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Abstract. We define aπ-calculus variant with a costed semantics where channels are treated as re-
sources that must explicitly be allocated before they are used and can be deallocated when no longer
required. We use a substructural type system tracking permission transfer to construct coinductive
proof techniques for comparing behaviour and resource usage efficiency of concurrent processes. We
establish full abstraction results between our coinductive definitions and a contextual behavioural
preorder describing a notion of process efficiencywrt. its management of resources. We also jus-
tify these definitions and respective proof techniques through numerous examples and a case study
comparing two concurrent implementations of an extensiblebuffer.

1. Introduction

We investigate thebehaviourandspace efficiencyof concurrent programs withexplicit resource-
management. In particular, our study focuses onchannel-passing concurrent programs: we define a
π-calculus variant, calledRπ, where the only resources available are channels; these channels must
explicitly be allocated before they can be used, and can be deallocated when no longer required.
As part of the operational model of the language, channel allocation and deallocation have costs
associated with them, reflecting the respective resource usage.

Explicit resource management is typically desirable in settings where resources arescarce. Re-
source management programming constructs such as explicitdeallocation provide fine-grained con-
trol over how these resources are used and recycled. By comparison, in automated mechanisms
such as garbage collection, unused resources (in this case,memory) tend to remain longer in an
unreclaimed state [27, 28]. Explicit resource management constructs such as memory deallocation
also carry advantages over automated mechanisms such as garbage collection techniques when it
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comes tointeractiveand real-time programs [10, 27, 28]. In particular, garbage collection tech-
niques require additional computation to determine otherwise explicit information as to which parts
of the memory to reclaim and at what stage of the computation;the associated overheads may lead
to uneven performance and intolerable pause periods where the system becomes unresponsive [10].

In the case of channel-passing concurrency with explicit memory-management, the analysis of
the relative behaviour and efficiency of programs is non-trivial for a number of reasons. Explicit
memory-management introduces the risk of either prematureor multiple deallocation of resources
along separate threads of execution; these are more difficult to detect than in single-threaded pro-
grams and potentially result in problems such as wild pointers or corrupted heaps which may, in
turn, lead to unpredictable, even catastrophic, behaviour[27, 28]. It also increases the possibility
of memory leaks, which are often not noticeable in short-running, terminating programs but subtly
eat up resources over the course of long-running programs. In a concurrent settings such as ours,
complications relating to the assessment and comparison ofresource consumption is further com-
pounded by the fact that the runtime execution of channel-passing concurrent programs can have
multiple interleavings, is sometimesnon-deterministicand oftennon-terminating.

1.1. Scenario: Consider a setting with two servers, S1 and S2, which repeatedly listen for service
requests on channelssrv1 andsrv2, respectively. Requests send areturn channel onsrv1 or srv2

which is then used by the servers to service the requests and send back answers,v1 and v2. A
possible implementation for these servers is given in (1.1)below, whererecw.P denotes a process
P recursing atw, c?x.P denotes a process inputting on channelc some value that is bound to the
variablex in the continuationP, andc!v.P outputs a valuev on channelc and continues asP:

Si , recw. srvi?x. x!vi . w for i ∈ {1, 2} (1.1)

Clients that need to request service frombothservers, so as to report back the outcome of both
server interactions on some channel,ret, can be programmed in a variety of ways:

C0 , recw. alloc x1.alloc x2. srv1!x1. x1?y. srv2!x2. x2?z. ret!(y, z). w

C1 , recw. alloc x. srv1!x. x?y. srv2!x. x?z.ret!(y, z). w

C2 , recw.alloc x. srv1!x. x?y. srv2!x. x?z. free x. ret!(y, z). w

(1.2)

C0 corresponds to an idiomaticπ-calculus client. In order to ensure that it is the sole recipient of
the service requests, it createstwo new return channels to communicate with S1 and S2 on srv1

andsrv2, using the commandalloc x.P; this command allocates anew channelc and binds it
to the variablex in the continuationP. Allocating a new channel for each service request ensures
that the return channel used between the client and server isprivate for the duration of the service,
preventing interferences from other parties executing in parallel.

One important difference between the computational model considered in this paper and that of
the standardπ-calculus is that channel allocation is an expensive operation i.e., it incurs an additional
(spatial) cost compared to the other operations. Client C1 attempts to address the inefficiencies of
C0 by allocating onlyoneadditional new channel, andreusingthis channel for both interactions
with the servers. Intuitively, this channel reuse is valid,i.e., it preserves the client-server behaviour
C0 had with servers S1 and S2, because the server implementations above use the receivedreturn-
channelsonly once. This single channel usage guarantees that return channelsremain private during
the duration of the service, despite the reuse from client C1.

Client C2 attempts to be more efficient still. More precisely, since our computational model
does not assume implicit resource reclamation, the previous two clients can be deemed as having
memory leaks: at every iteration of the client-server interaction sequence, C0 and C1 allocate new
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channels that are not disposed of, even though these channels are never used again in subsequent it-
erations. By contrast, C2 deallocates unused channels at the end of each iteration using the construct
freec.P.

In this work we develop a formal framework for comparing the behaviour of concurrent pro-
cesses that explicitly allocate and deallocate channels. For instance, processes consisting of the
servers S1 and S2 together with any of the clients C0, C1 or C2 should berelated, on the basis
that they exhibit the same behaviour. In addition, we would like to order these systems, based on
their relative efficiencieswrt. the (channel) resources used. We note that there are various, at times
contrasting, notions of efficiency that one may consider. For instance, one notion may consider
acquiring memory for long periods to be less efficient than repeatedly allocating and deallocating
memory; another notion of efficiency could instead focus on minimising the allocation anddeallo-
cation operations used, as these as considerably more expensive than other operations. In this work,
we mainly focus on a notion of efficiency that accounts for the relative memory allocations required
to carry out the necessary computations. Thus, we would intuitively like to develop a framework
yielding the following preorder, where⊏∼ reads ”more efficient than”:

S1 ‖ S2 ‖ C2 ⊏
∼ S1 ‖ S2 ‖ C1 ⊏

∼ S1 ‖ S2 ‖ C0 (1.3)

A pleasing property of this preorder would becompositionality, which implies that orderings are
preserved under larger contexts,i.e., for all (valid) contextsC[−], P⊏∼ Q impliesC[P] ⊏∼ C[Q]. Du-
ally, compositionality would also improve the scalabilityof our formal framework since, to show
thatC[P] ⊏∼ C[Q] (for some contextC[−]), it suffices to obtainP⊏∼ Q. For instance, in the case of
(1.3), compositionality would allow us to factor out the common code,i.e., the servers S1 and S2 as
the context S1 ‖ S2 ‖ [−], and focus on showing that

C2 ⊏∼ C1 ⊏∼ C0 (1.4)

1.2. Main Challenges: The details are however far from straightforward. To begin with, we need
to assess relative program cost over potentially infinite computations. Thus, rudimentary aggregate
measures such as adding up the total computation cost of processes and comparing this total at
the end of the computation is insufficient for system comparisons such as (1.3). In such cases, a
preliminary attempt at a solution would be to compare therelative costfor everyserver interaction
(action): in the sense of [4], the preorder would then ensurethat everycostedinteraction by the
inefficient clients must be matched by a correspondingcheaperinteraction by the more efficient
client (and, dually, costed interactions by the efficient client must be matched by interactions from
the inefficient client that are as costly or more).

C3 , recw.alloc x1.alloc x2. srv1!x1. x1?y. srv2!x2. x2?z. free x1.free x2.ret!(y, z).w (1.5)

There are however problems with this approach. Consider, for instance, C3 defined in (1.5). Even
though this client allocates two channels for every iteration of server interactions, it does not exhibit
any memory leaks since it deallocates them both at the end of the iteration. It may therefore be
sensible for our preorder to equateC3 with clientC2 of (1.2) by having C2 ⊏∼ C3 as well as C3 ⊏∼ C2.
However showing C3 ⊏∼ C2 would not be possible using the preliminary strategy discussed above,
since, C3 must engage in more expensive computation (allocating two channels as opposed to 1) by
the time the interaction with the first server is carried out.

Worse still, an analysis strategy akin to [4] would not be applicable for a comparison involving
the clients C1 and C3. In spite of the fact that over the course of its entire computation C3 requires
less resources than C1, i.e., it is more efficient, client C3 appears to beless efficient than C1 after the
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interaction with the first server on channelsrv1 since, at that stage, it has allocated two new channels
as opposed to one. However, C1 becomes less efficient for the remainder of the iteration since it
never deallocates the channel it allocates whereas C3 deallocates both channels. To summarise, for
comparisons C3 ⊏∼ C2 and C3 ⊏∼ C1, we need our analysis to allow a process to betemporarily
inefficientas long as it can recover later on.

In this paper, we use a costed semantics to define an efficiency preorder to reason about the
relative cost of processes over potentially infinite computation, based on earlier work by [30, 34].
In particular, we adapt the concept ofcost amortisationto our setting, used by our preorders to
compare processes that are eventually more efficient than others over the course of their entire
computation, but are temporarily less efficient at certain stages of the computation.

Issues concerning cost assessment are however not the only obstacles tackled in this work; there
are also complications associated with the compositionality aspects of our proposed framework.
More precisely, we want to limit our analysis tosafecontexts,i.e.,contexts that use resources in a
sensible way,e.g.,not deallocating channels while they are still in use. In addition, we also want to
consider behaviourwrt. a subset of the possible safe contexts. For instance, our clients from (1.2)
only exhibit the same behaviourwrt. servers that (i) accept(any number of)requests on channels
srv1 andsrv2 containing a return channel, which then (ii ) use this channel at mostonceto return
the requested answer. We can characterise the interface between the servers and the clients using
fairly standard channel type descriptions adapted from [31] in (1.6), where [T]ω describes a channel
than can be usedanynumber of times (i.e., the channel-type attributeω) to communicate values of
typeT, whereas [T]1 denotes anaffinechannel (i.e.,a channel type with attribute1) that can be used
at mostonce to communicate values of typeT:

srv1 : [[T1]1]ω, srv2 : [[T2]1]ω (1.6)

In the style of [45, 21], we could then use this interface to abstract away from the actual server
implementations described in (1.1) and state that,wrt. contexts that observe the channel mappings
of (1.6), client C2 is more efficient than C1 which is, in turn, more efficient than C0. These can be
expressed as:

srv1 : [[T1]1]ω, srv2 : [[T2]1]ω |= C2 ⊏∼ C1 (1.7)

srv1 : [[T1]1]ω, srv2 : [[T2]1]ω |= C1 ⊏∼ C0 (1.8)

Unfortunately, the machinery of [45, 21] cannot be easily extended to our costed analysis be-
cause of two main reasons. First, in order to limit our analysis to safe computation, we would need
to show that clients C0, C1 and C2 adhere to the channel usage stipulated by the type associations
in (1.6). However, the channel reuse in C1 and C2 (an essential feature to attain space efficiency)
requires our analysis to associate potentially different types (i.e., [T1]1 and [T2]1) to the same re-
turn channel; this channel reuse at different types amounts to a form ofstrong update, a degree of
flexibility not supported by [45, 21].

Second, the equivalence reasoning mechanisms used in [45, 21] would be substantially limiting
for processes with channel reuse. More specifically, consider the slightly tweaked client implemen-
tation of C2 below:

C′2 , recw.alloc x.
(

srv1!x ‖ x?y.(srv2!x ‖ x?z.free x.c!(y, z).X)
)

(1.9)

The only difference between the client in (1.9) and the original one in (1.2) is that C2 sequences
the service requests before the service inputs,i.e., . . . srv1!x. x?y. . . and. . . srv2!x. x?z. . ., whereas
C′2 parallelises them,i.e., . . .srv1!x ‖ x?y. . . and. . .srv2!x ‖ x?z. . .. Resource-centric type disci-
plines such as [12, 40] preclude name matching for a particular resource once all the permissions to
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use that resource have been used up; this feature is essential to statically reason about a number of
basic design patterns for reuse. For such type settings, it turns out that the client implementations C2

and C′2 exhibit the same behaviour because the return channel used by both clients forbothserver
interactions is private,i.e.,unknown to the respective servers; as a result, the servers cannot answer
the service on that channel before it is receives it on eithersrv1 or srv2.1 Throughscope extru-
sion, theories such as [45, 21] can reason adequately about the first server interaction, and relate
. . . srv1!x. x?y. . . of C2 with . . . srv1!x ‖ x?y.. . . of C2. However, they have no mechanism for
tracking channel locality post scope extrusion, thereby recovering the information that the return
channelbecomes private againto the client after the first server interaction (since the servers use
up the permission to use the return channel once they reply onit). This prohibits [45, 21] from
determining that the second server interaction is just an instance of the first server interaction, thus
failing to relate these two implementations.

In [12] we developed a substructural type system based around a type attribute describing chan-
nel uniqueness, and this was used to statically ensure safe computations for Rπ. In this work,
we weave this type information into our framework, imbuing it with an operational permission-
semantics to reason compositionally about the costed behaviour of (safe) processes. More specif-
ically, in (1.2), when C2 allocates channelx, no other process knows aboutx: from a typing per-
spective, but also operationally,x is uniqueto C2. Client C2 then sendsx on srv1 at anaffine type,
which (by definition) limits the server to usex at most once. At this point, from an operational
perspective,x is to C2, the entity previously “owning” it,unique-after-1(communication) use. This
means that after one communication step onx, (the derivative of) C2 recognises that all the other
processes apart from it must have used up the single affine permission forx, and hencex becomes
once againuniqueto C2. This also means that C2 can safelyreuse x, possibly at a different object
type (strong update), or else safely deallocate it.

The concept of affinity is well-known in the process calculus community. By contrast, unique-
ness (and its duality to affinity) is used far less. In a compositional framework, uniqueness can
be used to record the guarantee at one end of a channel corresponding to the restriction associated
with affine channel usage at the other; an operational semantics can be defined, tracking thepermis-
sion transferof affine permissions back and forth between processes as a result of communication,
addressing the aforementioned complications associated with idioms such as channel reuse. We
employ such an operational (costed) semantics to define our efficiency preorders for concurrent pro-
cesses with explicit resource management, based on the notion of amortised cost discussed above.

1.3. Paper Structure: Section 2 introduces our language with constructs for explicit memory man-
agement and defines a costed semantics for it. We illustrate issues relating to resource usage in this
language through a case study in Section 3, discussing different implementations for an unbounded
buffer. Section 4 develops a labelled-transition system for ourlanguage that takes into consideration
some representation of the observer and the permissions that are exchanged between the program
and the observer; it is a typed transition system similar to [38, 21, 19], nuanced to the resource-
focussed type system of [12]. Based on this transition system, the section also defines a coinductive
cost-based preorder and proves a number of properties aboutit. Section 5 justifies the cost-based
preorder by relating it with a behavioural contextual preorder defined in terms of the reduction se-
mantics of Section 2. Section 6 applies the theory of Section4 to reason about the efficiency of
the unbounded buffer implementations of Section 3. Finally, Section 7 surveysrelated work and
Section 8 concludes.

1Analogously, in theπ-calculus,new d.(c!d ‖ d?x.P) is indistinguishable fromnew d.(c!d.d?x.P)
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P,Q ::= u!~v.P (output) | u?~x.P (input)
| nil (nil) | if u = v then P else Q (match)
| recw.P (recursion) | x (process variable)
| P ‖ Q (parallel) | alloc x.P (allocate)
| freeu.P (deallocate)

Figure 1:Rπ Syntax

2. The Language

Figure 1 shows the syntax for our language, the resourceπ-calculus, orRπ for short. It has the
standardπ-calculus constructs with the exception of scoping, which is replaced with primitives
for explicit channel allocation,alloc x.P, and deallocation,free x.P. The syntax assumes two
separate denumerable sets of channel namesc, d ∈ Chan, and variablesx, y, z,w ∈ Var, and lets
identifiersu, v range over both sets, Chan ∪ Var. The input construct,c?x.P, recursion construct,
recw.P, and channel allocation construct,alloc x.P, are binders whereby free occurrences of the
variablesx andw in P are bound. As opposed to more standard versions of theπ-calculus, wedo not
use name scoping to bind and bookkeep the visibility of names; we shall however use alternative
mechanisms to track name knowledge and usage in subsequent development.

Rπ processes run in a resource environment, ranged over byM,N, representing predicates over
channel names stating whether a channel is allocated or not.We find it convenient to denote such
functions as a list of channels representing the set channels that are allocated,e.g.,the listc, d de-
notes the set{c, d}, representing the resource environment returningtrue for channelsc andd and
falseotherwise - in this representation, the order of the channels in the list is unimportant, but dupli-
cate channels are disallowed; as shorthand, we also writeM, c to denoteM∪{c} wheneverc < M. In
this paper we consider only resource environments with aninfinite number of deallocated channels,
i.e., M is a total function. Models with finite resources can be easily accommodated by making
M partial; this also would entail a slight change in the semantics of the allocation construct, which
could either block or fail whenever there are no deallocatedresources left. Although interesting in
its own right, we focus on settings with infinite resources asit lends itself better to the analysis of
resource efficiency that follows.

We refer to the pairM ⊲P, consisting of a resource environmentM and aclosedprocess2 P as a
system; note thatnot all free names inP need to be allocatedi.e.,present inM: intuitively, any name
c used byP andc < M represents adangling pointer. Contexts consist of parallel composition of
processes; they are however defined over systems, through the grammar and the respective definition
at the top of Figure 2. The reduction relation is defined as theleastcontextualrelation over systems
satisfying the rules in Figure 2. More specifically our reduction relation leaves the following rule
implicit:

M ⊲ P −→k M ⊲ Q
rCtx

C[M ⊲ P] −→k C[M ⊲ Q]

2A closed process has no free variables. Note that the absenceof name bindersi.e.,no name scoping, means that all
names are free.
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Contexts

C ::= [−] | C ‖ P | P ‖ C

[M ⊲ P]
def
= M ⊲ P

C[M ⊲ P] ‖ Q
def
= M′ ⊲ (P′ ‖ Q) if C[M ⊲ P] = M′ ⊲ P′

Q ‖ C[M ⊲ P]
def
= M′ ⊲ (Q ‖ P′) if C[M ⊲ P] = M′ ⊲ P′

Structural Equivalence

sCom P‖Q≡Q‖P sAss P‖ (Q‖R)≡ (P‖Q)‖R sNil P‖nil≡P

Reduction Rules

rCom
M, c ⊲ c! ~d.P ‖ c?~x.Q −→0 M, c ⊲ P ‖ Q{ ~d/~x}

rThen
M, c ⊲ if c = c then P else Q −→0 M, c ⊲ P

rElse
M, c, d ⊲ if c = d then P else Q −→0 M, c, d ⊲ Q

rRec
M ⊲ recw.P −→0 M ⊲ P{recw.P/w}

P ≡ P′ M ⊲ P′ −→k M ⊲ Q′ Q′ ≡ Q
rStr

M ⊲ P −→k M ⊲ Q

rAll
M ⊲ alloc x.P −→+1 M, c ⊲ P{c/x} rFree

M, c ⊲ free c.P −→−1 M ⊲ P

Reflexive Transitive Closure

M ⊲ P −→∗0 M ⊲ P

M ⊲ P −→∗k M′ ⊲ P′ M′ ⊲ P′ −→l M′′ ⊲ P′′

M ⊲ P −→∗k+l M′′ ⊲ P′′

Figure 2:Rπ Reduction Semantics

Rule (rStr) extends reductions to structurally equivalent processes, P ≡ Q, i.e.,processes that are
identified up to superfluousnil processes, and commutativity/associativity of parallel composition
(see the structural equivalence rules Figure 2).

Most rules follow those of the standardπ-calculus,e.g., (rRec), with the exception of those
involving resource handling. For instance, the rule for communication (rCom) requires the commu-
nicating channel to beallocated. Allocation (rAll) chooses a deallocated channel, allocates it, and
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a ::= ω (unrestricted) | 1 (affine) | (•, i) (unique afteri steps)

T ::= U (channel type) | proc (process type)
U ::= [~U]a (channel) | µX.U (recursion) | X (variable)

Figure 3: Type Attributes and Types

substitutes it for the bound variable of the allocation construct.3 Deallocation (rFree) changes the
states of a channel from allocated to deallocated, making itavailable for future allocations. The
rules are annotated with a cost reflecting resource usage; allocation has a cost of+1, deallocation
has a (negative) cost of−1 while the other reductions carry no cost,i.e.,0. Figure 2 also shows the
natural definition of the reflexive transitive closure of thecosted reduction relation. In what follows,
we usek, l ∈ Z as integer metavariables to range over costs.

Example 2.1. The following reduction sequence illustrates potential unwanted behaviour resulting
from resource mismanagement:

M, c ⊲ free c.(c!1 ‖ c?x.P) ‖ alloc y.(y!42 ‖ y?z.Q) −→−1 (2.1)

M ⊲ c!1 ‖ c?x.P ‖ alloc y.(x!42 ‖ x?z.Q) −→+1 (2.2)

M, c ⊲ c!1 ‖ c?x.P ‖ c!42 ‖ c?z.Q (2.3)

Intuitively, allocation should yield “fresh” channelsi.e., channels that are not in use by any active
process. This assumption is used by the right process in system (2.1),alloc y.(y!42 ‖ y?z.Q),
to carry out alocal communication, sending the value42 on some local channely that no other
process is using. However, the premature deallocation of the channelc by the left process in (2.1),
free c.(c!1 ‖ c?x.P), allows channelc to be reallocated by the right process in the subsequent
reduction, (2.2). This may then lead to unintended behaviour since we may end up with interferences
when communicating onc in the residuals of the left and right processes, (2.3).4 �

In [12] we defined a type system that precludes unwanted behaviour such as in Example 2.1.
The type syntax is shown in Figure 3. The main type entities are channel types, denoted as [~U]a,
wheretype attributes arange over

• 1, for affine, imposing a restriction/obligation on usage;
• (•, i), for unique-after-i usages (i ∈ N), providing guarantees on usage;
• ω, for unrestricted channel usage without restrictions or guarantees.

Uniqueness typing can be seen as dual to affine typing [18], and in [12] we make use of this duality
to keep track of uniqueness across channel-passing parallel processes: an attribute (•, i) typing an
endpoint of a channelc accounts for (at most)i instances of affine attributes typing endpoints of that
same channel.

A channel type [~U]a also describes the type of the values that can be communicated on that
channel,~U, which denotes a list of typesU1, . . . ,Un for n ∈ Nat; whenn = 0, the type list is an

3The expected side-conditionc < M is implicit in the notation (M, c) used in the systemM, c ⊲ P{c/x} to which it
reduces, sincec cannot be present inM for M, c to be valid.

4Operationally, we do not describe errors that may result from attempted communications on deallocated channels
(we do not have error values). This may occur after reduction(2.1), if the residual of the left process communicate on
channelc. Rather, communications on deallocated channels are blocked.
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empty list and we simply write []a. Note the difference between [~U]1, i.e.,a channel with an affine
usage restriction, and [~U](•,1), i.e.,a channel with a unique-after-1 usage guarantee. We denote fully
unique channels as [~U]• in lieu of [~U](•,0).

The type syntax also assumes a denumerable set of type variablesX,Y, bound by the recursive
type constructµX.U. In what follows, we restrict our attention toclosed, contractivetypes, where
every type variable is bound and appears within a channel constructor [−]a; this ensures that chan-
nel types such asµX.X are avoided. We assume an equi-recursive interpretation for our recursive
types [36] (seetEq in Figure 4), characterised as the least type-congruence satisfying ruleeRec in
Figure 4.

Γ ⊢ P dom(Γ) ⊆ M Γ is consistent
tSys

Γ ⊢ M ⊲ P
The rules for typing processes are given in Figure 4 and take the usual shapeΓ ⊢ P stating

that processP is well-typed with respect to the environmentΓ, a list of pairs of identiers and types.
Systems are typed according to (tSys) above: a systemM⊲P is well-typed underΓ if P is well-typed
wrt. Γ, Γ ⊢ P, andΓ only contains assumptions for channels that have been allocated,dom(Γ) ⊆ M.
This restricts channel usage inP to allocated channels and is key for ensuring safety.

In [12], typing environments are multisets of pairs of identifiers and types; we do not require
them to be partial functions. However, the (top-level) typing rule for systems (tSys) requires that
the typing environment isconsistent. A typing environment is consistent if whenever it contains
multiple assumptions about a channel, then these assumptions can be derived from asingle assump-
tion using the structural rules of the type system (see the structural ruletCon and the splitting rule
pUnq in Figure 4).

Definition 2.2 (Consistency). A typing environmentΓ is consistentif there is a partial mapΓ′ such
thatΓ′ ≺ Γ.

The environment structural rules,Γ1 ≺ Γ2, defined in Figure 4, govern the way type environ-
ments are syntactically manipulated. For instance, rulestCon andtJoin state that type assumptions
for the same identifier can be split or joined according to thetype splitting relationT = T1 ◦ T2,
also defined in Figure 4: apart from standard splitting of unrestricted channels,pUnr, and process
types,pProc, we note that a unique-after-i channel may be split into a unique-after-(i + 1) channel
and an affine channel; we also note that affine channels areneversplit. The environment structural
rules also allow for weakening,tWeak, equi-recursive manipulation of types,tEq andeRec, and
subtyping,tSub; the latter rule is defined in terms of the subtyping relationalso stated in Figure 4
(bottom) where, for instance, an unrestricted channel can be used instead of an affine channel (that
can be used at most once). The key novel structural rule is howevertRev, which allows us to change
(revise) the object type of a channel whenever we are guaranteed that the type assumption for that
identifier is unique. These rules are recalled from [12] and the reader is encouraged to consult that
document for more details.

The consistency condition of Definition 2.2 ensures that there is no mismatch in the duality
between the guarantees of unique types and the restrictionsof affine types, which allows sound
compositional type-checking by our type system. For instance, consistency rules out environments
such as

c: [U]•, c: [U]1 (2.4)

where a process typed under the guarantee that a channelc is unique now,c : [U]•, contradicts the
fact that some other process may be typed under the affine usage allowed by the assumptionc: [U]1.
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Logical rules

Γ, u: [~T]a−1 ⊢ P
tOut

Γ, u: [~T]a,
−−→
v:T ⊢ u!~v.P

Γ, u: [~T]a−1,
−−−→
x:T ⊢ P

tIn
Γ, u: [~T]a ⊢ u?~x.P

Γ1 ⊢ P Γ2 ⊢ Q
tPar

Γ1, Γ2 ⊢ P ‖ Q

u, v ∈ Γ Γ ⊢ P Γ ⊢ Q
tIf

Γ ⊢ if u = v then P else Q

Γω, x:proc ⊢ P
tRec

Γω ⊢ recw.P
tVar

x:proc ⊢ x

Γ ⊢ P
tFree

Γ, u: [~T]• ⊢ freeu.P

Γ, x: [~T]• ⊢ P
tAll

Γ ⊢ alloc x.P
tNil

∅ ⊢ nil

Γ′ ⊢ P Γ ≺ Γ′

tStr
Γ ⊢ P

whereΓω can only contain unrestricted assumptions and all bound variables are fresh.

Structural rules (≺) is the least reflexive transitive relation satisfying

T = T1 ◦ T2
tCon

Γ, u:T ≺ Γ, u:T1, u:T2

T = T1 ◦ T2
tJoin

Γ, u:T1, u:T2 ≺ Γ, u:T

T1 ∼ T2
tEq

Γ, u:T1 ≺ Γ, u:T2

tWeak
Γ, u:T ≺ Γ

T1 ≺s T2
tSub

Γ, u:T1 ≺ Γ, u:T2
tRev

Γ, u: [ ~T1]• ≺ Γ, u: [ ~T2]•

Equi-Recursion Counting channel usage

eRec
µX.U ∼ U{µX.U/X}

c: [~T]a−1 def
=



























ε (empty list) if a= 1
c: [~T]ω if a= ω

c: [~T](•,i) if a= (•, i + 1)

Type splitting

pUnr
[~T]ω = [~T]ω ◦ [~T]ω

pProc
proc = proc ◦ proc

pUnq
[~T](•,i) = [~T]1 ◦ [~T](•,i+1)

Subtyping

sIndx
(•, i) ≺s (•, i + 1)

sUnq
(•, i) ≺s ω

sAff
ω ≺s 1

a1 ≺s a2
sTyp

[~T]a1 ≺s [~T]a2

Figure 4: Typing processes
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For similar reasons, consistency also rules out environments such as

c: [U]•, c: [U]ω (2.5)

However, it does not rule out environments such as (2.6) eventhough the guarantee provided by
c : [U](•,2) is too conservative: it states that channelc will become unique aftertwo uses but, in
actual fact, it becomes unique after one use since the (top-level) environment contains onlyone
other affine type assumption,c: [U]1, that other processes can be typed at.

c: [U](•,2), c: [U]1 (2.6)

A less conservative uniqueness typing guarantee would therefore bec : [U](•,1) as shown in (2.7)
below; this environment constitutes another case of a consistent environment allowed by Defini-
tion 2.2.

c: [U](•,1), c: [U]1 (2.7)

The type system issubstructural, implying that typing assumptions can be usedonly once
during typechecking [37]. This is clearly manifested in theoutput and input rules,tOut andtIn in
Figure 4. In fact, using the operationc : [~T]a−1 (see5 Figure 4), ruletOut collapses three different
possibilities for typing output processes, which could alternatively have been expressed as the three
separate typing rules in (2.8).

Γ ⊢ P
tOutA

Γ, u: [~T]1,
−−→
v:T ⊢ u!~v.P

Γ, u: [~T]ω ⊢ P
tOutW

Γ, u: [~T]ω,
−−→
v:T ⊢ u!~v.P

Γ, u: [~T](•,i) ⊢ P
tOutU

Γ, u: [~T](•,i+1),
−−→
v:T ⊢ u!~v.P

(2.8)

RuletOutA states that an output of values~v on channelu is allowed if the type environment has an
affine channel-type assumption for that channel,u : [~T]1, and the corresponding type assumptions

for the values communicated,
−−→
v:T, match the object type of the affine channel-type assumption,

~T; in the rule premise, the continuationP must also be typedwrt. the remainingassumptions in
the environment,without the assumptions consumed by the conclusion. RuletOutW is similar,
but permits outputs onu for environments with anunrestrictedchannel-type assumption for that
channel,u : [~T]ω. The continuationP is typecheckedwrt. the remaining assumptions and anew
assumption,u : [~T]ω; this assumption is identical to the one consumed in the conclusion, so as to
model the fact that uses of channelu are unrestricted. RuletOutU is again similar, but it allows
outputs on channelu for a “unique after i+1” channel-type assumption; in the premise of the rule,
P is typecheckedwrt. the remaining assumptions and anewassumptionu : [~T](•,i), whereu is now
unique after iuses. Analogously, the input rule,tIn, also encodes three input cases (listed below):

Γ,
−−−→
x:T ⊢ P

tInO
Γ, u: [~T]1 ⊢ u?~x.P

Γ, u: [~T]ω,
−−−→
x:T ⊢ P

tInW
Γ, u: [~T]ω ⊢ u?~x.P

Γ, u: [~T](•,i),
−−−→
x:T ⊢ P

tInU
Γ, u: [~T](•,i+1) ⊢ u?~x.P

(2.9)

5This operation on type assumptions,c : [~T]a−1, defined in Figure 4, describes the cases where, when using anaffine
type assumption to typecheck a process, the continuation ofthe process in the rule premise is typed without that assump-
tion (the operation returns no type assumption), whereas when using an unrestricted or unique-after-i assumptions, the
premise judgement usewrt. (new) unrestricted and unique-after-(i − 1) assumptions, respectively. Note that the operation
c: [~T]a−1 is not defined fora= •. See [12] for more detail.
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Parallel composition (tPar) enforces the substructural treatment of type assumptions, by ensuring
that type assumptions are used by either the left process or the right, but not by both. However,
some type assumption can besplit using contraction,i.e., rules (tStr) and (tCon). For example, an
assumptionc : [~T](•,i) can be split asc : [~T]1 andc : [~T](•,i+1)—see (pUnq).

The rest of the rules in Figure 4 are fairly straightforward.Even though these typing rules do
not requireΓ to be consistent, the consistency requirement at the top level typing judgement (tSys)
ensures that whenever a process is typedwrt. a unique assumption for a channel, [~T]•, no other
process has access to that channel. It can therefore safely deallocate it (tFree), or change the object
type of the channel (tRev). Dually, when a channel is newly allocated it is assumed unique (tAll).
Note also that name matching is only permitted when channel permissions are owned,u, v ∈ Γ in
(tIf). Uniqueness can therefore also be thought of as “freshness”, a claim we substantiate further in
Section 4.2.

In [12] we prove the usual subject reduction and progress lemmas for this type system, given
an (obvious) error relation.

Example 2.3. All client implementations discussed in Section 1 typecheck wrt. the type environ-
ment

Γ = srv1 : [[T1]1]ω, srv2 : [[T2]1]ω, ret : [T1,T2]ω.

For instance, to typecheck C2 from (1.2), we can apply the typing rulestRec andtAll from Figure 4
to obtain the typing sequent:

Γ, w:proc, x: [T1]• ⊢ srv1!x. x?y. srv2!x. x?z. free x. ret!(y, z). w (2.10)

Using the environment structural rules (i.e.,tCon) we can split the type assumption forx:

Γ, w:proc, x: [T1]• ≺ Γ, w:proc, x: [T1]1, x: [T1](•,1)

UsingtStr andtOut we can type (2.10) to obtain

Γ, w:proc, x: [T1](•,1) ⊢ x?y. srv2!x. x?z. free x. ret!(y, z). w

After applyingtIn to typecheck the input, we are left with the sequent

Γ, w:proc, x: [T1]•, y:T1 ⊢ srv2!x. x?z. free x. ret!(y, z). w

In particular, we note that the input typing rule stipulatesthat the input continuation process needs
to typewrt. the following type assumption forx : [T1](•,1)−1 which is equal tox : [T1]•. Sincex is
unique now, we can change the object type fromT1 to T2 usingtRev, which allows us to type the
interactions withsrv2 in analogous fashion. This leaves us with

Γ, w:proc, x: [T2]•, y:T1, z:T2 ⊢ free x. ret!(y, z). w

which we can discharge using rulestFree, tOut andtVar.

3. A Case Study

Resource management is particularly relevant to programs manipulating (unbounded) regular struc-
tures. We consider the concurrent implementation of an unbounded buffer, Buff, receiving values to
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queue on channelin and dequeuing values by outputting on channelout.

Buff
def
= in?y. allocz.

(

Frn ‖ b!z ‖ c1!(y, z)
)

‖ c1?(y, z). out!y.
(

Bck ‖ d!z
)

Frn
def
= recw. b?x. in?y.alloc z.

(

w ‖ b!z ‖ x!(y, z)
)

Bck
def
= recw. d?x. x?(y, z). out!y.

(

w ‖ d!z
)

In order to decouple input requests from output requests while still preserving the order of inputted
values, the process handling inputs in Buff, in?y.alloc z.

(

Frn ‖ b!z ‖ c1!(y, z)
)

, stores inputted val-
uesv1, . . . , vn as a queue of interconnected outputs

c1!(v1, c2) ‖ . . . ‖ cn!(vn, cn+1) (3.1)

on the internal6 channelsc1, . . . , cn+1. The process handling the outputs,c1?(y, z).out!y.
(

Bck ‖ d!z
)

,
then reads from the head of this queue,i.e., the output on channelc1, so as to obtain the first value
inputted,v1, and the next head of the queue,c2. The input and output processes are defined in terms
of the recursive processes, Frn and Bckresp., which are parameterised by the channel to output
(resp.input) on next through the channelsb andd.7

Since the buffer isunbounded, the number of internal channels used for the queue of intercon-
nected outputs, (3.1), is not fixed and these channels cannottherefore be created up front. Instead,
they are created on demand by the input process for every value inputted, using theRπ construct
alloc z.P. The newly allocated channelz is then passed on the next iteration of Frn through channel
b, b!z, and communicated as the next head of the queue when adding the subsequent queue item;
this is received by the output process when it inputs the value at the head of the chain and passed on
the next iteration of Bck through channeld, d!z.

3.1. Typeability and behaviour of the Buffer. Our unbounded buffer implementation, Buff, can
be typedwrt. the type environment

Γint
def
= in : [T]ω, out : [T]ω, b: [Trec]

ω, d: [Trec]
ω, c1 : [T,Trec]

• (3.2)

whereT is the type of the values stored in the buffer andTrec is a recursive type defined as

Trec
def
= µX.[T,X](•,1).

This recursive type is used to type the internal channelsc1, . . . , cn+1 — recall that in (3.1) these
channels carry channels of the same kind in order to link to one another as a chain of outputs. In
particular, using the typing rules of Section 2 we can prove the following typing judgements:

in : [T]ω, b: [Trec]
ω, c1 : [T,Trec]

1 ⊢ in?y. alloc z.
(

Frn ‖ b!z ‖ c1!(y, z)
)

(3.3)

out : [T]ω, d: [Trec]
ω, c1 : [T,Trec]

(•,1) ⊢ c1?(y, z). out!y.
(

Bck ‖ d!z
)

(3.4)

From the perspective of a user of the unbounded buffer, Buff implements the interface defined by
the environment

Γext
def
= in : [T]ω, out : [T]ω

abstracting away from the implementation channelsb, d andc1.

6Subsequent allocated channels are referred to asc2, c3, etc..
7This models parametrisable process definitions Frn (x) and Bck (x) within our language.
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3.2. A resource-conscious Implementation of the Buffer. When the buffer implementation of
Buff retrieves values from the head of the internal queue,e.g.,(3.1), the channel holding the initial
value, i.e., c1 in (3.1), is never reused again even though it is left allocated in memory. This fact
will repeat itself for every value that is stored and retrieved from the buffer and amounts to the
equivalent of a“memory leak”. A more resource-conscious implementation of the unbounded
buffer is eBuff, defined in terms of the previous input process used for Buff, and a modified output
process,c1?(y, z).free c1.out!y.

(

eBk ‖ d!z
)

, which uses the tweaked recursive process, eBk.

eBuff
def
= in?y.alloc z.

(

Frn ‖ b!z ‖ c1!(y, z)
)

‖ c1?(y, z).free c1.out!y.
(

eBk ‖ d!z
)

eBk
def
= recw. d?x. x?(y, z). free x. out!y.

(

w ‖ d!z
)

The main difference between Buff and eBuff is that the latter deallocates the channel at the head of
the internal chain once it is consumed. We can typecheck eBuff as safe since no other process uses
the internal channels making up the chain after deallocation. More specifically, the typeability of
eBuff wrt. Γint of (3.2) follows from (3.3) and the type judgement below:

out : [T]ω, d: [Trec]
ω, c1 : [T,Trec]

(•,1) ⊢ c1?(y, z). free c1. out!y.
(

Bck ‖ d!z
)

Note that by the typing ruletIn of Figure 4, we need to typecheck the continuation of the input
process,free c1. out!y.

(

Bck ‖ d!z
)

wrt. the type environment

out : [T]ω, d: [Trec]
ω, c1 : [T,Trec]

•, y:T, z:Trec

where, in particular,c1 is now assigned auniquechannel type. According to the typing ruletFree,
this suffices to safely type the respective deallocation ofc1.

4. A Cost-Based Preorder

We define our cost-based preorder as abisimulation relationthat relates two systemsM ⊲ P and
N ⊲ Q whenever they have equivalent behaviour and when, in addition, M ⊲ P is more efficient than
N ⊲ Q. We are interested in reasoning aboutsafecomputations, aided by the type system described
in Section 2. For this reason, we limit our analysis to instances ofM⊲P andN⊲Q that arewell-typed,
i.e., that there exist (consistent) environments∆,∆′ such that∆ ⊢ M ⊲ P and∆′ ⊢ N ⊲ Q. In order to
preserve safety, we also need to reason under the assumptionof safe contexts. Again, we employ the
type system described in Section 2 and characterise the (safe) context through a type environment
that typechecks it,Γobs. Thus our bisimulation relations take the form of a typed relation, indexed
by type environments [21]:

Γobs � (M ⊲ P) R (N ⊲ Q) (4.1)

Behavioural reasoning for safe systems is achieved by ensuring that the overall type environment
(Γsys, Γobs), consisting of the environment typingM ⊲P andN⊲Q, sayΓsys, and the observer environ-
mentΓobs, is consistentaccording to Definition 2.2. This means that there exists a global environ-
ment,Γglobal, which can be decomposed intoΓobs andΓsys; it also means that the observer process,
which is universally quantified by our semantic interpretation (4.1), typechecks when composed in
parallel withP, resp.Q (seetPar of Figure 4).

There is one other complication worth highlighting regarding (4.1): although both systems
M ⊲ P andN ⊲ Q are relatedwrt. the sameobserver, Γobs, they can each be typed underdifferent
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typing environments. For instance, consider the two clients C0 and C1 we would like to relate from
the introduction:

C0 , recw. alloc x1.alloc x2. srv1!x1. x1?y.srv2!x2. x2?z.c!(y, z).w

C1 , recw. alloc x. srv1!x. x?y.srv2!x. x?z.c!(y, z).w
(4.2)

Even though, initially, they may be typed by the same type environment, after a few steps, the
derivatives of C0 and C1 must be typed under different typing environments, because C0 allocates
two channels, while C1 only allocates a single channel. Our typed relations allowsfor this byexis-
tentially quantifyingover the type environments typing the respective systems. All this is achieved
indirectly through the use ofconfigurations.

Definition 4.1 (Configuration). The tripleΓ ⊳ M ⊲ P is a configuration if and only ifdom(Γ) ⊆ M
and there exist some∆ such that (Γ,∆) is consistent and∆ ⊢ M ⊲ P.

Note that, in a configurationΓ ⊳ M ⊲ P (whereΓ types some implicit observer):

• c ∈ (dom(Γ) ∪ names(P)) impliesc ∈ M i.e., M is a global resource environment accounting for
bothP andΓ.
• c ∈ M andc < (dom(Γ) ∪ names(P)) denotes a resource leak for channelc.
• c < dom(Γ) implies that channelc is not known to the observer; in some sense, this mimics name

scoping in more standardπ-calculus settings.

Definition 4.2 (Typed Relation). A type-indexed relationR relates systems under a observer char-
acterized by a contextΓ; we write

Γ � M ⊲ P R N ⊲ Q

if R relatesΓ ⊳ M ⊲ P andΓ ⊳ N ⊲ Q, and bothΓ ⊳ M ⊲ P andΓ ⊳ N ⊲ Q are configurations.

4.1. Labelled Transition System. In order to be able to reason coinductively over our typed rela-
tions, we define a labelled transition system (LTS) over configurations. Apart from describing the
behaviour of the systemM ⊲P in a configurationΓ⊳M ⊲P, the LTS also models interactions between
the system and an observer typed underΓ. Our LTS is alsocosted, assigning a cost to each form of
transition.

The costed LTS, whose actions take the form
µ
−−→k, is defined in Figure 5, in terms of a top-

level rule, lRen, and a pre-LTS, denoted asµ−−⇁k. The rulelRen allows us to rename channels
for transitions derived in the pre-LTS, as long as this renaming is invisible to the observer, and is
comparable to alpha-renaming of scoped bound names in the standardπ-calculus. It relies on the
renaming-modulo (observer) type environments given in Definition 4.3.

Definition 4.3 (Renaming ModuloΓ). Let σΓ : Name 7→ Name range over bijective name substitu-
tions satisfying the constraint thatc ∈ dom(Γ) impliescσΓ = cσ−1

Γ
= c.

The renaming introduced bylRen allows us to relate the clients C0 and C1 of (4.2)wrt. an ob-
server environment such assrv1 : [[T1]1]ω, srv2 : [[T2]1]ω of (1.6) and some appropriate common
set of resourcesM even when, after the initial channel allocations, the two clients communicate
potentially different (newly allocated) channels onsrv1. The rule is particularly useful when, later
on, we need to also match the output of a new allocated channelonsrv2 from C0 with the output on
the previously allocated channel from C1 on srv2. The renaming-modulo observer environments
function can be used for C1 at that stage — even though the client reuses a channel previously com-
municated to the observer — because the respective observerinformation relating to that channel
is lost, i.e., it is not in the domain of the observer environment; see discussion forlOut andlIn
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below for an explanation of how observers lose information.This mechanism differs from standard
scope-extrusion techniques forπ-calculus which assume that, once a name has been extruded, it
remains forever known to the observer. As a result, there aremore opportunities for renaming in our
calculus than there are in the standardπ-calculus.

To ensure that only safe interactions are specified, the (pre-)LTS must be able to reason compo-
sitionally about resource usage between the process,P, and the observer,Γ. We therefore imbue our
type assumptions from Section 2 with apermission semantics, in the style of [42, 13]. Under this
interpretation, type assumptions constitutepermissionsdescribing the respective usage of resources.
Permissions are woven into the behaviour of configurations giving them anoperationalrole: they
may either restrict usage or privilege processes to use resources in special ways. In a configuration,
the observer and the process eachowna set of permissions and maytransfer them to one another
during communication. The consistency requirement of a configuration ensures that the guarantees
given by permissions owned by the observer are not in conflictwith those given by permissions
owned by the configuration process, and viceversa.

To understand how the pre-LTS deals with permission transfer and compositional resource
usage, consider the rule for output, (lOut). Since we employ the type system of Section 2 to ensure
safety, this rule models the typing rule for output (tOut) on the part of the process, and the typing
rule for input (tIn) on the part of the observer. Thus, apart from describing thecommunication of
values~d from the configuration process to the observer on channelc, it also captures permission
transfer between the two parties, mirroring the type assumption usage intOut and tIn. More
specifically, rule (lOut) employs the operationc : [~T]a−1 of Figure 4 so as to concisely describe
the three variants of the output rule:

lOutU
Γ, c: [~T](•,i+1) ⊳ M ⊲ c! ~d.P c! ~d

−−−⇁0 Γ, c: [~T](•,i), ~d:~T ⊳ M ⊲ P

lOutA

Γ, c: [~T]1 ⊳ M ⊲ c! ~d.P c! ~d
−−−⇁0 Γ, ~d:~T ⊳ M ⊲ P

lOutW
Γ, c: [~T]ω ⊳ M ⊲ c! ~d.P c! ~d

−−−⇁0 Γ, c: [~T]ω, ~d:~T ⊳ M ⊲ P

(4.3)

The first output rule variant,lOutU, deals with the case where the observer owns a unique-after-(i+1)
permission for channelc. Definition 4.1 implies that the process in the configurationis well-typed
(wrt. some environment) and, since the process is in a position to output on channelc, rule tOut
must have been used to type it. This typing rule, in turn, states that the type assumptions relating to
the values communicated,~d : ~T, must have been owned by the process and consumed by the output
operation. Dually, since the observer is capable of inputting onc, rule tIn must have been used to
type it,8 which states that the continuation (after the input) assumes the use the assumptions~d : ~T.
RulelOutU models these two usages operationally as theexplicit transferof the permissions~d : ~T
from the process to the observer.

The rule also models theimplicit transferof permissions between the observer and the output
process. More precisely, Definition 4.1 requires that the process is typedwrt. an environment that
does not conflict withthe observer environment, which implies that the process environment must
have (necessarily) used an affine permission,c: [~T]1, for outputting on channelc.9 In fact, any other

8More specifically,tInU of (2.9).
9This implies thattOutA of (2.8) was used when typing the process
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Costed Transitions and pre-Transitions

Γ ⊳
(

M ⊲ P
)

σΓ
µ
−−⇁k Γ

′ ⊳ M′ ⊲ P′
lRen

Γ ⊳ M ⊲ P
µ
−−→k Γ

′ ⊳ M′ ⊲ P′

lOut
Γ, c: [~T]a ⊳ M ⊲ c! ~d.P c! ~d

−−⇁0 Γ, c: [~T]a−1, ~d:~T ⊳ M ⊲ P

lIn
Γ, c: [~T]a, ~d:~T ⊳ M ⊲ c?~x.P c?~d

−−⇁0 Γ, c: [~T]a−1 ⊳ M ⊲ P{~d/~x}

Γ1 ⊳ M ⊲ P c! ~d
−−⇁0 Γ

′
1 ⊳ M ⊲ P′ Γ2 ⊳ M ⊲ Q c?~d

−−⇁0 Γ
′
2 ⊳ M ⊲ Q′

lCom-L
Γ ⊳ M ⊲ P ‖ Q τ

−⇁0 Γ ⊳ M ⊲ P′ ‖ Q′

Γ ⊳ M ⊲ P µ
−−⇁k Γ

′ ⊳ M′ ⊲ P′
lPar-L

Γ ⊳ M ⊲ P ‖ Q µ
−−⇁k Γ

′ ⊳ M′ ⊲ P′ ‖ Q

Γ ≺ Γ′

lStr
Γ ⊳ M ⊲ P env

−−−⇁0 Γ
′ ⊳ M ⊲ P

lRec
Γ ⊳ M ⊲ recw.P τ

−⇁0 Γ ⊳ M ⊲ P{recw.P/w}

lThen
Γ ⊳ M, c ⊲ if c = c then P else Q τ

−⇁0 Γ ⊳ M, c ⊲ P

lElse
Γ ⊳ M, c, d ⊲ if c = d then P else Q τ

−⇁0 Γ ⊳ M, c, d ⊲ Q

lAll
Γ ⊳ M ⊲ alloc x.P τ

−⇁+1 Γ ⊳ M, c ⊲ P{c/x}
lAllE

Γ ⊳ M ⊲ P alloc
−−−−⇁+1 Γ, c: [~T]• ⊳ M, c ⊲ P

lFree
Γ ⊳ M, c ⊲ freec.P τ

−⇁−1 Γ ⊳ M ⊲ P
lFreeE

Γ, c: [T]• ⊳ M, c ⊲ P freec
−−−−⇁−1 Γ ⊳ M ⊲ P

Weak (Cost-Accumulating) Transitions

Γ ⊳ M ⊲ P
µ
−−→k ∆ ⊳ N ⊲ Q

wTra
Γ ⊳ M ⊲ P

µ
=⇒k ∆ ⊳ N ⊲ Q

Γ ⊳ M ⊲ P
τ
−−→l Γ

′ ⊳ M′ ⊲ P
µ
=⇒k Γ

′′ ⊳ N ⊲ Q
wLeft

Γ ⊳ M ⊲ P
µ
=⇒(l+k) Γ

′′ ⊳ N ⊲ Q

Γ ⊳ M ⊲ P
µ
=⇒l Γ

′ ⊳ M′ ⊲ P
τ
−−→k Γ

′′ ⊳ N ⊲ Q
wRight

Γ ⊳ M ⊲ P
µ
=⇒(l+k) Γ

′′ ⊳ N ⊲ Q

Figure 5: LTS Process Moves
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type of permission would conflict with the unique-after-(i+1) permission for channelc owned by the
observer. Moreover, through the guarantee given by the permission used,c : [~T](•,i+1), the observer
knows that, after the communication, it is one step closer towards gaining exclusive permission for
channelc. Rule lOutU models all this as the (implicit) transfer of the affine permissionc : [~T]1

from the process to the observer, updating the observer’s permission forc to [~T](•,i) — note that two
permissionsc: [~T](•,i+1), c: [~T]1 can be consolidated asc: [~T](•,i) using the structural rulestJoin and
pUnq of Figure 4.

The second output rule variant of (4.3),lOutA, is similar to the first when modelling the explicit
transfer of permissions~d : ~T from the process to the observer. However, it describes a different
implicit transfer of permissions, since the observer uses an affine permission to input from the
configuration process on channelc. The rule caters for two possible subcases. In the first case,the
process could have used a unique-after-(i+1) permission when typed usingtOut: this constitutes
a dual case to that of rulelOutU, and the rule models the implicit transfer of the affine permission
c: [~T]1 in theoppositedirection,i.e.,from the observer to the process. In the second case, the process
could have used an affine or an unrestricted permission instead, which does not result in any implicit
permission transfer, but merely the consumption of affine permissions. Since the environment on
the process side is existentially quantified in a configuration, this difference is abstracted away and
the two subcases are handled by the same rule variant. Note that, in the extreme case where the
observer affine permission is the only one relating to channelc, the observer loses all knowledge of
channelc.

The explicit permission transfer forlOutW of (4.3), is identical to the other two rule variants.
The use of an unrestricted permission forc from the part of the observer,c : [~T]ω, implies that the
output process could have either used an affine or an unrestricted permission—see (2.5). In either
case, there is no implicit permission transfer involved. Moreover, the observer permission is not
consumed since it is unrestricted.

The pre-LTS rulelIn can also be expanded into three rule variants, and models analogous per-
mission transfer between the observer and the input process. Importantly, however, theexplicit
permission transfer described isin the opposite directionto that oflOut, namely from the observer
to the input process. As in the case oflOutA of (4.3), the permission transfer from the observer to
the input process may result in the observer losing all knowledge relating to the channels communi-
cated,~d.

In order to allow an internal communication step through either lCom-L, or its duallCom-R
(elided), the left process should be considered to be part ofthe “observer” of the right process, and
vice versa. However, it is not necessary to be quite so precise; we can follow [19] and consider an
arbitrary observer instead. More explicitly, the rule states that if we can find observer environments
(Γ1 andΓ2) to induce the respective input and output actions from separate constituent processes
making up the system, we can then express these separate interactions as a single synchronous
interaction; since this interaction is internal, it is independent of the environment representing the
observer in the conclusion,Γ. See [19] for more justification.

In our LTS, both the process (lAll, lFree) and the observer (lAllE, lFreeE) can allocate
and deallocate memory. Finally, since the observer is modelled exclusively by the permissions it
owns, we must allow the observer to split these permissions when necessary (lStr). The only rules
that may alter the observer environment are those corresponding to external actionsi.e., lIn, lOut,
lAllE,lFreeE andlStr. The remaining axioms in the pre-LTS model reduction rules from Figure 2
and should be self-explanatory; note that, as in the reduction semantics, the only actions carrying
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a cost are those describing allocation and deallocation, where the respective costs associated are
inherited directly from the reduction semantics of Section2.

In Figure 5 we also specify weak costed transitions for configurations, based on the transitions
of our LTS (rulewTra). As is standard, the relation denotes actions padded byτ-transitions to the
left and right. However, it alsoaccumulatesthe costs of the respective transitions into one aggregate
cost for the entire weak action (ruleswLeft andwRight).

Technically, the pre-LTS is defined over triplesΓ,M,P rather than configurationsΓ ⊳M ⊲P, but
we can prove that the pre-LTS rules preserve the requirements for such triples to be configurations;
see Lemma 4.5.

Lemma 4.4(Transition and Structure). Γ ⊳ M ⊲ P µ
−−−⇁k Γ

′ ⊳ M′ ⊲ P′ and for∆ consistent
∆ ⊢ M ⊲ P implies the cases:

If µ = c! ~d: M = M′, k = 0, P ≡ c! ~d.P1 ‖ P2, P′ ≡ P1 ‖ P2 and Γ = (Γ′′, c: [~T]a),
Γ′ = (Γ′′, c: [~T]a−1, ~d:T) and ∆ ≺ (∆′, c: [~T]b, ~d:T), (∆′, c: [~T]b−1) ⊢ P′

for some P1,P2, Γ
′′, b, ~T and∆′.

If µ = c?~d: M = M′, k = 0, P ≡ c?~x.P1 ‖ P2, P′ ≡ P1{
~d/~x} ‖ P2 and

Γ = (Γ′′, c: [~T]a, ~d:T), Γ′ = (Γ′′, c: [~T]a−1) and ∆ ≺ (∆′, c: [~T]b),
(∆′, c: [~T]b−1, ~d:T) ⊢ P′ for some P1,P2, Γ

′′, b, ~T and∆′.
If µ = τ: Either of three cases hold :
• M = M′, k = 0 and Γ = Γ′ and ∆ ⊢ P′ or;
• M = (M′, c), k = −1 and P≡ free c.P1 ‖ P2, P′ ≡ P1 ‖ P2, Γ = Γ′ and∆ ≺ ∆′, c: [~T]•

where∆′ ⊢ P′ (for some P1,P2, ~T and∆′) or;
• M′ = (M, c), k = +1 and P≡ alloc x.P1 ‖ P2, P′ ≡ P1{c/x} ‖ P2 andΓ = Γ′ and∆ ≺ ∆′

and∆′, c: [~T]• ⊢ P′ (for some P1,P2, ~T and∆′)
If µ = free c: M = (M′, c), k = −1 andΓ = Γ′, c: [~T]• and P= P′ for some~T.
If µ = alloc: M′ = (M, c), k = +1 and Γ, c: [~T]• = Γ′ and P= Q for some~T.
If µ = env: Γ ≺ Γ′, M = M′, k = 0 and P= P′

Proof. By rule induction onΓ ⊳ M ⊲ P µ
−−⇁k Γ

′ ⊳ M′ ⊲ P′

Lemma 4.5(Subject reduction). If Γ ⊳ M ⊲ P is a configuration andΓ ⊳ M ⊲ P µ
−−⇁k ∆ ⊳ N ⊲Q then

∆ ⊳ N ⊲ Q is also a configuration.

Proof. We assume thatdom(Γ) ⊆ M and that there exists∆ such thatΓ,∆ is consistent and that
∆ ⊢ M ⊲ P. The rest of the proof follows from Lemma 4.4 (Transition andStructure), by case
analysis ofµ.

As a consistency check, we can also show that our LTS semantics is in accordance with the
reduction semantics presented in 2. In particular,τ-transitions correspond to reductions modulo
renaming and process structural equivalence.

Lemma 4.6(Reduction and Silent Transitions).

(1) M ⊲ P −→k M′ ⊲ P′ impliesΓ ⊳ M ⊲ P
τ
−→k Γ ⊳ M′ ⊲ P′′ for arbitrary Γ where P′′ ≡ P′.

(2) Γ ⊳ M ⊲ P
τ
−→k ∆ ⊳ M′ ⊲ P′ implies(M ⊲ P)σΓ −→k M′ ⊲ P′ for someσΓ.

Proof. By rule induction onM ⊲ P −→k M′ ⊲ P′ andΓ ⊳ M ⊲ P
τ
−−→k ∆ ⊳ M′ ⊲ P′.
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Example 4.7. Recall the buffer implementation Buff from Section 3 and the respective external
environmentΓext defined in Section 3.1. The transition rules of Figure 5 allowus to derive the
following behaviour for the configurationΓext ⊳ M, c1 ⊲ Buff (wherein, out, b, d ∈ M):

Γext ⊳ M, c1 ⊲ Buff
in?v1
−−−−→0 Γext ⊳ M, c1 ⊲

(

alloc z.
(

Frn ‖ b!z ‖ c1!(v1, z)
)

‖ c1?(y, z).out!y.
(

Bck ‖ d!z
)

)

(4.4)

τ
−−−→+1 Γext ⊳ M, c1, c2 ⊲

(
(

Frn ‖ b!c2 ‖ c1!(v1, c2)
)

‖ c1?(y, z).out!y.
(

Bck ‖ d!z
)

)

(4.5)

= Γext ⊳ M, c1, c2 ⊲



















recw. b?x. in?y.alloc z.
(

w ‖ b!z ‖ x!(y, z)
)

‖ b!c2 ‖ c1!(v1, c2)
‖ c1?(y, z).out!y.

(

Bck ‖ d!z
)



















τ
−−−→0 Γext ⊳ M, c1, c2 ⊲



















b?x. in?y.alloc z.
(

Frn ‖ b!z ‖ x!(y, z)
)

‖ b!c2 ‖ c1!(v1, c2)
‖ c1?(y, z).out!y.

(

Bck ‖ d!z
)



















(4.6)

τ
−−−→0 Γext ⊳ M, c1, c2 ⊲



















in?y.alloc z.
(

Frn ‖ b!z ‖ c2!(y, z)
)

‖ c1!(v1, c2)
‖ c1?(y, z).out!y.

(

Bck ‖ d!z
)



















(4.7)

in?v2
====⇒+1 Γext ⊳ M, c1, c2, c3 ⊲



















in?y.alloc z.
(

Frn ‖ b!z ‖ c3!(y, z)
)

‖ c1!(v1, c2) ‖ c2!(v2, c3)
‖ c1?(y, z).out!y.

(

Bck ‖ d!z
)



















(4.8)

out!v1
====⇒0 Γext ⊳ M, c1, c2, c3 ⊲



















in?y.allocz.
(

Frn ‖ b!z ‖ c3!(y, z)
)

‖ c2!(v2, c3)
‖ c2?(y, z).out!y.

(

Bck ‖ d!z
)



















(4.9)

Transition (4.4) describes an input from the user whereas (4.5) allocates a new internal channel,c2,
followed by a recursive process unfolding, (4.6), and the instantiation of the unfolded process with
the newly allocated channelc2, (4.7), through a communication on channelb. The weak transition
(4.8) is an aggregation of 4 analogous transitions to the ones just presented, this time relating to
a second input of valuev2. This yields an internal output chain of length 2,i.e., c1!(v1, c2) ‖
c2!(v2, c3). Finally, (4.9) is an aggregation of 4 transitions relating to the consumption of the first
item in the chain,c1!(v1, c2), the subsequent output ofv1 on channelout, and the unfolding and
instantiation of the recursive process Bck withc2 — see definition for Bck.

4.2. Costed Bisimulation. We define a cost-based preorder over systems as atyped relation, cf.
Definition 4.2, ordering systems that exhibit the same external behaviour at a less-than-or-equal-to
cost. We require the preorder to consider client C1 as more efficient than C0 wrt. an appropriate
resource environmentM and observers characterised by the type environment statedin (1.6) but
also that,wrt. the same resource and observer environments, client C3 of (1.5) is more efficient than
C1. This latter ordering is harder to establish since client C1 is at timestemporarilymore efficient
than C3.

In order to handle this aspect we define our preorder as anamortizedbisimulation [30]. Amor-
tized bisimulation uses acredit nto compare a systemM ⊲P with a less efficient systemN ⊲Q while
allowing M ⊲ P to do a more expensive action thanN ⊲ Q, as long as the credit can make up for
the difference. Conversely, wheneverM ⊲ P does a cheaper action thanN ⊲ Q, then the difference
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getsaddedto the credit.10 Crucially, however, the amortisation credit isnever allowedto become
negativei.e., n ∈ Nat. In general, we refine Definition 4.2 to amortized typed relations with the
following structure:

Definition 4.8 (Amortised Typed Relation). An amortized type-indexed relationR relates systems
under an observer characterized by a contextΓ, with creditn (n ∈ Nat); we write

Γ � M ⊲ P Rn N ⊲ Q

if Rn relatesΓ ⊳ M ⊲ P andΓ ⊳ N ⊲ Q, and bothΓ ⊳ M ⊲ P andΓ ⊳ N ⊲ Q are configurations.

Definition 4.9 (Amortised Typed Bisimulation). An amortized type-indexed relation over processes
R is a bisimulation atΓ with creditn if, wheneverΓ � (M ⊲ P)Rn (N ⊲ Q),

• If Γ ⊳ M ⊲ P
µ
−−→k Γ

′ ⊳ M′ ⊲ P′ then there existN′ andQ′ such that

Γ ⊳ N ⊲ Q
µ̂
=⇒l Γ

′ ⊳ N′ ⊲ Q′ whereΓ′ � (M′ ⊲ P′)Rn+l−k (N′ ⊲ Q′)

• If Γ ⊳ N ⊲ Q
µ
−−→l Γ

′ ⊳ N′ ⊲ Q′ then there existM′ andP′ such that

Γ ⊳ M ⊲ P
µ̂
=⇒k Γ

′ ⊳ M′ ⊲ P′ whereΓ′ � (M′ ⊲ P′)Rn+l−k (N′ ⊲ Q′)

whereµ̂ is the empty string ifµ = τ andµ otherwise.
Bisimilarity at Γ with credit n, denotedΓ � M ⊲ P⊏∼

n
bisN ⊲ Q, is the largest amortized typed

bisimulation atΓ with credit n. We sometimes existentially quantify over the credit and write
Γ � M ⊲ P⊏∼bis N ⊲ Q. We writeΓ � M ⊲ P ≃bis N ⊲ Q to denote the kernel of the preorder (i.e.,
whenever we have bothΓ � M ⊲P⊏∼bis N⊲Q andΓ � N⊲Q⊏∼bis M ⊲P), and writeΓ � M ⊲P ⊏bis N⊲Q
wheneverΓ � M ⊲ P⊏∼bis N ⊲ Q butΓ � N ⊲ Q 6⊏∼bis M ⊲ P.

Example 4.10(Assessing Client Efficiency). For the (observer) type environment

Γ1
def
= srv1 : [[T1]1]ω, srv2 : [[T2]1]ω, c: [T1,T2]ω (4.10)

and clients C0 and C1 defined earlier in (1.2), we can show thatΓ1 � (M ⊲ C1) ⊏∼bis(M ⊲ C0) by
constructing the witness bisimulation (family of) relation(s)R for Γ1 � (M ⊲C1) ⊏∼

0
bis (M ⊲C0) stated

below:11

R
def
=



































































































































〈Γ, n, M′ ⊲ C1, N′ ⊲ C0〉 n ≥ 0
〈

Γ, n,M′ ⊲ alloc x. srv1!x. x?y.srv2!x. x?z.c!(y, z).C1

,N′ ⊲ alloc x1.alloc x2. srv1!x1. x1?y.srv2!x2. x2?z.c!(y, z).C0

〉

d<dom(Γ)
〈

Γ, n, (M′, d) ⊲ srv1!d. d?y.srv2!d. d?z.c!(y, z).C1

, (N′, d′) ⊲ alloc x2. srv1!d′. d′?y.srv2!x2. x2?z.c!(y, z).C0

〉

d′ <dom(Γ)
〈

Γ, n+ 1, (M′, d) ⊲ srv1!d. d?y.srv2!d. d?z.c!(y, z).C1

, (N′, d′, d′′) ⊲ srv1!d′. d′?y.srv2!d′′. d′′?z.c!(y, z).C0

〉

d′′ <dom(Γ)
〈

(Γ, d: [T1]1), n+ 1, (M′, d) ⊲ d?y.srv2!d. d?z.c!(y, z).C1

, (N′, d, d′′) ⊲ d?y.srv2!d′′. d′′?z.c!(y, z).C0

〉

M′ ⊆ N′

〈

Γ, n+ 1, (M′, d) ⊲ srv2!d. d?z.c!(v, z).C1

, (N′, d, d′′) ⊲ srv2!d′′. d′′?z.c!(v, z).C0

〉

dom(Γ) ⊆ M′

〈(Γ, d: [T2]1), n+ 1, (M′, d) ⊲ d?z.c!(v, z).C1, (N′, d′, d) ⊲ d?z.c!(v, z).C0〉

〈Γ, n+ 1, (M′, d) ⊲ c!(v, v′).C1, (N′, d′, d) ⊲ c!(v, v′).C0〉



































































































































10Stated otherwise,M ⊲ P can do a more expensive action thanN ⊲ Q now, as long as it makes up for it later.
11In families of relations ranging over systems indexed by type environments and amortisation credits, such asR, we

representΓ � (M ⊲ P) ⊏∼
n
bis (∆ ⊲ Q) as the quadruple〈Γ,n, (M ⊲ P), (∆ ⊲ Q)〉.
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It is not hard to see thatR contains the quadruple〈Γ1, 0,M ⊲C1,M ⊲ C0〉. One can also show that it
is closedwrt. the transfer property of Definition 4.9. The key moves are:

• a single channel allocation by C1 is matched by two channel allocations by C0 — from the second
up to the fourth quadruple in the definition ofR. Since channel allocations carry a positive cost,
the amortisation credit increases fromn to n+2−1, i.e.,n+1, but this still yields a quadruple that
is in the relation. One thing to note is that the first channel allocated by both systems is allowed
to be different,e.g.,d andd′, as long as it is not allocated already.
• Even though the internal channels allocated may be different, rulelRen allows us to rename the

resp. names of the allocated channels (not known to the observer) so as match the channels
communicated onsrv1 by the other system (fourth and fifth quadruples). Since these channels
are not known to the observer,i.e., they are not indom(Γ), they all amount tofreshnames, akin
to scope extrusion [35, 19].
• Communicating on the previously communicated channel onsrv1 consumes all of the observer’s

permissions for that channel (fifth quadruple), which allows rulelRen to be applied again so as
to match the channels communicated onsrv2 (sixth quadruple).

We cannot however prove thatΓ1 � (M ⊲ C0) ⊏∼
n
bis (M ⊲ C1) for anyn because we would need

an infinite amortisation credit to account for additional cost incurred by C0 when it performs the
channel extra allocation at every iteration; recall that this credit cannot become negative, and thus
no finite credit is large enough to cater for all the additional cost incurred by C0 over sufficiently
large transition sequences.

Similarly, from (1.2), we can show thatΓ1 � (M ⊲ C2) ⊏bis (M ⊲ C1) but also, from (1.5), that
Γ1 � (M ⊲ C3) ⊏bis (M ⊲ C1). In particular, we can showΓ1 � (M ⊲ C3) ⊏∼bis (M ⊲ C1) even though
M ⊲ C1 is temporarily more efficient thanM ⊲ C3, i.e., during the course of the first iteration. Our
framework handles this through the use of the amortisation credit whereby, in this case, it suffices
to use a credit of value 1 and showΓ1 � (M ⊲C3) ⊏∼

1
bis (M ⊲C1); we leave the details to the interested

reader. Using an amortisation credit of 1 we can also showΓ1 � (M ⊲ C3) ⊏∼
1
bis (M ⊲ C2) through the

bisimulation family-of-relationsR′ below — it is easy to check that it observes the transfer property
of Definition 4.9; by constructing a similar relation, one can also show thatΓ1 � (M⊲C2) ⊏∼

0
bis (M⊲C3)

which implies thatΓ1 � (M ⊲ C2) ≃bis (M ⊲ C3). We just note that inR′, the amortisation creditn
can be capped 0≤ n ≤ 1 and revisit this point again in Section 4.4.
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R′
def
=


































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
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




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


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
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
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






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


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




















































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

〈Γ, 1, M ⊲ C3, M ⊲ C2〉

〈

Γ, 1, M ⊲

(

alloc x1.alloc x2. srv1!x1. x1?y.
srv2!x2. x2?z.free x1.free x2.c!(y, z).C3

)

,

M ⊲ alloc x. srv1!x. x?y.srv2!x. x?z.free x.c!(y, z).C2

〉

〈

Γ, 1, (M, d) ⊲

(

alloc x2. srv1!d. d?y.
srv2!x2. x2?z.freed.free x2.c!(y, z).C3

)

,

(M, d′) ⊲ srv1!d′. d′?y.srv2!d′. d′?z.freed′.c!(y, z).C2

〉

d<dom(Γ)

〈

Γ, 0, (M, d, d′′) ⊲

(

srv1!d. d?y.srv2!d′′. d′′?z.
freed.freed′′.c!(y, z).C3

)

,

(M, d′) ⊲ srv1!d′. d′?y.srv2!d′. d′?z.freed′.c!(y, z).C2

〉

d′ <dom(Γ)

〈

(Γ, d: [T1]1), 0, (M, d, d′′) ⊲

(

d?y.srv2!d′′. d′′?z.
freed.free d′′.c!(y, z).C3

)

,

(M, d) ⊲ d?y.srv2!d. d?z.freed.c!(y, z).C2

〉

d′′ <dom(Γ)

〈

Γ, 0, (M, d, d′′) ⊲ srv2!d′′. d′′?z.freed.free d′′.c!(v, z).C3,
(M, d) ⊲ srv2!d. d?z.freed.c!(v, z).C2

〉

〈

(Γ, d′ : [T2]1), 0, (M, d, d′) ⊲ d′?z.freed.free d′.c!(v, z).C3,
(M, d′) ⊲ d′?z.freed′.c!(v, z).C2

〉

dom(Γ) ⊆ M
〈

Γ, 0, (M, d, d′) ⊲ freed.free d′.c!(v, z).C3,
(M, d′) ⊲ freed′.c!(v, v′).C2

〉

〈

Γ, 0, (M, d′) ⊲ freed′.c!(v, z).C3, M ⊲ c!(v, v′).C2

〉

〈

Γ, 1, M ⊲ c!(v, z).C3, M ⊲ c!(v, v′).C2

〉
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


















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4.3. Alternatives. The cost model we adhere to in Section 4 is not the only plausible one, but
is intended to follow that described by costed reductions ofSection 2. There may however be
other valid alternatives, some of which can be easily accommodated through minor tweaking to our
existing framework.

For instance, an alternative cost model may focus on assessing the runtime execution of pro-
grams, whereby operations that access memory such asalloc x.P andfree c.P have a runtime cost
that far exceeds that of other operations. We can model this by considering an LTS that assigns a
cost of 1 to both of these operations, which can be attained asa derived LTS from our existing LTS
of Section 4.1 through the rule

Γ ⊳ M ⊲ P
µ
−−→k Γ

′ ⊳ M′ ⊲ P′
lDer1

Γ ⊳ M ⊲ P
µ
−−−−։|k| Γ

′ ⊳ M′ ⊲ P′

where |k| returns the absolute value of an integer. Definition 4.9 extends in straightforward fash-

ion to work with the derived costed LTS
µ
−−−−։k. This new preorder would allow us to conclude

Γ1 � (M ⊲ C1) ⊏∼bis (M ⊲ C2) because, according to the new cost model, for every server-interaction
iteration, client C1 uses less expensive memory operations than C2.

Another cost model may require us to refine our existing preorder. For instance, consider an-
other client C4, defined below, that creates a single channel and keeps on reusing it for all iterations:

C4 , alloc x. recw. srv1!x. x?y. srv2!x. x?z.ret!(y, z). w
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At present, we are able to equate this client with C2 and C3 from (1.2) and (1.5)resp., on the basis
that neither client carries any memory leaks.

Γ1 � (M ⊲ C4) ≃bis (M ⊲ C3) ≃bis (M ⊲ C2)

However, we may want a finer preorder where C4 is considered to be (strictly) more efficient
than C2, which is in turn more efficient than C3. The underlying reasoning for this would be that C4

uses the least amount of expensive operations; by contrast C2 keeps on allocating (and deallocating)
new channels for each iteration, and C3 allocates (and deallocates) two new channels for every
iteration. We can characterise this preorder as follows. First we generate the derived costed LTS
using the rulelDer2 below —⌊k⌋maps all negative integers to 0, leaving positive integers unaltered.

Γ ⊳ M ⊲ P
µ
−−→k Γ

′ ⊳ M′ ⊲ P′
lDer2

Γ ⊳ M ⊲ P
µ
−−−−։⌊k⌋ Γ

′ ⊳ M′ ⊲ P′

Then, after adapting Definition 4.9 to this derived LTS, denoting such a bisimulation relation as
⊏
∼bis2, we can define the refined preorder, denoted as⊏

∼bis3, as follows:

Γ � M ⊲ P ⊏∼bis3 N ⊲ Q
def
=















Γ � M ⊲ P⊏∼bis N ⊲ Q and

Γ � N ⊲ Q⊏∼bis M ⊲ P impliesΓ � M ⊲ P⊏∼bis2N ⊲ Q

The new refined preorder⊏∼bis3 above requires thatM ⊲ P is at least as efficient asN ⊲ Q (possibly
more) when it comes to memory leaks,i.e.,⊏∼bis, and moreover, whenever they are equally efficient
wrt. these leaks,M ⊲ P must also be as efficient (possibly more)wrt. memory allocations,i.e.,⊏∼bis2.

4.4. Properties of ⊏∼bis. We show that our bisimulation relation of Definition 4.9 observes a number
of properties that are useful when reasoning about resourceefficiency; see Example 4.24 below.
Lemmas 4.11 and 4.12 prove that the relation is in fact a preorder, whereas Lemma 4.14 outlines
conditions where symmetry can be recovered. Finally, Theorem 4.23 shows that this preorder is
preserved under (valid) context; this is the main result of the section.

First off, we show that⊏∼bis is a preorder following Lemma 4.11 (whereσΓ would be the identity)
and Lemma 4.12.

Lemma 4.11(Reflexivity upto Renaming). Whenever the tripleΓ ⊳ M ⊲ P is a configuration, then
Γ � (M ⊲ P)σΓ ≃bis M ⊲ P

Proof. By coinduction, by showing that the family of relations
{

〈Γ, 0, (M ⊲ P)σΓ,M ⊲ P〉 | Γ ⊳ M ⊲ P is a configuration
}

is a bisimulation.

Lemma 4.12(Transitivity). WheneverΓ � M ⊲ P⊏∼bis M′ ⊲ P′ andΓ � M′ ⊲ P′ ⊏∼bis M′′ ⊲ P′′ then
Γ � M ⊲ P⊏∼bis M′′ ⊲ P′′

Proof. Γ � M ⊲ P⊏∼bis M′ ⊲ P′ implies that there exists somen ≥ 0 and corresponding bisimulation
relation justifyingΓ � M ⊲ P⊏∼

n
bis M′ ⊲ P′. The same applies forΓ � M′ ⊲ P′ ⊏∼bis M′′ ⊲ P′′ and

somem ≥ 0. From these two relations, one can construct a corresponding bisimulation justifying
Γ � M ⊲ P⊏∼

n+m
bis M′′ ⊲ P′′.

Corollary 4.13 (Preorder). ⊏∼bis is a preorder.

Proof. Follows from Lemma 4.11 (for the special case whereσΓ is the identity) and Lemma 4.12.
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We can define a restricted form of amortised typed bisimulation, in analogous fashion to Def-
inition 4.9, whereby the credit iscapped at some upper bound, i.e., some natural numberm. We
refer to such relations asBounded Amortised Typed-Bisimulationsand write

Γ �m M ⊲ P⊏∼
n
bis N ⊲ Q

to denote thatΓ ⊳ M ⊲ P andΓ ⊳ N ⊲ Q are related by some amortised typed-indexed bisimulation at
indexΓ and creditn, and where every credit in this relation is less than or equalto m; whenever the
precise creditn is not important we elide it and simply writeΓ �m M ⊲ P⊏∼bis N ⊲ Q. We can show
that bounded amortised typed-bisimulations are symmetric.

Lemma 4.14(Symmetry). Γ �m M ⊲ P⊏∼bis N ⊲ Q impliesΓ �m N ⊲ Q⊏∼bis M ⊲ P

Proof. If R is the bounded amortised typed relation justifyingΓ �m M ⊲ P⊏∼bis N ⊲ Q, we define the
amortised typed relation

Rsym = {〈Γ, (m− n),N ⊲ Q,M ⊲ P〉 | 〈Γ, n,M ⊲ P,N ⊲ Q〉 ∈ R}

and show that it is a bounded amortised typed bisimulation aswell. Consider an arbitrary pair of
configurationsΓ � N ⊲ QRm−n

sym M ⊲ P:

• AssumeΓ ⊳ N ⊲Q
µ
−→l Γ

′ ⊳ N′ ⊲Q′. From the definition ofRsym, it must be the case that〈Γ, n,M ⊲
P,N ⊲ Q〉 ∈ R. SinceR is a bounded amortised typed bisimulation, we know thatΓ ⊳ M ⊲

P
µ̂
=⇒l Γ

′ ⊳ M′ ⊲ P′ where〈Γ′, n + l − k,M′ ⊲ P′,N′ ⊲ Q′〉 ∈ R. We however need to show that
〈Γ′, ((m− n) + k− l),N′ ⊲ Q′,M′ ⊲ P′〉 ∈ Rsym, which follows from the definition ofRsym and the
fact that

(

m− (n+ l − k)
)

= (m− n) + k− l.
What is left to show is thatRsym is an amortised typed bisimulation bounded bym, i.e., we

need to show that 0≤ (m−n)+k− l ≤ m. SinceR is anm-bounded amortised typed bisimulation,
we know that 0≤ (n+ l − k) ≤ m from which we can drive−m≤ −(n+ l − k) ≤ 0 and, by adding
m throughout we obtain 0≤

(

m− (n+ l − k) = (m− n) + k − l
)

≤ m as required.

• The dual case forΓ ⊳ M ⊲ P
µ
−→l Γ

′ ⊳ M′ ⊲ P′ is analogous.

Contextualityis an important property for any behavioural relation. In our case, this means that
two systemsM⊲P andN⊲Q related by⊏∼bisunderΓ, remain related when extended with an additional
process,R, whenever this process runs safely over the respective resource environmentsM andN,
and observes the type restrictions and guarantees assumed by Γ (and dually, those of the respective
existentially-quantified type environments forM ⊲P andN ⊲Q). Following Definition 4.1, for these
conditions to hold, contextuality requiresR to typecheckwrt. a sub-environment ofΓ, sayΓ1 where
Γ = Γ1, Γ2, and correspondingly strengthens the relation ofM ⊲ P ‖ R andN ⊲ Q ‖ R in ⊏∼bisunder
the remaining sub-environment,Γ2. Stated otherwise, contextuality requires the transfer ofthe
respective permissions associated with the observer sub-processR from the observer environment
Γ; this is crucial in order to preserve consistency, thus safety, in the respective configurations. The
formulation of Theorem 4.23, proving contextuality for⊏∼bis, follows this reasoning. It relies on a
list of lemmas outlined below.

Lemma 4.15(Weakening). If Γ ⊳M ⊲P µ
−−⇁k Γ

′ ⊳M′ ⊲P′ then(Γ,∆) ⊳M ⊲P µ
−−⇁k (Γ′,∆) ⊳M′ ⊲P′.

(These may or may not be configurations.)

Proof. By rule induction onΓ ⊳ M ⊲ P µ
−−⇁k Γ

′ ⊳ M′ ⊲ P′. Note that, in the case ofalloc, the action
can still be performed.
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Lemma 4.16(Strengthening). If (Γ,∆) ⊳M ⊲P µ
−−⇁k (Γ′,∆) ⊳M′ ⊲P′ thenΓ ⊳M ⊲P µ

−−⇁k Γ
′ ⊳M′ ⊲P′.

Proof. By rule induction onΓ,∆ ⊳ P µ
−−⇁k Γ

′,∆ ⊳ P′. Note that strengthening is restricted to the
part of the environment that remains unchanged (∆ is the same on the left and right hand side) —
otherwise the property does not hold for actionsc! ~d andc?~d.

Lemma 4.17. If Γ,∆ is consistent and∆ ≺ ∆′ thenΓ,∆′ is consistent andΓ,∆ ≺ Γ,∆′

Proof. As in [12].

Lemma 4.18(Typing Preserved by≡). Γ ⊢ P and P≡ Q impliesΓ ⊢ Q

Proof. As in [12].

Lemma 4.19(Environment Structural Manipulation Preserves Bisimulation).

Γ � S ⊏∼
n
bis T andΓ ≺ Γ′ impliesΓ′ � S ⊏∼

n
bis T

Proof. By coinduction. We define the quarternary relation
{

〈Γ′, n,S,T〉| Γ � S ⊏∼
n
bis T andΓ ≺ Γ′

}

and show that it observes the transfer property of Definition4.9.

Lemma 4.20(Bisimulation and Structural Equivalence).

P ≡ Q andΓ ⊳ M ⊲ P
µ
−−→k ∆ ⊳ M′ ⊲ P′ impliesΓ ⊳ M ⊲ Q

µ
−−→k ∆ ⊲ M′ ⊲ Q′ and P′ ≡ Q′

Proof. By rule induction onP ≡ Q and then a case analysis of the rules permittingΓ ⊳ M ⊲ P
µ
−−→k

∆ ⊳ M′ ⊲ P′.

Corollary 4.21 (Structural Equivalence and Bisimilarity). P ≡ Q impliesΓ � M ⊲ P⊏∼
n
bis M ⊲ Q for

arbitrary n andΓ whereΓ ⊳ M ⊲ P andΓ ⊳ M ⊲ Q are configurations.

Proof. By coinduction and Lemma 4.20.

Lemma 4.22(Renaming). If Γ,∆ � (M ⊲ P) ⊏∼
n
bis (N ⊲Q) thenΓ, (∆σΓ) � (M ⊲ P)σΓ ⊏∼

n
bis (N ⊲Q)σΓ

Proof. By coinduction.

Theorem 4.23(Contextuality). If Γ,∆ � (M ⊲ P) ⊏∼
n
bis (N ⊲ Q) and∆ ⊢ R then

Γ � (M ⊲ P ‖ R) ⊏∼
n
bis (N ⊲ Q ‖ R) and Γ � (M ⊲ R ‖ P) ⊏∼

n
bis (N ⊲ R ‖ Q)

Proof. We define the family of relationsRΓ,n to be the least one satisfying the rules

Γ � (M ⊲ P)⊏∼
n
bis(N ⊲ Q)

Γ � (M ⊲ P) Rn (N ⊲ Q)

Γ,∆ � (M ⊲ P) Rn (N ⊲ Q) ∆ ⊢ R

Γ � (M ⊲ P ‖ R) Rn (N ⊲ Q ‖ R)

Γ,∆ � (M ⊲ P) Rn (N ⊲ Q) ∆ ⊢ R

Γ � (M ⊲ R ‖ P) Rn (N ⊲ R ‖ Q)

and then show thatRΓ,n is a costed typed bisimulation atΓ andn (up to≡). Note that the premise of
the first rule implies that bothΓ,∆ ⊳M ⊲P andΓ,∆ ⊳N ⊲Q are configurations. We consider only the
transitions of the left hand configurations for second case of the relation; the first is trivial and the
third is analogous to the second. Although the relation is not symmetric, the transition of the right
hand configurations are analogous to those of the left hand configurations. There are three cases to
consider.
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(1) Case the action was instigated byP, i.e.,we have:

Γ ⊳ (M ⊲ P)σΓ
µ
−−⇁l Γ

′ ⊳ M′ ⊲ P′
lPar-L

Γ ⊳ (M ⊲ P ‖ R)σΓ
µ
−−⇁l Γ

′ ⊳ M′ ⊲ P′ ‖ RσΓ
lRen

Γ ⊳ M ⊲ P ‖ R
µ
−−→l Γ

′ ⊳ M′ ⊲ P′ ‖ RσΓ

(4.11)

By Lemma 4.15 (Weakening),lRen and (4.11) we obtain

Γ, (∆σΓ) ⊳ (M ⊲ P)σΓ
µ
−−→l Γ

′, (∆σΓ) ⊳ M′ ⊲ P′ (4.12)

Lemma 4.22 can be extended toRn is straightforward fashion, and from the case assumption
Γ,∆ � M ⊲ PRn N ⊲ Q (definingRΓ,n) and the extension of Lemma 4.22 toRn we obtain:

Γ, (∆σΓ) � (M ⊲ P)σΓR
n(N ⊲ Q)σΓ (4.13)

Hence by (4.13), (4.12) and I.H. there exists aN′ ⊲ Q′ such that

Γ, (∆σΓ) ⊳ (N ⊲ Q)σΓ
µ̂
=⇒k Γ

′, (∆σΓ) ⊳ N′ ⊲ Q′ (4.14)

where Γ′, (∆σΓ) � (M′ ⊲ P′) Rn+k−l (N′ ⊲ Q′) (4.15)

By (4.14) andlRen, wereΓ1 = Γ, (∆σΓ), we obtain

Γ, (∆σΓ) ⊳
(

(N ⊲ Q)σΓ)
)

σ′Γ1

( τ
−−⇁
∗

k1

) µ̂
−⇁k2

( τ
−−⇁
∗

k3

)

Γ′, (∆σΓ) ⊳ N′ ⊲ Q′ (4.16)

wherek = k1 + k2 + k3. By lPar Lemma 4.16 (Strengthening) and (4.16) we deduce

Γ ⊳
(

(N ⊲ Q)σΓ)
)

σ′Γ1
‖ RσΓ

( τ
−−⇁
∗

k1

) µ̂
−⇁k2

( τ
−−⇁
∗

k3

)

Γ′ ⊳ N′ ⊲ Q′ ‖ RσΓ (4.17)

From∆ ⊢ Rwe know
∆σΓ ⊢ RσΓ (4.18)

and, fromΓ1 = Γ, (∆σΓ) and Definition 4.3 (Renaming Modulo Environments), we knowthat
(RσΓ)σ′Γ1

= RσΓ since the renaming does not modify any of the names in the domain of Γ1,
hence of∆σΓ. Also, from Definition 4.3,σ′

Γ1
is also a substitution moduloΓ and can therefore

refer to it asσ′
Γ
, thereby rewriting (4.17) as

Γ ⊳
(

N ⊲ Q ‖ R
)

σΓσ
′
Γ

( τ
−−⇁
∗

k1

) µ̂
−⇁k2

( τ
−−⇁
∗

k3

)

Γ′ ⊳ N′ ⊲ Q′ ‖ RσΓ (4.19)

From (4.19) andlRen we thus obtain

Γ ⊳ N ⊲ Q ‖ R
µ̂
=⇒k Γ′ ⊳ N′ ⊲ (Q′ ‖ RσΓ)

This is our matching move since and by (4.15), (4.18) and the definition ofR we obtainΓ′ �
(M′ ⊲ P′ ‖ RσΓ) Rn+l−k (N′ ⊲ Q′ ‖ RσΓ).

(2) Case the action was instigated byR, i.e.,we have:

Γ ⊳ (M ⊲ R)σΓ
µ
−−⇁l Γ′ ⊳ M′ ⊲ R′

lPar-R
Γ ⊳

(

M ⊲ P ‖ R
)

σΓ
µ
−−⇁l Γ′ ⊳ M′ ⊲ P ‖ R′

lRen
Γ ⊳ M ⊲ P ‖ R

µ
−−→l Γ′ ⊳ M′ ⊲ P ‖ R′

(4.20)

The proof proceeds by case analysis ofµ whereby the most interesting cases are whenl = +1
or l = −1. We here show the case for whenl = −1 (the other case is analogous). By Lemma 4.4
we know that eitherµ = free c and

MσΓ = M′, c R′ ≡ RσΓ Γ = Γ′, c: [~T]•
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or else thatµ = τ and

MσΓ = M′, c (4.21)

RσΓ ≡ free c.R1 ‖ R2 and R′ ≡ R1 ‖ R2 (4.22)

Γ = Γ′ (4.23)

∆σΓ ≺ ∆
′, c: [~T]• and ∆′ ⊢ R′. (4.24)

We here focus on the latter case,i.e.,whenµ = τ. The main complication in finding a matching
move for this subcase is that of inferring a pair of resultantsystems (one of which isΓ ⊳M′ ⊲P ‖
R′) that are related byR by using the inductive nature of the relation definition. To be able to do
so, we need to mimic the effect ofR’s deallocation transition onM in the corresponding system
N ⊲ Q; we do this with the help of an appropriate external deallocation transitionfree c.

By the extension of Lemma 4.22 toRn we knowΓ,∆σΓ � (M ⊲ P)σΓ Rn (N ⊲ Q)σΓ, and by
(4.24) and a straightforward extension of Lemma 4.19 toR we obtain

Γ,∆′, c: [~T]• � (M ⊲ P)σΓ R
n (N ⊲ Q)σΓ (4.25)

and by (4.21) andlFreeE we deduce

Γ,∆′, c: [~T]• ⊳
(

M ⊲ P
)

σΓ
free c
−−−−−−→−1 Γ,∆

′ ⊳
(

M′ ⊲ P
)

σΓ

and by (4.25) and I.H. there exists a matching move

Γ,∆′, c: [~T]• ⊳ (N ⊲ Q)σΓ
free c
=====⇒k Γ,∆

′ ⊳ N′ ⊲ Q′ (4.26)

andΓ,∆′ � M′ ⊲ P′ Rn+k−(−1) N′ ⊲ Q′ (4.27)

By (4.26) andlRen, for k = k1 − 1+ k2, we know

Γ,∆′, c: [~T]• ⊳
(

(N ⊲ Q)σΓ
)

σ′Γ2

τ
−−⇁
∗

k1
Γ,∆′, c: [~T]• ⊳ N′′ ⊲ Q′′ (4.28)

whereΓ2 = Γ,∆
′, c: [~T]• (used inσ′Γ2

above) (4.29)

Γ,∆′, c: [~T]• ⊳ N′′ ⊲ Q′′ free c
−−−−−⇁−1 Γ,∆′ ⊳ N′′′ ⊲ Q′′ (4.30)

Γ,∆′ ⊳ N′′′ ⊲ Q′′ τ
−−⇁
∗

k2
Γ,∆′ ⊳ N′ ⊲ Q′ (4.31)

From (4.28), (4.31),lPar-L and Lemma 4.16 (Strengthening) we obtain:

Γ ⊳
(

(N ⊲ Q)σΓ
)

σ′Γ2
‖ RσΓ

τ
−−⇁
∗

k1
Γ ⊳ N′′ ⊲ Q′′ ‖ (RσΓ) (4.32)

Γ ⊳ N′′′ ⊲ Q′′ ‖ R′ τ
−−⇁
∗

k2
Γ ⊳ N′ ⊲ Q′ ‖ R′ (4.33)

Also, from (4.30) and Lemma 4.4 (Transition and Structure) we deduce thatN′′ = N′′′, c and
thus, from (4.22),lFree, lPar-R we obtain:

Γ ⊳ N′′ ⊲ Q′′ ‖ RσΓ
τ
−−⇁−1 Γ ⊳ N′′′ ⊲ Q′′ ‖ R′ (4.34)

By (4.24) and (4.29), we know that we can find an alternative renaming functionσ′′
Γ3

, where
Γ3 = Γ, (∆σΓ), in a way that, from (4.32), we can obtain

Γ ⊳
(

(N ⊲ Q)σΓ
)

σ′′Γ3
‖ RσΓ

τ
−−⇁
∗

k1
Γ ⊳ N′′ ⊲ Q′′ ‖ (RσΓ) (4.35)

Now, by∆ ⊢ R we know∆σΓ ⊢ RσΓ and subsequently, by Definition 4.3 and (4.29) we know
(RσΓ)σ′′Γ3

= RσΓ. Thus, we can rewrite
(

(N ⊲ Q)σΓ
)

σ′′
Γ3
‖ RσΓ in (4.35) as

(

(N ⊲ Q ‖ R)σΓ
)

σ′′
Γ3

.
Merging (4.35), (4.34) and (4.33) we obtain:

Γ ⊳
(

(N ⊲ Q ‖ R)σΓ
)

σ′′Γ3

τ
−−⇁
∗

k1

τ
−−⇁−1

τ
−−⇁
∗

k2
Γ ⊳ N′ ⊲ Q′ ‖ R′
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By Definition 4.3 we know thatσ′′
Γ3

can be rewritten asσ′′
Γ

and thus bylRen we obtain the
matching move

Γ ⊳ N ⊲ Q ‖ R
τ
=⇒k Γ ⊳ N′ ⊲ Q′ ‖ R′

because by (4.27), (4.24) and the definition ofR we know that

Γ � M′ ⊲ P′ ‖ R′ Rn+k−(−1) N′ ⊲ Q′ ‖ R′.

(3) Case the action resulted from an interaction betweenP andR, i.e.,we have:

Γ1 ⊳ (M ⊲ P)σΓ
c! ~d
−−⇁0 Γ

′
1 ⊳ M′ ⊲ P′ Γ2 ⊳ (M ⊲ R)σΓ

c?~d
−−⇁0 Γ

′
2 ⊳ M′ ⊲ R′

lCom-L
Γ ⊳ (M ⊲ P ‖ R)σΓ

τ
−−−⇁0 Γ ⊳ M′ ⊲ P′ ‖ R′

lRen
Γ ⊳ M ⊲ P ‖ R

τ
−−−−→0 Γ ⊳ M′ ⊲ P′ ‖ R′

(4.36)

By the two top premises of (4.36) and Lemma 4.4 we know

MσΓ = M′ (4.37)

PσΓ ≡ c! ~d.P1 ‖ P2 P′ ≡ P1 ‖ P2 (4.38)

RσΓ ≡ c?~x.R1 ‖ R2 R′ ≡ R1{
~d/~x} ‖ R2 (4.39)

From∆ ⊢ Rwe obtain∆σΓ ⊢ RσΓ, and by (4.39),∆ ⊢ Rand Inversion we obtain

∆σΓ ≺ ∆1,∆2, c: [~U]a (4.40)

∆1, c: [~U]a−1, ~x: ~U ⊢ R1 (4.41)

∆2 ⊢ R2 (4.42)

Note that through (4.41) we know that

c: [~U]a−1 is defined. (4.43)

By (4.41), the Substitution Lemma (Lemma 4.4 from [12]) and (4.42) we obtain

∆1,∆2, c: [~U]a−1, ~d: ~U ⊢ R1{
~d/~x} ‖ R2 (4.44)

From the assumption definingR, and Lemma 4.22 we obtain

Γ, (∆σΓ) � (M ⊲ P)σΓ R
n (N ⊲ Q)σΓ, (4.45)

and by (4.40) and Proposition 4.17 we know thatΓ, (∆σΓ) ≺ Γ,∆1,∆2, c : [~U]a and also that
Γ,∆1,∆2, c: [~U]a is consistent. Thus by (4.45) and Lemma 4.19 we deduce

Γ,∆1,∆2, c: [~U]a � (M ⊲ P)σΓ R
n (N ⊲ Q)σΓ (4.46)

Now by (4.43), (4.38), (4.37),lOut, lPar-L, lRen and Lemma 4.20 we deduce

Γ,∆1,∆2, c: [~U]a ⊳ (M ⊲ P)σΓ
c! ~d
−−−→0 Γ,∆

′
1,∆

′
2, c: [~U]a−1, ~d: ~U ⊳ M′ ⊲ P′ (4.47)

and hence by (4.46) and I.H. we obtain

Γ,∆1,∆2, c: [~U]a ⊳ (N ⊲ Q)σΓ
c! ~d
====⇒k Γ,∆

′
1,∆

′
2, c: [~U]a−1, ~d: ~U ⊳ N′ ⊲ Q′ (4.48)

such thatΓ,∆1,∆2, c: [~U]a−1, ~d: ~U � (M′ ⊲ P′) Rn+k−0 (N′ ⊲ Q′) (4.49)
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From (4.48) andlRen we know

Γ,∆1,∆2, c: [~U]a ⊳
(

(N ⊲ Q)σΓ
)

σ′Γ4

τ
−−⇁
∗

k1
Γ,∆1,∆2, c: [~U]a ⊳ N′′ ⊲ Q′′ (4.50)

Γ,∆1,∆2, c: [~U]a ⊳ N′′ ⊲ Q′′
c! ~d
−−−→0 Γ,∆1,∆2, c: [~U]a−1, ~d: ~U ⊳ N′′ ⊲ Q′′′ (4.51)

Γ,∆1,∆2, c: [~U]a−1, ~d: ~U ⊳ N′′ ⊲ Q′′′ τ−−⇁
∗

k2
Γ,∆1,∆2, c: [~U]a−1, ~d: ~U ⊳ N′ ⊲ Q′ (4.52)

wherek = k1 + k2 andΓ4 = Γ,∆1,∆2, c: [~U]a (Γ4 is used in (4.50)) (4.53)

From (4.50), (4.52),lPar-L and Lemma 4.16 (Strengthening) we obtain:

Γ ⊳
(

(N ⊲ Q)σΓ
)

σ′Γ4
‖ RσΓ

τ
−−⇁
∗

k1
Γ ⊳ N′′ ⊲ Q′′ ‖ RσΓ (4.54)

Γ ⊳ N′′ ⊲ Q′′′ ‖ R′ τ−−⇁
∗

k2
Γ ⊳ N′ ⊲ Q′ ‖ R′ (4.55)

By (4.39),lIn andlPar-L we can construct (for someΓ6, Γ7)

Γ6 ⊳ N′′ ⊲ RσΓ
c?~d
−−⇁0 Γ7 ⊳ N′′ ⊲ R′ (4.56)

and by (4.51), (4.56) andlCom-L we obtain

Γ ⊳ N′′ ⊲ Q′′ ‖ RσΓ
τ
−−−⇁0 Γ ⊳ N′′ ⊲ Q′′′ ‖ R′ (4.57)

By (4.40) and (4.53), we know that we can find an alternative renaming functionσ′′
Γ5

, where
Γ5 = Γ, (∆σΓ), in a way that, from (4.54), we can obtain

Γ ⊳
(

(N ⊲ Q)σΓ
)

σ′′Γ5
‖ RσΓ

τ
−−⇁
∗

k1
Γ ⊳ N′′ ⊲ Q′′ ‖ RσΓ (4.58)

By Definition 4.3,∆σΓ ⊢ RσΓ, (4.40), (4.53) we know that (RσΓ)σ′′Γ5
= RσΓ, and also thatσ′′

Γ5

is also a renaming moduloΓ, so we can denote it asσ′′
Γ

and rewrite
(

(N ⊲ Q)σΓ
)

σ′′
Γ5
‖ RσΓ as

(

(N ⊲ Q ‖ R)σΓ
)

σ′′
Γ

in (4.58). Thus, by (4.58), (4.57), (4.55), (4.53) andlRen we obtain the
matching move

Γ ⊳ N ⊲ Q ‖ R
τ
==⇒k Γ ⊳ N′ ⊲ Q′ ‖ R′

since by (4.49), (4.44), (4.39) and the definition ofR we obtain

Γ � (M′ ⊲ P′ ‖ R′) Rn+k−0 (N′ ⊲ Q′ ‖ R′)

as required.

Example 4.24(Properties of⊏∼bis). From the proved statementsΓ1 � (M ⊲ C1) ⊏∼bis (M ⊲ C0) and
Γ1 � (M ⊲ C2) ⊏∼bis (M ⊲ C1) of Example 4.10, and by Corollary 4.13 (Preorder), we may conclude
that

Γ1 � (M ⊲ C2) ⊏∼bis (M ⊲ C0) (4.59)
without the need to provide a bisimulation relation justifying (4.59). We also note thatR′ of Exam-
ple 4.10, justifyingΓ1 � (M ⊲ C3) ⊏∼bis (M ⊲ C2) is aboundedamortised typed-bisimulation, and by
Lemma 4.14 we can also conclude

Γ1 � (M ⊲ C2) ⊏∼bis (M ⊲ C3)

and thusΓ1 � (M ⊲ C3) ≃bis (M ⊲ C2). Finally, by Theorem 4.23, in order to show that

c: [T1,T2]
ω � (M ⊲ S1 ‖ S2 ‖ C1) ⊏bis (M ⊲ S1 ‖ S2 ‖ C0)

it suffices to abstract away from the common code, S1 ‖ S2, and showΓ1 � (M ⊲C1) ⊏bis (M ⊲C0),
as proved already in Example 4.10.
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5. Characterisation

In this section we give a sound and complete characterization of bisimilarity in terms of the reduc-
tion semantics of Section 2, justifying the bisimulation relation and the respective LTS as a proof
technique for reasoning about the behaviour ofRπ processes. Our touchstone behavioural preorder
is based on a costed version of families of reduction-closedbarbed congruences along similar lines
to [20]. In order to limit behaviour to safe computations, these congruences are defined as typed
relations (Definition 4.2), where systems are subject to common observers typed by environments.

The observer type-environment delineates the observations that can be made: the observer
can only make distinctions for channels that it has a permission for, i.e., at least an affine typing
assumption. The observations that can be made in our touchstone behavioural preorder are described
asbarbs [24] that take into account the permissions owned by the observer. We require systems
related by our behavioral preorder to exhibit the same barbswrt. a common observer.

Definition 5.1 (Barb). (Γ ⊳ M ⊲ P) ⇓barb
c

def
= (M ⊲ P) −→∗k≡ (M′ ⊲ P′ ‖ c! ~d.P′′) andc ∈ dom(Γ).

Definition 5.2 (Barb Preservation). A typed relationR is barb preserving if and only if

Γ � M ⊲ P R N ⊲ Q implies
(

Γ ⊳ M ⊲ P ⇓barb
c iff Γ ⊳ N ⊲ Q ⇓barb

c

)

.

Our behavioural preorder takes cost into consideration; itis defined in terms of families of
amortised typed relations that are closed under costed reductions.

Definition 5.3 (Cost Improving). An amortized type-indexed relationR is cost improving at credit
n iff wheneverΓ � (M ⊲ P) Rn (N ⊲ Q) and

(1) if M ⊲ P −→k M′ ⊲ P′ thenN ⊲ Q −→∗l N′ ⊲ Q′ such thatΓ � (M′ ⊲ P′) Rn+l−k (N′ ⊲ Q′);
(2) if N ⊲ Q −→l N′ ⊲ Q′ thenM ⊲ P −→∗k M′ ⊲ P′ such thatΓ � (M′ ⊲ P′) Rn+l−k (N′ ⊲ Q′).

Related processes must be related under arbitrary (parallel) contexts; moreover, these contexts
must be allowed to allocate new channels. We note that the second clause of our contextuality
definition, Definition 5.4, is similar to that discussed earlier in Section 4.4, where wetransferthe re-
spective permissions held by the observer along with the test Rplaced in parallel with the processes.
This is essential in order to preserve consistency (see Definition 2.2) thus limiting our analysis to
safe computations. Definition 5.4 also requires an additional condition, when compared to the con-
textuality definition discussed in Section 4.4, namely thatof resource extensionswhere we consider
systems in larger resource contexts (owned exclusively by the observer). This is described by the
first clause in the definition; we recall the implicit condition for resource environment representa-
tions from Section 2, requiring the channelc not to be present (thus allocated) inM (resp.N) for the
resource environment to be well-formed —c is therefore fresh. In order to disambiguate between
the different contextuality definitions, we refer to Definition 5.4 as full contextuality.

Definition 5.4 (Full Contextuality). An amortized type-indexed relationR is contextual at environ-
mentΓ and creditn iff wheneverΓ � (M ⊲ P) Rn (N ⊲ Q):

(1) Γ, c: [~T]• � (M, c ⊲ P) Rn (N, c ⊲ Q)
(2) If Γ ≺ Γ1, Γ2 whereΓ2 ⊢ R then
• Γ1 � (M ⊲ P ‖ R) Rn (N ⊲ Q ‖ R) and
• Γ1 � (M ⊲ R ‖ P) Rn (N ⊲ R ‖ Q)

We can now define the preorder defining our notion of observational system efficiency:

Definition 5.5 (Behavioral Contextual Preorder). -Γ,nbeh is the largest family of amortized typed rela-
tions that is:



32 A. FRANCALANZA, E. DEVRIES, AND M. HENNESSY

• Barb Preserving;
• Cost Improving at creditn;
• Full contextual at environmentΓ.

A systemM ⊲ P is said to be behaviourally as efficient as another systemN ⊲ Q wrt. an observer
Γ, denoted asΓ � M ⊲ P -beh N ⊲ Q, whenever there exists an amortisation creditn such that
Γ � M ⊲ P -n

beh N ⊲ Q. Similarly, we can lift our preorder to processes: a processP is said to be as
efficient asQ wrt. M andΓ whenever there exists ann such thatΓ � M ⊲ P -n

beh M ⊲ Q

5.1. Soundness for⊏∼bis. Through Definition 5.5 we are able to articulate why clients C2 and C′2
should be deemed to be behaviourally equally efficient wrt. Γ1 of (4.10): for an appropriateM, it
turns out that we cannot differentiate between the two processes under any context allowed byΓ.
Unfortunately, the universal quantification of contexts ofDefinition 5.4 makes it hard to verify such
a statement. Through Theorem 5.10 we can however establish that our bisimulation preorder of
Definition 4.9 provides a sound technique for determining behavioural efficiency. This Theorem, in
turn, relies on the lemmas we outline below. In particular, Lemma 5.7 and Lemma 5.8 prove that
bisimulations are barb-preserving and cost-improving, whereas Lemma 5.9 proves that bisimula-
tions are preserved under resource extensions. The required result then follows from Theorem 4.23
of Section 4.4.

Lemma 5.6(Reductions and Bijective Renaming). For any bijective renamingσ,
(M ⊲ P)σ −→k (M′ ⊲ P′)σ implies M⊲ P −→k M ⊲ P

Proof. By rule induction on (M ⊲ P)σ −→k (M′ ⊲ P′)σ.

Lemma 5.7(Barb Preservation).

Γ � M ⊲ P ⊏∼bis N ⊲ Q andΓ ⊳ M ⊲ P ⇓barb
c impliesΓ ⊳ N ⊲ Q ⇓barb

c

Proof. By Definition 5.1 we knowM ⊲ P −→∗l ≡ (M′ ⊲ P′ ‖ c! ~d.P′′) wherec ∈ dom(Γ). By

Lemma 4.6(1) we obtainΓ ⊳ M ⊲ P ===⇒l Γ ⊳ M′ ⊲ P′′′ whereP′′′ ≡ (P′ ‖ c! ~d.P′′). Moreover, by

lOut, lPar-R and Lemma 4.20 we deduceΓ⊳M⊲P
c! ~d
==⇒l≡ Γ

′⊳M⊲P′ ‖ P′′. ByΓ � M⊲P ⊏∼bis N⊲Q we

know that there exists a moveΓ⊳N⊲Q
c! ~d
==⇒k Γ

′ ⊳N′ ⊲Q′ and from this matching move, Lemma 4.6(2)
(for the initial τmoves of the weak action) and Lemma 4.4 we obtain (N ⊲Q)σΓ −→∗k1

≡ (N′′ ⊲Q′′ ‖

c! ~d.Q′′′)σΓ, which, together withc ∈ dom(Γ) and Lemma 5.6, impliesN ⊲ Q −→∗k1
≡ N′′ ⊲ Q′′ ‖

c! ~d.Q′′′ i.e.,c is unaffected by the renamingσΓ, and thusΓ ⊳ N ⊲ Q ⇓barb
c .

Lemma 5.8(Cost Improving). Γ � M ⊲ P ⊏∼
n
bis N ⊲ Q and M⊲ P −→l M′ ⊲ P′ then there exist some

N′ ⊲ Q′ such that N⊲ Q −→∗k N′ ⊲ Q′ andΓ � M′ ⊲ P′ ⊏∼
n+k−l
bis N′ ⊲ Q′

Proof. By M ⊲P −→l M′ ⊲P′ and Lemma 4.6(1) we knowΓ ⊳M ⊲P
τ
−−→l Γ ⊳M ⊲P′′ whereP′′ ≡ P′.

By Definition 4.9 and assumptionΓ � M ⊲P ⊏∼
n
bis N ⊲Q, this implies thatΓ ⊳ N ⊲ Q ==⇒k Γ ⊳ M′ ⊲ Q′

where
Γ � M′ ⊲ P′′⊏∼

n+k−l
bis N′ ⊲ Q′. (5.1)

By Lemma 4.6(2) we deduce (N ⊲ Q)σΓ −→∗k N′ ⊲ Q′ and by Lemma 5.6 we obtainN ⊲ Q −→∗

N′′ ⊲ Q′′ whereN′′ ⊲ Q′′ = (N′ ⊲ Q′)σΓ. The required result follows fromΓ � M′ ⊲ P′⊏∼
0
bisM

′ ⊲ P′′,
which we obtain fromP′ ≡ P′′ and Corollary 4.21 (Structural Equivalence and Bisimilarity), (5.1),
Γ � N′′ ⊲ Q′′⊏∼

0
bisN

′ ⊲ Q′ which we obtain from Lemma 4.11 (Reflexivity upto Renaming) and
N′′ ⊲ Q′′ = (N′ ⊲ Q′)σΓ, and Lemma 4.12.
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Lemma 5.9(Resource Extensions).

Γ � M ⊲ P ⊏∼
n
bis N ⊲ Q impliesΓ, c: [~T]• � (M, c) ⊲ P ⊏∼

n
bis (N, c) ⊲ Q

Proof. By coinduction.

Theorem 5.10(Soundness). Γ � (M ⊲ P) ⊏∼
n
bis (N ⊲ Q) impliesΓ � (M ⊲ P) -n

beh (N ⊲ Q).

Proof. Follows from Lemma 5.7 (Barb Preservation), Lemma 5.8 (CostImproving), Lemma 5.9
(Resource Extensions) and Theorem 4.23 (Contextuality).

Corollary 5.11 (Soundness). Γ � (M ⊲ P) ⊏∼bis (N ⊲ Q) impliesΓ � (M ⊲ P) -beh (N ⊲ Q).

5.2. Full Abstraction of -beh. To prove completeness,i.e., that for every behavioural contextual
preorder there exists a corresponding amortised typed-bisimulation, we rely on the adapted notion
of action definability[19, 21], which intuitively means that every action (label)used by our LTS
can, in some sense, be simulated (observed) by a specific testcontext. For our specific case, two
important aspects need to be taken into consideration:

• the typeabilityof the testing contextwrt. our substructural type system;
• thecostof the action simulation, which has to correspond to the costof the action being observed.
These aspects are formalised in Definition 5.13, which relies on the functions definitionsdoml and
codl:

doml(ǫ)
def
= ǫ codl(ǫ)

def
= ǫ

doml(Γ, c:T)
def
= doml(Γ), c codl(Γ, c:T)

def
= codl(Γ),T

These two meta-functions take a substructural type environment and returning respectively alist of
channel names and alist of types. For example, for the environmentΓ = c: [T]1, d: [T′]ω, c: [T](•,1),
we havedoml(Γ) = c, d, c andcodl(Γ) = [T]1, [T′]ω, [T](•,1).

Before stating cost-definability for actions, Definition 5.13, we prove the technical Lemma 5.12
which allows us to express transitions in a convenient format for the respective definition without
loss of generality.

Lemma 5.12(Transitions and Renaming). Γ ⊳M ⊲P
µ
−−→k Γ

′ ⊳M′ ⊲P′ if and only if Γ ⊳M ⊲P
µ
−−→k

(

Γ′′ ⊳ M′′ ⊲ P′′
)

σΓ for someσΓ, Γ′′,M′′,P′′ whereΓ′ = Γ′′σΓ, M′ = M′′σΓ and P′ = P′′σΓ.

Proof. The if case is immediate. The proof for theonly-if is complicated by actions that perform
channel allocation (seelAll andlAllE from Figure 5) because, in such cases, the renaming used
in lRen’s premise cannot be used directly. More precisely, from thepremise we know:

Γ ⊳
(

M ⊲ P
)

σΓ
µ
−−⇁k Γ

′ ⊳ M′ ⊲ P′
lRen

Γ ⊳ M ⊲ P
µ
−−→k Γ

′ ⊳ M′ ⊲ P′

and the required result follows if we prove the (slightly more cumbersome) sublemma:

Sublemma(Transition and Renaming). Γ ⊳
(

M ⊲ P
)

σΓ
µ
−−⇁k Γ

′ ⊳M′ ⊲ P′ wherefn(P) ⊆ M implies
Γ ⊳

(

M ⊲ P
)

σΓ
µ
−−⇁k

(

Γ′′ ⊳ M′′ ⊲ P′′
)

σ′
Γ

for someσ′
Γ
, Γ′′,M′′,P′′ where

• Γ′ = Γ′′σ′
Γ
, M′ = M′′σ′

Γ
andP′ = P′′σ′

Γ
;

• c ∈ dom(M) impliesσΓ(c) = σ′
Γ
(c)

The above sublemma is proved by rule induction onΓ ⊳
(

M ⊲P
)

σΓ
µ
−−⇁k Γ

′ ⊳M′ ⊲P′. We show
one of the main cases:
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lAll: We haveΓ ⊳
(

M ⊲ alloc x.P
)

σΓ
τ
−−⇁+1 Γ ⊳

(

(M)σΓ, c
)

⊲
(

(P)σΓ{c/x}
)

. From the fact that
c < (MσΓ) — it follows because

(

(M)σΓ, c
)

is defined — we know thatσ−1
Γ

(c) < M. We thus
choose some fresh channeld, i.e., d <

(

M ∪ (MσΓ) ∪ dom(Γ)
)12, and defineσ′

Γ
asσΓ, except

that it mapsd to c and also mapsσ−1
Γ

(c) (i.e., the channel name that mapped toc in σΓ) toσΓ(d),
since this channel is not mapped to byd anymore (in order to preserve bijectivity):

σ′Γ(x)
def
=



























c if x = d

σΓ(d) if x = σ−1
Γ

(c)

σΓ(x) otherwise

We subsequently define
• Γ′′ asΓ sinceΓσ′

Γ
= ΓσΓ = Γ;

• M′′ asM, d since (M, d)σ′
Γ
=

(

(M)σΓ, c
)

; and
• P′′ asP{d/x} sinceP{d/x}σ′

Γ
= PσΓ{c/x}

Definition 5.13 (Cost Definable Actions). An actionµ is cost-definable iff for any pair of type envi-
ronments13Γ andΓ′, a corresponding substitutionσΓ, a set of channel namesC ∈ Chan, and channel
namessucc, fail < C, there exists a testR such thatΓ, succ : [codl(Γ′)]1, fail : []1, fail : []1 ⊢ R
and wheneverM ∈ C:

(1) Γ ⊳ M ⊲ P
µ
−−→k

(

Γ′ ⊳ M′ ⊲ P′
)

σΓ implies
M, succ, fail ⊲ P ‖ R−→∗k M′, succ, fail ⊲ P′ ‖ succ!

(

doml(Γ′)
)

.
(2) M, succ, fail ⊲ P ‖ R −→∗k M′′ ⊲ P′′ wheresucc : [codl(Γ′)]a, fail : []a ⊳ M′′ ⊲ P′′ 6⇓barb

fail
and

succ : [codl(Γ′)]a, fail : []a ⊳ M′′ ⊲ P′′ ⇓barb
succ impliesΓ ⊳ M ⊲ P

µ
=⇒k

(

Γ′ ⊳ M′ ⊲ P′
)

σΓ where
M′′ = M′, succ, fail andP′′ ≡ P′′′ ‖ succ!

(

doml(Γ′)
)

.

Lemma 5.14(Action Cost-Definability). External actionsµ ∈
{

c! ~d, c?~d, alloc, free c | c, ~d ⊂ Chan
}

are cost-definable.

Proof. The witness tests forc! ~d andc?~d are reasonably standard (see [19]), but need to take into
account permission transfer. For instance, for the specificcase of the actionc!d whered < doml(Γ),

if the transitionΓ ⊳ M ⊲ P
µ
−−→k

(

Γ′ ⊳ M′ ⊲ P′
)

σΓ holds then we know that, for someΓ1 and [T]a:

• Γ = Γ1, c: [T]a;
• Γ′σΓ = Γ1, c: [T]a−1, d:T
In particular, whena = 1 (affine), using the permission to input onc implicitly transfers the per-
mission to processP (see Section 4.1), potentially revoking the test’s capability to perform name
matching on channel namec (seetIf in Figure 4) — this happens ifc < dom(Γ1). For this reason,
whena= 1 the test is defined as

fail! ‖ c?x.if
(

x ∈ doml(Γ1)
)

then nil else fail?.succ!
(

doml(Γ′)
)

wherex ∈ doml(Γ1) is shorthand for a sequence of name comparisons as in [19]. Otherwise, the
respective type assumption is not consumed from the observer environment and the test is defined
as

fail! ‖ c?x.if
(

x ∈ doml(Γ)
)

then nil else fail?.succ!
(

doml(Γ′)
)

12The condition thatd < dom(Γ) is required since we do not state whether the tripleΓ ⊳ M ⊲ P is a configuration;
otherwise, it is redundant — see comments succeeding Definition 4.1.

13Cost Definability cannot be definedwrt. the first environment only in the case of actionalloc, since it non-
deterministically allocates a fresh channel name and adds it to the residual environment - seelAllE in Figure 5.
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Note that name comparisons on freshly acquired names are typeable since we also obtain the respec-
tive permissions upon input,i.e., the explicit permission transfer (see Section 4.1). The reader can
verify that these tests typecheckwrt. the environmentΓ, succ : [codl(Γ′)]1, fail : []1, fail : []1 and
that they observe clauses (1) and (2) of Definition 5.13. In the case of clause (2), we note that from
the typing of the tests above, we know thatc ∈ doml(Γ) must hold (because both tests use channel
c for input); this is is a key requirement for the transition tofire — seelOut of Figure 5.

The witness tests foralloc andfree c involve less intricate permission transfer and are re-
spectively defined as:

fail! ‖ alloc x.fail?.succ!
(

doml(Γ), x
)

and
fail! ‖ free c.fail?.succ!

(

doml(Γ′)
)

We here focus onalloc and leave the analogous proof forfree c for the interested reader:

(1) If Γ ⊳ M ⊲ P
alloc

−−−−−−→k (Γ′ ⊳ M′ ⊲ P′)σΓ we know that, for somed < M andc < MσΓ where
σΓ(d) = c, we have (Γ′)σΓ = (Γ, d : [T]•)σΓ = Γ, c : [T]•, M′ = (M, d) andP′ = P. We can
therefore simulate this action by the following sequence ofreductions:

M ⊲ P ‖ fail! ‖ alloc x.fail?.succ!
(

doml(Γ), x
)

−→

M, d ⊲ P ‖ fail! ‖ fail?.succ!
(

doml(Γ), d
)

−→ M, d ⊲ P ‖ succ!
(

doml(Γ), d
)

(2) From the structure ofR and the assumption thatfail, succ < fn(P), we conclude that, if
succ : [codl(∆)]a, fail : []a ⊳ M′ ⊲ P′ 6⇓barb

fail
and succ : [codl(∆)]a, fail : []a ⊳ M′ ⊲ P′ ⇓barb

succ,
then it must be the case that, for somed < M, P′ = P′′ ‖ succ!

(

doml(Γ), d
)

where M′′ =
(M′, succ, fail, d) for someM′.

SinceP and R do not share common channels there could not have been any interaction
between the two processes in the reduction sequenceM, succ, fail ⊲ P ‖ R −→∗k M′ ⊲ P′.
Within this reduction sequence, from every reductionMi ⊲ Pi ‖ R′ −→ki Mi+1 ⊲ Pi+1 ‖ R′

resulting from derivatives ofP, i.e.,Mi ⊲Pi −→ki Mi+1⊲Pi+1 that happened before the allocation
of channeld, we obtain a corresponding silent transition

Γi ⊳ (Mi \ {succ, fail}) ⊲ Pi
τ
−−→ki Γi ⊳ (Mi+1 \ {succ, fail}) ⊲ Pi+1 (5.2)

by Lemma 4.6(1) and an appropriate lemma that uses the fact{succ, fail} ∩ fn(P) = ∅ to al-
lows us to shrink the allocated resources fromMi to (Mi \ {succ, fail}). A similar procedure
can be carried out for reductions that happened after the allocation ofd as a result of reductions
from P derivatives, and by applying renamingσΓ we can obtain

(

Γi ⊳ (Mi \ {succ, fail}) ⊲ Pi
)

σΓ
τ
−−→ki

(

Γi ⊳ (Mi+1 \ {succ, fail}) ⊲ Pi+1
)

σΓ (5.3)

The reduction

Mi , succ, fail ⊲ Pi ‖ alloc x.fail?.succ!
(

doml(Γ), x
)

−→+1

Mi , succ, fail, d ⊲ Pi ‖ fail?.succ!
(

doml(Γ), d
)

can be substituted by the transition

Γi ⊳ Mi ⊲ Pi
alloc

=====⇒+1 Γi , (d)σΓ : [T]• ⊳
(

(Mi)σΓ, (d)σΓ
)

⊲ (Pi)σΓ (5.4)

This follows from the fact thatd < Mi and the fact thatσΓ is a bijection, which implies that
(d)σΓ < (Mi)σΓ (necessary for

(

(Mi)σΓ, (d)σΓ
)

to be a valid resource environment). By joining
together the transitions from (5.2), (5.4) and (5.3) in the appropriate sequence we obtain the
required weak transition.
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The proof of Theorem 5.18 (Completeness) relies on Lemma 5.14 to simulate a costed action
by the appropriate test and is, for the most part, standard. As stated already, one novel aspect is
that the cost semantics requires the simulation to incur thesame cost as that of the costed action.
Through Reduction Closure, Lemma 5.14 again, and then finally the Extrusion Lemma 5.15 we then
obtain the matching bisimulation move which preserves the relative credit index. Another novel
aspect of the proof for Theorem 5.18 is that the name matchingin the presence of our substructural
type environment requires a reformulation of the ExtrusionLemma. More precisely, in the case
of the output actions, the simulating test requires all of the environment permissions to perform
all the necessary name comparisons. We then make sure that these permissions are not lost by
communicating them all again onsucc; this passing on of permissions then allows us to show
contextuality in Lemma 5.15.

Lemma 5.15(Extrusion). WheneverΓ ⊳ M ⊲ P andΓ ⊳ N ⊲ Q are configurations and~d < dom(Γ):

succ : [codl(Γ)](•,1) �
(

M, succ, ~d
)

⊲ P ‖ succ!(doml(Γ)) -n
beh

(

N, succ, ~d
)

⊲ Q ‖ succ!(doml(Γ))

impliesΓ ⊢ M ⊲ P -n
beh N ⊲ Q

Proof. By coinduction we show that a family of amortized typed relationsΓ ⊢ M ⊲ P Rn N ⊲ Q ob-
serves the required properties of Definition 5.5. Note that the environmentsucc : [codl(Γ)](•,1)

ensures thatsucc < names(P,Q) since bothP ‖ succ!(doml(Γ)) and Q ‖ succ!(doml(Γ)) must
typecheckwrt. a type environment that is consistent withsucc : [codl(Γ)](•,1). Cost improving is
straightforward and Barb Preserving and Contextuality follow standard techniques; see [19].

For instance, for barb preservation we are required to show thatΓ ⊳ M ⊲ P ⇓barb
c impliesΓ ⊳ N ⊲

Q ⇓barb
c (and viceversa). FromΓ ⊳ M ⊲ P ⇓barb

c and Definition 5.1 we know thatc: [~T]a ∈ Γ at some
index i. We can therefore define the processR , succ?~x.xi?~y.ok! where |~T | = |~y|; this test process
typecheckswrt. succ : [codl(Γ)](•,1), ok: []1. Now by Definition 5.4(1) we know

succ : [codl(Γ)](•,1), ok: []• �
(

M, succ, ~d, ok
)

⊲ P ‖ succ!(doml(Γ))

-
n
beh

(

N, succ, ~d, ok
)

⊲ Q ‖ succ!(doml(Γ))

and thus, by Definition 5.4(2) andsucc : [codl(Γ)](•,1), ok: []1 ⊢ R

ok: [] (•,1) �
(

M, succ, ~d, ok
)

⊲ P ‖ succ!(doml(Γ)) ‖ R

-
n
beh

(

N, succ, ~d, ok
)

⊲ Q ‖ succ!(doml(Γ)) ‖ R
(5.5)

Clearly, if Γ ⊳ M ⊲ P ⇓barb
c then

(

ok: [] (•,1) ⊳
(

M, succ, ~d, ok
)

⊲ (P ‖ succ!(doml(Γ)) ‖ R)
)

⇓barb
ok . By

(5.5) and Definition 5.2 we must have
(

ok: [] (•,1) ⊳
(

N, succ, ~d, ok
)

⊲ (Q ‖ succ!(doml(Γ)) ‖ R)
)

⇓barb
ok

as well, which can only happen ifN ⊲ Q −→∗≡ Q′ ‖ c! ~d.Q′′. This means thatΓ ⊳ N ⊲ Q ⇓barb
c .

Lemma 5.16. Γ � M ⊲ P -n
beh N ⊲ Q andΓ ≺ Γ′ impliesΓ′ � M ⊲ P -n

beh N ⊲ Q

Proof. By coinduction.

Lemma 5.17. Γ � M ⊲ P -n
beh N ⊲ Q andσ is a bijective renaming impliesΓσ �

(

M ⊲ P
)

σ -n
beh

(

N ⊲ Q
)

σ

Proof. By coinduction.
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Theorem 5.18(Completeness). Γ � (M ⊲ P) -n
beh (N ⊲ Q) impliesΓ � (M ⊲ P) ⊏∼

n
bis (N ⊲ Q).

Proof. By coinduction, we show that for arbitraryΓ, n, the family of relations included inΓ �
M ⊲ P -n

beh N ⊲ Q observes the transfer properties of Definition 4.9 atΓ, n. Assume

Γ ⊳ M ⊲ P
µ
−−→k

(

Γ′ ⊳ M′ ⊲ P′
)

σΓ (5.6)

If µ = τ, the matching move follows from Lemma 4.6, Definition 5.3 andDefinition 5.5.
If µ ∈

{

c! ~d, c?~d, alloc, free c | c, ~d ∈ Chan
}

, by Lemma 5.14 we know that there exists a test
process that can simulate it; we choose one such testRwith channel namessucc, fail < M,N. By
Definition 5.4(1) we know

Γ, succ : [codl(Γ)]•, fail : []• � M, succ, fail ⊲ P -n
beh N, succ, fail ⊲ Q

and by Definition 5.4(2) andΓ, succ : [codl(∆)]1, fail : []1, fail : []1 ⊢ R (Definition 5.13) we ob-
tain

succ : [codl(Γ)](•,1), fail : [] (•,2) � (M, succ, fail) ⊲ P ‖ R-n
beh (N, succ, fail) ⊲ Q ‖ R (5.7)

From (5.6) and Definition 5.13(1), we know

(M, succ, fail) ⊲ P ‖ R−→∗k (M′, succ, fail) ⊲ P′ ‖ succ! doml(Γ′)

By (5.7) and Definition 5.3 (Cost Improving) we know

(N, succ, fail) ⊲ Q ‖ R−→∗l N′′ ⊲ Q′′

where

succ : [codl(Γ)](•,1), fail : [] (•,2)
� (M′, succ, fail) ⊲ P′ ‖ succ! doml(Γ′) -n+l−k

beh N′′ ⊲ Q′′ (5.8)

By Definition 5.2 (Barb Preservation), this means thatsucc : [codl(Γ)](•,1), fail : [] (•,2)⊳N′⊲Q′ 6⇓barb
fail

and also thatsucc : [codl(Γ)](•,1), fail : [] (•,2) ⊳ N′ ⊲ Q′ ⇓barb
succ. By Definition 5.13(2) we obtain

Q′′ ≡ Q′ ‖ succ! doml(Γ′) andN′′ = (N′, succ, fail) (5.9)

Γ ⊳ N ⊲ Q
µ
=⇒l

(

Γ′ ⊳ N′ ⊲ Q′
)

σΓ (5.10)

Transition (5.10) is the matching move because by (5.8) and Lemma 5.16 we obtain

succ : [codl(Γ)](•,1)
� (M′, succ, fail) ⊲ P′ ‖ succ! doml(Γ′) -n+l−k

beh N′′ ⊲ Q′′

By (5.9), and Lemma 5.15 we obtainΓ′ � M′ ⊲ P′ -n+l−k
beh N′ ⊲ Q′ and subsequently by Lemma 5.17

we obtain
Γ′σΓ �

(

M′ ⊲ P′
)

σΓ -
n+l−k
beh

(

N′ ⊲ Q′
)

σΓ

as required.
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6. Revisiting the Case Study

We can formally express that eBuff is (strictly) more efficient than Buff in terms of the reduction
semantics outlined in Section 2 through the following statements:

Γext � M ⊲ eBuff -beh M ⊲ Buff (6.1)

Γext � M ⊲ Buff 6-beh M ⊲ eBuff (6.2)

In order to show that the second statement (6.2) holds, we need to prove thatthere is no amor-
tisation credit nfor which Γext � M ⊲ Buff -n

beh M ⊲ eBuff. By choosing the set of inductively
defined contextsRn where:14

R0 , nil Rn+1 , in!v.out?x.Rn

we can argue by analysing the reduction graph of the respective systems that, for anyn ≥ 0:

Γext � M ⊲ (Buff ‖ Rn+1) 6-n
beh M ⊲ (eBuff ‖ Rn+1)

since it violates the Cost Improving property of Definition 5.5.
Another way how to prove (6.2) is by exploiting completenessof our bisimulation proof tech-

niquewrt. our behavioural preorder, Theorem 5.18, and work at the level of the transition system of
Section 4 showing that, for alln ≥ 0, the following holds:

Γext � M ⊲ Buff 6⊏∼
n
bis M ⊲ eBuff (6.3)

We prove the above statement as Theorem 6.3 of Section 6.1.
Property (6.1),prima facie, seems even harder to prove than (6.2), because we are required to

show that Barb Preservation and Cost Improving hold under every possible valid context interacting
with the two buffer implementations. Once again, we use the transition system of Section 4 and
show instead that:

Γext � M ⊲ eBuff ⊏∼
0
bis M ⊲ Buff (6.4)

The required result then follows from Theorem 5.10. The proof for this statement is presented
in Section 6.2.

In order to make the presentation of these proofs more manageable, we define the following
macro definitions for sub-processes making up the derivatives ofΓext⊳M ⊲Buff andΓext⊳M ⊲eBuff.

Frn’
def
= b?x.in?y.alloc z.

(

Frn ‖ b!z ‖ x!(y, z)
)

Bck’
def
= d?x.x?(y, z).out!y.

(

Bck ‖ d!z
)

Frn”(x)
def
= in?y.alloc z.

(

Frn ‖ b!z ‖ x!(y, z)
)

Bck”(x)
def
= x?(y, z).out!y.

(

Bck ‖ d!z
)

Frn”’(x, y)
def
= alloc z.

(

Frn ‖ b!z ‖ x!(y, z)
)

Bck”’ (y, z)
def
= out!y.

(

Bck ‖ d!z
)

eBk’
def
= d?x.x?(y, z).free x.out!y.

(

eBk ‖ d!z
)

eBk”(x)
def
= x?(y, z).free x.out!y.

(

eBk ‖ d!z
)

eBk”’(x, y, z)
def
= free x.out!y.

(

eBk ‖ d!z
)

eBk””(y, z)
def
= out!y.

(

eBk ‖ d!z
)

We can thus express the definitions for Buff and eBuff as:

Buff
def
= Frn”(c1) ‖ Bck”(c1) eBuff

def
= Frn”(c1) ‖ eBk”(c1) (6.5)

14Note thatΓext ⊢ Rn for anyn.
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Frn”(c1) ‖ Bck”(c1) = BuffFrn”’(c1, v) ‖ Bck”(c1)

Frn ‖ b!c2 ‖ c1!(v, c2)‖ Bck”(c1) Frn’ ‖ b!c2 ‖ c1!(v, c2)‖ Bck”(c1) Frn”(c2) ‖ c1!(v, c2)‖ Bck”(c1)

Frn ‖ b!c2 ‖ Bck”’( v, c2) Frn’ ‖ b!c2 ‖ Bck”’( v, c2) Frn”(c2) ‖ Bck”’( v, c2)

Frn ‖ b!c2 ‖ Bck ‖ d!c2 Frn’ ‖ b!c2 ‖ Bck ‖ d!c2 Frn”(c2) ‖ Bck ‖ d!c2

Frn ‖ b!c2 ‖ Bck’ ‖ d!c2 Frn’ ‖ b!c2 ‖ Bck’ ‖ d!c2 Frn”(c2) ‖ Bck’ ‖ d!c2

Frn ‖ b!c2 ‖ Bck”(c2) Frn’ ‖ b!c2 ‖ Bck”(c2) Frn”(c2) ‖ Bck”(c2)

in?v

τ+1

τ

τ

τ

τ

τ

out!v

τ

out!v

τ

out!v

τ

τ

τ

τ

τ

τ

τ

τ

τ

τ

τ τ

Figure 6: Transition graph forΓext ⊳ M ⊲ Buff restricted to
in?v · out!v
=========⇒

6.1. Proving Strict Inefficiency. In order to prove (6.3), we do not need to explore the entire state
space forΓext⊳M ⊲Buff andΓext⊳M ⊲eBuff. Instead, it suffices to limit external interactions with the

observer to traces of the form
( in?v ·out!v
========⇒

)∗, which simulate interactions with the observing processes
Rn discussed in Section 6. It is instructive to visualise the transition graphs for bothΓext⊳M⊲Buff and

Γext ⊳ M ⊲ eBuff for a single iteration
in?v · out!v
========⇒ as depicted in Figure 6 and Figure 7: due to lack of

space, the nodes in these graphs abstract away from the environmentΓext and appropriate resource
environmentsM,N, . . . containing internal channelsc1, c2, . . . as required.15 For instance the first
node of the graph in Figure 6, Frn”(c1)‖Bck”(c1), i.e.,Buff, stands forΓext⊳M⊲(Frn”(c1)‖Bck”(c1)),
wherec1 ∈ M, whereas the third node in the same graph, Frn‖b!c2 ‖c1!(v, c2)‖Bck”(c1), stands for
Γext ⊳ N ⊲

(

Frn‖b!c2 ‖c1!(v, c2)‖Bck”(c1)
)

, wherec1, c2 ∈ N.
For instance, the graph in Figure 6 shows that after the inputaction and the channel allocation

for c2 τ-action (with a cost of+1) the inefficient buffer implementation reaches a state where it can
perform a number of internal transitions: either the subcomponent Frn may take a recursion unfold
step (the first rightτ-action) followed by an input on channelb that instantiates the continuation
with channelc2 (the second rightτ-action), or else the subcomponent Bck”(c1) reads from the head
of the buffer c1!(v, c2) (the first downwardsτ-action). Theseτ-actions may be interleaved, but no
other silent transitions are possible until an output action is performed, after which the backend sub-
component can perform an unfoldτ-action (the first downwardsτ-action following actionout!v)
followed by an instantiation communication on channeld (the first downwardsτ-action following
actionout!v), When all of these actions are completed we reach again the starting process, instanti-
ated with channelc2 instead. The transitions in Figure 7 are analogous, but include a deallocation
transition with a cost of−1.

15The transition graph also abstracts away from environment moves.
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Frn”(c1) ‖ eBk”(c1) = eBuffFrn”’(c1, v) ‖ eBk”(c1)

Frn ‖ b!c2 ‖ c1!(v, c2)‖ eBk”(c1) Frn’ ‖ b!c2 ‖ c1!(v, c2)‖ eBk”(c1) Frn”(c2) ‖ c1!(v, c2)‖ eBk”(c1)

Frn ‖ b!c2 ‖ eBk”’(c1, v, c2) Frn’ ‖ b!c2 ‖ eBk”’(c1, v, c2) Frn”(c2) ‖ eBk”’(c1, v, c2)

Frn ‖ b!c2 ‖ eBk””(v, c2) Frn’ ‖ b!c2 ‖ eBk””(v, c2) Frn”(c2) ‖ eBk””(v, c2)

Frn ‖ b!c2 ‖ eBk ‖ d!c2 Frn’ ‖ b!c2 ‖ eBk ‖ d!c2 Frn”(c2) ‖ eBk ‖ d!c2

Frn ‖ b!c2 ‖ eBk’ ‖ d!c2 Frn’ ‖ b!c2 ‖ eBk’ ‖ d!c2 Frn”(c2) ‖ eBk’ ‖ d!c2

Frn ‖ b!c2 ‖ eBk”(c2) Frn’ ‖ b!c2 ‖ eBk”(c2) Frn”(c2) ‖ eBk”(c2)

in?v

τ+1

τ

τ

τ

τ

τ

τ−1

τ

τ−1

τ

τ−1

out!v

τ

out!v

τ

out!v

τ

τ

τ

τ

τ

τ

τ

τ

τ

τ

τ τ

Figure 7: Transition graph forΓext ⊳ M ⊲ eBuff restricted to
in?v · out!v
=========⇒

Theorem 6.3, which proves (6.3), relies on two lemmas. The main one is Lemma 6.2, which
establishes that a number of derivatives from the configurationsΓext ⊳ M ⊲ Buff andΓext ⊳ M ⊲ eBuff
cannot be related foranyamortisation credit. This Lemma, in turn, relies on Lemma 6.1, which es-
tablishes that, for a particular amortisation creditn, if some pair of derivatives of the configurations
Γext ⊳ M ⊲ Buff andΓext ⊳ M ⊲ eBuff resp. cannot be related, then other pairs of derivatives cannot
be related either. Lemma 6.1 is used again by Theorem 6.3 to derive that, from the unrelated pairs
identified by Lemma 6.2, the required pair of configurationsΓext ⊳ M ⊲ Buff andΓext ⊳ M ⊲ eBuff
cannot be related for any amortisation credit. Upon first reading, the reader who is only interested
in the eventual result may safely skip to the statement of Theorem 6.3 and treat Lemma 6.2 and
Lemma 6.1 as black-boxes.

In order to be able to state Lemma 6.1 and Lemma 6.2 more succinctly, we find it convenient
to delineate groups of processes relating to derivatives ofBuff and eBuff. For instance, we can
partition the processes depicted in the transition graph ofFigure 7 (derivatives of eBuff) into three
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sets:

PrcA
def
=































(

Frn‖b!c2 ‖c1!(v, c2)‖eBk”(c1)
)

,
(

Frn’‖b!c2 ‖c1!(v, c2)‖eBk”(c1)
)

, c1 , c2 ∈
(

Frn”(c2)‖c1!(v, c2)‖eBk”(c1)
)

,
(

Frn‖b!c2 ‖eBk”’(c1, v, c2)
)

, Chan \ {in, out, b, d}
(

Frn’ ‖ b!c2 ‖ eBk”’(c1, v, c2)
)

,
(

Frn”(c2) ‖ eBk”’(c1, v, c2)
)































PrcB
def
=

{
(

Frn‖b!c2 ‖eBk””(v, c2)
)

,
(

Frn’‖b!c2‖eBk””(v, c2)
)

, c2 ∈ Chan \ {in, out, b, d}
(

Frn”(c2)‖eBk””(v, c2)
)

}

PrcC
def
=







































(

Frn ‖ b!c2 ‖ eBk ‖ d!c2
)

,
(

Frn’ ‖ b!c2 ‖ eBk ‖ d!c2
)

,
(

Frn”(c2) ‖ eBk ‖ d!c2
)

,
(

Frn ‖ b!c2 ‖ eBk’ ‖ d!c2
)

,
(

Frn’ ‖ b!c2 ‖ eBk’ ‖ d!c2
)

,
(

Frn”(c2) ‖ eBk’ ‖ d!c2
)

, c2 ∈ Chan \ {in, out, b, d}
(

Frn ‖ b!c2 ‖ eBk”(c2)
)

,
(

Frn’ ‖ b!c2 ‖ eBk”(c2)
)

,
(

Frn”(c2) ‖ eBk”(c2)
)







































With respect to the transition graph of Figure 7, PrcA groups the processesafter the allocationof an
(arbitrary) internal channelc2 but not before any deallocation,i.e., the second and third rows of the
graph. The set PrcB groups the processesafter the deallocationof the (arbitrary) internal channel
c1, i.e., the fourth row of the graph. Finally, the set PrcC groups processesafter the output action
out!v is performed (before an input action is performed),i.e., the last three rows of the graph.

Lemma 6.1(Related Negative Results).
(1) For any amortisation credit n and appropriate M,N, whenever:
• Γext � M ⊲ Frn”’(c1, v)‖Bck”(c1) 6⊏∼

n
bis N ⊲ Frn”’(c′1, v)‖eBk”(c′1)

• For any Q∈ PrcA we haveΓext � M ⊲ Frn”’(c1, v)‖Bck”(c1) 6⊏∼
n+1
bis N ⊲ Q

• For any Q∈ PrcB we haveΓext � M ⊲ Frn”’(c1, v)‖Bck”(c1) 6⊏∼
n
bis N ⊲ Q

then, for any P∈ PrcC, we haveΓext � M ⊲ Frn”(c1)‖Bck”(c1) 6⊏∼
n
bis N ⊲ P.

(2) For any amortisation credit n and appropriate M,N, and for any Q∈ PrcC:
(a) Γext � M ⊲ Frn”(c1)‖Bck”(c1) 6⊏∼

n
bis N ⊲ Q implies

for any P∈ PrcC Γext � M ⊲ Frn’‖b!c1 ‖Bck”(c1) 6⊏∼
n
bis N ⊲ P

(b) Γext � M ⊲ Frn’‖b!c1 ‖Bck”(c1) 6⊏∼
n
bis N ⊲ Q implies

for any P∈ PrcC Γext � M ⊲ Frn‖b!c1 ‖Bck”(c1) 6⊏∼
n
bis N ⊲ P

(c) Γext � M ⊲ Frn‖b!c1 ‖Bck”(c1) 6⊏∼
n
bis N ⊲ Q implies

for any P∈ PrcC Γext � M ⊲ Frn‖b!c1 ‖Bck’ ‖d!c1 6⊏∼
n
bis N ⊲ P

(d) Γext � M ⊲ Frn‖b!c1 ‖Bck’ ‖d!c1 6⊏∼
n
bis N ⊲ Q implies

for any P∈ PrcC Γext � M ⊲ Frn‖b!c1 ‖Bck‖d!c1 6⊏∼
n
bis N ⊲ P

(3) For any amortisation credit n and appropriate M,N, and for any R∈ PrcB, Q ∈ PrcC:
(a) Γext � M ⊲ Frn‖b!c2 ‖Bck‖d!c2 6⊏∼

n
bis N ⊲ Q implies

for any P∈ PrcB Γext � M ⊲ Frn‖b!c2 ‖Bck”’( v, c2) 6⊏∼
n
bis N ⊲ P

(b) Γext � M ⊲ Frn‖b!c2 ‖Bck”’( v, c2) 6⊏∼
n
bis N ⊲ R implies

for any P∈ PrcB Γext � M ⊲ Frn‖b!c2 ‖c1!(v, c2)‖Bck”(c1) 6⊏∼
n
bis N ⊲ P

(4) For any amortisation credit n and appropriate M,N, and for any Q∈ PrcC:
(a) Γext � M ⊲ Frn‖b!c1 ‖Bck‖d!c1 6⊏∼

n
bis N ⊲ Q implies

for any P∈ PrcA Γext � M ⊲ Frn‖b!c1‖Bck”’( v, c1) 6⊏∼
n+1
bis N ⊲ P

(b) Γext � M ⊲ Frn‖b!c1 ‖Bck‖d!c1 6⊏∼
n
bis N ⊲ Q implies

Γext � M ⊲ Frn‖b!c1 ‖Bck”’( v, c1) 6⊏∼
n
bis N ⊲ Frn”’(c′1, v) ‖ eBk”(c′1)

(c) Γext � M ⊲ Frn‖b!c1 ‖Bck‖d!c1 6⊏∼
n
bis N ⊲ Q implies

Γext � M ⊲ Frn‖b!c2 ‖c1!(v, c2)‖Bck”(c1) 6⊏∼
n
bis N ⊲ Frn”’(c′1, v) ‖ eBk”(c′1)
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Proof. Each case is proved by contradiction:
(1) Assume the premises together with the inverse of the conclusion, i.e.,

Γext � M ⊲ Frn”(c1)‖Bck”(c1) ⊏∼
n
bis N ⊲ P.

Consider the transition from the left-hand configuration:

Γext ⊳ M ⊲ Frn”(c1)‖Bck”(c1)
in?v
−−−−→0 Γext ⊳ M ⊲ Frn”’(c1, v)‖Bck”(c1).

For anyP ∈ PrcC, this can only be matched by the right-hand configuration,Γext⊳N ⊲P, through
either of the following cases:

(a) Γext ⊳ N ⊲ P
in?v
====⇒0 Γext ⊳ N ⊲ Frn”’(c′1, v) ‖ eBk”(c′1), i.e., a weak input action without

trailing τ-moves after the external actionin?v — see first row of the graph in Figure 7. But
we knowΓext � M ⊲ Frn”’(c1, v) ‖Bck”(c1) 6 ⊏∼

n
bis N ⊲ Frn”’(c′1, v) ‖ eBk”(c′1) from the first

premise.

(b) Γext ⊳ N ⊲ P
in?v
====⇒+1 Γext ⊳ N ⊲ Q for someQ ∈ PrcA . However, from the second premise

we know thatΓext � M ⊲ Frn”’(c1, v)‖Bck”(c1) 6⊏∼
n+1
bis N ⊲ Q

(c) Γext ⊳ N ⊲ P
in?v
====⇒0 Γext ⊳ N ⊲ Q for someQ ∈ PrcB. Again, from the third premise we

know thatΓext � M ⊲ Frn”’(c1, v)‖Bck”(c1) 6⊏∼
n
bis N ⊲ Q

SinceΓext ⊳ N ⊲ P cannot perform a matching move, we obtain a contradiction.
(2) We here prove case (a). The other cases are analogous.

AssumeΓext � M ⊲ Frn’‖b!c1‖Bck”(c1) ⊏∼
n
bis N ⊲ P and consider the action

Γext ⊳ M ⊲ Frn’‖b!c1 ‖Bck”(c1)
τ
−−→0 Γext ⊳ M ⊲ Frn”(c1)‖Bck”(c1).

For our assumption to hold,Γext⊳N ⊲P would need to match this move by a (weak) silent action
leading to a configuration that can matchΓext⊳M ⊲Frn”(c1)‖Bck”(c1). The only matching move
can be

Γext ⊳ N ⊲ P =⇒0 Γext ⊳ N ⊲ Q for someQ ∈ PrcC.

However, from our premise we knowΓext � M ⊲ Frn”(c1) ‖ Bck”(c1) 6 ⊏∼
n
bis N ⊲ Q′ for any

amortisation creditn andQ′ ∈ PrcC and therefore conclude that the move cannot be matched,
thereby obtaining a contradiction.

(3) We here prove case (a). Case (b) is analogous.
AssumeΓext � M ⊲ Frn‖b!c2 ‖Bck”’( v, c2) ⊏∼

n
bis N ⊲ P and consider the action

Γext ⊳ M ⊲ Frn‖b!c2 ‖Bck”’( v, c2)
out!v
−−−−−→0 Γext ⊳ M ⊲ Frn‖b!c2 ‖Bck‖d!c2

This action can only be matched by a transition of the form

Γext ⊳ N ⊲ P
out!v
=====⇒0 Γext ⊳ N ⊲ Q for someQ ∈ PrcC.

However, from our premise we knowΓext � M ⊲ Frn ‖ b!c2 ‖ Bck ‖ d!c2 6 ⊏∼
n
bis N ⊲ Q for

any amortisation creditn andQ ∈ PrcC. Thus we conclude that the move cannot be matched,
thereby obtaining a contradiction.

(4) Cases (a) and (b) are analogous to 3(a) and 3(b). We here outline the proof for case (c).
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First we note that from the premiseΓext � M ⊲ Frn‖ b!c1 ‖ Bck ‖ d!c1 6 ⊏∼
n
bis N ⊲ Q (for any

Q ∈ PrcC) and Lemma 6.1.3(a), Lemma 6.1.4(a) and Lemma 6.1.4(b) resp.we obtain:

Γext � M ⊲ Frn‖b!c2‖Bck”’( v, c2) 6⊏∼
n
bis N ⊲ P for anyP ∈ PrcB (6.6)

Γext � M ⊲ Frn‖b!c1‖Bck”’( v, c1) 6⊏∼
n+1
bis N ⊲ P for anyP ∈ PrcA (6.7)

Γext � M ⊲ Frn‖b!c1‖Bck”’( v, c1) 6⊏∼
n
bis N ⊲ Frn”’(c′1, v) ‖ eBk”(c′1) (6.8)

We assumeΓext � M ⊲ Frn‖ b!c2 ‖ c1!(v, c2) ‖Bck”(c1) ⊏∼
n
bis N ⊲ Frn”’(c′1, v) ‖ eBk”(c′1) and

then showing that this leads to a contradiction. Consider the move

Γext ⊳ M ⊲ Frn‖b!c2‖c1!(v, c2)‖Bck”(c1)
τ
−−→0 Γext ⊳ M ⊲ Frn‖b!c2‖Bck”’( v, c2)

This can be matched byΓext ⊳ N ⊲ Frn”’(c′1, v) ‖ eBk”(c′1) using either of the following moves:

• Γext ⊳ N ⊲ Frn”’(c′1, v) ‖ eBk”(c′1) =⇒0 Γext ⊳ N ⊲ Frn”’(c′1, v) ‖ eBk”(c′1). But (6.8) prohibits
this from being the matching move.

• Γext ⊳ N ⊲ Frn”’(c′1, v) ‖ eBk”(c′1) =⇒+1 Γext ⊳ N ⊲ Q for someQ ∈ PrcA . But (6.7) prohibits
this from being the matching move.

• Γext ⊳ N ⊲ Frn”’(c′1, v) ‖ eBk”(c′1) =⇒0 Γext ⊳ N ⊲ Q for someQ ∈ PrcB. But (6.6) prohibits
this from being the matching move.

This contradicts our earlier assumption.

Lemma 6.2. For all n ∈ Nat and appropriate M,N:

(1) For any Q∈ PrcA we haveΓext � M ⊲ Frn ‖ b!c2 ‖ Bck”’( v, c2) 6⊏∼
n
bis N ⊲ Q

(2) For any Q∈ PrcA we haveΓext � M ⊲ Frn ‖ b!c2 ‖ c1!(v, c2) ‖ Bck”(c1) 6⊏∼
n
bis N ⊲ Q

(3) For any Q∈ PrcA we haveΓext � M ⊲ Frn”’(c1, v) ‖ Bck”(c1) 6⊏∼
n+1
bis N ⊲ Q

(4) For any Q∈ PrcB we haveΓext � M ⊲ Frn”’(c1, v) ‖ Bck”(c1) 6⊏∼
n
bis N ⊲ Q

(5) Γext � M ⊲ Frn”’(c1, v) ‖ Bck”(c1) 6⊏∼
n
bis N ⊲ Frn”’(c′1, v) ‖ eBk”(c′1)

Proof. We prove statements (1) to (5) simultaneously, by inductionon n.

n = 0: We prove each clause by contradiction:
(1) AssumeΓext � M ⊲ Frn ‖ b!c2 ‖ Bck”’( v, c2) ⊏∼

0
bis N ⊲ Q for someQ ∈ PrcA and consider the

transition

Γext ⊳ M ⊲ Frn ‖ b!c2 ‖ Bck”’( v, c2)
out!v
−−−−−→0 Γext ⊳ M ⊲ Frn ‖ b!c2 ‖ Bck ‖ d!c2

For anyQ ∈ PrcA , this cannot be matched by any move fromΓext⊳N⊲Q since output actions
must be preceded by a channel deallocation, which incurs anegativecost — see second and
third rows of the graph in Figure 7. Stated otherwise, every matching move can only be of
the form

Γext ⊳ N ⊲ Q
out!v
=====⇒−1 Γext ⊳ N′ ⊲ Q′

whereN =
(

N′, c′1
)

for somec′1 and Q′ ∈ PrcC. However, since the amortisation credit
cannot be negative, we can never haveΓext � M ⊲ Frn ‖ b!c2 ‖ Bck ‖ d!c2 ⊏∼

−1
bis N′ ⊲ Q′. We

therefore obtain a contradiction.
(2) AssumeΓext � M ⊲ Frn ‖ b!c2 ‖ c1!(v, c2) ‖ Bck”(c1) ⊏∼

0
bis N ⊲ Q for someQ ∈ PrcA and

consider the transition

Γext ⊳ M ⊲ Frn ‖ b!c2 ‖ c1!(v, c2) ‖ Bck”(c1)
τ
−−→0 Γext ⊳ M ⊲ Frn ‖ b!c2 ‖ Bck”’( v, c2)

Since the amortisation credit can never be negative, the matching move can only be of the
form

Γext ⊳ N ⊲ Q =⇒0 Γext ⊳ N ⊲ Q′
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for someQ′ ∈ PrcA . But then we get a contradiction since, from the previous clause, we
know thatΓext � M ⊲ Frn ‖ b!c2 ‖ Bck”’( v, c2) 6⊏∼

0
bis N ⊲ Q′.

(3) AssumeΓext � M ⊲ Frn”’(c1, v) ‖ Bck”(c1) ⊏∼
1
bis N ⊲ Q for someQ ∈ PrcA and consider the

transition

Γext ⊳ M ⊲ Frn”’(c1, v) ‖ Bck”(c1)
τ
−−→+1 Γext ⊳ M, c2 ⊲ Frn ‖ b!c2 ‖ c1!(v, c2) ‖ Bck”(c1)

for some newly allocated channelc2. As in the previous case, since the amortisation credit
can never be negative, the matching move can only be of the form

Γext ⊳ N ⊲ Q =⇒0 Γext ⊳ N ⊲ Q′

for someQ′ ∈ PrcA . But then we get a contradiction since, from the previous clause, we
know that Γext � (M, c2) ⊲ Frn ‖ b!c2 ‖ c1!(v, c2) ‖ Bck”(c1) 6⊏∼

0
bis N ⊲ Q′.

(4) Analogous to the previous case.
(5) AssumeΓext � M ⊲ Frn”’(c1, v) ‖ Bck”(c1) ⊏∼

0
bis N ⊲ Frn”’(c′1, v) ‖ eBk”(c′1) and consider the

transition

Γext ⊳ M ⊲ Frn”’(c1, v) ‖ Bck”(c1)
τ
−−→+1 Γext ⊳ M, c2 ⊲ Frn ‖ b!c2 ‖ c1!(v, c2) ‖ Bck”(c1)

Since the transition incurred a cost of+1 and the current amortisation credit is 0, the match-
ing weak transition must also incur a cost of+1 and thusΓext ⊳ N ⊲ Frn”’(c′1, v) ‖ eBk”(c′1)
can only match this by the move

Γext ⊳ N ⊲ Frn”’(c′1, v) ‖ eBk”(c′1)
τ
=⇒+1 Γext ⊳ N, c′2 ⊲ Q

for someQ ∈ PrcA . But then we still get a contradiction since, from clause (2), we know
Γext � M ⊲ Frn ‖ b!c2 ‖ c1!(v, c2) ‖ Bck”(c1) 6⊏∼

0
bis N ⊲ Q.

n = k+ 1: We prove each clause by contradiction. However before we tackle each individual clause,
we note that from clauses (3), (4) and (5) of the I.H. we know

For anyQ ∈ PrcA we haveΓext � M ⊲ Frn”’(c1, v) ‖ Bck”(c1) 6⊏∼
k+1
bis N ⊲ Q

For anyQ ∈ PrcB we haveΓext � M ⊲ Frn”’(c1, v) ‖ Bck”(c1) 6⊏∼
k
bis N ⊲ Q

Γext � M ⊲ Frn”’(c1, v) ‖ Bck”(c1) 6⊏∼
k
bis N ⊲ Frn”’(c1, v) ‖ eBk”(c1)

By Lemma 6.1.1 we obtain, for anyQ′ ∈ PrcC and appropriateN′:

Γext � M ⊲ Frn”(c1)‖Bck”(c1) 6⊏∼
k
bis N′ ⊲ Q′

and by Lemma 6.1.2(a), Lemma 6.1.2(b), Lemma 6.1.2(c) and Lemma 6.1.2(d) we obtain, for
anyQ′ ∈ PrcC and appropriateN′:

Γext � M ⊲ Frn ‖ b!c2 ‖ Bck ‖ d!c2 6⊏∼
k
bis N ⊲ Q′ (6.9)

Also, by (6.9), Lemma 6.1.3(a) and Lemma 6.1.3(b) we obtain, for anyQ′′ ∈ PrcB:

Γext � M ⊲ Frn‖b!c2 ‖Bck”’( v, c2) 6⊏∼
k
bis N ⊲ Q′′ (6.10)

Γext � M ⊲ Frn‖b!c2 ‖c1!(v, c2)‖Bck”(c1) 6⊏∼
k
bis N ⊲ Q′′ (6.11)

Moreover, by (6.9), Lemma 6.1.4(a), Lemma 6.1.4(b) and Lemma 6.1.4(c) we obtain:

Γext � M ⊲ Frn‖b!c2 ‖c1!(v, c2)‖Bck”(c1) 6⊏∼
k
bis N ⊲ Frn”’(c′1, v) ‖ eBk”(c′1) (6.12)

The proofs for each clause are as follows:
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(1) AssumeΓext � M ⊲Frn ‖ b!c2 ‖ Bck”’( v, c2) ⊏∼
k+1
bis N ⊲Q for someQ ∈ PrcA and consider the

transition

Γext ⊳ M ⊲ Frn ‖ b!c2 ‖ Bck”’( v, c2)
out!v
−−−−−→0 Γext ⊳ M ⊲ Frn ‖ b!c2 ‖ Bck ‖ d!c2

For anyQ ∈ PrcA , this can (only) be matched by any move of the form

Γext ⊳ N ⊲ Q
out!v
=====⇒−1 Γext ⊳ N′ ⊲ Q′

whereN =
(

N′, c′1
)

for somec′1, Q′ ∈ PrcC, and the external actionout!v is preceded by a
τ-move deallocatingc′1. For our initial assumption to hold we need to show thatat least one
of these configurationsΓext ⊳ N′ ⊲ Q′ satisfies the property

Γext � M ⊲ Frn ‖ b!c2 ‖ Bck ‖ d!c2 ⊏∼
k
bis N′ ⊲ Q′.

But by (6.9) we know that no such configuration exists, thereby contradicting our initial
assumption.

(2) AssumeΓext � M ⊲ Frn ‖ b!c2 ‖ c1!(v, c2) ‖ Bck”(c1) ⊏∼
k+1
bis N ⊲ Q for someQ ∈ PrcA and

consider the transition

Γext ⊳ M ⊲ Frn ‖ b!c2 ‖ c1!(v, c2) ‖ Bck”(c1)
τ
−−→0 Γext ⊳ M ⊲ Frn ‖ b!c2 ‖ Bck”’( v, c2)

This transition can be matched byΓext ⊳ N ⊲ Q through either of the following moves:

(a) Γext ⊳N ⊲Q =⇒0 Γext ⊳N ⊲Q′ for someQ′ ∈ PrcA . However, from the previous clause,
i.e., clause (1) whenn = k + 1, we know that this cannot be the matching move since
Γext � M ⊲ Frn ‖ b!c2 ‖ Bck”’( v, c2) 6⊏∼

k+1
bis N ⊲ Q′.

(b) Γext ⊳ N ⊲ Q =⇒−1 Γext ⊳ N′ ⊲Q′ for someQ′ ∈ PrcB andN =
(

N′, c′1
)

. However, from
(6.10), we know that this cannot be the matching move sinceΓext � M ⊲ Frn ‖ b!c2 ‖

Bck”’( v, c2) 6⊏∼
k
bis N′ ⊲ Q′.

Thus, we obtain a contradiction.
(3) AssumeΓext � M ⊲ Frn”’(c1, v) ‖ Bck”(c1) ⊏∼

k+2
bis N ⊲ Q, whereQ ∈ PrcA , and consider the

transition:

Γext ⊳ M ⊲ Frn”’(c1, v) ‖ Bck”(c1)
τ
−−→+1 Γext ⊳ M, c2 ⊲ Frn ‖ b!c2 ‖ c1!(v, c2) ‖ Bck”(c1)

for some newly allocated channelc2. This can be matched byΓext ⊳ N ⊲ Q through either of
the following moves:

(a) Γext ⊳N ⊲Q =⇒0 Γext ⊳N ⊲Q′ for someQ′ ∈ PrcA . However, from the previous clause,
i.e., clause (2) whenn = k + 1, we know that this cannot be the matching move since
Γext � M, c2 ⊲ Frn ‖ b!c2 ‖ c1!(v, c2) ‖ Bck”(c1) 6⊏∼

k+1
bis N ⊲ Q′.

(b) Γext ⊳ N ⊲ Q =⇒−1 Γext ⊳ N′ ⊲Q′ for someQ′ ∈ PrcB andN =
(

N′, c′1
)

. However, from
(6.11), we know that this cannot be the matching move sinceΓext � M ⊲ Frn ‖ b!c2 ‖

c1!(v, c2)‖Bck”(c1) 6⊏∼
k
bis N′ ⊲ Q′.

Thus, we obtain a contradiction.
(4) Analogous to the proof for the previous clause and relieson (6.11) again.
(5) AssumeΓext � M ⊲ Frn”’(c1, v) ‖ Bck”(c1) ⊏∼

k+1
bis N ⊲ Frn”’(c′1, v) ‖ eBk”(c′1) and consider the

transition

Γext ⊳ M ⊲ Frn”’(c1, v) ‖ Bck”(c1)
τ
−−→+1 Γext ⊳ M, c2 ⊲ Frn ‖ b!c2 ‖ c1!(v, c2) ‖ Bck”(c1)

for some newly allocated channelc2. This can be matched by the right-hand configuration
Γext ⊳ N ⊲ Frn”’(c′1, v) ‖ eBk”(c′1) through either of the following moves:
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(a) Γext⊳N⊲Frn”’(c′1, v) ‖ eBk”(c′1) =⇒0 Γext⊳N⊲Frn”’(c′1, v) ‖ eBk”(c′1), i.e.,no transitions.
However, from (6.12), this cannot be the matching move sinceΓext � M ⊲ Frn‖ b!c2 ‖

c1!(v, c2)‖Bck”(c1) 6⊏∼
k
bis N ⊲ Frn”’(c′1, v) ‖ eBk”(c′1).

(b) Γext ⊳ N ⊲ Frn”’(c′1, v) ‖ eBk”(c′1)
τ
=⇒+1 Γext ⊳ N, c′2 ⊲ Q′ for someQ′ ∈ PrcA and

c′2 < N. However, from clause (2) whenn = k + 1, this cannot be the matching move
sinceΓext � M, c2 ⊲ Frn ‖ b!c2 ‖ c1!(v, c2) ‖ Bck”(c1) 6⊏∼

k+1
bis N, c′2 ⊲ Q′.

(c) Γext ⊳ N ⊲ Frn”’(c′1, v) ‖ eBk”(c′1)
τ
=⇒0 Γext ⊳

(

N′, c′2
)

⊲ Q′ for someQ′ ∈ PrcB,
N =

(

N′, c′1
)

andc′2 < N. However, from (6.11), this cannot be the matching move
sinceΓext � M ⊲ Frn‖b!c2 ‖c1!(v, c2)‖Bck”(c1) 6⊏∼

k
bis

(

N′, c′2
)

⊲ Q′.

Theorem 6.3(Strict Inefficiency). For all n ≥ 0 and appropriate M we have

Γext � M ⊲ Buff 6⊏∼
n
bis M ⊲ eBuff

Proof. Since:

Buff
def
= Frn”(c1) ‖ Bck”(c1) eBuff

def
= Frn”(c1) ‖ eBk”(c1)

we need to show that

Γext � M ⊲ Frn”(c1) ‖ Bck”(c1) 6⊏∼
n
bis M ⊲ Frn”(c1) ‖ eBk”(c1)

for any arbitraryn. By Lemma 6.2.3, Lemma 6.2.4 and Lemma 6.2.5 we know that for anyn:

For anyQ ∈ PrcA we haveΓext � M ⊲ Frn”’(c1, v) ‖ Bck”(c1) 6⊏∼
n+1
bis M ⊲ Q (6.13)

For anyQ ∈ PrcB we haveΓext � M ⊲ Frn”’(c1, v) ‖ Bck”(c1) 6⊏∼
n
bis M ⊲ Q (6.14)

Γext � M ⊲ Frn”’(c1, v) ‖ Bck”(c1) 6⊏∼
n
bis M ⊲ Frn”’(c1, v) ‖ eBk”(c1) (6.15)

Since
(

Frn”(c1) ‖ eBk”(c1)
)

∈ PrcC, by Lemma 6.1.1, (6.13), (6.14) and (6.15) we conclude

Γext � M ⊲ Frn”(c1) ‖ Bck”(c1) 6⊏∼
n
bis M ⊲ Frn”(c1) ‖ eBk”(c1)

as required.

6.2. Proving Relative Efficiency. As opposed to Theorem 6.3, the proof for (6.4) requires us to
consider the entire state-space ofΓext ⊳ M ⊲ Buff andΓext ⊳ M ⊲ eBuff. Fortunately, we can apply
the compositionality result of Theorem 4.23 to prove (6.1) and focus on a subset of this state-space.
More precisely, we recall from (6.5) that

Buff
def
= Frn”(c1) ‖ Bck”(c1) eBuff

def
= Frn”(c1) ‖ eBk”(c1)

where both buffer implementation share the common sub-process Frn”(c1). We also recall from
(3.3) that this common sub-process was typedwrt. the type environment

ΓFrn = in : [T]ω, b: [Trec]
ω, c1 : [T,Trec]

1.

Theorem 4.23 thus states that in order to prove (6.1), it suffices to abstract away from this common
code and prove Theorem 6.4

Theorem 6.4(Relative Efficiency).
(

Γext, ΓFrn
)

� M ⊲ eBk”(c1) ⊏∼
0
bis M ⊲ Bck”(c1)
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Proof. We proveΓext, ΓFrn � M⊲eBk”(c1) ⊏∼
0
bis M⊲Bck”(c1) through the family of relationsR defined

below, which includes the required quadruple〈(Γext, ΓFrn), 0,
(

M ⊲ eBk”(c1)
)

,
(

M ⊲ Bck”(c1)
)

〉.

R
def
=







































〈
(

Γ,∆
)

, n,
(

M′ ⊲ eBk”(c)
)

,
(

N′ ⊲ Bck”(c)
)

〉

〈
(

Γ,∆
)

, n,
(

M′ ⊲ eBk”’(c, v, c′)
)

,
(

N′ ⊲ Bck”’( v, c′)
)

〉
(

Γext, ΓFrn
)

≺ Γ

〈
(

Γ,∆
)

, n,
(

M′′ ⊲ eBk””(v, c′)
)

,
(

N′ ⊲ Bck”’( v, c′)
)

〉 n ≥ 0, M′ ⊆ N′

〈
(

Γ,∆
)

, n,
(

M′′ ⊲ eBk ‖ d!c′
)

,
(

N′ ⊲ Bck ‖ d!c′
)

〉 c < M′′, M′′ ⊂ N′′, c ∈ N′′

〈
(

Γ,∆
)

, n,
(

M′′ ⊲ eBk’ ‖ d!c′
)

,
(

N′ ⊲ Bck’ ‖ d!c′
)

〉







































Note that, in the quadruples ofR our observer environment is not limited to derived environments
Γ obtained from restructurings ofΓext, ΓFrn, but may include also additional entries, denoted by the
environment∆; these originate from observer channel allocations and uses through the transition
ruleslAllE andlStr from Figure 5.R observes the transfer property of Definition 4.9. We here go
over some key transitions:

• Consider a tuple from the first clause of the relation, for someΓ,∆, n andc i.e.,
(

Γ,∆
)

�
(

M′ ⊲ eBk”(c)
)

Rn (

N′ ⊲ Bck”(c)
)

We recall from the macros introduced in Section 6 that

eBk”(c) = c?(y, z).free c.out!y.
(

eBk ‖ d!z
)

Bck”(c) = c?(y, z).out!y.
(

Bck ‖ d!z
)

Whenever
(

Γ,∆
)

allows it, the left hand configuration can perform an input transitions

(

Γ,∆
)

⊳ M′ ⊲ eBk”(c)
c?(v,c′)
−−−−−−→0

(

Γ′,∆′
)

⊳ M′ ⊲ eBk”’(c, v, c′)

whereΓ = Γ′, c: [T,Trec]1 and∆ = ∆′, v:T, c′ :Trec. This can be matched by the transition
(

Γ,∆
)

⊳ N′ ⊲ Bck”(c)
c?(v,c′)
−−−−−−→0

(

Γ′,∆′
)

⊳ N′ ⊲ Bck”’( v, c′)

where we have
(

Γ′,∆′
)

�
(

M′ ⊲ eBk”’(c, v, c′)
)

Rn (

N′ ⊲Bck”’( v, c′)
)

from the second clause ofR.
The matching move for an input action from the right-hand configuration is dual to this. Matching
moves forenv, alloc andfree c actions are analogous.
• Consider a tuple from the first clause of the relation, for someΓ,∆, n, c, v andc′ i.e.,

(

Γ,∆
)

�
(

M′ ⊲ eBk”’(c, v, c′)
)

Rn (

N′ ⊲ Bck”’( v, c′)
)

Since eBk”’(c, v, c′) = free c.out!v.
(

eBk ‖ d!c′
)

, a possible transition by the left-hand configu-
ration is the deallocation of channelc:

(

Γ,∆
)

⊳ M′ ⊲ eBk”’(c, v, c′)
τ
−−→−1

(

Γ,∆
)

⊳ M′′ ⊲ eBk””(v, c′)

whereM′ = M′′, c. In this case, the matching move is the empty (weak) transition, since we have
(

Γ,∆
)

�
(

M′′ ⊲ eBk””(v, c′)
)

Rn+1 (

N′ ⊲ Bck”’( v, c′)
)

by the third clause ofR. Dually, if
(

Γ,∆
)

allows it, the right hand configuration may perform an outputaction
(

Γ,∆
)

⊳ N′ ⊲ Bck”’( v, c′)
out!v
−−−−−→0

(

Γ,∆, v:T
)

⊳ N′ ⊲ Bck ‖ d!c′

This can be matched by the weak output action
(

Γ,∆
)

⊳ M′ ⊲ eBk”’(c, v, c′)
out!v
=====⇒−1

(

Γ,∆, v:T
)

⊳ M′′ ⊲ eBk ‖ d!c′

where M′ = M′′, c; by the fourth clause ofR, we know that this a matching move because
(

Γ,∆, v:T
)

�
(

M′′ ⊲ eBk ‖ d!c′
)

Rn+1 (

N′ ⊲ Bck ‖ d!c′
)

.
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7. RelatedWork

A note on terminology:From a logical perspective, alinear assumption is one that cannot be weak-
ened nor contracted, while anaffine assumption cannot be contracted but can be weakened. This
leads to a reading of linear as “used exactly once” and of affine as “used at most once”. However,
in the presence of divergence or deadlock, most linear type systems do not in fact guarantee that
a linear resource will be used exactly once. In the discussion below, we will classify such type
systems as affine instead.

Linear logic was introduced by Girard [14]; its use as a type system was pioneered by Wadler
[43]. Uniqueness typing was introduced by Barendsen and Smetsers [5]; the relation to linear logic
has since been discussed in a number of papers (see [17]).

Although there are many substructural (linear or affine) type systems for process calculi [1, 2, 3,
25, 32, 44, and others], some specifically for resources [33], the literature onbehaviourof processes
typed under such type systems is much smaller.

Kobayashiet al. [31] introduce an affine type system for theπ-calculus. Their channels have a
polarity (input, output, or input/output) as well as a multiplicity (unrestricted or affine), and an affine
input/output can be split as an affine input and an affine output channel. Communication on an affine
input/affine output channel is necessarily deterministic, like communication on an affine/unique-
after-1 channel in our calculus; however, both processes lose the right to use the channel after the
communication, limiting reuse. Although the paper gives a definition of reduction closed barbed
congruence, no compositional proof methods are presented.

Yoshidaet al [45, 23] define a linear type system, which uses “action types” to rule out dead-
lock. The use of action types means that the type system can provide some guarantees that we
cannot; this is however an orthogonal aspect of the type system and it would be interesting to see
if similar techniques can be applied in our setting. Their type system does not have any type that
corresponds to uniqueness; instead, the calculus is based on πI to control dynamic sharing of names
syntactically, thereby limiting channel reuse. The authors give compositional proof techniques for
their behavioural equivalence, but give no complete characterization.

Teller [41] introduces aπ-calculus variant with “finalizers”, processes that run when a resource
has been deallocated. The deallocation itself however is performed by a garbage collector. The
calculus comes with a type system that provides bounds on theresources that are used, although the
scope of channel reuse is limited in the absence of some sort of uniqueness information. Although
the paper defines a bisimulation relation, this relation does not take advantage of type information,
and no compositionality results or characterization is given.

Hoare and O’Hearn [22] give a trace semantics for a variant ofCSP with point-to-point commu-
nication and explicit allocation and deallocation of channels, which relies on separation of permis-
sions. However, they do not consider any behavioural theories. Pym and Tofts [39] similarly give
a semantics for SCCS with a generic notion of resource, basedon separation of permissions; they
do however consider behaviour. They define a bisimulation relation, and show that it can be char-
acterized by a modal logic. These approaches do not use a typesystem but opt for an operational
interpretation of permissions, where actions may block dueto lack of permissions. Nevertheless,
our consistency requirements for configurations (Definition 4.1) can be seen as separation criteria
for permission environments. A detailed comparison between this untyped approach and our typed
approach would be worthwhile.

Apart from the Clean programming language [6], from where uniqueness types originated,
static analysis relating to uniqueness has recently been applied to (more mainstream) Object-Ori-
ented programming languages [15] as well. In such cases, it would be interesting to investigate



COMPOSITIONAL REASONING FOR CHANNEL-BASED CONCURRENT RESOURCE MANAGEMENT 49

whether the techniques developed in this work can be appliedto a behavioural setting such as that
in [26].

Our unique-after-i type is related to fractional permissions, introduced in [9] and used in set-
tings such as separation logic for shared-state concurrency [8]. A detailed survey of this field is
however beyond the scope of this paper.

The use of substitutions in our LTS (Definition 4.3) is reminiscent of the name-bijections carried
around in spi-calculus bisimulations [7]. In the spi-calculus however this substitution is carried
through the bisimulation, and must remain a bijection throughout. Since processes may lose the
permission to use channels in our calculus, this approach istoo restrictive for us.

Finally, amortisation for coinductive reasoning was originally developed by Keihnet al., [30]
and Lüttgenet al. [34]. It is investigated further by Hennessy in [20], whereby a correspondence
with (an adaptation of) reduction-barbed congruences is established. However, neither work consid-
ers aspects of resource misuse nor the corresponding use of typed analysis in their behavioural and
coinductive equivalences.

8. Conclusion

We have presented a compositional behavioural theory forRπ, aπ-calculus variant with mechanisms
for explicit resource management; a preliminary version ofthe work appeared in [11]. The theory
allows us to compare the efficiency of concurrent channel-passing programswrt. their resource
usage. We integrate the theory with a substructural type system so as to limit our comparisons to
safe programs. In particular, we interpret the type assertions of the type system as permissions, and
use this to model (explicit and implicit) permission transfer between the systems being compared
and the observer during compositional reasoning. Our contributions are as follows:

(1) We define a costed semantic theory that orders systems of safe Rπ programs, based on their
costed extensional behaviour when deployed in the context of larger systems; Definition 5.5.
Apart from cost, formulations relating to contextuality are different from those of typed congru-
ences such as [21], because of the kind of type system usedi.e.,substructural.

(2) We define a bisimulation-based proof technique that allows us to orderRπ programs coinduc-
tively, without the need to universally quantify over the possible contexts that these programs
may be deployed in; Definition 4.9. As far as we are aware, the combination of actions-in-
context and costed semantics, used in unison with implicit and explicit transfer of permissions
so as to limit the efficiency analysis to safe programs, is new.

(3) We prove a number of properties for our bisimulation preorder of Definition 4.9, facilitating
the proof constructions for related programs. Whereas Corollary 4.13 follows [30, 20], Theo-
rem 4.23 extends the property of compositionality for amortised bisimulations to a typed setting.
Lemma 4.14, together with the concept of bounded amortisation, appears to be novel altogether.

(4) We prove that the bisimulation preorder of Definition 4.9is a sound and complete proof tech-
nique for the costed behavioural preorder of Definition 5.5;Theorem 5.10 and Theorem 5.18. In
order to obtain completeness, the LTS definitions employ non-standard mechanisms for explicit
renaming of channel names not known to the context. Also, theconcept of (typed) action defin-
ability [21, 19] is different because it needs to take into consideration cost and typeability wrt.
a substructural type system; the latter aspect also complicated the respective Extrusion Lemma
— see Lemma 5.15.

(5) We demonstrate the utility of the semantic theory and itsrespective proof technique by applying
them to reason about the client-server systems outlined in the Introduction and a case study,
discussed in Section 3.
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Future Work. The extension of our framework to a higher-order and distributed setting seems
worthwhile. Also, the amalgamation of our uniqueness typeswith modalities for input and out-
put [38] would give scope for richer notions of subtyping involving covariance and contravariance,
affecting the respective behavioural theory; it would be interesting to explore how our notions of per-
mission transfer extend to such a setting. It is also worth pursuing the applicability of the techniques
developed in this work to nominal automata such as Variable Automata [16] and Finite-Memory Au-
tomata [29].

Acknowledgements.We would like to thank the referees for their incisive comments.
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