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Abstract. We consider the problem of computing numerical invariants of programs, for
instance bounds on the values of numerical program variables. More specifically, we study
the problem of performing static analysis by abstract interpretation using template linear
constraint domains. Such invariants can be obtained by Kleene iterations that are, in order
to guarantee termination, accelerated by widening operators. In many cases, however,
applying this form of extrapolation leads to invariants that are weaker than the strongest
inductive invariant that can be expressed within the abstract domain in use. Another
well-known source of imprecision of traditional abstract interpretation techniques stems
from their use of join operators at merge nodes in the control flow graph. The mentioned
weaknesses may prevent these methods from proving safety properties.

The technique we develop in this article addresses both of these issues: contrary to
Kleene iterations accelerated by widening operators, it is guaranteed to yield the strongest
inductive invariant that can be expressed within the template linear constraint domain in
use. It also eschews join operators by distinguishing all paths of loop-free code segments.
Formally speaking, our technique computes the least fixpoint within a given template linear
constraint domain of a transition relation that is succinctly expressed as an existentially
quantified linear real arithmetic formula.

In contrast to previously published techniques that rely on quantifier elimination, our
algorithm is proved to have optimal complexity: we prove that the decision problem asso-
ciated with our fixpoint problem is Πp

2-complete. Our procedure mimics a Πp
2 search.
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1. Introduction

Static program analysis aims at deriving properties that are valid for all possible executions
of a program, through an algorithmic processing of its source or object code. Examples
of interesting properties include: “the program always terminates”; “the program never
executes a division by zero”; “the program never dereferences a null pointer”; “the value of
variable x always lies between 1 and 3”; “the output of the program is well-formed XHTML”.
There is considerable practical interest in being able to prove such properties automatically,
in particular for software used in safety-critical applications, e.g., in fly-by-wire flight control
systems in aircraft [60].

1.1. Abstract interpretation. It is well-known that fully automatic, sound and complete
program analysis is impossible for any nontrivial property regarding the final output of a
program.1 All analysis methods therefore suffer from at least one of the following limitations:
they may be limited to programs with finite (and not too large) memory, or to bounded
execution times; they may be unsound (they may infer untrue properties); or they may be
incomplete (they fail to prove certain true properties). In this article, we use the abstract
interpretation framework of Cousot and Cousot [18] to construct a static analysis technique
that is sound, but incomplete.

Static analysis by abstract interpretation replaces the computation over concrete reach-
able states by computations over symbolically represented sets of concrete states. The sets
are taken from an abstract domain. For instance, one may aim at computing, for each
program point p and each program variable x, an interval in which the value of x is guar-
anteed to lie whenever the program reaches program point p. An analysis solely based
on such intervals is known as interval analysis [17]. More refined numerical analyses in-
clude, for instance, finding for each program point an enclosing polyhedron for the vector
of program variables [19]. By restricting the analysis to handle only sets found within a
particular abstract domain (e.g., Cartesian products of intervals or convex polyhedra), one
can make the problem tractable, at the expense of over-approximation. For instance, if the
domain in use consists of convex shapes, only, non-convex invariants will necessarily get
over-approximated.

In addition to the abstract domain not being able to represent the required properties,
a major source of imprecision is the use of widening operators to enforce the convergence of
Kleene iterations within finitely many iteration steps [18]. These operators extrapolate the
first iterates of the Kleene sequence, say, of the intervals [0, 1], [0, 2], [0, 3], . . . to a plausible
limit, say [0,+∞), ensuring termination of the accelerated iteration. However, such an
accelerated iteration may overshoot the target, leading to further over-approximations of the
desired result. In order to regain precision lost by widening, one can then apply narrowing.
In its simplest form, narrowing is a descending iteration towards a fixpoint that strengthens
the invariant step by step. For more detailed information on Kleene iteration techniques
in the context of abstract interpretation, we refer the reader to Cousot and Cousot [18].
Many variants of this basic iteration scheme have been proposed to alleviate the over-
approximations introduced by widening [34, 35, 38]. However, all these techniques do not
guarantee to find the strongest inductive invariant that can be expressed in the abstract
domain in use.

1This result, formally given within the framework of recursive function theory, is known as Rice’s theo-
rem [54, p. 34][52, corollary B].
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Let us illustrate the above mentioned weaknesses on the following simple example:

i = 0 ;
while ( t rue ) {

i f ( i < 10) i = i +2;
e lse goto end ; }

end : p r i n t f ( ” i = %d\n” ) ;

The strongest invariant, that is, the set of reachable states, is given by the proposition
i ∈ {0, 2, 4, 6, 8, 10}, which, together with the exit condition i ≥ 10, yields i = 10 as the
only possible final value of i at program point end. Interval analysis by Kleene iterations
with widenings computes the intervals [0, 0], [0, 2], [0, 4] and may then widen to [0,+∞).
The narrowing phase yields the inductive invariant i ∈ [0, 11]. From this we can conclude
that the final value of i is in the interval [10, 11]. The obtained interval [0, 11] represents the
strongest inductive invariant that can be expressed as an interval.2 It is, however, not the
strongest invariant expressible as an interval, which is i ∈ [0, 10]. The invariant i ∈ [0, 10] is
not inductive, because a state with i = 9 is mapped to a state with i = 11 by one iteration
of the loop.

Unfortunately, small changes to the above program can make the widening/narrowing
approach fail to produce a good invariant. Consider, for instance, the introduction of an
additional non-deterministic choice, represented by the function choice():

i = 0 ;
while ( t rue ) {

i f ( choice ( ) ) {
i f ( i < 10) i = i +2;
e lse goto end ; } }

end : p r i n t f ( ” i = %d\n” ) ;

The program still outputs the value 10, whenever it terminates. The only difference from
the first version of the program is that there is, in each iteration, a non-deterministic choice
whether or not the original loop body is to be executed. If we perform the widening/nar-
rowing technique on the modified version, the widening phase will produce the same result
[0,+∞). However, the narrowing phase is now not able to regain any precision lost due
to widening. The loop body represents the relation τ = {(i, i) | i ∈ Z} ∪ {(i, i + 2) | i ∈
Z and i < 10}. This relation is reflexive, that is, (i, i) ∈ τ for all i ∈ Z. The problem is
of a general nature: Whenever the transition relation τ of a loop is reflexive, descending
iterations fail to improve the inductive invariant obtained by widening.

Of course, on such a simple example, one could use simple tricks to get rid of the
imprecision and recover the interval [0, 11]: remove the identity from the transition relation
(this does not change the set of all (inductive) invariants), or try a form of widening with

2Some presentations of Hoare logic or static analysis call “invariant” what we refer to in this article as
“inductive invariant”: a set (or a logical formula defining such a set) containing all initial states and stable
by the transition relation. In our terminology, an invariant is merely a property true at all times. With these
definitions, an inductive invariant is an invariant by induction on the length of the execution trace, thus the
terminology; however an invariant is not necessarily inductive. Consider the initial state (x, y) = (1, 0) and
a transition consisting in a 45° clockwise rotation around (0, 0) : (x, y) ∈ [−1, 1]× [−1, 1] is an invariant (it
is always true), but it is not inductive because [−1, 1]× [−1, 1] is not stable by this rotation.
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thresholds, also known as widening “up to” [39]. However, such approaches are brittle and
may fail for more complex programs.

1.2. Alternatives to the widening/narrowing approach. Because of the known weak-
nesses of the widening/narrowing approach, alternative methods have been proposed. Find-
ing an inductive invariant in an abstract domain can be recast as solving a constraint system.
Finding the strongest inductive invariant is then the problem of finding a minimal solution
to the constraint system. The technique described in this article is related to two recently
proposed approaches, which we shall now briefly describe.

Quantifier elimination. Monniaux [48] considers abstract domains where elements are de-
fined by a logical formula I (more specifically, a conjunction of linear inequalities) that links
the program variables to some parameters. For instance, intervals on two variables x, y are
defined by I := −lx ≤ x ≤ ux ∧ −ly ≤ y ≤ uy, where lx, ux, ly, uy are the parameters. An
element from the abstract domain defined by the template I is specified by an assignment
of values to the parameters.

Consider a set of initial states given by a formula ι (in the above example, with free
variables σ = (x, y)) and a transition relation given by τ (in the above example, with free
variables (σ, σ′) = (x, y, x′, y′)). I defines an inductive invariant for ι and τ if and only if

∀σ . ι(σ)⇒ I(σ) ∧ ∀σ, σ′ .
(
I(σ) ∧ τ(σ, σ′)⇒ I(σ′)

)
. (1.1)

Here, I(σ) is the formula I as above and I(σ′) is the formula I with σ replaced by σ′.
The free variables of formula (1.1) are the parameters in I. In the above example, they
are lx, ux, ly, uy. Any satisfying assignment to these variables defines an inductive invariant
from the abstract domain. A least inductive invariant in the abstract domain is then defined
by constructing, using formula (1.1) as a building block, a formula whose solution is the
minimal solution of (1.1), using that, for any formula F , x0 = min{x | F (x)} if and only if

F (x0) ∧ ∀x . (F (x)⇒ x0 ≤ x) . (1.2)

The static analyzer then proceeds as follows: transform the loop into a set of initial states
ι and a transition relation τ . From these formulas, construct Formula 1.2. Then, call a
solver capable of dealing with quantified formulas, e.g, a quantifier elimination procedure
or a lazy version thereof such as the one developed by Monniaux [47].

As an extension to this framework, ι and τ may have additional variables, e.g., pre-
condition or system parameters. The formula defining the least inductive invariant will
then take the invariant parameters as a partial function (in the mathematical sense, that
is, as a binary related each input to at most one output) of these precondition or system
parameters. By quantifier elimination and further processing of the formula, it is possible
to turn this formula into a closed-form function, and even into executable code computing
that function (a tree of if-then-else statements with assignments at the leaves).

This approach allows to effectively synthesize best abstract transformers (α ◦ τ ◦ γ in
the notation of Cousot and Cousot [18]). Unfortunately, quantifier elimination over linear
real arithmetic is still very costly, despite the various recent works on this problem, and
quantifier elimination over linear integer arithmetic and polynomial real arithmetic are even
costlier.
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The technique described in this article considers the same problem as the quantifier
elimination approach, but without preconditions or system parameters. Our technique also
uses a different algorithmic approach, called max-strategy iteration.

Strategy Iteration. In this article, we introduce a refinement of the max-strategy iteration
technique of Gawlitza and Seidl [26] for template linear constraint domains. The phrase
“strategy iteration”, also known as “policy iteration”, comes from game theory. Let us
consider two-players zero-sum games: the outcome of such a game is a real number, the two
players (the maximizer and the minimizer) aim at maximizing (respectively, minimizing) the
outcome. Strategy iteration is a method for computing the optimal strategy for one of the
players. It successively improves a strategy through the following two steps until an optimal
strategy is found: (Evaluation) Evaluate the currently selected strategy; and (Improvement)
try to improve the currently selected strategy w.r.t. the result of the evaluation.

The max-strategy iteration technique of Gawlitza and Seidl [26] for finding invariants
is inspired by this game-theoretic approach. Instantiated on template linear constraint
domains, it computes the strongest inductive invariant that can be represented by polyhedra
of the form P (b) = {x ∈ Rn | Tx ≤ b}, where T ∈ Rm×n is a template constraint matrix,
which is fixed before the analysis is run (heuristics for finding a suitable matrix are out-
of-scope for this article). The variable x is the vector of program variables. The template
constraint matrix T is the counterpart of the template I from the quantifier elimination
technique of Monniaux [48]. Given T , every vector b ∈ Rm uniquely determines a polyhedron
P (b). The vector b contains the bounds on the linear functions that are represented by the
rows of T . With the appropriate choice of T we can, among others, express the popular
interval [17] and octagon [45, 46] abstract domains.

Similarly to Kleene iterations, the max-strategy improvement algorithm produces an
ascending sequence of pre-fixpoints that are less than or equal to the least inductive invariant
we are aiming for. The pre-fixpoints are obtained through convex optimization techniques,
e.g., linear programming. In contrast to Kleene iterations, though, the algorithm converges
to the least inductive invariant after at most exponentially many steps. Our conjecture is
that it usually converges fast in practice, though one can concoct artificial examples that
exhibit exponential behavior.

Trace partitioning. Max-strategy iteration rids us of imprecisions introduced by widening,
but, per se, does not remove imprecisions introduced by another operation: the merging
of information from different program paths at join nodes in the control flow graph. In
this article, we introduce a refinement of max-strategy iteration where we distinguish the
various execution paths, in a manner similar to the work of Monniaux [48], and Monniaux
and Gonnord [49].

In most systems for static analysis by abstract interpretation, joins in the control-flow
graph result in computations of least upper bounds in the abstract domain. For instance,
consider abstract interpretation over general convex polyhedra on the following program:

i f ( x >= 0) y = x ;
e lse y = −x ;
i f ( y >= 1) z = 3.5/ x ;

The program divides 3.5 by the value of x provided that the absolute value of x is at least 1.
A static analyzer that uses convex polyhedra as abstract domain may work as follows.
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Figure 1: On the left: the graph of y = |x| is the union of two half-lines, but computing their
convex hull yields the grayed shape. By intersection with y ≥ 1, we obtain the
shape on the right, which contains points with x = 0 even though y = |x| ∧ y ≥ 1
has no solution with x = 0.

A B C

τ1

τ2

τ3

τ4

A C

τ3 ◦ τ1

τ3 ◦ τ2

τ4 ◦ τ1

τ4 ◦ τ2

Figure 2: Instead of considering two transitions (corresponding to a first if-then-else) fol-
lowed by convex hull followed by two transitions (corresponding to a second if-
then-else), as on the left, we get better precision by considering the four product
transitions, as on the right.

After the first if-then-else statement, a convex hull is computed between the x ≥ 0 ∧ y = x
and x < 0 ∧ y = −x half-lines, resulting in a much larger polyhedron (see Fig. 1). The
imprecision introduced by this operation prevents the analyzer from proving that a division
by zero at line 3 is impossible.

One solution is to get rid of all convex hulls corresponding to control flow joins by
removing all control flow joins, except those corresponding to loop headers, by combining
control flow edges. For instance, n successive if-then-else constructs can be turned into an
expanded system of 2n transitions (Figure 2 shows this construction for n = 2). This is close
to the trace partitioning approach of Rival and Mauborgne [53].3 One could therefore run
this exponential transformation first, and then run max-strategy iteration or min-strategy
iteration (Sec. 1.4). However, this transformation causes an exponential blowup and is
therefore clearly not scalable.

3Trace partitioning analyses each program statement in different contexts according to an abstraction of
the history of the control trace; thus, if a statement is preceded by n tests, it can potentially analyze this
statement in 2n contexts. Because of this exponential blowup of maximal partitioning, trace partitioning
techniques, including those implemented in Astrée [8, 9], use heuristics to “fold” abstract elements together
using join operations.
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In this article, we describe an algorithm that yields the same result as max-strategy
iteration on this exponentially larger system. Our algorithm uses only polynomial space. It
achieves this by keeping the exponentially large system implicit.

Path focusing. Henry et al. [40], Monniaux and Gonnord [49] propose to run the classical
Kleene iterations with widening and narrowing scheme not on the original control-flow
graph, but on this exponentially larger system. In this approach, iterations are run on a
distinguished subset of the original control nodes, such that all cycles in the original control
flow graphs cross at least one of these distinguished nodes, using transitions corresponding
to the simple paths between these distinguished nodes in the original control flow graph.
The expanded control multigraph is kept implicit: the transitions, corresponding to simple
paths in the original graph, are obtained on demand as solutions to SMT problems. This
approach has the following advantages:

(1) It fully does away with imprecisions introduced by “join” operations, except those
corresponding to loops.

(2) The transition relations on the simple paths may be accelerable. That is, they can be
dealt with through acceleration techniques (cf. Sec. 1.4, [32, 33, 43]).

(3) While it uses widening operators, it does away with some of the imprecisions they
introduce by focusing on one path at a time, which allows the use of narrowing iterations
even on programs where they fail to yield better precision with the classical iteration
scheme.

The technique we present in this article combines the idea of implicit representation with
max-strategy iteration.

1.3. Contributions. The main contribution of this article is an algorithm that computes
the strongest inductive invariant of the expanded transition system (which allows higher
precision for abstract interpretation) without actually constructing it. We shall see later the
exact definition, but here is an interesting particular case (the general result allows more
complex control flow): given a m × n matrix A, an initial value ι ∈ Qn and a transition
relation τ over Qn, defined by a formula over variables x1, . . . , xn, x

′
1, . . . , x

′
n, built with

non-strict linear (in)equalities, ∧, ∨ and prenex ∃, compute the least set of the form P (b) =
{x ∈ Rn | Ax ≤ b} (that is, compute b) containing ι and stable by the transition relation τ ;
equivalently, find the least loop invariant of the form Ax ≤ b for the loop with initial state
ι and loop body expressed by τ .

Our algorithm can be performed in polynomial space and exponential time. It works
in a demand-driven fashion: elements from the exponentially-sized sets of strategies and
loop-free paths are enumerated only as needed, and one can thus hope that they will not
all be enumerated, which seems to be confirmed by our preliminary experiments.

We also consider the following associated decision problem, which we shall later make
more formal:

“Given a control-flow graph (with N vertices) and transition relations writ-
ten as existentially quantified first-order linear real arithmetic formulas, a
family A1, . . . , AN of matrices, an initial control state and a “bad” control
state b, does there exist vectors b1, . . . , bN such that A1x ≤ b1∧ · · · ∧ANx ≤
bN forms an inductive invariant proving that b is unreachable?”.
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We show this problem to be Σp
2-complete (at the second level of the polynomial time hierar-

chy [50, ch. 17]), even if N = 1 and the matrix is 1× 1. Equivalently, the negated problem
(abstract reachability of a statement) is shown to be Πp

2-complete. Assuming the polyno-
mial hierarchy does not collapse, this mean that this problem can be solved in polynomial
space, but is harder than NP-complete and coNP-complete problems. This clearly justifies
the use of an exponential-time algorithm.

1.4. Other related Work. Many approaches have been proposed to address the impre-
cisions caused by widening operators. We now briefly describe approaches related to ours,
in addition to those that we directly build upon (Sec. 1.2). Halbwachs et al. [39] proposed
widening “up to” (an idea resurrected in the Astrée system as widening with thresholds
[8, 9]), which extracts syntactic hints for limiting widening. Bagnara et al. [4, 5] proposed
improvements over the “classical” widenings on linear constraint domains [37]. Gopan and
Reps [34] introduced “look-ahead widening” [34] and “guided iterations” [35]: standard
widening-based analysis is applied to a sequence of syntactic restrictions of the original pro-
gram, which ultimately converges to the whole program; the idea is to distinguish phases or
modes of operation in order to make the widening more precise. Some other techniques fully
do away with widenings [13, 15, 55], for instance by expressing the invariants as solutions
of a mathematical programming problem [36], and thus the least invariant in the domain
as an optimal solution to this problem.

In some cases, it is possible to compute exactly the transitive closure of the transition
relation, or the application of the transitive closure to given initial states, or at least to
compute a good over-approximation thereof. Such acceleration techniques [32, 33, 43] tend
to have difficulties dealing with programs where the control flow is not flat (multiple paths
within the loop body).

In Section 1.2, we sketched max-strategy iteration by an analogy to solving games
where “max” operations correspond to control-flow joins and “min” operations to guards.
If instead of choosing arguments to “max” operators, the strategy chooses them for “min”
operators, we obtain min-strategy iteration [14, 24]. Min-strategy iteration solves a sequence
of fixpoint problems with decreasing values always weaker or equivalent to the strongest
inductive invariant in the domain. In general, this sequence does not necessarily converge to
this least inductive invariant, but it does so under certain conditions (e.g., when all abstract
transformers are non-expansive [1]). We investigated applying our “implicit representation”
idea to the min-strategy approach, but encountered a stumbling block: while it is possible to
decide whether a max-strategy is improvable using SMT solving on quantifier-free formulas,
the equivalent for min-strategies necessitated quantified formulas, which defeats the purpose
of doing away with quantifier elimination techniques.

2. Basics

2.1. Notations. B = {0, 1} denotes the set of Boolean values. The set of real numbers
(resp. the set of rational numbers) is denoted by R (resp. Q). The complete linearly ordered
set R∪{−∞,∞} is denoted by R, similarly Q∪{−∞,∞} is denoted by Q. For any expression
(resp. term) e, we write e[e1/x1, . . . , ek/xk] to denote the expression (resp. term) that is
obtained from e by simultaneously replacing all occurrences of the variables x1, . . . , xk by
e1, . . . , ek.
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A partially ordered set D is called a lattice if and only if any two elements x, y ∈ D
have a greatest lower bound and a least upper bound, denoted respectively by x ∧ y and
x ∨ y. It is a complete lattice if and only if any subset X ⊆ D has a greatest lower bound
and a least upper bound, denoted by

∧
X and

∨
X. The least element

∨
∅ of a complete

lattice is denoted by ⊥. The greatest element
∧
∅ is denoted by >.

Assume that D1 and D2 are partially ordered by ≤1 and ≤2, respectively. A function
f : D1 → D2 is called monotone if and only if f(x) ≤2 f(y) for all x, y ∈ D1 with x ≤1 y.
We shall often use the following fundamental result:

Theorem 2.1 (Knaster/Tarski [62]). Let D be a complete lattice and f : D→ D monotone.
The operator f has a least fixpoint and a greatest fixpoint, respectively denoted by µf and
νf . Moreover, we have µf =

∧
{x ∈ D | f(x) ≤ x} and νf =

∨
{x ∈ D | x ≤ f(x)}.

We denote the transpose of a matrix A by A>. For x ∈ R, we denote the column vector
(x, . . . , x)> by x. We denote the i-th row (resp. the j-th column) of a matrix A by Ai· (resp.
A·j). Accordingly, Ai·j denotes the entry in the i-th row and the j-th column. We also use

this notation for vectors and mappings f : X → Y k, i.e., for all i ∈ {1, · · · , k}, the mapping

fi· : X → Y is given by fi·(x) = (f(x))i· for all x ∈ X. The set Rn is partially ordered by

the component-wise extension of ≤, which we again denote by ≤. That is, for all x, y ∈ Rn,
x ≤ y if and only if xi· ≤ yi· for all i ∈ {1, . . . , n}.

A mapping f : Rn → Rm is called affine if and only if there exist A ∈ Rm×n and b ∈ Rm

such that f(x) = Ax + b for all x ∈ Rn. Here, we use the convention −∞ +∞ = −∞.

Observe that f is monotone if all entries of A are non-negative. A mapping f : Rn → R
is called weak-affine if and only if there exist a ∈ Rn and b ∈ R such that f(x) = a>x + b

for all x ∈ Rn with f(x) 6= −∞. A mapping f : Rn → Rm is called weak-affine if and

only if there exist weak-affine mappings f1, . . . , fm : Rn → R such that f = (f1, . . . , fm)>.
Every affine mapping is weak-affine, but not vice-versa. In this article, we are concerned
with mappings that are point-wise minimums of finitely many monotone and weak-affine
mappings. Note that these mappings are in particular concave, i.e., the set of points below
the graph of the function is convex.

2.2. Linear Programming. Linear programming aims at optimizing a linear objective
function with respect to linear constraints. In this article, we consider linear programming
problems (LP problems for short) of the form sup {c>x | x ∈ Rn, Ax ≤ b}. Here, A ∈ Rm×n,
b ∈ Rm, and c ∈ Rn are the inputs. The convex closed polyhedron {x ∈ Rn | Ax ≤ b} is
called the feasible space. The LP problem is called infeasible if and only if the feasible space
is empty. An element of the feasible space, is called feasible solution. A feasible solution x
that maximizes c>x is called optimal solution.

If A and b consist of rational entries, only, then the feasible space is nonempty if and
only if it contains a rational point. An optimal solution exists if and only if there exists a
rational one. In this article, we always assume that all numbers in the input are rational.

LP problems can be solved in polynomial time through the ellipsoid method [41] and
interior point methods [57]. However, the running-time of these algorithms crucially depends
on the sizes of occurring numbers. At the danger of an exponential running-time in contrived
cases, we can also instead rely on the simplex algorithm: its worst-case running-time does
not depend on the sizes of occurring numbers (given that arithmetic operations, comparison,
storage and retrieval for numbers are counted for O(1)). See for example Dantzig [20],
Schrijver [57] for more information on linear programming.
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2.3. SAT modulo linear real arithmetic. The set of SAT modulo linear real arithmetic
formulas Φ is defined through the following grammar:

e ::= c | x | e1 + e2 | c · e′ Φ ::= a | e1 ≤ e2 | e1 < e2 | Φ1 ∨ Φ2 | Φ1 ∧ Φ2 | ¬Φ′ (2.1)

Here, c ∈ Q is a constant, x is a real valued variable, e, e′, e1, e2 are real-valued linear
expressions, a is a Boolean variable and Φ,Φ′,Φ1,Φ2 are formulas. An interpretation I
for a formula Φ is a mapping that assigns a real value to every real-valued variable and a
Boolean value to every Boolean variable. We write I |= Φ for “I is a model of Φ”. That is,
we firstly inductively define a function JeK that evaluates a linear expression e as follows:

JcKI = c JxKI = I(x) Je1 + e2KI = Je1KI + Je2KI Jc · e′KI = c · Je′KI (2.2)

Secondly, we inductively define the relation |= as follows:

I |= a ⇐⇒ I(a) = 1 I |= e1 ≤ e2 ⇐⇒ Je1KI ≤ Je2KI
I |= e1 < e2 ⇐⇒ Je1KI < Je2KI I |= Φ1 ∨ Φ2 ⇐⇒ I |= Φ1 or I |= Φ2 (2.3)

I |= Φ1 ∧ Φ2 ⇐⇒ I |= Φ1 and I |= Φ2 I |= ¬Φ′ ⇐⇒ I 6|= Φ′

A formula is called satisfiable if and only if it has at least one model. A formula has a model
if and only if it has a rational model.

The problem of deciding the satisfiability of SAT modulo linear real arithmetic formulas
is NP-complete. There nevertheless exist efficient solver implementations for this decision
problem, generally based on the DPLL(T) approach, an extension of the DPLL algorithm
for SAT to richer logics. For more information see for example Biere et al. [7], Dutertre
and de Moura [22], and Kroening and Strichman [42]. Such implementations, on satisfiable
instances, can provide a model over Booleans and rational numbers.

In order to simplify notations we also allow matrices, vectors, the relations ≥, >, 6=,=,
and the Boolean constants 0 and 1 to occur in SAT modulo linear real arithmetic formulas.

3. The Framework

3.1. Control Flow Graphs and Collecting Semantics. In this article, we model pro-
grams as control flow graphs, i.e., a program G is a triple (N,E, st), where

(1) N is a finite set of program points,
(2) E ⊆ N × Stmt×N is a finite set of control-flow edges, and
(3) st ∈ N is the start program point.

A program uses n real-valued variables x1, . . . ,xn. A state is described by a vector x ∈ Rn.
We assign a collecting semantics JsK : 2R

n → 2R
n

to each statement s ∈ Stmt. The
collecting semantics JsK is an operator that assigns a set JsK(X) of possible states after
the execution of s to a set X of possible states before the execution of s. The set Stmt
of statements is specified subsequently. The collecting semantics V of a program G =
(N,E, st) is finally defined as the least solution of the following constraint system:

V[st] ⊇ Rn V[v] ⊇ JsK(V[u]) for all (u, s, v) ∈ E. (3.1)

Here, for any v ∈ N , the variable V[v] takes values in 2R
n
. The components of the collecting

semantics V are denoted by V [v] for all v ∈ N . Throughout this article, we will usually
denote variables in bold face, and values in normal face.
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3.2. Statements. The set Stmt of all statements is the set of all SAT modulo linear real
arithmetic formulas without Boolean variables and without negation. Note that non-strict
and strict inequality constraints are permitted. The formula e1 6= e2 is also permitted, since
it is an abbreviation for e1 < e2 ∨ e2 < e1. We can (in linear time) transform any SAT
modulo linear real arithmetic formula without Boolean variables into this form by pushing
negations to the leaves.

The R-valued variables x1, . . . ,xn and x′1, . . . ,x
′
n, that may occur in the formula, play

a particular role. The values of the variables x1, . . . ,xn represent the values of the program
variables before executing the statement, and the values of the variables x′1, . . . ,x

′
n repre-

sent the values of the program variables after executing the statement. For convenience,
we denote the vectors (x1, . . . ,xn)> and (x′1, . . . ,x

′
n)> also by x and x′, respectively. In

addition to x1, . . . ,xn and x′1, . . . ,x
′
n, the statement may also include other variables, which

may stand for intermediate values computed (or non-deterministically chosen) during the
execution of a program statement. Conceptually, these variables are existentially quantified.

We could also add Boolean variables, at the expense of some additional complexity in
definitions, theorems and proofs. Note that this would not increase the expressiveness, since
a Boolean variable y can be simulated by a real variable ỹ by replacing all occurrences of y
by ỹ = 1, all occurrences of ¬y by ỹ = 0, and conjoining (ỹ = 0∨ ỹ = 1) to the formula. In
practice, the direct support of Boolean variables may be beneficial for the efficiency. More
generally, we can accommodate any formula feature that just expresses disjunctions in a
compact way; the only requirement is not to generate negations.

The collecting semantics JsK : 2R
n → 2R

n
of a statement s ∈ Stmt is defined by

JsK(X) := {x′ ∈ Rn | ∃x ∈ X . s[x/x, x′/x′] is satisfiable} for all X ⊆ Rn. (3.2)

Consider the following C-code snippet:

i f ( x 1 >= 0)
x 2 = x 1 ;

e lse
x 2 = −x 1 ;

Assume that x 1 and x 2 are of type int and that they are the only numerical variables.
The effect of the C code snippet can be abstracted by the statement

x′1 = x1 ∧
((
x1 ≥ 0 ∧ x′2 = x1

)
∨
(
x1 < 0 ∧ x′2 = −x1

))
(3.3)

Note that a conjunct x′i = xi is needed for all variables that do not change their values.
A statement s is called merge-simple if and only if it is in disjunctive normal form,

i.e., s is of the form s1 ∨ · · · ∨ sk, where the statements s1, . . . , sk do not use the Boolean
connector ∨. Any statement can be rewritten into an equivalent merge-simple statement
in exponential time and space using distributivity. The crux of our main result is that our
algorithm never needs to compute such an exponentially-sized disjunctive normal form.

If we convert Statement (3.3) into an equivalent merge-simple statement using distribu-
tivity, we get:(

x′1 = x1 ∧ x1 ≥ 0 ∧ x′2 = x1

)
∨
(
x′1 = x1 ∧ x1 < 0 ∧ x′2 = −x1

)
(3.4)

A merge-simple statement s that does not use the Boolean connector ∨ at all is called
sequential. Intuitively, sequential statements correspond to straight-line sequences of basic
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blocks. The merge-simple statement (3.4) non-deterministically chooses between executing
one of the following sequential statement:

x′1 = x1 ∧ x1 ≥ 0 ∧ x′2 = x1 x′1 = x1 ∧ x1 < 0 ∧ x′2 = −x1 (3.5)

3.3. Abstract Semantics. Let D be a complete lattice (for instance the complete lattice
of all n-dimensional closed real intervals). Assume that α : 2R

n → D and γ : D→ 2R
n

form
a Galois connection, i.e., for all X ⊆ Rn and all d ∈ D, α(X) ≤ d if and only if X ≤ γ(d).
The abstract semantics JsK] : D→ D of a statement s is then defined by

JsK] := α ◦ JsK ◦ γ. (3.6)

Remark that we have chosen to use the best abstract transformer, i.e., the most precise
abstract semantics. All that was needed for soundness is that JsK ◦ γ(d) ⊆ γ ◦ JsK](d) for all
d ∈ D. Our choice of JsK](d), however, is the most accurate sound value.

The abstract semantics V ] of a program G = (N,E, st) is the least solution of the
following constraint system:

V][st] ≥ α(Rn) V][v] ≥ JsK](V][u]) for all (u, s, v) ∈ E (3.7)

Here, for any v ∈ N , the variable V][v] takes values in D. The components of the abstract
semantics V ] are denoted by V ][v] for all v ∈ N . The abstraction is sound, i.e., the abstract
semantics V ] safely over-approximates the collecting semantics V , i.e., γ(V ][v]) ⊇ V [v] for
all v ∈ N .

3.4. Template Linear Constraints. In this article we restrict our considerations to tem-
plate linear constraint domains as introduced by Sankaranarayanan et al. [56]. We assume
that a template constraint matrix T ∈ Rm×n is given. For technical convenience, we always
assume w.l.o.g. that m ≥ 1 and each row of T contains at least one non-zero entry. The
template linear constraint domain can be identified with the set Rm. As shown by Sankara-
narayanan et al. [56], the abstraction α : 2R

n → Rm and the concretization γ : Rm → 2R
n
,

which are defined by

γ(d) := {x ∈ Rn | Tx ≤ d} for all d ∈ Rm, and (3.8)

α(X) :=
∧
{d ∈ D | γ(d) ⊇ X} for all X ⊆ Rn, (3.9)

form a Galois connection.
The template linear constraint domains contain intervals, zones, and octagons [45, 46],

with appropriate choices of the template constraint matrix T [56]. For instance, if we have
two variables x and y, and we abstract each variable by an interval as x ∈ [−lx, ux] and
y ∈ [−ly, uy], the vector d is formed of (lx, ly, ux, uy). Here, the matrix T is given by:

T =


−1 0
0 −1
1 0
0 1


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and thus the concretization expresses:

γ


lx
ly
ux
uy

 =

{(
x
y

)
| x ∈ [−lx, ux], y ∈ [−ly, uy]

}
=


(
x
y

)
|


−1 0
0 −1
1 0
0 1

(xy
)
≤


lx
ly
ux
uy




While intervals, zones, and octagons are somewhat “obvious” choices, a common discussion
with respect to template domains is how to find the templates, as opposed to the domain
of convex polyhedra, where the convex hull and widening operations somewhat “discover”
interesting directions in space. In this article, we shall assume that template matrices are
given and refrain from discussing how they were obtained.

4. Improving the Precision of the Abstraction

Most abstract interpretation techniques consider a control-flow graph with transitions ex-
pressed as sequential statements only (see formal definition in Sec. 3.2), that is, composed
of atomic guards and assignments. An if-then-else construct with simple constructs (e.g.,
assignments) in both branches is thus expressed as two sequential statements, and a se-
quence of two such if-then-else constructs (one from point A to point B and one from B
to C) is expressed as on the left of Figure 2: two sequential statements between A and B,
and two sequential statements between B and C. As noted in the introduction (Sec. 1.2),
abstract interpretation techniques usually abstract the set of reachable states at point B.
This may result in spurious states being considered in the abstraction, which in turn may
result in the analysis tool being unable to prove desirable properties.

In this article, we apply an idea that is very similar to the path focusing technique
of Monniaux and Gonnord [49]. Given a program expressed as a control-flow graph with
sequential statements on the edges, we first compute a feedback vertex set (a.k.a. cut-set)
S, that is, a set of control nodes (the feedback vertexes) such that removing them cuts all
cycles in the graph. Our original program is equivalent to a program where the only control
nodes are those in the feedback vertex set, but edges carry arbitrary statements instead of
sequential statements only (cf. Sec. 3.2). The results of program analyses on this new graph,
at nodes from the feedback vertex set S, are sound invariants for the original program. If
information is needed at other nodes, we can compute it from the information we have for
the nodes from S.

Since methods for obtaining compact formulas expressing these statements from the
original program have already been described in other publications [49], we do not explain
them in detail. Instead, we provide an example.

Example 4.1 (Running Example). Throughout this article we use the following C-code
snippet as a running example:

i n t x 1 , x 2 ;
x 1 = 0 ;
while ( x 1 <= 1000) {

x 2 = −x 1 ;
i f ( x 2 < 0) x 1 = −2 * x 1 ;
e lse x 1 = −x 1 + 1 ; }
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st

1

2

3

4 5

x′1 = 0

x1 ≤ 1000

x′2 = −x1x2 ≤ −1

x′1 = −2x1

x2 ≥ 0

x′1 = −x1 + 1

Figure 3: The program G1 of the running example

This C-code snippet is abstracted through the program G1 = (N1, E1, st) depict in Figure 3.
However, it is not necessary to apply abstraction at every program point, i.e., to assign an
abstract value to each program point. It suffices to apply abstraction at a vertex feedback
set of G1. Since all loops contain the program point 1, {1} is a feedback vertex set of G1.
Equivalently to applying abstraction only at program point 1, we can rewrite the control-
flow graph G1 into a control-flow graph G = (N,E, st) that is equivalent w.r.t. the collecting
semantic, but contains just the program point st and the program points from the vertex
feedback set {1}. The result of this transformation — the control-flow graph G — is shown
in Figure 4(a) (Page 18).

The programsG1 andG are equivalent w.r.t. their collecting semantics, i.e., V [v] = V1[v]
for all v ∈ N . Here, V1 denotes the collecting semantics of G1 and V denotes the collecting
semantics of G. W.r.t. to the abstract semantics, G is usually more precise than G1, because

we reduced the number of merge points. In general, we only have V ][v] ⊆ V ]
1 [v] for all v ∈ N ,

where V ]
1 denotes the abstract semantics of G1 and V ] denotes the abstract semantics of

G. This is independent of the abstract domain.4

Let us make a few last remarks regarding the feedback vertex set. Abstract interpre-
tation techniques usually use such a set to select widening points [16, §4.1.2]. In contrast,
our method uses this set to select the nodes where it over-approximates the set of reachable
states; it does not over-approximate the set of reachable states at other nodes; widening is
not involved at all. Finding a feedback vertex set of minimal cardinality is an NP-complete
problem if the control-flow graph is arbitrary; such a set can however be found in linear
time if the control-flow graph is reducible (in short, if loops have a single entry point) [59],
which is the case for control-flow graphs directly obtained from structured programs (the
method extends to certain irreducible graphs). The control-flow graph may however be-
come irreducible if certain optimizations or partitioning techniques are used. A common
heuristic is, for structured programs, to use loop headers, and for unstructured programs
to use the targets of back edges from a depth-first traversal [10, 11]; this heuristic does not
guarantee that the feedback vertex set is minimal with respect to inclusion ordering, let
alone cardinality.

4We assume that we have given a Galois-connection and thus in particular monotone best abstract
transformers.
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5. Basic Observations

We now note down basic properties of the abstract semantics.

5.1. Abstract Semantics of Statements. Our first observation is that, for all sequential
statements s and all d ∈ Rm, JsK](d) can be computed efficiently.

Lemma 5.1 (Sequential Statements). Let s be a sequential statement and d ∈ Rm. The
operator JsK] is a point-wise minimum of finitely many monotone and weak-affine operators.

For all d ∈ Rm, JsK](d) can be computed in polynomial time through linear programming.

Proof. Let i ∈ {1, . . . ,m}. We get:

JsK]i·(d) = sup
{
Ti·x

′ | x′ ∈ JsK(γ(d))
}

(5.1)

= sup
{
Ti·x

′ | x′ ∈ Rn and ∃x . Tx ≤ d and s[x/x, x′/x′] is satisfiable
}

(5.2)

Equation 5.2 follows from Equation 5.1 by expansion of the concrete semantics JsK into a
SMT-formula and of γ(d) into Tx ≤ d. Since s does not contain disjunctions, the optimiza-
tion problem in (5.2) aims at optimizing a linear objective function w.r.t. linear constraints
(equalities, strict inequalities, and non-strict inequalities). The optimal value of this opti-
mization problem can be computed in polynomial time through linear programming. To
check feasibility by standard linear programming techniques (which only allow non-strict
inequalities), we can replace every strict inequality e1 < e2 by the non-strict inequality
e1 ≤ e2 − ε, where ε is appropriately small. Such an appropriately small ε can be com-
puted in polynomial time. Provided that the optimization problem is feasible, we can then
replace s[x/x, x′/x′] by s[x/x, x′/x′][</≤]. Here, s[</≤] denotes the statement obtained
from s by replacing every strict inequality relation by a non-strict inequality relation. The
optimal value of the obtained linear programming problem is equal to the optimal value of
the optimization problem (5.2).

It remains to show that JsK]i· is a point-wise minimum of finitely many monotone and
weak-affine operators. Since s[x/x, x′/x′][</≤] is a conjunction of non-strict linear in-
equalities, there exist matrices A, A′ and A′′ and a vector b such that, for all x and x′,
s[x/x, x′/x′][</≤] is satisfiable if and only if there exists a x′′ such that Ax+A′x′+A′′x′′ ≤ b
(the vector x′′ stands for the other variables in s, which are implicitly existentially quanti-
fied). Thus, the optimization problem (5.2) can be rewritten as follows:

JsK]i·(d)=sup
{
Ti·x

′ |x′∈Rn, ∃x∈Rn . ∃x′′∈Rq . Tx ≤ d and Ax+A′x′ +A′′x′′ ≤ b
}

(5.3)

Strong duality [12], also known as Farkas’ lemma, thus gives us, provided that JsK]i·(d) >
−∞, i.e., the optimization problem is feasible, the following equation:

JsK]i·(d) = inf
{
d>y1+b>y2 | y1, y2 ≥ 0, T>y1+A>y2 = 0, A′′

>
y2 = 0, A′

>
y2 = T>i·

}
(5.4)

Since y1 ≥ 0 for all feasible solutions of the linear programming problem in (5.4), JsK]i·
coincides with a point-wise infimum of monotone and affine operators on the set {d ∈
Rm | JsK]i·(d) > −∞}. That is, JsK]i· is a point-wise infimum of monotone and weak-affine
operators. Since the optimal value, provided that it exists, is attained at the vertices of the
feasible space (finitely many), the point-wise infimum is a point-wise minimum of finitely
many monotone and weak-affine operators.
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The max-strategy improvement algorithm we adapt in this article heavily relies on the
fact that, for all sequential statements s, JsK] is a point-wise minimum of finitely many
monotone and weak-affine operators. The latter statement especially implies that JsK] is
concave (see Gawlitza and Seidl [29] for precise definitions).

The number of vertices in the feasible space of the point-wise infimum in (5.4) may be
exponential in the size of the original problem, and thus the representation as a point-wise
minimum of finitely many monotone and weak-affine operators might contain an exponential
number of such operators. This is not a problem since our algorithm never computes this
decomposition explicitly.

Any polynomial-time method for evaluating the abstract semantics of sequential state-
ments can be used to derive a polynomial-time method for evaluating merge-simple state-
ments.

Lemma 5.2 (Merge-Simple Statements). Let s be a merge-simple statement. The operator
JsK] is a point-wise maximum of finitely many point-wise minima of finitely many monotone

and weak-affine mappings. For all d ∈ Rm, JsK](d) can be computed in polynomial time
through linear programming.

Proof. Let s ≡ s1 ∨ · · · ∨ sk, where s1, . . . , sk are sequential statements. Since JsK](d) =
Js1K](d)∨ · · · ∨ JskK](d), Lemma 5.1, can be applied to provide us with the desired result.

The problem for arbitrary statement is more difficult. By clear equivalence with satisfiability
solving modulo the theory of linear real arithmetic, we obtain:

Lemma 5.3. The problem of deciding, whether or not, for a given template constraint
matrix T , and a given statement s, JsK](∞) > −∞ holds, is NP-complete.

5.2. A Trivial Method for Computing Abstract Semantics. Using the results we
have obtained so far, the abstract semantics of a program G w.r.t. some template constraint
matrix T can be computed using the following two-step procedure:

(1) Replace each statement s of the program G with an equivalent merge-simple statement.
This corresponds to an explicit enumeration of all paths between cut-points, which
potentially causes an exponential blowup.

(2) Apply the methods of Gawlitza and Seidl [26] to the obtained program to compute the
abstract semantics V ] of G.

Because of the possible exponential blowup, the above described method is impractical
for most cases5. Our method eschews this blowup as follows: instead of enumerating all
program paths, we shall visit them only as needed. Guided by a SAT modulo linear real
arithmetic solver, our method selects a path through a statement s only when it is locally
profitable in some sense. In the worst case, an exponential number of paths may be visited
(Section 7.3); but one can hope that this rarely happens in practice. In cases in which our
algorithm needs exponential time, it at least avoids the explicit exponential expansions. It
uses only polynomial space.

5 Note that we cannot expect a polynomial-time algorithm, because of Lemma 5.3: even without loops,
abstract reachability is NP-hard. Even if all statements are merge-simple, we cannot expect a polynomial-
time algorithm, since the problem of computing the winning regions of parity games is polynomial-time
reducible to abstract reachability [27].
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6. Max-Strategy Iteration

This section presents our main contribution. We adapt the max-strategy improvement
schema of Gawlitza and Seidl [28] to obtain an algorithm to compute abstract semantics in
the framework of this article.

6.1. Notations. Before we go in medias res, we have to introduce some notations. A
system E of (fixpoint) equations over R is a finite set {x1 = e1, . . . ,xn = en} of equations.
Here, x1, . . . ,xn are pairwise distinct, R-valued variables and e1, . . . , en are expressions over
R. We denote the set {x1, . . . ,xn} of variables of E by XE . We omit the subscript, whenever
it is clear from the context. A function ρ : X→ R is called a variable assignment. It assigns
the value ρ(x) to each variable x ∈ X. Variable assignments are ordered by the point-wise
extension of ≤ on R, i.e., ρ ≤ ρ′ if and only if ρ(x) ≤ ρ′(x) for all x ∈ X. Since R is
a complete linearly ordered set, the set X → R of all variable assignments is a complete
lattice. The semantics JeK : (X → R) → R of an expression e is defined by JxK(ρ) := ρ(x)
and Jf(e1, . . . , ek)K(ρ) := f(Je1K(ρ), . . . , JekK(ρ)), where x ∈ X, f is a k-ary operator on R,
e1, . . . , ek are expressions, and ρ : X→ R is a variable assignment. We define the operator
JEK : (X→ R)→ X→ R by JEK(ρ)(x) := JeKρ for all equations x = e of E , all ρ : X→ R,
and all x ∈ X. A fixpoint equation x = e is called monotone if and only if all operators
used in e are monotone. Then, the evaluation function JeK of e is monotone, too. Finally,
the operator JEK is monotone for all systems E of monotone (fixpoint) equations. A variable
assignment ρ is called a solution (resp. pre-solution, resp. post-solution) of E if and only if
ρ = JEK(ρ) (resp. ρ ≤ JEK(ρ), resp. ρ ≥ JEK(ρ)). The least solution of E is denoted by µJEK. If
the operator JEK is monotone, then the fixpoint theorem of Knaster/Tarski (Theorem 2.1)
ensures the existence of a uniquely determined least solution µJEK. For a system E of
equations and a pre-solution ρ, µ≥ρJEK denotes the least solution of E among the solutions
of E that are greater than or equal to ρ, i.e., µ≥ρJEK = min{ρ′ | ρ′ = JEK(ρ′) and ρ′ ≥ ρ}.
Again, if the operator JEK is monotone, then the fixpoint theorem of Knaster/Tarski ensures
the existence of µ≥ρJEK, since the set {ρ′ | ρ′ ≥ ρ} is a complete lattice.

6.2. Rewriting the Abstract Semantic Equations. The first step of our method con-
sists of rewriting our static analysis problem into a system of monotone fixpoint equations
over R. Assume that G = (N,E, st) is a program that has n variables, and T ∈ Rm×n is a
template constraint matrix. Recall that (w.r.t. T ) the abstract semantics of G is the least
solution of the following constraint system (cf. (3.7) in Subsection 3.3):

V][st] ≥ α(Rn) V][v] ≥ JsK](V][u]) for all (u, s, v) ∈ E (6.1)

The constraint system has exactly one Rm-valued variable V][v] for each program point

v ∈ N . For each program point v ∈ N , we decompose the Rm-valued variable V][v] into m
R-valued variables dv,1, . . . ,dv,m. That is, we set (dv,1, . . . ,dv,m)> = V][v]. We obtain the
following constraint system:

dst,i ≥ ∞ for all i ∈ {1, . . . ,m} (6.2)

dv,i ≥ JsK]i· (du,1, . . . ,du,m) for all (u, s, v) ∈ E and all i ∈ {1, . . . ,m} (6.3)
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G = (N,E, st)

N = {st, 1}
E = {(st,x′1 = 0, 1), (1, s, 1)}
s ≡ Φ ∧ (Φ1 ∨ Φ2)

Φ ≡ x1 ≤ 1000 ∧ x′2 = −x1

Φ1 ≡ x′2 ≤ −1 ∧ x′1 = −2x1

Φ2 ≡ −x′2 ≤ 0 ∧ x′1 = −x1 + 1

st

1
x′1 = 0

s

(a) The program G

T =

(
1 0
−1 0

)
(b) The template constraint matrix T

(only x1 is taken into account in the template, thus the zero right column)

dst,1 =∞ d1,1 = max
{

Jx′1 = 0K]1·(dst,1,dst,2), JsK]1·(d1,1,d1,2)
}

dst,2 =∞ d1,2 = max
{

Jx′1 = 0K]2·(dst,1,dst,2), JsK]2·(d1,1,d1,2)
}

(c) The equation system E(G,T )

Figure 4: The running example

The fixpoint theorem of Knaster/Tarski (Theorem 2.1) ensures that the least solution of
the above system of inequalities is the least solution of the following equation system:

dst,i=∞ for all i ∈ {1, . . . ,m} (6.4)

dv,i=max
{

JsK]i· (du,1, . . . ,du,m) | (u, s, v) ∈ E
}

for all v ∈ N \ {st}, i ∈ {1, . . . ,m} (6.5)

We denote the above system of fixpoint equations by E(G,T ). From Section 5, we know that
the right-hand sides of E(G,T ) are point-wise maxima of finitely many point-wise minima
of finitely many weak-affine operators. We summarize the properties of E(G,T ):

Lemma 6.1. Let G be a program and V ] its abstract semantics (w.r.t. the template con-
straint matrix T ∈ Rm×n). Let ρ∗ := µJE(G,T )K be the least solution of E(G,T ). Then

V ]
i· [v] = ρ∗(dv,i) for all program points v ∈ N and all i ∈ {1, . . . ,m}. The right-hand sides

of E(G,T ) are point-wise maxima of finitely many point-wise minima of finitely many weak-
affine operators. Thus, they are in particular point-wise maxima of finitely many monotone
and concave functions.

Examples 6.2. We again consider our running example specified in Figure 4(a). We want
to perform the analysis w.r.t. the template constraint matrix T specified in Figure 4(b).
The resulting equation system E(G,T ) is shown in Figure 4(c).

The least solution ρ∗ := µJE(G,T )K of E(G,T ) is given by ρ∗ = {dst,1 7→ ∞,dst,2 7→
∞,d1,1 7→ 2001,d1,2 7→ 2000}. Thus, by Lemma 6.1, V ][st] = (∞,∞), and V ][1] =
(2001, 2000). In consequence, all possible values of the program variable x1 at program
point 1 are in the interval [−2000, 2001].
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6.3. Adapting the Max-Strategy Improvement Algorithm. Following the lines of
Gawlitza and Seidl [29], our starting point is a system E of monotone fixpoint equations of
the form x = max Σx, where x is a R-valued variable, and Σx is a finite set of monotone and
concave expressions over R. An expression e is called monotone (resp. concave) if and only
if JeK is monotone (resp. concave).6 We treat a function from the finite set X of variables
to R as a vector of |X| elements from R. In our application — recall that we aim at solving
the equation system E(G,T ) — the sets Σx are implicitly and succinctly given by the right-
hand sides of equations of the forms (6.4) and (6.5). Indeed, every expression of the form

JsK]i·(du,1, . . . ,du,m), found on the right-hand side of such equations, can be equivalently

rewritten into max {Js1K
]
i·(du,1, . . . ,du,m), . . . , JskK

]
i·(du,1, . . . ,du,m)}, where s1, . . . , sk are

(potentially exponentially many) sequential statements. Since s1, . . . , sk are sequential, the

operators Js1K
]
i·, . . . , JskK

]
i· are point-wise minima of finitely many monotone and weak-affine

operators; hence they are monotone and concave operators.
One obvious way to solve the system E of equations is to perform the above mentioned

rewriting explicitly and then apply the max-strategy improvement algorithm. To avoid
this impractical exponential blowup, in what follows we modify the algorithm such that it
directly works on the succinct representation.

Assume that E denotes a system of fixpoint equations of the form x = max Σx, where
Σx is a finite set of monotone and concave expressions over R. A max-strategy σ for E is a
system of equations such that, for each equation x = e of σ, one of the following statements
holds:

(1) e is −∞.
(2) e ∈ Σx, where x = max Σx is an equation of E .

Intuitively, a max-strategy picks for each maximum operator one of its operands. For a
system E of equations, we denote the set of all max-strategies by ΣE . In our application,

the cardinality of ΣE is exponential in the size of E . To be more precise, it is in O(2n
2
),

where n denotes the size of E . Enumerating all max-strategies is therefore impractical.

Examples 6.3. We continue our running example (Figure 4). Consider the system E(G,T )
and note that s ≡ Φ ∧ (Φ1 ∨ Φ2) ≡ (Φ ∧ Φ1) ∨ (Φ ∧ Φ2); therefore the equation

d1,1 = max
{

Jx′1 = 0K]1·(dst,1,dst,2), JsK]1·(d1,1,d1,2)
}

(6.6)

can be equivalently rewritten into

d1,1 = max
{

Jx′1 = 0K]1·(dst,1,dst,2), JΦ ∧ Φ1K
]
1·(d1,1,d1,2), JΦ ∧ Φ2K

]
1·(d1,1,d1,2)

}
. (6.7)

Recall that this expansion is solely for the purpose of proving properties: it is not done in
the algorithm. The equation system σ consisting of the equations

dst,1 =∞ d1,1 = JΦ ∧ Φ2K
]
1·(d1,1,d1,2) dst,2 =∞ d1,2 = Jx′1 = 0K]2·(dst,1,dst,2) (6.8)

is thus a max-strategy for this system.

6For a precise definition of concavity for functions from the set Rn → Rm
, we refer to Gawlitza and Seidl

[31]. For this article, however, a precise treatment of these issues is not required. We just mention concavity
to give a better intuition.
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A crucial notion we need in the following is the notion of improvements. Let σ be a max-
strategy for E and ρ a pre-solution of σ. A max-strategy σ′ for E is called an improvement
of σ w.r.t. ρ if and only if the following conditions are fulfilled:

(1) If ρ 6= JEK(ρ), then Jσ′K(ρ) > ρ.
(2) If x = e is an equation of σ and x = e′ is an equation of σ′ with e 6= e′, then Je′K(ρ) >

JeK(ρ).

Example 6.4. We continue our running example (Figure 4). We consider the equation
system σ′ that consists of the following equations:

dst,1 =∞ d1,1 = JΦ ∧ Φ2K
]
1·(d1,1,d1,2) dst,2 =∞ d1,2 = JΦ ∧ Φ1K

]
2·(d1,1,d1,2) (6.9)

The equation system σ′ is a max-strategy of E(G,T ) and moreover an improvement of the
max-strategy σ (defined in Example 6.3) w.r.t. the variable assignment

ρ := {dst,1 7→ ∞,dst,2 7→ ∞,d1,1 7→ 1,d1,2 7→ 0}. (6.10)

It is an improvement, since JJΦ ∧ Φ1K
]
2·(d1,1,d1,2)K(ρ) = 1 > 0 = JJx′1 = 0K]2·(d1,1,d1,2)K(ρ).

In this example, σ′ is the only improvement of σ w.r.t. ρ.

Note that, for a max-strategy σ and a pre-solution ρ of σ, there might be several max-
strategies σ′ that are improvements of σ w.r.t. ρ. Consider, for instance, the equation
system E = {x = max {0, 1, 2}}. Both, the max-strategies {x = 1} and {x = 2} are
improvements of the max-strategy {x = 0}. For the results we are going to develop in this
article, it is not important which improvement we choose: this will neither affect the final
result obtained, nor change the worst-case complexity bounds that we prove. It is however
possible that different heuristics may lead to different practical complexities.

The max-strategy improvement algorithm starts with the max-strategy σ0 := {x =
−∞ | x ∈ X} and the variable assignment ρ0 := {x 7→ −∞ | x ∈ X}. The algorithm
successively performs the following two steps in the given order until it has found the least
solution:

(1) Improve the max-strategy σ w.r.t. ρ.
(2) Evaluate the max-strategy σ w.r.t. ρ to obtain a new value for ρ.

In pseudo-code, we can formulate it as follows:

Algorithm 1 The Max-Strategy Improvement Algorithm

1 : σ ← σ0;
2 : ρ← ρ0;

3 : while (ρ < JEK(ρ)) {
4 : σ ← improvement of σ w.r.t. ρ;
5 : ρ← µ≥ρJσK;
6 : }
7 : return ρ;

For all i ∈ N, let ρi be the value of the variable ρ and σi be the value of the variable σ after
the i-th evaluation of the loop-body. We have:

Lemma 6.5 ([31], [28, Lem. 6.7]). The following statements hold for all i ∈ N:

(1) ρi ≤ µJEK.
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(2) ρi ≤ Jσi+1K(ρi).
(3) If ρi < µJEK, then ρi+1 > ρi.
(4) If ρi = µJEK, then ρi+1 = ρi.

The above lemma implies that the algorithm returns the least solution, whenever it ter-
minates. Whether or not it terminates depends on the properties of the class of fixpoint
equation systems under consideration. In our application, we aim at computing the least
solution of the equation system E(G,T ) (see Subsection 6.2). By Lemma 6.1, the right-hand
sides of E(G,T ) are point-wise maxima of finitely many monotone and concave functions.
More specifically, the right-hand sides are point-wise maxima of finitely many point-wise
minima of finitely many weak-affine operators. This property guaranties the termination
of the max-strategy improvement algorithm [31][28, §6.1]. At the latest, it terminates after
considering each max-strategy at most linearly often (see Lemma 6.8). Before we explain
the remaining building blocks, i.e., how to execute program lines 4 and 5, we consider an
example.

Example 6.6. We consider our running example. That is, we aim at computing the least
solution of the equation system E(G,T ) shown in Figure 4. Running the algorithm can, for
instance, give us the following trace:

σ0 := {dst,1 = −∞, dst,2 = −∞, d1,1 = −∞, d1,2 = −∞} (6.11)

ρ0 := {dst,1 7→ −∞, dst,2 7→ −∞, d1,1 7→ −∞, d1,2 7→ −∞} (6.12)

σ1 := {dst,1 =∞, dst,2 =∞, d1,1 = −∞, d1,2 = −∞} (6.13)

ρ1 := {dst,1 7→ ∞, dst,2 7→ ∞, d1,1 7→ −∞, d1,2 7→ −∞} (6.14)

σ2 := {dst,1 =∞, dst,2 =∞, d1,1 = Jx′1 = 0K]1·(dst,1,dst,2), (6.15)

d1,2 = Jx′1 = 0K]2·(dst,1,dst,2)} (6.16)

ρ2 := {dst,1 7→ ∞, dst,2 7→ ∞, d1,1 7→ 0, d1,2 7→ 0} (6.17)

σ3 := {dst,1 =∞, dst,2 =∞, d1,1 = JΦ ∧ Φ2K
]
1·(d1,1,d1,2), (6.18)

d1,2 = Jx′1 = 0K]2·(dst,1,dst,2)} (6.19)

ρ3 := {dst,1 7→ ∞, dst,2 7→ ∞, d1,1 7→ 1, d1,2 7→ 0} (6.20)

σ4 := {dst,1 =∞, dst,2 =∞d1,1 = JΦ ∧ Φ2K
]
1·(d1,1,d1,2), (6.21)

d1,2 = JΦ ∧ Φ1K
]
2·(d1,1,d1,2)} (6.22)

ρ4 := {dst,1 7→ ∞, dst,2 7→ ∞, d1,1 7→ 2001, d1,2 7→ 2000} (6.23)

Here, for all i, ρi+1 = µ≥ρiJσi+1K and σi+1 is an improvement of σi w.r.t. ρi. The variable
ρ4 is a solution of E(G,T ). The max-strategy improvement algorithm terminates with the
correct least solution, which is ρ4.

We now present methods to evaluate max-strategies (Line 5 of Algorithm 1) and to improve
max-strategies (Line 4 of Algorithm 1).

6.4. Evaluating Max-Strategies. We restrict our consideration to our application. That
is, we assume that the equation system E is given by E = E(G,T ) for some program G and
some template constraint matrix T . For all i ∈ N, this allows us to compute ρi as follows:
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Lemma 6.7 ([31],[28]). Let i ∈ N. Recall that, by construction, ρi+1 = µ≥ρiJσi+1K. The
variable assignment ρi+1 can be computed as follows: Let E ′ denote the system of equations
that is obtained from the equation system σi+1 by performing the following steps:

(1) Remove every equation x = e, where JeK(ρi) = −∞ and replace then the remaining
occurrences of x with the constant −∞.

(2) Remove every equation x = e, where JeK(ρi) = ∞ and replace then the remaining
occurrences of x with the constant ∞.

For all equations x = e of the equation system σi+1 with −∞ < JeK(ρi) < ∞, we can
compute ρi+1(x) as follows:

ρi+1(x) = sup {ρ(x) | ρ : XE ′ → R, ρ ≤ JE ′K(ρ)} (6.24)

The value ρi+1 only depends on the equation system σi+1 and the set of variables already
identified to be ∞, namely, {x | x = e is an equation of σi+1 with JeK(ρi) =∞}.

In consequence, the max-strategy improvement algorithm has to consider each max-strategy
at most |X| times. Hence, we have:

Lemma 6.8 ([31],[28]). The max-strategy improvement algorithm terminates after at most
|X| · |ΣE | max-strategy improvement steps.

Lemma 6.7 gives us a method for computing ρi. For each variable x ∈ X, we have to
compute

sup
{
ρ(x) | ρ : XE ′ → R and ρ ≤ JE ′K(ρ)

}
. (6.25)

The equations of E ′ are of the form b = JsK]k·(b1, . . . ,bm), where b,b1, . . . ,bm are R-valued
variables, and s is a sequential statement. Thus, by Lemma 5.1, the right-hand sides are
point-wise minima of finitely many monotone and weak-affine functions. Hence, they are
monotone and concave. Therefore, (6.25) represents a convex optimization problem.

The above convex optimization problem is of a very special form. The right-hand sides
are parameterized linear programs. In consequence, the convex optimization problem can be
rewritten into an equivalent linear programming problem as follows: In accordance to (5.1)

and (5.2), in E ′, we replace each equation b = JsK]k·(b1, . . . ,bm) with the following linear
constraints:

b ≤ Tk·(y′1, . . . ,y′n)> (6.26)

Φ (6.27)

T (y1, . . . ,yn)> ≤ (b1, . . . ,bm) (6.28)

Here, y1, . . . ,yn,y
′
1, . . . ,y

′
n are fresh variables. Φ is a set of linear inequalities that is

obtained from the sequential statement s by

(1) replacing the variables x1, . . . ,xn,x
′
1, . . . ,x

′
n with the fresh variables y1, . . . ,yn,y

′
1,

. . . ,y′n,
(2) replacing all other variables of s with fresh variables, and
(3) replacing every strict inequality < with a non-strict inequality ≤.

We denote the resulting constraint system by C. By construction, we have:

sup
{
ρ(x) | ρ : X→ R and ρ ≤ JE ′K(ρ)

}
= sup {ρ(x) | ρ : X→ R and ρ solves C} (6.29)

The construction can be carried out in polynomial time. Since C is a set of linear constraints,
we can use linear programming to compute the optimal value. We have:



INVARIANT GENERATION THROUGH STRATEGY ITERATION 23

Lemma 6.9 (Evaluating Max-Strategies). Whenever our max-strategy improvement algo-
rithm has to compute µ≥ρJσK, this can be performed by solving |X| linear programming
problems of polynomial size. The linear programming problems do only depend on σ and
the set {x | x = e is an equation of σ with JeK(ρ) =∞}.

Example 6.10. We now discuss how to compute ρ3 := µ≥ρ2Jσ3K from Example 6.6. Note
that the values of the variables dst,1 and dst,2 are already known to be ∞. It remains to
determine the values for the variables d1,1 and d1,2. According to Lemma 6.7, we have

ρ3(d1,1) = sup {d1,1 | d1,1,d1,2 ∈ R, d1,1 ≤ JΦ ∧ Φ2K
]
1·(d1,1,d1,2),

d1,2 ≤ Jx′1 = 0K]2·(∞,∞)} (6.30)

Observe that Φ∧Φ2 can be equivalently rewritten into x1 ≤ 0∧ x′1 = −x1 + 1∧ x′2 = −x1.
Thus, according to the above observations, ρ3(d1,1) is the optimal value of the following
linear programming problem:

max d1,1 d1,1 ≤ −x1 + 1 x1 ≤ 0 x1 ≤ d1,1 −x1 ≤ d1,2 d1,2 ≤ 0 (6.31)

Since the optimal value is 1, we get ρ3(d1,1) = 1. Similarly, to compute ρ3(d1,2), we compute
the optimal value of the following linear programming problem:

max d1,2 d1,1 ≤ −x1 + 1 x1 ≤ 0 x1 ≤ d1,1 −x1 ≤ d1,2 d1,2 ≤ 0 (6.32)

This gives us ρ3(d1,2) = 0.
Both linear programming problems have the same feasible space. This can be uti-

lized in an implementation to improve the performance. Furthermore, ρ3(d1,1) = d∗1,1 and

ρ3(d1,2) = d∗1,2 for any optimal solution (d∗1,1,d
∗
1,2,y

∗
1) of the following linear programming

problem:

max d1,1 + d1,2 d1,1 ≤ −x1 + 1 x1 ≤ 0 x1 ≤ d1,1 −d1 ≤ d1,2 d1,2 ≤ 0 (6.33)

Hence, for this example, it is sufficient to solve one linear programming problem to determine
the variable assignment ρ3.

The technique for evaluating max-strategies can thus be further optimized. It is not nec-
essary to solve one linear program for each variable. Instead, it is possible to evaluate a
max-strategy entirely by solving only two linear programming problems of linear size. The
solution of the first linear programming problem tells us which variables are to set to ∞.
The solution of the second linear programming problem provides us with the values of the
variables which receive finite values. In this article, we do not elaborate on these techniques.

6.5. Improving Max-Strategies. We now discuss how we can compute an improvement
of a max-strategy σ w.r.t. a variable assignment ρ. Since, by Lemma 5.3, this problem is
NP-hard, we cannot expect to come up with a polynomial time algorithm. We propose a
solution that utilizes SMT solving techniques.

Let us first explain the intuition of our method, which is very similar to how the “path
focusing” technique from Monniaux and Gonnord [49] selects the next iteration path. A
strategy needs improvement if and only if its value does not define an inductive invariant.
In other words: there is an outgoing transition from the “invariant candidate” into its
complement, meaning that there is an execution trace through a statement, starting from
the invariant candidate and ending with a violation of the current bounds. Whether this
holds is a SAT problem modulo (SMT) the theory of linear real arithmetic; it can therefore
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be solved by SMT-solvers. Furthermore, the solution from the SMT problem picks one of
the sequential statements from the merge-simple expansion of the statement as “offending”,
explaining why the invariant candidate is not an invariant; in other words, it points to
a possible improvement in the strategy. More generally, the set of solutions of the SMT
problem maps to the possible improvements.

Let us now see this process more formally. Assume that we have to improve a given
max-strategy

σ = {x1 = σ1, . . . ,xn = σn} (6.34)

for the equation system

E = {x1 = e1, . . . ,xn = en} (6.35)

w.r.t. a variable assignment ρ, which is a solution of σ, i.e., ρ = JσK(ρ). This is exactly the
situation we are concerned with, when we execute our max-strategy improvement algorithm.
For each i ∈ {1, . . . , n}, we now want to check whether or not ρ(xi) < JeiKρ. If this is the
case, we moreover want to compute a max-strategy σ′i for ei such that ρ(xi) < Jσ′iKρ. Note
that, since ρ(xi) < JeiKρ, we could also compute a max-strategy σ′i such that Jσ′iKρ = JeiKρ.
If ρ(xi) < JeiKρ does not hold, then we set σ′i := σi. Finally, the max-strategy σ′ := {x1 =
σ′1, . . . ,xn = σ′n} is an improvement of σ′ w.r.t. ρ.

Given an equation x = e and a variable assignment ρ, we must decide whether or not
ρ(x) < JeK(ρ) holds, and compute a max-strategy σ′ of e such that ρ(x) < Jσ′K(ρ) holds.
Recall that the semantic equations we are concerned with in this article are of the form

x = max {e1, . . . , ek} (6.36)

where, for all i ∈ {1, . . . , k}, each expression ei is either a constant or an expression of the

form JsK]j·(x1, . . . ,xm). Hence, we can answer the above question by answering the question
for each argument e1, . . . , ek of the maximum separately. It thus remains to find a method to
check whether or not, for a given statement s, a given j ∈ {1, . . . ,m}, a given c ∈ R∪{−∞},
and a given d ∈ Rm, JsK]j·(d) > c holds — which is, by Lemma 5.3, a NP-hard problem.

Our approach is to construct the following SAT modulo linear real arithmetic formula (we
use existential quantifiers to improve readability):

Ψ(s, d, j, c) :≡ ∃v ∈ R . Ψ(s, d, j) ∧ v > c (6.37)

Ψ(s, d, j) :≡ ∃x ∈ Rn,x′ ∈ Rn . Tx ≤ d ∧Ψ(s) ∧ v = Tj·x
′ (6.38)

Here, Ψ(s) is a formula that relates every x ∈ Rn with all elements from the set JsK{x}. It
is defined inductively over the structure of the statement s as follows:

Ψ(s) :≡ s if s is a literal (6.39)

Ψ(s1 ∧ s2) :≡ Ψ(s1) ∧Ψ(s2) (6.40)

Ψ(s1 ∨ s2) :≡ (¬as1∨s2 ∧Ψ(s1)) ∨ (as1∨s2 ∧Ψ(s2)) (6.41)

Here, for every sub-formula s1 ∨ s2 of s, as1∨s2 is a fresh Boolean variable. The set of free
variables of the formula Ψ(s) is

{x,x′} ∪ {as1∨s2 | s1 ∨ s2 is a sub-formula of s}. (6.42)

The variables x and x′ are Rn-valued variables. By construction, s[x/x, x′/x′] is satisfiable
if and only if Ψ(s)[x/x, x′/x′] is satisfiable for all x, x′ ∈ Rn. That is, s and Ψ(s) are
describing the same relation. We therefore obtain the following lemma:
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Lemma 6.11. JsK]j·(d) > c if and only if Ψ(s, d, j, c) is satisfiable.

The difference between the formula s and the formula Ψ(s) is that the Boolean variables
of the formula Ψ(s) additionally describe a path through the formula. More precisely, a
valuation for the variables from the set {as1∨s2 | s1 ∨ s2 is a sub-formula of s} describes a
path through s.

Let s be a statement, d ∈ Rm, j ∈ {1, . . . ,m}, and c ∈ R ∪ {−∞}. Assume now

that JsK]j·(d) > c. Our next goal is to compute a max-strategy σ for the statement s such

that JσK]j·(d) > c. By Lemma 6.11, there exists a model M of Ψ(s, d, j, c). We define the
max-strategy σM for the statement s recursively by

σM (s) :≡ s if s is a literal (6.43)

σM (s1 ∧ s2) :≡ σM (s1) ∧ σM (s2) (6.44)

σM (s1 ∨ s2) :≡

{
σM (s1) if M(as1∨s2) = 0

σM (s2) if M(as1∨s2) = 1
. (6.45)

By again applying Lemma 6.11, we get JσM K]j·(d) > c and thus the following lemma:

Lemma 6.12. By solving the SAT modulo linear real arithmetic formula Ψ(s, d, j, c) that

can be obtained from s in linear time, we can decide, whether or not JsK]j·(d) > c holds.
From a model M of this formula, we can, in linear time, obtain a ∨-strategy σM for s such

that JσM K]j·(d) > c.

Example 6.13. We again continue our running example, which is summarized in Figure 4.

We want to know, whether or not JsK]1·(0, 0) > 0 holds. For that we compute a model M of
the formula Ψ(s, (0, 0), 1, 0) which is given as follows:

Ψ(s, (0, 0), 1, 0) ≡ ∃v ∈ R . Ψ(s, (0, 0)>, 1) ∧ v > 0 (6.46)

Ψ(s, (0, 0), 1) ≡ ∃x ∈ R2,x′ ∈ R2 . x1· ≤ 0 ∧ −x1· ≤ 0 ∧Ψ(s) ∧ v = x′1· (6.47)

Ψ(s) ≡ Φ ∧ ((¬aΦ1∨Φ2 ∧ Φ1) ∨ (aΦ1∨Φ2 ∧ Φ2)) (6.48)

The formulas Φ,Φ1, and Φ2 are defined in Figure 4. M = {aΦ1∨Φ2 7→ 1} is a model,
which gives us the max-strategy σM ≡ Φ ∧ Φ2 for s. Thus, by Lemma 6.12, we have

JσM K]1·(0, 0) = JΦ ∧ Φ2K
]
1·(0, 0) > 0.

We must still provide a method for computing the values for the Boolean variables of a
model of the formula Ψ(s, d, j, c). Most of the state-of-the-art SMT solvers, such as Yices
[21, 22], support the computation of models directly; the SMTLIB2 standard [6] has a
get-assignment command that can be used to extract the Boolean part of a model. If this
feature is not supported, one can compute the model, or only the values for the Boolean
variables, using standard self-reduction techniques.

Recall that the semantic equations we are concerned with in this article are of the form
x = max {e1, . . . , ek}, where each expression ei, for all i ∈ {1, . . . , k}, is either a constant

or an expression of the form JsK]j·(x1, . . . ,xm) where s is a statement. As discussed above,

we can check whether or not ρ(x) < Jmax {e1, . . . , ek}K(ρ) holds, and if this is the case
compute a max-strategy σ′ such that ρ(x) < Jσ′K(ρ) holds, by solving at most k SAT
modulo linear real arithmetic formulas, each of which can be constructed in linear time.
Equivalently, instead of running k SMT queries, each obtaining a part of the next strategy,
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we can rename Boolean variables of these SMT formulas so that they are distinct and query
the conjunction of the resulting formulas.

Lemma 6.14. Let x = e be an abstract semantic equation, ρ a variable assignment, and
c ∈ R. By solving a single SAT modulo linear real arithmetic formula that can be obtained
from e, ρ and c in linear time, we can decide, whether or not JeKρ > c holds. From a model
M of this formula, provided that JeKρ > c holds, we can in linear time obtain a max-strategy
σM for e such that JσM Kρ > c.

Remark that we did not discuss how to choose the next max-strategy σ′, except that
it should satisfy ρ(x) < Jσ′K(ρ) (which is ensured by the SMT-solving step). Indeed, there
could be many different suitable σ′s, and the SMT-solver may return any of them. There
is however at least one that is locally optimal, that is, Jσ′K(ρ) is maximal, otherwise said
Jσ′K(ρ) = JeK(ρ). Future work should include experiments on the performance impact of
using the locally optimal strategies instead of just any strategies.

It is possible to obtain a locally optimal strategy by repeated calls to the SMT-solvers.
A naive method would be to query the SMT-solver for a σ′′ such that Jσ′K(ρ) < Jσ′′K(ρ),
then for a σ′′′ such that Jσ′′K(ρ) < Jσ′′′K(ρ) and so on until there is no locally better strategy;
the last strategy obtained is thus locally optimal. A less naive method would be to take
a rough bound M ≥ JeK(ρ) and perform binary search in the interval [Jσ′K(ρ),M ]: at each
step, maintain an interval [a, b] and query whether there exists σ′′ such that Jσ′K(ρ) ≥ a+b

2 ;

if so, replace a by a+b
2 and restart, if not, replace b by a+b

2 and restart. The SMT-solving
community is now considering the problem of optimization modulo theory [58] and we can
hope for progress in this respect.

7. Complexity

In this section, we shall prove that the decision problem associated with our computation
is at the second level of the polynomial hierarchy, even if there is a single feedback vertex,
a single real variable, and a single constraint in the template. It is therefore unsurprising
that our algorithm exhibits exponential complexity in the worst case, by enumerating an
exponential number of strategies: we shall then provide an artificial example on which it is
the case.

7.1. A Lower Bound on the Complexity. In this section we show that the problem
of computing abstract semantics of programs w.r.t. the interval domain is Πp

2-hard. Πp
2-

hard problems are conjectured to be harder than both NP-complete and coNP-complete
problems. For further information regarding the polynomial-time hierarchy see, for instance,
Papadimitriou [50], Stockmeyer [61].

Theorem 7.1. The problem of deciding, whether, for a given program G, a given template
constraint matrix T , and a given program point v, V ][v] > −∞ holds, is Πp

2-hard.
The problem remains Πp

2-hard even if the program variables are abstracted at a single
program point and the template constraint matrix T is restricted to a single variable x and
a single constraint of the form x ≤ B.

Proof. We reduce the Πp
2-complete problem of deciding the truth of a ∀∗∃∗ propositional

formula [63] to our static analysis problem. Let

Φ ≡ ∀x1, . . . ,xn.∃y1, . . . ,ym .Φ
′ (7.1)
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be a formula without free variables, where Φ′ is a propositional formula. We consider the
analysis of the following pseudo-C program, where n is a constant:

x = 0 ;
while ( x < 2n ) {

z = x ;
i f ( x >= 2n−1 ) { xn=1; x −= 2n−1 ; } e lse { xn=0; }
...
i f ( x >= 21−1 ) { x1 =1; x −= 21−1 ; } e lse { x1 =0; }
choose (y1, . . . , ym ) ;
i f ( Φ′(x1, . . . , xn, y1, . . . , ym) ) {

x ++;
}

}
In intuitive terms: this program initializes the program variable x to 0. Then, it enters
a loop: compute into x1, . . . , xn the binary decomposition of x, and non-deterministically
choose y1, . . . , ym. If Φ′ is true, it increments x by one and loops, unless x reaches 2n in which
case it terminates; otherwise, it just loops. Thus, there exists a terminating computation if
and only if Φ holds.

We reformulate the above pseudo-C program into the program G = (N,E, st) that uses
only one program variable x, where

(1) N = {st, 1, 2} is the set of program points, and
(2) E = {(st,x′ = 0, 1), (1, s, 1), (1,x ≥ 2n, 2)} is the set of control-flow edges, where

s ≡ zn = x

∧
(
(zn ≥ 2n−1 ∧ zn−1 = x− 2n−1 ∧ xn = 1) ∨ (zn ≤ 2n−1 − 1 ∧ xn = 0)

)
∧ · · ·
∧
(
(z1 ≥ 21−1 ∧ z0 = x1 − 21−1 ∧ x1 = 1) | (z1 ≤ 21−1 − 1 ∧ x1 = 0)

)
∧ s(Φ′)
∧ x′ = x + 1.

The statement s(Φ′) is obtained by taking formula Φ′ in negation normal form (all
negations pushed to the leaves), leaving the Boolean structure in place and replacing
each positive literal x by a test x = 1 and each negative literal ¬x by a test x = 0.

With this formalization, Φ holds if and only if V [2] 6= ∅. For the abstraction, we consider the
interval domain, or even simply the domain of upper bounds on x (i.e., we have constraints
of the form x ≤ b). By considering the Kleene iteration, it is easy to see that V [2] 6= ∅ holds
if and only if V ][2] > −∞ holds. Thus Φ holds if and only if V ][2] > −∞ holds.

7.2. An Example with Exponential Running Time Behavior. Recall that the num-
ber of strategy improvement steps is exponentially bounded by the size of the input. Each
step consists in one phase of SMT-solving for linear real arithmetic followed by solving a
linear program of polynomial size. Thus, each step can be performed in exponential time.
Therefore, the whole algorithm can be executed in exponential time.
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We shall now see that our algorithm takes exponential time on the instances that
are similar to the instances generated from the reduction in the proof of Theorem 7.1.
The instances generated from the reduction require Θ(2n) steps. However, the input is of
size O(n2), because the numbers 2n−1, 2n−2, . . . , 20 require space Θ(n2). We modify the
instances generated from the reduction in such a way that the sizes of the programs are in
O(n). We achieve this by introducing auxiliary variables for the numbers 2n−1, 2n−2, . . . , 20.
For all n ∈ N, we define the program Gn = (N,E, st), where

N = {st, 1}, (7.2)

E = {(st,x′1 = 0, 1), (1, s, 1)}, (7.3)

with

s ≡ y1 = 1 ∧ y2 = 2y1 ∧ · · · ∧ yn = 2yn−1 ∧ zn = x1 (7.4)

∧ (zn ≥ yn ∧ zn−1 = zn − yn ∨ zn ≤ yn − 1 ∧ zn−1 = zn) (7.5)

∧ · · · (7.6)

∧ (z1 ≥ y1 ∧ z0 = z1 − y1 ∨ z1 ≤ y1 − 1 ∧ z0 = z1) (7.7)

∧ x′1 = x1 + 1. (7.8)

Here, x1 is the only program variable. It is sufficient to use the template constraint matrix
T =

(
1
)
, which corresponds to the template x1. That is, we are only interested in the upper

bound on the value of the variable x1. Remark that the strategy iteration does not depend
on the strategy improvement operator in use: at any time there is exactly one possible
improvement, until the least solution is reached. All strategies for the statement s will be
encountered. Thus, the strategy improvement algorithm performs 2n strategy improvement
steps. Since the size of Gn is Θ(n), exponentially many strategy improvement steps are
performed.

7.3. An Upper Bound on the Complexity. In Section 7.1, we have provided a lower
bound on the complexity of computing abstract semantics w.r.t. the template linear do-
mains. The associated decision problem is not only Πp

2-hard, but in fact Πp
2-complete:

Theorem 7.2. The problem of deciding, whether, for a given program G, a given template
constraint matrix T , and a given program point v, V ][v] > −∞ holds, is in Πp

2.

Proof. We consider the negation of the above problem: for a given program G, a given
template constraint matrix T , a given program point v, and a given i ∈ {1, . . . ,m}, decide

whether V ]
i· [v] = −∞; we shall now show that this problem is in Σp

2.
In non-deterministic polynomial time we can guess a max-strategy σ for E ′ := E(G,T )

and a set X∞ of variables that have the value ∞; these will form the witness for the initial
existential quantifier. We can evaluate the max-strategy σ w.r.t. the set of variables X∞

assigned to +∞ in polynomial time using linear programming (cf. Subsection 6.4). Let
ρσ,X∞ denote the resulting variable assignment.

We shall now show that checking whether this strategy (and set of infinite variables) is
stable is in co-NP. Because of Lemma 5.3, we can use an NP oracle to check whether there
exists an improvement of the strategy σ w.r.t. ρσ,X∞ , which is exactly the negation of being
stable.

If the strategy is stable, we know that ρσ,X∞ ≥ µJE ′K holds. Therefore, by Lemma 6.1,

we have ρσ,X∞(xv,i) ≥ V ]
i· [v] for all program points v ∈ N and all i ∈ {1, . . . ,m}. Since we
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n user number number number
time of of of
(sec) improvement SMT linear

steps queries programs

1 0.10 5 14 8
2 0.17 7 34 12
3 0.38 11 76 20
4 1.02 19 170 36
5 3.64 35 384 68
6 6.97 67 870 132
7 26.02 131 1964 260
8 31.53 259 4402 516
9 95.22 515 9784 1028

10 207.62 1027 21566 2052

Figure 5: Benchmark for the prototypical implementation

also know that there exists some max-strategy σ and some set Xσ such that ρσ,X∞ = µJE ′K,
we accept, whenever ρσ,X∞(xv,i) = −∞ holds.

8. Experimental Results

We have implemented our presented max-strategy improvement algorithm; our prototype
should however be considered as a proof-of-concept. Benchmark results for real examples
are left for future work.

The algorithm is implemented in OCaml 3.10.2; it uses Yices 1.0.27 [21, 22] for com-
puting models for SAT modulo linear real arithmetic formulas; for solving the occurring
linear programming problems it uses QSOpt-Exact 2.5.6 [3, 23], an exact arithmetic ver-
sion of QSOpt. We made our experiments under Debian Linux (Lenny) running under
Parallels Desktop 4 on an Apple MacBook (2.16 GHz Intel Core 2 Duo, 2GB 667 MHz
DDR2 SDRAM). Our solver takes as input a text file that contains the program and the
linear templates to be used for the analysis. The benchmark results for the example of Sec-
tion 7.3 are shown in Figure 5. The number of max-strategy improvement steps grows —
as expected — exponentially in n. Briefly, the implementation solves 2 linear programming
problems and at most 2(2n+ 1) = 4n+ 2 SMT queries per max-strategy improvement step.
The factor 2 comes from the fact that we have 2 program points and the factor (2n + 1)
from the fact that we have (2n+ 1) templates. We emphasize that the example is created
artificially. Since the problem we are solving is Πp

2-complete, it is not surprising that there
exists an example that does not scale.

For the running example of this article (Example 4.1), our solver computes the correct
result after 0.05 seconds.

There are also many possibilities for improving the implementation. On the limited
number of examples that we tried with our proof-of-concept implementation, the main
computational expense comes from the linear programs that have to be solved. This is
mainly due to the fact that we use an exact arithmetic simplex solver and we solve every
occurring linear program from scratch although we know beforehand that the linear prob-
lems that we have to solve are feasible. Instead of solving each linear program from scratch,
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one could use the information obtained from the previously solved linear programs (that
are similar). One can also utilize the information obtained from the SMT solver in order to
obtain a feasible basis to start the simplex method with.

9. Conclusion and further research directions

We have proposed a method for computing the least fixpoints in template linear constraint
domains (e.g., Cartesian products of intervals) of transition systems specified using linear
real arithmetic formulas. This allows finding the strongest invariant in this domain of a
loop consisting only in linear assignments and non-strict linear inequalities over the real
numbers.

Because it distinguishes individual paths in the program, our method does not suffer
from the imprecision induced by convex hull operations. These paths are looked up on
demand, as results from satisfiability testing, therefore avoiding memory blowup. Our
technique, however, has exponential worst case complexity, which is hardly surprising since
the decision problem associated with our computation is Πp

2-complete. Due to limited
resources, we have so far not been able to implement it in a tool capable of running on real
examples.

It is quite obvious that, due to the use of SMT queries, the size of the problems given as
input, and their branching structure, must be limited. One method for limiting the size of
the SMT formulas is to decompose the program into statements, thus adding more points
at which states are abstracted, as proposed by [49]: this simplifies the problem, but may
reduce precision; another method is to restrict the analysis to a subset of the variables,
determined by some form of dependency analysis.

The restriction to linear templates and linear statements may seem onerous. It might
be possible to apply the same ideas for non-linear templates [30]. With respect to non-linear
statements, a possibility is to linearize them [44, 46]: for short, assuming A ≤ x ≤ B where
A and B are constants, then the nonlinear constraint z = xy may be abstracted by the linear
constraint (Ay ≤ xy ≤ By ∧ y ≥ 0)∨ (By ≤ xy ≤ Ay ∧ y < 0). If the assumptions made by
the linearization are found not to hold for the fixed point computed by the max-strategy
iteration technique, one has to relax these assumptions and restart the solving process.

More generally, one may envision a nesting of two iteration schemes: the inner scheme
solving exactly, using max-strategy iteration, a simplification of the concrete program, the
outer scheme iterating over possible simplifications. The outer scheme would deal with
all program features not supported by our max-strategy iteration algorithm. Consider
pointers, for instance: the outer scheme could temporarily assume that x and y may be
aliased, while z is not aliased with anything, and then rewrite the program according to
these assumptions in order to obtain a pointer-free program (may-alias information becomes
non-deterministic choice, while must-aliased variables are merged). This outer iteration may
be ascending and optimistic, starting with strong assumptions on the program and relaxing
them progressively as the results of the inner scheme invalidate them, or decreasing and
pessimistic, starting with weak assumptions and strengthening them progressively as the
results of the inner scheme show them to be too severe. Such mixed approaches would
cope with programs features not directly supported by our max-strategy iteration solver.
Further work is needed in this direction to ascertain which techniques are usable.

Another problem is finding suitable templates — while there exist obvious choices in
some cases (intervals for getting rough invariants of control applications, difference bounds
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for scheduling applications, etc.), there is no generic method for obtaining good templates.
Amato et al. [2] proposed finding templates using principal component analysis, but it is
yet unclear whether this approach suited to practical problems. A simple solution may be
to run some conventional polyhedral analysis, and keeping the directions of the polyhedra
obtained before widening.

Our max-strategy iteration algorithms only deal with real numerical values. We can
cope with integers by relaxing them to reals, with the usual precautions (x < y converted
to x ≤ y − 1). Another possible extension is to integrate Boolean types, or more generally
finitely enumerated types, into the invariant, or equivalently, to insert them implicitly into
the control flow.

An intriguing extension of our framework is the case where the control flow is specified
implicitly. The problem considered in this article is expressed as a control-flow graph given
by a list of nodes and statements over the transitions. Now consider the addition of n
Boolean variables to the system: a common method to encode such variables in a transition
system is to distinguish all Boolean combinations and every control node, and thus multiply
the number of control nodes by 2n. Clearly, we would prefer to work directly on the transi-
tion relation of the original program, which would include free Boolean variables encoding
the departure and arrival control states, and consider our abstract reachability problem on
programs expressed using this succinct representation. Since this problem includes Boolean
reachability (also known as the reachability problem for succinctly represented graphs),
which is PSPACE-complete [51], it is PSPACE-hard. Our strategy iteration approach can
be extended to show that it is in coNEXPTIME. We conjecture that it is coNEXPTIME-
complete, but we have so far not been able to prove it. It is also unknown whether some
practically useful algorithms, perhaps based on binary decision diagrams (BDDs), could be
devised for this problem.
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