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Abstract. In 1992 Wang & Larsen extended the may- and must preorders of De Nicola
and Hennessy to processes featuring probabilistic as well as nondeterministic choice. They
concluded with two problems that have remained open throughout the years, namely to
find complete axiomatisations and alternative characterisations for these preorders. This
paper solves both problems for finite processes with silent moves. It characterises the may
preorder in terms of simulation, and the must preorder in terms of failure simulation. It
also gives a characterisation of both preorders using a modal logic. Finally it axiomatises
both preorders over a probabilistic version of finite CSP.

1. Introduction

A satisfactory semantic theory for processes which encompass both nondeterministic and
probabilistic behaviour has been a long-standing research problem [13, 41, 28, 20, 38, 39,
36, 22, 32, 37, 14, 26, 31, 1, 23, 29, 3, 40, 7]. In 1992 Wang & Larsen posed the problems
of finding complete axiomatisations and alternative characterisations for a natural gener-
alisation of the standard testing preorders [6] to such processes [41]. Here we solve both
problems, at least for finite processes, by providing a detailed account of both may- and
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must testing preorders for a finite version of the process calculus CSP extended with prob-
abilistic choice. For each preorder we provide three independent characterisations, using
(i) co-inductive simulation relations, (ii) a modal logic and (iii) sets of inequations.

Testing processes: Our starting point is the finite process calculus pCSP [8] obtained by
adding a probabilistic choice operator to finite CSP; like others who have done the same,
we now have three choice operators, external P � Q, internal P ⊓Q and the newly added
probabilistic choice P p⊕Q. So a semantic theory for pCSP will have to provide a coherent
account of the precise relationships between these operators.

As a first step, in Section 2 we provide an interpretation of pCSP as a probabilistic

labelled transition system, in which, following [38, 20], state-to-state transitions like s
α

−→ s′

from standard labelled transition systems are generalised to the form s α−→ ∆, where ∆
is a distribution, a mapping assigning probabilities to states. With this interpretation we
obtain in Section 3 a version of the testing preorders of [6] for pCSP processes, ⊑pmay and
⊑pmust. These are based on the ability of processes to pass tests; the tests we use are simply
pCSP processes in which certain states are marked as success states. See [8] for a detailed
discussion of the power of such tests.

The object of this paper is to give alternative characterisations of these testing pre-
orders. This problem was addressed previously by Segala in [37], but using testing preorders

(⊑̂Ω
pmay and ⊑̂Ω

pmust) that differ in two ways from the ones in [6, 15, 41, 8] and the present
paper. First of all, in [37] the success of a test is achieved by the actual execution of a
predefined success action, rather than the reaching of a success state. We call this an ac-
tion-based approach, as opposed to the state-based approach used in this paper. Secondly,
[37] employs a countable number of success actions instead of a single one; we call this
vector-based, as opposed to scalar, testing. Segala’s results in [37] depend crucially on this
form of testing. To achieve our current results, we need Segala’s preorders as a stepping
stone. We relate them to ours by considering intermediate preorders ⊑̂pmay and ⊑̂pmust that
arise from action-based but scalar testing, and use a recent result [10] saying that for finite

processes the preorders ⊑̂Ω
pmay and ⊑̂Ω

pmust coincide with ⊑̂pmay and ⊑̂pmust. Here we show

that on pCSP the preorders ⊑̂pmay and ⊑̂pmust also coincide with ⊑pmay and ⊑pmust.
1

Simulation preorders: In Section 4 we use the transitions s
α

−→ ∆ to define two co-
inductive preorders, the simulation preorder ⊑S [36, 29, 8], and the novel failure simulation
preorder ⊑FS over pCSP processes. The latter extends the failure simulation preorder of [11]
to probabilistic processes. Their definition uses a natural generalisation of the transitions,

first (Kleisli-style) to take the form ∆
α

−→ ∆′, and then to weak versions ∆ α=⇒ ∆′. The
second preorder differs from the first one in the use of a failure predicate s X−6→, indicating
that in the state s none of the actions in X can be performed.

Both preorders are preserved by all the operators in pCSP, and are sound with respect to
the testing preorders; that is P ⊑S Q implies P ⊑pmay Q and P ⊑FS Q implies P ⊑pmust Q.
For ⊑S this was established in [8], and here we use similar techniques in the proofs for ⊑FS .
But completeness, that the testing preorders imply the respective simulation preorders,
requires some ingenuity. We prove it indirectly, involving a characterisation of the testing
and simulation preorders in terms of a modal logic.

1However in the presence of divergence they are slightly different.
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Modal logic: Our modal logic, defined in Section 7, uses finite conjunction
∧
i∈I ϕi, the

modality 〈a〉ϕ from the Hennessy-Milner Logic [16], and a novel probabilistic construct⊕
i∈I pi ·ϕi. A satisfaction relation between processes and formulae then gives, in a natural

manner, a logical preorder between processes: P ⊑LQ means that every L-formula satisfied
by P is also satisfied by Q. We establish that ⊑L coincides with ⊑S and ⊑pmay.

To capture failures, we add, for every set of actions X, a formula ref(X) to our logic,
satisfied by any process which, after it can do no further internal actions, can perform
none of the actions in X either. The constructs

∧
, 〈a〉 and ref() stem from the modal

characterisation of the non-probabilistic failure simulation preorder, given in [11]. We show
that ⊑pmust, as well as ⊑FS , can be characterised in a similar manner with this extended
modal logic.

Proof strategy: We prove these characterisation results through two cycles of inclusions:

⊑L ⊆ ⊑S

[8]

⊆ ⊑pmay ⊆ ⊑̂pmay
[10]
= ⊑̂Ω

pmay ⊆ ⊑L

⊑F ⊆ ⊑FS ⊆ ⊑pmust ⊆ ⊑̂pmust
[10]
= ⊑̂Ω

pmust ⊆ ⊑F

︸ ︷︷ ︸ ︸ ︷︷ ︸ ︸ ︷︷ ︸ ︸ ︷︷ ︸ ︸ ︷︷ ︸ ︸ ︷︷ ︸
Sec. 7 Sec. 4 Sec. 3 Sec. 5 Sec. 6 Sec. 8

In Section 7 we show that P ⊑LQ implies P ⊑S Q (and hence P ⊑pmay Q), and likewise

for ⊑F and ⊑FS ; the proof involves constructing, for each pCSP process P , a characteristic
formula ϕP . To obtain the other direction, in Section 8 we show how every modal formula
ϕ can be captured, in some sense, by a test Tϕ; essentially the ability of a pCSP process
to satisfy ϕ is determined by its ability to pass the test Tϕ. We capture the conjunction of
two formulae by a probabilistic choice between the corresponding tests; in order to prevent
the results from these tests getting mixed up, we employ the vector-based tests of [37], so
that we can use different success actions in the separate probabilistic branches. Therefore,
we complete our proof by demonstrating that the state-based testing preorders imply the
action-based ones (Section 5) and recalling the result from [10] that the action-based scalar
testing preorders imply the vector-based ones (Section 6).

(In)equations: It is well-known that may- and must testing for standard CSP can be
captured equationally [6, 2, 15]. In [8] we showed that most of the standard equations
are no longer valid in the probabilistic setting of pCSP; we also provided a set of axioms
which are complete with respect to (probabilistic) may-testing for the sub-language of pCSP

without probabilistic choice. Here we extend this result, by showing, in Section 10, that
both P ⊑pmay Q and P ⊑pmust Q can still be captured equationally over full pCSP. In the
may case the essential (in)equation required is

a.(P p⊕ Q) ⊑ a.P p⊕ a.Q

The must case is more involved: in the absence of the distributivity of the external and in-
ternal choices over each other, to obtain completeness we require a complicated inequational
schema.
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2. Finite probabilistic CSP

Let Act be a finite set of visible (or external) actions, ranged over by a, b, · · · , which processes
can perform. Then the finite probabilistic CSP processes are given by the following two-
sorted syntax:

P ::= S | P p⊕ P

S ::= 0 | a.P | P ⊓ P | S � S | S |A S

We write pCSP, ranged over by P,Q, for the set of process terms defined by this grammar,
and sCSP, ranged over by s, t, for the subset comprising only the state-based process terms
(the sub-sort S above).

The process P p⊕ Q, for 0 < p < 1, represents a probabilistic choice between P and
Q: with probability p it will act like P and with probability 1−p it will act like Q. Any
process is a probabilistic combination of state-based processes built by repeated application
of the operatorp⊕. The state-based processes have a CSP-like syntax, involving the stopped
process 0, action prefixing a. for a ∈ Act, internal- and external choices ⊓ and �, and a
parallel composition |A for A ⊆ Act.

The process P ⊓ Q will first do a so-called internal action τ 6∈Act, choosing nondeter-
ministically between P and Q. Therefore ⊓, like a. , acts as a guard, in the sense that it
converts any process arguments into a state-based process.

The process s � t on the other hand does not perform actions itself, but merely allows
its arguments to proceed, disabling one argument as soon as the other has done a visible
action. In order for this process to start from a state rather than a probability distribution
of states, we require its arguments to be state-based as well; the same applies to |A.

Finally, the expression s |A t, where A ⊆ Act, represents processes s and t running in
parallel. They may synchronise by performing the same action from A simultaneously; such
a synchronisation results in τ . In addition s and t may independently do any action from
(Act\A) ∪ {τ}.

Although formally the operators � and |A can only be applied to state-based processes,
informally we use expressions of the form P � Q and P |A Q, where P and Q are not
state-based, as syntactic sugar for expressions in the above syntax obtained by distributing
� and |A over p⊕. Thus for example s � (t1 p⊕ t2) abbreviates the term (s � t1) p⊕ (s � t2).

The full language of CSP [2, 17, 34] has many more operators; we have simply chosen
a representative selection, and have added probabilistic choice. Our parallel operator is not
a CSP primitive, but it can easily be expressed in terms of them—in particular P |A Q =
(P‖AQ)\A, where ‖A and \A are the parallel composition and hiding operators of [34].
It can also be expressed in terms of the parallel composition, renaming and restriction
operators of CCS. We have chosen this (non-associative) operator for convenience in defining
the application of tests to processes.

As usual we may elide 0; the prefixing operator a. binds stronger than any binary
operator; and precedence between binary operators is indicated via brackets or spacing. We
will also sometimes use indexed binary operators, such as

⊕
i∈I pi·Pi with

∑
i∈I pi = 1 and

all pi > 0, and
e
i∈I Pi, for some finite index set I.
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The above intuitions are formalised by an operational semantics2 associating with each
process term a graph-like structure representing its possible reactions to users’ requests: we
use a generalisation of labelled transition systems [30] that includes probabilities.

A (discrete) probability distribution over a set S is a function ∆ : S → [0, 1] with∑
s∈S∆(s) = 1; the support of ∆ is given by ⌈∆⌉ = { s∈S | ∆(s) > 0 }. We write D(S),

ranged over by ∆,Θ,Φ, for the set of all distributions over S with finite support; these finite
distributions are sufficient for the results of this paper. We also write s to denote the point
distribution assigning probability 1 to s and 0 to all others, so that ⌈s⌉ = {s}. If pi ≥ 0
and ∆i is a distribution for each i in some finite index set I, and

∑
i∈I pi = 1, then the

probability distribution
∑

i∈I pi · ∆i ∈ D(S) is given by

(
∑

i∈I

pi · ∆i)(s) =
∑

i∈I

pi · ∆i(s) ;

we will sometimes write it as p1 · ∆1 + . . .+ pn · ∆n when the index set I is {1, . . . , n}.
For ∆ a distribution over S and function f : S→X into a vector space X we sometimes

write Exp∆(f) for
∑

s∈S ∆(s)·f(s), the expected value of f . Our primary use of this notation
is with X being the vector space of reals or tuples of reals. More generally, for function
F : S → P

+(X) with P
+(X) being the collection of non-empty subsets of X, we define

Exp∆F := {Exp∆(f) | f ∈ F }; here f ∈ F means that f : S →X is a choice function for
F , that is it satisfies the constraint that f(s)∈F (s) for all s∈S.

We now give the probabilistic generalisation of labelled transition systems (LTSs):

Definition 2.1. A probabilistic labelled transition system (pLTS)3 is a triple 〈S,L,→〉,
where

(i) S is a set of states,
(ii) L is a set of transition labels,
(iii) relation → is a subset of S × L×D(S).

As with LTSs, we usually write s
α

−→ ∆ for (s, α,∆)∈→, s α−→ for ∃∆ : s
α

−→ ∆ and s→

for ∃α : s
α

−→. An LTS may be viewed as a degenerate pLTS, one in which only point
distributions are used.

The operational semantics of pCSP is defined by a particular pLTS 〈sCSP,Actτ ,→〉, con-
structed by taking sCSP to be the set of states and Actτ := Act ∪ {τ} the set of transition
labels; we let a range over Act and α over Actτ . We interpret pCSP processes P as distri-
butions [P ℄ ∈ D(sCSP) via the function [ ℄ : pCSP → D(sCSP) defined below:

[s℄ := s for s∈ sCSP

[P p⊕ Q℄ := p · [P ℄ + (1 − p) · [Q℄ .

Note that for each P ∈ pCSP the distribution [P ℄ is finite, that is it has finite support.
The definition of the relations α−→ is given in Figure 1. These rules are very similar to
the standard ones used to interpret CSP as an LTS [34], but modified so that the result
of an action is a distribution. The rules for external choice and parallel composition use

2Although the syntax of pCSP is similar to other probabilistic extensions of CSP [28, 32, 31], our semantics
differs. For more detailed comparisons, see Section 12.

3Essentially the same model has appeared in the literature under different names such as NP-systems

[20], probabilistic processes [22], simple probabilistic automata [36], probabilistic transition systems [23] etc.
Furthermore, there are strong structural similarities with Markov Decision Processes [35, 10].
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a.P a−→ [P ℄

P ⊓ Q τ−→ [P ℄ P ⊓ Q τ−→ [Q℄

s1
a−→ ∆

s1 � s2
a−→ ∆

s2
a−→ ∆

s1 � s2
a−→ ∆

s1
τ−→ ∆

s1 � s2
τ−→ ∆ � s2

s2
τ−→ ∆

s1 � s2
τ−→ s1 � ∆

s1
α−→ ∆ α 6∈A

s1 |A s2
α−→ ∆ |A s2

s2
α−→ ∆ α 6∈A

s1 |A s2
α−→ s1 |A ∆

s1
a−→ ∆1, s2

a−→ ∆2 a∈A

s1 |A s2
τ−→ ∆1 |A ∆2

Figure 1: Operational semantics of pCSP

an obvious notation for distributing an operator over a distribution; for example ∆ � s

represents the distribution given by

(∆ � s)(t) =

{
∆(s′) if t = s′ � s

0 otherwise.

We sometimes write τ.P for P ⊓ P , thus giving τ.P τ−→ [P ℄.
We graphically depict the operational semantics of a pCSP expression P by drawing the

part of the pLTS defined above that is reachable from [P ℄ as a finite acyclic directed graph,
often unwound into a tree. States are represented by nodes of the form • and distributions
by nodes of the form ◦. For any state s and distribution ∆ with s α−→ ∆ we draw an edge
from s to ∆, labelled with α. For any distribution ∆ and state s in ⌈∆⌉, the support of ∆,
we draw an edge from ∆ to s, labelled with ∆(s).

Example 2.2. Consider the two processes

P := a.((b.d � c.e) 1
2
⊕ (b.f � c.g))

Q := a.((b.d � c.g) 1
2
⊕ (b.f � c.e)).

Their tree representations are depicted in Figure 2 (i) and (ii). To make these trees more
compact we omit nodes ◦ when they represent trivial point distributions.

3. Testing pCSP processes

A test is a pCSP process except that it may have subterms ω.P for fresh ω 6∈Actτ , a special
action reporting success; we write pCSPω for the set of all tests, and sCSPω for the subset
of state-based process terms that may involve the action ω, and the operational semantics
above is extended by treating ω like any other action from Act. To apply test T to process
P we form the process T |Act P in which all visible actions of P must synchronise with T ,
and define a set of testing outcomes A(T, P ) where each outcome, in [0, 1], arises from a
resolution of the nondeterministic choices in T |Act P and gives the probability that this
resolution will reach a success state, one in which ω is possible.
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Figure 2: Example processes P,Q and test T

To this end, we inductively define a results-gathering function V : sCSPω → P
+([0, 1]);

it extends to type D(sCSPω) → P
+([0, 1]) via the convention V(∆) := Exp∆V.

V(s) :=






{1} if s ω−→,⋃
{V(∆) | s α−→ ∆ } if s ω−6→ but still s→,

{0} if s 6→

In the first case above s ω−→ signifies that s is a success state. In the second case we mean
that ω is not possible from s—hence s is not a success state—but that at least one “non-
success” action α ∈ Actτ is—and possibly several—and then the union is over all such α.
This is done so that V accounts for success actions in processes generally; when applied to
test outcomes, however, the only non-success action is τ . Note that V is well defined when
applied to finite, loop-free processes, such as the ones of pCSP.

Definition 3.1. For any pCSP process P and test T , define

A(T, P ) := V[T |Act P ℄ .

With this definition, the general testing framework of [6] yields two testing preorders for
pCSP, one based on may testing, written P ⊑pmay Q, and the other on must testing, written
P ⊑pmust Q.

Definition 3.2. The may- and must preorders are given by

P ⊑pmay Q iff for all tests T : A(T, P ) ≤Ho A(T,Q)
P ⊑pmust Q iff for all tests T : A(T, P ) ≤Sm A(T,Q)

with ≤Ho,≤Sm the Hoare, Smyth preorders on P
+[0, 1]. These are defined as follows:

X ≤Ho Y iff ∀x∈X: ∃y∈Y : x ≤ y

X ≤Sm Y iff ∀y∈Y : ∃x∈X: x ≤ y

In other words, Q is a correct refinement of P in the probabilistic may-testing preorder
if each outcome (in [0,1]) of applying a test to process P can be matched or increased
by applying the same test to process Q. Likewise, Q is a correct refinement of P in the
probabilistic must-testing preorder if each outcome of applying a test to Q matches or
increases an outcome obtainable by applying the same test to P .
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Figure 3: Testing P and Q with T .

Example 3.3. Consider the test

T := a.((b.d.ω 1
2
⊕ c.e.ω) ⊓ (b.f.ω 1

2
⊕ c.g.ω))

which is graphically depicted in Figure 2 (iii). If we apply T to processes P and Q given in
Example 2.2, we form the two processes described in Figure 3. It is then easy to calculate
the testing outcomes:

A(T, P ) = 1
2 · {1, 0} + 1

2 · {1, 0}
= {0, 1

2 , 1}

A(T,Q) = 1
2 · {1

2} + 1
2 · {1

2}
= {1

2}.

We can see that P and Q can be distinguished by the test T since A(T, P ) 6≤Ho A(T,Q)
and A(T,Q) 6≤Sm A(T, P ). In other words, we have P 6⊑pmay Q and Q 6⊑pmust P because of
the witness test T .

In [8] we applied the testing framework described above to show that many standard laws of
CSP are no longer valid in the probabilistic setting of pCSP, and to provide counterexamples
for a few distributive laws involving probabilistic choice that may appear plausible at first
sight. We also showed that P ⊑pmust Q implies Q ⊑pmay P for all pCSP processes P and
Q, i.e. that must testing is more discriminating than may testing and that the preorders
⊑pmay and ⊑pmust are oriented in opposite directions.

4. Simulation and failure simulation

Let R ⊆ S×D(S) be a relation from states to distributions. As in [8], we lift it to a relation
R ⊆ D(S)×D(S) by letting ∆RΘ whenever there is a finite index set I and p∈D(I) such
that

(i) ∆ =
∑

i∈I pi · si ,
(ii) For each i∈ I there is a distribution Φi s.t. si R Φi ,
(iii) Θ =

∑
i∈I pi · Φi .
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For functions, the lifting operation can be understood as a Kleisli construction on a proba-
bilistic power domain [18], and was implicit in the work of Kozen [25]; in our more general
setting of relations, it can equivalently be defined in terms of a distribution on R, some-
times called weight function (see e.g. [21, 36]). An important point here is that in the
decomposition (i) of ∆1 into

∑
i∈I pi · si, the states si are not necessarily distinct : that is,

the decomposition is not in general unique. For notational convenience, the lifted versions
of the transition relations α−→ for α∈Actτ are again denoted α−→.

We write s τ̂−→ ∆ if either s τ−→ ∆ or ∆ = s; again ∆1
τ̂−→ ∆2 denotes the lifted

relation. Thus for example we have [(a ⊓ b) 1
2
⊕ (a ⊓ c)℄ τ̂−→ [a 1

2
⊕ ((a ⊓ b) 1

2
⊕ c)℄ because

(i) [(a ⊓ b) 1
2
⊕ (a ⊓ c)℄ = 1

4 · [(a ⊓ b)℄ + 1
4 · [(a ⊓ b)℄ + 1

4 · [(a ⊓ c)℄ + 1
4 · [(a ⊓ c)℄ ,

(ii) [(a ⊓ b)℄ τ−→ [a℄

[(a ⊓ b)℄ τ̂−→ [a ⊓ b℄

[(a ⊓ c)℄ τ−→ [a℄

[(a ⊓ c)℄ τ−→ [c℄

(iii) and [a 1
2
⊕ ((a ⊓ b) 1

2
⊕ c)℄ = 1

4 · [a℄ + 1
4 · [(a ⊓ b)℄ + 1

4 · [a℄ + 1
4 · [c℄ .

We now define the weak transition relation τ̂=⇒ as the transitive and reflexive closure
τ̂−→∗ of τ̂−→, while for a 6= τ we let ∆1

â=⇒ ∆2 denote ∆1
τ̂=⇒ a−→ τ̂=⇒ ∆2. Finally, we write

s X−6→ with X ⊆ Act when ∀α ∈ X ∪ {τ} : s α−6→, and ∆ X−6→ when ∀s ∈ ⌈∆⌉ : s X−6→. The
main properties of the lifted weak transition relations which are used throughout the paper
are given in the following lemma.

Lemma 4.1. Suppose
∑

i∈I pi = 1 and ∆i
α̂=⇒ Φi for each i∈ I, with I a finite index set.

Then ∑

i∈I

pi · ∆i
α̂=⇒

∑

i∈I

pi · Φi .

Conversely, if
∑

i∈I pi · ∆i
α̂=⇒ Φ then Φ =

∑
i∈I pi · Φi for some Φi such that ∆i

α̂=⇒ Φi

for each i∈ I.

Proof. The first claim occurs as Lemma 6.6 of [8]. The second follows by repeated applica-
tion of Proposition 6.1(ii) of [8], taking R to be τ̂−→ and a−→ for a∈Act.

Definition 4.2. A relation R ⊆ sCSP×D(sCSP) is said to be a failure simulation if for all
s,Θ, α,∆,X we have that

• s R Θ ∧ s α−→ ∆ implies ∃Θ′ : Θ α̂=⇒ Θ′ ∧ ∆ R Θ′

• s R Θ ∧ s X−6→ implies ∃Θ′ : Θ τ̂=⇒ Θ′ ∧ Θ′ X−6→.

We write s ⊳
FS

Θ to mean that there is some failure simulation R such that s R Θ.
Similarly, we define simulation4 and s ⊳

S
Θ by dropping the second clause in Definition 4.2.5

Definition 4.3. The simulation preorder ⊑S and failure simulation preorder ⊑FS on pCSP

are defined as follows:

P ⊑S Q iff [Q℄
τ̂=⇒ Θ for some Θ with [P ℄ ⊳

S
Θ

P ⊑FS Q iff [P ℄
τ̂=⇒ Θ for some Θ with [Q℄ ⊳

FS
Θ .

(Note the opposing directions.) The equivalences generated by ⊑S and ⊑FS are called
(failure) simulation equivalence, denoted ≃S and ≃FS , respectively.

4It is called forward simulation in [36].
5We have reversed the orientation of the symbols ⊲

S
and ⊲

FS
w.r.t. [8] and [9]; the pointy side now points

to a single state, and the flat side to a distribution.
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Example 4.4. Compare the processes P = a 1
2
⊕ b and P ⊓ P . Note that [P ℄ is the

distribution 1
2 · a +1

2 · b whereas [P ⊓ P ℄ is the point distribution P ⊓ P . The relation R
given by

(P ⊓ P ) R (1
2 · a +1

2 · b) a R a b R b 0 R 0

is a simulation, because the τ -step P ⊓ P τ−→ (1
2 · a +1

2 · b) can be matched by the idle

transition (1
2 · a +1

2 · b)
τ̂=⇒ (1

2 · a +1
2 · b), and we have (1

2 · a +1
2 · b) R (1

2 · a +1
2 · b). Thus

(P ⊓ P ) ⊳
S

(1
2 · a +1

2 · b) = [P ℄, hence [P ⊓ P ℄ ⊳
S
[P ℄, and therefore P ⊓ P ⊑S P .

This type of reasoning does not apply to the other direction. Any simulation R with
(1
2 · a +1

2 · b) R P ⊓ P would have to satisfy a R P ⊓ P and b R P ⊓ P . However, the

move a a−→ 0 cannot be matched by the process P ⊓ P , as the only transition the latter
process can do is P ⊓ P τ−→ (1

2 · a +1
2 · b), and only half of that distribution can match the

a-move. Thus, no such simulation exists, and we find [P ℄ 6⊳
S
[P ⊓ P ℄. Nevertheless, we

still have P ⊑S P ⊓ P . Here, the transition τ̂=⇒ from Definition 4.3 comes to the rescue.
As [P ⊓ P ℄

τ̂=⇒ [P ℄ and [P ℄ ⊳
S
[P ℄, we obtain P ⊑S P ⊓ P .

Example 4.5. Let P = a 1
2
⊕ b and Q = P � P . We have P ⊑S Q because [P ℄ ⊳

S
[Q℄

which comes from the following observations:

(1) [P ℄ = 1
2 · a +1

2 · b

(2) [Q℄ = 1
2 · (1

2 · a � a +1
2 · a � b) + 1

2 · (1
2 · b � a +1

2 · b � b)

(3) a ⊳
S

(1
2 · a � a +1

2 · a � b)

(4) b ⊳
S

(1
2 · b � a +1

2 · b � b)

This kind of reasoning does not apply to ⊳
FS

. For example, we have a 6⊳
FS

(1
2 · a � a

+1
2 · a � b) because the state on the left hand side can refuse to do action b while the

distribution on the right hand side cannot. Indeed, it holds that Q 6⊑FS P .

We have already shown in [8] that ⊑S is a precongruence and that it implies ⊑pmay.
Similar results can be established for ⊑FS as well. Below we summarise these facts.

Proposition 4.6. Suppose ⊑ ∈ {⊑S,⊑FS}. Then ⊑ is a preorder, and if Pi ⊑ Qi for
i = 1, 2 then a.P1 ⊑ a.Q1 for a∈Act and P1 ⊙ P2 ⊑ Q1 ⊙Q2 for ⊙∈{⊓, �, p⊕, |A}.

Proof. The case ⊑S was proved in [8, Corollary 6.10 and Theorem 6.13]; the case ⊑FS is
analogous. As an example, we show that ⊑FS is preserved under parallel composition. The
key step is to show that the binary relation R ⊆ sCSP ×D(sCSP) defined by

R := {(s1|As2,∆1|A∆2) | s1 ⊳
FS

∆1 ∧ s2 ⊳
FS

∆2}.

is a failure simulation.
Suppose si ⊳

FS
∆i for i = 1, 2 and s1 |A s2

X−6→ for some X ⊆ Act. For each a ∈ X there
are two possibilities:

• If a 6∈ A then s1
a−6→ and s2

a−6→, since otherwise we would have s1 |A s2
a−→.

• If a ∈ A then either s1
a−6→ or s2

a−6→, since otherwise we would have s1 |A s2
τ−→.

Hence we can partition the set X into three subsets: X0, X1 and X2 such that X0 = X\A
and X1 ∪ X2 ⊆ A with s1

X1−−6→ and s2
X2−−6→, but allowing s1

a−6→ for some a ∈ X2 and
s2

a−6→ for some a ∈ X1. We then have that si
X0∪Xi−−−−6→ for i = 1, 2. By the assumption

that si ⊳
FS

∆i for i = 1, 2, there is a ∆′
i with ∆i

τ̂=⇒ ∆′
i
X0∪Xi−−−−6→. Therefore ∆′

1|A∆′
2

X−6→
as well. It is stated in [8, Lemma 6.12(i)] that if Φ τ̂=⇒ Φ′ then Φ |A ∆ τ̂=⇒ Φ′ |A ∆ and
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∆ |A Φ τ̂=⇒ ∆ |A Φ′. So we have ∆1 |A ∆2
τ̂=⇒ ∆′

1 |A ∆′
2. Hence ∆1 |A ∆2 can match up the

failures of s1 |A s2.
The matching up of transitions and the using of R to prove the preservation property

of ⊑FS under parallel composition are similar to those in the corresponding proof for sim-
ulations [8, Theorem 6.13(v)], so we omit them.

We recall the following result from [8, Theorem 6.17].

Theorem 4.7. If P ⊑S Q then P ⊑pmay Q.

Proof. For any test T ∈ pCSPω and process P ∈ pCSP the set V(T |Act P ) is finite, so

P ⊑pmay Q iff max (V([T |Act P ℄)) ≤ max (V([T |Act Q℄)) for every test T . (4.1)

The following properties for ∆1,∆2 ∈ pCSPω and α ∈ Actτ are not hard to establish:

∆1
α̂=⇒ ∆2 implies max (V(∆1)) ≥ max (V(∆2)). (4.2)

∆1 ⊳
S

∆2 implies max (V(∆1)) ≤ max (V(∆2)). (4.3)

In [8, Lemma 6.15 and Proposition 6.16] similar properties are proven using a function
maxlive instead of max◦V. The same arguments apply here.

Now suppose P ⊑S Q. Since ⊑S is preserved by the parallel operator we have that
T |Act P ⊑S T |Act Q for an arbitrary test T . By definition, this means that there is a
distribution ∆ such that [T |Act Q℄

τ̂=⇒ ∆ and [T |Act P ℄ ⊳
S

∆. By (4.2) and (4.3) we infer
that max (V([T |Act P ℄)) ≤ max (V([T |Act Q℄)). The result now follows from (4.1).

It is tempting to use the same idea to prove that ⊑FS implies ⊑pmust, but now using the
function min◦V. However, the min-analogue of Property (4.2) is in general invalid. For

example, let R be the process a |Act (a � ω). We have min(V(R)) = 1, yet R τ−→ 0 |Act 0 and

min(V(0 |Act 0)) = 0. Therefore, it is not the case that ∆1
τ̂=⇒ ∆2 implies min(V(∆1)) ≤

min(V(∆2)).
Our strategy is therefore as follows. Write s α−→ω ∆ if both s ω−6→ and s α−→ ∆ hold. We

define τ̂−→ω as τ̂−→ using τ−→ω in place of τ−→. Similarly we define =⇒ω and α̂=⇒ω. Thus the
subscript ω on a transition of any kind indicates that no state is passed through in which
ω is enabled. A version of failure simulation adapted to these transition relations is then
defined as follows.

Definition 4.8. Let ⊳e
FS

⊆ sCSPω × D(sCSPω) be the largest relation such that s ⊳e
FS

Θ
implies

• if s α−→ω ∆ then there is some Θ′ with Θ α̂=⇒ω Θ′ and ∆ ⊳e
FS

Θ′

• if s X−6→ with ω ∈ X then there is some Θ′ with Θ τ̂=⇒ω Θ′ and Θ′ X−→.

Let P ⊑e
FS

Q iff [P ℄
τ̂=⇒ω Θ for some Θ with [Q℄ ⊳e

FS
Θ.

Note that for processes P,Q in pCSP (as opposed to pCSPω), we have P ⊑FS Q iff P ⊑e
FS

Q.

Proposition 4.9. If P,Q are processes in pCSP with P ⊑FS Q and T is a process in pCSPω

then T |Act P ⊑e
FS

T |Act Q.

Proof. Similar to the proof of Proposition 4.6.
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Proposition 4.10. The following properties hold for min◦V, with ∆1,∆2 ∈ D(sCSPω):

P ⊑pmust Q iff min(V([T |Act P ℄)) ≤ min(V([T |Act Q℄)) for every test T . (4.4)

∆1
α̂=⇒ω ∆2 for α ∈ Actτ implies min(V(∆1)) ≤ min(V(∆2)). (4.5)

∆1 ⊳e
FS

∆2 implies min(V(∆1)) ≥ min(V(∆2)). (4.6)

Proof. Property (4.4) is again straightforward, and Property (4.5) can be established just
as in Lemma 6.15 in [8], but with all ≤-signs reversed. Property (4.6) follows by structural
induction, simultaneously with the property, for s ∈ sCSPω and ∆ ∈ D(sCSPω), that

s ⊳
e
FS

∆ implies min(V(s)) ≥ min(V(∆)) . (4.7)

The reduction of Property (4.6) to (4.7) proceeds exactly as in [8, Lemma 6.16(ii)]. For
(4.7) itself we distinguish three cases:

• If s ω−→, then min(V(s)) = 1 ≥ min(V(∆)) trivially.
• If s ω−6→ but s→, then we can closely follow the proof of [8, Lemma 6.16(i)]:

Whenever s α−→ω Θ, for α ∈ Actτ and Θ ∈ D(sCSPω), then s ⊳e
FS

∆ implies the existence
of some ∆Θ such that ∆ α̂−→∗

ω ∆Θ and Θ ⊳e
FS

∆Θ. By induction, using (4.6), it follows
that min(V(Θ)) ≥ min(V(∆Θ)). Consequently, we have that

min(V(s)) = min({min(V(Θ)) | s α−→ Θ})
≥ min({min(V(∆Θ)) | s α−→ Θ})
≥ min({min(V(∆)) | s α−→ Θ}) (by (4.5))
= min(V(∆)) .

• If s 6→, that is s Act
ω

−−−6→, then there is some ∆′ such that ∆ τ̂=⇒ω ∆′ and ∆′ Act
ω

−−−6→. By
the definition of V, min(V(∆′)) = 0. Using (4.5), we have min(V(∆)) ≤ min(V(∆′)), so
min(V(∆)) = 0 as well. Thus, also in this case min(V(s)) ≥ min(V(∆)).

Theorem 4.11. If P ⊑FS Q then P ⊑pmust Q.

Proof. Similar to the proof of Theorem 4.7, using (4.4)–(4.6).

The next four sections are devoted to proving the converse of Theorems 4.7 and 4.11.

5. State- versus action-based testing

Much work on testing [6, 41, 8] uses success states marked by outgoing ω-actions; this is
referred to as state-based testing, which we have used in Section 3 to define the preorders
⊑may and ⊑must. In other work [37, 10], however, it is the actual execution of ω that
constitutes success. This action-based approach is formalised as in the state-based approach,
via a modified results-gathering function:

V̂(s) :=

{⋃
{V̂(∆) | s

α
−→ ∆∧α 6= ω } ∪ {1 | s

ω
−→} if s→

{0} otherwise

As in the original V, the α’s are non-success actions, including τ ; and again, this is done
for generality, since in testing outcomes the only non-success action is τ .

If we use this results-gathering function rather than V in Definitions 3.1 and 3.2 we
obtain the two slightly different testing preorders, ⊑̂pmay and ⊑̂pmust. The following propo-
sition shows that state-based testing is at least as discriminating as action-based testing:
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Proposition 5.1.

(1) If P ⊑pmay Q then P ⊑̂pmay Q.

(2) If P ⊑pmust Q then P ⊑̂pmust Q.

Proof. For any action-based test T̂ we construct a state-based test T by replacing each

subterm ω.Q by τ.ω; then we have V[T |Act P ℄ = V̂[T̂ |Act P ℄ for all pCSP processes P .

Proposition 5.1 enables us to reduce our main goal, the converse of Theorems 4.7 and 4.11,
to the following property.

Theorem 5.2.

(1) If P ⊑̂pmay Q then P ⊑S Q.

(2) If P ⊑̂pmust Q then P ⊑FS Q.

We set the proof of this theorem as our goal in the next three sections.
Once we have obtained this theorem, it follows that in our framework of finite proba-

bilistic processes the state-based and action-based testing preorders coincide. This result
no longer holds in the presence of divergence, at least for must-testing.

Example 5.3. Suppose we extend our syntax with a state-based process Ω, to model
divergence, and the operational semantics of Figure 1 with the rule

Ω τ−→ Ω.

It is possible to extend the results-gathering functions V and V̂ to these infinite processes,
although the definitions are no longer inductive (cf. Definition 5 of [10] or Definition A.3 of
the appendix). In this extended setting we will have a.Ω 6⊑pmust a.Ω ⊓ 0 because of the test
a.ω:

V([a.ω |Act a.Ω℄) = {1} while V([a.ω |Act a.Ω ⊓ 0℄) = {0, 1}.

This intuitively is due to the fact that the Ω-encoded divergence of the left-hand process
occurs only after the first action a; and since the left-hand process cannot deadlock before
that action, relation ⊑must would prevent the right-hand process from doing so.

However, a peculiarity of action-based testing is that success actions can be indefinitely
inhibited by infinite τ -branches. We have

V̂([a.ω |Act a.Ω℄) = V̂([a.ω |Act a.Ω ⊓ 0℄) = {0, 1}.

Indeed no test can be found to distinguish them, and so one can show a.Ω ⊑̂pmust a.Ω ⊓ 0.

Note that probabilistic behaviour plays no role in this counter-example. In CSP (without

probabilities) there is no difference between ⊑̂may and ⊑may, whereas ⊑̂must is strictly less
discriminating than ⊑must. For finitely branching processes, the CSP refinement preorder
based on failures and divergences [2, 17, 34] coincides with the state-based relation ⊑must.

6. Vector-based testing

This section describes another variation on testing, a richer testing framework due to Segala
[37], in which countably many success actions exist: the application of a test to a process
yields a set of vectors over the real numbers, rather than a set of scalars. The resulting
action-based testing preorders will serve as a stepping stone in proving Theorem 5.2.

Let Ω be a set of fresh success actions with Ω ∩ Actτ = ∅. An Ω-test is again a pCSP

process, but this time allowing subterms ω.P for any ω ∈Ω. Applying such a test to a
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process yields a non-empty set of test outcome-tuples ÂΩ(T, P ) ⊆ [0, 1]Ω. As with standard
scalar testing, each outcome arises from a resolution of the nondeterministic choices in
T |Act P . However, here an outcome is a tuple and its ω-component gives the probability
that this resolution will perform the success action ω.

For vector-based testing we again inductively define a results-gathering function, but
first we require some auxiliary notation. For any action α define α! : [0, 1]Ω → [0, 1]Ω by

α!o(ω) =

{
1 if ω=α

o(ω) otherwise

so that if α is a success action, in Ω, then α! updates the tuple to 1 at that point, leaving it
unchanged otherwise, and when α 6∈ Ω the function α! is the identity. These functions lift
to sets O ⊆ [0, 1]Ω as usual, via α!O := {α!o | o∈O}.

Next, for any set X define its convex closure lX by

lX := {
∑

i∈I pioi | p∈D(I) and o : I → X } .

Here, as usual, I is assumed to be a finite index set. Finally, ~0 ∈ [0, 1]Ω is given by ~0(ω) = 0
for all ω ∈ Ω. Let pCSPΩ be the set of Ω-tests, and sCSPΩ the set of state-based Ω-tests.

Definition 6.1. The action-based, vector-based, convex-closed results-gathering function

V̂Ω
l : sCSPΩ → P

+([0, 1]Ω) is given by

V̂Ω
l (s) :=

{
l
⋃
{α!(V̂Ω

l (∆)) | s
α

−→ ∆, α ∈ Ω ∪ Actτ } if s→

{~0} otherwise
(6.1)

As with our previous results-gathering functions V and V̂, this function extends to the type

D(sCSPΩ) → P
+([0, 1]Ω) via the convention V̂Ω

l (∆) := Exp∆V̂Ω
l .

For any pCSP process P and Ω-test T , let

ÂΩ
l (T, P ) := V̂Ω

l [T |Act P ℄ .

The vector-based may- and must preorders are given by

P ⊑̂Ω
pmay Q iff for all Ω-tests T : ÂΩ

l (T, P ) ≤Ho ÂΩ
l (T,Q)

P ⊑̂Ω
pmust Q iff for all Ω-tests T : ÂΩ

l (T, P ) ≤Sm ÂΩ
l (T,Q)

where ≤Ho and ≤Sm are the Hoare- and Smyth preorders on P
+[0, 1]Ω generated from ≤

index-wise on [0, 1]Ω itself.

We will explain the rôle of convex-closure l in this definition. Let V̂
Ω be defined as V̂Ω

l

above, but omitting the use of l. It is easy to see that V̂Ω
l (s) = lV̂Ω(s) for all s ∈ sCSPΩ.

Applying convex closure to subsets of the one-dimensional interval [0, 1] (such as arise
from applying scalar tests to processes) has no effect on the Hoare and Smyth orders between
these subsets:

Lemma 6.2. Suppose X, Y ⊆ [0, 1]. Then

(1) X ≤Ho Y if and only if lX ≤Ho lY .
(2) X ≤Sm Y if and only if lX ≤Sm lY .

Proof. We restrict attention to (1); the proof of (2) goes likewise. It suffices to show that
(i) X ≤Ho lX and (ii) lX ≤Ho X. We only prove (ii) since (i) is obvious. Suppose x ∈ lX,
then x =

∑
i∈I pixi for a finite set I with

∑
i∈I pi = 1 and xi ∈ X. Let x∗ = max{xi | i ∈ I}.
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Then
x =

∑

i∈I

pixi ≤
∑

i∈I

pix
∗ = x∗ ∈ X.

It follows that for scalar testing it makes no difference whether convex closure is employed
or not. Vector-based testing, as proposed in Definition 6.1, is a conservative extension of
action-based testing, as described in Section 5:

Corollary 6.3. Suppose Ω is the singleton set {ω}. Then

(1) P ⊑̂Ω
pmay Q if and only if P ⊑̂pmay Q.

(2) P ⊑̂Ω
pmust Q if and only if P ⊑̂pmust Q.

Proof. V̂Ω
l = lV̂Ω = lV̂ when Ω is {ω}, so the result follows from Lemma 6.2.

Lemma 6.2 does not generalise to [0, 1]k, when k > 1, as the following example demonstrates:

Example 6.4. Let X, Y denote {(0.5, 0.5)}, {(1, 0), (0, 1)} respectively. Then it is easy to
show that lX ≤Ho lY although obviously X 6≤Ho Y .

This example can be exploited to show that for vector-based testing it does make a difference
whether convex closure is employed.

Example 6.5. Consider the two processes

P := a 1
2
⊕ b and Q := a ⊓ b .

Take Ω = {ω1, ω2}. Employing the results-gathering function V̂
Ω, without convex closure,

with the test T := a.ω1 � b.ω2 we obtain

ÂΩ(T, P ) = {(0.5, 0.5)}

ÂΩ(T,Q) = {(1, 0), (0, 1)} .

As pointed out in Example 6.4, this entails ÂΩ(T, P ) 6≤Ho ÂΩ(T,Q), although their convex

closures ÂΩ
l (T, P ) and ÂΩ

l (T,Q) are related under the Hoare preorder.

Convex closure is a uniform way of ensuring that internal choice can simulate an arbitrary
probabilistic choice [14]. For the processes P and Q of Example 6.5 it is obvious that
P ⊑S Q, and from Theorem 4.7 it therefore follows that P ⊑pmay Q. This fits with the
intuition that a probabilistic choice is an acceptable implementation of a nondeterministic
choice occurring in a specification. Considering that we use ⊑̂Ω

pmay as a stepping stone in

showing the coincidence of ⊑S and ⊑pmay, we must have P ⊑̂Ω
pmay Q. For this reason we

use convex closure in Definition 6.1.
In [10] the results-gathering function V̂

Ω
l with Ω = {ω1, ω2, · · · } was called simply W

(because action-based/vector-based/convex-closed testing was assumed there throughout,
making the ·̂ Ω

l -indicators superfluous); and it was defined in terms of a formalisation of
the notion of a resolution. As we show in Proposition A.6 of the appendix, the inductive
Definition 6.1 above yields the same results. In the present paper our interest in vector-based
testing stems from the following result.

Theorem 6.6.

(1) P ⊑̂Ω
pmay Q iff P ⊑̂pmay Q

(2) P ⊑̂Ω
pmust Q iff P ⊑̂pmust Q.
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Proof. In [10, Theorem 3] this theorem has been established for versions of ⊑̂Ω
pmay and

⊑̂Ω
pmust where tests are finite probabilistic automata, as defined in our Appendix A. The

key argument is that when P ⊑̂Ω
pmay Q can be refuted by means of a vector-based test T ,

then P ⊑̂pmay Q can be refuted by means of a scalar test T‖U , where U is administrative
code which collates the vector of results produced by T and effectively renders them as a
unique scalar result, and similarly for ⊑̂Ω

pmust. This theorem applies to our setting as well,
due to the observation that if a test T can be represented as a pCSPΩ-expression, then so
can the test T‖U .

Because of Theorem 6.6, in order to establish Theorem 5.2 it will suffice to show that

(1) P ⊑̂Ω
pmay Q implies P ⊑S Q and

(2) P ⊑̂Ω
pmust Q implies P ⊑FS Q.

This shift from scalar testing to vector-based testing is motivated by the fact that the latter
enables us to use more informative tests, allowing us to discover more intensional properties
of the processes being tested.

The crucial characteristics of ÂΩ
l needed for the above implications are summarised in

Lemmas 6.7 and 6.8. For convenience of presentation, we write ~ω for the vector in [0, 1]Ω

defined by ~ω(ω) = 1 and ~ω(ω′) = 0 for ω′ 6= ω. Sometimes we treat a distribution ∆ of

finite support as the pCSP expression
⊕

s∈⌈∆⌉ ∆(s)·s, so that ÂΩ
l (T,∆) := Exp∆ÂΩ

l (T, ).

Lemma 6.7. Let P be a pCSP process, and T, Ti be tests.

(1) o ∈ ÂΩ
l (ω,P ) iff o = ~ω.

(2) ~0 ∈ ÂΩ
l (

e
a∈X a.ω, P ) iff ∃∆ : [P ℄ τ̂=⇒ ∆ X−6→.

(3) Suppose the action ω does not occur in the test T . Then o ∈ ÂΩ
l (ω�a.T, P ) with

o(ω) = 0 iff there is a ∆∈D(sCSP) with [P ℄
â=⇒ ∆ and o ∈ ÂΩ

l (T,∆).

(4) o ∈ ÂΩ
l (

⊕
i∈I pi·Ti, P ) iff o =

∑
i∈I pioi for some oi ∈ ÂΩ

l (Ti, P ).

(5) o ∈ ÂΩ
l (

d
i∈ITi, P ) if for all i∈ I there are qi ∈ [0, 1] and ∆i ∈D(sCSP) such that∑

i∈I qi = 1, [P ℄ τ̂=⇒
∑

i∈I qi · ∆i and o =
∑

i∈I qioi for some oi ∈ ÂΩ
l (Ti,∆i).

Proof. Straightforward, by induction on the structure of P .

The converse of Lemma 6.7 (5) also holds, as the following lemma says. However, the proof
is less straightforward.

Lemma 6.8. Let P be a pCSP process, and Ti be tests. If o ∈ ÂΩ
l (

d
i∈ITi, P ) then for all

i∈ I there are qi ∈ [0, 1] and ∆i ∈D(sCSP) with
∑

i∈I qi = 1 such that [P ℄ τ̂=⇒
∑

i∈I qi · ∆i

and o =
∑

i∈I qioi for some oi ∈ ÂΩ
l (Ti,∆i).

Proof. Given that the states of our pLTS are sCSP expressions, there exists a well-founded
order on the combination of states in sCSP and distributions in D(sCSP), such that s α−→ ∆
implies that s is larger than ∆, and any distribution is larger than the states in its support.
Intuitively, this order corresponds to the usual order on natural numbers if we graphically
depict a pLTS as a finite tree (cf. Section 2) and assign to each node a number to indicate
its level in the tree. Let T =

d
i∈ITi. We prove the following two claims

(a) If s is a state-based process and o ∈ ÂΩ
l (T, s) then there are some {qi}i∈I with

∑
i∈I qi =

1 such that s τ̂=⇒
∑

i∈I qi · ∆i, o =
∑

i∈I qioi, and oi ∈ ÂΩ
l (Ti,∆i).

(b) If ∆ ∈ D(sCSP) and o ∈ ÂΩ
l (T,∆) then there are some {qi}i∈I with

∑
i∈I qi = 1 such

that ∆ τ̂=⇒
∑

i∈I qi · ∆i, o =
∑

i∈I qioi, and oi ∈ ÂΩ
l (Ti,∆i).
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by simultaneous induction on the order mentioned above, applied to s and ∆.

(a) We have two sub-cases depending on whether s can make an initial τ -move or not.
• If s cannot make a τ -move, that is s τ−6→, then the only possible moves from T |Acts are
τ -moves originating in T ; T has no non-τ moves, and any non-τ moves that might be
possible for s on its own are inhibited by the alphabet Act of the composition. Suppose

o ∈ ÂΩ
l (T, s). Then by definition (6.1) there are some {qi}i∈I with

∑
i∈I qi = 1

such that o =
∑

i∈I qioi and oi ∈ ÂΩ
l (Ti, s) = ÂΩ

l (Ti, s). Obviously we also have
[s℄

τ̂=⇒
∑

i∈I qi · s.
• If s can make one or more τ -moves, then we have s τ−→ ∆′

j for j ∈ J , where without
loss of generality J can be assumed to be a non-empty finite set disjoint from I,
the index set for T . The possible first moves for T |Act s are τ -moves either of T
or of s, because T cannot make initial non-τ moves and that prevents a proper

synchronisation from occurring on the first step. Suppose that o ∈ ÂΩ
l (T, s). Then

by definition (6.1) there are some {pk}k∈I∪J with
∑

k∈I∪J pk = 1 and

o =
∑

k∈I∪J

pko
′
k (6.2)

o′i ∈ ÂΩ
l (Ti, s) for all i ∈ I (6.3)

o′j ∈ ÂΩ
l (T,∆j) for all j ∈ J . (6.4)

For each j ∈ J , we know by the induction hypothesis that

∆′
j

τ̂=⇒
∑

i∈I

pji · ∆
′
ji (6.5)

o′j =
∑

i∈I

pjio
′
ji (6.6)

o′ji ∈ ÂΩ
l (Ti,∆

′
ji) (6.7)

for some {pji}i∈I with
∑

i∈I pji = 1. Let

qi = pi +
∑

j∈J

pjpji

∆i =
1

qi
(pi · s+

∑

j∈J

pjpji · ∆
′
ji)

oi =
1

qi
(pio

′
i +

∑

j∈J

pjpjio
′
ji)

for each i ∈ I, except that ∆i and oi are chosen arbitrarily in case qi = 0. It
can be checked by arithmetic that qi,∆i, oi have the required properties, viz. that
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∑
i∈I qi = 1, that o =

∑
i∈I qioi and that

s
τ̂=⇒

∑

i∈I

pi · s+
∑

j∈J

pj · ∆
′
j

τ̂=⇒
∑

i∈I

pi · s+
∑

j∈J

pj ·
∑

i∈I

pji · ∆
′
ji by (6.5) and Lemma 4.1

=
∑

i∈I

qi · ∆i .

Finally, it follows from (6.3) and (6.7) that oi ∈ ÂΩ
l (Ti,∆i) for each i ∈ I.

(b) Let ⌈∆⌉ = {sj}j∈J and rj = ∆(sj). W.l.o.g. we may assume that J is a non-empty

finite set disjoint from I. Using that ÂΩ
l (T,∆) := Exp∆ÂΩ

l (T, ), if o ∈ ÂΩ
l (T,∆) then

o =
∑

j∈J

rjo
′
j (6.8)

o′j ∈ ÂΩ
l (T, sj) (6.9)

For each j ∈ J , we know by the induction hypothesis that

sj
τ̂=⇒

∑

i∈I

qji · ∆
′
ji (6.10)

o′j =
∑

i∈I

qjio
′
ji (6.11)

o′ji ∈ ÂΩ
l (Ti,∆

′
ji) (6.12)

for some {qji}i∈I with
∑

i∈I qji = 1. Thus let

qi =
∑

j∈J

rjqji

∆i =
1

qi

∑

j∈J

rjqji · ∆
′
ji

oi =
1

qi

∑

j∈J

rjqjio
′
ji

again choosing ∆i and oi arbitrarily in case qi = 0. As in the first case, it can be shown
by arithmetic that the collection ri,∆i, oi has the required properties.

7. Modal logic

In this section we present logical characterisations ⊑L and ⊑F of our testing preorders.
Besides their intrinsic interest, these logical preorders also serves as a stepping stone in
proving Theorem 5.2. In this section we show that the logical preorders are sound w.r.t.
the simulation and failure simulation preorders, and hence w.r.t. the testing preorders; in
the next section we establish completeness. To start, we define a set F of modal formulae,
inductively, as follows:

• ref(X) ∈ F when X ⊆ Act,
• 〈a〉ϕ ∈ F when ϕ∈F and a∈Act,
•

∧
i∈I ϕi ∈ F when ϕi ∈F for all i∈ I, with I finite,
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• and
⊕

i∈I pi ·ϕi ∈ F when pi ∈[0, 1] and ϕi ∈F for all i∈ I, with I a finite index set, and∑
i∈I pi = 1.

We often write ϕ1 ∧ ϕ2 for
∧
i∈{1,2} ϕi and ⊤ for

∧
i∈∅ ϕi.

The satisfaction relation |= ⊆ D(sCSP) ×F is given by:

• ∆ |= ref(X) iff there is a ∆′ with ∆ τ̂=⇒ ∆′ and ∆′ X−6→,
• ∆ |= 〈a〉ϕ iff there is a ∆′ with ∆ â=⇒ ∆′ and ∆′ |= ϕ,
• ∆ |=

∧
i∈I ϕi iff ∆ |= ϕi for all i∈ I

• and ∆ |=
⊕

i∈I pi · ϕi iff there are ∆i ∈ D(sCSP), for all i∈ I, with ∆i |= ϕi, such that
∆ τ̂=⇒

∑
i∈I pi · ∆i.

Let L be the subclass of F obtained by skipping the ref(X) clause. We write P ⊑LQ just
when [P ℄ |= ϕ implies [Q℄ |= ϕ for all ϕ∈L, and P ⊑FQ just when [P ℄ |= ϕ is implied by
[Q℄ |= ϕ for all ϕ∈F . (Note the opposing directions.)

In order to obtain the main result of this section, Theorem 7.4, we introduce the fol-
lowing tool.

Definition 7.1. The F-characteristic formula ϕs or ϕ∆ of a process s∈ sCSP or ∆∈D(sCSP)
is defined inductively:

• ϕs :=
∧
s
a−→∆〈a〉ϕ∆ ∧ ref({a | s a−6→}) if s τ−6→,

• ϕs :=
∧
s
a−→∆〈a〉ϕ∆ ∧

∧
s
τ−→∆ ϕ∆ otherwise,

• ϕ∆ :=
⊕

s∈⌈∆⌉ ∆(s) · ϕs.

Here the conjunctions
∧
s
a−→∆ range over suitable pairs a,∆, and

∧
s
τ−→∆ ranges over

suitable ∆. The L-characteristic formulae ψs and ψ∆ are defined likewise, but omitting the
conjuncts ref({a | s a−6→}).

Write ϕ ⇛ ψ with ϕ,ψ ∈F if for each distribution ∆ one has ∆ |= ϕ implies ∆ |= ψ. Then
it is easy to see that ϕs ⇚⇛ ϕs and

∧
i∈I ϕi ⇛ ϕi for any i∈ I; furthermore, the following

property can be established by an easy inductive proof.

Lemma 7.2. For any ∆∈D(sCSP) we have ∆ |= ϕ∆, as well as ∆ |= ψ∆.

It and the following lemma help to establish Theorem 7.4.

Lemma 7.3. For any processes P,Q ∈ pCSP we have that [P ℄ |= ϕ
[Q℄

implies P ⊑FS Q,
and likewise that [Q℄ |= ψ

[P ℄

implies P ⊑S Q.

Proof. To establish the first statement, we define the relation R by s R Θ iff Θ |= ϕs; to
show that it is a failure simulation we first prove the following technical result:

Θ |= ϕ∆ implies ∃Θ′ : Θ τ̂=⇒ Θ′ ∧ ∆ R Θ′. (7.1)

Suppose Θ |= ϕ∆ with ϕ∆ =
⊕

i∈I pi ·ϕsi
, so that we have ∆ =

∑
i∈I pi · si and for all i∈ I

there are Θi ∈D(sCSP) with Θi |= ϕsi
such that Θ τ̂=⇒ Θ′ with Θ′ :=

∑
i∈I pi · Θi. Since

si R Θi for all i∈ I we have ∆ R Θ′.
Now we show that R is a failure simulation.

• Suppose s R Θ and s τ−→ ∆. Then from Definition 7.1 we have ϕs ⇛ ϕ∆, so that
Θ |= ϕ∆. Applying (7.1) gives us Θ τ̂=⇒ Θ′ with ∆ R Θ′ for some Θ′.

• Suppose s R Θ and s a−→ ∆ with a∈Act. Then ϕs ⇛ 〈a〉ϕ∆, so Θ |= 〈a〉ϕ∆. Hence ∃Θ′

with Θ â=⇒ Θ′ and Θ′ |= ϕ∆. Again apply (7.1).
• Suppose s R Θ and s X−6→ with X ⊆ A. Then ϕs ⇛ ref(X), so Θ |= ref(X). Hence ∃Θ′

with Θ τ̂=⇒ Θ′ and Θ′ X−6→.
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Thus R is indeed a failure simulation. By our assumption [P ℄ |= ϕ
[Q℄

, using (7.1), there

exists a Θ′ such that [P ℄ τ̂=⇒ Θ′ and [Q℄ R Θ′, which gives P ⊑FS Q via Definition 4.3.
To establish the second statement, define the relation S by s S Θ iff Θ |= ψs; exactly

as above one obtains

Θ |= ψ∆ implies ∃Θ′ : Θ τ̂=⇒ Θ′ ∧ ∆ S Θ′. (7.2)

Just as above it follows that S is a simulation. By the assumption [Q℄ |= ϕ
[P ℄

, using (7.2),

there exists a Θ′ such that [Q℄ τ̂=⇒ Θ′ and [P ℄ S Θ′. Hence P ⊑S Q via Definition 4.3.

Theorem 7.4.

(1) If P ⊑LQ then P ⊑S Q.
(2) If P ⊑FQ then P ⊑FS Q.

Proof. Suppose P ⊑F Q. By Lemma 7.2 we have [Q℄ |= ϕ
[Q℄

and hence [P ℄ |= ϕ
[Q℄

.
Lemma 7.3 gives P ⊑FS Q.

For (1), assuming P ⊑LQ, we have [P ℄ |= ψ
[P ℄

, hence [Q℄ |= ψ
[P ℄

, and thus P ⊑S Q.

8. Characteristic tests

Our final step towards Theorem 5.2 is taken in this section, where we show that every modal
formula ϕ can be characterised by a vector-based test Tϕ with the property that any pCSP

process satisfies ϕ just when it passes the test Tϕ.

Lemma 8.1. For every ϕ∈F there exists a pair (Tϕ, vϕ) with Tϕ an Ω-test and vϕ ∈ [0, 1]Ω,
such that

∆ |= ϕ iff ∃o ∈ ÂΩ
l (Tϕ,∆) : o ≤ vϕ (8.1)

for all ∆∈D(sCSP), and in case ϕ ∈ L we also have

∆ |= ϕ iff ∃o ∈ ÂΩ
l (Tϕ,∆) : o ≥ vϕ . (8.2)

Tϕ is called a characteristic test of ϕ and vϕ its target value.

Proof. First of all note that if a pair (Tϕ, vϕ) satisfies the requirements above, then any
pair obtained from (Tϕ, vϕ) by bijectively renaming the elements of Ω also satisfies these
requirements. Hence a characteristic test can always be chosen in such a way that there
is a success action ω ∈Ω that does not occur in (the finite) Tϕ. Moreover, any countable
collection of characteristic tests can be assumed to be Ω-disjoint, meaning that no ω ∈Ω
occurs in two different elements of the collection.

The required characteristic tests and target values are obtained as follows.

• Let ϕ = ⊤. Take Tϕ := ω for some ω ∈Ω, and vϕ := ~ω.

• Let ϕ = ref(X) with X ⊆ Act. Take Tϕ :=
e
a∈X a.ω for some ω ∈Ω, and vϕ := ~0.

• Let ϕ = 〈a〉ψ. By induction, ψ has a characteristic test Tψ with target value vψ. Take
Tϕ := ω� a.Tψ where ω ∈Ω does not occur in Tψ, and vϕ := vψ.

• Let ϕ =
∧
i∈I ϕi with I a finite and non-empty index set. Choose a Ω-disjoint family

(Ti, vi)i∈I of characteristic tests Ti with target values vi for each ϕi. Furthermore, let
pi ∈ (0, 1] for i∈ I be chosen arbitrarily such that

∑
i∈I pi = 1. Take Tϕ :=

⊕
i∈I pi·Ti

and vϕ :=
∑

i∈I pivi.
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• Let ϕ =
⊕

i∈I pi · ϕi. Choose a Ω-disjoint family (Ti, vi)i∈I of characteristic tests Ti with
target values vi for each ϕi, such that there are distinct success actions ωi for i∈ I that
do not occur in any of those tests. Let T ′

i := Ti 1
2
⊕ ωi and v′i := 1

2vi +
1
2 ~ωi. Note that for

all i∈ I also T ′
i is a characteristic test of ϕi with target value v′i. Take Tϕ :=

d
i∈I T

′
i and

vϕ :=
∑

i∈I piv
′
i.

Note that vϕ(ω) = 0 whenever ω ∈Ω does not occur in Tϕ. By induction on ϕ we now check
(8.1) above.

• Let ϕ = ⊤. For all ∆ ∈ D(sCSP) we have ∆ |= ϕ as well as ∃o ∈ ÂΩ
l (Tϕ,∆) : o ≤ vϕ,

using Lemma 6.7(1).
• Let ϕ = ref(X) with X ⊆ Act. Suppose ∆ |= ϕ. Then there is a ∆′ with ∆ τ̂=⇒ ∆′ and

∆′ X−6→. By Lemma 6.7(2), ~0∈ ÂΩ
l (Tϕ,∆).

Now suppose ∃o∈ ÂΩ
l (Tϕ,∆) : o ≤ vϕ. This implies o = ~0, so by Lemma 6.7(2) there is

a ∆′ with ∆ τ̂=⇒ ∆′ and ∆′ X−6→. Hence ∆ |= ϕ.
• Let ϕ = 〈a〉ψ with a∈Act. Suppose ∆ |= ϕ. Then there is a ∆′ with ∆ â=⇒ ∆′ and

∆′ |= ψ. By induction, ∃o∈ ÂΩ
l (Tψ,∆

′) : o ≤ vψ. By Lemma 6.7(3), o∈ ÂΩ
l (Tϕ,∆).

Now suppose ∃o∈ÂΩ
l (Tϕ,∆) : o ≤ vϕ. This implies o(ω) = 0, so by Lemma 6.7(3) there

is a ∆′ with ∆ â=⇒ ∆′ and o∈ ÂΩ
l (Tψ,∆

′). By induction, ∆′ |=ψ, so ∆ |=ϕ.
• Let ϕ =

∧
i∈I ϕi with I a finite and non-empty index set. Suppose ∆ |= ϕ. Then ∆ |= ϕi

for all i∈ I, and hence, by induction, ∃oi ∈ ÂΩ
l (Ti,∆) : oi ≤ vi. Thus o :=

∑
i∈I pioi

∈ ÂΩ
l (Tϕ,∆) by Lemma 6.7(4), and o ≤ vϕ.

Now suppose ∃o∈ ÂΩ
l (Tϕ,∆) : o ≤ vϕ. Then, using Lemma 6.7(4), o =

∑
i∈I pioi for

certain oi ∈ÂΩ
l (Ti,∆). Note that (Ti)i∈I is an Ω-disjoint family of tests. One has oi ≤ vi

for all i∈ I, for if oi(ω) > vi(ω) for some i∈ I and ω ∈Ω, then ω must occur in Ti and hence
cannot occur in Tj for j 6= i. This implies vj(ω) = 0 for all j 6= i and thus o(ω) > vϕ(ω), in
contradiction with the assumption. By induction, ∆ |= ϕi for all i∈ I, and hence ∆ |= ϕ.

• Let ϕ =
⊕

i∈I pi · ϕi. Suppose ∆ |= ϕ. Then for all i∈ I there are ∆i ∈D(sCSP) with

∆i |= ϕi such that ∆ τ̂=⇒
∑

i∈I pi · ∆i. By induction, there are oi ∈ ÂΩ
l (Ti,∆i) with

oi ≤ vi. Hence, there are o′i ∈ ÂΩ
l (T ′

i ,∆i) with o′i ≤ v′i. Thus o :=
∑

i∈I pio
′
i ∈ ÂΩ

l (Tϕ,∆)
by Lemma 6.7(5), and o ≤ vϕ.

Now suppose ∃o∈ÂΩ
l (Tϕ,∆) : o ≤ vϕ. Then, by Lemma 6.8, there are q ∈D(I) and

∆i, for i∈ I, such that ∆ τ̂=⇒
∑

i∈I qi · ∆i and o =
∑

i∈I qio
′
i for some o′i ∈ ÂΩ

l (T ′
i ,∆i).

Now ∀i : o′i(ωi) = v′i(ωi) = 1
2 , so, using that (Ti)i∈I is an Ω-disjoint family of tests,

1
2qi = qio

′
i(ωi) = o(ωi) ≤ vϕ(ωi) = piv

′
i(ωi) = 1

2pi. As
∑

i∈I qi =
∑

i∈I pi = 1, it must be
that qi = pi for all i∈ I. Exactly as in the previous case one obtains o′i ≤ v′i for all i∈ I.
Given that T ′

i = Ti 1
2
⊕ ωi, using Lemma 6.7(4), it must be that o′ = 1

2oi + 1
2 ~ωi for some

oi ∈ ÂΩ
l (Ti,∆i) with oi ≤ vi. By induction, ∆i |= ϕi for all i∈ I, and hence ∆ |= ϕ.

In case ϕ∈L, the formula cannot be of the form ref(X). Then a straightforward in-

duction yields that
∑

ω∈Ω vϕ(ω) = 1 and for all ∆∈D(pCSP) and o∈ ÂΩ
l (Tϕ,∆) we have∑

ω∈Ω o(ω) = 1. Therefore, o ≤ vϕ iff o ≥ vϕ iff o = vϕ, yielding (8.2).

Theorem 8.2.

(1) If P ⊑̂Ω
pmay Q then P ⊑LQ.

(2) If P ⊑̂Ω
pmust Q then P ⊑F Q.
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(P1) P p⊕ P = P

(P2) P p⊕ Q = Q 1−p⊕ P

(P3) (P p⊕ Q) q⊕ R = P p·q⊕ (Q (1−p)·q
1−p·q

⊕ R)

(I1) P ⊓ P = P

(I2) P ⊓ Q = Q ⊓ P

(I3) (P ⊓ Q) ⊓ R = P ⊓ (Q ⊓ R)
(E1) P � 0 = P

(E2) P � Q = Q � P

(E3) (P � Q) � R = P � (Q � R)
(EI) a.P � a.Q = a.P ⊓ a.Q

(D1) P � (Q p⊕ R) = (P � Q) p⊕ (P � R)
(D2) a.P � (Q ⊓ R) = (a.P � Q) ⊓ (a.P � R)
(D3) (P1 ⊓ P2) � (Q1 ⊓ Q2) = (P1 � (Q1 ⊓ Q2)) ⊓ (P2 � (Q1 ⊓ Q2))

⊓ ((P1 ⊓ P2) � Q1) ⊓ ((P1 ⊓ P2) � Q2)

Figure 4: Common equations

Proof. Suppose P ⊑̂Ω
pmust Q and [Q℄ |= ϕ for some ϕ∈F . Let Tϕ be a characteristic test of

ϕ with target value vϕ. Then Lemma 8.1 yields ∃o∈ ÂΩ
l (Tϕ, [Q℄) : o ≤ vϕ, and hence, given

that P ⊑̂Ω
pmust Q and ÂΩ

l (Tϕ, [R℄) = ÂΩ
l (Tϕ, R) for any R ∈ pCSP, by the Smyth preorder

we have ∃o′ ∈ ÂΩ
l (Tϕ, [P ℄) : o′ ≤ vϕ. Thus [P ℄ |= ϕ.

The may-case goes likewise, via the Hoare preorder.

Combining Theorems 6.6, 8.2 and 7.4, we obtain Theorem 5.2, the goal we set ourselves in
Section 5. Thus, with Theorems 4.7 and 4.11 and Proposition 5.1, we have shown that the
may preorder coincides with simulation and that the must preorder coincides with failure
simulation. These results also imply the converse of both statements in Theorem 8.2, and
thus that the logics L and F give logical characterisations of the simulation and failure
simulation preorders ⊑S and ⊑FS .

9. Equational theories

Having settled the problem of characterising the may preorder in terms of simulation, and
the must preorder in terms of failure simulation, we now turn to complete axiomatisations
of the preorders.

In order to focus on the essentials we consider just those pCSP processes that do not use
the parallel operator |A; we call the resulting sub-language nCSP. For a brief discussion of
the axiomatisation for terms involving |A and the other parallel operators commonly used
in CSP see Section 12.

Let us write P =E Q for equivalences that can be derived using the equations given
in Figure 4. Given the way we defined the syntax of pCSP, axiom (D1) is merely a case
of abbreviation-expansion; thanks to (D1) there is no need for (meta-)variables ranging
over the sub-sort of state-based processes anywhere in the axioms. Many of the standard
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equations for CSP [17] are missing; they are not sound for ≃FS . Typical examples include:

a.(P ⊓ Q) = a.P ⊓ a.Q

P = P � P

P � (Q ⊓ R) = (P � Q) ⊓ (P � R)

P ⊓ (Q � R) = (P ⊓ Q) � (P ⊓ R)

For a detailed discussion of the standard equations for CSP in the presence of probabilistic
processes see Section 4 of [8].

Proposition 9.1. Suppose P =E Q. Then P ≃FS Q.

Proof. Because of Proposition 4.6, that ⊑FS is a precongruence, it is sufficient to exhibit
witness failure simulations for the axioms in Figure 4. These are exactly the same as
the witness simulations for the same axioms, given in [8]. The only axiom for which it
is nontrivial to check that these simulations are in fact failure simulations is (EI). That
axiom, as stated in [8], is unsound here; it will return in the next section as (May0). But
the special case of a = b yields the axiom (EI) above, and then the witness simulation from
[8] is a failure simulation indeed.

As ≃S is a less discriminating equivalence than ≃FS it follows that P =E Q implies P ≃S Q.
This equational theory allows us to reduce terms to a form in which the external choice

operator is applied to prefix terms only.

Definition 9.2 (Normal forms). The set of normal forms N is given by the following
grammar:

N ::= N1 p⊕ N2 | N1 ⊓ N2 |
m

i∈I

ai.Ni

Proposition 9.3. For every P ∈ nCSP there is a normal form N such that P =E N .

Proof. A fairly straightforward induction, heavily relying on (D1)–(D3).

We can also show that the axioms (P1)–(P3) and (D1) are in some sense all that are
required to reason about probabilistic choice. Let P =prob Q denote that equivalence of P
and Q can be derived using those axioms alone. Then we have the following property.

Lemma 9.4. Let P,Q ∈ nCSP. Then [P ℄ = [Q℄ implies P =prob Q.

Here [P ℄ = [Q℄ says that [P ℄ and [Q℄ are the very same distributions of state-based pro-
cesses in sCSP; this is a much stronger prerequisite than P and Q being testing equivalent.

Proof. The axioms (P1)–(P3) and (D1) essentially allow any processes to be written in
the unique form

⊕
i∈I pisi, where the si ∈ sCSP are all different.
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May:

(May0) a.P � b.Q = a.P ⊓ b.Q

(May1) P ⊑ P ⊓ Q

(May2) 0 ⊑ P

(May3) a.(P p⊕ Q) ⊑ a.P p⊕ a.Q

Must:

(Must1) P ⊓ Q ⊑ Q

(Must2) R ⊓
l

i∈I

⊕

j∈Ji

pj ·(ai.Qij � Pij) ⊑
m

i∈I

ai.
⊕

j∈Ji

pj·Qij ,

provided inits(R) ⊆ {ai}i∈I

Figure 5: Inequations

10. Inequational theories

In order to characterise the simulation preorders, and the associated testing preorders, we
introduce inequations. We write P ⊑Emay Q when P ⊑ Q is derivable from the inequational
theory obtained by adding the four may inequations in Figure 5 to the equations in Figure 4.
The first three additions, (May0)–(May2), are used in the standard testing theory of CSP

[17, 6, 15]. For the must case, in addition to the standard inequation (Must1), we require
an inequational schema, (Must2); this uses the notation inits(P ) to denote the (finite) set
of initial actions of P . Formally,

inits(0) = ∅
inits(a.P ) = {a}

inits(P p⊕ Q) = inits(P ) ∪ inits(Q)
inits(P � Q) = inits(P ) ∪ inits(Q)
inits(P ⊓ Q) = {τ}

The axiom (Must2) can equivalently be formulated as follows:
⊕

k∈K

m

ℓ∈Lk

akℓ.Rkℓ ⊓
l

i∈I

⊕

j∈Ji

pj ·(ai.Qij � Pij) ⊑
m

i∈I

ai.
⊕

j∈Ji

pj ·Qij,

provided {akℓ | k ∈ K, ℓ ∈ Kk} ⊆ {ai | i ∈ I} .

This is the case because a term R satisfies inits(R) ⊆ {ai}i∈I iff it can be converted into

the form
⊕

k∈K

m

ℓ∈Lk

akℓ.Rkℓ by means of axioms (D1), (P1)–(P3) and (E1)–(E3) of Figure 5.

This axiom can also be reformulated in an equivalent but more semantic style:

(Must2′) R ⊓
d
i∈I Pi ⊑

e
i∈I ai.Qi,

provided [Pi℄
ai−→ [Qi℄ and [R℄ X−6→ with X = Act\{ai}i∈I .

This is the case because [P ℄ a−→ [Q℄ iff, up to the axioms in Figure 4, P has the form⊕
j∈J pj·(a.Qj � Pj) and Q has the form a.

⊕
j∈J pj·Qj for certain Pj , Qj and pj, for j ∈ J .
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Note that (Must2) can be used, together with (I1), to derive the dual of (May3) via
the following inference:

a.P p⊕ a.Q =E (a.P p⊕ a.Q) ⊓ (a.P p⊕ a.Q)
⊑Emust a.(P p⊕ Q)

where we write P ⊑Emust Q when P ⊑ Q is derivable from the resulting inequational theory.
An important inequation that follows from (May1) and (P1) is

(May4) P p⊕ Q ⊑Emay P ⊓ Q

saying that any probabilistic choice can be simulated by an internal choice. It is derived as
follows:

P p⊕ Q ⊑Emay (P ⊓ Q) p⊕ (P ⊓ Q)
=E (P ⊓ Q)

Likewise, we have
P ⊓ Q ⊑Emust P p⊕ Q .

Theorem 10.1. For P, Q in nCSP, it holds that

(i) P ⊑S Q if and only if P ⊑Emay Q

(ii) P ⊑FS Q if and only if P ⊑Emust Q.

Proof. For one direction it is sufficient to check that the inequations, and the inequational
schema in Figure 5 are sound. For ⊑S this has been done in [8], and the soundness of
(Must1) and (Must2′) for ⊑FS is trivial. The converse, completeness, is established in the
next section.

11. Completeness

The completeness proof of Theorem 10.1 depends on the following variation on the Deriv-
ative lemma of [30]:

Lemma 11.1 (Derivative lemma). Let P,Q ∈ nCSP.

(i) If [P ℄ τ̂=⇒ [Q℄ then P ⊑Emust Q and Q ⊑Emay P .
(ii) If [P ℄ a=⇒ [Q℄ then a.Q ⊑Emay P .

Proof. The proof of (i) proceeds in four stages. We only deal with ⊑Emay , as the proof for
⊑Emust is entirely analogous.

First we show by structural induction on s ∈ sCSP ∩ nCSP that s τ−→ [Q℄ implies
Q ⊑Emay s. So suppose s τ−→ [Q℄. In case s has the form P1 ⊓ P2 it follows by the
operational semantics of pCSP that Q = P1 or Q = P2. Hence Q ⊑Emay s by (May1).
The only other possibility is that s has the form s1 � s2. In that case there must be a
distribution ∆ such that either s1

τ−→ ∆ and [Q℄ = ∆ � s2, or s2
τ−→ ∆ and [Q℄ = s1 � ∆.

Using symmetry, we may restrict attention to the first case. Let R be a term such that
[R℄ = ∆. Then [R � s2℄ = ∆ � s2 = [Q℄, so Lemma 9.4 yields Q =prob R � s2. By
induction we have R ⊑Emay s1, hence R � s2 ⊑Emay s1 � s2, and thus Q ⊑Emay s.

Now we show that s τ̂−→ [Q℄ implies Q ⊑Emay s. This follows because s τ̂−→ [Q℄ means
that either s τ−→ [Q℄ or [Q℄ = s, and in the latter case Lemma 9.4 yields Q =prob s.

Next we show that [P ℄ τ̂−→ [Q℄ implies Q ⊑Emay P . So suppose [P ℄ τ̂−→ [Q℄, that is

[P ℄ =
∑

i∈I

pi · si si
τ̂−→ [Qi℄ [Q℄ =

∑

i∈I

pi · [Qi℄



26 Y. DENG, R. VAN GLABBEEK, M. HENNESSY, AND C. MORGAN

for some I, pi ∈ (0, 1], si ∈ sCSP ∩ nCSP and Qi ∈ nCSP. Now

(1) [P ℄ = [

⊕
i∈I pi·si℄. By Lemma 9.4 we have P =prob

⊕
i∈I pi·si.

(2) [Q℄ = [

⊕
i∈I pi·Qi℄. Again Lemma 9.4 yields Q =prob

⊕
i∈I pi·Qi.

(3) si
τ̂−→ [Qi℄ implies Qi ⊑Emay si. Therefore,

⊕
i∈I pi·Qi ⊑Emay

⊕
i∈I pi·si.

Combining (1), (2) and (3) we obtain Q ⊑Emay P .
Finally, the general case, when [P ℄ τ̂−→∗ ∆, is now a simple inductive argument on the

length of the derivation.
The proof of (ii) is similar: first we treat the case when s a−→ [Q℄ by structural induc-

tion, using (May2); then the case [P ℄ a−→ [Q℄, exactly as above; and finally use part (i) to
derive the general case.

The completeness result now follows from the following two propositions.

Proposition 11.2. Let P and Q be in nCSP. Then P ⊑S Q implies P ⊑Emay Q.

Proof. The proof is by structural induction on P and Q, and we may assume that both P

and Q are in normal form because of Proposition 9.3. So take P,Q ∈ pCSP and suppose
the claim has been established for all subterms P ′ of P and Q′ of Q, of which at least one
of the two is a strict subterm. We start by proving that if P ∈ sCSP then we have

P ⊳
S
[Q℄ implies P ⊑Emay Q. (11.1)

There are two cases to consider.

(1) P has the form P1 ⊓ P2. Since Pi ⊑Emay P we know Pi ⊑S P ⊑S Q. We use induction
to obtain Pi ⊑Emay Q, from which the result follows using (I1).

(2) P has the form
e
i∈I ai.Pi. If I contains two or more elements then P may also be

written as
d
i∈I ai.Pi, using (May0) and (D2), and we may proceed as in case (1)

above. If I is empty, that is P is 0, then we can use (May2). So we are left with
the possibility that P is a.P ′. Thus suppose that a.P ′ ⊳

S
[Q℄. We proceed by a case

analysis on the structure of Q.
• Q is a.Q′. We know from a.P ′ ⊳

S
[a.Q′

℄ that [P ′
℄ ⊳

S
Θ for some Θ with [Q′

℄

τ̂=⇒ Θ,
thus P ′ ⊑S Q′. Therefore, we have P ′ ⊑Emay Q′ by induction. It follows that
a.P ′ ⊑Emay a.Q

′.
• Q is

e
j∈I aj .Qj with at least two elements in J . We use (May0) and then proceed

as in the next case.
• Q is Q1 ⊓ Q2. We know from a.P ′ ⊳

S
[Q1 ⊓ Q2℄ that [P ′

℄ ⊳
S

Θ for some Θ such
that one of the following two conditions holds
(a) [Qi℄

a=⇒ Θ for i = 1 or 2. In this case, a.P ′ ⊳
S
[Qi℄, hence a.P ′ ⊑S Qi. By

induction we have a.P ′ ⊑Emay Qi; then we apply (May1).
(b) [Q1℄

a=⇒ Θ1 and [Q2℄
a=⇒ Θ2 such that Θ = p ·Θ1+(1−p) ·Θ2 for some p ∈ (0, 1).

Let Θi = [Q′
i℄ for i = 1, 2. By the Derivative Lemma, we have a.Q′

1 ⊑Emay Q1 and
a.Q′

2 ⊑Emay Q2. Clearly, [Q′
1 p⊕ Q′

2℄ = Θ, thus P ′ ⊑S Q
′
1 p⊕ Q′

2. By induction,
we infer that P ′ ⊑Emay Q

′
1 p⊕ Q′

2. So

a.P ′ ⊑Emay a.(Q′
1 p⊕ Q′

2)
⊑Emay a.Q′

1 p⊕ a.Q′
2 (May3)

⊑Emay Q1 p⊕ Q2

⊑Emay Q1 ⊓ Q2 (May4)
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• Q is Q1 p⊕ Q2. We know from a.P ′ ⊳
S
[Q1 p⊕ Q2℄ that [P ′

℄ ⊳
S

Θ for some Θ
such that [Q1 p⊕ Q2℄

a=⇒ Θ. From Lemma 4.1 we know that Θ must take the form
p · [Q′

1℄+ (1− p) · [Q′
2℄, where [Qi℄

a=⇒ [Q′
i℄ for i = 1, 2. Hence P ′ ⊑S Q

′
1 p⊕ Q′

2, and
by induction we get P ′ ⊑Emay Q

′
1 p⊕ Q′

2. Then we can derive a.P ′ ⊑Emay Q1 p⊕ Q2 as
in the previous case.

Now we use (11.1) to show that P ⊑S Q implies P ⊑Emay Q. Suppose P ⊑S Q. Ap-
plying Definition 4.3 with the understanding that any distribution Θ ∈ D(sCSP) can be
written as [Q′

℄ for some Q′ ∈ pCSP, this means that [P ℄ ⊳
S
[Q′

℄ for some [Q℄
τ̂=⇒ [Q′

℄.
The Derivative Lemma yields Q′ ⊑Emay Q. So it suffices to show P ⊑Emay Q

′. We know
that [P ℄ ⊳

S
[Q′

℄ means that

[P ℄ =
∑

k∈K

rk · tk tk ⊳
S
[Q′

k℄ [Q′
℄ =

∑

k∈K

rk · [Q
′
k℄

for some K, rk ∈ (0, 1], tk ∈ sCSP and Q′
k ∈ pCSP. Now

(1) [P ℄ = [

⊕
k∈K rk·tk℄. By Lemma 9.4 we have P =prob

⊕
k∈K rk·tk.

(2) [Q′
℄ = [

⊕
k∈K rk·Q

′
k℄. Again Lemma 9.4 yields Q′ =prob

⊕
k∈K rk·Q

′
k.

(3) tk ⊳
S
[Q′

k℄ implies tk ⊑EmayQ
′
k by (11.1). Therefore,

⊕
k∈K rk·tk ⊑Emay

⊕
k∈K rk·Q

′
k.

Combining (1), (2) and (3) we obtain P ⊑Emay Q
′, hence P ⊑Emay Q.

Proposition 11.3. Let P and Q be in nCSP. Then P ⊑FS Q implies P ⊑Emust Q.

Proof. Similar to the proof of Proposition 11.2, but using a reversed orientation of the
preorders. The only real difference is the case (2), which we consider now. So assume
Q ⊳

FS
[P ℄, where Q has the form

e
i∈I ai.Qi. Let X be any set of actions such that

X∩{ai}i∈I = ∅; then
e
i∈I ai.Qi

X−6→. Therefore, there exists a P ′ such that [P ℄ τ̂=⇒ [P ′
℄

X−6→.
By the Derivative lemma,

P ⊑Emust P
′ (11.2)

Since
e
i∈I ai.Qi

ai−→ [Qi℄, there exist Pi, P
′
i , P

′′
i such that [P ℄ τ̂=⇒ [Pi℄ ai−→ [P ′

i ℄
τ̂=⇒ [P ′′

i ℄

and [Qi℄ ⊳
FS

[P ′′
i ℄. Now

P ⊑Emust Pi (11.3)

using the Derivative lemma, and P ′
i ⊑FS Qi, by Definition 4.3. By induction, we have

P ′
i ⊑Emust Qi, hence m

i∈I

ai.P
′
i ⊑Emust

m

i∈I

ai.Qi (11.4)

The desired result is now obtained as follows:

P ⊑Emust P ′ ⊓
l

i∈I

Pi by (I1), (11.2) and (11.3)

⊑Emust

m

i∈I

ai.P
′
i by (Must2′)

⊑Emust

m

i∈I

ai.Qi by (11.4)

Propositions 11.2 and 11.3 give us the completeness result stated in Theorem 10.1.
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12. Conclusions and related work

In this paper we continued our previous work [8, 10] in our quest for a testing theory for
processes which exhibit both nondeterministic and probabilistic behaviour. We have studied
three different aspects of may- and must testing preorders for finite processes: (i) we have
shown that the may preorder can be characterised as a co-inductive simulation relation, and
the must preorder as a failure simulation relation; (ii) we have given a characterisation of
both preorders in a finitary modal logic; and (iii) we have also provided complete axioma-
tisations for both preorders over a probabilistic version of recursion-free CSP. Although we
omitted our parallel operator |A from the axiomatisations, it and similar CSP and CCS-
like parallel operators can be handled using standard techniques, in the must case at the
expense of introducing auxiliary operators. In future work we hope to extend these results
to recursive processes.

We believe these results, in each of the three areas, to be novel, although a number of
partial results along similar lines exist in the literature. These are detailed below.

Related work: Early additions of probability to CSP include work by Lowe [28], Seidel
[39] and Morgan et al. [32]; but all of them were forced to make compromises of some
kind in order to address the potentially complicated interactions between the three forms of
choice. The last [32] for example applied the Jones/Plotkin probabilistic powerdomain [19]
directly to the failures model of CSP [2], the resulting compromise being that probability
distributed outwards through all other operators; one controversial result of that was that
internal choice was no longer idempotent, and that it was “clairvoyant” in the sense that it
could adapt to probabilistic-choice outcomes that had not yet occurred. Mislove addressed
this problem in [31] by presenting a denotational model in which internal choice distributed
outwards through probabilistic choice. However, the distributivities of both [32] and [31]
constitute identifications that cannot be justified by our testing approach; see [8].

In Jou and Smolka [24], as in [28, 39], probabilistic equivalences based on traces, failures
and readies are defined. These equivalences are coarser than ≃pmay. For example, the
two processes in Example 2.2 cannot be distinguished by the equivalences of [24, 28, 39].
However, we can tell them apart by the test given in Example 3.3.

Probabilistic extensions of testing equivalences [6] have been widely studied. There
are two different proposals on how to include probabilistic choice: (i) a test should be non-
probabilistic, that is there is no occurrence of probabilistic choice in a test [27, 4, 20, 26, 12];
or (ii) a test can be probabilistic, that is probabilistic choice may occur in tests as well as
processes [5, 41, 33, 22, 37, 23, 3]. This paper adopts the second approach.

Some work [27, 4, 5, 33] does not consider nondeterminism but deals exclusively with
fully probabilistic processes. In this setting a process passes a test with a unique probability
instead of a set of probabilities, and testing preorders in the style of [6] have been char-
acterised in terms of probabilistic traces [5] and probabilistic acceptance trees [33]. Cazorla
et al. [3] extended the results of [33] with nondeterminism, but suffered from the same
problems as [32].

The work most closely related to ours is [22, 23]. In [22] Jonsson and Wang characterised
may- and must-testing preorders in terms of “chains” of traces and failures, respectively,
and in [23] they presented a “substantially improved” characterisation of their may-testing
preorder using a notion of simulation which is weaker than ⊑S (cf. Definition 4.3). They
only considered processes without τ -moves. In [8] we have shown that tests with internal
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moves can distinguish more processes than tests without internal moves, even when applied
to processes that have no internal moves themselves.

Segala [37] defined two preorders called trace distribution precongruence (⊑TD) and
failure distribution precongruence (⊑FD). He proved that the former coincides with an

infinitary version of ⊑̂Ω
pmay (cf. Definition 6.1) and that the latter coincides with an infinitary

version of ⊑̂Ω
pmust. In [29] it has been shown that ⊑TD coincides with a notion of simulation

akin to ⊑S. Other probabilistic extensions of simulation occurring in the literature are
reviewed in [8].

Appendix A. Resolution-based testing

A probabilistic automaton consists of a pLTS 〈S,L,→〉 and a distribution ∆◦ over S. Since
we only consider probabilistic automata with L = Actτ ∪ Ω, we omit it and write a prob-
abilistic automaton simply as a triple 〈S,∆◦,→〉 and call ∆◦ the initial distribution of the
automaton. The operational semantics of a pCSPΩ process P can thus be viewed as a prob-
abilistic automaton with initial distribution ∆◦ := [P ℄. States in a probabilistic automata
that are not reachable from the initial distribution are generally considered irrelevant and
can be omitted.

A probabilistic automaton is called finite if there exists a function depth : S∪D(S) → N

such that s ∈ ⌈∆⌉ implies depth(s) < depth(∆) and s α−→ ∆ implies depth(s) > depth(∆).
Finite probabilistic automata can be drawn as explained at the end of Section 2.

A fully probabilistic automaton is one in which each state enables at most one action,
and (general) probabilistic automata can be “resolved” into fully probabilistic automata by
pruning away multiple action-choices until only single choices are left, possibly introducing
some linear combinations in the process. We define this formally for probabilistic automata
representing pCSPΩ expressions.

Definition A.1. [10] A resolution of a distribution ∆◦ ∈ D(sCSPΩ) is a fully probabilistic
automaton 〈R,Θ◦,→〉 such that there is a resolving function f : R→ sCSPΩ which satisfies:

(i) f(Θ◦) = ∆◦

(ii) if r α−→ Θ then f(r) α−→ f(Θ)
(iii) if r 6→ then f(r) 6→

where f(Θ) is the distribution defined by f(Θ)(s) :=
∑

f(r)=s Θ(r).

Note that resolutions of distributions ∆◦ ∈ D(sCSPΩ) are always finite. We define a function
which yields the probability that a given fully probabilistic automaton will start with a
particular sequence of actions.

Definition A.2. [10] Given a fully probabilistic automaton R = 〈R,∆◦,→〉, the probability
that R follows the sequence of actions σ ∈ Σ∗ from its initial distribution is given by
PrR(σ,∆◦), where PrR : Σ∗ ×R→ [0, 1] is defined inductively by

PrR(ε, r) := 1 and PrR(ασ, r) :=

{
PrR(σ,∆) if r α−→ ∆
0 otherwise

and PrR(σ,∆) := Exp∆(PrR(σ, )) =
∑

r∈⌈∆⌉ ∆(r) · PrR(σ, r). Here ε denotes the empty

sequence of actions and ασ the sequence starting with α ∈ Σ and continuing with σ ∈ Σ∗.
The value PrR(σ, r) is the probability that R proceeds with sequence σ from state r.
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Now let Σ∗α be the set of finite sequences in Σ∗ that contain α exactly once, and that
at the end. Then the probability that the fully probabilistic automaton R ever performs an
action α is given by

∑
σ∈Σ∗α PrR(σ,∆◦).

We recall the results-gathering function W given in Definition 5 of [10].

Definition A.3. For a fully probabilistic automaton R, let its success tuple W(R) ∈ [0, 1]Ω

be such that W(R)(ω) is the probability that R ever performs the action ω.
Then for a distribution ∆◦ ∈ D(sCSPΩ) we define the set of its success tuples to be

those resulting as above from all its resolutions separately:

W(∆◦) := {W(R) | R is a resolution of ∆◦}.

We relate these sets of tuples to Definition 6.1, in which similar sets are produced “all
at once,” that is without introducing resolutions first. In fact we will find that they are

the same. Note that Definition 6.1 of V̂Ω
l extends smoothly to states and distributions in

probabilistic automata. When applied to fully probabilistic automata, V̂Ω
l always yields

singleton sets, which we will loosely identify with their unique members; thus when we
write V̂Ω

l (∆)(ω) with ∆ a distribution in a fully probabilistic automaton, we actually mean
the ω-component of the unique element of V̂Ω

l (∆).

Lemma A.4. If R = 〈R,∆◦,→〉 is a finite fully probabilistic automaton, then

(1) V̂
Ω(∆) = V̂Ω

l (∆) for all ∆ ∈ D(R), and

(2) W(R) = V̂
Ω(∆◦).

Proof. (1) is immediate: since the automaton is fully probabilistic, convex closure has no

effect. For (2) we need to show that for all ω ∈ Ω we have W(R)(ω) = V̂
Ω(∆◦)(ω), i.e. that∑

σ∈Σ∗ω PrR(σ,∆◦) = (V̂Ω(∆◦))(ω). So let ω ∈ Ω. We show
∑

σ∈Σ∗ω

PrR(σ,∆) = V̂
Ω(∆)(ω) and

∑

σ∈Σ∗ω

PrR(σ, r) = V̂
Ω(r)(ω) (A.1)

for all ∆ ∈ D(R) and r ∈ R, by simultaneous induction on the depths of ∆ and r.

• In the base case r has no enabled actions. Then ∀i :
∑

σ∈Σ∗ω PrR(σ, r) = 0 and V̂
Ω(r) = ~0,

so V̂
Ω(r)(ω) = 0.

• Now suppose there is a transition r α−→ ∆ for some action α and distribution ∆. There
are two possibilities:

− α = ω. We then have V̂
Ω(s)(ω) = 1. Now for any finite non-empty sequence σ without

any occurrence of ω we have PrR(σω, r) = 0. Thus
∑

σ∈Σ∗ω PrR(σ, r) = PrR(ω, r) = 1
as required.

− α 6= ω. Since V̂
Ω(r) = α!V̂Ω(∆), we have V̂

Ω(r)(ω) = V̂
Ω(∆)(ω). On the other hand,

PrR(βσ, r) = 0 for β 6= α. Therefore
∑

σ∈Σ∗ω PrR(σ, r) =
∑

ασ∈Σ∗ω PrR(ασ, r)
=

∑
σ∈Σ∗ω PrR(ασ, r)

=
∑

σ∈Σ∗ω PrR(σ,∆)

= V̂
Ω(∆)(ω) by induction

= V̂
Ω(r)(ω) .

• Finally,
∑

σ∈Σ∗ω PrR(σ,∆) =
∑

σ∈Σ∗ω Exp∆(PrR(σ, )) = Exp∆(
∑

σ∈Σ∗ω PrR(σ, ))

= Exp∆(V̂Ω( )(ω)) = Exp∆(V̂Ω( ))(ω) = V̂
Ω(∆)(ω).
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Now we look more closely at the interaction of V̂
Ω
l and resolutions.

Lemma A.5. Let ∆◦ ∈ D(sCSPΩ).

(1) If 〈R,Θ◦,→〉 is a resolution of ∆◦, then V̂Ω
l (Θ◦) ∈ V̂Ω

l (∆◦).

(2) If o ∈ V̂Ω
l (∆◦) then there is a resolution 〈R,Θ◦,→〉 of ∆◦ such that V̂Ω

l (Θ◦) = o.

Proof.

(1) Let 〈R,Θ◦,→〉 be a resolution of ∆◦ with resolving function f . We observe that for any
Θ ∈ D(R) we have

∀r ∈ ⌈Θ⌉ : V̂Ω
l (r) ∈ V̂Ω

l (f(r)) implies V̂Ω
l (Θ) ∈ V̂Ω

l (f(Θ)) (A.2)

because
V̂Ω

l (Θ) =
∑

r∈⌈Θ⌉ Θ(r) · V̂Ω
l (r)

∈
∑

r∈⌈Θ⌉ Θ(r) · V̂Ω
l (f(r))

=
∑

s∈⌈f(Θ)⌉ f(Θ)(s) · V̂Ω
l (s)

= V̂Ω
l (f(Θ)) .

We now prove by induction on depth(r) that ∀r ∈ T : V̂
Ω
l (r) ∈ V̂

Ω
l (f(r)), from which

the required result follows in view of (A.2) and the fact that f(Θ◦) = ∆◦.

• In the base case we have r 6→, which implies f(r) 6→. Therefore, we have V̂Ω
l (r) =

~0 ∈ V̂
Ω
l (f(r)).

• Otherwise r has a transition r α−→ Θ for some α and Θ. By induction we have

V̂Ω
l (r′) ∈ V̂Ω

l (f(r′)) for all r′ ∈ ⌈Θ⌉. Using (A.2) we get V̂Ω
l (Θ) ∈ V̂Ω

l (f(Θ)). Now

V̂Ω
l (r) = α!V̂Ω

l (Θ) ∈ α!V̂Ω
l (f(Θ)) ⊆ V̂Ω

l (f(r))

where the last step follows from the fact that f(r) α−→ f(Θ) is one of the transitions
of f(r).

(2) This clause is proved by induction on depth(∆◦). First consider the special case that
∆◦ is a point distribution on some state s.
• In the base case we have s 6→. The probabilistic automaton 〈{s}, s, ∅〉 is a resolution

of ∆◦ = s with the resolving function being the identity. Clearly, this resolution
satisfies our requirement.

• Otherwise there is a finite, non-empty index set I such that s αi−→ ∆i for some actions
αi and distributions ∆i. If o ∈ V̂Ω

l (∆◦) = V̂Ω
l (s), then by the definition of V̂Ω

l we have
o =

∑
i∈I pi·αi!oi with oi ∈ V̂

Ω
l (∆i) and

∑
i∈I pi = 1 for some pi ∈ [0, 1]. By induction,

for each i ∈ I there is a resolution 〈Ri,Θ◦
i ,→i〉 of ∆i with resolving function fi such

that V̂Ω
l (Θ◦

i ) = oi. Without loss of generality, we assume that Ri is disjoint from
Rj for i 6= j, as well as from {ri | i ∈ I}. We now construct a fully probabilistic
automaton 〈R,Θ◦,→′〉 as follows:
• R := {ri | i ∈ I} ∪

⋃
i∈I Ri

• Θ◦ :=
∑

i∈I pi · ri
• →′:= {ri

αi−→ Θ◦
i | i ∈ I} ∪

⋃
i∈I →i.

This automaton is a resolution of ∆◦ = s with resolving function f defined by

f(r) =

{
s if r = ri for i ∈ I
fi(r) if r ∈ Ri for i ∈ I.
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The resolution thus constructed satisfies our requirement because

V̂Ω
l (Θ◦) = V̂Ω

l (
∑

i∈I pi · ri)

=
∑

i∈I pi · V̂
Ω
l (ri)

=
∑

i∈I pi · αi!V̂
Ω
l (Θ◦

i )
=

∑
i∈I pi · αi!oi

= o .

We now consider the general case that ∆◦ is a proper distribution with ⌈∆◦⌉ = {sj | j ∈J}
for some finite index set J . Using the reasoning in the above special case, we have
a resolution 〈Rj ,Θ◦

j ,→j〉 of each distribution sj . Without loss of generality, we as-
sume that Rj is disjoint from Rk for j 6= k. Consider the probabilistic automaton
〈
⋃
j∈J Rj ,

∑
j∈J ∆◦(sj) · Θ◦

j ,
⋃
j∈J →j〉. It is a resolution of ∆◦ satisfying our require-

ment. If o ∈ V̂Ω
l (∆◦) then o =

∑
j∈J ∆◦(sj)·oj with oj ∈ V̂Ω

l (sj). Since oj = V̂Ω
l (Θ◦

j),
we have o = V̂Ω

l (
∑

j∈J ∆◦(sj) · Θ◦
j).

We can now give the result relied on in Section 6.

Proposition A.6. Let ∆◦ ∈ D(sCSPΩ). Then we have that W(∆◦) = V̂Ω
l (∆◦).

Proof. Combine Lemmas A.4 and A.5.
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