition 4.6 that →∗

(Uopt(R))−1 = ←∗
Uopt(R) and →∗

(R)−1 =

←∗
R. Therefore, we have that →∗

Uopt(R) ⊆ →
∗
R on terms in T (F ,V).

Example 4.10. Consider the following TRS defining a function quad that computes the
quadruple of input natural numbers:

R9 =

{
quad(x)→ twice(twice(x))
twice(x)→ add(x, x)

}
∪R1

The inversion method in [18] inverts this TRS to the following DCTRS R10:

R10 =

{
quad−1(y)→ tp1(x)⇐ twice−1(y) ։ tp1(z); twice−1(z) ։ tp1(x)
twice−1(y)→ tp1(x)⇐ add−1(y) ։ tp2(x, x)

}
∪R2

This DCTRS is Uopt-RLNE, and thus, we recognize from Theorem 4.9 that Uopt is sound
for R10, while soundness of Uopt for the resulting EV-TRSs (e.g., R10) of the inversion
method [18] has already been shown (cf., [22, 23]). On the other hand, soundness of Uopt

for DCTRSs obtained by removing the unary tuple symbol tp1 that seems meaningless:

R′
10 =

{
quad−1(y)→ x⇐ twice−1(y) ։ z; twice−1(z) ։ x

twice−1(y)→ x⇐ add−1(y) ։ tp2(x, x)

}
∪R2

The soundness results in [18, 22, 23] cannot guarantee that Uopt is sound for R′
10. However,

since this DCTRS R′
10 is also Uopt-RLNE, we recognize from Theorem 4.9 that Uopt is sound

for R′
10.

The open problem mentioned in [18] that Uopt is sound for Uopt-NE eDCTRSs does not
hold in general. This indicates that the ultra-NE property on its own is not a soundness
condition for either Uopt or U.

Example 4.11. Consider the 3-DCTRS R8 and the unraveled TRSUopt(R8) in Example 4.8
again. R8 is Uopt-NE and U-NE, but not Uopt-RL or U-RL, either. We have the derivation
f(a) →∗

Uopt(R8)
c(b, h(b)), but f(a) cannot be reduced by R8 to c(b, h(b)). Therefore, Uopt is

not sound for every Uopt-NE DCTRS. By the same token, U is not sound for every U-NE
DCTRS since Uopt(R8) = U(R8).

Moreover, the ultra-RL property on its own is not a soundness condition for Uopt.

Example 4.12. Consider the following DCTRS R10 and its unraveled TRSs:

R10 =

{
f(x)→ e⇐ d ։ l

h(x, x)→ A

}

Uopt(R10) =





f(x)→ U19(d)
U19(l)→ e

...





U(R10) =





f(x)→ U19(d, x)
U19(l, x)→ e

...




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The DCTRS R10 is Uopt-RL, but not Uopt-NE. Although we have the derivation h(f(a), f(b))
→2

Uopt(R10)
h(U19(d),U19(d)) →Uopt(R10) A, the term h(f(a), f(b)) cannot be reduced by R10

to A. Therefore, Uopt is not sound for R10 while U is sound for R10.

It is possible to prove Theorem 4.9 directly [21], by using the feature that every reduc-
tion sequence of RL TRSs can be transformed to a basic reduction sequence [17]. As stated
at the end of Subsection 4.2, however, Theorem 4.3 cannot be proved by using Theorem 4.9
since Uopt((R)

−1) = (Uopt(R))
−1 does not hold for every Uopt-LL DCTRS R (see Uopt(R10)

in Example 4.12).
In the proof of Theorem 4.3 (and also the direct proof of Theorem 4.9), linearity plays

a very important role and finding other soundness conditions by means of a similar proof
scheme is quite difficult.

Finally, we revisit the resulting system of the program inversion mentioned in Section 1.

Example 4.13. Consider the EV-TRS Uopt(R2) in Example 3.2 again. The original TRS
R1 is left-linear, and thus, R2 is Uopt-RLNE [18, 23]. Theorem 4.9 guarantees that Uopt(R2)
is an inverse system of R1.

4.4. Soundness of Unraveled TRSs with Extra Variables. As we stated in Section 1,
the optimized unraveling Uopt is used in the program inversion method proposed in [18, 22,
23] and DCTRSs obtained by the inversion method are of Type 4 (not of Type 3) in
general. For this reason, in this subsection, we extend Theorem 4.3 to 4-eDCTRSs. More
precisely, we show that Uopt is sound for Uopt-LL DCTRSs if reduction sequences of the
unraveled TRSs are restricted to EV-safe reduction sequences (see Definition 4.14). Roughly
speaking, in an EV-safe reduction sequence, any redex introduced via extra variables at the
application of rewrite rules is never reduced anywhere. In practical cases (e.g., inverse
TRSs [18, 22, 23, 20]), extra variables are instantiated with constructor terms. However,
at the application of rewrite rules, extra variables in the unraveled eTRSs may introduce
undesired terms, e.g., terms rooted by U symbols that are not reachable from terms over the
original signature. As a consequence, Uopt is not always sound w.r.t. non-EV-safe reduction
sequences of the unraveled eTRSs (see Example 4.18).

We first define the notion of EV-safe reduction sequences of eTRSs [20, 18, 21]. This
notion can be formalized by extending the notion of basic reduction sequences [11, 17].

Definition 4.14 (EV-safe reduction [20]). Let R be an eTRS and ρi : li → ri ∈ R for all i
≥ 1. Let t0 →p1,ρ1 t2 →p2,ρ2 · · · be a reduction sequence of R, and B0 ⊆ PosF (t0) such that
B0 is prefix closed (i.e., if p < q and q ∈ B0, then p ∈ B0). We define the sets B1, B2, . . .

of positions from the sequence and B0 inductively as

Bi = (Bi−1 \ {q ∈ Bi−1 | q ≥ pi}) ∪ {piq | q ∈ PosF (ri)}
∪{pip

′q | pipq ∈ Bi−1, p ∈ PosV(li), li|p = ri|p′}

for all i ≥ 1. Note that B1, B2, . . . are also prefix closed. For all i ≥ 0, positions in Bi are
referred as basic positions of ti w.r.t. extra variables. The reduction sequence above is said
to be based on B0 w.r.t. extra variables if pi ∈ Bi−1 for all i ≥ 1. If the sequence is finite
with length n, then we denote it by B0 : t0 −−→evs

∗
R
Bn : tn or B0 : t0 −−→evs

∗
R
tn. In particular,

the reduction sequence is called safe w.r.t. extra variables (EV-safe) if B0 = PosF (t0). If
the EV-safe sequence is finite with length n, then we denote it by t0 −−→evs

∗
R
tn.
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Note that EV-safeness is different from basicness [11, 17] in the sense that all the basic po-
sitions are propagated at the application of rewrite rules, but none of the positions for extra
variables are added to basic positions. A typical instance of EV-safe reduction sequences is
a reduction sequence obtained by substituting a normal form for each extra variable when
applying rewrite rules.

To specify a set of terms that extra variables are possibly instantiated at the rule
application, we introduce the notion of EV-instantiation on sets of terms. Let R be an
eTRS and T be a set of terms. A derivation t0 →p1,ρ1 t1 →p2,ρ2 · · · of R is called EV-
instantiated on T if any extra variable of ρi : li → ri is instantiated by a term in T , i.e.,
ti|piq ∈ T for any q ∈ PosV(ri) such that ri|q ∈ EVar(ρi). By the same token, the notion of
the EV-instantiation property is defined for the parallel reduction of eTRSs. For any of the
unraveled eTRSs, their EV-safe reduction sequences have the following property related to
EV-instantiation on the set of terms over the original signature.

Lemma 4.15. Let R be a Uopt-LL eDCTRS over a signature F , and s, t be terms in
T (F ,V). If s −−→

evs

∗
Uopt(R) t, then there exists a derivation s −−→

evs

∗
Uopt(R) t that is EV-

instantiated on T (F ,V).

Proof. The proof can be seen in Appendix A.5.

Lemma 4.2, the key lemma for the case of Uopt-LL 3-DCTRSs, is adapted to 4-eDCTRSs
as follows.

Lemma 4.16. Let R be a Uopt-LL eDCTRS over a signature F , s be a term in T (F ,V),
t be a linear term in T (FUopt(R),V), and σ be a substitution in Sub(FUopt(R),V). Suppose
that R is non-LV or non-RV. If s ⇒

evs

n

Uopt(R)
tσ for some n ≥ 0 and the derivation is EV-

instantiated on T (F ,V), then there exists a substitution θ in Sub(F ,V) such that

• s →∗
R tθ ⇒

evs

n′

≥PosV(t),Uopt(R)
tσ for some n′ ≤ n,

• the derivation tθ ⇒
evs

n′

≥PosV(t),Uopt(R)
tσ is EV-instantiated on T (F ,V), and

• if tσ ∈ T (F ,V), then tθ = tσ.

Proof. This lemma can be proved similarly to Lemma 4.2.

As a consequence of Lemma 4.16, we extend Theorem 4.3 to 4-eDCTRSs.

Theorem 4.17. Uopt is sound for a Uopt-LL eDCTRSs R over a signature F w.r.t.
−−→
evs Uopt(R) if R is non-LV or non-RV.

Proof. Suppose that s −−→
evs

∗
Uopt(R)

t and s, t ∈ T (F ,V). Then, it follows from Lemma 4.15

that there is a derivation s −−→
evs

∗
Uopt(R)

t that is EV-instantiated on T (F ,V). Since a single

step of −−→
evs Uopt(R)

can be considered a single step of the parallel reduction, we have the

derivation s ⇒
evs

∗
Uopt(R)

t that is EV-instantiated on T (F ,V). Let x be a variable and σ be

a substitution such that xσ = t. Then, it follows from Lemma 4.16 that s →∗
R xσ = t.

Note that Lemma 4.16 and Theorem 4.17 are strict extensions of Lemma 4.2 and Theo-
rem 4.3, respectively.

Finally, we show a counterexample against Theorem 4.3 without the EV-safe property.
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Example 4.18. Consider the DCTRS R10 and its unraveled TRSs in Example 4.12 again.
Their inverted systems are as follows:

(R10)
−1 =

{
e→ f(x)⇐ l ։ d

A→ h(x, x)

}

Uopt((R10)
−1) = U((R10)

−1) = (Uopt(R10))
−1 =





e→ U19(l)
U19(d)→ f(x)

...





We have the derivation A→Uopt((R10)−1) h(U19(d),U19(d)) →
∗
Uopt((R10)−1) h(f(a), f(b)) that is

not EV-safe: the term U19(d) introduced by instantiating the extra variable x in the applied
rule A → h(x, x) is reduced. However, A cannot be reduced by (R10)

−1 to h(f(a), f(b)).
Therefore, Uopt is not sound for (R10)

−1. Note that U is not sound for (R10)
−1, either.

Note that if an unraveling U is sound for an eCTRS R, then U is sound for R w.r.t.
−−→
evs U(R)

. For this reason, we need not discuss soundness of U for R w.r.t. −−→
evs U(R)

when

soundness of U for R w.r.t. →U(R) has already been shown.

5. Soundness of Other Unravelings

In this section, we show that soundness of Uopt implies that of U, and then we revisit
soundness of the unravelings for join and normal CTRSs.

We first recall the notion of tree homomorphisms. Let F and G be signatures and φF be a
mapping which, for an n-ary function symbol f ∈ F , associates a term in T (G, {x1, . . . , xn})
where x1, . . . , xn ∈ V. The tree homomorphism φ : T (F ,V) → T (G,V) determined by φF
is defined as follows [33, 5]:

• φ(x) = x for x ∈ V, and
• φ(f(t1, . . . , tn)) = φF (f){xi 7→ φ(ti) | 1 ≤ i ≤ n} for an n-ary function symbol f ∈ F .

When φF (f) is not specified explicitly for an n-ary function symbol f , we let φF (f) =
f(x1, . . . , xn) with assuming that f ∈ G. To declare φF intelligibly, we may use the notation
“φF (f(x1, . . . , xn)) = t ” instead of “φF (f) = t ”, e.g., φF (f(x, y, z)) = g(y, g(x, z)). The
tree homomorphism φ is called linear if φF (f) is linear for any function symbol f ∈ F , and
called non-erasing if Var(φ(f)) = {x1, . . . , xn} for any n-ary function symbol f ∈ F . The
tree homomorphism φ is extended to eCTRSs as follows: φ(R) = {φ(l) → φ(r)⇐ φ(s1) =
φ(t1); . . . ;φ(sk) = φ(tk) | l → r ⇐ s1 ≈ t1; . . . ; sk ≈ tk ∈ R}. We extend it to a set of
term pairs T (e.g., a binary relation) as follows: φ(T ) = {(φ(s), φ(t)) | (s, t) ∈ T}. For a
substitution σ ∈ Sub(F ,V), σφ denotes the substitution {x 7→ φ(xσ) | x ∈ Dom(σ)}. Tree
homomorphisms have the following properties.

Lemma 5.1. Let φ be a tree homomorphism.

(1) Let t be a term and σ be a substitution in Sub(F ,V). Then, φ(tσ) = (φ(t))σφ.
(2) Let t be a term and C[ ] be a one-hole context. Then, all of the following hold:

• φ(C[t]) = φ(C)[

n︷ ︸︸ ︷
φ(t), . . . , φ(t)],4

• if φ is non-erasing, then φ(C) has at least one hole,

4 φ(C) has no hole (i.e., n = 0) if φ removes the hole from C[ ].
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• if φ is linear, then φ(C) has at most one hole. That is, if φ is linear, then, for any
term t and any one-hole context C[ ], either φ(C[t]) = φ(C) or φ(C[t]) = φ(C)[φ(t)].

(3) Let R be an eCTRS and s, t be terms in T (F ,V). If s →∗
R t, then φ(s) →∗

φ(R) φ(t).

That is, φ(→∗
R) ⊆ →

∗
φ(R).

The proof of Lemma 5.1 is omitted since it can be easily proved by induction.

5.1. Abstract Comparison Method for Soundness of Unravelings. Before we dis-
cuss the relationship between soundness of two or more unravelings, we present a sufficient
condition of two unravelings under which soundness of the first implies soundness of the
other.

To show soundness of an unraveling U2 by means of a sound unraveling U1, it suffices
to show that all the derivations of U2 on terms over the original signature are included in
the derivations of U1, i.e.,→

∗
U2(R) ⊆ →

∗
U1(R) on terms in T (F ,V). Suppose that U1 is sound

for a CTRS R, i.e., →∗
U1(R) ⊆ →

∗
R on terms in T (F ,V). Then, it follows from →∗

U2(R) ⊆

→∗
U1(R) that →

∗
U2(R) ⊆ →

∗
R on terms in T (F ,V). Therefore, U2 is sound for R.

To show that →∗
U2(R) ⊆ →

∗
U1(R) on terms in T (F ,V), it suffices to show the existence

of a tree homomorphism φ for an extended signature of F such that

• U1(R) = φ(U2(R)), and
• φ(t) = t for any term t ∈ T (F ,V).

Moreover, since we consider soundness w.r.t. −−→
evs

, we are interested in a sufficient condi-
tion under which −−→

evs

∗
U2(R) ⊆ −−→evs

∗
U1(R). To show that −−→

evs

∗
U2(R) ⊆ −−→evs

∗
U1(R), it suffices to

additionally show that EVar(φ(l)→ φ(r)) ⊆ EVar(l → r) for any rule l→ r ∈ U2(R).
For a set G ⊆ F of function symbols, a tree homomorphism φ determined by a mapping

φF is called G-identical if φF (f) = f(x1, . . . , xn) for any n-ary function symbol f ∈ G.
Moreover, φ is called EV-preserving for an eTRS R if EVar(φ(l) → φ(r)) = EVar(l → r)
for any rule l→ r ∈ R.

Lemma 5.2. Let R be an eTRS, s, t be terms, and φ be a tree homomorphism that is
EV-preserving for R. If s −−→

evs

∗
R
t, then φ(s) −−→

evs

∗
φ(R) φ(t).

Proof. We first define the mapping φu from a position of a term u to a set of positions of
φ(u), and extend it to sets of positions of u:

• φx(ε) = {ε} for x ∈ V,
• φf(u1,...,un)(ε) = {ε} for an n-ary function symbol f ,
• φf(u1,...,un)(ip) = {qp

′ | q ∈ PosV(φF (f)), φF (f)|q = xi, p
′ ∈ φui

(p)} for an n-ary function
symbol f , where 1 ≤ i ≤ n and p ∈ Pos(ui), and
• φu(P ) =

⋃
p∈P φu(p).

For a position p of u, we mean by p′ ∈ φu(p) that the application of φ to u maps u|p
to φ(u)|p′ . Note that positions in φu(p) are parallel since variable positions of φF (f) are
parallel. We prove that if B : s −−→

evs

∗
R
B′ : t and φs(B) ⊆ B1 ⊆ Pos(φ(s)), then B1 : φ(s)

−−→
evs

∗
φ(R) B

′
1 : φ(t) and φt(B

′) ⊆ B′
1. To prove this claim by induction on the length n of

the derivation B : s −−→
evs

∗
R
B′ : t, it suffices to show that if B : s −−→

evs p,R
B′ : t, then φs(p) is

defined and φs(B) : φ(s) −−→
evs q1,φ(R) · · · −−→evs qm,φ(R) φt(B

′) : φ(t) where φs(p) = {q1, . . . , qm}.

This follows from the assumption and the definitions of −−→
evs

and φt.
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Accordingly, to show soundness of U2 by means of soundness of U1, we obtain the
following useful lemma.

Lemma 5.3. Let U1 and U2 be unravelings, R be an eCTRS over a signature F , and G be
an extended signature of F such that U2(R) is defined over G. Let φ be an F-identical tree
homomorphism determined by φG such that U1(R) = φ(U2(R)). Then, all of the following
hold:

(1) →∗
U2(R) ⊆ →

∗
U1(R) on terms in T (F ,V),

(2) if φ is non-erasing, then φ is EV-preserving for any eTRS, and
(3) if φ is EV-preserving for U2(R), then −−→evs

∗
U2(R) ⊆ −−→evs

∗
U1(R) on terms in T (F ,V).

That is, all of the following holds:

(4) if U1 is sound for R, then so is U2,
(5) if φ is non-erasing and U1 is sound for R w.r.t. −−→

evs U1(R)
, then U2 is sound for R w.r.t.

−−→
evs U2(R), and

(6) if φ is EV-preserving for U2(R) and U1 is sound for R w.r.t. −−→
evs U1(R), then U2 is sound

for R w.r.t. −−→
evs U2(R)

.

Proof. We first prove the first claim →∗
U2(R) ⊆ →

∗
U1(R) on terms in T (F ,V). It follows from

Lemma 5.1 and the assumption U1(R) = φ(U2(R)) that φ(→∗
U2(R)) ⊆ →

∗
U1(R). Since φ is

F-identical, we have that →∗
U2(R) ⊆ →

∗
U1(R) on terms in T (F ,V).

Let φ be determined by a mapping φG . To prove the second claim, it suffices to show
that Var(t) = Var(φ(t)) for any term t. We prove this claim by induction on the structure
of t. Since the case that t is a variable is trivial, we only consider the remaining case
that t is of the form f(t1, . . . , tn). By the induction hypothesis, Var(ti) = Var(φ(ti))
for all 1 ≤ i ≤ n. It follows from the non-erasingness of φ that Var(φ(f(t1, . . . , tn))) =
Var(φG(f){xi 7→ φ(ti) | 1 ≤ i ≤ n}) =

⋃n
i=1 Var(φ(ti)), and hence Var(φ(t)) = Var(t).

The third claim follows from the first claim and Lemma 5.2. The remaining claims
follow from the first, second, and third claims, and soundness of U1.

Due to Lemma 5.3, to show soundness of U2 by soundness of U1, it suffices to show
the existence of an F-identical tree homomorphism φ satisfying that U1(R) = φ(U2(R)).
Moreover, for the case of soundness w.r.t. −−→

evs
, it suffices to additionally show that the tree

homomorphism φ is non-erasing or EV-preserving for U2(R).

5.2. On Ohlebusch’s Unraveling for DCTRSs. As stated in Section 3, the optimized
unraveling Uopt is a variant of the unraveling U, in the sense that variables carried by U
symbols are optimized. For this reason, for a DCTRS R, it is easy to find a tree homomor-
phism φ such that Uopt(R) = φ(U(R)). In the following, we assume that for every rule ρ ∈
R, the same U symbols Uρ

1 , . . . , U
ρ
k are introduced for Uopt(ρ) and U(ρ).

Lemma 5.4. Let R be an eDCTRS over a signature F . There exists an F-identical tree
homomorphism φ such that φ(U(R)) = Uopt(R) and φ is EV-preserving for U(R).

Proof. Let φ be a tree homomorphism determined by φFU(R)
such that

φFU(R)
(Uρ

i (xi,
−→
Xi)) = U

ρ
i (xi,

−→
Zi)

where xi is a fresh variable such that xi 6∈ Xi. Then, it is clear that φ(U(ρ)) = Uopt(ρ), and
hence φ(U(R)) = Uopt(R).
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Next, we show that φFU(R)
is EV-preserving for U(R). For unconditional rules l0 → r0

in R, it is clear that EVar(l0 → r0) = EVar(φ(l0) → φ(r0)), since l0, r0 ∈ T (F ,V) and
φ(t) = t for all t ∈ T (F ,V). Thus, we only consider the case of conditional rules ρ :
l → r ⇐ s1 ։ t1; . . . ; sk ։ tk ∈ R. Rules in Uopt(ρ) and U(ρ) that may contain extra

variables are rules of Uρ
k , that is, ρk : Uρ

k (tk,
−→
Zk) → r ∈ Uopt(R), ρ

′
k : Uρ

k (tk,
−→
Xk) → r

∈ U(R). It follows from Xk ∩ Yk ⊆ Xk and Var(r) ∩ Zk = Var(r) ∩Xk that EVar(ρk) =
Var(r)\(Var(tk)∪(Var(l, t1, . . . , tk−1)∩Var(r, tk))) = Var(r)\Var(l, t1, . . . , tk) = EVar(ρ

′
k).

Therefore, φFU(R)
is EV-preserving for U(R).

As a consequence, we conclude that soundness of Uopt implies soundness of U.

Corollary 5.5. Let R be an eDCTRS over a signature F . U is sound for R (w.r.t. −−→
evs U(R)

)

if Uopt is sound for R (w.r.t. −−→
evs Uopt(R)

).

Example 5.6. Consider the DCTRS R′
10 in Example 4.10 again. As stated in Example 5.6,

Uopt is sound for R′
10, and thus, we recognize from Corollary 5.5 that U is also sound for

R′
10.

The converse of Corollary 5.5 does not hold in general since, for a DCTRS R over a sig-
nature F ,→∗

U(R) 6=→
∗
Uopt(R) on terms in T (F ,V) in general (see Example 4.12). The reason

why the converse of Corollary 5.5 does not hold must be that the U symbols introduced
via the application of U have more variables (i.e., information) than the corresponding U
symbols introduced by Uopt. Thus, U is sufficient to produce TRSs that can be used instead
of the original DCTRSs. Nonetheless, Uopt will be useful in investigating soundness of U
since the unraveled TRSs obtained by Uopt are simpler than those obtained by U.

5.3. On Unravelings for Join and Normal CTRSs. Join CTRSs can be converted into
equivalent normal CTRSs that are special cases of DCTRSs, and normal CTRSs are join
CTRSs since the conditions si ։ ni and si ↓ ni are identical:

join CTRS = normal CTRS ⊂ DCTRS

In this subsection, we show that the unraveling UJ for join CTRSs [15] is sound for join
CTRSs if the unraveling UN for normal CTRSs [26, 9] is sound for the corresponding normal
CTRSs. Then, by using this result and the existing soundness condition of UN [9], we show
that UJ is sound for LL join CTRSs. We also show that UJ is sound for join CTRSs that
can be considered normal CTRSs. Moreover, we show that UN is sound for a normal CTRS
if UJ is sound for the normal CTRS that is considered as a join CTRS. Finally, we show
that soundness of UN implies soundness of U. As far as we know, soundness of UJ has never
been discussed, whereas soundness of UN has been investigated in some papers [15, 9]. For
this reason, we show the soundness condition for UJ and compare soundness of UJ with UN.

A CTRS R is called join if the symbol ≈ in the conditions of rewrite rules is interpreted
as joinability : the reduction relation of R is defined as →R =

⋃
n≥0 →(n),R where

• →(0),R = ∅, and
• →(i+1),R = →(i),R ∪ {(C[lσ]p, C[lσ]p) | ρ : l → r ⇐ s1 ≈ t1; . . . ; sk ≈ tk ∈ R, s1σ ↓(i),R
t1σ, . . . , skσ ↓(i),R tkσ} for i ≥ 0.

From now on, rewrite rules l → r ⇐ s1 ≈ t1; . . . ; sk ≈ tk of join CTRSs are written as
l→ r ⇐ s1 ↓ t1; . . . ; sk ↓ tk.
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We first recall the definition of the unravelings UJ and UN for join and normal CTRSs,
that are variants of unravelings proposed by Marchiori [15].

Definition 5.7 (UJ, UN [26, 9]). Let R be a join or normal eCTRS over a signature F .
Introducing a U symbol Uρ, we transform ρ : l → r ⇐ s1 ≈ t1; . . . ; sk ≈ tk into sets UJ(ρ)
and UN(ρ) of two unconditional rules as follows:

• UJ(ρ) = {l→ Uρ(s1, t1, . . . , sk, tk,
−−−−→
Var(l)), Uρ(x1, x1, . . . , xk, xk,

−−−−→
Var(l))→ r} if R is join,

and
• UN(ρ) = {l→ Uρ(s1, . . . , sk,

−−−−→
Var(l)), Uρ(t1, . . . , tk,

−−−−→
Var(l))→ r} if R is normal.

where x1, . . . , xk are different fresh variables. Note that UJ(l
′ → r′) = UN(l

′ → r′) =
{l′ → r′}. UJ and UN are extended to join and normal CTRSs, respectively, i.e., UJ(R)
=

⋃
ρ∈R UJ(ρ) and UN(R) =

⋃
ρ∈R UN(ρ). We define the extended signatures FUJ(R) and

FUN(R) of F as FUJ(R) = FUN(R) = F ∪ {U
ρ | ρ ∈ R}.

Note that UJ and UN are tidy unravelings for join and normal CTRSs, respectively.5 The

difference from the original definition in [15] is the replacement of
−−−−→
Var(r) by

−−−−→
Var(l). We

denote the original unravelings for join and normal CTRSs by Ur
J and Ur

N, respectively. U
r
J

and Ur
N can be considered optimized variants of UJ and UN, respectively, as well as the

optimized variant Uopt of U. The relationship between Ur
J and UJ and between Ur

N and UN

is similar to that between Uopt and U, i.e., if Ur
J (Ur

N) is sound for a join (normal) CTRS
R, then so is UJ (UN) (cf., Corollary 5.5). Thus, in the following, we deal with UJ and UN.

Example 5.8. Consider the following join CTRS defining odd and even that, given a
natural number sn(0), return true and false, respectively, if n is odd, and return false and
true, respectively, otherwise:

R12 =





odd(0)→ false even(0)→ true

odd(s(x))→ true⇐ even(x) ↓ true even(s(x))→ true⇐ odd(x) ↓ true
odd(s(x))→ false⇐ even(x) ↓ false even(s(x))→ false⇐ odd(x) ↓ false





This join CTRS is unraveled by UJ into the following TRS:

UJ(R12) =





...
odd(s(x))→ U22(even(x), true, x) U22(y, y, x)→ true

odd(s(x))→ U23(even(x), false, x) U23(y, y, x)→ false
...

even(s(x))→ U24(odd(x), true, x) U24(y, y, x)→ true

even(s(x))→ U25(odd(x), false, x) U25(y, y, x)→ false





5 Compared with sequential unravelings (e.g., U and Uopt), UJ and UN are called simultaneous unravel-
ings [10].
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When we consider R12 as a normal CTRS by replacing ↓ by ։, the CTRS, denoted by R′
12

below, is unraveled by UN as follows:

UN(R
′
12) =





...
odd(s(x))→ U22(even(x), x) U22(true, x)→ true

odd(s(x))→ U23(even(x), x) U23(false, x)→ false
...

even(s(x))→ U24(odd(x), x) U24(true, x)→ true

even(s(x))→ U25(odd(x), x) U25(false, x)→ false





Next, we define a variant of a transformation from join CTRSs to normal ones, that is
proposed in [6] (cf., [26]).

Definition 5.9. Let R be a join CTRS over a signature F . Introducing a fresh binary
function symbol eq and a fresh constant ⊤, we define a transformation Norm as follows:

Norm(l→ r⇐ s1 ↓ t1; . . . ; sk ↓ tk)
= l→ r⇐ eq(s1, t1) ։ eq(⊤,⊤); . . . ; eq(sk, tk) ։ eq(⊤,⊤)

and
Norm(R) = {eq(x, x)→ eq(⊤,⊤)} ∪ {Norm(ρ) | ρ ∈ R}

The added rule eq(x, x) → eq(⊤,⊤) results in non-termination, but non-termination does
not affect the following discussion.6 The difference from the original transformation [6] is
the use of eq(⊤,⊤) instead of and ⊤. The reason of this difference is to make it simple to
prove a theorem shown later (Theorem 5.13)—the original transformation, denoted by n
in [26], can substitute for Norm since →n(R) = →Norm(R) on terms in T (F ,V). It is clear
that Norm(R) is a normal CTRS over the signature F ∪ {eq,⊤}, →∗

R ⊆ →
∗
Norm(R), and

especially →R = →Norm(R) on terms in T (F ,V). Note that the composed transformation
UN ◦ Norm is an unraveling for join CTRSs.

Example 5.10. The join CTRS R12 in Example 5.8 is transformed by Norm as follows:

Norm(R12) =





...
odd(s(x))→ true⇐ eq(even(x), true) ։ eq(⊤,⊤)
odd(s(x))→ false⇐ eq(even(x), false) ։ eq(⊤,⊤)

...
even(s(x))→ true⇐ eq(odd(x), true) ։ eq(⊤,⊤)
even(s(x))→ false⇐ eq(odd(x), false) ։ eq(⊤,⊤)

eq(x, x)→ eq(⊤,⊤)





6 To avoid non-termination caused by the added rule eq(x, x) → eq(⊤,⊤), we may introduce a unary
constructor c1 as follows:

Norm′(l → r ⇐ s1 ↓ t1; . . . ; sk ↓ tk) =
l→ r ⇐ eq(c1(s1), c1(t1)) ։ eq(⊤,⊤); . . . ; eq(c1(sk), c1(tk)) ։ eq(⊤,⊤)

and
Norm′(R) = {eq(c1(x), c1(x))→ eq(⊤,⊤)} ∪ {Norm′(ρ) | ρ ∈ R}

This variant can substitute for Norm in the following discussion.
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Here, we recall the notion of weak left-linearity. A normal 1-CTRS R is called weakly
left-linear (WLL) [9] if any conditional rule with a non-empty condition in R is Uopt-LL
and any unconditional rule in R is LL w.r.t. non-erasing variables (i.e., for l → r, the
left-hand side is linear w.r.t. variables in Var(l)∩ Var(r)). For example, the normal CTRS
R10 in Example 4.12 is WLL. R is called ground conditional if, for any rule l → r ⇐
s1 ≈ t1; . . . ; sk ≈ tk in R, the terms s1, t1, . . . , sk, tk in the conditional part are ground. As
mentioned before, some soundness conditions for UN and Ur

N are known, that are related
to the (W)LL property, while no soundness condition for either UJ or Ur

J is known.

Theorem 5.11 ([9]). UN is sound for WLL normal 1-CTRSs.

The WLL property and Theorem 5.11 lead to the following soundness condition of the
composed unraveling UN ◦ Norm.

Lemma 5.12.

• If a join CTRS R is LL, then Norm(R) is WLL.
• UN ◦ Norm is sound for LL join CTRSs.

Proof. The first claim is trivial by definition. The second claim follows from the first claim
and Theorem 5.11.

TRSs obtained by UN ◦ Norm can completely derive reduction sequences of the corre-
sponding TRSs obtained by UJ, i.e., if UN ◦ Norm is sound for a join CTRS R, then so is
UJ.

Theorem 5.13. Let R be a join CTRS over a signature F . Then, there exists an F-identical
and non-erasing tree homomorphism φ such that UN ◦ Norm(R) = φ(UJ(R)). That is, if
UN◦Norm is sound for R (w.r.t. −−→

evs UN◦Norm(R)), then UJ is sound for R (w.r.t. −−→
evs UJ(R)).

Proof. Let φ be an F-identical and non-erasing tree homomorphism determined by φFUJ(R)

such that

φFUJ(R)
(Uρ(x1, x

′
1, . . . , xk, x

′
k,
−−−−→
Var(l))) = Uρ(eq(x1, x

′
1), . . . , eq(xk, x

′
k),
−−−−→
Var(l))

where ρ : l→ r ⇐ s1 ↓ t1; . . . ; sk ↓ tk ∈ R and x1, x
′
1, . . . , xk, x

′
k are fresh different variables.

Then, it is clear that UN ◦ Norm(R) = φ(UJ(R)).

Theorem 5.13 indicates that, for a join CTRS R, soundness conditions of UN for Norm(R)
are soundness conditions of UJ for R. For example, as a consequence of Lemma 5.12 and
Theorem 5.13, we conclude the following result on soundness of UJ.

Corollary 5.14. UJ is sound for LL join 3-CTRSs.

We recognize from Corollary 5.14 that UJ is sound for R12 in Example 5.8.
As we mentioned before, normal CTRSs can be considered join CTRSs because the

conditions si ։ ni and si ↓ ni with a ground normal form ni are identical. Thus, soundness
of UJ implies soundness of UN.

Theorem 5.15. UN is sound for a normal CTRS R (w.r.t. −−→
evs UN(R)

) if UJ is sound for

the the corresponding join CTRS R′ = {l → r ⇐ s1 ↓ n1; . . . ; sk ↓ nk | l → r ⇐ s1 ։

n1; . . . ; sk ։ nk ∈ R} (w.r.t. −−→evs UJ(R′)
).
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Proof. Let R be over a signature F and φ be an F-identical and non-erasing tree homo-
morphism determined by φUN(R) such that

φFUN(R)
(Uρ(x1, . . . , xk,

−−−−→
Var(l))) = Uρ(x1, n1, . . . , xk, nk,

−−−−→
Var(l))

where ρ : l → r ⇐ s1 ↓ n1; . . . ; sk ↓ nk ∈ R and x1, x
′
1, . . . , xk, x

′
k are different fresh

variables. Then, it is clear that φ(UN(R)) = UJ(R
′).

Example 5.16. Consider the join CTRS R12 and the corresponding normal CTRS R12

in Example 5.8 again. Let φ be a tree homomorphism determined by the mapping φF
such that φF (U22(y, x)) = U22(y, true, x), φF (U23(y, x)) = U23(y, false, x), φF (U24(y, x)) =
U24(y, true, x), and φF (U25(y, x)) = U25(y, false, x). Then, φ(UN(R

′
12)) = UJ(R12). Since

UJ is sound for R12, we recognize from Theorem 5.15 that UN is sound for R′
12.

By the same token, a join CTRS R can be considered a normal CTRS if, for any rule
l → r ⇐ s1 ↓ t1; . . . ; sk ↓ tk ∈ R and for all 1 ≤ i ≤ k, at least one si and ti is a ground
normal form w.r.t. Ru. We call such a join CTRS R normal and assume w.l.o.g. that ti is
a ground normal form w.r.t. Ru. Then, we obtain the following soundness condition of UJ.

Theorem 5.17. UJ is sound for a normal join CTRS R (w.r.t. −−→
evs UJ(R)) if UN is sound

for the corresponding normal CTRS R′ = {l → r ⇐ s1 ։ n1; . . . ; sk ։ nk | l → r ⇐ s1 ↓
n1; . . . ; sk ↓ nk ∈ R} (w.r.t. −−→evs UN(R′)

).

Proof. Let R be over a signature F and φ be an F-identical and non-erasing tree homo-
morphism determined by φUJ(R) such that

φFUJ(R)
(Uρ(x1, x

′
1, . . . , xk, x

′
k,
−−−−→
Var(l))) = Uρ(x1, . . . , xk,

−−−−→
Var(l))

where ρ : l → r ⇐ s1 ↓ n1; . . . ; sk ↓ nk ∈ R and x1, x
′
1, . . . , xk, x

′
k are different fresh

variables. Then, it is clear that φ(UJ(R)) = UN(R
′).

It is possible to transform join CTRSs into DCTRSs without adding the rule eq(x, x)→
eq(⊤,⊤).

Definition 5.18. Let R be a join CTRS over a signature F . Introducing a fresh 2k-ary
constructor eqk for each ρ : l → r ⇐ s1 ↓ t1; . . . ; sk ↓ tk ∈ R, we define a transformation
Det as follows:

• Det(l→ r ⇐ s1 ↓ t1; . . . ; sk ↓ tk) = l→ r ⇐ eqk(s1, t1, . . . , sk, tk)։eqk(x1, x1, . . . , xk, xk)
where x1, . . . , xk are different fresh variables, and
• Det(R) = {Det(ρ) | ρ ∈ R}.

The reason why we introduced eqk instead of s1 ։ x1; t1 ։ x1; . . . ; sk ։ xk; tk ։ xk is
to make the number of the conditions in each rule of Det(R) at most one. It is clear that
U ◦ Det is an unraveling for join CTRSs. It is also clear that →Det(R) = →R on terms in
T (F ,V). TRSs obtained by U ◦ Norm can completely derive reduction sequences of the
corresponding TRSs obtained by UJ. This indicates that if U◦Det is sound for a join CTRS
R, then so is UJ.

Theorem 5.19. Let R be a join CTRS over a signature F . Then, there exists an F-
identical and non-erasing tree homomorphism φ such that U◦Det(R) = φ(UJ(R)). That is,
if U ◦ Det is sound for R (w.r.t. −−→

evs U◦Det(R)), then UJ is sound for R (w.r.t. −−→
evs UJ(R)).
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Proof. Let φ be an F-identical and non-erasing tree homomorphism determined by φFUr
J
(R)

such that

φFUJ(R)
(Uρ(x1, x

′
1, . . . , xk, x

′
k,
−−−−→
Var(l))) = U

ρ
1 (eqk(x1, x

′
1, . . . , xk, x

′
k),
−−−−→
Var(l))

where ρ : l→ r ⇐ s1 ↓ t1; . . . ; sk ↓ tk ∈ R and x1, x
′
1, . . . , xk, x

′
k are fresh different variables.

Then, it is clear that φ(UJ(R)) = U ◦ Det(R).

Note that it is easy to adapt Theorem 5.19 to UN and normal CTRSs.
Normal CTRSs are special cases of DCTRSs, and thus, the unravelings U and Uopt for

DCTRSs are applicable to normal CTRSs. Moreover, by definition, UN can be considered a
special variant of U while there is a slight difference: UN introduces at most one U symbol
for each rewrite rule, and U introduces k U symbols for each rewrite rule with k conditions.
This difference prevents us from using Lemma 5.3 to prove that if UN is sound for R, then
so is U. For this reason, we extend Lemma 5.3 as follows.

Lemma 5.20. Let U1 and U2 be unravelings, R be an eCTRS over a signature F , and
G1,G2 be extended signatures of F such that U1(R) and U2(R) are defined over G1 and G2,
respectively. Let φ be an F-identical tree homomorphism determined by φG such that U1(R)
= φ(U2(R)) \ {t→ t | t ∈ T (G1,V) \ T (F ,V)}. Then, all of the following hold:

(1) →∗
U2(R) ⊆ →

∗
U1(R) on terms in T (F ,V),

(2) if φ is EV-preserving for U2(R), then −−→evs
∗
U2(R) ⊆ −−→evs

∗
U1(R) on terms in T (F ,V).

That is, all of the following hold:

(3) if U1 is sound for R, then so is U2, and,
(4) if φ is EV-preserving for U2(R) and U1 is sound for R w.r.t. −−→

evs U1(R)
, then U2 is sound

for R w.r.t. −−→
evs U2(R).

Proof. We first prove the first claim →∗
U2(R) ⊆ →

∗
U1(R) on terms in T (F ,V). It follows from

the assumption that U1(R) = (φ(U2(R)) \ {t → t | t ∈ T (G1,V)} ∪ R
′ for some eTRS R′

⊆ {t → t | t ∈ T (G1,V)}. Then, it follows from Lemma 5.1 that φ(→∗
U2(R)) ⊆ →

∗
U1(R)∪R′ .

Since→R′ is the identity relation, we have that →∗
U1(R)∪R′ = →∗

U1(R), and hence φ(→∗
U2(R))

⊆ →∗
U1(R). Since φ is F-identical, we have that →∗

U2(R) ⊆ →
∗
U1(R) on terms in T (F ,V).

The second claim follows from the first claim and Lemma 5.2. The third and fourth
claims follow from the first and second claims, and soundness of U1.

Due to Lemma 5.20, we obtain the following theorem.

Theorem 5.21. Let R be a normal CTRS over a signature F . Then, there exists an F-
identical and non-erasing tree homomorphism φ such that UN(R) = φ(U(R)) \ {t→ t | t ∈
T (FU(R),V) \ T (F ,V)}. That is, if UN is sound for a normal CTRS R (w.r.t. −−→

evs UN(R)
),

then U is sound for R (w.r.t. −−→
evs U(R)

).

Proof. Let φ be an F-identical tree homomorphism determined by φFU(R)
such that

φFU(R)
(Uρ

i (xi,
−→
Xi)) = Uρ(n1, . . . , ni−1, xi, si+1, . . . , sk,

−−−−→
Var(l))

where ρ : l → r ⇐ s1 ։ n1; . . . ; sk ։ nk ∈ R and xi is a fresh variable. It is clear that
UN(R) = φ(U(R)) \ {t→ t | t ∈ T (FU(R),V) \ T (F ,V)}:

• φ(l → U
ρ
1 (s1,

−→
X1)) = l→ Uρ(s1, . . . , sk,

−−−−→
Var(l)) ∈ UN(R),
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• φ(Uρ
i (ni,

−→
Xi) → U

ρ
i+1(si+1,

−−−→
Xi+2)) = Uρ(n1, . . . , ni, si+1, . . . , sk,

−−−−→
Var(l)) → Uρ(n1, . . . , ni,

si+1, . . . , sk,
−−−−→
Var(l)) ∈ {t→ t | t ∈ T (FUN(R),V) \ T (F ,V)}, and

• φ(Uρ
k (nk,

−→
Xk)→ r) = Uρ(n1, . . . , nk,

−−−−→
Var(l))→ r ∈ UN(R).

SinceR is normal, we have that Var(n1, . . . , nk) = ∅ and Var(s1, . . . , sk)⊆ Var(l), and hence

Xi = Var(l) for all 1 ≤ i ≤ k. Thus, Var(φFU(R)
(Uρ

i (xi,
−→
Xi))) = {xi} ∪Xi = {xi} ∪ Var(l)

= Var(Uρ(n1, . . . , ni−1, xi, si+1, . . . , sk,
−−−−→
Var(l))), and hence φ is non-erasing.

It is not known whether the converse of Theorem 5.21 (i.e., →∗
UN(R) ⊆ →

∗
U(R) on terms in

T (F ,V)) holds or not. In other words, it is not known whether the following claim holds
or not: if U is sound for a normal CTRS, then so is UN. As we mentioned before, to show
soundness of UN by means of U, we would like to show that, for any normal CTRS R, all
the derivations of UN(R) can be derived by U(R). However, this is not true in general.

Example 5.22. Consider the following variant R′
3 of the DCTRS R3 in Example 3.3, that

is obtained by replacing the conditional part x ։ e of the first rule by x ։ e; x ։ e′ and
by adding c→ e′ to the rules:

R′
3 =





f(x)→ x⇐ x։ e; x։ e′

g(d, x, x)→ A

h(x, x)→ g(x, x, f(k))
c→ e′




∪R0

The CTRS R′
3 is unraveled by UN and U as follows:

UN(R
′
3) =





f(x)→ U4(x, x, x)
U4(e, e

′, x)→ x
...




∪R0 U(R′

3) =





f(x)→ U′
4(x, x)

U′
4(e, x)→ U′′

4(x, x)
U′′
4(e

′, x)→ x
...




∪R0

We have that h(f(a), f(b)) →∗
UN(R′

3)
A, but h(f(a), f(b)) 6→∗

U(R′
3)

A. This means that U(R′
3)

cannot derive every reduction sequence of UN(R
′
3) that starts from terms over the original

signature of R′
3. U seems sound for R′

3. However, we have no sufficient condition to prove
soundness of U for R′

3, and thus, it is not known whether U is sound for R′
3 or not.

The symbols e and e′ are used for the same role; therefore, this distinction is meaning-
less. Thus, the replacement of x։ e with x։ e; x։ e is sufficient for the purpose of this
example. For the original CTRS R′

3, this duplication of x ։ e is quite meaningless, but
this greatly affects the reduction of U(R′

3). For this reason, this would be an interesting
example for investigating soundness conditions of unravelings.

A trivial sufficient condition for the converse of Theorem 5.21 is that any rule of R has
at most one condition: by considering Uρ = U

ρ
1 , we have that UN(R) = U(R).

As stated above, the relationship between Ur
J, U

r
N, and Uopt is similar to that between

UJ, UN, and U. For this reason, Theorems 5.15, 5.17, 5.21 also hold for Ur
J, U

r
N, and Uopt.

6. Comparison with Şerbănuţă-Roşu Transformation

In this section, we compare the unraveling U with the SR transformation, in terms of
soundness, operational termination, confluence, computational equivalence, and so on.
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6.1. Formalization of Transformations for CTRSs. In this subsection, to make it
easier to compare unravelings with other transformations, we first formalize transformations
of CTRSs into TRSs, and also generalize the notion of soundness and completeness for
unravelings. Then, we present relationship between soundness of two transformations by
generalizing Lemma 5.3.

We first formalize transformations of CTRSs and the notions of soundness and com-
pleteness.

Definition 6.1 (CTRS transformations). A CTRS transformation is a computable trans-
formation T from eCTRSs into eTRSs with injective mappings as follows: for an eCTRS R
over a signature F , the transformed eTRS RT over a signature G is defined and the corre-
sponding mapping φT (R) from T (F ,V) to T (G,V) is also defined, i.e., T (R) = (RT , φT (R)).

The mapping φT (R) is called a translation related to T (R).7 We extend φT (R) to pairs of
terms in T (F ,V): for S ⊆ T (F ,V)×T (F ,V), φ(S) = {(φ(s), φ(t)) | (s, t) ∈ S}. Moreover,
T is called simple if the related translation φT (R) is the identity mapping (i.e., F ⊆ G and
φT (R)(t) = t for all t ∈ T (F ,V)), and we abuse notation and write T (R) as the transformed
system RT .

Let ⇒RT
be a subrelation of →RT

.

• T is called sound for R w.r.t. ⇒RT
if ⇒∗

RT
⊆ φT (R)(→

∗
R) on terms in T (F ,V) (i.e., for

all terms s, t in T (F ,V), if φT (R)(s) ⇒
∗
RT

φT (R)(t), then s →
∗
R t).

• T is called complete for R w.r.t. ⇒RT
if φT (R)(→

∗
R) ⊆ ⇒

∗
RT

(i.e., for all terms s, t ∈
T (F ,V), if s →∗

R t, then φT (R)(s) ⇒
∗
RT

φT (R)(t)).

When T is sound and complete for R w.r.t.→RT
, we simply say that T is sound and complete

for R, respectively. Moreover, T is called sound (complete) if T is sound (complete) for any
eCTRS R such that T (R) is defined.

Note that unravelings are complete simple CTRS transformations.
Next, we generalize Lemma 5.3 to two CTRS transformations, one of which is simple.

Theorem 6.2. Let T be a CTRS transformation, U be a simple CTRS transformation,
R be an eCTRS over a signature F such that T (R) and U(R) are defined, RT is over a
signature GT , and U(R) is over a signature GU . Then, all of the following hold:

• if T is sound for R and φ(→∗
U(R)) ⊆ →

∗
RT

,8 then U is sound for R,

• if U is sound for R and →∗
RT
⊆ φ(→∗

U(R)), then T is sound for R,

• if T is complete for R and →∗
RT
⊆ φ(→∗

U(R)), then U is complete for R, and

• if U is complete for R and φ(→∗
U(R)) ⊆ →

∗
RT

, then T is complete for R.

Proof. We only prove the first claim since the other claims can be proved similarly to the
first one. Let s, t be terms in T (F ,V). Suppose that s →∗

U(R) t. Then, it follows from

φ(→∗
U(R)) ⊆ →

∗
RT

that φ(s) →∗
RT

φ(t). It follows from soundness of T for R that s →∗
R t,

and hence U is sound for R.

7 The mapping φ can be considered a translation from original terms for R into the corresponding ones
for T (R).

8 Note that φ(→∗
U(R)) = {(φ(s), φ(t)) | s, t ∈ T (F ,V), s →∗

U(R) t} since φ is not defined for any term

containing a function symbol in GU \ F .
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6.2. Şerbănuţă-Roşu Transformation. In this subsection, we recall the definition of the
SR transformation proposed by Şerbănuţă and Roşu [30, 31], which is basically applied to
strongly or syntactically DCTRSs. We also recall some of its properties.

Let R be an eDCTRS. A term t is called strongly irreducible w.r.t. R if tσ is a nor-
mal form w.r.t. R for every normalized substitution σ. R is called strongly deterministic
(strongly DCTRS) if, for every rule l → r ⇐ s1 ։ t1; . . . ; sk ։ tk ∈ R, every term ti is
strongly irreducible w.r.t. R. R is called syntactically deterministic (syntactically DCTRS)
if, for every rule l → r ⇐ s1 ։ t1; . . . ; sk ։ tk ∈ R, every term ti is a constructor term or
a ground normal form w.r.t. Ru. Note that normal CTRSs are syntactically DCTRSs, and
syntactically DCTRSs are also strongly DCTRSs.

In the following, we assume that for each defined symbol f of R, there are nf many f -
rules in R that have non-empty conditions and are ordered. We denote the i-th conditional
rewrite rule of f with a non-empty condition by ρf,i.

In the SR transformation SR below, a fresh unary function symbol {·}, a fresh con-
stant ⊥, and fresh k-ary constructors [·]k are introduced and for a defined symbol f , a
fresh function symbol f is introduced by adding nf arguments to f . The “n + i ”-th ar-

gument of f is used for evaluating the conditions of the i-th conditional rule ρf,i : l →
r ⇐ s1 ։ t1; . . . ; sk ։ tk, by initializing with ⊥ and by replacing ⊥ with an instance of
[{s1},⊥, . . . ,⊥]k to start the evaluation, where s1 is the term obtained by replacing each
defined symbol f by f with filling extra arguments with ⊥. The k-ary symbol [·]k is used
as a stack with k elements, e.g., when [{s1σ},⊥, . . . ,⊥]k is reduced to [{t1θ},⊥, . . . ,⊥]k,
the evaluation of the second condition s2 ։ t2 with θ starts from [{s2θ}, t1θ,⊥, . . . ,⊥]k.

Definition 6.3 (SR transformation SR [31]). Let R be a strongly or syntactically DCTRS
over a signature F .9 For f ∈ DR, we prepare a function symbol f with arity(f) =
arity(f)+nf . Introducing a fresh unary function symbol {·}, a fresh constant ⊥ and fresh
j-ary constructors [·]j with j > 0 ([·]1, [·]2, . . . are sometimes abbreviated to [·]) into the
signature, the DCTRS R is transformed into the following TRS SR→(R):

SR
rule(ρf,i : f(w1, . . . , wn)→ r ⇐ s1 ։ t1; . . . ; sk ։ tk) =



f(w1, . . . , wn, z1, . . . , zi−1,⊥, zi+1, . . . , znf
)

→ f(w1, . . . , wn, z1, . . . , zi−1, [{s1},⊥, . . . ,⊥]k, zi+1, . . . , znf
)

f(w1, . . . , wn, z1, . . . , zi−1, [{t1},⊥, . . . ,⊥]k, zi+1, . . . , znf
)

→ f(w1, . . . , wn, z1, . . . , zi−1, [{s2}, t1, . . . ,⊥]k, zi+1, . . . , znf
)

...
f(w1, . . . , wn, z1, . . . , zi−1, [{tk−1}, tk−2, . . . , t1,⊥]k, zi+1, . . . , znf

)

→ f(w1, . . . , wn, z1, . . . , zi−1, [{sk}, tk−1, . . . , t1]k, zi+1, . . . , znf
)

f(w1, . . . , wn, z1, . . . , zi−1, [{tk}, tk−1, . . . , t1]k, zi+1, . . . , znf
)→ {r}





SRrule(f(w1, . . . , wn)→ r) = { f(w1, . . . , wn, z1, . . . , znf
)→ {r} }

where z1, . . . , znf
are fresh different variables and the operation · is a linear non-erasing tree

homomorphism determined by φ such that

• φ(c(x1, . . . , xn) = c(x1, . . . , xn) for an n-ary constructor c ∈ CR, and

9 In [31], it is assumed that any deterministic conditional rule l → r ⇐ s1 ։ t1; . . . ; sk ։ tk satisfies
Var(si) 6⊆ Var(l, t1, . . . , ti−2), i.e., the i-th condition si ։ ti cannot be evaluated before finishing the
evaluation of the “ i− 1 ”-th condition si−1 ։ ti−1. However, this is not essential for the definition of SR.
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• φ(f(x1, . . . , xn) = f(x1, . . . , xn,

nf︷ ︸︸ ︷
⊥, . . . ,⊥) for an n-ary defined symbol f ∈ DR.

Note that the operation · is injective. The transformed TRS SR
→(R) is defined as follows:

SR
→(R) =

⋃
ρ∈R SRrule(ρ)

∪{f(x1, . . . , xi−1, {xi}, xi+1, . . . , xn, z1, . . . , znf
)→ {f(x1, . . . , xn,⊥, . . . ,⊥)} | f ∈ DR}

∪{c(x1, . . . , xi−1, {xi}, xi+1, . . . , xn)→ {c(x1, . . . , xn)} | c ∈ CR}
∪{ {{x}} → {x} }

where x1, . . . , xn, z1, . . . , znf
are variables. Note that SR→(R) is a TRS over FSR(R) =

{⊥, {·}}∪{f | f ∈ DR}∪CR. Moreover, a partial mapping ·̂ from T (FSR(R),V) to T (F ,V)
is defined as follows:

• x̂ = x for x ∈ V,

• {̂t} = t̂,

• ̂c(t1, . . . , tn) = c(t̂1, . . . , t̂n) for an n-ary constructor c ∈ CR, and

• ̂f(t1, . . . , tn, u1, . . . , unf
) = f(t̂1, . . . , t̂n) for an n-ary defined symbol f ∈ DR.

Note that the operation ·̂ partially translates terms in T (FSR(R),V) back into terms in
T (F ,V). The SR transformation SR is defined as SR(R) = (SR→(R), φSR(R)), where the

translation φSR(R) is defined as φSR(R)(t) = {t}. Moreover, a term t in T (FSR(R),V) is called
reachable if there exists a term s in T (F ,V) such that φSR(R)(s) →

∗
SR→(R) {t}.

Note that SR is a complete CTRS transformation [31]. By definition, it is clear that R is
Uopt-LL iff SR

→(R) is LL. A reachable term s has the following property:

• every subterm of s, rooted by f , is of the form f(s1, . . . , sn, u1, . . . , unf
) such that, for all

1 ≤ j ≤ nf , uj is either ⊥ or of the form [{ti}, ti−1, . . . , t1,⊥, . . . ,⊥]k for some i, where
ρf,j : f(w1, . . . , wn)→ r ⇐ s1 ։ t1; . . . ; sk ։ tk ∈ R, and
• both the symbols ⊥ and [·]k appear only as in the form mentioned in the previous case.

For a DCTRS R, the transformed TRS SR→(R) is overlapping (not only at root po-
sition, but also at properly inner positions), thus not a constructor system, and all non-
constant constructors of R are defined symbols of SR→(R). However, critical pairs generated
from rules to push out the special constructor {·} are joinable and they are not so critical
in terms of confluence.
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Example 6.4 ([31]). Consider the Uopt-LL DCTRS R7 in Example 4.4 again. R7 is a
syntactically DCTRS and it is transformed by SR→ into the following TRS:

SR
→(R7) =




split(x, nil, z1, z2)→{tp2(nil, nil)}
split(x, cons(y, ys),⊥, z2)→ split(x, cons(y, ys), [{split(x, ys,⊥,⊥)},⊥], z2)

split(x, cons(y, ys), [{tp2(zs1, zs2)},⊥], z2)→ split(x, cons(y, ys), [{le(x, y)}, tp2(zs1, zs2)], z2)
split(x, cons(y, ys), [{true}, tp2(zs1, zs2)], z2)→{tp2(zs1, cons(y, zs2))}

split(x, cons(y, ys), z1,⊥)→ split(x, cons(y, ys), z1, [{split(x, ys,⊥,⊥)},⊥])
split(x, cons(y, ys), z1, [{tp2(zs1, zs2)},⊥])→ split(x, cons(y, ys), z1, [{le(x, y)}, tp2(zs1, zs2)])

split(x, cons(y, ys), z1, [{false}, tp2(zs1, zs2)])→{tp2(cons(y, zs1), zs2)}
le(0, y)→{true}

le(s(x), 0)→{false} le(s(x), s(y))→{le(x, y)}
split({x}, ys, z1, z2)→{split(x, ys,⊥,⊥)} le({x}, y)→{le(x, y)}
split(x, {ys}, z1, z2)→{split(x, ys,⊥,⊥)} le(x, {y})→{le(x, y)}

cons({x}, xs)→{cons(x, xs)} tp
2
({x}, y)→{tp

2
(x, y)}

cons(x, {xs})→{cons(x, xs)} tp2(x, {y})→{tp2(x, y)}
s({x})→{s(x)} {{x}}→ {x}





Consider the term split(s(0), cons(0, cons(s(s(0)), nil))). Starting from its translated term,
we have the following derivation of SR→(R7) under the leftmost innermost strategy that
selects the topmost rules of applicable ones:

split(s(0), cons(0, cons(s(s(0)), nil)))

= split(s(0), cons(0, cons(s(s(0)), nil)),⊥,⊥)
→SR→(R7) split(s(0), cons(0, . . .), [{split(s(0), cons(s(s(0)), nil),⊥,⊥)},⊥],⊥)

→∗
SR→(R7)

split(s(0), cons(0, . . .), [{tp2(nil, cons(s(s(0)), nil))},⊥],⊥)

→SR→(R7) split(s(0), cons(0, . . .), [{le(s(0), 0)}, tp2(nil, cons(s(s(0)), nil))],⊥)
→SR→(R7) split(s(0), cons(0, . . .), [{{false}}, tp2(nil, cons(s(s(0)), nil))],⊥)

→SR→(R7) split(s(0), cons(0, . . .), [{false}, tp2(nil, cons(s(s(0)), nil))],⊥)
→SR→(R7) split(s(0), cons(0, . . .), [{false}, . . .], [{split(s(0), cons(s(s(0)), nil),⊥,⊥)},⊥])

→∗
SR→(R7)

split(s(0), cons(0, . . .), [{false}, . . .], [{tp2(nil, cons(s(s(0)), nil))},⊥])

→SR→(R7) split(s(0), cons(0, . . .), [{false}, . . .], [{le(s(0), 0)}, tp2(nil, cons(s(s(0)), nil))])
→SR→(R7) split(s(0), cons(0, . . .), [{false}, . . .], [{{false}}, tp2(nil, cons(s(s(0)), nil))])

→SR→(R7) split(s(0), cons(0, . . .), [{false}, . . .], [{false}, tp2(nil, cons(s(s(0)), nil))])
→SR→(R7) {{tp2(cons(0, nil), cons(s(s(0)), nil))}}
→SR→(R7) {tp2(cons(0, nil), cons(s(s(0)), nil))}

By applying the translation-back mapping ·̂ to {tp2(cons(0, nil), cons(s(s(0)), nil))}, we ob-
tain tp2(cons(0, nil), cons(s(s(0)), nil)), a normal form of split(s(0), cons(0, cons(s(s(0)), nil)))
w.r.t. R7.

The SR transformation SR has the following properties.

Theorem 6.5 ([31]). Let R be a strongly or syntactically DCTRS. Then, all of the following
hold:

• SR is sound for R if R is confluent 10 or Uopt-LL,
• if R is Uopt-LL and SR

→(R) is confluent on reachable terms, then R is confluent, and

10 In [30, 31], soundness and completeness are discussed on ground reduction sequences only. In the
proof of soundness and completeness, groundness of terms in derivations is only used with groundness in
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• if R is Uopt-LL and confluent, then SR
→(R) is confluent on reachable terms.

We recognize from the second statement of Theorem 6.5 that confluence of SR→(R) is
a sufficient condition for confluence of R.

Example 6.6. Consider the DCTRS R7 and the transformed TRS SR(R7) in Exam-
ples 4.4, 6.4 again. The DCTRS R7 is operationally terminating since SR→(R7) is ter-
minating [31]. We have only a critical pair of R7 between the second and third rules. The
critical pair is infeasible since there exists no terms s, t such that le(s, t) →∗

R7
true and

le(s, t) →∗
R7

false. Thus, we can see that R7 is confluent [2] (cf., [26]). Though, we have
no formal method for proving confluence of R7. On the other hand, all the critical pairs of
SR(R7) are joinable and SR

→(R7) is terminating, and hence SR→(R7) is confluent. Due to
Theorem 6.5, confluence of SR→(R7) guarantees confluence of R7.

Consider the unraveled TRS U(R7):

U(R7) =





...
split(x, cons(y, ys))→ U13(split(x, ys), x, y, ys)

U13(tp2(zs1, zs2), x, y, ys)→ U14(le(x, y), x, y, ys, zs1, zs2)
U14(true, x, y, ys, zs1, zs2)→ tp2(zs1, cons(y, zs2))

split(x, cons(y, ys))→ U15(split(x, ys), x, y, ys)
U15(tp2(zs1, zs2), x, y, ys)→ U16(le(x, y), x, y, ys, zs1, zs2)
U16(false, x, y, ys, zs1, zs2)→ tp2(cons(y, zs1), zs2)

...





Unlike SR→(R7), this unraveled TRS U(R7) is not confluent since we have a critical peak,
e.g., tp2(nil, cons(0, nil)) ←

∗
U(R7)

split(0, cons(0, nil)) →∗
U(R7)

U16(false, 0, 0, nil, nil, nil) that is

not joinable. In this case, we can solve this non-confluence by replacing U16 with U14 since
the only difference between the second and third rules of R7 is whether le(x, y) reduces to
true or false. However, this simple solution is not possible in general.

Example 6.7. Consider the following TRS defining snoc that appends the element to the
end of the list, e.g., snoc([1, 2, 3], 4) = [1, 2, 3, 4]:

R11 =

{
snoc(nil, y)→ cons(y, nil)

snoc(cons(x, xs), y)→ cons(x, snoc(xs, y))

}

The inversion method in [18] inverts this TRS to the following DCTRS R20:

R20 =

{
snoc−1(cons(y, nil))→ tp2(nil, y)
snoc−1(cons(x, ys))→ tp2(cons(x, xs), y)⇐ snoc−1(ys) ։ tp2(xs, y)

}

This DCTRS R20 is unraveled by U as follows:

U(R20) =





...
snoc−1(cons(x, ys))→ U21(snoc

−1(ys), x, ys)
U21(tp2(xs, y), x, ys)→ tp2(cons(x, xs), y)





The DCTRS R20 is confluent, but the unraveled TRS U(R20) is not since we have a critical
peak U21(snoc

−1(nil), x, nil) ←U(R20) · →U(R20) tp2(nil, x) that is not joinable. The simple
solution described in Example 6.6 cannot solve non-confluence of U(R20).

“ground confluence”. For this reason, confluence is a soundness condition for the case of arbitrary reduction
sequences.
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Finally, we show some properties and a notion related to reachable terms that are
helpful to compare the SR transformation with unravelings.

Definition 6.8 ([30, 31]). Let R be a DCTRS over a signature F . For a reachable term s

in T (FSR(R),V), we define the set Posstr(s) of structural positions for s as follows:

• Posstr(x) = {ε} for x ∈ V,
• Posstr({t}) = {1p | p ∈ Posstr(t)},
• Posstr(c(t1, . . . , tn)) = {ip | 1 ≤ i ≤ n, p ∈ Posstr(ti)} for c ∈ CR, and
• Posstr(f(t1, . . . , tn, u1, . . . , unf

)) = {ε} ∪ {ip | 1 ≤ i ≤ n, p ∈ Posstr(ti)} for an n-ary
defined symbol f ∈ DR.

Note that Posstr is well-defined for reachable terms while it is not defined for the symbols
⊥ and [·].

Example 6.9. Consider the following term related to SR
→(R7) in Example 6.6:

{split(s(0), cons(0, cons(s(s(0)), nil)), [{split(s(0), cons(s(s(0)), nil),⊥,⊥)},⊥],⊥)}

The structural positions of this terms are 1, 1.1, 1.1.1, 1.2, 1.2.1, 1.2.2, 1.2.2.1, 1.2.2.1.1,
1.2.2.1.1.1, and 1.2.2.2.

By definition, structural positions have the following property related to contexts.

Lemma 6.10. Let R be a DCTRS over a signature F , t be a term in T (FSR(R),V), and
C[ ]p be a one-hole context over FSR(R) such that p ∈ Posstr(C[ ]). Then, C[{t}] →∗

SR→(R)

{C[t]}.

The proof of Lemma 6.10 is omitted since it can be easily proved by induction.

6.3. Relationship between Soundness. In this subsection, we show that if SR is sound
for a DCTRS, then so is U. To this end, as in Section 5, we show that all the derivations
of U on terms over the original signature are included in the derivations of SR.

In rewrite rules obtained from SR, the conditional parts related to the same defined
symbol are evaluated in parallel, and thus, the system SR(R) is more reasonable than the
system U(R). Due to the parallel evaluation of conditional parts, SR(R) can derive all the
reduction sequences of U(R), and thus, soundness of SR implies that of U.

Lemma 6.11. Let R be a DCTRS over a signature F . Then, φSR(R)(→
∗
U(R)) ⊆ →

∗
SR→(R)

on terms in T (F ,V).

Proof. The proof can be seen in Appendix A.6.

Due to Lemma 6.11, we obtain the following theorem.

Theorem 6.12. If SR is sound for a syntactically or strongly DCTRS, then so is U.

Proof. Suppose that SR is sound for a syntactically or strongly DCTRS R. Then, it follows
from Lemma 6.11 that φSR(R)(→

∗
U(R)) ⊆ →

∗
SR→(R). Therefore, it follows from Theorem 6.2

that U is sound for R.
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It is not known whether the converse of Theorem 6.12 holds or not.
Similarly to U, the LL property of DCTRSs is not a soundness condition of SR; Suppose

that SR is sound for LL DCTRSs; Then, it follows from Theorem 6.12 that U is sound for
LL DCTRSs, but U is not sound for every LL DCTRS (see Example 4.1).

Example 6.13. The DCTRS R6 in Example 4.1 is transformed by SR→ into the following
TRS:

SR
→(R6) =





f(x,⊥)→ f(x, [{x}]) f(x, [{e}])→{x}
g(d, x, y,⊥)→ g(d, x, y, [{y}]) g(d, x, y, [{x}])→{A}
h(x, y,⊥)→ h(x, y, [{y}]) h(x, y, [{x}])→{g(x, y, f(k,⊥),⊥)}

a→ {c} a→{d}
b→ {c} b→{d}
c→ {e} c→{l}
d→ {m} k→{l}
k→ {m} {{x}} → {x}

f({x}, z1)→ {f(x,⊥)} g({x}, y, z, z1)→{g(x, y, z,⊥)}
g(x, {y}, z, z1)→ {g(x, y, z,⊥)} g(x, y, {z}, z1)→{g(x, y, z,⊥)}
h({x}, y, z1)→ {h(x, y,⊥)} h(x, {y}, z1)→{h(x, y,⊥)}





We have the derivation h(f(a,⊥), f(a,⊥))→∗
SR→(R6)

{A}, but h(f(a), f(a)) 6→R6 A. Thus, the

LL property is not a sufficient condition for soundness of SR.

6.4. A Comparison from Several Viewpoints. Finally, we compare unravelings with
the SR transformation, in terms of the following points.

• Proving Operational Termination. Both the unravelings and the SR transformation can
be used for proving operational termination: if the transformed TRS is terminating, then
the original CTRS is operationally terminating [14, 30, 31, 28, 29].
• Soundness. As shown in Theorem 6.12, for strongly or syntactically DCTRSs, sound-
ness of SR implies soundness of U. The known soundness conditions are the Uopt-LL
property and confluence only. These conditions are also the ones for unravelings and
more soundness conditions for unravelings are known than those for SR (see Table 1 in
Section 7).
• Strong Soundness. A CTRS transformation T is called strongly sound for an eCTRS R
over a signature F if there exists a (partial) 11 mapping ψ as an inverse to φ (i.e., ψ(φ(t))
= t for t ∈ T (F ,V)) such that, for all terms s ∈ T (F ,V) and t ∈ T (G,V), φ(s) →∗

RT
t

implies s →∗
R ψ(t), where G is a signature over which RT is defined. The well-designed

rules obtained by the SR transformation provide strong soundness from soundness, that
plays an important role in the points below. On the other hand, strong soundness of
unravelings has never been discussed, and soundness of unravelings does not imply strong
soundness of the unravelings in general.
• Proving Confluence. As stated in Theorem 6.5, the SR transformation provides a method
for proving confluence of strongly or syntactically U-LL DCTRSs. For unravelings, this
has never been discussed, and furthermore, for any overlapping confluent DCTRS, usual

11 The mapping ψ only needs to translate resulting terms (terms reachable from φ(s) for some original
term s) for T (R) back into the corresponding terms for R.
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unravelings (e.g., U and Uopt) do not preserve confluence, i.e., the unraveled TRS is not
confluent (see Examples 6.6, 6.7).
• Computing Normal Forms. For a strongly or syntactically DCTRS R, the normal forms
of SR→(R) can be converted to the corresponding normal forms of R if SR is strongly
sound for R. Thus, SR(R) can be used for the normalizing reduction of R. Moreover, the
obtained normal form is a unique one if R is confluent. In general, this is impossible for
unravelings.
• Computational Equivalence. For a CTRS transformation T and an eCTRS R, the trans-
formed eTRS RT is called computationally equivalent to R if, whenever R terminates on
s admitting a unique normal form t (i.e., t′ = t for all normal forms t′ of s), RT also
terminates on φ(s) and for any of its normal forms t′, we have that ψ(t′) = t [30, 31].
SR

→(R) is computationally equivalent to R if R is finite, confluent, and operationally ter-
minating [31]. Thus, for such a DCTRS R, SR(R) can be used as a rewriting engine for
R in terms of reduction. This is the main advantage of SR and has never been discussed
for unravelings.

In summary, when the SR transformation is sound for a strongly or syntactically DC-
TRS with confluence and operational termination, the SR transformation seems better to
use as a reasonable rewriting engine for the DCTRS than the unravelings mentioned in this
paper. On the other hand, unravelings are good tools for investigating soundness conditions
of CTRS transformations, which is required for computational equivalence. Moreover, as
stated in Section 1, unravelings are useful in order to analyze or modify DCTRSs. Currently,
for DCTRSs that are neither strongly nor syntactically DCTRSs, unravelings are more use-
ful than the SR transformation since it is not known whether SR provides computational
equivalence (and even soundness) for such DCTRSs or not.

7. Summary and Related Work of Soundness Conditions

In this section, we briefly describe related work on soundness of unravelings and we sum-
marize positive and negative results on soundness conditions of unravelings and the SR
transformation.

First, we briefly describe a comparison with related work, in terms of the approach to
the proof of soundness related to the Uopt-LL property (Subsection 4.1). For an LL normal
CTRS R over a signature F , the approach to the proof of soundness in [9] is the use of the
transformation ∇ from T (FUN(R),V) to T (F ,V), proving that for any term s ∈ T (F ,V) and
term t ∈ T (FUN(R),V), if s →

∗
UN(R) t, then s →

∗
R ∇(t) [26]. Note that the transformation

∇ has been extended to U [25] (cf., [26]). The transformation ∇ was introduced in [25] to
discuss innermost termination. Unlike the case of normal CTRSs, however, ∇ has never
been used to show soundness. The transformation ∇ cannot be defined well for Uopt since

not all the variables in l appear in Uρ
i (ti,

−→
Zi). For this reason, the proof in this paper takes

a direct approach to the proof of soundness for Uopt-LL DCTRSs (cf., Lemma 4.2).
Extending the results in [9], Gmeiner et al. have shown that U is sound for confluent

and right-stable 3-DCTRSs w.r.t. the reduction to normal forms,12 and U is sound for U-RL

12 A syntactically DCTRS R is called right-stable [32, 10] if for every rule l → r ⇐ s1 ։ t1; . . . ; sk ։ tk
and for all 1 ≤ i ≤ n, ti is linear and Xi ∩ Var(ti) = ∅.
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or WLL 3-DCTRSs [10].13 For the case of U-RL 3-DCTRSs, this result is incompatible with
Theorem 4.9 since U-RL is strictly more restrictive than Uopt-RL. For example, the DCTRS
R′

10 is Uopt-RLNE, but not U-RL. This indicates that soundness of U for R′
10 cannot be

proved by using the result in [10], while the soundness can be proved by the results in this
paper (see Example 5.6). For the case of WLL 3-DCTRS, this result strictly contains the
combination of Theorem 4.3 and Corollary 5.5 since Uopt-LL 3-DCTRSs are WLL. On the
other hand, the WLL property is not a soundness condition of Uopt since Uopt is not sound
for the WLL DCTRS R10 shown in Example 4.12. Furthermore, Gmeiner et al. have also
shown that Uopt is sound for Uopt-NE and right-separated 2-DCTRSs [10].14 The Uopt-RL
property is incompatible with the right-separated property even if the DCTRSs are Uopt-NE
and of Type 2.15 For this reason, the soundness result on Uopt in [10] is incomparable with
Theorem 4.9.

Finally, we summarize the positive and negative results on soundness in Table 1, i.e.,
sufficient and insufficient conditions for soundness of the CTRS transformations mentioned
in this paper. We can recognize from Example 4.12 that neither confluence nor Uopt-
confluence is sufficient on its own for soundness of Uopt. As we have seen, soundness of the
unraveling U is provided by the other transformations UJ, UN, Uopt, and SR. In summary,
many sufficient and insufficient conditions for soundness of unravelings are investigated and
all the soundness conditions of SR are soundness conditions of unravelings.

8. Conclusion

In this paper, we showed that the optimized unraveling for DCTRSs is sound for ultra-LL or
ultra-RLNE DCTRSs, and showed that if the optimized unraveling is sound for a DCTRS,
then so is Ohlebusch’s unraveling. We also presented necessary and sufficient syntactic
conditions for ultra-LL, ultra-RL, and ultra-NE, respectively, and soundness conditions of
unravelings for join and normal CTRSs. Moreover, we showed that soundness of the exist-
ing unravelings and the SR transformation respectively implies soundness of Ohlebusch’s
unraveling.

Our future work is to solve the remaining open problems, e.g., either to show soundness
of U and Uopt for R

′
3 in Example 5.22, or to prove the converse of Theorem 5.21. We are also

interested in a study on strong soundness and computational equivalence of unravelings.
There seems to be room for discussing sufficient conditions of unravelings related to

confluence, e.g., under which confluence of the unraveled TRSs implies that of the original
CTRSs, or under which confluence of the original CTRSs implies that of the unraveled
TRSs. For a confluent DCTRS R, a trivial such condition is that R is Uopt-LL and non-
overlapping, i.e., U(R) and Uopt(R) are LL and non-overlapping. In many cases, however,
neither U(R) nor Uopt(R) is confluent even if R is confluent (see Example 6.6). Viewed in

13 A 3-DCTRS R is called weakly left-linear (WLL) [10] if for every rule ρ : l → r ⇐ s1 ։ t1; . . . ; sk ։ tk
∈ R and all variables x ∈ Var(ρ), x does not appear in any of r, s1, . . . , sk whenever x appears at least twice
in l, t1, . . . , tk. Note that this WLL property for 3-DCTRSs is an extension of the WLL property for normal
1-CTRSs.

14 A DCTRS R is called right-separated [10] if for every rule l → r ⇐ s1 ։ t1; . . . ; sk ։ tk and all 1 ≤ i

≤ k, Var(ti) ∩Xi = ∅.
15 The rule f(x, y, z) → x ⇐ g(y) ։ w; g(z) ։ y; h(y) ։ a is Uopt-RLNE and of Type 2, but not

right-separated. On the other hand, the rule f(x, y) → x ⇐ g(y) ։ z; g(z) ։ a; h(z) ։ b is Uopt-NE,
right-separated, and of Type 2, but not Uopt-RLNE.
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Table 1: Results on soundness conditions for CTRS transformations.
soundness insufficient for soundness

J UJ

LL (Corollary 5.14)
soundness of UN ◦ Norm (Theorem 5.13)

soundness of UN (Theorem 5.17)
soundness of U ◦ Det (Theorem 5.19)

N
UN

LL (= Uopt-LL) [9]
confluence [9]

NE [9]
groundness of all conditions [9]

WLL (⊃ LL) [9]
soundness of UJ (Theorem 5.15)

constructor systems [9]
overlay systems [9]

non-RV [9]
RL [9]

overlappingness [9]
UN [9]
UN→ [9]

S
SR

Uopt-LL [31]
confluence [31]

LL (Example 6.13)

D

U

confluence and right-stability [10] confluence [10]
Uopt-LL [16]

soundness of Uopt (Corollary 5.5)
soundness of UN (Theorem 5.21)
soundness of SR (Theorem 6.12)

U-RL [10]
WLL (⊃ Uopt-LL) [10]

confluence [10]
U-NE [10]

Uopt

Uopt-LL (Theorem 4.3)
Uopt-NE-RL (Theorem 4.9)

Uopt-NE, right-separation, and Type 2 [10]

LL (Example 4.1)
Uopt-NE (Example 4.11)
WLL (Example 4.12)

Uopt-RL (Example 4.12)
soundness of U (Example 4.12)

confluence (Example 4.12)
Uopt-confluence (Example 4.12)

– “J”, “N”, “D”, and “S” in the first column represent “join CTRSs”, “normal CTRSs”, “DCTRSs”,
and “strongly or syntactically DCTRSs”, respectively.

– “soundness of UN” means that the target is (or can be considered) a normal CTRS and UN is
sound for the target.

– “soundness of SR” means that the target is a strongly or syntactically DCTRS and SR is sound
for the target.

this light, an interesting further direction related to confluence will be to improve unrav-
eling transformations themselves, e.g., to optimize introduction of U symbols as stated in
Example 6.6. Such an optimization has been already discussed in [30, 31]. For unravelings,
however, it is not clear what the optimization leads to. What has to be noticed in this
direction is that the improvement is in agreement with the SR transformation.

As stated in the comparison with the SR transformation, soundness conditions of un-
ravelings are better studied than soundness of the SR transformation and it must be easier
to investigate soundness of unravelings than that of the SR transformation. Thus, it is still
worth investigating unravelings while the SR transformation provides a reasonable rewrit-
ing engine in terms of computational equivalence to the original CTRSs. On the other
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hand, if the converse of Theorem 6.12 holds, then unravelings would be useful tools to show
soundness of the SR transformation. A further direction of this research will be to prove or
disprove the converse of Theorem 6.12.
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[31] T.-F. Şerbănuţă and G. Roşu. Computationally equivalent elimination of conditions. Technical Report
UIUCDCS-R-2006-2693, University of Illinois at Urbana-Champaign, 2006.

[32] T. Suzuki, A. Middeldorp, and T. Ida. Level-confluence of conditional rewrite systems with extra
variables in right-hand sides. In J. Hsiang, editor, Proceedings of the 6th International Conference
on Rewriting Techniques and Applications, volume 914 of Lecture Notes in Computer Science, pages
179–193, Springer, 1995.

[33] J. W. Thatcher. Tree Automata: an Informal Survey, chapter 4, pages 143–178, Currents in the Theory
of Computing. Prentice Hall, 1973.

[34] Y. Toyama. Confluent term rewriting systems with membership conditions. In S. Kaplan and J.-P.
Jouannaud, editors, Proceedings of the 1st International Workshop on Conditional Term Rewriting
Systems, volume 308 of Lecture Notes in Computer Science, pages 228–241, Springer, 1987.



SOUNDNESS OF UNRAVELINGS FOR CTRSS VIA ULTRA-PROPERTIES 41

[35] P. Viry. Elimination of conditions. Journal of Symbolic Computation, 28(3):381–401, 1999.

Appendix A. Proofs of Technical Results

In this appendix, we show missing proofs of some technical results.

A.1. Proof of Theorem 3.8.

Theorem 3.8. Let ρ : l → r ⇐ s1 ։ t1; . . . ; sk ։ tk be an extended deterministic
conditional rewrite rule. Then, all of the following hold:

(1) ρ is Uopt-LL iff all of l, t1, . . . , tk are linear and Var(ti) ∩Xi = ∅ for all 1 ≤ i ≤ k,
(2) ρ is Uopt-RL iff all of r, s1, . . . , sk are linear and Var(si) ∩ Yi = ∅ for all 1 ≤ i ≤ k,

and
(3) ρ is Uopt-NE iff Var(l) ⊆ Var(r, s1, . . . , sk) and Var(ti) ⊆ Var(r, si+1, . . . , sk) for all

1 ≤ i ≤ k.

Proof. The case that ρ is unconditional is trivial, so let k > 0. Recall that Uopt(ρ) =

{ l→ U
ρ
1 (s1,

−→
Z1), U

ρ
1 (t1,

−→
Z1)→ U

ρ
2 (s2,

−→
Z2), . . . , U

ρ
k (tk,

−→
Zk)→ r }.

(1) Suppose that ρ is Uopt-LL. Then, by definition, all of l, Uρ
1 (t1,

−→
Z1), . . . , U

ρ
k (tk,

−→
Zk) are

linear. Thus, all of l, t1, . . . , tk are linear and Var(ti) ∩ Zi = ∅ for all 1 ≤ i ≤ k, and
hence Var(ti) ∩Xi = ∅ for all 1 ≤ i ≤ k. Therefore, the only-if part holds.

Suppose that ρ is not Uopt-LL, all of l, t1, . . . , tk are linear, and Var(ti) ∩Xi = ∅ for
all 1 ≤ i ≤ k. Then, Var(tj) ∩ Zj 6= ∅ for some j since all of l, t1, . . . , tk are linear and

the sequence
−→
Zi is linear w.r.t. variable occurrences for all 1 ≤ i ≤ k. Since Zi ⊆ Xi for

all 1 ≤ i ≤ k by definition, we have Var(tj)∩Xj 6= ∅. This contradicts the assumption
that Var(ti) ∩Xi = ∅ for all 1 ≤ i ≤ k. Therefore, the if part holds.

(2) Suppose that ρ is Uopt-RL. Then, by definition, all of r, Uρ
1 (s1,

−→
Z1), . . . , U

ρ
k (sk,

−→
Zk) are

linear and Var(si) ∩ Zi = ∅ for all 1 ≤ i ≤ k, and hence all of r, s1, . . . , sk are linear.
Since ρ is deterministic, we have Var(si) ⊆ Xi, and hence Var(si) ∩ Yi = ∅ for all 1 ≤
i ≤ k. Therefore, the only-if part holds.

Suppose that ρ is not Uopt-RL, all of r, s1, . . . , sk are linear, and Var(si)∩ Yi = ∅ for
all 1 ≤ i ≤ k. Then, by definition, Var(sj) ∩ Zj 6= ∅ for some j since all of r, s1, . . . , sk

are linear and the variable sequence
−→
Zi is linear w.r.t. variable occurrences for all 1 ≤

i ≤ k. Since Zi ⊆ Yi for all 1 ≤ i ≤ k by definition, it follows from Zj ⊆ Yj that
Var(sj) ∩ Yj 6= ∅. This contradicts the assumption that Var(si) ∩ Yi = ∅ for all 1 ≤ i

≤ k. Therefore, the if part holds.
(3) Suppose that ρ is Uopt-NE. Then, by definition, Var(l) ⊆ Var(s1) ∪Z1, Var(ti) ∪ Zi ⊆
Var(si+1) ∪ Zi+1 for all 1 ≤ i < k, and Var(tk) ∪ Zk ⊆ Var(r), and hence Var(tk) ⊆
Var(r), Zk ⊆ Var(r), Var(ti) ⊆ Var(si+1)∪Zi+1 and Zi ⊆ Var(si+1)∪Zi+1 for all 1 ≤
i < k. Thus, Zi ⊆ Var(si+1)∪Zi+1 ⊆ Var(si+1, si+2)∪Zi+2 ⊆ · · · ⊆ Var(si+1, . . . , sk)∪
Var(r) for all 1 ≤ i < k, and hence Var(ti) ⊆ Var(r, si+1, . . . , sk) for all 1 ≤ i ≤ k.
Moreover, Var(l) ⊆ Var(s1) ∪ Z1 ⊆ Var(s1) ∪ Var(r, s2, . . . , sk) = Var(r, s1, . . . , sk).
Therefore, the only-if part holds.

Suppose that Var(l) ⊆ Var(r, s1, . . . , sk) and Var(ti) ⊆ Var(r, si+1, . . . , sk) for all 1
≤ i ≤ k. Then, by the definition of Yi, we have Yi = Var(r, si+1, . . . , sk) for all 1 ≤ i ≤
k.
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• Consider the rule Uρ
k (tk,

−→
Zk)→ r ∈ Uopt(ρ). It follows from Var(tk) ⊆ Var(r) and Yk

= Var(r) that Var(tk) ∪ Zk = Var(tk) ∪ (Xk ∩ Yk) ⊆ Var(r). Thus, Uρ
k (tk,

−→
Zk)→ r

∈ Uopt(ρ) is NE.

• Consider the rule Uρ
i (ti,

−→
Zi) → U

ρ
i+1(si+1,

−−→
Zi+1) ∈ Uopt(ρ) with 1 ≤ i < k. Suppose

that Var(ti) ∪ Zi 6⊆ Var(si+1) ∪ Zi+1. Then, there exists a variable x ∈ Var(ti) ∪ Zi

such that x 6∈ Var(si+1)∪Zi+1, and hence x 6∈ Var(si+1)∪Yi+1. It follows from Yi+1

= Var(r, si+2, . . . , sk) that x 6∈ Var(r, si+1, . . . , sk).
– Suppose that x ∈ Var(ti). Then, it follows from Var(ti) ⊆ Var(r, si+1, . . . , sk) that
x ∈ Var(r, si+1, . . . , sk). This contradicts the fact that x 6∈ Var(r, si+1, . . . , sk).

– Suppose that x 6∈ Var(ti). Then, x ∈ Zi = Xi ∩ Yi, and hence x ∈ Xi and x ∈ Yi
= Var(r, si+1, . . . , sk). This contradicts the fact that x 6∈ Var(r, si+1, . . . , sk).

Thus, Uρ
i (ti,

−→
Zi)→ U

ρ
i+1(si+1,

−−→
Zi+1) is NE.

• Consider the remaining rule l → U
ρ
1 (s1,

−→
Z1 ∈ Uopt(ρ). Suppose that Var(l) 6⊆

Var(s1) ∪ Z1). Then, there exists a variable x ∈ Var(l) such that x 6∈ Var(s1) ∪
Z1, and hence x 6∈ Var(s1) ∪ Y1. It follows from Y1 = Var(r, s2 . . . , sk) that x 6∈
Var(r, s1, . . . , sk). This contradicts the fact that Var(l) ⊆ Var(r, s1, . . . , sk). Thus,

l→ U
ρ
1 (s1,

−→
Z1) is NE.

Therefore, Uopt(ρ) is NE, and hence the if part holds.

A.2. Proof of Theorem 3.9.

Theorem 3.9. Let ρ : l → r ⇐ s1 ։ t1; . . . ; sk ։ tk be an extended deterministic
conditional rewrite rule. Then, all of the following hold:

(1) ρ is U-LL iff all of l, t1, . . . , tk are linear and Var(ti) ∩Xi = ∅ for all 1 ≤ i ≤ k,
(2) ρ is U-RL iff r is linear and all of s1, . . . , sk are ground, and
(3) ρ is U-NE iff Var(l, t1, . . . , tk) ⊆ Var(r).

Proof. The case that ρ is unconditional is trivial, so let k > 0. Recall that U(ρ) = { l →

U
ρ
1 (s1,

−→
X1), U

ρ
1 (t1,

−→
X1)→ U

ρ
2 (s2,

−→
X2), . . . , U

ρ
k (tk,

−→
Xk)→ r }.

(1) This claim can be proved similarly to Theorem 3.8 (1).

(2) Suppose that ρ is U-RL. Then, by definition, all of r, Uρ
1 (s1,

−→
X1), . . . , U

ρ
k (sk,

−→
Xk) are

linear. Suppose that sj is not ground for some j. Then, there exists a variable x ∈
Var(sj). Since ρ is deterministic, x appears in any of l, t1, . . . , tj−1, and hence x ∈

Xj . Thus, U
ρ
i (si,

−→
Xj) is not linear, and hence U(ρ) is not RL, i.e., ρ is not U-RL. This

contradicts the assumption that ρ is U-RL. Therefore, all of s1, . . . , sk are ground, and
hence the only-if part holds.

Suppose that ρ is not U-RL, r is linear, and all of s1, . . . , sk are ground. Then, by

definition, Uρ
j (sj ,

−→
Xj) is not linear for some j since r is linear. It follows from groundness

of sj that Var(sj) ∩Xj = ∅. Moreover, since the variable sequence
−→
Xj is linear w.r.t.

variable occurrences, the term U
ρ
j (sj,

−→
Xj) is linear. This contradicts the non-linearity

of Uρ
j (sj ,

−→
Xj). Therefore, the if part holds.

(3) Suppose that ρ is U-NE. Then, by definition, the rule Uρ
k (tk,

−→
Xk)→ r is NE, and hence

Var(l, t1, . . . , tk) = Var(tk) ∪Xk ⊆ Var(r). Therefore, the only-if part holds.
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Suppose that Var(l, t1, . . . , tn) ⊆ Var(r). Then, since Xk = Var(l, t1, . . . , tk−1) by

definition, Uρ
k (tk,

−→
Xk)→ r is NE. It follows from Var(l) =X1 that l→ U

ρ
1 (s1,

−→
X1) is NE.

Since Var(ti)∪Xi = Xi+1 for all 1 ≤ i < k by definition, Uρ
i (ti,

−→
Xi)→ U

ρ
i+1(si+1,

−−−→
Xi+1)

is NE for all 1 ≤ i < k. Thus, U(ρ) is NE, and hence ρ is U-NE. Therefore, the if part
holds.

A.3. Proof of Lemma 4.2. We first prepare a technical lemma to help us to prove
Lemma 4.2. Let X be a finite set of variables, σ and θ be substitutions, and → be a
binary relation on terms. Then, we write Xσ → Xθ if xσ → xθ for any x ∈ X.

Lemma A.1. Let R be an eDCTRS, ρ : l → r ⇐ s1 ։ t1; . . . ; sk ։ tk be a Uopt-LL
conditional rewrite rule in R, and σ1, . . . , σk+1 be substitutions. If siσi →

∗
R tiσi+1 and Ziσi

→∗
R Ziσi+1 for all 1 ≤ i ≤ k, then lσ1 →

+
R rσk+1.

Proof. Let σ be the substitution σ1|Var(l) ∪ σ2|Z1\Var(l) ∪ · · · ∪σk|Zk\Zk−1
∪ σk+1|Var(tk ,r)\Zk

.
Then, lσ = lσ1. It follows from Ziσi →

∗
R Ziσi+1 that Ziσ →

∗
R Ziσi+1 for all 1 ≤ i

≤ k. Moreover, it follows from the Uopt-LL property and Theorem 3.8 that Var(ti) ∩(
Dom(σ1|Var(l)) ∪ · · · ∪ Dom(σi−1|Zi−1\Zi−2

)
)
= ∅ for all 1 ≤ i ≤ k, and hence tiσi = tiσ

for all 1 ≤ i ≤ k.
Now we show that siσ →

∗
R siσi for all 1 ≤ i ≤ k, i.e., xσ →∗

R xσi for all variables x ∈
Var(si). The case that i = 1 is trivial, so let i > 1. We make a case distinction depending
on where x appears.

• Consider the case that x ∈ Var(l). By definition, x ∈ Zj for all 1 ≤ j < i, and hence we
have the derivation xσ = xσ1 →

∗
R xσ2 →

∗
R · · · →

∗
R xσi.

• Consider the remaining case that x ∈ Var(tj) for some j with 1 ≤ j < i. It follows from
the Uopt-LL property of ρ that x ∈ Zj \ Zj−1. By definition, x ∈ Zj′ for all j ≤ j′ < i,
and hence we have the derivation xσ = xσj →

∗
R xσj+1 →

∗
R · · · →

∗
R xσi.

Thus, xσ →∗
R xσi for all variables x ∈ Var(si), and hence siσ →∗

R siσi. It follows from the
assumption that siσ →

∗
R siσi →

∗
R tiσi+1 = tiσ for all 1 ≤ i ≤ k. Similarly, we have the

derivation rσ →∗
R rσk+1. Therefore, we have the derivation lσ1 = lσ →R rσ →∗

R rσk+1.

Next, we show the proof of Lemma 4.2.

Lemma 4.2. Let R be a Uopt-LL 3-eDCTRS over a signature F , s be a term in T (F ,V),
t be a linear term in T (F ,V), and σ be a substitution in Sub(FUopt(R),V). Suppose that R
is non-LV or non-RV. If s ⇒n

Uopt(R) tσ for some n ≥ 0, then there exists a substitution θ

in Sub(F ,V) such that

• s →∗
R tθ ⇒n′

≥PosV (t),Uopt(R) tσ for some n′ ≤ n, and

• if tσ ∈ T (F ,V), then tθ = tσ.

Proof. We prove this lemma by induction on the lexicographic product (n, s) of the length
n and the structure of s. The case that n = 0 is trivial, so let n > 0.

We first consider the case that s ⇒n
Uopt(R) tσ does not contain any reduction step at

the root position. In this case, s is not a variable. Let s be of the form f(s1, . . . , sm) with
f ∈ F . We make a case distinction depending on whether t is a variable or not.

• Consider the case that t is not a variable. In this case, s = f(s1, . . . , sm) ⇒n
Uopt(R)

f(t1, . . . , tm)σ = tσ, and thus, si ⇒
ni

Uopt(R) tiσ, where ni ≤ n, for all 1 ≤ i ≤ m. By the
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induction hypothesis, for all 1 ≤ i ≤ m, there exists a substitution θi ∈ Sub(F ,V) such
that
– si →

∗
R tiθi ⇒

n′
i

≥PosV(ti),Uopt(R) tiσ for some n′i ≤ ni, and

– if tiσ ∈ T (F ,V), then tiθi = tiσ.
Let θ = θ1|Var(t1) ∪ · · · ∪ θm|Var(tm). Then, it follows from the linearity of t that θ
is a substitution in Sub(F ,V). Thus, we have the derivation s = f(s1, . . . , sm) →∗

R

f(t1, . . . , tm)θ = tθ ⇒n′

≥PosV(t),Uopt(R) tσ where

– n′ is the maximum of n′1, . . . , n
′
m, and

– if tσ ∈ T (F ,V), then tθ = tσ.
Moreover, it follows from n′i ≤ n that n′ ≤ n.
• Consider the remaining case that t is a variable x. In this case, we can let σ = {x 7→
f(t1, . . . , tm)}. Now, let t′ be a linear term f(x1, . . . , xm) with x1, . . . , xm ∈ V, and σ

′ =
{xi 7→ ti | 1 ≤ i ≤ m}. Then, s = f(s1, . . . , sm) ⇒n

>ε,Uopt(R) f(x1, . . . , xm)σ′. Similarly to

the previous case, we have a substitution θ′ such that
– f(s1, . . . , sm) →∗

R t′θ′ ⇒n′

≥PosV(f(x1,...,xm)),Uopt(R) t
′σ′, and

– if t′σ′ ∈ T (F ,V), then t′θ′ = t′σ′,
for some n′ ≤ n. Let θ = {x 7→ t′θ′}. Then, we have the derivation s = f(s1, . . . , sm)

→∗
R t′θ′ = tθ ⇒n′

≥{ε},Uopt(R) tσ with n′ ≤ n, and tθ = t′θ′ = tσ whenever tσ ∈ T (F ,V).

Next we consider the remaining case that at least one rule is applied at the root position.
In the following, we make a case distinction depending on whether R is non-LV or non-RV.
In the case that R is non-LV, we focus on the first rule applied at the root position, and
otherwise (i.e., R is non-RV), we focus on the last rule applied at the root position. The
case that the focused rule does not contain a U symbol is simpler than the other case that
the focused rule contains a U symbol since the rule is contained not only in Uopt(R) but
also in R. For this reason, we only consider the case that the focused rule contains a U
symbol. Now we assume that the focused rule is of the following form:

• l→ U
ρ
1 (s1,

−→
Z1) if R is non-LV, and

• Uρ
i (ti,

−→
Zi)→ U

ρ
i+1(si+1,

−−→
Zi+1) or U

ρ
k (tk,

−→
Zk)→ r if R is non-RV.

For the sake of readability, we assume w.l.o.g. that k = 2.
Let us start the case distinction mentioned above.

(1) Consider the case that R is non-LV. In this case, we have the following subcases de-
pending on where tσ appears.
a. Consider the case that

s⇒n0

>ε,Uopt(R)
lσ1→ε,Uopt(R) U

ρ
1 (s1,

−→
Z1)σ1 ⇒

n1

>ε,Uopt(R)
tσ

where n0 + n′′ + 1 = n. By the induction hypothesis, there exists a substitution θ1

∈ Sub(F ,V) such that s →∗
R lθ1 ⇒

n′
1

≥PosV (l),Uopt(R) lσ1 for some n′1 ≤ n0. Thus, lθ1

⇒
n′
1

Uopt(R) lσ1 →ε,Uopt(R) U
ρ
1 (s1,

−→
Z1)σ1 ⇒n′′

>ε,Uopt(R) tσ with n′1 + 1 + n′′ ≤ n. Since

U
ρ
1 (s1,

−→
Z1)σ1 ⇒n′′

>ε,Uopt(R) tσ does not contain a rewrite step at the root position,

root(tσ) = U
ρ
1 . It follows from the assumption t ∈ T (F ,V) that t is a variable x.

Now let θ = {x 7→ lθ1}. Then, θ is a substitution in Sub(F ,V) such that s →∗
R lθ1

= tθ ⇒
n′
1+1+n′′

>{ε},Uopt(R) tσ with n′1 + 1 + n′′ ≤ n and tσ 6∈ T (F ,V).
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b. Consider the case that

s⇒n0

>ε,Uopt(R) lσ1→ε,Uopt(R) U
ρ
1 (s1,

−→
Z1)σ1 ⇒

n1

>ε,Uopt(R) U
ρ
1 (t1,

−→
Z1)σ2

→ε,Uopt(R) U
ρ
2 (s2,

−→
Z2)σ2 ⇒

n′′

>ε,Uopt(R) tσ

where n0 + n1 + n′′ + 2 = n. This case is proved similarly to the previous case.
c. Consider the remaining case that

s⇒n0

>ε,Uopt(R) lσ1→ε,Uopt(R) U
ρ
1 (s1,

−→
Z1)σ1 ⇒

n1

>ε,Uopt(R) U
ρ
1 (t1,

−→
Z1)σ2

→ε,Uopt(R) U
ρ
2 (s2,

−→
Z2)σ2 ⇒

n2

>ε,Uopt(R) U
ρ
2 (t2,

−→
Z2)σ3

→ε,Uopt(R) rσ3 ⇒
n′′

Uopt(R) tσ

where n0 + n1 + n2 + n′′ + 3 = n. By the induction hypothesis, there exists a

substitution θ1 ∈ Sub(F ,V) such that s →∗
R lθ1 ⇒

n′
1

≥PosV (l),Uopt(R) lσ1 for some n′1 ≤

n0. Since lθ1 ⇒
n′
1

≥PosV (l),Uopt(R) lσ1, it follows from the well-known standard property

of the parallel reduction [3, Lemma 6.4.2] that Uρ
1 (s1,

−→
Z1)θ1 ⇒

n′
1

≥PosV (Uρ
1 (s1,

−→
Z1)),Uopt(R)

U
ρ
1 (s1,

−→
Z1)σ1. Thus, Uρ

1 (s1,
−→
Z1)θ1 ⇒

n′
1

>ε,Uopt(R) U
ρ
1 (s1,

−→
Z1)σ1 ⇒

n1

>ε,Uopt(R) U
ρ
1 (t1,

−→
Z1)σ2

with n′1 + n1 < n, and hence s1θ1 ⇒
n′
1+n1

Uopt(R)
t1σ2 and Z1θ1 ⇒

n′
1+n1

Uopt(R)
Z1σ2. Since

the Uopt-LL property provides the linearity of t1, by the induction hypothesis, there

exists a substitution θ′2 ∈ Sub(F ,V) such that s1θ1 →
∗
R t1θ

′
2 ⇒

n′′
2

≥PosV(t1),Uopt(R) t1σ2

for some n′′2 ≤ n′1 + n1. Also, by the induction hypothesis, for any variable y ∈

Z1, there exists a substitution δy ∈ Sub(F ,V) such that yθ1 →
∗
R yδy ⇒

jy
≥{ε},Uopt(R)

yσ2 for some jy ≤ n′1 + n1. Let θ2 = θ′2|Var(t1) ∪ {y 7→ yδy | y ∈ Z1}. Then, since
the Uopt-LL property provides Var(t1) ∩ Z1 = ∅, we have the derivations s1θ1 →

∗
R

t1θ2 ⇒
n′
2

Uopt(R) t1σ2 and Z1θ1 →
∗
R Z1θ2 ⇒

n′
2

Uopt(R) Z1σ2 for some n′2 ≤ n′1 + n1 that is

the maximum of n′′2 and jy for y ∈ Z1. Thus, we have the derivation U
ρ
2 (s2,

−→
Z2)θ2

⇒
n′
2+n2

>ε,Uopt(R) U
ρ
2 (t2,

−→
Z2)σ3 with n′2 + n2 < n.

In the same way, we obtain a substitution θ3 in Sub(F ,V) such that s2θ2 →
∗
R t2θ3,

Z2θ2 →
∗
R Z2θ3, U

ρ
2 (t2,

−→
Z2)θ3 ⇒

n′
3

>ε,Uopt(R) U
ρ
2 (t2,

−→
Z2)σ3 for some n′3 ≤ n′2 + n2. More-

over, in the same way, we obtain a substitution θ in Sub(F ,V) such that rθ3 →
∗
R

tθ ⇒n′

≥PosV(t),Uopt(R) tσ and tσ ∈ T (F ,V) implies tθ = tσ, where n′ ≤ n′3 + n′′ < n.

It follows from Lemma A.1 that lθ1 →
+
R rθ3. Therefore, we have the derivation s

→∗
R lθ1 →

+
R rθ3 →

∗
R tθ ⇒n′

≥PosV(t),Uopt(R) tσ with n′ ≤ n, and tθ = tσ whenever tσ ∈

T (F ,V).
(2) Consider the remaining case (i.e., R is non-LV). Similarly to Case (1), we have the

following subcases.
a. Consider the case that

s⇒n0

Uopt(R) lσ1→Uopt(R) U
ρ
1 (s1,

−→
Z1)σ1 ⇒

n1

>ε,Uopt(R) tσ

where n0 + n′′ + 1 = n. The only difference from Case (1)-a is that s ⇒
n0

Uopt(R) lσ1

may contain a rewrite step at the root position. This case can be proved similarly
to Case (1)-a.
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b. Consider the case that

s⇒n0

Uopt(R) lσ1→ε,Uopt(R) U
ρ
1 (s1,

−→
Z1)σ1 ⇒

n1

>ε,Uopt(R) U
ρ
1 (t1,

−→
Z1)σ2

→ε,Uopt(R) U
ρ
k (s2,

−→
Z2)σ2 ⇒

n′′

>ε,Uopt(R) tσ

where n0 + n1 + n′′ + 2 = n. Again, the only difference from Case (1)-b is that s
⇒

n0

Uopt(R) lσ1 may contain a rewrite step at the root position. This case can be proved

similarly to Case (1)-b.
c. Consider the remaining case that

s⇒n0

Uopt(R) lσ1→ε,Uopt(R) U
ρ
1 (s1,

−→
Z1)σ1 ⇒

n1

>ε,Uopt(R) U
ρ
1 (t1,

−→
Z1)σ2

→ε,Uopt(R) U
ρ
k (s2,

−→
Z2)σ2 ⇒

n2

>ε,Uopt(R) U
ρ
k (t2,

−→
Z2)σ3

→ε,Uopt(R) rσ3 ⇒
n′′

>ε,Uopt(R) tσ

where n0+n1+n2+n
′′+3 = n. The only difference from Case (1)-c is that s⇒n0

Uopt(R)

lσ1 may contain a rewrite step at the root position, but rσ3 ⇒n′′

Uopt(R) tσ does not

contain any rewrite step at the root position. This case can be proved similarly to
Case (1)-c.

A.4. Proof of Theorem 4.7. Theorem 4.7 is a direct consequence of the following lemma,
a rule-based variant of Theorem 4.7.

Lemma A.2. Let ρ : l → r ⇐ s1 ։ t1; . . . ; sk ։ tk be an (extended) deterministic rewrite
rule. Then all of the following hold:

(1) Var(ti) ⊆ Var(r, si+1, . . . , sk) for all 1 ≤ i ≤ k iff (ρ)−1 is deterministic,
(2) Var(l) ⊆ Var(r, s1, . . . , sk) iff (ρ)−1 is of Type 3,
(3) if Var(ti) ⊆ Var(r, si+1, . . . , sk) for all 1 ≤ i ≤ k, then

a. Uopt((ρ)
−1) = (Uopt(ρ))

−1 up to the renaming of U symbols,
b. ρ is Uopt-LL iff (ρ)−1 is Uopt-RL, and
c. ρ is Uopt-RL iff (ρ)−1 is Uopt-LL,

(4) ρ is non-LV iff (ρ)−1 is non-RV, and
(5) ρ is non-RV iff (ρ)−1 is non-LV.

Proof. Since the first, second, fourth, and fifth claims are trivial, we only prove the third

claim. Recall that Uopt(ρ) = { l→ U
ρ
1 (s1,

−→
Z1), U

ρ
1 (t1,

−→
Z1)→ U

ρ
2 (s2,

−→
Z2), . . . , U

ρ
k (tk,

−→
Zk)→

r }. We assume w.l.o.g. that Uopt((ρ)
−1) = { r → U

ρ
k (tk,

−→
Vk), . . . , U

ρ
2 (s2,

−→
V2)→ U

ρ
1 (t1,

−→
V1),

U
ρ
1 (s1,

−→
V1)→ l } where Vi = Var(r, sk, . . . , si+1) ∩ Var(l, si, ti−1, si−1, . . . , t1, s1).

Since ρ is deterministic, we have Vi = Var(r, sk, . . . , si+1) ∩ Xi. Moreover, it follows
from the assumption that Yi = Var(r, ti, si+1, ti+1, . . . , sk, tk) = Var(r, si+1, . . . , sk), and
hence Vi = Xi ∩ Yi = Zi for all 1 ≤ i ≤ k. Therefore, the claim (3)-a holds.

By the definition of (·)−1, Uopt(R) is LL (RL) iff (Uopt(R))
−1 is RL (LL). Therefore,

the claims (3)-b,c follow from the claim (3)-a.
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A.5. Proof of Lemma 4.15. We first prepare some technical lemmas to prove Lemma 4.15.

Lemma A.3. Let l be a linear term with U-symbol-free proper subterms, and θ, σ, η be
substitutions such that θ ∈ Sub(F ,V) and root(xη) is a U symbol for any x ∈ Dom(η). If
sθη = lσ, then there exists a substitution σ′ such that sθ = lσ′ and lσ = lσ′η.

Proof (Sketch). This claim can be proved by induction on the term structure of s.

Lemma 4.15 is a direct consequence of the following lemma.

Lemma A.4. Let s be a term in T (FUopt(R),V), t be a term in T (F ,V), and θ, η be sub-
stitutions such that θ ∈ Sub(FUopt(R),V) and root(xη) is a U symbol for any x ∈ Dom(η).
If PosF (sθ) : sθη −−→evs

∗
Uopt(R) t, then there exists a substitution σ ∈ Sub(F ,V) such that

• sθσ −−→
evs

n
Uopt(R) t, and

• the derivation is EV-instantiated on T (F ,V).

Proof. We prove this lemma by induction on the length n of the derivation PosF (sθ) : sθη
−−→
evs

∗
Uopt(R) t. The case that n = 0 is trivial, so let n > 0.

From the EV-safe property of the derivation and Lemma A.3, we can assume w.l.o.g.
that

• sθ is of the form C[s′]p with s′ = lδ and p ∈ PosF (sθ),
• sθη = Cθη[s′η] = Cθη[lδη]p −−→

evs p,l→r
Cθη[rδη] −−→

evs

n−1
Uopt(R) t, and

• δ ∈ Sub(F ,V),

where

• l→ r ∈ Uopt(R) with Var(l, r) ∩ Var(sθ) = ∅,
• the set B of EV-safe positions in Cθη[rδη] is (PosF (sθ) \ {q ∈ PosF (sθ) | p ≤ q}) ∪
{pq | q ∈ PosF (r)} ∪ {pp

′q | pp′′q ∈ PosF (sθ), p
′′ ∈ PosV(l), l|p′′ = r|p′}, and

• B : Cθη[rδη] −−→
evs

n−1
Uopt(R) t.

Let δ′ and δ′′ be substitutions such that δ′ ∈ Sub(F ,V), δ|EVar(l→r) = δ′η, Dom(δ′′) ∩
(Var(l, r) ∪ Dom(η)) = ∅, and root(xδ′′) is a U symbol for any x ∈ Dom(δ′′).

Let θ′ = θ|Var(C[ ])∪δVar(l)∪δ
′|EVar(l→r) and η

′ = η∪δ′′. Then, θ′ and η′ are substitutions
such that Cθη[rδ] = (C[r])θ′η′. It follows from the definition of the EV-safe property that
B = PosF ((C[r])θ′). Thus, by the induction hypothesis, there exists a substitution σ

in Sub(F ,V) such that (C[r])θ′σ −−→
evs

n−1
Uopt(R) t and the derivation is EV-instantiated on

T (F ,V). Now, we have the derivation sθσ = (Cθ[s′])σ = (Cθ[lδ])σ = (Cθ′[lθ′])σ −−→
evs Uopt(R)

(Cθ′[rθ′])σ = (C[r])θ′σ′ −−→
evs

n−1
Uopt(R) t. Since θ and σ are in Sub(F ,V), any extra variable

in r is instantiated by a term in T (F ,V). Therefore, this derivation is EV-instantiated on
T (F ,V).

A.6. Proof of Lemma 6.11.

Lemma 6.11. Let R be a DCTRS over a signature F . Then, φSR(R)(→
∗
U(R)) ⊆ →

∗
SR→(R)

on terms in T (F ,V).
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Proof. We extend the operation · by adding the following clause to the definition of φ in
Definition 6.3:

φ(U
ρf,j
i (xi,

−−−−−−−−−−−−−−−−−−−−−−−→
Var(f(w1, . . . , wn), t1, . . . , ti−1))

= f(w1, . . . , wn,⊥, . . . ,⊥︸ ︷︷ ︸
j−1

, [{xi}, ti−1, . . . , t1,⊥, . . . ,⊥]k,⊥, . . . ,⊥︸ ︷︷ ︸
nf−j

)

where ρf,j : f(w1, . . . , wn) → r ⇐ s1 ։ t1; . . . ; sk ։ tk ∈ R, xi is a fresh variable,
and w1, . . . , wn, t1, . . . , ti−1 are terms obtained by applying the original operation · to
w1, . . . , wn, t1, . . . , ti−1, respectively. We also extend φSR(R) by introducing the extension
of ·.

To prove this lemma, it suffices to show that for terms s, t ∈ T (FU(R),V), if s →
∗
U(R) t,

then φSR(R)(s) →
∗
SR→(R) φSR(R)(t). We prove this claim by induction on the length m of s

→∗
U(R) t. The case m = 0 is trivial, so let m > 0.

Suppose that s = C[uσ] →U(R) C[vσ] →m−1
U(R) t and σ = {x 7→ xσ | x ∈ Dom(σ)}. In

applying φSR(R) to C[ ], by definition, the hole in C[ ] is neither erased nor duplicated.

Thus, φSR(R)(C[ ]) is a context of the form {C}[ ]. Moreover, by definition, the position p of

the hole in {C}[ ] is structural. Now, we make a case distinction depending on what u→ v

∈ U(R) is.

• Consider the case that u→ v is f(w1, . . . , wn)→ r ∈ R. Since f(w1, . . . , wn, z1, . . . , znf
)

→ {r} ∈ SR→(R) by definition, we have the derivation uσ = f(w1, . . . , wn, z1, . . . , znf
)σ

→SR→(R) {r σ} = {vσ}.

• Consider the case that u→ v is f(w1, . . . , wn)→ U
ρf,j
1 (s1,

−−−−→
Var(l)) ∈ U(R). By definition,

uσ = f(w1, . . . , wn,⊥, . . . ,⊥)σ and

f(w1, . . . , wn, z1, . . . , zj−1,⊥, zj+1, . . . , znf
)→

f(w1, . . . , wn, z1, . . . , zj−1, [{s1},⊥, . . . ,⊥], zj+1, . . . , znf
) ∈ SR

→(R).

Therefore, we have the derivation

uσ = f(w1, . . . , wn,⊥, . . . ,⊥)σ
→SR→(R) f(w1, . . . , wn,⊥, . . . ,⊥, [{s1},⊥, . . . ,⊥],⊥, . . . ,⊥)σ

= U
ρf,j
1 (s1,

−−−−→
Var(l))σ = U

ρf,j
1 (s1,

−−−−→
Var(l))σ = vσ.

• Consider the case that u → v is the rule U
ρf,j
i (ti,

−−−−−−−−−−−−−→
Var(l, t1, . . . , ti−1)) → U

ρf,j
i+1 (si+1,

−−−−−−−−−−−→
Var(l, t1, . . . , ti)) ∈ U(R). By definition,

uσ = f(w1, . . . , wn,⊥, . . . ,⊥, [{ti}, ti−1, . . . , t1,⊥, . . . ,⊥],⊥, . . . ,⊥)σ

and

f(w1, . . . , wn, z1, . . . , zj−1, [{ti}, ti−1, . . . , t1,⊥, . . . ,⊥], zj+1, . . . , znf
)→

f(w1, . . . , wn, z1, . . . , zj−1, [{si+1}, ti, . . . , t1,⊥, . . . ,⊥], zj+1, . . . , znf
) ∈ SR→(R).

Therefore, we have the derivation

uσ = f(w1, . . . , wn,⊥, . . . ,⊥, [{ti}, ti−1, . . . , t1,⊥, . . . ,⊥],⊥, . . . ,⊥)σ
→SR→(R) f(w1, . . . , wn,⊥, . . . ,⊥, [{si+1}, ti, . . . , t1,⊥, . . . ,⊥],⊥, . . . ,⊥)σ

= U
ρf,j
i+1 (si+1,

−−−−−−−−−−−→
Var(l, t1, . . . , ti))σ = U

ρf,j
i+1 (si+1,

−−−−−−−−−−−→
Var(l, t1, . . . , ti))σ = vσ.
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• Consider the remaining case that u→ v is U
ρf,j
k (tk,

−−−−−−−−−−−−−→
Var(l, t1, . . . , tk−1))→ r ∈ U(R). By

definition,

uσ = f(w1, . . . , wn,⊥, . . . ,⊥, [{t1}, tk−1 . . . , t1],⊥, . . . ,⊥)σ

and f(w1, . . . , wn, z1, . . . , zj−1, [{tk}, tk−1, . . . , t1], zj+1, . . . , znf
)→ {r} ∈ SR→(R). There-

fore, we have the derivation uσ = f(w1, . . . , wn,⊥, . . . ,⊥, [{t1}, tk−1 . . . , t1],⊥, . . . ,⊥)σ
→SR→(R) {r}σ = {rσ} = {vσ}.

Now, we have either uσ →SR→(R) {vσ} or uσ →SR→(R) vσ.

• Consider the case that uσ →SR→(R) {vσ}. Since p is a structural position, it follows

from Lemma 6.10 that φSR(R)(s) = {C[uσ]} = {C}[uσ] →SR→(R) {C}[{vσ}] →
∗
SR→(R)

{{C}[vσ]} = {{C[vσ]}} →SR→(R) {C[vσ]} = φSR(R)(C[vσ]).

• Consider the remaining case that uσ →SR→(R) vσ. Then, φSR(R)(s) = {C[uσ]} = {C}[uσ]

→SR→(R) {C}[vσ] = {C[vσ]} = φSR(R)(C[vσ]).

By the induction hypothesis, φSR(R)(C[vσ]) →∗
SR→(R) φSR(R)(t). Therefore, we have the

derivation φSR(R)(s) →
∗
SR→(R) φSR→(R)(C[vσ]) →∗

SR→(R) φSR(R)(t).
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