Logical Methods in Computer Science
Vol. 10(2:15)2014, pp. 1-51 Submitted Nov. 28, 2012
www.Imcs-online.org Published Jun. 25, 2014

COMPOSITIONAL REASONING FOR EXPLICIT RESOURCE MANAGEMENT IN
CHANNEL-BASED CONCURRENCY *

ADRIAN FRANCALANZA 2, EDSKO DEVRIES, AND MATTHEW HENNESSY®

a|CT, University of Malta
e-mail addressadrian.francalanza@um.edu.mt

b Well-Typed LLP, UK
e-mail addressedsko@well-typed.com

¢ Trinity College Dublin, Ireland
e-mail addressmatthew.hennessy@cs.tcd.ie

Asstract. We define ar-calculus variant with a costed semantics where channelsreated as re-
sources that must explicitly be allocated before they aeel asd can be deallocated when no longer
required. We use a substructural type system tracking gsrom transfer to construct coinductive
proof techniques for comparing behaviour and resourcesugigiency of concurrent processes. We
establish full abstraction results between our coindectlefinitions and a contextual behavioural
preorder describing a notion of procesaéency wrt. its management of resources. We also jus-
tify these definitions and respective proof techniquesughonumerous examples and a case study
comparing two concurrent implementations of an extendibfter.

1. INTRODUCTION

We investigate thdehaviourandspace @iciencyof concurrent programs witbxplicit resource-
managementn particular, our study focuses ahannel-passing concurrent programge define a
n-calculus variant, calleBr, where the only resources available are channels; thesmelsamust
explicitly be allocated before they can be used, and can béodated when no longer required.
As part of the operational model of the language, channetation and deallocation have costs
associated with them, reflecting the respective resourageus

Explicit resource management is typically desirable itirsgs where resources asearce Re-
source management programming constructs such as exidallbcation provide fine-grained con-
trol over how these resources are used and recycled. By cmopain automated mechanisms
such as garbage collection, unused resources (in this wesapry) tend to remain longer in an
unreclaimed staté [217, 28]. Explicit resource managememstcucts such as memory deallocation
also carry advantages over automated mechanisms suchbaggamllection techniques when it

2012 ACM CCS:[Theory of computation]: Models of Computation—Concurrency—Process Calculi.
Key words and phrasesrt-calculus, concurrency, memory management, coinducgiasaning.

* An extended abstract of a preliminary version of the paperdppeared in [11].

¢ Supported by SFI project SFI 06 IN.1 1898.

|E |LOGICAL METHODS © A. Francalanza, E. DeVries, and M. Hennessy
IN COMPUTER SCIENCE DOI:10.2168/LMCS-10(2:15)2014 © [Creative Commons

http://creativecommons.org/about/licenses

2 A. FRANCALANZA, E. DEVRIES, AND M. HENNESSY

comes tointeractive and real-time programs [[10, 27, 28]. In particular, garbage collectiochte
niques require additional computation to determine otis@xplicit information as to which parts
of the memory to reclaim and at what stage of the computatimassociated overheads may lead
to uneven performance and intolerable pause periods whemystem becomes unresponsive [10].

In the case of channel-passing concurrency with explicinory-management, the analysis of
the relative behaviour andfiiency of programs is non-trivial for a number of reasonspliEx
memory-management introduces the risk of either prematunaultiple deallocation of resources
along separate threads of execution; these are méieudti to detect than in single-threaded pro-
grams and potentially result in problems such as wild pognte corrupted heaps which may, in
turn, lead to unpredictable, even catastrophic, behayBii28]. It also increases the possibility
of memory leaks, which are often not noticeable in shortanog, terminating programs but subtly
eat up resources over the course of long-running programa.cbncurrent settings such as ours,
complications relating to the assessment and comparisoesotirce consumption is further com-
pounded by the fact that the runtime execution of channg$ipg concurrent programs can have
multiple interleavingsis sometimeson-deterministi@and oftennon-terminating

1.1. Scenario: Consider a setting with two servers, &d S, which repeatedly listen for service
requests on channedsv, andsrv,, respectively. Requests sendeturn channel orsrv; or srv;
which is then used by the servers to service the requestseamtlm|ck answersy andv,. A
possible implementation for these servers is give id ({Aeldw, whererec w.P denotes a process
P recursing atv, c?x.P denotes a process inputting on chanaalome value that is bound to the
variablex in the continuatiorP, andc!v.P outputs a value on channek and continues aB:

S £ recw. srvi?x. xlv;. w forie{l1,2} (1.2)

Clients that need to request service frbothservers, so as to report back the outcome of both
server interactions on some chann<, can be programmed in a variety of ways:

Co £ recw. alloc Xj.alloc Xo. srvy!Xi. X1 Y. srvolXo. X272 ret!l(y, 2. w
C1 2 recw.allocX. srvi!X X?y. srvo!x x7zret!(y,2). w (1.2)
C, £ recw.alloc X srvi!X. X?y. srvo!X X7 free X. ret!(y,2). w

Cop corresponds to an idiomatiecalculus client. In order to ensure that it is the sole recipof

the service requests, it creat®s new return channels to communicate with&d $ on srvy

and srvy, using the commandlloc x.P; this command allocates reew channelc and binds it

to the variablex in the continuatiorP. Allocating a new channel for each service request ensures
that the return channel used between the client and serpewate for the duration of the service,
preventing interferences from other parties executingairaitel.

One important dterence between the computational model considered indpisr@and that of
the standara-calculus is that channel allocation is an expensive ojerae.,it incurs an additional
(spatial) cost compared to the other operations. Cliepa@empts to address the fiieiencies of
Co by allocating onlyone additional new channel, angusingthis channel for both interactions
with the servers. Intuitively, this channel reuse is valid,, it preserves the client-server behaviour
Cp had with servers Sand S, because the server implementations above use the received-
channelsnly once This single channel usage guarantees that return chanenedsn private during
the duration of the service, despite the reuse from clignt C

Client G, attempts to be morefiicient still. More precisely, since our computational model
does not assume implicit resource reclamation, the previwo clients can be deemed as having
memory leaksat every iteration of the client-server interaction semge G and G allocate new

COMPOSITIONAL REASONING FOR CHANNEL-BASED CONCURRENT RE&YRCE MANAGEMENT 3

channels that are not disposed of, even though these ckaameatever used again in subsequent it-
erations. By contrast, {2leallocates unused channels at the end of each iteratiog th& construct
freec.P.

In this work we develop a formal framework for comparing thehéviour of concurrent pro-
cesses that explicitly allocate and deallocate channets.irStance, processes consisting of the
servers $ and $ together with any of the clientsgCCy or G, should berelated on the basis
that they exhibit the same behaviour. In addition, we woile to order these systems, based on
their relative #iciencieswrt. the (channel) resources used. We note that there are vaaiotises
contrasting, notions offgciency that one may consider. For instance, one notion magider
acquiring memory for long periods to be lesi@ent than repeatedly allocating and deallocating
memory; another notion officiency could instead focus on minimising the allocation dadllo-
cation operations used, as these as considerably moresaxpéman other operations. In this work,
we mainly focus on a notion offigciency that accounts for the relative memory allocationgiired
to carry out the necessary computations. Thus, we wouldivgly like to develop a framework
yielding the following preorder, whetereads "more ficient than”:

S ISIC £ SISIC © S11S11C (1.3)

A pleasing property of this preorder would bempositionality which implies that orderings are
preserved under larger contexi®., for all (valid) contextsC[-], PE Q implies C[P] £ C[Q]. Du-
ally, compositionality would also improve the scalabildf our formal framework since, to show
that C[P] £ C[Q] (for some contexC[-]), it suffices to obtailPC Q. For instance, in the case of
(T3), compositionality would allow us to factor out the amon codej.e., the servers Sand $ as
the context || S, || [-], and focus on showing that

C,ECiCC (1.4)

1.2. Main Challenges: The details are however far from straightforward. To begithywe need

to assess relative program cost over potentially infinitamatations. Thus, rudimentary aggregate
measures such as adding up the total computation cost oégses and comparing this total at
the end of the computation is inSigient for system comparisons such [as](1.3). In such cases, a
preliminary attempt at a solution would be to comparerthiative costfor everyserver interaction
(action): in the sense of [4], the preorder would then engliaé everycostedinteraction by the
inefficient clients must be matched by a correspondihgaperinteraction by the morefgcient
client (and, dually, costed interactions by tH&agent client must be matched by interactions from
the indficient client that are as costly or more).

Cz £ recw.allocxj.alloc Xp. srvi!Xy. X1?y. srvo!Xo. X272 free x;.free Xo.ret!(y,2.w (1.5)

There are however problems with this approach. Considem$bance, G defined in[(1.5). Even
though this client allocates two channels for every iteratf server interactions, it does not exhibit
any memory leaks since it deallocates them both at the enleoité¢ration. It may therefore be
sensible for our preorder to equa&le with client C, of (1.2) by having G £ C3 as well as G E C,.
However showing @ £ C, would not be possible using the preliminary strategy disedsabove,
since, G must engage in more expensive computation (allocating tvanigels as opposed to 1) by
the time the interaction with the first server is carried out.

Worse still, an analysis strategy akin to [4] would not beligple for a comparison involving
the clients @ and G. In spite of the fact that over the course of its entire corapoin G requires
less resources tham{.e., it is more dficient, client G appears to bkess gicientthan G after the

4 A. FRANCALANZA, E. DEVRIES, AND M. HENNESSY

interaction with the first server on channetv; since, at that stage, it has allocated two new channels
as opposed to one. However; Becomes lessfigcient for the remainder of the iteration since it
never deallocates the channel it allocates whergage@llocates both channels. To summarise, for
comparisons €& C, and G £ Cy, we need our analysis to allow a process totdrmporarily
ingfficientas long as it can recover later on.

In this paper, we use a costed semantics to definefarneacy preorder to reason about the
relative cost of processes over potentially infinite corapah, based on earlier work by [30,/34].
In particular, we adapt the concept st amortisatiorto our setting, used by our preorders to
compare processes that are eventually mdiieient than others over the course of their entire
computation, but are temporarily les$i@ent at certain stages of the computation.

Issues concerning cost assessment are however not thebstidcles tackled in this work; there
are also complications associated with the composititynalpects of our proposed framework.
More precisely, we want to limit our analysis $afecontexts,i.e., contexts that use resources in a
sensible waye.g.,not deallocating channels while they are still in use. Initaid, we also want to
consider behaviouwrt. a subset of the possible safe contexts. For instance, antglfrom [1.2)
only exhibit the same behaviowvrt. servers thatif accept(any number offyequests on channels
srvy andsrv, containing a return channel, which thei) (ise this channel at moshceto return
the requested answer. We can characterise the interfasedrethe servers and the clients using
fairly standard channel type descriptions adapted fforhif8@.6), where T]“ describes a channel
than can be useanynumber of timesi(e., the channel-type attribui®) to communicate values of
type T, whereasT]! denotes amfinechannel [e.,a channel type with attributs) that can be used
at mostonce to communicate values of type

sty 1 [[Ta]']%, srva:[[T2]']” (1.6)

In the style of [45] 211], we could then use this interface tetadrt away from the actual server
implementations described in{lL.1) and state that, contexts that observe the channel mappings
of (1.6), client G is more dficient than G which is, in turn, more icient than @. These can be
expressed as:

srvy: [[To]H9, srvo : [[T2]Y” E C5C 1.7)
srvy: [[Te]H?, stvo 1 [[T2]Y“ E C1ECo (1.8)

Unfortunately, the machinery of [45, 21] cannot be easilierded to our costed analysis be-
cause of two main reasons. First, in order to limit our analissafe computation, we would need
to show that clients g C; and G adhere to the channel usage stipulated by the type assodiati
in (1.8). However, the channel reuse in &1d G (an essential feature to attain spadéci&ncy)
requires our analysis to associate potentialledent typesi(e., [T1]* and [T2]!) to the same re-
turn channel; this channel reuse afelient types amounts to a form sifong updatea degree of
flexibility not supported by [45, 21].

Second, the equivalence reasoning mechanisms used in[WepRld be substantially limiting
for processes with channel reuse. More specifically, cengitk slightly tweaked client implemen-
tation of G below:

C, = recw.alloc X.(srvi!X || X?y.(srva!X || X?zfree x.cl(y, 2).X)) (1.9

The only diterence between the client in_(IL.9) and the original oné i) (. that G sequences
the service requests before the service inglds,. .. srvi!x. X?y... and... srvo!x. X?z . ., whereas
C, parallelises themie.,...srvi!x || X?...and...srvo!X || X?z ... Resource-centric type disci-
plines such as [12, 40] preclude name matching for a paaticesource once all the permissions to

COMPOSITIONAL REASONING FOR CHANNEL-BASED CONCURRENT RE&YRCE MANAGEMENT 5

use that resource have been used up; this feature is essewstiatically reason about a number of
basic design patterns for reuse. For such type settingsnd put that the client implementations C
and G, exhibit the same behaviour because the return channel yseatt clients forbothserver
interactions is privatd, e., unknown to the respective servers; as a result, the seraaretanswer
the service on that channel before it is receives it on eitlrer or srvzﬂ Throughscope extru-
sion theories such as [45, 21] can reason adequately about shaediver interaction, and relate
...srve! X x?y... of Cy with ...srvi!x || x?.... of C,. However, they have no mechanism for
tracking channel locality post scope extrusion, therelmpvering the information that the return
channelbecomes private agaito the client after the first server interaction (since thevess use
up the permission to use the return channel once they replf).ofhis prohibits [45] 211] from
determining that the second server interaction is just stante of the first server interaction, thus
failing to relate these two implementations.

In [12] we developed a substructural type system based dratype attribute describing chan-
nel uniguenessand this was used to statically ensure safe computation&fo In this work,
we weave this type information into our framework, imbuingvith an operational permission-
semantics to reason compositionally about the costed mmhanf (safe) processes. More specif-
ically, in (I1.2), when G allocates channet, no other process knows abaut from a typing per-
spective, but also operationally,is uniqueto C,. Client G, then sendx on srv; at anaffinetype,
which (by definition) limits the server to useat most once. At this point, from an operational
perspectivexis to G, the entity previously “owning” itunique-after-1(communication) use. This
means that after one communication stepxpithe derivative of) @ recognises that all the other
processes apart from it must have used up the sifileegpermission fox, and hencex becomes
once agairuniqueto C,. This also means that,@&an safelyreuse x possibly at a dferent object
type (strong update), or else safely deallocate it.

The concept of finity is well-known in the process calculus community. By tast, unique-
ness (and its duality toffnity) is used far less. In a compositional framework, unitess can
be used to record the guarantee at one end of a channel aordisg to the restriction associated
with affine channel usage at the other; an operational semanticeaefibed, tracking thpermis-
sion transferof affine permissions back and forth between processes as a resafhmunication,
addressing the aforementioned complications associatididioms such as channel reuse. We
employ such an operational (costed) semantics to definefiotieacy preorders for concurrent pro-
cesses with explicit resource management, based on tlenraitamortised cost discussed above.

1.3. Paper Structure: Sectiori 2 introduces our language with constructs for eikpliemory man-
agement and defines a costed semantics for it. We illussate$ relating to resource usage in this
language through a case study in Sediibn 3, discussiteyeiit implementations for an unbounded
buffer. Sectiol ¥ develops a labelled-transition system folamguage that takes into consideration
some representation of the observer and the permissioharthaxchanged between the program
and the observer; it is a typed transition system similai3& 21,/ 19], nuanced to the resource-
focussed type system of [12]. Based on this transition systiee section also defines a coinductive
cost-based preorder and proves a number of properties @b@&ection[b justifies the cost-based
preorder by relating it with a behavioural contextual pdesrdefined in terms of the reduction se-
mantics of Sectionl2. Sectidn 6 applies the theory of Sediom reason about thefiiency of
the unbounded Hiter implementations of Sectidd 3. Finally, Sectidn 7 surveyated work and
Sectior 8 concludes.

lAnalogously, in ther-calculusnew d.(cld || d?x.P) is indistinguishable fronnew d.(c!d.d?x.P)

6 A. FRANCALANZA, E. DEVRIES, AND M. HENNESSY

PQ :=uvPpP (output) | u?XP (input)
| nil (nil) | ifu=vthenPelseQ (match)
| recw.P (recursion) | X (process variable)
| P Q (parallel) | allocx.P (allocate)

| freeu.P (deallocate)

Figure 1:Rr Syntax

2. THE LANGUAGE

Figure[1 shows the syntax for our language, the resomrcalculus, orRr for short. It has the
standardr-calculus constructs with the exception of scoping, whighidplaced with primitives
for explicit channel allocationalloc x.P, and deallocationfree x.P. The syntax assumes two
separate denumerable sets of channel nayw% Cuan, and variablesc,y,z w € Var, and lets
identifiersu, v range over both sets,n&~ U Var. The input constructe?x.P, recursion construct,
recw.P, and channel allocation construaf,1loc x.P, are binders whereby free occurrences of the
variablesx andw in P are bound. As opposed to more standard versions ei-tteéculus, wedo not
use name scoping to bind and bookkeep the visibility of namesshall however use alternative
mechanisms to track name knowledge and usage in subseaqyehbpment.

Rr processes run in a resource environment, ranged ovit, by representing predicates over
channel names stating whether a channel is allocated oM®tind it convenient to denote such
functions as a list of channels representing the set chautingl are allocated.g.,the listc, d de-
notes the sefc, d}, representing the resource environment returriing for channelsc andd and
falseotherwise - in this representation, the order of the chaninghe list is unimportant, but dupli-
cate channels are disallowed; as shorthand, we also Mrit¢o denoteM U {c} wheneverc ¢ M. In
this paper we consider only resource environments witimfimite number of deallocated channels,
i.e., M is a total function. Models with finite resources can be gamiicommodated by making
M partial; this also would entail a slight change in the seicardf the allocation construct, which
could either block or fail whenever there are no deallocaésdurces left. Although interesting in
its own right, we focus on settings with infinite resourcest &snds itself better to the analysis of
resource fficiency that follows.

We refer to the paiM » P, consisting of a resource environmevitand aclosedprocesﬁ Pasa
systemnote thainot all free names ifP need to be allocateide., present inM: intuitively, any name
c used byP andc ¢ M represents dangling pointer Contexts consist of parallel composition of
processes; they are however defined over systems, throeighaimmar and the respective definition
at the top of Figurg]2. The reduction relation is defined adahstcontextualrelation over systems
satisfying the rules in Figuild 2. More specifically our rethut relation leaves the following rule
implicit:

MeP —g M>Q
rRCrX
C[M>P] —k C[M»>Q]

2A closed process has no free variables. Note that the absémeene binderée.,no name scoping, means that all
names are free.

COMPOSITIONAL REASONING FOR CHANNEL-BASED CONCURRENT RE&YRCE MANAGEMENT 7

Contexts

c = [-]1 | ClIP | PIC

M>P] € MspP

CIM=P] | Q EM=(PQ ifCIMsP]=M>P
QI CMsP] €M >@QIP) ifCM>P]=M>P

Structural Equivalence
sCom PIQ=QIIP sAss PlI(QIR=(PIQIR sNw P|nil=P

Reduction Rules

Com

M,c»cldP | c?X.Q —o M,c» P | Q{‘T/X} ¢

RTHEN

M,c>if c=cthen Pelse Q—gM,Cc>P

RELSE

M,c,d>if c=d then Pelse Q —g M,c,d>Q

P=P MsP — M>Q Q=0Q
RREC RSTR
M > recw.P —sg M » P{recW.Pjy} Me>P —y M Q

RALL
M allocXx.P —,1 M, Cc»> P{Cx} M.Co freecP — s Mo P RFREE

Reflexive Transitive Closure

MeP —, M'>P M’ >P — M” > P”

M>P —iM»>P MsP— M">P”

Figure 2:Rr Reduction Semantics

Rule ®Srr) extends reductions to structurally equivalent procedR®es Q, i.e., processes that are
identified up to superfluousil processes, and commutativagsociativity of parallel composition
(see the structural equivalence rules Fidure 2).

Most rules follow those of the standardcalculus,e.g., (RRec), with the exception of those
involving resource handling. For instance, the rule for ommication £Com) requires the commu-
nicating channel to ballocated Allocation ®RALL) chooses a deallocated channel, allocates it, and

8 A. FRANCALANZA, E. DEVRIES, AND M. HENNESSY

a = w (unrestricted) | 1 (affine) | (e,i) (unique aftei steps)
T == U (channel type) | proc (process type)
U = [lj]a (channel) | uX.U (recursion) | X (variable)

Figure 3: Type Attributes and Types

substitutes it for the bound variable of the allocation ¢aretl Deallocation kFreg) changes the
states of a channel from allocated to deallocated, makiagailable for future allocations. The
rules are annotated with a cost reflecting resource usageatbn has a cost 6f1, deallocation
has a (negative) cost efl while the other reductions carry no cosg,, 0. Figurd 2 also shows the
natural definition of the reflexive transitive closure of tiested reduction relation. In what follows,
we usek, | € Z as integer metavariables to range over costs.

Example 2.1. The following reduction sequence illustrates potentiatanted behaviour resulting
from resource mismanagement:

M,c> freec.(cll1 || c?x.P) || allocy.(y!42 || y?2Q) —_1 (2.1)
M »>cll]c?xP || allocy.(X!42 || X?2Q) —1 (2.2)
M,ce>cl1 | c?x.P || c'42] c?2Q (2.3)

Intuitively, allocation should yield “fresh” channels., channels that are not in use by any active
process. This assumption is used by the right process iemmy8.1),allocy.(y!42 || y?2.Q),

to carry out alocal communication, sending the vald2 on some local channgl that no other
process is using. However, the premature deallocationeo€hiannet by the left process in(2.1),
freec.(cll || ¢c?x.P), allows channek to be reallocated by the right process in the subsequent
reduction,[(2.R). This may then lead to unintended behagimee we may end up with interferences
when communicating oain the residuals of the left and right processks,] @.3). m]

In [12] we defined a type system that precludes unwanted b@ivasuch as in Example_2.1.
The type syntax is shown in Figuié 3. The main type entitieschannel typesdenoted as(]?,
wheretype attributes aange over
e 1, for affine, imposing a restrictigabligation on usage;

e (e,i), for unique-aftei-usagesi(e N), providing guarantees on usage;

e w, for unrestricted channel usage without restrictions @rgaotees.

Uniqueness typing can be seen as duakio@typing [18], and in[[12] we make use of this duality
to keep track of uniqueness across channel-passing pamalesses: an attribute, {) typing an
endpoint of a chann&accounts for (at most)instances of fiine attributes typing endpoints of that
same channel.

A channel type lfJ]a also describes the type of the values that can be commuadicatehat
channel,tj, which denotes a list of typdd, ..., U, for n € Nar; whenn = 0, the type list is an

3The expected side-conditiong M is implicit in the notation 1, c) used in the systerM, ¢ » P{GX} to which it
reduces, since cannot be present ikl for M, c to be valid.

4Operationally, we do not describe errors that may resuthfedtempted communications on deallocated channels
(we do not have error values). This may occur after redudfol), if the residual of the left process communicate on
channelkc. Rather, communications on deallocated channels aredaiock

COMPOSITIONAL REASONING FOR CHANNEL-BASED CONCURRENT RE&YRCE MANAGEMENT 9

empty list and we simply write f] Note the diference betweer\.]]l, i.e.,a channel with anféine
usage restriction, andj[l (+.1) j.e.,a channel with a unique-after-1 usage guarantee. We danibte f
unique channels asJ]* in lieu of [J](*:0).

The type syntax also assumes a denumerable set of typeleaaly, bound by the recursive
type construcuX.U. In what follows, we restrict our attention tosed, contractiveypes, where
every type variable is bound and appears within a channeitearior [-]%, this ensures that chan-
nel types such agX.X are avoided. We assume an equi-recursive interpretatioauiorecursive
types [36] (seaEq in Figure[4), characterised as the least type-congruericdysag rule eERec in
Figure[4.

r-pP domI')c M I' is consistent

TSYS
I'rMs>P
The rules for typing processes are given in Fidure 4 and ta&eusual shap€ + P stating
that proces® is well-typed with respect to the environmdnta list of pairs of identiers and types.
Systems are typed according 1&¢s) above: a systerivl>P is well-typed under if P is well-typed
wrt. T, T + P, andI" only contains assumptions for channels that have beeratdid@on(I’) C M.
This restricts channel usagefto allocated channels and is key for ensuring safety.

In [12], typing environments are multisets of pairs of idéats and types; we do not require
them to be partial functions. However, the (top-level) tgprule for systemsrSys) requires that
the typing environment isonsistent A typing environment is consistent if whenever it contains
multiple assumptions about a channel, then these assuraiam be derived fromsngle assump-
tion using the structural rules of the type system (see the stnalatulerCon and the splitting rule
pUnq in Figure(4).

Definition 2.2 (Consistency) A typing environment' is consistentif there is a partial map” such
thatl” <T.

The environment structural ruleB; < I's, defined in Figur€l4, govern the way type environ-
ments are syntactically manipulated. For instance, n@es andrJov state that type assumptions
for the same identifier can be split or joined according totthpe splitting relationT = T1 o T,
also defined in Figurgl 4: apart from standard splitting ofstricted channelsUnr, and process
types,pProc, we note that a unique-aftechannel may be split into a unique-aftér{1) channel
and an #fine channel; we also note thdfiae channels ameeversplit. The environment structural
rules also allow for weakeningWeak, equi-recursive manipulation of typessq andeRec, and
subtyping,rSus; the latter rule is defined in terms of the subtyping relatdso stated in Figurg 4
(bottom) where, for instance, an unrestricted channel eamskd instead of arffme channel (that
can be used at most once). The key novel structural rule is\emRev, which allows us to change
(revise) the object type of a channel whenever we are gueedrihat the type assumption for that
identifier is unique. These rules are recalled from [12] dredreader is encouraged to consult that
document for more details.

The consistency condition of Definitidn 2.2 ensures thatethe no mismatch in the duality
between the guarantees of unique types and the restriabioaine types, which allows sound
compositional type-checking by our type system. For inggaconsistency rules out environments
such as

c:[U]*, c:[U]} (2.4)
where a process typed under the guarantee that a chaimehique nowgc: [U]°®, contradicts the
fact that some other process may be typed underfiireaisage allowed by the assumptmifu]?.

10

A. FRANCALANZA, E. DEVRIES, AND M. HENNESSY

Logical rules
ru[T]1#t e P F,u:[f]*l,ﬁl—P
— tOUT
Lu:[TIAV:T + ulV.P Lu:[T]3F u?XP
uvell TrP I'tQ I, x:proc + P
TlF ——— TREc

'rif u=vthen Pelse Q I'’ F recw.P

r+P Lx:[T]*+P
x TFREE - TAL
F,u:[f] + freeu.P I'+allocxP
r'+P I'<I'
TSIR
r'eP

I'rP IokQ

_— TPAR
I',To - PJQ

TIN

TVAR
X:proc - X

TNLL

Ornil

wherel'® can only contain unrestricted assumptions and all boundblas are fresh.

Structural rules (<) is the least reflexive transitive relation satisfying

T=T10T,
T
LLuT <T,u:T4,u:Ts

T=T10T>

Con T
LLuT,uT<,u:T

T]_ < T2
> TSUB

TWEAK

Join

Ty~To
T
LuT,<ILuT,

Eo

Rev

rLu:T <T LuT,<I,u:Ts I,u:

Equi-Recursion Counting

~ T
[T1]® <T,u:[T2]*

channel usage

& (empty list) if a=1
EREC c:[T1t & e [T]e if a=w
XU ~ UpXy ,
K A c:[T]D if a=(e,i+ 1)
Type splitting
PUNR PProc pUNQ

[T] = [T]® o [T]¢ Proc = proc o proc
Subtyping

sUNQ
(o,i) <sw

sINDX

(0,i) <s (o,i + 1) w<sl

[-I‘-’](ol) — [-I_-’]l o [-I‘-’](o,i+l)

a <s &
[T]2 <5 [T]®

sTyp

Figure 4: Typing processes

COMPOSITIONAL REASONING FOR CHANNEL-BASED CONCURRENT RE&YRCE MANAGEMENT 11

For similar reasons, consistency also rules out envirotsr&rch as

c:[U]*, c:[U]® (2.5)
However, it does not rule out environments such[as (2.6) #vemgh the guarantee provided by
c: [U]*? is too conservative: it states that channekill become unique aftetwo uses but, in

actual fact, it becomes unique after one use since the €@} environment contains oniyne
other dfine type assumptior,: [U]?, that other processes can be typed at.

c:[U]®2), c:[u]? (2.6)
A less conservative uniqueness typing guarantee woule@ftver bec : [U]D) as shown in[{2]7)
below; this environment constitutes another case of a stargi environment allowed by Defini-

tion[2.2.
c:[u]®D, c:[u)? (2.7)

The type system isubstructural implying that typing assumptions can be usady once
during typechecking [37]. This is clearly manifested in theput and input ruleg,Our andTin in
Figure[4. In fact, using the operatian ['?]"’rl (seE Figure[4), rulerOur collapses three fferent
possibilities for typing output processes, which coul@ématively have been expressed as the three
separate typing rules ib(2.8).

I'rP r,u[T]®FP
— TOUTA — TOutTW
r,ou[T]h viT F uvpP L, u:[T]®, v:iT F ulv.P

| 2.8)
r,u:[T]®) - p

TOuTU

o [T]®D, VT ¢ uop
RuletOuTA states that an output of valug®n channel is allowed if the type environment has an
affine channel-type assumption for that channﬂlﬁ]l, and the corresponding type assumptions

for the values communicated;_T) , match the object type of thdfme channel-type assumption,
T; in the rule premise, the continuatidghmust also be typedvrt. the remainingassumptions in
the environmentwithout the assumptions consumed by the conclusion. ROkerW is similar,

but permits outputs on for environments with amnrestrictedchannel-type assumption for that
channel,u: [f]“’. The continuatiorP is typecheckedwvrt. the remaining assumptions anchaw
assumptionp : [T]; this assumption is identical to the one consumed in thelusiom, so as to
model the fact that uses of channeare unrestricted. RuleOutU is again similar, but it allows
outputs on channal for a“unique after i+1” channel-type assumption; in the premise of the rule,
P is typecheckeduvrt. the remaining assumptions anaewassumptioru: [T]¢, whereu is now
unique after iuses. Analogously, the input rutdy, also encodes three input cases (listed below):

X TFrP ru: [T X T+ P ru[TF), X Tr P

TINO TINW . TINU (2.9)
Lu:[T] F u?RP Lu:[T]¢ - u?X.P Lu: [T]HD L u P

SThis operation on type assumptiorus,[f]"’*l, defined in Figur€l4, describes the cases where, when usiafj e
type assumption to typecheck a process, the continuatitregdrocess in the rule premise is typed without that assump-
tion (the operation returns no type assumption), whereanwising an unrestricted or unique-afterssumptions, the
premise judgement usert. (new) unrestricted and unique-aftér-(1) assumptions, respectively. Note that the operation
c: ['f]a’1 is not defined fom = e. See[[12] for more detail.

12 A. FRANCALANZA, E. DEVRIES, AND M. HENNESSY

Parallel compositiontPar) enforces the substructural treatment of type assumptlmnsnsuring
that type assumptions are used by either the left procedsearght, but not by both. However,
some type assumption can $glit using contractioni.e.,rules ¢Str) and (Con). For example, an
assumptiorc : [T]® can be split as : [T]* andc : [T]**D—see $Unq).

The rest of the rules in Figufé 4 are fairly straightforwaEen though these typing rules do
not requirel” to be consistent, the consistency requirement at the tab thgping judgementiSys)
ensures that whenever a process is typetl a unique assumption for a channe‘f,]{, no other
process has access to that channel. It can therefore safalpchte it tFreg), or change the object
type of the channelrRev). Dually, when a channel is newly allocated it is assumedumitALL).
Note also that name matching is only permitted when chanemhigsions are owned, Vv € T in
(tlF). Uniqueness can therefore also be thought of as “freshreestaim we substantiate further in
Sectior 4.P.

In [12] we prove the usual subject reduction and progressrasifor this type system, given
an (obvious) error relation.

Example 2.3. All client implementations discussed in Sectidn 1 type&hett. the type environ-
ment

T = srvy:[[Te]'?, srva: [T2]']”, ret:[T1, T2
For instance, to typecheclk@om (1.2), we can apply the typing ruleBec andTtALL from Figurd 4
to obtain the typing sequent:

I, w:proc, X:[T1]® + srvi!Xx x?y. srvolx X7z free x. ret!(y,2). w (2.10)
Using the environment structural rulese(, TCon) we can split the type assumption far
T, w:proc, X:[T1]° < T, w:proc, x:[T1]%, x:[T]®V
UsingTStr andtOut we can typel(Z.70) to obtain
T, w:proc, x:[T1]®Y r x?y. srvolx. X7z free x. ret!(y,2). w
After applyingTix to typecheck the input, we are left with the sequent
I, w:proc, X:[T1]®, ¥:T1 F srvalX X7z free X. ret!(y,2). w

In particular, we note that the input typing rule stipulatiest the input continuation process needs
to typewrt. the following type assumption for: [T1](*1-1 which is equal tax: [T1]*. Sincex is
unique now, we can change the object type fbito T, usingTRev, which allows us to type the
interactions withsrv, in analogous fashion. This leaves us with

I, w:proc, X:[T2]®, y:T1, T2 + free X ret!(y,2. w
which we can discharge using rulgsReg, TOut andrVAar.

3. A Case Srupby

Resource management is particularly relevant to prograargpulating (unbounded) regular struc-
tures. We consider the concurrent implementation of an umtbed bifer, But, receiving values to

COMPOSITIONAL REASONING FOR CHANNEL-BASED CONCURRENT RE&YRCE MANAGEMENT 13

gueue on channdhn and dequeuing values by outputting on charns.
Buff £ in?. allocz (Fm| bzl cil(y,2) || 26y, 2). outly. (Bek || d'2)
Frn €' recw. b?x. in?.allocz (w|| bz || X!(y,2))

Bek £ recw. d2x. X?(y, 2). outly. (w| d!2)

In order to decouple input requests from output requesttewglill preserving the order of inputted
values, the process handling inputs infBtin?y.allocz(Frn|| b'z|| c1!(y, 2)), stores inputted val-
uesvy,...,Vn as a queue of interconnected outputs

cal(vi,2) Il - Il Cnl(Vn, Cna1) (3.1)
on the internd channelgy, ..., che1. The process handling the outputs?(y, z).out!y.(Bck || d!2),
then reads from the head of this quele,, the output on channe&, so as to obtain the first value
inputted,v1, and the next head of the quewg, The input and output processes are defined in terms
of the recursive processes, Frn and Bekp, which are parameterised by the channel to output
(resp.input) on next through the channésandd!

Since the bffer isunboundedthe number of internal channels used for the queue of interc
nected outputs[(3.1), is not fixed and these channels cdma@fore be created up front. Instead,
they are created on demand by the input process for everg uawtted, using th&r construct
alloc zP. The newly allocated channeis then passed on the next iteration of Frn through channel
b, b'z, and communicated as the next head of the queue when addirsglisequent queue item;
this is received by the output process when it inputs theevatihe head of the chain and passed on
the next iteration of Bck through chanreéld!z

3.1. Typeability and behaviour of the Buffer. Our unbounded Hier implementation, Bfti, can
be typedwrt. the type environment

Tine & in:[T]°, out:[T]°, b:[Tred®, d:[Tred®. [T, Tred® (3.2)

whereT is the type of the values stored in theflan andT (¢ is a recursive type defined as

def °
Trec = pX[T,X]®D.

This recursive type is used to type the internal chanogls. ., c,,1 — recall that in [[(3.]1) these
channels carry channels of the same kind in order to link ®amother as a chain of outputs. In
particular, using the typing rules of Sectidn 2 we can prinefollowing typing judgements:

in:[T]%, b:[Tred®, C1:[T, Tred! + in?y. allocz (Frn| blz| ¢!y, 2) (3.3)
out:[T]?, d:[Tred®, c1:[T, Tred™? F 1?0/, 2). outly. (Bek || d!2) (3.4)

From the perspective of a user of the unboundefiiebuBut implements the interface defined by
the environment f
e

Text = in:[T]“, out:[T]¢
abstracting away from the implementation chanmetsandc;.

6Subsequent allocated channels are referred g, as, etc.
"This models parametrisable process definitions Frn (x) asid(® within our language.

14 A. FRANCALANZA, E. DEVRIES, AND M. HENNESSY

3.2. A resource-conscious Implementation of the Bffer. When the bffer implementation of
Buff retrieves values from the head of the internal queug., (3.1), the channel holding the initial
value, i.e., c; in (3.1), is never reused again even though it is left alledah memory. This fact
will repeat itself for every value that is stored and retei@vrom the bffer and amounts to the
equivalent of a‘memory leak™ A more resource-conscious implementation of the unbadinde
buffer is eBuf, defined in terms of the previous input process used fdf, Bind a modified output
processg; ?(y, 2).free cp.out!y.(eBk|| d!z), which uses the tweaked recursive process, eBk.

eBut £ iny.allocz(Fm| bz || ci!(y, 2) || &1?(y, 2).free ci.out!y.(eBk|| d!2)

eBk £ recw. d?x. X?(y, 2). free x. out!y.(w || d!2)

The main diference between Biliand eBdf is that the latter deallocates the channel at the head of
the internal chain once it is consumed. We can typecheckfeBisafe since no other process uses
the internal channels making up the chain after deallogatMore specifically, the typeability of
eBut wrt. T'j; of (3.2) follows from [3.8) and the type judgement below:

out:[T], d:[Tred®, C1:[T, Tred ™Y + €12(,2). freecy. outly. (Bek || d!2)

Note that by the typing ruleln of Figure[4, we need to typecheck the continuation of thetinpu
processfree c;. out!y. (Bck|| d!z) wrt. the type environment

out:[T]?, d:[Tred®, C1:[T, Tred®, ¥:T, Z: Trec

where, in particularg; is now assigned aniquechannel type. According to the typing rulEree,
this sufices to safely type the respective deallocation;of

4. A Cost-BASED PREORDER

We define our cost-based preorder dsimmulation relationthat relates two systemd > P and

N > Q whenever they have equivalent behaviour and when, in addM > P is more dficient than

N> Q. We are interested in reasoning absatecomputations, aided by the type system described
in Sectiori 2. For this reason, we limit our analysis to instaofM»> P andN»>Q that arewell-typed
i.e.,that there exist (consistent) environmenta\’ such thatA + M» P andA’ + N> Q. In order to
preserve safety, we also need to reason under the assuropsiaie contexts. Again, we employ the
type system described in Sectidn 2 and characterise the) @arfitext through a type environment
that typechecks i’ ops. Thus our bisimulation relations take the form of a typea@tieh, indexed

by type environments [21]:

FopsE (M>P) R (N> Q) (4.1)

Behavioural reasoning for safe systems is achieved by iegstirat the overall type environment
(T'sys T'obg), cONsisting of the environment typirg > P andN»> Q, sayl'sys and the observer environ-
ment@gps IS consistentaccording to Definitiol 2]2. This means that there existohajlenviron-
ment,I'giobar, Which can be decomposed irlfg,s andI'sys it also means that the observer process,
which is universally quantified by our semantic interprietat{4.1), typechecks when composed in
parallel withP, resp.Q (seerPar of Figure4).

There is one other complication worth highlighting regagdi4.1): although both systems
M > P andN » Q are relatedwrt. the sameobserver I'ops, they can each be typed undtifferent

COMPOSITIONAL REASONING FOR CHANNEL-BASED CONCURRENT RE&YRCE MANAGEMENT 15

typing environments. For instance, consider the two di€itand G we would like to relate from
the introduction:

Co £ recw. alloc Xg.alloc Xp. srvy!Xg. X1 2y.srvol Xo. Xo?2.cl(y, 2).w

4.2
C1 £ recw. alloc X. srvi!x x?y.srvo! X x?z.cl(y, 2).w (4.2)

Even though, initially, they may be typed by the same typérenment, after a few steps, the
derivatives of @ and G must be typed under fiierent typing environments, becausg dlocates
two channels, while Conly allocates a single channel. Our typed relations allfmwshis by exis-
tentially quantifyingover the type environments typing the respective systertighia is achieved
indirectly through the use aonfigurations

Definition 4.1 (Configuration) The tripleI’ <« M » P is a configuration if and only ilom(I') € M
and there exist som& such that[, A) is consistent and + M > P.

Note that, in a configuratioh <« M » P (wherel types some implicit observer):

e C € (dom(I') U nameéP)) impliesc € M i.e., M is a global resource environment accounting for
bothP andT'.

e c< M andc ¢ (domTI') U nameéP)) denotes a resource leak for chanael

e c ¢ domI’) implies that channat is not known to the observer; in some sense, this mimics name
scoping in more standardcalculus settings.

Definition 4.2 (Typed Relation) A type-indexed relatiorR relates systems under a observer char-
acterized by a context, we write
F'e MPRN>Q

if RrelatesI’<M» P andI'<N»> Q, and bothl" <« M > P andI’ <« N » Q are configurations.

4.1. Labelled Transition System. In order to be able to reason coinductively over our typed-rel
tions, we define a labelled transition system (LTS) over goméitions. Apart from describing the
behaviour of the systeml > P in a configuratiol"<M» P, the LTS also models interactions between
the system and an observer typed urilde®ur LTS is alsacosted assigning a cost to each form of
transition.

The costed LTS, whose actions take the fofmk, is defined in Figurél5, in terms of a top-
level rule, LReN, and a pre-LTS, denoted a&-. The ruleLRex allows us to rename channels
for transitions derived in the pre-LTS, as long as this rengmns invisible to the observer, and is
comparable to alpha-renaming of scoped bound names indahdastlr-calculus. It relies on the
renaming-modulo (observer) type environments given inritedn[4.3.

Definition 4.3 (Renaming Moduld"). Letor : Name — NaMmE range over bijective name substitu-
tions satisfying the constraint thake dom(I') impliescor = w;l =C.

The renaming introduced hyRen allows us to relate the clientsp@nd G of (4.2) wrt. an ob-
server environment such asvy : [[T1]1]%, srv, : [[T2]Y]¢ of (1.8) and some appropriate common
set of resource$/ even when, after the initial channel allocations, the twents communicate
potentially diferent (newly allocated) channels snv;. The rule is particularly useful when, later
on, we need to also match the output of a new allocated chanrsaiv, from Cy with the output on
the previously allocated channel from Gn srv,. The renaming-modulo observer environments
function can be used for Gt that stage — even though the client reuses a channel pshyicom-
municated to the observer — because the respective obsefeanation relating to that channel
is lost, i.e., it is not in the domain of the observer environment; see dsiom forLOur andLIN

16 A. FRANCALANZA, E. DEVRIES, AND M. HENNESSY

below for an explanation of how observers lose informatibimis mechanism diers from standard
scope-extrusion techniques fercalculus which assume that, once a name has been extrided, i
remains forever known to the observer. As a result, therenare opportunities for renaming in our
calculus than there are in the standardalculus.

To ensure that only safe interactions are specified, the)({ii® must be able to reason compo-
sitionally about resource usage between the pro&ss)d the observel,. We therefore imbue our
type assumptions from Sectibh 2 withparmission semanticin the style of [[42| 13]. Under this
interpretation, type assumptions constitpgemissionglescribing the respective usage of resources.
Permissions are woven into the behaviour of configuratioviegthem anoperationalrole: they
may either restrict usage or privilege processes to usems®in special ways. In a configuration,
the observer and the process ea@n a set of permissions and m#ansferthem to one another
during communication. The consistency requirement of digoration ensures that the guarantees
given by permissions owned by the observer are not in confiitt those given by permissions
owned by the configuration process, and viceversa.

To understand how the pre-LTS deals with permission traresfiel compositional resource
usage, consider the rule for outputQgr). Since we employ the type system of Secfibn 2 to ensure
safety, this rule models the typing rule for outpu®(t) on the part of the process, and the typing
rule for input @In) on the part of the observer. Thus, apart from describingctimemunication of
valuesd from the configuration process to the observer on chagniélalso captures permission
transfer between the two parties, mirroring the type assiompsage intfOur and tIn. More
specifically, rule (Out) employs the operation : ['fz]"’f1 of Figure[4 so as to concisely describe
the three variants of the output rule:

- LOutU
F,Ci[f]("iﬂ) <M cdP Ldzo F,Ci[f](”i),d)fl_z «M»P
- LOuTA
[T} <MscddP 294, T, dT «<Ms P (4.3)
LOutW

Tc[f]l® <«MoscadP <24, rc[f]®, dF <«M»>P
The first output rule variantOurU, deals with the case where the observer owns a uniquef{afigr
permission for channel. Definition[4.1 implies that the process in the configurat®well-typed
(wrt. some environment) and, since the process is in a positiontfubon channet, rule TOut
must have been used to type it. This typing rule, in turngst#tat the type assumptions relating to
the values communicated: T, must have been owned by the process and consumed by the outpu
operation. Dually, since the observer is capable of inpgttinc, rule TIn must have been used to
type it which states that the continuation (after the input) assuthe use the assumptiorfs T
RuleLOutU models these two usages operationally asettmicit transferof the permissionsT: T
from the process to the observer.

The rule also models thenplicit transferof permissions between the observer and the output
process. More precisely, Definition 4.1 requires that tlee@ss is typedavrt. an environment that
does not conflict withhe observer environment, which implies that the process@rmment must
have (necessarily) used afiae permissiong: [f]l, for outputting on channali In fact, any other

8More specifically;rinU of (2.9).
his implies thatrOutA of (2.8) was used when typing the process

COMPOSITIONAL REASONING FOR CHANNEL-BASED CONCURRENT RE&YRCE MANAGEMENT

17

Costed Transitions and pre-Transitions

F<(MvP)or L TV<M' > P

7 LRen
FT<MesP —¢ T"'<M' > P

LOur
r,c:[T]2 <« M» cdP 2% I,c:[T]*Ld:T <M» P

LIN

Le[TAd:T « M » cXP S T c:[T1* « M » PR

[1<MsP 90 I aMsP TaM»Q X haM»Q

FT<MsP||Q S T<MsP | QY

LCom-L

r<MsP £y T'<M' > P

LPAr-L
FsM>P[|Q Loy I'<M'>P || Q

r<r’

LSIR

LREC
r<MsP &2, I"<M»P

IF'<Mv>recw.P Sg T<M»> P{I‘eCW.P/W}

LTHEN
I'«M,crifc=cthenPelseQ %9 '<M,c>-P

LELSE
F«<M,c,drifc=dthenPelseQ %o I'«M,c,d>Q

LALL

LALLE
[<M»allocxP 5,3 I'<M,c»> P{Cx}

IF'<M»P il—lﬂurl F,C:[f]'<M,C>P

LFREE

LFREEE
I'<M,c> freec.P 5_1 T<M»>P

I,c:T]*<M,c>P 25 T<M»P

Weak (Cost-Accumulating) Transitions

'<M»P L’k A<N>Q

T<MsP 5 I"<M' 5P =5, I'"<N>Q
WTRA

7 WLEFT
F'«<MesP = A<N>Q

Fr<MsP é(nk) I <N>Q

r<M-P :y>| I'<M'»>P 5 I”<N»Q

7 wRiGHT
I'«<MsP =(14+K) I «N»>Q

Figure 5: LTS Process Moves

18 A. FRANCALANZA, E. DEVRIES, AND M. HENNESSY

type of permission would conflict with the unique-afterd() permission for channelowned by the
observer. Moreover, through the guarantee given by theipsion usedg¢: [f]("”l), the observer
knows that, after the communication, it is one step closgatds gaining exclusive permission for
channelc. RulerLOurU models all this as the (implicit) transfer of théiae permissiorc : [Tz]1
from the process to the observer, updating the observersiggion forc to [T]¢*) — note that two
permissiong: [T]*+Y, ¢:[T]* can be consolidated as[T]*) using the structural rulesom and
pUnq of Figurel4.

The second output rule variant 6f (4.BQuTA, is similar to the first when modelling the explicit
transfer of permission§ : T from the process to the observer. However, it describedfareit
implicit transfer of permissions, since the observer usestiine permission to input from the
configuration process on chanmelThe rule caters for two possible subcases. In the first thse,
process could have used a unique-afierd) permission when typed usin@ur: this constitutes
a dual case to that of rulOutU, and the rule models the implicit transfer of thiree permission
C: [f]1 in theoppositedirection,i.e.,from the observer to the process. In the second case, thegsroc
could have used arfine or an unrestricted permission instead, which does nait iasany implicit
permission transfer, but merely the consumption fiha permissions. Since the environment on
the process side is existentially quantified in a configargtthis diference is abstracted away and
the two subcases are handled by the same rule variant. Naiteiriithe extreme case where the
observer fine permission is the only one relating to chanyeéhe observer loses all knowledge of
channek.

The explicit permission transfer faOurW of (4.3), is identical to the other two rule variants.
The use of an unrestricted permission édrom the part of the observec,: [T]¢, implies that the
output process could have either used fiima or an unrestricted permission—seel(2.5). In either
case, there is no implicit permission transfer involved. rdbwer, the observer permission is not
consumed since it is unrestricted.

The pre-LTS rulaLln can also be expanded into three rule variants, and moddisgans per-
mission transfer between the observer and the input prodesgortantly, however, thexplicit
permission transfer describediisthe opposite directioto that ofLOut, namely from the observer
to the input process. As in the caser@iuTA of ([@.3), the permission transfer from the observer to
the input process may result in the observer losing all kedge relating to the channels communi-
cated d.

In order to allow an internal communication step throughesit.Com-L, or its dualLCom-R
(elided), the left process should be considered to be pahecfobserver” of the right process, and
vice versa. However, it is not necessary to be quite so meeais can follow([[19] and consider an
arbitrary observer instead. More explicitly, the rule stathat if we can find observer environments
(I'; andI™,) to induce the respective input and output actions from regpaconstituent processes
making up the system, we can then express these separagiioies as a single synchronous
interaction; since this interaction is internal, it is ipg@dent of the environment representing the
observer in the conclusiol, Seel[19] for more justification.

In our LTS, both the processALL, LFrRee) and the observer.ALLE, LFReeE) can allocate
and deallocate memory. Finally, since the observer is nedlexclusively by the permissions it
owns, we must allow the observer to split these permissidreawmecessary.$rr). The only rules
that may alter the observer environment are those corredgmpho external actionse., LIn, LOur,
LALLE, LFrReeE andLSrr. The remaining axioms in the pre-LTS model reduction rulesfFigurd 2
and should be self-explanatory; note that, as in the reslua&mantics, the only actions carrying

COMPOSITIONAL REASONING FOR CHANNEL-BASED CONCURRENT RE&YRCE MANAGEMENT 19

a cost are those describing allocation and deallocatiorerevthe respective costs associated are
inherited directly from the reduction semantics of Sedt#bn

In Figurel® we also specify weak costed transitions for caméitions, based on the transitions
of our LTS (rulewTra). As is standard, the relation denotes actions paddedtignsitions to the
left and right. However, it alsaccumulateshe costs of the respective transitions into one aggregate
cost for the entire weak action (ruled_err andwRiGHT).

Technically, the pre-LTS is defined over triplesM, P rather than configuratioris< M » P, but
we can prove that the pre-LTS rules preserve the requirerriensuch triples to be configurations;
see Lemma4l5.

Lemma 4.4(Transition and Structure)’ <« M» P -4, T” <« M’ » P’ and for A consistent
A+ M»>P implies the cases:
If u=cld: M=M,k=0,P=cldP, || Py, P =P1||P, and I = (I, c:[T]9),
I’ = (I,c:[T]121,dT) and A < (A, c:[T]2,d:T), (A, c:[T]PY) r P
for some R, P, I, b, T andA’.
If u=c2d M =M, k=0, P=c?%P; || Pp, P = P1{dx) || P, and
I=@",c:[TIAdT).I” = ([, c:[T]#Y) and A < (A, c:[T]P),
(A, c:[T]PLd:T)r P forsomeR,P,,I",b,T andA’.
If u=1: Either of three cases hold :
e M=M',k=0andI'=T1" and A+ P or;
e M= (M,c), k=-1land P= freec.Py || P, P = P, | P,,T = I" andA < A, c:[T]*
whereA’ + P’ (for some R, P,, T andA’) or;
e M’ =(M,c), k=+1 and P= allocx.P; || Py, P’
andA’,c:[T]* + P’ (for some R, P, T andA’)
If 4= freec: M =(M’,c),k=-1 andl =I",c:[T]* and P= P’ for someT.
If u=alloc: M’ =(M,c),k=+1 and I,c:[T]* =I" and P= Q for someT.
fu=env: T'<I",M=M',k=0and P= P’

Proof. By rule induction oT <M P £, " <« M’ > P’ O

P1{%} || P> andT =TI andA < A’

Lemma 4.5(Subject reduction)If ' < M » P is a configuration and" < M»>P ‘-, A<N» Q then
A <N»> Q is also a configuration.

Proof. We assume thatlom(I') € M and that there exista such thatl’, A is consistent and that
A + M P. The rest of the proof follows from Lemnia_4.4 (Transition éiucture), by case
analysis ofu. L]

As a consistency check, we can also show that our LTS sersdatin accordance with the
reduction semantics presented’in 2. In particutairansitions correspond to reductions modulo
renaming and process structural equivalence.

Lemma 4.6(Reduction and Silent Transitions)
(1) M>P — M’ > P impliesT <« M»> P 1>k I' <« M’ > P” for arbitrary I' where P’ = P,
) Tr<M»P ;k A<M’ > P implies(M > P)or —k M’ » P’ for someor.

Proof. By rule induction orM > P —s M’> P’ andT <M »P -, A<M’» P’.]

20 A. FRANCALANZA, E. DEVRIES, AND M. HENNESSY

Example 4.7. Recall the bifer implementation Bffi from Section B and the respective external
environmentl'ey; defined in Sectiof 3l1. The transition rules of Figure 5 allssvto derive the
following behaviour for the configuratiofiey: < M, ¢1 » Buff (wherein, out, b,d € M):

innv allocz(Frn|| b'z|| ¢i1!(v1,Z
Fex< M.y Buf —0 Fext“'\"’cl”(I 01?(Y(Z).01|1|t!y.(|ll301k(|| éuz;)) (4.4)
T (Frn|| blca || ca!(va, €2))
+1 Teas M. Cs, CZ”(I c12(y, 2).outly.(Bck || di2) (4.5)

recw. b?x. in?%y.allocz (w || b!z || X\(y, 2)
= Fext“ M’Cl’ C2 D[|| bIC2 ” C]_!(Vl, CZ)]
I c1?(y, 2).out!y.(Bck]| d!2)
. b?x. in?.allocz (Frn|| b'z|| X(y, 2))
—0 Fext< M, Cy, Czl>[| blca || cql(vi, c2) J (4.6)
I c1?(y,2).outly.(Bck]| d!z)

. in?y.allocz(Frn| b'z|| c;!(y, 2)
_>0 Fext“ M’ Cl’ C2 > [|| Cl!(Vl, C2)] (47)
I c1?(y,2).out!y.(Bck]| d!2)

. in?.allocz(Frn| b'z|| c3!(y, 2)

-__>+1 FeXt< Ma Cla C2a C3 > [|| Cl!(Vl, C2) || CZI(VZ’ C3) J (48)
|| c1?(y,2).outly.(Bck|| d!z)
in?y.allocz(Frn| b'z|| c3!(y, 2)

out!vy

=0 lexx< M, Cy, 02,03>{ I co!(v2,C3)] (4.9)
I c2?(y,2).out!ly.(Bck|| d'z)

Transition [4.4) describes an input from the user wheife&h élocates a new internal channel,
followed by a recursive process unfolding, (4.6), and tistaintiation of the unfolded process with
the newly allocated channe}, (4.1), through a communication on chanbelThe weak transition
(4.8) is an aggregation of 4 analogous transitions to the qust presented, this time relating to
a second input of valug,. This yields an internal output chain of length iZ., c;!(v1,¢c0) ||
co!(vo, c3). Finally, (4.9) is an aggregation of 4 transitions relgtio the consumption of the first
item in the chaingc!(vy, ¢p), the subsequent output @f on channebut, and the unfolding and
instantiation of the recursive process Bck with— see definition for Bck.

4.2. Costed Bisimulation. We define a cost-based preorder over systemstggedl relation cf.
Definition[4.2, ordering systems that exhibit the same e=ldoehaviour at a less-than-or-equal-to
cost. We require the preorder to consider clienta® more #icient than @ wrt. an appropriate
resource environmenl and observers characterised by the type environment statdg) but
also thatwrt. the same resource and observer environments, cligat (1.5) is more éicient than
C1. This latter ordering is harder to establish since cliepi€Cat timestemporarilymore dficient
than G.

In order to handle this aspect we define our preorder asrantizedbisimulation [30]. Amor-
tized bisimulation uses@edit nto compare a systemd > P with a less ficient systenmN » Q while
allowing M > P to do a more expensive action thah- Q, as long as the credit can make up for
the diference. Conversely, whenevdr> P does a cheaper action thahs Q, then the diference

COMPOSITIONAL REASONING FOR CHANNEL-BASED CONCURRENT RE&YRCE MANAGEMENT 21

getsaddedto the credi@ Crucially, however, the amortisation creditrisver allowedo become
negativei.e., n € Nar. In general, we refine Definitidn_4.2 to amortized typed refet with the
following structure:

Definition 4.8 (Amortised Typed Relation)An amortized type-indexed relaticR relates systems
under an observer characterized by a cornifextith creditn (n € Nar); we write

Fr'e M>PR"N»>Q
if R" relatesI” < M > P andI' <N »> Q, and boti" < M » P andI' < N » Q are configurations.

Definition 4.9 (Amortised Typed Bisimulation)An amortized type-indexed relation over processes
R is a bisimulation af” with creditn if, whenevel £ (M > P)R" (N » Q),

e fl<M»>P Lk I'" <« M’ > P’ then there exish’ andQ’ such that
F<N»>Q = I’ «<N’»> Q wherel” £ (M’ » P")R™K (N> Q')
o fT<«N»> QALN I « N’ > Q’ then there exisM’ andP’ such that
F<MsP Ly I <M’ > P wherel” £ (M’ » P')R™ K (N > Q')
whereyi'is the empty string if: = T andu otherwise.
Bisimilarity at T" with creditn, denotedl” ¢ M » PE]. N » Q, is the largest amortized typed

~bis
bisimulation atI" with credit n. We sometimes existentially quantify over the credit andtenr
I'eM>PEpcN>Q. We writeT £ M > P >~ N > Q to denote the kernel of the preordere(,
whenever we have bolhr M»>PCEis N> Q andl’ E N> QLS M>P), and writel' £ M»>P Cpis N>Q

whenevel' E M>PE N> Qbutl’ E N> Q ZyisM > P.
Example 4.10(Assessing Client fciency) For the (observer) type environment
Iy € srvi:[[To]4°, srva:[[To]Y*, c:[T1, T2l (4.10)

and clients @ and G defined earlier in[(1]2), we can show tHat £ (M » C1) £.,((M » Co) by
constructing the witness bisimulation (family of) relat{s) R for 'y £ (M» Cy) ;gis (M»Cy) stated
belowf

(I, n, M">Cq, N> Co) n>0
I',n, M’ >alloc X. srvi!X X?y.srvo! X x?zcl(y, 2.Cy d¢ dom(I)
,N’>alloc xj.alloc Xo. srvi!Xg. X1 2y.srvo! Xo. X2?22.cl(y, 2).Co
I, n, (M’,d)»srvi!d d?y.srvy!ld. d?zcl(y, 2).Cy ,
< , (N', d’) >alloc Xp. srvp!d’. d’?y.Sl"Vg! X2. X2?Z.C!(y, Z).Co d'¢ dOfT(F)
I, n+1, (M,d)>srvi!d. d?y.srv,ld. d?zcl(y, 2.C, .
RE < (N, o, d") > sTvild'. 0 .sTvold”. 07 22.¢1(y, 2).Co d” ¢ dom(I)
(T, d:[T4]Y), n+ 1, (M’,d)»d?y.srvold. d?zcl(y, 2).Cy M’ € N’
,(N’,d,d”) > d?y.srvo!d”. d”?zcl(y, 2).Co =
I, n+1, (M,d)»srvyld.d?zcl(v,2.C, ,
LN, d") s stvold” . d”2zcl(v, 2).Cq dom(I’) < M
(C,d:[T2]Y), n+1, (M”,d)»>d?zc!(v,2).C1, (N, d",d)»d?zc!(v,2).Co)
T, n+1, (M, d)>cl(v,V).Cq, (N',d,d)>cl(v,V).Co)

10stated otherwiseyl » P can do a more expensive action tHdr Q now, as long as it makes up for it later.
11 families of relations ranging over systems indexed bytgpvironments and amortisation credits, sucik,ase
represent £ (M > P) Egis (A»> Q) as the quadrupld’, n, (M > P), (A > Q)).

22 A. FRANCALANZA, E. DEVRIES, AND M. HENNESSY

It is not hard to see th&R contains the quadrupl@y, 0, M > C1, M » Cp). One can also show that it
is closedwrt. the transfer property of Definitidn 4.9. The key moves are:

¢ asingle channel allocation byy @& matched by two channel allocations by-& from the second
up to the fourth quadruple in the definition &f Since channel allocations carry a positive cost,
the amortisation credit increases frorton+2-1, i.e.,n+ 1, but this still yields a quadruple that
is in the relation. One thing to note is that the first chantietated by both systems is allowed
to be diferent,e.g.,d andd’, as long as it is not allocated already.

e Even though the internal channels allocated may Kerdint, ruleLRenx allows us to rename the
resp. names of the allocated channels (not known to the obsereeasamatch the channels
communicated osrv; by the other system (fourth and fifth quadruples). Sinceglumnnels
are not known to the observeére., they are not idomI), they all amount tdreshnames, akin
to scope extrusion [35, 19].

e Communicating on the previously communicated channelran consumes all of the observer's
permissions for that channel (fifth quadruple), which alawle LRe~ to be applied again so as
to match the channels communicatedsam, (sixth quadruple).

We cannot however prove thBi £ (M > Co) 5 (M > Cy) for any n because we would need
an infinite amortisation credit to account for additional cost incdrby G, when it performs the
channel extra allocation at every iteration; recall thi thedit cannot become negative, and thus
no finite credit is large enough to cater for all the additiac@st incurred by @ over suficiently
large transition sequences.

Similarly, from {1.2), we can show th&t £ (M »> Cy) Cpis (M » Cy) but also, from[(15), that
I'n E (M»C3) Cpis (M Cy). In particular, we can shoW; £ (M > C3) Eyis (M » Cq) even though
M > C; is temporarily more #icient thanM » Cg3, i.e., during the course of the first iteration. Our
framework handles this through the use of the amortisatieditwhereby, in this case, it fices
to use a credit of value 1 and shdw E (M »Cs) Etl)is (M»>Cy); we leave the details to the interested
reader. Using an amortisation credit of 1 we can also show(M » Cs) Etl)is (M » Cy) through the
bisimulation family-of-relationsR” below — it is easy to check that it observes the transfer ptppe
of Definition[4.9; by constructing a similar relation, one@dso show thaf; £ (M>Cy) ;gis (M>C3)
which implies thaf'; £ (M > Cp) =~pis (M» C3). We just note that ifR’, the amortisation credi
can be capped 8 n < 1 and revisit this point again in Sectibn ¥4.4.

COMPOSITIONAL REASONING FOR CHANNEL-BASED CONCURRENT RE&YRCE MANAGEMENT 23

(I, 1, M>C3, M»>Cy)
C 1 Ms alloc xi.alloc Xp. srva!Xg. X1 2.
< > srvo!Xo. Xo72free X;.free Xp.cl(y, 2.C3 |’ >
M alloc X. srvi!X X?y.srvy! X X?zfree x.cl(y, 2).Co
alloc Xo. srvy!d. d?y.
<F, L (M.d)» srvolXo. Xo72freed.free x.cl(y,2).C3 |’ > d¢ domI)
(M,d) > srvi!d.d?y.srvold . d'?2zfreed .cl(y, 2).Cy
. srvi!d. d?y.srvo!ld”.d” 7z
<F’ 0. M.d.d)>{ ¢ eed freed” cl(y.2).Cs |’ > d ¢ dom(T)
(M,d) > srvi!d. d?.srvold . d ?zfreed’.cl(y, 2).C;
, def d?y.srvo!d”’.d” 7z
R = . 1 12
<(r,d[Tl]), 0, (M, d,d)>(freed.free d".C!(y, Z).C3)a > d"EdOfT(r)
(M, d) > d?y.srvold. d?zfreed.cl(y, 2.C,
I, 0, (M, d,d”)> srvold”.d”?zfreed.freed”.cl(v, 2).Cs,
(M, d) > srvy!d. d?zfreed.cl(v, 2).C,
(T, d:[To]Y), 0, (M,d,d)»d'?zfreed.freed’ .cl(v, 2).Cs,
(M,d)>d?zfreed .cl(v,2).C;
I, 0, (M,d,d)»> freed.freed’.cl(v, 2).Cs,
(M,d) > freed’'.cl(v,V).C,
I, 0, (M,d)»> freed’.c!(v,2).Cs, M>c!(v,V).Cz)

I, 1, M>cl(v,2.C3 M>cl(v,V).Cz)

domI) c M

4.3. Alternatives. The cost model we adhere to in Sectldn 4 is not the only pléusibe, but
is intended to follow that described by costed reductionSeétion[2. There may however be
other valid alternatives, some of which can be easily accodated through minor tweaking to our
existing framework.

For instance, an alternative cost model may focus on asge#se runtime execution of pro-
grams, whereby operations that access memory suthlag X.P andfree c.P have a runtime cost
that far exceeds that of other operations. We can model thiohsidering an LTS that assigns a
cost of 1 to both of these operations, which can be attaineddasived LTS from our existing LTS
of Sectior{ 4.1 through the rule

F<MsP Ly I"aM' > P
LDEr1

r<M»P L»|k| I'<M'»>P
wherelk| returns the absolute value of an integer. Definifior 4.9reidein straightforward fash-
ion to work with the derived costed LTS“—»k. This new preorder would allow us to conclude
I'n E (M > Cy) Epis (M > Cy) because, according to the new cost model, for every sartenaction
iteration, client G uses less expensive memory operations than C
Another cost model may require us to refine our existing gleorFor instance, consider an-
other client G, defined below, that creates a single channel and keeps singdtifor all iterations:

Cs = alloc X recW. srvi!X X?y. srvo! X x7zret!(y,2). w

24 A. FRANCALANZA, E. DEVRIES, AND M. HENNESSY

At present, we are able to equate this client witha@d G from (I.2) and[(Z.6)esp, on the basis
that neither client carries any memory leaks.

I'1E(M>Cy) =pis (M>Cg) =pis (M»>Cp)

However, we may want a finer preorder whergi€considered to be (strictly) mordheient
than G, which is in turn more fiicient than G. The underlying reasoning for this would be that C
uses the least amount of expensive operations; by contsdsteps on allocating (and deallocating)
new channels for each iteration, and @llocates (and deallocates) two new channels for every
iteration. We can characterise this preorder as followsst kve generate the derived costed LTS
using the rule.Der2 below —| k| maps all negative integers to 0, leaving positive integaedtared.

Fr<MsP 5y <M > P

LDER2
T<MoP Loy T'aM > P’
Then, after adapting Definitidn 4.9 to this derived LTS, dempsuch a bisimulation relation as
Chis2» We can define the refined preorder, denotedas, as follows:
I'e M»PEbiSN>Qand
I'e N> QEbisM > P ImpIIeSF EM»> PEbiSZN > Q
The new refined preordés,s3 above requires thawl > P is at least asfécient asN > Q (possibly

more) when it comes to memory leak®., 5y, and moreover, whenever they are equatijceent
wrt. these leaksM » P must also be asfcient (possibly morejvrt. memory allocations e., Syiso-

TEMsPChgN>Q & {

4.4. Properties of Cpis. We show that our bisimulation relation of Definition 4.9 olves a number
of properties that are useful when reasoning about resafficiency; see Example_4.24 below.
Lemmad 4.111 and 4.112 prove that the relation is in fact a gegpwhereas Lemnia 4]14 outlines
conditions where symmetry can be recovered. Finally, Té®f.Z8 shows that this preorder is
preserved under (valid) context; this is the main resulhefdection.

First of, we show thaE, is a preorder following Lemnia4.111 (where would be the identity)
and Lemma4.12.

Lemma 4.11(Reflexivity upto Renaming)Whenever the tripl& <« M » P is a configuration, then
I'e (M»>P)or ~ps M>P

Proof. By coinduction, by showing that the family of relations
{T,0,(M»>P)or,M»>P) | T <« M»Pis a configuratioh
is a bisimulation. L]

Lemma 4.12(Transitivity). Whenevel £ M > PCis M’ > P” andI' £ M’ » P’ C,isM” » P” then
I'eMp» Pgbis M’ > P

Proof. I' £ M» P M’ » P” implies that there exists sonme> 0 and corresponding bisimulation
relation justifyingl’ £ M > PS... M’ » P’. The same applies fdf £ M’ » P’C,;,;M” » P” and

~bis
somem > 0. From these two relations, one can construct a correspgrgsimulation justifying
I'eM»>PCETM” > P, O

Corollary 4.13 (Preorder) Sy, is a preorder.
Proof. Follows from Lemm&4.11 (for the special case wherés the identity) and Lemnia 4.112]

COMPOSITIONAL REASONING FOR CHANNEL-BASED CONCURRENT RE&YRCE MANAGEMENT 25

We can define a restricted form of amortised typed bisimuatin analogous fashion to Def-
inition [4.9, whereby the credit isapped at some upper bounice., some natural numben. We
refer to such relations @ounded Amortised Typed-Bisimulaticarsd write

FeE™M»>PSp N> Q
to denote thal' < M » P andI’ < N> Q are related by some amortised typed-indexed bisimulation a
indexI" and crediin, and where every credit in this relation is less than or etjuiad, whenever the
precise credin is not important we elide it and simply writee™ M » PE,.c N » Q. We can show

that bounded amortised typed-bisimulations are symmetric
Lemma 4.14(Symmetry) I E™ M > PE,is N> Q impliesI’ E" N> QEpcM > P

Proof. If R is the bounded amortised typed relation justifying™ M » PC,is N > Q, we define the
amortised typed relation

Rsym = (L, (M=n),N>Q,M»P) [(I',n,M>P,N»> Q) € R}

and show that it is a bounded amortised typed bisimulatiowels Consider an arbitrary pair of
configurationd” £ N> QRI M » P:

e Assume <«<N»>Q i>| I <N’»>Q’. From the definition ofRsym, it must be the case thdt, n, M »
P,N> Q) € R. SinceR is a bounded amortised typed bisimulation, we know thatM »

P =”>| I <M »>P whered’,n+1 -k M >P ,N>Q) e R. We however need to show that
I, (M=-n)+k=1),N>Q', M > P’) € Rsym, Which follows from the definition oRsym and the
factthattm—(n+1-Kk) =(m-n)+k-1.

What is left to show is thaRsym is an amortised typed bisimulation boundedrhyi.e., we
need to show that & (m-n)+k—1 < m. SinceR is anm-bounded amortised typed bisimulation,
we know that O< (n + | — k) < mfrom which we can drivem < —(n+1 - k) < 0 and, by adding
mthroughout we obtain & (m— (n+1 - k) = (m-n) + k—1) < mas required.

e The dual case faF <M » P in I <M’ > P’ is analogous.]

Contextualityis an important property for any behavioural relation. Iin case, this means that
two systemdv>P andN»>Q related by= ;s underT’, remain related when extended with an additional
processR, whenever this process runs safely over the respectiveinasenvironment$! andN,
and observes the type restrictions and guarantees assyrig@hd dually, those of the respective
existentially-quantified type environments fdr- P andN > Q). Following Definition 4.1, for these
conditions to hold, contextuality requir&to typecheckwrt. a sub-environment df, sayl'; where
I' = I'1, T2, and correspondingly strengthens the relatiotMof P || RandN > Q || Rin Sy, under
the remaining sub-environmenitp. Stated otherwise, contextuality requires the transfethef
respective permissions associated with the observer mgessR from the observer environment
I'; this is crucial in order to preserve consistency, thustgaiie the respective configurations. The
formulation of Theorem 4.23, proving contextuality fgg;s, follows this reasoning. It relies on a
list of lemmas outlined below.

Lemma 4.15(Weakening) If T<M»P £, T”<«M’>P’ then(I', A)<M»>P £, (I",A)<M’> P,
(These may or may not be configurations.)

Proof. By rule induction ol <M P £, T <M’>P’. Note that, in the case aflloc, the action
can still be performed.]

26 A. FRANCALANZA, E. DEVRIES, AND M. HENNESSY

Lemma 4.16(Strengthening) If (I, A)<M» P 45 (I",A)<M’> P’ then[<M»>P 45, " <M’> P,

Proof. By rule induction onl, A < P £, I”, A < P’. Note that strengthening is restricted to the
part of the environment that remains unchangkds(the same on the left and right hand side) —
otherwise the property does not hold for actichd andc?d. L]

Lemma4.17.1f ', A is consistent and < A’ thenI', A’ is consistent andl, A < T, A’

Proof. As in [12]. L]
Lemma 4.18(Typing Preserved by). I' + P and P= Q impliesI' + Q
Proof. As in [12]. L]

Lemma 4.19(Environment Structural Manipulation Preserves Bisirtiatg.
I'eSEp T andl < IV impliesI” £ ST T
Proof. By coinduction. We define the quarternary relation

{r'.nS.T)ITk SER T andl <17}
and show that it observes the transfer property of Defindigh L]
Lemma 4.20(Bisimulation and Structural Equivalence)
P=Qandr<M»P Lk A<M’ > P impliesT <M»Q Lk A>M>Q and P = Q
Proof. By rule induction onP = Q and then a case analysis of the rules permitlingV » P Lk
A<M’ >P. L]

Corollary 4.21 (Structural Equivalence and Bisimilarity}® = Q impliesI' £ M » PCL. M » Q for
arbitrary n andI” whereI' < M » P andI' < M » Q are configurations.

Proof. By coinduction and Lemma4.P0.]
Lemma 4.22(Renaming) If I, A £ (M»P) Sp.. (N> Q) thenT, (Aor) E (M > P)or Spig (N> Q)or
Proof. By coinduction. L]

Theorem 4.23(Contextuality) If I,A e (M»>P) . (N> Q) andA + R then

~bis
F'e(M>PIRE(N>QIIR and Te(M>R|P)Sh (N>R Q)

Proof. We define the family of relation®"" to be the least one satisfying the rules
Fe(MsP)E(N>Q) TAE(M>P)R"(N>Q) A+R T,A(M>P)R"(N>Q) ArR
F'e(MeP)R" (N> Q) Fre(M=P|RR"(N>Q|R Fre(M>R|P)R"(N>R| Q)

and then show th&" is a costed typed bisimulation Btandn (up to=). Note that the premise of

the first rule implies that both, A<M P andI', A<N > Q are configurations. We consider only the

transitions of the left hand configurations for second cdgbeorelation; the first is trivial and the
third is analogous to the second. Although the relation tssgpmetric, the transition of the right

hand configurations are analogous to those of the left hanfigtwations. There are three cases to
consider.

COMPOSITIONAL REASONING FOR CHANNEL-BASED CONCURRENT RE&YRCE MANAGEMENT 27

(1) Case the action was instigated Byi.e.,we have:
F<(M»>P)or 25 T'<M' > P
LPAR-L

F<(M>P||Ror £ I"<M’»>P || Rop (4.11)
LREN

F<MsP||R 25 I"<M’»P || Ror
By Lemmd 4.1b (Weakening)Re~ and [4.11) we obtain
T, (Aor) < (M» P)or - T, (Aor) <« M’ » P’ (4.12)

Lemmal4.2P can be extended®S is straightforward fashion, and from the case assumption
I[LAr M»>PR"N» Q (definingR"") and the extension of Lemna 4]22%8 we obtain:

I, (Aor) E (M P)orR" (N> Q)or (4.13)
Hence by[(4.113)[(4.12) and |.H. there existd’a Q' such that

T, (Aor) « (N> Q)or 2k I, (Aor) <N’ » Q (4.14)
where T, (Aor) E (M > P) R (N> Q) (4.15)
By (4.14) and.Ren, werel'; =T, (Aor), we obtain
L, (Aor) < (N> Qoo () Lig (o) T (Aor) <N > Q (4.16)
wherek = k; + ko + k3. By LPak Lemmé& 4,16 (Strengthening) arid (4.16) we deduce
F<((N> Qor)op, | Ror (<) Bt (o) T <N'> Q || Ror (4.17)
FromA + Rwe know
Aor + Ror (4.18)

and, fromI'; = T, (Aor) and Definitio 4.B (Renaming Modulo Environments), we krtbat
(Rrrp)rr’rl = Ror since the renaming does not modify any of the hames in the idoofid ™y,
hence ofAor. Also, from DefinitiorEBp"rl is also a substitution moduldand can therefore
refer to it asof., thereby rewriting[(4.17) as

F<(N> Q[Rora} () S () ['<N'»>Q || Ror (4.19)
From [4.19) andRex we thus obtain

F<N»>Q[R = I'<N»(Q | Rop)

This is our matching move since and lby (4.15), (#.18) and #fimition of R we obtainI”
(M’»>P" || Ror) R™ (N’ > Q' || Ro).
(2) Case the action was instigatedRyi.e., we have:
r<(MeRor £ T"<M'»R
LPAr-R

IF'<(MeP||Ror £ I"'<M»»P|R (4.20)
LREN

r<MsP||R &5 I['<M»>P|R
The proof proceeds by case analysisiaffhereby the most interesting cases are wher+1
orl = —1. We here show the case for whea -1 (the other case is analogous). By Lenima 4.4
we know that eithen = free c and

Mor = M/, c R = Ror F:F’,c:[f]‘

28

A. FRANCALANZA, E. DEVRIES, AND M. HENNESSY

or else thaji = 7 and

Mo = M’,c (4.21)
Ror = freecR||R and R =R || R (4.22)
r=r (4.23)
Aot < A',c:[T]* and A"+ R. (4.24)

We here focus on the latter case,,whenu = 7. The main complication in finding a matching
move for this subcase is that of inferring a pair of resulsystems (one of which B<M’»>P ||
R’) that are related b by using the inductive nature of the relation definition. Ecfle to do
so, we need to mimic thdtect of R's deallocation transition oM in the corresponding system
N> Q; we do this with the help of an appropriate external deatlooaransitionfree c.

By the extension of Lemnia 4.2 ®' we knowT, Aot £ (M > P)or R" (N> Q)or, and by
(4.24) and a straightforward extension of Lenima¥4.18 t@e obtain

I,A,c:[T]° £ (M»P)or R" (N> Q)or (4.25)
and by [4.2]1) andFreeE we deduce

freec

LA, c:[T]* «(M>P)or ——_; T,A" <(M’»>P)or
and by [4.25) and I.H. there exists a matching move

freec

LA, c:[T]"<(N>Q)or =—= ILA'<N'»Q (4.26)
andl, A E M/ » PP RMCD N/ @ (4.27)
By (4.28) andLRen, for k = k; — 1 + kp, we know
LA [T <((N> Qor)of, i, LA, C[T]*<N"»Q" (4.28)
wherel', =T, A’, c:[T]* (used inor-, above) (4.29)
LA, [T <N’ > Q" £2¢ | LA <N”»Q” (4.30)
[LA<N”»Q" L TA<N>Q (4.31)
From [4.28),[(4.31),Par-L and Lemma 4.16 (Strengthening) we obtain:
F<((N>Qor)of, IRor -y T<N”>Q" | (Ror) (4.32)
r«<N”»Q"|[IR <, T<N»>Q|R (4.33)

Also, from (4.30) and Lemma4.4 (Transition and Structure)deduce thal” = N”’, c and
thus, from [4.2R)1LFrEE, LPAR-R we obtain:

F<N’>Q"[Ror 1 T<N”»Q'[IR (4.34)

By (4.24) and[(4.29), we know that we can find an alternativeameing functioncr’r’s, where
I's =T, (Aor), in a way that, from[{4.32), we can obtain

I'<((N>Qor)af, IRt , T<N’»>Q" | (Ror) (4.35)

Now, by A + Rwe knowAor + Ror and subsequently, by Definition 4.3 and (4.29) we know
(Ror)or, = Ror. Thus, we can rewritg(N > Q)or)oy, || Ror in @.35)aqd(N>Q|| Rjor)ot,.
Merging [4.35),[(4.34) and (4.B3) we obtain:

F<((N>Q| R)a'r)o'{-’3 ;;1;_1;;2 Ir<N>Q || R

COMPOSITIONAL REASONING FOR CHANNEL-BASED CONCURRENT RE&YRCE MANAGEMENT 29

By Definition[4.3 we know thatr’r’3 can be rewritten as’ and thus by.Ren we obtain the
matching move

F<N»>Q| R =¢ I'<N'>Q || R
because by (4.27), (4.24) and the definitiorRofve know that
TEM P |RR™EDN-Q |R.
(3) Case the action resulted from an interaction betweandR, i.e., we have:

F1<(M>P)0'rﬂrol“’1<M’>P' F2<(M>R)0'1-C—?Jrol“’2<M’>R’
LCom-L
F<(M>P||Ror —oT <M »P || R (4.36)
L

= REN
'<MrP||R —g T<M»P | R
By the two top premises of (4.B6) and Lemma 4.4 we know

Mo = M/ (4.37)
Por = cld.Py || P, P'=P. || P, (4.38)
Ror = ¢?XRy || Ry R = Ry{d% | Ry (4.39)
FromA + Rwe obtainAor + Ror, and by [4.3R)A + Rand Inversion we obtain
Aot < Ay, Ay, c:[U]2 (4.40)
A c:[U12L 0 r Ry (4.41)
A2 F Ry (4.42)
Note that through(4.41) we know that
c:[U1* L is defined. (4.43)
By (4.41), the Substitution Lemma (Lemma 4.4 fram|[12]) dAdiZ) we obtain
Av, A, c:[017 L, d:0 + Ryd) || Ry (4.44)
From the assumption definirg, and Lemm&4.22 we obtain
I,(Aor) £ (M»P)or R" (N> Q)or, (4.45)

and by [Z.4D) and Propositidn 4117 we know tRafAor) < T, A1, Ag, ¢ : [U]2 and also that
T, A1, Ay, c:[U]2is consistent. Thus by (445) and Lemma4.19 we deduce

T, A1 Mg c:[U)2 £ (M»P)or R" (N> Q)or (4.46)
Now by (4.43),[(4.3B)[(4.37),Our, LPar-L, LRex and Lemm& 4.20 we deduce
I, Az Az, c: [0« (M s P)or —Ssg T, AL AL, c:[0]% L, d:0 <M’ » P’ (4.47)
and hence by (4.46) and |.H. we obtain
- CT - - =
I, A1 Az, c:[U]2« (N> Q)or === T, A7 A, c:[0]% L, d:0 <N » Q (4.48)
such thaf’, A1, Ap, c:[U12 L, d:U £ (M'» P') R0 (N> Q') (4.49)

30 A. FRANCALANZA, E. DEVRIES, AND M. HENNESSY

From [4.48) andRex we know

I, A1, Az, ¢:[U]%< (N> Qor)o, <, T, Az, Az, c:[017<N”» Q" (4.50)
T, A1, Ag, c:[U12<N” > Q" L‘Tm T, A1 Apc: (UL d:0<«N” » Q” (4.51)
[, A1 Mg, c:[01F L, d:0<N”» Q" oy T, A1, Ag, c:[U]1F L d:0 <N » Q (4.52)
wherek = k; + ko andI'y =T, A1, Ao, C: [lj]a (T4 is used in[(4.50)) (4.53)
From [4.50),[(4.52),Par-L and Lemma 4.16 (Strengthening) we obtain:
I'<((N>Qor)ot, Il Ror -, T<N”»Q" || Rop (4.54)
F<N’>Q”||R 5 T<N»Q IR (4.55)
By (4.39),LIN andLPar-L we can construct (for sonié;, I'7)
Tg<N” > Rop <90 Ty aN” > R (4.56)
and by [(4.511),[(4.56) andCom-L we obtain
IF<N”">Q" ||Ror = '<N”">Q"” |R (4.57)

By (4.40) and[(4.53), we know that we can find an alternativeung&ng functionof’ , where
I's =T, (Aor), in a way that, from[{4.54), we can obtain

I'<((N>Qor)of, Il Ror -, T<N” > Q" || Rop (4.58)
By Definition[4.3,Aor + Ro, (4.40), [4.58) we know thaRgr)o. = Ror, and also thatry’_
is also a renaming moduld, so we can denote it as’ and rewrite((N » Q)O'r)o"r’s || Ror as

(N> Q |l Rjor)of in (4.58). Thus, by[(4.88)[(4.57), (4)55]), (4153) arRkn we obtain the

matching move
I'<N»>Q||R = T<N'»>Q R
since by[(4.40)[(4.44)_(4.89) and the definitionfive obtain
TE(M>P |R) RO (N> Q || R)
as required.]
Example 4.24(Properties ot). From the proved statemerits £ (M > C1) Sy (M > Cp) and

I'1 E (M»>Cyp) Eyis (M > Cyp) of Example 4.1, and by Corollary 4]13 (Preorder), we maychale
that

I'1 £ (M»>Cz) Epis (M > Co) (4.59)
without the need to provide a bisimulation relation justify (4.59). We also note th&®’ of Exam-
ple[4.10, justifyingl’; £ (M » C3) Cyis (M » Cy) is aboundedamortised typed-bisimulation, and by
Lemmd4.1# we can also conclude

I'1 £ (M»>Cy) Spis (M > Cy)
and thud'; £ (M > C3) =pis (M>Cy). Finally, by Theoremi 4.23, in order to show that
C:T1, Tl Mo S || S 11 C1) Chis (M>$S 1| S 1l Co)

it suffices to abstract away from the common codg| S,, and show'; £ (M > Cy) Cpis (M Cy),
as proved already in Example 4110.

COMPOSITIONAL REASONING FOR CHANNEL-BASED CONCURRENT RE&YRCE MANAGEMENT 31

5. CHARACTERISATION

In this section we give a sound and complete characterizatidisimilarity in terms of the reduc-
tion semantics of Sectidd 2, justifying the bisimulatiotation and the respective LTS as a proof
technique for reasoning about the behaviouRofprocesses. Our touchstone behavioural preorder
is based on a costed version of families of reduction-cldsetied congruences along similar lines
to [20]. In order to limit behaviour to safe computationsggl congruences are defined as typed
relations (Definitiori 4.2), where systems are subject tormomobservers typed by environments.

The observer type-environment delineates the obsengtivat can be made: the observer
can only make distinctions for channels that it has a peronsr, i.e., at least an fine typing
assumption. The observations that can be made in our taughbehavioural preorder are described
asbarbs[24] that take into account the permissions owned by thergbse We require systems
related by our behavioral preorder to exhibit the same barbsa common observer.

Definition 5.1 (Barb) (I' <M » P) 222 £ (M » P) —:= (M’ > P’ || c!d.P”) andc € dom).
Definition 5.2 (Barb Preservation)A typed relationR is barb preserving if and only if
T'eM>PRN>Qimplies ([<M»>P |2 iff [<N»>Q 2").

Our behavioural preorder takes cost into consideratiois defined in terms of families of
amortised typed relations that are closed under costedtieds.

Definition 5.3 (Cost Improving) An amortized type-indexed relatidR is cost improving at credit
niff wheneverl £ (M»>P) R" (N> Q) and

(1) if M>P — M’» P thenN > Q — N> Q’ such thall £ (M’ » P’) R™¢ (N"»> Q);

(2) if N> Q — N> Q thenM » P — M’ » P’ such thal £ (M’ » P’) R™K (N' > Q).

Related processes must be related under arbitrary (daalgexts; moreover, these contexts
must be allowed to allocate new channels. We note that thendeclause of our contextuality
definition, Definitio{ 5.4, is similar to that discussed &arin Section 4.4, where weansferthe re-
spective permissions held by the observer along with thépkaced in parallel with the processes.
This is essential in order to preserve consistency (see ibafiiZ.2) thus limiting our analysis to
safe computations. Definitidn .4 also requires an additioondition, when compared to the con-
textuality definition discussed in Sectionl4.4, namely dfaesource extensionshere we consider
systems in larger resource contexts (owned exclusivelyheyobserver). This is described by the
first clause in the definition; we recall the implicit conditi for resource environment representa-
tions from Sectionl2, requiring the chanraiot to be present (thus allocated)Nh(resp.N) for the
resource environment to be well-formed e-is therefore fresh. In order to disambiguate between
the diferent contextuality definitions, we refer to Definition]5sffall contextuality

Definition 5.4 (Full Contextuality) An amortized type-indexed relatidR is contextual at environ-
mentI” and credit iff wheneverl £ (M > P) R" (N » Q):
(1) T,c:[T]* & (M,c>P) R" (N,c»> Q)
(2) If " <T'1,T> wherel's - Rthen
eI E(M:-P||RR"(N>Q| R)and
eI E(M:-R|P)R"(N>R| Q)

We can now define the preorder defining our notion of obsematisystem giciency:
Definition 5.5 (Behavioral Contextual Preorderjggg‘h

tions that is:

is the largest family of amortized typed rela-

32 A. FRANCALANZA, E. DEVRIES, AND M. HENNESSY

e Barb Preserving;
e Cost Improving at credit;
e Full contextual at environmeit

A systemM » P is said to be behaviourally asheient as another systei> Q wrt. an observer
I', denoted a§” £ M > P <pen N> Q, whenever there exists an amortisation credguch that
I'e M»P <P, N> Q. Similarly, we can lift our preorder to processes: a pro¢eissaid to be as

efficient asQ wrt. M andI” whenever there exists asuch thal" s M»P <7 M»>Q

5.1. Soundness forEy,s. Through Definitior{ 5.6 we are able to articulate why cliengsa@id C,
should be deemed to be behaviourally equafficent wrt. T'; of (4.10): for an appropriat$/, it
turns out that we cannot fliierentiate between the two processes under any contexteallowT .
Unfortunately, the universal quantification of contextPefinition[5.4 makes it hard to verify such
a statement. Through Theorém 5.10 we can however estahbligtotir bisimulation preorder of
Definition[4.9 provides a sound technique for determininigavéoural dficiency. This Theorem, in
turn, relies on the lemmas we outline below. In particulammd5.V and Lemnia 5.8 prove that
bisimulations are barb-preserving and cost-improvingenehs LemmAa 5.9 proves that bisimula-
tions are preserved under resource extensions. The rdgesalt then follows from Theoreim 4123
of Sectior{ 4.4.

Lemma 5.6(Reductions and Bijective Renamingjor any bijective renamingr,
(M > P)o —k (M’ > P)o implies M> P — M»> P

Proof. By rule induction on W1 > P)o — (M’ > P')o. L]
Lemma 5.7(Barb Preservation)

't M>PCyN>Qandl' < Mo P |22 impliesI" « N »> Q 52
Proof. By Definition[5.1 we knowM » P —/= (M’ > P’ || c!cT.P”) wherec € domI'). By
LemmaZ.6(1) we obtaif <M »>P = I'<M’>P” whereP” = (P’ || c!d.P”). Moreover, by
LOur, LPAR-R and Lemm&4.20 we deduEeM»>P ng ["<M>P" || P”. ByT £ M>P Eis N>Qwe

) 1d . .
know that there exists a mova:N>Q C=>k I"<N’>Q and from this matching move, Lemmai.6(2)
(for the initial moves of the weak action) and Lemmal4.4 we obtair Qo — = (N> Q" ||

c!d.Q”)or, which, together witrc € dom(I') and Lemma5]6, impliesl » Q —= N"=Q" |

cld. Q" i.e. cis unafected by the renamingr, and thug™ < N > Q (2arb.]
Lemma 5.8(Cost Improving) I' e M»> P 5. N> Q and M> P — M’ > P’ then there exist some
N’»Q such that N> Q —; N’»>Q andl' ¢ M’» P’ 5P N> @

Proof. By M>P —; M’> P’ and Lemm&4]6(1) we knoWw<M» P =5 T<M»P” whereP” = P'.
By Definition[4.9 and assumptidn: M»>P .. N> Q, this implies thal' «N»> Q = '« M’ > Q¥
where

e M »>P/EHEING Q. (5.1)
By Lemmal4.6(2) we deduceN(Q)or —; N’>Q and by Lemma 516 we obtaiN » Q —*
N” > Q" whereN” > Q” = (N’ » Q)or. The required result follows frofi £ M’ » P’EgisM’ > P,
which we obtain fromP’ = P”” and Corollary 4.2 (Structural Equivalence and Bisimilgri(5.1),
I e N» Q”E&SN’ > Q" which we obtain from LemmA 4.11 (Reflexivity upto Renaming}l a

N”»>Q” = (N> Q)or, and LemmaZ.12. O

COMPOSITIONAL REASONING FOR CHANNEL-BASED CONCURRENT RE&YRCE MANAGEMENT 33

Lemma 5.9(Resource Extensions)
It M»>PEM N»Qimpliesl,c:[T]* £ (M,c)»> PEl_(N,c)>Q

~bis ~bis
Proof. By coinduction.]
Theorem 5.10(Soundness)I £ (M > P) Sp.. (N > Q) impliesI” £ (M > P) Spen (N> Q).
Proof. Follows from Lemma 5]7 (Barb Preservation), Lemimd 5.8 (Qosgtroving), Lemmad 5.9
(Resource Extensions) and Theollem 4.23 (Contextuality).]

Corollary 5.11 (Soundness)I" £ (M » P) Spis (N> Q) impliesT £ (M > P) <pen (N > Q).

5.2. Full Abstraction of <pen. To prove completenesseg., that for every behavioural contextual
preorder there exists a corresponding amortised typedubigtion, we rely on the adapted notion
of action definability[19, [21], which intuitively means that every action (labefed by our LTS
can, in some sense, be simulated (observed) by a specificai@sixt. For our specific case, two
important aspects need to be taken into consideration:

¢ thetypeabilityof the testing contextvrt. our substructural type system;
¢ thecostof the action simulation, which has to correspond to the cbite action being observed.

These aspects are formalised in Definifion 5.13, whichsalie the functions definitiondom/and
codt

domle e codle e
dom(T,c:T) €' dom(I), c cod(T, c:T) = codlT), T
These two meta-functions take a substructural type enviemt and returning respectivelylist of
channel names andiat of types. For example, for the environméng ¢:[T]%, d:[T’]¢, c:[T]®D,
we havedoml(T’) = ¢, d, c andcod(I') = [T]%,[T]@, [T]¢*D.
Before stating cost-definability for actions, Definitlord3, we prove the technical Lemina5.12
which allows us to express transitions in a convenient forimrathe respective definition without
loss of generality.

Lemma 5.12(Transitions and Renaming)'<M» P Lk I"«M’>P ifand only if T<M>P Lk
(I « M” > P")or for someo, I, M”, P” wherel” =T" o, M = M”orand P = P”or.

Proof. Theif case is immediate. The proof for tlealy-if is complicated by actions that perform
channel allocation (seeALL andLALLE from Figure[b) because, in such cases, the renaming used
in LReN's premise cannot be used directly. More precisely, fronptteenise we know:

Fr<(MsP)or L TV<M' > P
LREN

Fr<MsP L) I"aM > P
and the required result follows if we prove the (slightly meumbersome) sublemma:

Sublemma(Transition and Renaming) <(M» P)or 4~y I’ «M’> P’ wherefn(P) C M implies
I'<(M»>P)or 5 (I «M”» P”)o. for someo.,, I, M”, P” where

o I'=T"0p, M= M"cf andP’ = P"c;

e c € dom(M) impliesor(c) = o(c)

The above sublemma is proved by rule inductiomer{M > P)or £~ I" <«M’»>P’. We show
one of the main cases:

34 A. FRANCALANZA, E. DEVRIES, AND M. HENNESSY

LALL: We havel” < (M » alloc X.P)or ——,1 I <« ((M)or,c) » ((P)or{9x}). From the fact that
¢ ¢ (Mor) — it follows becausd(M)or, €) is defined — we know that-;l(c) ¢ M. We thus

choose some fresh chanrgli.e.,d ¢ (M U (Mor) U don*(F), and definer. asor, except
that it mapsd to cand also maps;l(c) (i.e.,the channel name that mappedta o) to or(d),
since this channel is not mapped todbgnymore (in order to preserve bijectivity):

c if x=d

or(d) if x= a;l(c)

or(X) otherwise

oh(x) €

We subsequently define

e I asI'sincel'o. = T'or =T,

e M” asM,d since Q\/I,d)cr’F = ((M)or, ¢); and

o P” asP{dx} sinceP{dx}o. = Por{9x} O

Definition 5.13 (Cost Definable Actions)An actionu is cost-definablefi for any pair of type envi-
ronmen@l" andI”, a corresponding substitutiar, a set of channel namé&se Cuan, and channel
namessucc, fail ¢ C, there exists a te® such thaf, succ:[cod)], fail:[], fail:[]* + R
and wheneveM e C:
(1) T<MsP L5 (<M’ P)or implies

M, succ, fail» P || R —y M’, succ, fail» P’ || succ!(dom(I”)).

(2) M, succ, fail»P || R —; M” > P” wheresucc: [cod(T”)]% fail:[]#< M"” > P” M?iﬁ and

succ: [cod(I")]2 fail:[[2< M” » P |2 impliesT « M » P 5 (I < M’ » P')o where

M” = M’, succ, fail andP” = P || succ!(dom(T”)).

Lemma 5.14(Action Cost-Definability) External actiong: € {c!cT, c2d, alloc, freec|c,d c CHAN}
are cost-definable.

Proof. The witness tests forid and c?d are reasonably standard (seel[19]), but need to take into
account permission transfer. For instance, for the spesage of the action'd whered ¢ dom(T’),

if the transitionT < M » P Lk (I” « M’" > P")or holds then we know that, for soniig and [T]

o I'=T1,c:[T]%

o "op =T, c:[T]1FLd:T

In particular, whema = 1 (affine), using the permission to input enmplicitly transfers the per-
mission to proces® (see Sectionh 411), potentially revoking the test’s cajtgtiib perform name
matching on channel nane(seerlr in Figure[4) — this happens @ ¢ don(I'1). For this reason,
whena= 1the test is defined as

faill || c?x.if (x € dom(I'1)) then nil else fail?.succ!(dom(I”’))

wherex € domfI'7) is shorthand for a sequence of name comparisons aslin [ltBer@ise, the
respective type assumption is not consumed from the obsemvironment and the test is defined
as

faill || c?x.if (x e dom(T)) thennil else fail?.succ!(dom(I"))

12Tne condition thatl ¢ domI’) is required since we do not state whether the trlpkeM » P is a configuration;
otherwise, it is redundant — see comments succeeding Defiit].

L3cost Definability cannot be definadrt. the first environment only in the case of actiahloc, since it non-
deterministically allocates a fresh channel name and addshe residual environment - se&LLE in Figure[5.

COMPOSITIONAL REASONING FOR CHANNEL-BASED CONCURRENT RE&YRCE MANAGEMENT 35

Note that name comparisons on freshly acquired names azeliigosince we also obtain the respec-
tive permissions upon inpute., the explicit permission transfer (see Secfiod 4.1). Thdeeaan
verify that these tests typecheukt. the environment, succ:[cod(I)]!, fail:[]%, fail:[J* and
that they observe clauses (1) and (2) of Definifion 5.13. énctlse of clause (2), we note that from
the typing of the tests above, we know ticat dom(I’) must hold (because both tests use channel
c for input); this is is a key requirement for the transitiorfite — see.Out of Figure[5.

The witness tests faalloc and free c involve less intricate permission transfer and are re-
spectively defined as:

faill || alloc x.fail?.succ!(dom(T), x)

and
fail! || freec.fail?.succ!(domfI”))

We here focus onlloc and leave the analogous proof firee ¢ for the interested reader:

alloc

Q) fFr«<MeP ——y (I” « M’ > P)or we know that, for somé ¢ M andc ¢ Mo where
or(d) = ¢, we have")or = (I,d: [T]")or = T,c:[T]*, M = (M,d) andP’ = P. We can
therefore simulate this action by the following sequenceedfictions:

M»>P | fail! || alloc x.fail?.succ!(domlTI), X) —
M,d» P || fail! || fail?.succ!(dom(T),d) — M, d» P || succ!(dom(T’), d)

(2) From the structure oR and the assumption th&ail, succ ¢ fn(P), we conclude that, if
succ:[cod(A)]? fail:[|[2< M’ > P’ M?iﬁ and succ : [cod(A)]? fail : []2< M’ » P’ oA,
then it must be the case that, for sochez M, P’ = P” || succ!(dom{I’),d) whereM” =
(M’, succ, fail, d) for someM’.

Since P and R do not share common channels there could not have been amgdtibn
between the two processes in the reduction sequdheaicc, fail>P || R —r M P,
Within this reduction sequence, from every reductidn> P; || R —K Miz1> Piy1 || R
resulting from derivatives d?, i.e., Mj>P; —, Mi.1>Pi,1 that happened before the allocation

of channeld, we obtain a corresponding silent transition
I <« (M; \ {succ, fail}) » P ;ka I < (Miy1 \ {succ, fail}) » Py (5.2)

by Lemmd4.5(1) and an appropriate lemma that uses thedact, fail} n fn(P) = 0 to al-
lows us to shrink the allocated resources friymto (M; \ {succ, fail}). A similar procedure
can be carried out for reductions that happened after theadibn ofd as a result of reductions
from P derivatives, and by applying renaming we can obtain

(T <« (M \ {succ, fail}) > Pj)or i)ka (T « (Mj;1 \ {succ, fail}) » Pi.1)or (5.3)
The reduction

Mi, succ, fail» P || alloc x.fail?.succ!(domiT), X) — ;1
Mi, succ, fail,d» P; || fail?.succ!(dom(I), d)
can be substituted by the transition

11
T <Mi» P === 1 Ty, (d)or:[T]* <((M)or, (d)or) > (P)or (5.4)
This follows from the fact thatl ¢ M; and the fact thatr is a bijection, which implies that
(d)or ¢ (Mj)or (necessary fof(M;)or, (d)or) to be a valid resource environment). By joining
together the transitions frorb (5.2)), (6.4) and [5.3) in therapriate sequence we obtain the
required weak transition. L]

36 A. FRANCALANZA, E. DEVRIES, AND M. HENNESSY

The proof of Theorerh 5.18 (Completeness) relies on Lemnm 6. 5imulate a costed action
by the appropriate test and is, for the most part, standaistéted already, one novel aspect is
that the cost semantics requires the simulation to incuséime cost as that of the costed action.
Through Reduction Closure, Lemina3.14 again, and thenyfitial Extrusion Lemmia’5.15 we then
obtain the matching bisimulation move which preserves #tative credit index. Another novel
aspect of the proof for Theorem 5118 is that the name matchitige presence of our substructural
type environment requires a reformulation of the Extrudi@mma. More precisely, in the case
of the output actions, the simulating test requires all ef ¢émvironment permissions to perform
all the necessary name comparisons. We then make sure #s& permissions are not lost by
communicating them all again aucc; this passing on of permissions then allows us to show
contextuality in Lemm&5.15.

Lemma 5.15(Extrusion) Whenevei < M » P andI’ « N » Q are configurations and ¢ domT):
succ:[cod()]®Y & (M, succ, J) > P || succ!(domlTI)) <p., (N, succ, 5} > Q || succ!(dom(I))

impliesT - M»>P <P N»>Q

Proof. By coinduction we show that a family of amortized typed riela¢T" - M > P R" N » Q ob-

serves the required properties of Definition]5.5. Note thatenvironmentsucc : [cod(I)]*D

ensures thasucc ¢ namegP, Q) since bothP || succ!(domiI')) andQ || succ!(dom(I')) must

typecheckwrt. a type environment that is consistent withcc : [cod(I)]*Y). Cost improving is

straightforward and Barb Preserving and Contextualitiofolstandard techniques; sée|[19].
For instance, for barb preservation we are required to shati't« M > P |22 impliesT" <N »

Q %2 (and viceversa). Frori< M » P |22 and Definitiof 5.1l we know that:[T]2 € I" at some

indexi. We can therefore define the procéss succ?X x?y.okl where[T| = |V1; this test process
typecheckswrt. succ:[cod)], ok:[]1. Now by Definition[5.24(1) we know

succ:[cod(D)]®Y, ok:[]* £ (M, succ, d, oK) » P || succ!(dom{T))
<0 (N, suce, . ok) > Q || succ!(dom(T))
and thus, by Definition 5]4(2) arghcc:[cod)]V, ok:[]* F R
ok: [£ (M, suce, d, oK) » P || succ!(dom(D)) || R
<h . (N, succ, d, oK) » Q || succ!(dom(D)) || R
Clearly, if T < M » P |22 then(ok: []*V) < (M, succ, d, ok) > (P || succ!(dom(D)) || R)) {5®. By

(5.5) and Definitiofi 5J2 we must hayek:[]* < (N, succ, d, ok)» (Q || succ!(dom(D)) || R)) {22

as well, which can only happenif> Q —*= Q' || c!d.Q”. This means thaf < N> Q (8. []
Lemma5.16.' £ M>P <0 N»>Qandl' <I” impliesI” £ M>P 5 N> Q

Proof. By coinduction.]

(5.5)

I(_emm)a 517.T ¢ M>P <7 N»>Q ando is a bijective renaming implieBo = (M » P)o <p
N> Q)o

Proof. By coinduction. L]

COMPOSITIONAL REASONING FOR CHANNEL-BASED CONCURRENT RE&YRCE MANAGEMENT 37

~bis

Theorem 5.18(Completeness)" £ (M » P) <P (N » Q) impliesI" & (M »> P) S (N> Q).
Proof. By coinduction, we show that for arbitrady, n, the family of relations included i
M»P <P N> Q observes the transfer properties of Definifion 4.9, Assume

Fr<M»P L)k (<M > P)or (5.6)

If 1 = 7, the matching move follows from Lemrha #.6, Definitlon]5.3 &wefinition[5.5.
If ue {c!oT, c?d alloc, freec|c,de CHAN}, by Lemmd5.14 we know that there exists a test

process that can simulate it; we choose one suctRtesth channel namesucc, fail ¢ M, N. By
Definition[5.4(1) we know

I, succ:[cod(D)]®, fail:[]® £ M, succ, fail>P 5Beh N, succ, fail»> Q

and by Definitiorf 5.4(2) andl, succ:[cod(A)]Y, fail:[]t, fail:[] + R (Definition[5.13) we ob-
tain
succ:[cod([)]®*Y, £ail:[|*?) & (M, succ, fail)» P || R 5fp, (N, succ, fail)» QIR (5.7)
From [5.6) and Definition 5.13(1), we know
(M, succ, fail)» P || R —y (M’, succ, fail) » P’ || succ! dom(I”)
By (5.7) and Definitio 5J3 (Cost Improving) we know
(N, succ, fail)» Q|R— N" > Q"
where
succ:[cod()]®Y, fail:[]*? & (M, succ, fail) » P’ || succ! dom(T”) 58;'[" N”>Q" (5.8)
By Definition5.2 (Barb Preservation), this means thatc: [cod(I)]*, fail:[]*2<N’>Q ybarb
and also thasucc:[cod([)]*Y, fail:[[(#? <N’ > Q" ||23™® By Definition[5.13(2) we obtain
Q" = Q' || succ! domT’) andN” = (N’, succ, fail) (5.9)
F<N»>Q = (" <N'» Q)or (5.10)
Transition [5.10) is the matching move because by (5.8) amrhd 5.16 we obtain
succ:[cod(T)]®Y £ (M, succ, fail) » P’ || succ! dom(T”) 58;'[" N” > Q"

By (5.9), and LemmA5.15 we obtaifi ¢ M’ > P’ sp-K N’ > @ and subsequently by Lemrha5.17
we obtain

Cor £ (M > P)or <% (N> Qo
as required. L]

38 A. FRANCALANZA, E. DEVRIES, AND M. HENNESSY

6. RevisitiNnG THE CASE Srupy

We can formally express that eBus (strictly) more éicient than Bif in terms of the reduction
semantics outlined in Sectidh 2 through the following steats:

Text £ Mo eBUF <penh M > BUff (6.1)

In order to show that the second statemgnt] (6.2) holds, we togerove thathere is no amor-
tisation credit nfor whichT'exy £ M»Buff <!' M eBuf. By choosing the set of inductively

~beh
defined context&, where
Ry £ nil Rn+1 £ inlviout?x.R,
we can argue by analysing the reduction graph of the respesjistems that, for any> 0:

Fext £ M»> (BUff || Ryy1) %Eeh M (eBut || Rat1)

since it violates the Cost Improving property of Definitiof5

Another way how to prove (6l.2) is by exploiting completeneksur bisimulation proof tech-
niquewrt. our behavioural preorder, Theorém 5.18, and work at thé &the transition system of
Sectior 4 showing that, for atl > 0, the following holds:

Text £ Mo BUff D M > eBut (6.3)

We prove the above statement as Thedrerh 6.3 of Sdctibn 6.1.

Property [(6.11) prima facie seems even harder to prove than](6.2), because we areetkduir
show that Barb Preservation and Cost Improving hold undenygeossible valid context interacting
with the two bufer implementations. Once again, we use the transition reysfeSectiol 4 and
show instead that:

Text F M»eBuf EJ M > Buff (6.4)

The required result then follows from Theorem 5.10. The fpfoothis statement is presented
in Sectior 6.P.

In order to make the presentation of these proofs more mabégewe define the following
macro definitions for sub-processes making up the der@gatil ox; < M > Buff andIlex; < M > eBUt.

Frn' & b?x.in?y.alloc z(Frn|| b'z|| X!(y, 2)) Bck' &' d?x.x?(y, 2).out!y.(Bck || d!z)

Frv(x) & in?yallocz(Fm || biz|| Xi(y.2) Bek'(X) € x2(y. 2).outly.(Bek || di2)
Fr™(x y) £ allocz(Fm | biz|| X(y,) Bek” (v,2) < outly.(Bek | di2)

eBk &' d?x.x?(y, 2).free x.out!ly.(eBk|| d'z) eBk’(X) 4 X?(y, 2).free x.out!y.(eBk|| d!z)

eBk” (XY, 2) L free x.out!y.(eBk]|| d'2) eBk™(y, 2 4 out!y.(eBk]| d!2)
We can thus express the definitions forfBand eBudf as:
Buff &' Frn”(cy) || Bek’(cy) eBuf & Frn”(cy) || eBk’(cy) (6.5)

L4Note thatl e + R, for anyn.

COMPOSITIONAL REASONING FOR CHANNEL-BASED CONCURRENT RE&YRCE MANAGEMENT 39

Frn™(cy,V) || Bek'(cy) # Frn”(cy) || Bek”(c1) = Buff
+1|7
Fm | blcs || (v,)l BeK'(er) —————— Frn' [[bz || c1!(v, Ga)ll Bok'(e) —————— Fm(ea) [l e1!(v. ¢2)l Bek'(c)

T T T

Frn|| blcy || Bek™(v, ¢2) % Frn' || blc; || Bek™ (v, ¢2) ‘ Frn"(cp) || Bek™(v, ¢2)
out!v out!v outlv

Frn|| b'cy || Bek || dlco il Frn’ || blcy || Bek || dicp il Frn”(cp) || Bek || d'cp
T T T

Frn|| blc, || Bek' || dica S S— [Iblcy || Bek' || dic, ‘ Frn"(c) I Bek' | dice
T T T

Frn|| blcy || Bek™(c2) ! Frn’ || blcs || Bek’(cp) ‘ Frn”(cp) || Bek”(cp)

Figure 6: Transition graph fdFex < M > Buff restricted to ————=

6.1. Proving Strict Inefficiency. In order to prove[(6.)3), we do not need to explore the entatest

space follex;<« M > Buftf andI'ex; <« M >eBuUt. Instead, it sflices to limit external interactions with the
observer to traces of the for(§n=°uw>) , which simulate interactions with the observing processes

R, discussed in Sectidn 6. It is instructive to visualise thasition graphs for bothex<M»>Buff and

I'ext < M » eBuUft for a single iteration% as depicted in Figurld 6 and Figulre 7: due to lack of
space, the nodes in these graphs abstract away from themmantl c,; and appropriate resource
environmentsM, N, . .. containing internal channets,cp, ... as requireE For instance the first
node of the graph in Figure 6, Friy() || Bck”(cy), i.e., Buff, stands fol ex<Ms(Frn”(cy) || Bek’(cy)),
wherec; € M, whereas the third node in the same graph||Btao; || ¢, !(v, ¢) || Bck”(cy), stands for
TCext < N> (Frnj|blca || ca!(v, ¢2) || Bek™(cy)), wherecy, ¢, € N.

For instance, the graph in Figurk 6 shows that after the iagiion and the channel allocation
for ¢, r-action (with a cost o#1) the indficient bufer implementation reaches a state where it can
perform a number of internal transitions: either the subpoment Frn may take a recursion unfold
step (the first rightr-action) followed by an input on channklthat instantiates the continuation
with channelc, (the second right-action), or else the subcomponent Bak')(reads from the head
of the bufer ¢c;!(v, o) (the first downwards-action). Theser-actions may be interleaved, but no
other silent transitions are possible until an output adsqerformed, after which the backend sub-
component can perform an unfotdaction (the first downwards-action following actionout!v)
followed by an instantiation communication on chandéthe first downwards-action following
actionout!v), When all of these actions are completed we reach againdaheg process, instanti-
ated with channet; instead. The transitions in Figuré 7 are analogous, butidech deallocation
transition with a cost of-1.

15The transition graph also abstracts away from environmevies

40 A. FRANCALANZA, E. DEVRIES, AND M. HENNESSY

Frn™(cy, V) || eBk”(c1) (—in?v Frn”(c1) || eBk"(c1) = eBut
+1|7
Fm | blc || cu!(v, 2l eBK'(er) —————— Frn' [[blcz [c1!(v, Co)ll eBK'(er) —————— Fm'(ea) [c1!(v. c2)l| 6BK'(cx)
T T T
Frn|| blc; || eBk™(c1, Vv, €2) S S I blcy || eBK™(cq, v, C2) - T Frn”(cz) || eBK™(cq,V, C2)
-1 1|7 -1
Frn|| blc; || eBk™(v, cp) % Frn' || b'cy || eBK™ (v, ¢2) % Frn"(cy) || eBk™ (v, ¢2)
out!v out!v out!v
Frn|| b'c, || eBk|| d!c, il Frn’ || blcs || eBk|| d!'co ‘ Frn”(cy) || eBk|| dic,
T T T
Frn| blcy || eBK' || dlca - Frn’ || blcy || eBK' || dic, ! Frn”(c2) || eBK' || dl'ca
T T T
Frn| blc, || eBK(c2) ’ Frn’ || blcs || eBk™(c2) i Frn”(cy) || eBK"(c2)

Figure 7: Transition graph fdrex; < M > eBuft restricted to iy out’v

Theorenl 6.8, which provek (6.3), relies on two lemmas. Thia mae is Lemma 612, which
establishes that a number of derivatives from the configurai ey < M » Buff andl ey <« M > eBUf
cannot be related fanyamortisation credit. This Lemma, in turn, relies on Lenini &hich es-
tablishes that, for a particular amortisation cregliff some pair of derivatives of the configurations
I'ext < M » Buff andI'ey; <« M > eBUT resp. cannot be related, then other pairs of derivatives cannot
be related either. Lemnia 6.1 is used again by Thedrem 6.Jiweedbat, from the unrelated pairs
identified by Lemma 612, the required pair of configuratibag < M > Buff andI'ey; < M > eBuUt
cannot be related for any amortisation credit. Upon firstlireg the reader who is only interested
in the eventual result may safely skip to the statement obfldma[6.8 and treat Lemnia 6.2 and
Lemmd6.1 as black-boxes.

In order to be able to state Lemmal6.1 and Lerimh 6.2 more stiggiwe find it convenient
to delineate groups of processes relating to derivativeBufif and eBdf. For instance, we can
partition the processes depicted in the transition gragfigaire[7 (derivatives of eBf) into three

COMPOSITIONAL REASONING FOR CHANNEL-BASED CONCURRENT RE&YRCE MANAGEMENT 41

sets:
(Frnj|blcz|lci!(v, c2) [l €Bk’(c1)),
pre, % | (F'l[blcallci!(v, cz) @Bk (cy)), CL#Cr €
A=Y (Frr(co)llea!(v. c2) [leBK?(cy)). (Frniiblca [|eBK™(Cy. V. C2)), | Chan \ {in, out, b, d}
(Frn’ || blc; || eBK™(cy, Vv, C2)), (Frn™(cy) || eBK™(cy, V, C2))

Pre. %' (Frn||blco |leBk™(v, ¢2)), (Frn’||blc, [|eBK™ (v, €2)), | C; € CuaN \ {in, out, b, d}
® =\ (Frm’(cy) lleBK™ (v, c2)

(Frn|| blc, || eBK|| dicy), (Frn’ || blc, || eBK]| dicy),
(Frn”(cp) || eBK]| d'cp), (Frn|| blcs || eBK’ || dicy),
Prcc 4 (Fr' || blc, || eBK || dicy), (Frn”(cy) || eBK' || dicy), | ¢, € Cuan \ {in, out, b, d}
(Fm]l blc; || eBK'(cz)), (Frn' || blcy || eBK™(c2)),
(Frn"(cy) |l eBK"(c2))

With respect to the transition graph of Figlte 7, Pgroups the processedter the allocatiorof an
(arbitrary) internal channet, but not before any deallocatione., the second and third rows of the
graph. The set Pgcgroups the processedter the deallocatiorof the (arbitrary) internal channel
c1, i.e., the fourth row of the graph. Finally, the set Prgroups processeafter the output action
out!vis performed (before an input action is performead,, the last three rows of the graph.

Lemma 6.1(Related Negative Results)

(1) For any amortisation credit n and appropriate,M, whenever:
e Textk M Frn”(cy,v)[|Bek’(cy) Epg N> Frn”(cy,v)|eBk’(c))
e For any Qe Prcy we havel'ex £ M » Frn™(cy, V) [|Bek™(c) Zpit N»Q
e Forany Qe Prcg we haveley M > Frn™(cy, V) [|Bek’(cy) Eps N> Q
then, for any Pe Prcc, we haveTe E M > Frn”(cy) || Bek™(c1) Epi N> P.
(2) For any amortisation credit n and appropriate,M, and for any Qe Prcc:
(@) TextE M > Frn"(cy)|IBck(cy) Epi N> Q implies
forany Pe Prcc Texi F M > Frn’||blcy || Bek”(cy) %Bis N»>P
(b) Cext M >Frn’[Iblcy [|Bek’(c1) Epi N> Q implies
for any Pe Prcc Texik M > Frn|blcy || Bek’(cy) Eps N> P
(c) TextF M > Frn||blcy [|Bek™(c1) Epi N> Q implies
forany Pe Prcc T'ext e M > Frnj|blcy ||Bek’ || dlcy %Bis N»>P
(d) TexeE M > Frniblcy [|Bek’ [ldic; Epig N> Q implies
for any Pe Prcc Texck M > Frn||blcy ||Bek|ldic; %pi N> P
(3) For any amortisation credit n and appropriate,M, and for any Re Prcg, Q € Prcc:
(@) TextF M > Frn||blcy|Bek||dic, Ep N> Q implies
forany Pe Prcg T'extF M > Frnj|blc, || Bek™ (v, ¢3) ,@Bis N»>P
(b) TextE M > Frnjiblcy ||Bek™(v, c) Ep N>R implies
for any Pe Prcg I'exi F M > Frnj|blc || c1!(v, €2) || Bek(c1) %Bis N»>P
(4) For any amortisation credit n and appropriate,M, and for any Qe Prcc:
(@) TextF M > Frn||blcy [|Bek||dlc; Ep N> Q implies
for any Pe Prcy Text e M > Frn||blcy ||Bek™ (v, ¢1) %Bi*sl N>P
(b) TextE M > Frnjiblcy [|Bek|ldic; Epie N> Q implies
Texi E M > Frn||blcy ||Bek™(v, ¢1) %Qis N> Frn™(cy, V) || eBK’(c))
(c) Textk M > Frn||blcy [|Bek||dlc; £ N> Q implies
Iext E M > Frnj|blca|ci!(v, co) || Bek(cy) %Bis N> Frn™(cy,v) || eBk™(c))

42 A. FRANCALANZA, E. DEVRIES, AND M. HENNESSY

Proof. Each case is proved by contradiction:
(1) Assume the premises together with the inverse of thelgsion, i.e.,

Text E M » Frn”(cy) | Bck?(c1) B2 N » P.

~bis
Consider the transition from the left-hand configuration:

Fext< M > Frn”(cy) || Bck™(cy) ﬂ>o Fext< M > Frn™(cy, V) || Bek”(cy).

For anyP € Prc, this can only be matched by the right-hand configurafip<N > P, through

either of the following cases:

(@) I'ext< N> P éo Fext < N > Frn™(c/, V) || eBK’(c)), i.e., a weak input action without

trailing T-moves after the external actian?y — see first row of the graph in Figuré 7. But
we knowI'ex E M > Frn™(cy, V) || Bck’(¢1) ,Egis N> Frn™(c], V) || eBk’(c}) from the first
premise.

(0) Text< N> P ==5,; Teyx< N> Q for someQ € Prcy. However, from the second premise
we know thafle = M > Frn™(c,v) [[Bek’(c1) £t N»>Q

S

(€) Text< N> P go I'ext < N> Q for someQ € Prgs. Again, from the third premise we
know thatl'ext £ M > Frn™(cy, V) ||Bek’(cy) Zps N> Q
Sincel'ey <« N » P cannot perform a matching move, we obtain a contradiction.
(2) We here prove case)(The other cases are analogous.

Assumel'ext E M > Frn’||blcy || Bek”(c1) Egis N » P and consider the action

Iext< M > Frn’||blcy || Bek”(cp) ;0 Iext < M > Frn”(cy)||Bck”(cy).

For our assumption to holilex< N> P would need to match this move by a (weak) silent action
leading to a configuration that can maicd<M»Frn”(c;) || Bck’(c1). The only matching move
can be
Ilext<N>P =g I'exe<«< N> Q for someQ € Prcc.
However, from our premise we knoliey = M > Frn”(cy) || Bek”(cy) Egis N > Q for any
amortisation credih andQ’ € Prc: and therefore conclude that the move cannot be matched,
thereby obtaining a contradiction.
(3) We here prove case)(Case B) is analogous.
Assumel'exi E M > Frn||blc, || Bck™(v, ¢z) Shig N> P and consider the action
Iext< M > Frnj|blc, || Bek™ (v, C2) ou—t!v>o I'ext < M= Frn||blco || Bek||d!co
This action can only be matched by a transition of the form
!
Iext<N>P Ou:tvm Iext<N>Q for someQ € Prce.
However, from our premise we knole, £ M > Frn|| blc, || Bek || d'c, /Egis N > Q for
any amortisation credit andQ € Prc:. Thus we conclude that the move cannot be matched,
thereby obtaining a contradiction.
(4) Casesd) and p) are analogous to 8) and 3p). We here outline the proof for case) (

COMPOSITIONAL REASONING FOR CHANNEL-BASED CONCURRENT RE&YRCE MANAGEMENT 43

First we note that from the premi§gy = M » Frn|| blcy || Bck|| dlcy }Egis N > Q (for any
Q € Prc) and LemmaAl3(a), Lemmd61l4(a) and Lemmaé @l4(b) resp.we obtain:

Texi E M > Frn||blcy||Bck™(v, ¢2) %Bis N»>P foranyP € Prgs (6.6)
Iext E M > Frn||blcy ||Bek™(v, ¢1) %stl N»>P foranyP € Prca (6.7)
Text E M > Frniblcy | Bek™ (v, ¢1) Epi N> Frn™(cy,v) || eBk™(ch) (6.8)

We assuméd e E M » Frnj| blc; || c1!(v, ¢2) || Bck”(cp) ggis N> Frn”(c;, V) || eBk’(c}) and
then showing that this leads to a contradiction. Considentbve

Text< M > Frnj[blczlc1!(v, ¢2) [BeK'(€1) 0 Text« M > Frn|blco||Bek™ (v, c2)

This can be matched Hyey <« N > Frn™(c, V) || €BK”(c]) using either of the following moves:

o Tex< N> Frn™(c},V) || eBK'(c]) =0 Text<N»Frn”(cy,v) || eBKk’(c}). But (6.8) prohibits
this from being the matching move.

e Text < N> Frn”(c),V) || eBK'(c]) =>.1 Text< N> Q for someQ € Prca. But (6.7) prohibits
this from being the matching move.

e T'exe < N> Frn™(cy, V) || eBk'(c]) =0 Text<N»> Q for someQ € Prgs. But (6.6) prohibits
this from being the matching move.

This contradicts our earlier assumption.]

Lemma 6.2. For all n € Nar and appropriate MN:

(1) Forany Qe Prca we havel'ex M > Frn| bic, || Bck™(v, ¢2) ,@Bis N»>Q

(2) For any Qe Prca we havel'ex e M > Frn|| blco || ¢1!(v, ¢o) || Bek(cy) %Eis N> Q
(3) For any Qe Prca we havelgg = M > Frn™(cy, V) || Bek™(cy) %Bfél N»>Q

(4) Forany Qe Prcg we havel'g F M > Frn™(cy, V) || Bck(cp) %Bis N»>Q

(5) Textk M > Frn™(cy, V) || Bek™(c1) Epig N> Frn™(cy, V) || eBk’(c))

Proof. We prove statements (1) to (5) simultaneously, by induabion.

n = 0. We prove each clause by contradiction:

(1) Assumd eyt E M > Frn|| blc || Bek™ (v, co) ggis N > Q for someQ € Prcy and consider the
transition

Iext< M > Frn|| blcy || Bek™ (v, ¢p) Ou—t!vm Iext<M>Frnj| blc, || Bek|| dico

For anyQ € Pra, this cannot be matched by any move frbgy<N»>Q since output actions
must be preceded by a channel deallocation, which incoegativecost — see second and
third rows of the graph in Figuifg 7. Stated otherwise, eveayciing move can only be of
the form
out!v
TFext<N> Q =—=_1 T'exx< N> Q’

whereN = (N’,c;) for somec; andQ" € Prec. However, since the amortisation credit
cannot be negative, we can never hBug £ M > Frn|| blc, || Bek || d!c, Egils N> Q. We
therefore obtain a contradiction.

(2) Assumelexi E M > Frn || blc, || ci!l(v, ¢2) || Bek’(cy) ggis N > Q for someQ € Prg and
consider the transition

Text< M s FErn | bicy || ¢!V, C2) || Bek’(C1) —o Texi< M > Frn |l bic, || Bek”(V, cp)

Since the amortisation credit can never be negative, thelmmgt move can only be of the
form
Fext<N>Q =0 Texg< N> Q

44 A. FRANCALANZA, E. DEVRIES, AND M. HENNESSY

for someQ’ € Prcy. But then we get a contradiction since, from the previoussga we
know thatlext ¥ M » Frn || blc, || Bek”(v,c2) Epg N» Q.

(3) Assumd eyt E M > Frn™(cy, V) || Bek’(cp) Etl)is N » Q for someQ € Prca and consider the
transition

Text< M > Frn”(cg, V) || Bek(cr) —+1 Text< M, C2> Frn | blcz || c1!(v, c2) || Bek'(ca)
for some newly allocated channel. As in the previous case, since the amortisation credit
can never be negative, the matching move can only be of the for
TFext<N>Q =0 Text<N»> Q'

for someQ’ € Prca. But then we get a contradiction since, from the previoussdawe
know that I'ex; F (M, C2) > Frn || blc, || c1!(v, ¢2) || Bek’(cy) %gis N> Q.

(4) Analogous to the previous case.

5) Assu_rr_leFext E M»>Frn™(cg,V) || Bck’(cy) ;gis N> Frn™(c}, V) || eBk"(c;) and consider the
transition

Text< M > Frn™(cp, V) || Bek™(c1) —41 Text< M, Co» Frn| blcy || c1!(V, o) || Bek™(cy)

Since the transition incurred a cost-ef and the current amortisation credit is 0, the match-
ing weak transition must also incur a cost4df and thud'ext < N » Frn™(c}, V) || eBk’(c;)
can only match this by the move

Text< N> Frn™(c),v) || eBK'(c;) =41 Tex<N,Ch> Q

for someQ € Prcy. But then we still get a contradiction since, from clause (@ know
Text E M>Frn| bl'c, || c1!(v, ¢2) || Bek”(cy) ,@gis N> Q.

n =k + 1: We prove each clause by contradiction. However before weéda@ach individual clause,
we note that from clauses (3), (4) and (5) of the I.H. we know

For anyQ € Prca we havel'ex F M > Frn™(cy, V) || Bck’(cy) ,@t'j;;l N> Q
For anyQ € Prgs we havel'gxi E M > Frn™(cq, V) || Bck™(cy) %Eis N»>Q
Fext E M > Frn™(cy, V) || Bck’(cp) %lt;is N> Frn™(cy, V) || eBk’(cy)
By Lemmd 611 we obtain, for anyQ’ € Prcc and appropriaté\’:
Text £ M > Frn”(cy)|Bck’(c) ZE N> Q

and by Lemmadl2(a), Lemma61l2(b), Lemmd61l2(c) and Lemma @l2(d) we obtain, for
any Q' € Prcc and appropriaté\’:

Text £ M>Fr| blcy | Bek | dicy EE N> @ (6.9)

Also, by (6.9), Lemma@l3(a) and Lemma @&l3(b) we obtain, for anyQ” € Pras:
Text £ M > Fr||blc,||Bek™ (v, ¢2) K N> Q” (6.10)
Text E M > Frnj|blco|cy!(v, c2) || Bek™(cy) %Eis N> Q" (6.11)

Moreover, by[(6.P), Lemma.B4(a), Lemmd&ll4(b) and Lemma @l4(c) we obtain:
Text E M > Frnj|blca|lci!(v, cp) || Bek™(cy) ,@'gis N> Frn™(cy, V) || eBK’(c}) (6.12)
The proofs for each clause are as follows:

COMPOSITIONAL REASONING FOR CHANNEL-BASED CONCURRENT RE&YRCE MANAGEMENT 45

(1) Assumdigy: E M>Frn|| blc, || Bck™(v, ¢p) E{j};l N> Q for someQ € Prca and consider the
transition

Iext< M > Frn|| blcy || Bek™ (v, ¢p) Ou—t!vm Iext< M Frn|| blc, || Bek|| dico
For anyQ € Prca, this can (only) be matched by any move of the form

out!v
TFext<N> Q =—=_1 T'exx<N' > Q’
whereN = (N’, c}) for somec], Q" € Prcc, and the external actioout!v is preceded by a
7-move deallocating;. For our initial assumption to hold we need to show ditdeast one
of these configurationBey: < N’ > Q' satisfies the property
TextF M»Fr| blcy || Bek || dic S N> Q'
But by (6.9) we know that no such configuration exists, thgretntradicting our initial
assumption.
(2) Assu_meFext FEM >_Ern || blco || c1!(v, c) || Bek’(cy) ggigl N > Q for someQ € Prcy and
consider the transition
Text< M s FErn | bicy || ¢!V, C2) || Bek’(C1) —o Text< M > Frn |l bic, || Bek” (v, cp)
This transition can be matched by, < N > Q through either of the following moves:

(@) Texta N> Q = T'ext<N»> Q' for someQ’ € Prca. However, from the previous clause,
i.e.,clause (1) whem = k + 1, we know that this cannot be the matching move since
TextF M>Frn | blcy | Bek™(v,c2) ESIN» Q.

(0) Text<N>Q =_1 Text<« N> Q’ for someQ’ € Prgs andN = (N’, ¢;). However, from
(6.10), we know that this cannot be the matching move siigee M > Frn|| blc; ||
Bek”(Vv,¢2) Ffis N> Q.

Thus, we obtain a contradiction.
3) Assu_mel"ext E M»>Frn”(cg, V) || Bck’(cy) E'gfsz N> Q, whereQ € Prca, and consider the
transition:
Text< M > Fm”(cy,V) [Bek(€1) —.1 Text< M, C2> Frn | bic || c1!(v, ¢2) || Bek'(cy)

for some newly allocated channel. This can be matched iy < N » Q through either of

the following moves:

(@) Text<N>Q =g T'ext<N»>Q for someQ’ € Prca. However, from the previous clause,
i.e.,clause (2) whem = k + 1, we know that this cannot be the matching move since
Textk M, c2> Frn |l ble || c1!(v,c2) | Bek'(er) Eit N»> Q'

(0) Text<N>Q =_3 Text<« N> Q for someQ’ € Prgs andN = (N’, c}). However, from
(€.11), we know that this cannot be the matching move siigee M > Frn|| b'c, ||
c1!(v.) IBek(cr) Eg N> Q.

Thus, we obtain a contradiction.

(4) Analogous to the proof for the previous clause and relie€.11) again.
(5) Assu_md"ext E M»Frn”(cg, V) || Bek’(cy) E‘gi*sl N> Frn™(c/,v) || eBk"(c;) and consider the
transition

Text< M > Frn™(cp, V) || Bek?(C1) —41 Text< M, C2> Frn blcy || c1!(V, C2) || Bek™(cy)

for some newly allocated channgl. This can be matched by the right-hand configuration
[ext < N> Frn™(c/, V) || eBk’(c;) through either of the following moves:

46 A. FRANCALANZA, E. DEVRIES, AND M. HENNESSY

(@) Tex<N=Frn”(c/, V) || eBk’(c]) =0 Text<N>Frn™(c;,v) || eBK’(c)), i.e.,no transitions.
However, from[(6.1R), this cannot be the matching move siiges M > Frn| blc; ||
c1!(v, G2) 1Bek’(c1) Eiig N> Fn™(cy,v) || eBk’(c)).

(b) Text « N> Frn™(c’, V) || eBk’(c}) _l>+1 [ext < N, ¢, » Q for someQ’ € Prcy and
¢, ¢ N. However, from clause (2) whem= k + 1, this cannot be the matching move
sincelgxt E M, Co > Frn|| blcy || c1!(v, ¢2) || Bek’(c1) ,@{;i*sl N,c,>Q'.

(€) Text « N » Frn™(cy,v) || eBk'(cy) :T>o Fext < (N, ¢;) » Q for someQ’' € Prgs,
N = (N’,c¢}) andc, ¢ N. However, from[(6.11), this cannot be the matching move
sincel'ext E M > Frn||blco|ci!(v, ¢2) || Bek”(¢q) %Eis (N',c;)» Q. O]

Theorem 6.3(Strict Indficiency) For all n > 0 and appropriate M we have
Text £ M»>Buff Zpie M »>eBuf

Proof. Since:

Buff £ Frn”(cy) || Bek?(cy) eBut £ Frn”(cy) || eBK’(cy)

we need to show that
Text E M»Frn”(c1) || Bek™(c1) Epie M > Frn”(cy) || eBK'(c1)
for any arbitraryn. By Lemmd 623, Lemmd &4 and Lemma 2.5 we know that for any:
For anyQ € Prca we havel'ex E M > Frn™(cy, V) || Bck’(cp) ,@gi*sl M»>Q (6.13)
For anyQ € Prgz we havel'ey; E M > Frn™(cy, V) || Bek™(c1) Zpie M > Q (6.14)
Iext E M > Frn”(cy, V) || Bek’(cy) ,@Bis M > Frn™(cy, V) || eBk’(cy) (6.15)
Since(Frn”(cy) || eBk™(c1)) € Prge, by Lemmd6ll1, (6.13), (6.14) and(6.15) we conclude
I'ext E M>Frn”(cy) || Bek’(cy) %Eis M > Frn”(cy) || eBk"(c1)
as required. L]

6.2. Proving Relative Efficiency. As opposed to Theorem 6.3, the proof fior {6.4) requires us to
consider the entire state-spacel@f; < M » Buff andI'ex: <« M » eBuUf. Fortunately, we can apply
the compositionality result of Theordm 4123 to prdvel(6rid focus on a subset of this state-space.
More precisely, we recall froni (8.5) that

Buft £ Frn"(cy) || Bek”(cy) eBut £ Frn"(cy) || eBK'(cy)

where both bffer implementation share the common sub-process &n’We also recall from
(B3) that this common sub-process was typet the type environment

Tem=1in:[T]“, b:[Tred®, Cl:[T,Trec]l-

Theoreni 4.283 thus states that in order to prave (6.1) fiices to abstract away from this common
code and prove Theordm 6.4

Theorem 6.4(Relative Hficiency) (I'exs [rn) £ M >eBKk”(c1) O Mo Bck(cy)

~bis

COMPOSITIONAL REASONING FOR CHANNEL-BASED CONCURRENT RE&YRCE MANAGEMENT 47

Proof. We provel'ex;, I'rrn E MeeBKk”(cy) ;gis M»>Bck”(cp) through the family of relation® defined
below, which includes the required quadrup(Eex:, I'rm), 0, (M » eBk”(c1)), (M » Bck”(c1))).

((T,A), n, (M’ > eBk’(c)) , (N’»>Bck’(c)))
((T,A), n, (M >eBk”(c,v,c’)), (N »>Bck”(v,¢')))| (Cexts Trm) <T
R E LT, A), n, (M7 > eBk™(v,¢)) , (N> Bck™(v,¢)))| n=0, M c N’
((T,A), n, (M”>eBk| dic’) , (N >Bck|dic)) })| c¢M”, M’ cN”, ce N’
((T,A), n, (M”>eBK | dic’) , (N’ >Bck || dic’))

Note that, in the quadruples &f our observer environment is not limited to derived envirenis

I obtained from restructurings ®ty;, I'rrn, but may include also additional entries, denoted by the

environmentA; these originate from observer channel allocations and tiseugh the transition

rulestALLE andLStr from Figurd 5.R observes the transfer property of Definition]4.9. We here go

over some key transitions:
e Consider a tuple from the first clause of the relation, for b, nandc i.e.,

(T,A) E (M »eBk"(c)) R" (N’ » Bck”(c))
We recall from the macros introduced in Secfion 6 that
eBk’(c) = c?(y, 2).free c.out!y.(eBk|| d!2)
Bck”(c) = c?(y, 2).out!y.(Bck || d!2)
WheneverT, A) allows it, the left hand configuration can perform an inpangitions

20,
(T, A) <M’ > eBK'(©) —¥9,0 (7, A') < M’ » eBK”(c, V. ©)
wherel’ = I, ¢:[T, Tred® andA = A/, v: T, ¢ : Tree. This can be matched by the transition

(T, A) <« N’ > Bek'()) — %90 (I, A) <N’ » Bek™(v, &)

where we havél”, A’) £ (M’»>eBKk”(c,v,c’)) R" (N’ »Bck™(v, c")) from the second clause &:.
The matching move for an input action from the right-handfigpmation is dual to this. Matching
moves forenv, alloc andfree c actions are analogous.

e Consider a tuple from the first clause of the relation, for ey, n, c,vandc’ i.e.,

(T, A) E (M"»eBk™(c,v,c')) R" (N’ > Bck™(v, c))

Since eBK™(,Vv,c’) = freec.out!v.(eBk]|| d!c’), a possible transition by the left-hand configu-
ration is the deallocation of channel

(T,A) <M’ »eBk”(c,v,¢') —>_1 (T,A)<M”»eBk™(v,c)
whereM’ = M”, c. In this case, the matching move is the empty (weak) tramsisince we have
(T,A) £ (M” > eBk™(v,c)) R™1 (N’ > Bck™(v,c)) by the third clause oR. Dually, if (', A)
allows it, the right hand configuration may perform an outpetton
(,A) <N’ » Bek™(v,¢') 2250 (I, A,v:T) <N’ » Bek || dic/
This can be matched by the weak output action

|
(T,A) <M’ > eBK”(c,V,¢) ——=_; ([,A,v:T)<M"”»eBk| di¢

where M’ = M”,c; by the fourth clause oR, we know that this a matching move because
(T,A,v:T) £ (M”»eBk| dic’) R (N’ » Bek || dIT). [

48 A. FRANCALANZA, E. DEVRIES, AND M. HENNESSY

7. ReLateED WORK

A note on terminologyFrom a logical perspective,lmear assumption is one that cannot be weak-
ened nor contracted, while affine assumption cannot be contracted but can be weakened. This
leads to a reading of linear as “used exactly once” andiofeas “used at most once”. However,
in the presence of divergence or deadlock, most linear typeemis do not in fact guarantee that
a linear resource will be used exactly once. In the discasb&low, we will classify such type
systems asfine instead.

Linear logic was introduced by Girard [14]; its use as a tyysesm was pioneered by Wadler
[43]. Uniqueness typing was introduced by Barendsen andsams5]; the relation to linear logic
has since been discussed in a number of papers.(see [17]).

Although there are many substructural (linear fine) type systems for process calculil[l, 2, 3,
25,3244, and others], some specifically for resouiices {B8]literature omehaviourof processes
typed under such type systems is much smaller.

Kobayashiet al. [31] introduce an fiine type system for the-calculus. Their channels have a
polarity (input, output, or inpubutput) as well as a multiplicity (unrestricted dfiae), and anfiine
input/output can be split as affene input and anféine output channel. Communication on dfiree
input/affine output channel is necessarily deterministic, like comication on an fiingunique-
after-1 channel in our calculus; however, both processas the right to use the channel after the
communication, limiting reuse. Although the paper giveseéirition of reduction closed barbed
congruence, no compositional proof methods are presented.

Yoshidaet al [45,[23] define a linear type system, which uses “action typ@sule out dead-
lock. The use of action types means that the type system aaidprsome guarantees that we
cannot; this is however an orthogonal aspect of the typeesysind it would be interesting to see
if similar techniques can be applied in our setting. Themetgystem does not have any type that
corresponds to uniqueness; instead, the calculus is basddmcontrol dynamic sharing of names
syntactically, thereby limiting channel reuse. The awtgive compositional proof techniques for
their behavioural equivalence, but give no complete charaation.

Teller [41] introduces a-calculus variant with “finalizers”, processes that run whaesource
has been deallocated. The deallocation itself howeverriomeed by a garbage collector. The
calculus comes with a type system that provides bounds argloeirces that are used, although the
scope of channel reuse is limited in the absence of some fsonigueness information. Although
the paper defines a bisimulation relation, this relationsdus take advantage of type information,
and no compositionality results or characterization i®giv

Hoare and O’Hearn [22] give a trace semantics for a varia@3I® with point-to-point commu-
nication and explicit allocation and deallocation of chelsnwhich relies on separation of permis-
sions. However, they do not consider any behavioural teeoPym and Tofts [39] similarly give
a semantics for SCCS with a generic notion of resource, basegparation of permissions; they
do however consider behaviour. They define a bisimulatitatiom, and show that it can be char-
acterized by a modal logic. These approaches do not use &ygpem but opt for an operational
interpretation of permissions, where actions may block tdukack of permissions. Nevertheless,
our consistency requirements for configurations (Definilal) can be seen as separation criteria
for permission environments. A detailed comparison betwhis untyped approach and our typed
approach would be worthwhile.

Apart from the Clean programming language [6], from wher@ueness types originated,
static analysis relating to uniqueness has recently bepiedo (more mainstream) Object-Ori-
ented programming languages [15] as well. In such casespltdabe interesting to investigate

COMPOSITIONAL REASONING FOR CHANNEL-BASED CONCURRENT RE&YRCE MANAGEMENT 49

whether the techniques developed in this work can be apfi@dehavioural setting such as that
in [26].

Our unique-after-type is related to fractional permissions, introduced_ng®d used in set-
tings such as separation logic for shared-state concyrif@iic A detailed survey of this field is
however beyond the scope of this paper.

The use of substitutions in our LTS (Definition 4.3) is rerag@nt of the name-bijections carried
around in spi-calculus bisimulations| [7]. In the spi-c#dsuhowever this substitution is carried
through the bisimulation, and must remain a bijection tghmut. Since processes may lose the
permission to use channels in our calculus, this approado igestrictive for us.

Finally, amortisation for coinductive reasoning was araly developed by Keihet al, [30]
and Littgenet al. [34]. It is investigated further by Hennessy in [20], wherebcorrespondence
with (an adaptation of) reduction-barbed congruencest&bkshed. However, neither work consid-
ers aspects of resource misuse nor the corresponding ugeeof analysis in their behavioural and
coinductive equivalences.

8. CoNCLUSION

We have presented a compositional behavioural theogfpanr-calculus variant with mechanisms
for explicit resource management; a preliminary versiothefwork appeared in|11]. The theory
allows us to compare thefiency of concurrent channel-passing programrs their resource
usage. We integrate the theory with a substructural typesyso as to limit our comparisons to
safe programs. In particular, we interpret the type assestof the type system as permissions, and
use this to model (explicit and implicit) permission traersbetween the systems being compared
and the observer during compositional reasoning. Our itoribns are as follows:

(1) We define a costed semantic theory that orders systemesf@Rs programs, based on their
costed extensional behaviour when deployed in the confelerger systems; Definition 5.5.
Apart from cost, formulations relating to contextualite atifterent from those of typed congru-
ences such as [21], because of the kind of type systemiwsgeslibstructural.

(2) We define a bisimulation-based proof technique thatwallas to ordeiRr programs coinduc-
tively, without the need to universally quantify over thespible contexts that these programs
may be deployed in; Definition_4.9. As far as we are aware, trehination of actions-in-
context and costed semantics, used in unison with impliatexplicit transfer of permissions
so as to limit the fficiency analysis to safe programs, is new.

(3) We prove a number of properties for our bisimulation pdeo of Definition[4.9, facilitating
the proof constructions for related programs. Whereas l@oyd.13 follows [30] 20], Theo-
rem[4.23 extends the property of compositionality for aimsed bisimulations to a typed setting.
Lemmd 4.14, together with the concept of bounded amontisasippears to be novel altogether.

(4) We prove that the bisimulation preorder of Definition] &% sound and complete proof tech-
nique for the costed behavioural preorder of Definifion $teoreni 5.10 and Theorém 5118. In
order to obtain completeness, the LTS definitions employstandard mechanisms for explicit
renaming of channel names not known to the context. Alsogoineept of (typed) action defin-
ability [21),[19] is diferent because it needs to take into consideration cost gedlility wrt.

a substructural type system; the latter aspect also coatptiche respective Extrusion Lemma
—see Lemmab.15.

(5) We demonstrate the utility of the semantic theory ancegpective proof technique by applying
them to reason about the client-server systems outlinetlarirttroduction and a case study,
discussed in Sectidd 3.

50 A. FRANCALANZA, E. DEVRIES, AND M. HENNESSY

Future Work. The extension of our framework to a higher-order and digtet setting seems
worthwhile. Also, the amalgamation of our uniqueness tywéh modalities for input and out-
put [38] would give scope for richer notions of subtypingalwng covariance and contravariance,
affecting the respective behavioural theory; it would be ggé&ng to explore how our notions of per-
mission transfer extend to such a setting. Itis also wortBying the applicability of the techniques
developed in this work to nominal automata such as Variabk®matal[16] and Finite-Memory Au-
tomata[[29].

Acknowledgements. We would like to thank the referees for their incisive comisen

REFERENCES

[1] Lucia Acciai and Michele Boreale. Type abstractions afire-passing processesAS8EN’'07 pages 302—-317, 2007.

[2] Lucia Acciai and Michele Boreale. Responsiveness ircess calculiTheor. Comput. Si409(1):59-93, 2008.

[3] Roberto M. Amadio, Gérard Boudol, and Cédric LhoussaiThe receptive distributed-calculus.ACM Trans.
Program. Lang. Syst25(5):549-577, 2003.

[4] S. Arun-Kumar and Matthew Hennessy. Afiieiency preorder for processescta Inf, 29(9):737-760, December
1992.

[5] Erik Barendsen and Sjaak Smetsers. Uniqueness typinfyfictional languages with graph rewriting semantics.
MSCS$ 6:579-612, 1996.

[6] Erik Barendsen and Sjaak Smetsers. Uniqueness typinfyfictional languages with graph rewriting semantics.
Mathematical Structures in Computer Sciengg):579—612, 1996.

[7] Michele Boreale, Rocco De Nicola, and Rosario Pugli€®of techniques for cryptographic processi®\M J.
Comput, 31(3):947-986, 2001.

[8] Richard Bornat, Cristiano Calcagno, Peter O’Hearn, Bladthew Parkinson. Permission accounting in separation
logic. SIGPLAN Not.40(1):259-270, 2005.

[9] John Boyland. Checking interference with fractionatrpissions. In R. Cousot, editdBtatic Analysis: 10th Inter-
national Symposiupvolume 2694 of. NCS pages 55-72. Springer, 2003.

[10] Dov Bulka and David MayhewEfficient G++: performance programming techniquesddison-Wesley Longman
Publishing Co., Inc., Boston, MA, USA, 2000.

[11] Edsko DeVries, Adrian Francalanza, and Matthew HesyieReasoning about explicit resource management (ex-
tended abstract). IRLACES pages 15-21. ETAPS, April 2011. hitpilaces11.di.fc.ul.pt

[12] Edsko DeVries, Adrian Francalanza, and Matthew HesyeSniqueness typing for resource management in
message-passing concurrenigurnal of Logic and Computatigpdune 2012.

[13] Adrian Francalanza, Julian Rathke, and Vladimiro $aesPermission-based separation logic for messagenpassi
concurrencyLogical Methods in Computer Scienc&3), 2011.

[14] Jean-Yves Girard. Linear logiTheoretical Computer Sciencg0(1):1-102, 1987.

[15] Colin S. Gordon, Matthew J. Parkinson, Jared Parsoleks®Bromfield, and Joe Dly. Uniqueness and Reference
Immutability for Safe Parallelism. IRroceedings of the 2012 ACM International Conference ore€tpriented
Programming, Systems, Languages, and Applications (O@R3), Tucson, AZ, USA, October 2012.

[16] Orna Grumberg, Orna Kupferman, and Sarai Sheinvaldable automata over infinite alphabets. In Adrian-Horia
Dediu, Henning Fernau, and Carlos Martn-Vide, editbesyguage and Automata Theory and Applicatior@ume
6031 ofLNCS pages 561-572. Springer, 2010.

[17] Jurriaan Hage, Stefan Holdermans, and Arie Middelkodmeneric usage analysis with sdfeet qualifiers. In
Proceedings of the 12th ACM SIGPLAN International Confeeeon Functional Programming (ICFPpages 235—
246. ACM, 2007.

[18] Dana Harrington. Uniqueness logitheoretical Computer Sciencg54(1):24-41, 2006.

[19] Matthew HennessyA Distributed PicalculusCambridge University Proess, Cambridge, UK., 2008.

[20] Matthew Hennessy. A calculus for costed computatitiegical Methods in Computer Sciend1), 2011.

[21] Matthew Hennessy and Julian Rathke. Typed behaviagaivalences for processes in the presence of subtyping.
Mathematical Structures in Computer Scient4:651-684, 2004.

[22] Tony Hoare and Peter O’Hearn. Separation logic serosufitr communicating process&NTCS 212:3-25, 2008.

[23] Kohei Honda. From process logic to program logicl@#P '04, pages 163-174, 2004.

COMPOSITIONAL REASONING FOR CHANNEL-BASED CONCURRENT RE&YRCE MANAGEMENT 51

[24] Kohei Honda and Mario Tokoro. On asynchronous commatioo semantics. In Mario Tokoro, Oscar Nierstrasz,
and Peter Wegner, editoiBroceedings of the ECOOP’91 Workshop on Object-Based CammuComputing vol-
ume 612 ofLNCS pages 21-51. Springer-Verlag, 1992.

[25] Atsushilgarashi and Naoki Kobayashi. A generic typgtesn for the pi-calculug-heor. Comput. S¢i311(1-3):121—
163, 2004.

[26] Alan Jdirey and Julian Rathke. Java Jr: Fully abstract trace seosaiuti a core java language. In Shmuel Sagiv,
editor, ESOPR volume 3444 of. NCS pages 423-438. Springer, 2005.

[27] Richard JonesGarbage Collection: Algorithms for Automatic Dynamic MemndManagementJohn Wiley and
Sons, July 1996. With a chapter on Distributed Garbage Clidie by Rafael Lins. Reprinted 1997 (twice), 1999,
2000.

[28] Richard Jones, Anthony Hosking, and Eliot MoEke Garbage Collection Handbook: The Art of Automatic Mem-
ory ManagementApplied Algorithms and Data Structures. Chapman and/8RIC, 1 edition, 2011.

[29] Michael Kaminski and Nissim Francez. Finite-memorytémataTheoretical Computer SciencE34(2):329 — 363,
1994.

[30] Astrid Kiehn and S. Arun-Kumar. Amortised bisimulat® INFORTE 2005volume 3731 of NCS pages 320-334,
2005.

[31] Naoki Kobayashi, Benjamin C. Pierce, and David N. Turhéearity and the pi-calculusACM Trans. Program.
Lang. Syst.21(5):914-947, 1999.

[32] Naoki Kobayashi and Davide Sangiorgi. A hybrid typeteys for lock-freedom of mobile process&sCM Trans.
Program. Lang. Syst32(5):1-49, 2010.

[33] Naoki Kobayashi, Kohei Suenaga, and Lucian Wischiksdece usage analysis for the pi-calculusgical Meth-
ods in Computer Sciencg(3), 2006.

[34] Gerald Luttgen and Walter Vogler. Bisimulation on sde A unified approachlheor. Comput. S¢i360(1-3):209—
227, 2006.

[35] R. Milner. Communicating and mobile systems: thealculus Cambridge Univ., 1999.

[36] Benjamin C. PierceTypes and programming languagdslT Press, Cambridge, MA, USA, 2002.

[37] Benjamin C. PierceAdvanced Topics in Types and Programming Languages MIT Press, Cambridge, MA,
USA, 2004.

[38] Benjamin C. Pierce and Davide Sangiorgi. Typing andygihg for mobile processeMathematical Structures in
Computer Sciencé(5):409-453, 1996.

[39] David Pym and Chris Tofts. A calculus and logic of resmms and processeSorm. Asp. Computl18(4):495-517,
2006.

[40] Frederick Smith, David Walker, and J. Gregory Morrisétlias types. INESOR volume 1782 ofLNCS pages
366-381. Springer, 2000.

[41] David Teller. Recollecting resources in the pi-calmulin Proceedings of IFIP TCS 200pages 605-618. Kluwer
Academic Publishing, 2004.

[42] T. Terauchi and A. Aiken. A capability calculus for cameency and determinisnrTOPLAS 30(5):1-30, 2008.

[43] Philip Wadler. Is there a use for linear logic?REPM, pages 255-273, 1991.

[44] Nobuko Yoshida. Channel dependent types for highdeomobile processeSIGPLAN Not.39(1):147-160, 2004.

[45] Nobuko Yoshida, Kohei Honda, and Martin Berger. Lirigaand bisimulation.Journal of Logic and Algebraic
Programming 72(2):207 — 238, 2007.

This work is licensed under the Creative Commons Attribution-NoDerivs License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nd/2.0/ or send a letter to
Creative Commons, 171 Second St, Suite 300, San Francisco, CA 94105, USA, or Eisenacher
Strasse 2, 10777 Berlin, Germany

	1. Introduction
	1.1. Scenario:
	1.2. Main Challenges:
	1.3. Paper Structure:

	2. The Language
	3. A Case Study
	3.1. Typeability and behaviour of the Buffer
	3.2. A resource-conscious Implementation of the Buffer

	4. A Cost-Based Preorder
	4.1. Labelled Transition System
	4.2. Costed Bisimulation
	4.3. Alternatives
	4.4. Properties of piCostBis

	5. Characterisation
	5.1. Soundness for piCostBis
	5.2. Full Abstraction of piCost

	6. Revisiting the Case Study
	6.1. Proving Strict Inefficiency
	6.2. Proving Relative Efficiency

	7. Related Work
	8. Conclusion
	Future Work
	Acknowledgements

	References

