
Logical Methods in Computer Science
Vol. 7 (2:16) 2011, pp. 1–37
www.lmcs-online.org

Submitted Jan. 8, 2010
Published Jun. 7, 2011

LOGICAL STEP-INDEXED LOGICAL RELATIONS ∗

DEREK DREYER a, AMAL AHMED b, AND LARS BIRKEDAL c

a MPI-SWS, Germany
e-mail address: dreyer@mpi-sws.org

b Indiana University, USA
e-mail address: amal@cs.indiana.edu

c IT University of Copenhagen, Denmark
e-mail address: birkedal@itu.dk

Abstract. Appel and McAllester’s “step-indexed” logical relations have proven to be a
simple and effective technique for reasoning about programs in languages with semanti-
cally interesting types, such as general recursive types and general reference types. How-
ever, proofs using step-indexed models typically involve tedious, error-prone, and proof-
obscuring step-index arithmetic, so it is important to develop clean, high-level, equational
proof principles that avoid mention of step indices.

In this paper, we show how to reason about binary step-indexed logical relations in
an abstract and elegant way. Specifically, we define a logic LSLR, which is inspired by
Plotkin and Abadi’s logic for parametricity, but also supports recursively defined relations
by means of the modal “later” operator from Appel, Melliès, Richards, and Vouillon’s
“very modal model” paper. We encode in LSLR a logical relation for reasoning relationally
about programs in call-by-value System F extended with general recursive types. Using
this logical relation, we derive a set of useful rules with which we can prove contextual
equivalence and approximation results without counting steps.

1. Introduction

Appel and McAllester [6] invented the step-indexed model in order to express “semantic”
proofs of type safety for use in foundational proof-carrying code. The basic idea is to
characterize type inhabitation as a predicate indexed by the number of steps of computation
left before “the clock” runs out. If a term e belongs to a type τ for any number of steps
(i.e., for an arbitrarily wound-up clock), then it is truly semantically an inhabitant of τ .

The step-indexed characterization of type inhabitation has the benefit that it can be
defined inductively on the step index k. This is especially useful when modeling semantically
troublesome features like recursive and mutable reference types, whose inhabitants would be
otherwise difficult to define inductively on the type structure. Moreover, the step-indexed

1998 ACM Subject Classification: ??
Key words and phrases: ??

∗ This is an expanded and revised version of a paper that appeared at LICS’09. In addition to presenting
improved results, this version corrects a technical flaw in the earlier paper (see Section 7).

LOGICAL METHODS
l IN COMPUTER SCIENCE DOI:10.2168/LMCS-7 (2:16) 2011

c© D. Dreyer, A. Ahmed, and L. Birkedal
CC© Creative Commons

http://creativecommons.org/about/licenses

2 D. DREYER, A. AHMED, AND L. BIRKEDAL

model’s reliance on very simple mathematical constructions makes it particularly convenient
for use in foundational type-theoretic proofs, in which all mathematical machinery must be
mechanized.

In subsequent work, Ahmed and coworkers have shown that the step-indexed model
can also be used for relational reasoning about programs in languages with semantically
interesting types, such as general recursive types and general reference types [4, 3, 5, 24].

However, a continual annoyance in working with step-indexed logical relations, as well
as a stumbling block to their general acceptance, is the tedious, error-prone, and proof-
obscuring reasoning about step indices that seems superficially to be an essential element
of the method. To give a firsthand example: the first two authors (together with Andreas
Rossberg) recently developed a step-indexed technique for proving representation indepen-
dence of “generative” ADTs, i.e., ADTs that employ, in an interdependent fashion, both
local state and existential type abstraction [5]. While the technique proved useful on a va-
riety of examples, we found that our proofs using it tended to be cluttered with step-index
arithmetic, to the point that their main substance was obscured. Thus, it seems clear that
widespread acceptance of step-indexed logical relations will hinge on the development of
abstract proof principles for reasoning about them.

The key difficulty in developing such abstract proof principles is that, in order to reason
about things being infinitely logically related, i.e., belonging to a step-indexed logical rela-
tion at all step levels—which is what one ultimately cares about—one must reason about
their presence in the logical relation at any particular step index, and this forces one into
finite, step-specific reasoning.

To see a concrete example of this, consider Ahmed’s step-indexed logical relation for
proving equivalence of programs written in an extension of System F with recursive types [4].
One might expect to have a step-free proof principle for establishing that two function values
are infinitely logically related, along the lines of: λx1.e1 and λx2.e2 are infinitely logically
related at the type σ → τ iff, whenever v1 and v2 are infinitely related at σ, it is the case
that e1[v1/x1] and e2[v2/x2] are infinitely related at τ . Instead, in Ahmed’s model we have
that λx1.e1 and λx2.e2 are infinitely related at σ → τ iff for all n ≥ 0, whenever v1 and v2
are related at σ for n steps, e1[v1/x1] and e2[v2/x2] are related at τ for n steps. That is, the
latter is a stronger property—if λx1.e1 and λx2.e2 map n-related arguments to n-related
results (for any n), then they also map infinitely-related arguments to infinitely-related
results, but the converse is not necessarily true. Thus, in proving infinite properties of the
step-indexed model, it seems necessary to reason about an arbitrary finite index n.

In this paper, we show how to alleviate this problem by reasoning inside a logic we call
LSLR. Our approach involves a novel synthesis of ideas from two well-known pieces of prior
work: (1) Plotkin and Abadi’s logic for relational reasoning about parametric polymorphism
(hereafter, PAL) [30], and (2) Appel, Melliès, Richards, and Vouillon’s “very modal model”
paper (hereafter, AMRV) [7].

PAL is a second-order intuitionistic logic extended with axioms for equational reasoning
about relational parametricity in pure System F. Plotkin and Abadi show how to define a
logical relation interpretation of System F types in terms of the basic constructs of their
logic. Second-order quantification over abstract relation variables is important in defining
the relational interpretation of polymorphic types.

In this paper, we adapt the basic apparatus of PAL toward a new purpose: reasoning
operationally about contextual equivalence and approximation in a call-by-value language
Fµ with recursive and polymorphic types. We will show how to encode in our logic LSLR a

LOGICAL STEP-INDEXED LOGICAL RELATIONS ∗ 3

logical relation that is sound and complete with respect to contextual approximation, based
on a step-indexed relation previously published by Ahmed [4]. Compared with Ahmed’s
relation, ours is more abstract: proofs using it do not require any step-index arithmetic.
Furthermore, whereas Ahmed’s relation is fundamentally asymmetric, our logic enables the
derivation of both equational and inequational reasoning principles.

In order to adapt PAL in this way, we need in particular the ability to (1) reason
about call-by-value and (2) logically interpret recursive types of Fµ. To address (1), we
employ atomic predicates (and first-order axioms) related to CBV reduction instead of
PAL’s equational predicates and axioms. This approach is similar to earlier logics of partial
terms for call-by-value calculi with simple [28] and recursive (but not universal) types [2].

For handling recursive types, it suffices to have some way of defining recursive relations
µr.R in the logic. This can be done when R is suitably “contractive” in r; to express con-
tractiveness, we borrow the “later” ⊲P operator from AMRV, which they in turn borrowed
from Gödel-Löb logic [23]. Hence, LSLR is in fact not only a second-order logic (like PAL)
but a modal one, and the truth value of a proposition is the set of worlds (think: step levels)
at which it holds. The key reasoning principle concerning the later operator is the Löb rule,
which states that (⊲P ⇒ P) ⇒ P . This can be viewed as a principle of induction on step
levels, but we shall see that, when it is employed in connection with logical relations, it
also has a coinductive flavor reminiscent of the reasoning principles used in bisimulation
methods like Sumii and Pierce’s [34].

1.1. Overview. In Section 2, we present our language under consideration, Fµ.
In Section 3, we present our logic LSLR described above. We give a Kripke model of

LSLR with worlds being natural numbers, and “future worlds” being smaller numbers, so
that semantic truth values are downward-closed sets of natural numbers. We also present
a set of basic axioms that are sound with respect to this model, and which are useful in
deriving more complex rules later in the paper.

In Section 4, we define a logical relation interpretation of Fµ types directly in terms
of the syntactic relations of LSLR. Then we derive a set of useful rules for establishing
properties about the logical relation. Using these rules, it is easy to show that the logical
relation is sound and complete w.r.t. contextual approximation. We also show in this section
how to define a symmetric version of the logical relation, which enables direct equational
reasoning about Fµ programs.

In Section 5, we give examples of contextual equivalence proofs that employ purely

logical reasoning using the derivable rules from Section 4 (in particular, without any kind
of step-index arithmetic).

In Section 6, we demonstrate how our LSLR proofs improve on previous step-indexed
proofs by comparing our proof for one of the examples from Section 5 to a proof of that
example in the style of Ahmed [4].

In Section 7, we explain how the present version of LSLR improves on (and corrects a
technical flaw in) the version we published previously in LICS 2009 [14].

Finally, in Section 8, we discuss related work and conclude.

2. The Language Fµ

We consider Fµ, a call-by-value λ-calculus with impredicative polymorphism and iso-recur-
sive types. The syntax of Fµ is shown in Figure 1. Sum and recursive type injections are

4 D. DREYER, A. AHMED, AND L. BIRKEDAL

Types τ ::= α | unit | int | bool | τ1 × τ2 | τ1 + τ2 | τ1 → τ2 |
∀α. τ | ∃α. τ | µα. τ

Prim Ops o ::= + | − | = | < | ≤ | . . .

Terms e ::= x | 〈〉 | ±n | o(e1, . . . , en) |
true | false | if e then e1 else e2 |
〈e1, e2〉 | fst e | snd e |
inlτ e | inrτ e | case e of inlx1⇒e1 | inrx2⇒e2 |
λx : τ. e | e1 e2 | Λα. e | e τ |
pack τ, e as∃α. τ ′ | unpack e1 asα, x in e2 |
rollτ e | unrolle

Values v ::= x | 〈〉 | ±n | true | false | 〈v1, v2〉 | inlτ v | inrτ v |
λx : τ. e | Λα. e | pack τ1, v as∃α. τ | rollτ v

Figure 1: Fµ Syntax

Eval. Contexts E ::= [·] | o(v1, . . . , vi−1, E, ei+1, . . . , en) |
ifE then e1 else e2 | 〈E, e2〉 | 〈v1, E〉 | fstE | sndE |
inlτ E | inrτ E | caseE of inlx1⇒e1 | inrx2⇒e2 |
E e | v E | E τ | pack τ1, E as∃α. τ | unpackE asα, x in e2 |
rollτ E | unrollE

e ❀ e′

if truethen e1 else e2 ❀ e1
if falsethen e1 else e2 ❀ e2

fst 〈v1, v2〉 ❀ v1
snd 〈v1, v2〉 ❀ v2

case (inlτ v) of inlx1⇒e1 | inrx2⇒e2 ❀ e1[v/x1]
case (inrτ v) of inlx1⇒e1 | inrx2⇒e2 ❀ e2[v/x2]

(λx : τ. e) v ❀ e[v/x]
(Λα. e) τ ❀ e[τ/α]

unpack (pack τ, v as∃α. τ1) asα, x in e ❀ e[v/x][τ/α]
unroll (rollτ v) ❀ v

e ❀ e′

E[e] ❀ E[e′]

Figure 2: Fµ Dynamic Semantics

type-annotated to ensure unique typing, but we will often omit the annotations when they
are obvious from context. Figure 2 shows the left-to-right call-by-value dynamic semantics
for the language, defined as a small-step relation on terms (written e ❀ e′), which employs
evaluation contexts E in the standard way. Note that the reduction relation is deterministic.

Fµ typing judgments have the form Γ ⊢ e : τ , where the context Γ binds type variables
α, as well as term variables x: Γ ::= · | Γ, α | Γ, x : τ . The typing rules are also standard
and are given in full in Appendix A (Figure 10).

2.1. Contextual Approximation and Equivalence. A context C is a term with a single
hole [·] in it. The typing judgment for contexts has the form ⊢ C : (Γ ⊢ τ) (Γ′ ⊢ τ ′),

LOGICAL STEP-INDEXED LOGICAL RELATIONS ∗ 5

Relation Variables r ∈ RelVar

Fµ Variable Contexts X ::= · | X , α | X , x
Fµ Variable Substitutions γ ::= · | γ, α 7→ τ | γ, x 7→ e
Relation Contexts R ::= · | R, r
Relation Substitutions ϕ ::= · | ϕ, r 7→ R
Proposition Contexts P ::= · | P , P
Combined Contexts C ::= X ;R;P
Atomic Relations A,B ::= e1 = e2 | · · ·
Relations P,Q,R, S ::= r | A | ⊤ | ⊥ | P ∧Q | P ∨Q | P ⇒ Q |

∀X .P | ∃X .P | ∀R.P | ∃R.P |
x.P | e ∈ R | µr.R | ⊲P

Figure 3: Syntax of Core LSLR

where (Γ ⊢ τ) indicates the type of the hole. This judgment essentially says that if e is a
term such that Γ ⊢ e : τ , then Γ′ ⊢ C[e] : τ ′. Its formal definition appears in Appendix A
(Figures 11 and 12).

We define contextual approximation (Γ ⊢ e1�
ctx e2 : τ) to mean that, for any well-typed

program context C with a hole of the type of e1 and e2, the termination of C[e1] (written
C[e1] ⇓) implies the termination of C[e2]. Contextual equivalence (Γ ⊢ e1 ≈

ctx e2 : τ) is
then defined as approximation in both directions.

Definition 2.1 (Contextual Approximation & Equivalence). Let Γ ⊢ e1 : τ and Γ ⊢ e2 : τ .

Γ ⊢ e1 �
ctx e2 : τ

def
= ∀C, τ ′. (⊢ C : (Γ ⊢ τ) (· ⊢ τ ′) ∧ C[e1] ⇓) ⇒ C[e2] ⇓

Γ ⊢ e1 ≈
ctx e2 : τ

def
= Γ ⊢ e1 �

ctx e2 : τ ∧ Γ ⊢ e2 �
ctx e1 : τ

3. The Logic LSLR

LSLR is a second-order intuitionistic modal logic supporting a primitive notion of term
relations, as well as the ability to define such relations recursively.

3.1. Syntax. The core syntax of LSLR is given in Figure 3.
Fµ variable contexts X are similar to Fµ contexts Γ, except that they omit type anno-

tations on term variables. Instead, well-typedness of variables is modeled through explicit
typing hypotheses in the proposition context P (see below). Fµ variable substitutions γ
map variables bound in Fµ variable contexts to objects of the appropriate syntactic class.

As a matter of notation, we will use y and t as term variables in addition to x. Often,
we write x or y to denote values, whereas t stands for arbitrary terms. (This is merely a
mnemonic, however. The fact that x or y is a value will always be guaranteed by some
separate, explicit assumption.)

Relation contexts R bind relation variables r, which stand for relations of arbitrary
arity between Fµ terms. For ease of notation, we assume that relation variables r come
equipped implicitly with a particular arity (namely, arity(r)). Relation substitutions ϕ
map relation variables to relations R of the appropriate arity, which we describe below.

6 D. DREYER, A. AHMED, AND L. BIRKEDAL

Proposition contexts P are sets of propositions, which are just nullary relations that we
typically denote using P and Q. (Note: We treat all three kinds of contexts as unordered
sets, and use comma to denote disjoint union of such sets.)

We write C to denote a combined context X ;R;P. Correspondingly, we also define
C,X ′ to mean X ,X ′;R;P (and similarly for C,R′ and C,P ′).

Relations R (of which propositions P are a subset) fall into several categories: variable
relations (r), atomic relations (A), first-order propositions (⊤, ⊥, P ∧Q, P ∨Q, P ⇒ Q,
∀X .P , ∃X .P), second-order propositions (∀R.P , ∃R.P), relation introduction and elimina-
tion (x.P , e ∈ R), recursive relations (µr.R), and the later modality (⊲P) borrowed from
AMRV [7].

Atomic propositions A and the axioms concerning them are essentially orthogonal to
the other components of the logic. We have listed in Figure 3 one particularly central atomic
proposition, e1 = e2, which says that e1 and e2 are syntactically equal modulo renaming of
bound variables. In Section 4.2, we will introduce several other atomic propositions related
to the reduction semantics of Fµ. The only common requirement we impose on all of these
atomic propositions is that they are first-order, in the sense that they only depend on type
and term variables, not relation variables.

The first-order connectives are self-explanatory. The second-order ones provide the
ability to abstract over a relation, which is critical in defining logical relations for polymor-
phic and existential types. As for the relational introduction and elimination forms: x.P ,
which we sometimes write as (x).P , introduces the term relation that one would write in
set notation as {(x) | P}, and e ∈ R says that the tuple of terms (e) belong to the relation
R. In general, we use the overbar notation to denote a possibly nullary tuple of objects.

A recursive relation µr.R denotes the relation R that may refer to itself recursively
via the variable r. In order to ensure that such relations are well-founded, we require
that R be contractive in r, a notion that we make precise (following AMRV) using the
modal ⊲ operator. Specifically, we define R to be contractive in r if r may only appear in
R underneath the ⊲ operator (i.e., inside propositions of the form ⊲P). Intuitively (and
formally), ⊲P means that P is true in all strictly future worlds of the current one. As a
result, the meaning of µr.R only depends recursively on its own meaning in strictly future
worlds. Thus, assuming that the “strictly future world” ordering is well-founded, we can
define the meaning of µr.R by induction on strictly future worlds.

3.2. A “Step-Indexed” Model of LSLR. Figure 4 defines a Kripke model for LSLR,
where the worlds are natural numbers and m is a strictly future world of n if m < n. The
model enjoys monotonicity, meaning that if a proposition is true in world n, it is true in all
strictly future worlds as well. Thus, the set of semantic truth values is the complete Heyting
algebra P↓(N) of downward-closed subsets of N, ordered by inclusion (or, isomorphically,
the complete Heyting algebra ~ω of vertical natural numbers with infinity).

We interpret relations and proposition contexts under some semantic interpretation
δ, which maps their free relation variables to semantic (i.e., world-indexed, monotone)
relations of the appropriate arity. We write JRKδne (resp. JPKδn) to mean that, under
interpretation δ, e ∈ R (resp. P) is true in world n. The interpretations refer to JX K and
JRK. The semantic interpretation of a variable context, JX K, is the set of closing variable
substitutions γ whose domains equal X . The semantic interpretation of a relation context,
JRK, is the set of semantic relation substitutions δ whose domains equal R.

LOGICAL STEP-INDEXED LOGICAL RELATIONS ∗ 7

If n = 0, then:
JRKδne

def
= ⊤

JPKδn
def
= ⊤

If n > 0, then:
JrKδne

def
= δrne

JAKδne
def
= I(A)e

J⊤Kδn
def
= ⊤

J⊥Kδn
def
= ⊥

JP ∧QKδn
def
= JP Kδn ∧ JQKδn

JP ∨QKδn
def
= JP Kδn ∨ JQKδn

JP ⇒ QKδn
def
= ∀k ≤ n. JP Kδk ⇒ JQKδk

J∀X .P Kδn
def
= ∀γ ∈ JX K . JγP Kδn

J∃X .P Kδn
def
= ∃γ ∈ JX K . JγP Kδn

J∀R.P Kδn
def
= ∀δ′ ∈ JRK . JP K(δ, δ′)n

J∃R.P Kδn
def
= ∃δ′ ∈ JRK . JP K(δ, δ′)n

Jx.P Kδne
def
= JP [e/x]Kδn

Je ∈ RKδn
def
= JRKδne

Jµr.RKδne
def
= JR[µr.R/r]Kδne

J⊲P Kδn
def
= JP Kδ(n− 1)

JPKδn
def
= ∀P ∈ P . JP Kδn

Figure 4: Kripke “Step-Indexed” Model of LSLR

The interpretations in Figure 4 are defined by a double induction, first on the world n
(in world 0, everything is true), and second on the “size” of the relation being interpreted.
The size of a relation is defined to equal the number of logical/relational connectives in it,
ignoring all connectives appearing inside a proposition of the form ⊲P (i.e., ⊲P has constant
size, no matter what P is). This size metric makes it possible to interpret a recursive relation
µr.R directly in terms of its expansion R[µr.R/r]. Assuming the relation is well-formed, this
interpretation is well-defined because the expansion has a smaller size. (Specifically, since
R is contractive in r, we know that r may only appear inside constant-size propositions in
R, so the size of R[µr.R/r] equals the size of R, which is smaller than the size of µr.R.)

Since ⊲P may have smaller size than P , it is critical that the interpretation of ⊲P in
world n be defined in terms of the interpretation of P in strictly future worlds (i.e., worlds
strictly less than n). Fortunately, this is no problem since, as explained above, ⊲P means
precisely that P is true in all strictly future worlds. Thanks to the built-in monotonicity
restriction, it suffices to say that ⊲P is true in world n iff P is true in world n− 1.

Otherwise, the interpretation is mostly standard. One point of note is the interpretation
of implication P ⇒ Q, which quantifies over all future worlds in order to ensure monotonic-
ity. Another is the interpretation of atomic relations A. We assume an interpretation
function I, which maps closed atomic relations A to absolute (i.e., world-independent)
relations. As one instance, we define I(e1 = e2) to be true (⊤) iff e1 is α-equivalent to e2.

Using this model, we can define our main logical judgment, X ;R;P ⊢ P . Assuming that
P and P are well-formed in X ;R (see Appendix B for the definition of proposition/relation

8 D. DREYER, A. AHMED, AND L. BIRKEDAL

C ⊢ P
C ⊢ ⊲P

(mono)
C, ⊲P ⊢ P

C ⊢ P
(löb)

C ⊢ ⊲(P ∧Q)

C ⊢ ⊲P ∧ ⊲Q
(⊲∧)

C ⊢ ⊲(P ∨Q)

C ⊢ ⊲P ∨ ⊲Q
(⊲∨)

C ⊢ ⊲(P ⇒ Q)

C ⊢ ⊲P ⇒ ⊲Q
(⊲⇒)

C ⊢ ⊲∀X .P

C ⊢ ∀X .⊲P
(⊲∀1)

C ⊢ ⊲∃X .P

C ⊢ ∃X .⊲P
(⊲∃1)

C ⊢ ⊲∀R.P

C ⊢ ∀R.⊲P
(⊲∀2)

C ⊢ ⊲∃R.P

C ⊢ ∃R.⊲P
(⊲∃2)

C ⊢ e1 = e2 C ⊢ P [e1/x]

C ⊢ P [e2/x]
(replace1)

C ⊢ R1 ≡ R2 C ⊢ P [R1/r]

C ⊢ P [R2/r]
(replace2)

C ⊢ e ∈ x.P

C ⊢ P [e/x]
(elem)

C ⊢ e ∈ µr.R

C ⊢ e ∈ R[µr.R/r]
(elem-µ)

Figure 5: Core Inference Rules of LSLR

well-formedness), the judgment is interpreted as follows:

X ;R;P ⊢ P
def
= ∀n ≥ 0. ∀γ ∈ JX K . ∀δ ∈ JRK . JγPKδn ⇒ JγP Kδn

Note that we interpret the judgment directly as a statement in the model, rather than
inductively defining it via a set of inference rules. This allows us to prove new inference
rules sound whenever needed. In the next section, however, we will establish a core set
of sound inference rules that will enable us to reason about the judgment (in most cases)
without having to appeal directly to the model.

The judgment asserts that under any closing substitution γ for X and any semantic
interpretation δ for R, and in any world n, the hypotheses P imply the conclusion P . The
key here is that, while n is universally quantified and thus not explicitly mentioned in the
logical judgment, the hypotheses P and the conclusion P are both interpreted in the same

world (i.e., step level) n. This is what allows us to prove something like “f1 and f2 map
n-related arguments to n-related results” (as discussed in the introduction) without having
to talk about a specific step level n.

Finally, it is worth noting that, while the Kripke model we have defined here may be
viewed as a “step-indexed” model, nothing in the model mentions steps of computation. We
happen to be using natural numbers as our worlds, but there is no computational meaning
attached to them at this point. The connection between worlds and (certain) steps of
computation will be made later on, when we define the logical relation for Fµ in Section 4.

3.3. Core Inference Rules. We now present the core inference rules of LSLR, all of
which are easy to prove sound directly in the model. The most interesting ones are shown
in Figure 5; the remainder, all of which are standard rules for second-order intuitionistic
logic, appear in Appendix B.

Rule mono is the axiom of monotonicity, stating that propositions that are true now
(in the current world) are also true later (in future worlds). The löb rule, adapted from
AMRV, provides a clean induction principle over future worlds. If under the assumption
that A is true later (in all strictly future worlds) we can prove that it is true in the current
world, then by induction A is true in the current world. The induction argument requires
no base case because all propositions are assumed true in the final world (i.e., world 0).

LOGICAL STEP-INDEXED LOGICAL RELATIONS ∗ 9

The remainder of the rules concerning the later operator state that the later operator
distributes over all propositional connectives. Not all these distributivity laws are valid in
classical Gödel-Löb logic or AMRV, but they hold here due to our axiom of monotonicity.
For example, we give here the proof of Rule ⊲⇒:

Proposition 3.1. Rule ⊲⇒ is admissible.

Proof. First, the forwards direction. Suppose J⊲(P ⇒ Q)Kδn and J⊲P Kδn. We want to show
J⊲QKδn. If n = 0, the proof is trivial, so assume n > 0. By the interpretation of ⊲, we know
JP ⇒ QKδ(n− 1) and JP Kδ(n − 1). Thus, by the interpretation of ⇒, we know JQKδ(n − 1),
which is equivalent to our goal.

Next, the backwards direction. Suppose J⊲P ⇒ ⊲QKδn; we want to show J⊲(P ⇒ Q)Kδn.
If n = 0, the proof is trivial, so assume n > 0. Our goal is equivalent to JP ⇒ QKδ(n − 1),
so suppose k ≤ n − 1 and JP Kδk, and we will prove JQKδk. By the interpretation of ⊲, we
know J⊲P Kδ(k + 1). Since k + 1 ≤ n, by the interpretation of ⇒ we obtain J⊲QKδ(k + 1),
which is equivalent to JQKδk, our desired goal.

Note that the backwards direction relies critically on monotonicity. In the absence of
monotonicity, the premise J⊲P ⇒ ⊲QKδn is only applicable if JP Kδk for all k < n, but in
the proof we only assume JP Kδk for some k < n.

The replacement axioms (replace1 and replace2) say that we can substitute equals
for equals inside a proposition without affecting its meaning. For terms, equality is just
syntactic equality. For relations, equivalence is definable as

R1 ≡ R2
def
= ∀x. (x ∈ R1 ⇒ x ∈ R2) ∧ (x ∈ R2 ⇒ x ∈ R1)

The last two rules concern inhabitation of relations. The key interesting point here is
that recursive relations are equivalent to their expansions.

Lastly, when we introduce atomic propositions in the next section related to Fµ re-
duction, we will want to also import into LSLR various first-order theorems about those
propositions, e.g., preservation, progress, canonical forms, etc. Fortunately, this can be
done easily, without requiring any stepwise reasoning.

Formally, assuming P is a first-order proposition (i.e., it does not involve relation
variables, recursive relations, second-order quantification, or the ⊲ operator), then it is easy
to show that P is true in all worlds n iff it is true in world 1 (the “latest” nontrivial world).
Consequently, the following rule is sound:

∀γ ∈ JX K . ∀δ ∈ JRK . JγPK δ(1) ⇒ JγP K δ(1)

X ;R;P ⊢ P

Thus, in particular, if P is closed:
JP K 1

⊢ P

For first-order P , the interpretation of JP K 1 in our model is tantamount to the standard
step-free interpretation of P in first-order logic.

In other words, our goal here is not to use LSLR to formalize entire proofs, just the
parts of the proofs that involve interesting relational reasoning. We are happy to make use
of first-order syntactic properties proved by other means in the meta-logic.

10 D. DREYER, A. AHMED, AND L. BIRKEDAL

4. A Syntactic Logical Relation for Fµ

In this section, we show how to define a logical relation for Fµ that coincides with contex-
tual approximation, as well as a symmetric version thereof that coincides with contextual
equivalence. The relation is defined syntactically within the logic LSLR, using a particular
set of atomic propositions concerning the Fµ reduction semantics, as we explain below.

4.1. Roadmap and Preliminaries. Eventually, we are going to define a logical relation
on open terms, which we denote Γ ⊢ e1 �

log e2 : τ , and prove that it is sound and complete
w.r.t. contextual approximation, Γ ⊢ e1 �ctx e2 : τ , as defined in Section 2. In order to
prove this, we will follow Pitts [26] in employing an intermediate form of approximation,
often referred to as ciu approximation.

Ciu approximation, due to Mason and Talcott [21], is a superficially coarser version
of contextual approximation in which (1) attention is restricted to evaluation contexts E
instead of arbitrary program contexts, and (2) the “closing” of open terms is handled by an
explicit substitution γ instead of relying on λ-abstractions in a closing context C. We say
that ciu approximation is only superficially coarser because ultimately we will prove that
it too coincides with contextual approximation. In the meantime, ciu approximation turns
out to be an easier notion of approximation to work with.

First, a bit of notation: we will write ⊢ γ : Γ to mean that (1) dom(γ) = dom(Γ), (2)
∀α ∈ Γ. FV(γα) = ∅, and (3) ∀x : τ ∈ Γ. ∃v. γx = v ∧ ⊢ v : γτ . We will also write
⊢ E : τ τ ′ to mean ⊢ E : (· ⊢ τ) (· ⊢ τ ′), thus defining the typing of evaluation
contexts in terms of the typing judgment for general contexts C (introduced in Section 2.1).

Definition 4.1 (Ciu Approximation for Closed Terms). Let · ⊢ e1 : τ and · ⊢ e2 : τ .

⊢ e1 �
ciu e2 : τ

def
= ∀E, τ ′. (⊢ E : τ τ ′ ∧E[e1] ⇓) ⇒ E[e2] ⇓

Definition 4.2 (Ciu Approximation for Open Terms). Let Γ ⊢ e1 : τ and Γ ⊢ e2 : τ .

Γ ⊢ e1 �
ciu e2 : τ

def
= ∀γ. ⊢ γ : Γ ⇒ ⊢ γe1 �

ciu γe2 : γτ

Definition 4.3 (Ciu Equivalence). Let Γ ⊢ e1 : τ and Γ ⊢ e2 : τ .

Γ ⊢ e1 ≈
ciu e2 : τ

def
= Γ ⊢ e1 �

ciu e2 : τ ∧ Γ ⊢ e2 �
ciu e1 : τ

One of the main reasons to use ciu approximation instead of contextual approximation is
that it is immediately obvious that the Fµ reduction relation is contained in ciu equivalence
(part (3) of the following proposition).

Proposition 4.4 (Useful Properties of Ciu Approximation).

(1) If Γ ⊢ e : τ , then Γ ⊢ e �ciu e : τ .
(2) If Γ ⊢ e1 �

ciu e2 : τ and Γ ⊢ e2 �
ciu e3 : τ , then Γ ⊢ e1 �

ciu e3 : τ .
(3) If Γ ⊢ e1 : τ and e1 ❀

∗ e2, then Γ ⊢ e1 ≈
ciu e2 : τ .

(4) If ⊢ e1 �
ciu e2 : τ and ⊢ E : τ τ ′, then ⊢ E[e1] �

ciu E[e2] : τ
′.

Again following Pitts [26], we will show that contextual, ciu, and logical approximation all
coincide by showing that �ctx ⊆ �ciu ⊆ �log ⊆ �ctx . The first link of that chain is easy.

Theorem 4.5 (Contextual Approximation ⇒ Ciu Approximation).
If Γ ⊢ e1 �

ctx e2 : τ , then Γ ⊢ e1 �
ciu e2 : τ .

LOGICAL STEP-INDEXED LOGICAL RELATIONS ∗ 11

Proof. Suppose ⊢ γ : Γ, ⊢ E : γτ τ ′, and E[γe1] ⇓. We want to show E[γe2] ⇓. Say that
Γ = α1, . . . , αm, x1 : τ1, . . . , xn : τn and that γαi = σi and γxi = vi for some σi’s and vi’s.
Then, let C = (Λα1. · · ·Λαm.λx1 : τ1. · · ·λxn : τn. [·])σ1 · · · σmv1 · · · vn. It is easy to show
that ⊢ C : (Γ ⊢ τ) (· ⊢ γτ), and thus that ⊢ E[C] : (Γ ⊢ τ) (· ⊢ τ ′). It is also easy to
show that E[C[ei]] ❀

∗ E[γei], and thus that E[C[ei]] ⇓ iff E[γei] ⇓. So the goal is reduced
to showing that E[C[e1]] ⇓ implies E[C[e2]] ⇓, which follows from Γ ⊢ e1 �

ctx e2 : τ .

4.2. Atomic Relations. In order to define our logical relation, we introduce the following
new atomic relations:

A ::= · · · | Val | e : τ | C : τ τ ′ | e1 ❀
∗ e2 | e1 ❀

0 e2 | e1 ❀
1 e2 | e1 � e2

Except for the first, which is a unary relation, the rest are all nullary (i.e., propositions).
The interpretations of these propositions, I(A), are as follows:

• I(Val)(e)
def
= ∃v. e = v.

• I(e : τ)
def
= ⊢ e : τ .

• I(C : τ τ ′)
def
= ∃E. C = E ∧ ⊢ E : τ τ ′.

• I(e1 ❀
∗ e2)

def
= e1 ❀

∗ e2.

• I(e1 ❀
0 e2)

def
= e1 ❀

∗ e2 and none of the reductions in the reduction sequence is an
unroll-roll reduction.

• I(e1 ❀
1 e2)

def
= e1 ❀

∗ e2 and exactly one of the reductions in the reduction sequence is
an unroll-roll reduction.

• I(e1 � e2)
def
= ∃τ. ⊢ e1 �

ciu e2 : τ .

The motivation for using this particular set of atomic propositions will become clear
shortly. One point of note is that the e1 � e2 proposition lacks a type; this is simply for
brevity, since Fµ enjoys unique typing. Another is that, although the proposition C : τ τ ′

permits an arbitrary context C, the proposition only holds when C takes the form of an
evaluation context, and we will only use it when C is an evaluation context. The reason
that we do not syntactically write E here instead of C is simply that the syntaxes of
values v and evaluation contexts E are not closed under substitution of arbitrary terms for
variables—they assume that variables are values—and we want proposition well-formedness
to be preserved under arbitrary term substitutions. All this means, practically speaking,
is that something like x [·] : τ τ ′ cannot hold categorically, but only in a context where
x ∈ Val is also provable.

As explained in Section 3.3, along with these new atomic propositions, we will also
make use of various first-order theorems about them, which are provable straightforwardly
in the meta-logic without requiring any stepwise reasoning. For example,

C ⊢ e ❀1 e1 C ⊢ e ❀1 e2
C ⊢ e1 ❀

0 e2 ∨ e2 ❀
0 e1

and
C ⊢ E : τ τ ′ C ⊢ e1 : τ C ⊢ e2 : τ C ⊢ e1 � e2

C ⊢ E[e1] � E[e2]

See the proofs in subsequent sections for more examples.

12 D. DREYER, A. AHMED, AND L. BIRKEDAL

V JαK ρ
def
= R, where ρ(α) = (τ1, τ2, R)

V JτbK ρ
def
= (x1 ↓ τb, x2 ↓ τb). x1 = x2, where τb ∈ {unit, int, bool}

V Jτ ′ × τ ′′K ρ
def
= (x1 ↓ ρ1(τ

′ × τ ′′), x2 ↓ ρ2(τ
′ × τ ′′)).

∃x′
1, x

′′
1 , x

′
2, x

′′
2 . x1 = 〈x′

1, x
′′
1 〉 ∧ x2 = 〈x′

2, x
′′
2 〉 ∧

(x′
1, x

′
2) ∈ V Jτ ′K ρ ∧ (x′′

1 , x
′′
2) ∈ V Jτ ′′K ρ

V Jτ ′ + τ ′′K ρ
def
= (x1 ↓ ρ1(τ

′ + τ ′′), x2 ↓ ρ2(τ
′ + τ ′′)).

(∃x′
1, x

′
2. x1 = inlx′

1 ∧ x2 = inlx′
2 ∧ (x′

1, x
′
2) ∈ V Jτ ′K ρ) ∨

(∃x′′
1 , x

′′
2 . x1 = inrx′′

1 ∧ x2 = inrx′′
2 ∧ (x′′

1 , x
′′
2) ∈ V Jτ ′′K ρ))

V Jτ ′ → τ ′′K ρ
def
= (x1 ↓ ρ1(τ

′ → τ ′′), x2 ↓ ρ2(τ
′ → τ ′′)).

∀y1, y2. (y1, y2) ∈ V Jτ ′K ρ ⇒ (x1y1, x2y2) ∈ E Jτ ′′K ρ

V J∀α. τK ρ
def
= (x1 ↓ ρ1(∀α. τ), x2 ↓ ρ2(∀α. τ)).

∀α1, α2. ∀r. r : VRel(α1, α2) ⇒ (x1 α1, x2 α2) ∈ E JτK ρ, α 7→ (α1, α2, r)

V J∃α. τK ρ
def
= (x1 ↓ ρ1(∃α. τ), x2 ↓ ρ2(∃α. τ)).

∃α1, α2, y1, y2. ∃r. r : VRel(α1, α2) ∧
x1 = packα1, y1 as∃α. ρ1τ ∧ x2 = packα2, y2 as∃α. ρ2τ ∧
(y1, y2) ∈ V JτK ρ, α 7→ (α1, α2, r)

V Jµα. τK ρ
def
= µr.(x1 ↓ ρ1(µα. τ), x2 ↓ ρ2(µα. τ)).

∃y1, y2. x1 = roll y1 ∧ x2 = roll y2 ∧
⊲(y1, y2) ∈ V JτK ρ, α 7→ (ρ1(µα. τ), ρ2(µα. τ), r)

E JτK ρ
def
= µr.(t1 : ρ1τ, t2 : ρ2τ).

(∀x1. t1 ⇓0 x1 ⇒ ∃x2. x2 � t2 ∧ (x1, x2) ∈ V JτK ρ) ∧
(∀t′1. t1 ❀

1 t′1 ⇒ ⊲(t′1, t2) ∈ r)

Figure 6: Syntactic Logical Relation for Fµ

Finally, we will make use of some additional notation, which is definable in terms of
the atomic propositions we have introduced:

e ↓ τ
def
= e : τ ∧ e ∈ Val

e1 ⇓ e2
def
= e1 ❀

∗ e2 ∧ e2 ∈ Val

e1 ⇓
0 e2

def
= e1 ❀

0 e2 ∧ e2 ∈ Val

R : TRel(τ1, τ2)
def
= ∀x1, x2. (x1, x2) ∈ R ⇒ x1 : τ1 ∧ x2 : τ2

R : VRel(τ1, τ2)
def
= ∀x1, x2. (x1, x2) ∈ R ⇒ x1 ↓ τ1 ∧ x2 ↓ τ2

(x1 : τ1, x2 : τ2). P
def
= (x1, x2). x1 : τ1 ∧ x2 : τ2 ∧ P

(x1 ↓ τ1, x2 ↓ τ2). P
def
= (x1, x2). x1 ↓ τ1 ∧ x2 ↓ τ2 ∧ P

4.3. Logical Relation. Figure 6 defines two logical relations for Fµ, one for values (V JτK ρ)
and one for terms (E JτK ρ). These are syntactic LSLR relations, defined by induction on τ .
Here, ρ is assumed to be a syntactic relational interpretation of the free type variables of
τ , i.e., a mapping from each α ∈ FV(τ) to a triple (τ1, τ2, R) such that R : VRel(τ1, τ2).
We write ρi to mean the type substitution mapping each α to the corresponding τi. Thus,
it is trivial to prove that V JτK ρ : VRel(ρ1τ, ρ2τ) and E JτK ρ : TRel(ρ1τ, ρ2τ). Except for
the last two cases (V Jµα.τK ρ and E JτK ρ), the definition of the logical relation is entirely

LOGICAL STEP-INDEXED LOGICAL RELATIONS ∗ 13

straightforward, following Plotkin and Abadi [30], with each type constructor being modeled
by its corresponding logical connective via the Curry-Howard isomorphism.

First, let us consider V Jµα.τ K ρ. The basic idea here is to give the relational interpreta-
tion of a recursive type using a recursive relation µr.R. Recall, though, that references to r
in R must only appear under “later” propositions. Thus, we have that roll v1 and roll v2
are related by V Jµα.τK ρ “now” iff v1 and v2 are related by V JτK ρ, α 7→ (. . . ,V Jµα.τ K ρ) =
V Jτ [µα.τ/α]K ρ “later”.

Next, consider E JτK ρ. Intuitively, we would like to say that two terms e1 and e2 are
related if, whenever e1 evaluates to some value v1, we have that e2 also evaluates to some
value v2 such that (v1, v2) ∈ V JτK ρ. In fact, in the case that e1 evaluates to v1 without
incurring any unroll-roll reductions (i.e., when e1 ⇓

0 v1), the definition of E JτK ρ almost

says this—the only difference is that instead of saying “e2 evaluates to some value v2 such
that. . . ”, it says that “e2 is ciu-approximated by some value v2 such that. . . ” Of course,
by definition of ciu approximation, this also implies that e2 terminates, but it is somewhat
more liberal in that it does not require the value that e2 produces to be directly related to
v1 by V JτK ρ. This extra freedom is not strictly necessary if we just want to define a logical
relation that is sound w.r.t. contextual approximation—as we did in the previous version
of this paper [14]—but it is key to ensuring completeness (see Theorems 4.24 and 4.25
in Section 4.6). An alternative approach to ensuring completeness would be to employ
⊤⊤-closure, as Pitts does [26]. We discuss this alternative in Section 8.

However, in the case that the evaluation of e1 incurs an unroll-roll reduction, the
interpretation of recursive types forces us to require something still weaker. Specifically, in
order to prove that the logical relation is sound with respect to contextual approximation, we
must prove that it is compatible in the sense of Pitts [26]. Compatibility for unroll demands
that if roll v1 and roll v2 are logically related, then unroll (roll v1) and unroll (roll v2)
are related, too. By definition of V Jµα.τK ρ, knowing roll v1 and roll v2 are related
only tells us that v1 and v2 are related “later”. We need to be able to derive from that
that unroll (roll v1) and unroll (roll v2) are related “now”. Thus, in defining whether
(e1, e2) ∈ E JτK ρ, in the case that e1 makes an unroll-roll reduction (i.e., e1 ❀

1 e′1), we
only require that e′1 and e2 be related later (i.e., ⊲(e′1, e2) ∈ E JτK ρ).

For the reader who is familiar with prior work on step-indexed models and logical
relations, our formulation here may seem familiar and yet somewhat unusual. Our use of
the later operator corresponds to where one would “go down a step” in the construction
of a step-indexed model. However, in prior work, step-indexed models typically go down a
step everywhere (i.e., in every case of the logical relation), not just in one or two places, and
“count” every step, not just unroll-roll reductions. If one is working with equi-recursive

types, this may be the only option, but here we are working with iso-recursive types, and
our present formulation serves to isolate the use of the later operator to the few places
where it is absolutely needed. While we do not believe there is a fundamental difference
between what one can prove using this logical relation vs. previous accounts, our formulation
enables more felicitous statements of certain properties, such as the extensionality principle
for functions (see discussion of Rule funext below).

Finally, it is worth noting that, like step-indexed models, LSLR imposes no “admissibil-
ity” requirement on candidate relations. Intuitively, the reason admissibility is unnecessary
is that it is an infinitary property. In LSLR, we only ever reason about finitary properties,
i.e., propositions that hold true in the “current” world; we do not even have the ability
(within the logic) to talk about truth in all worlds.

14 D. DREYER, A. AHMED, AND L. BIRKEDAL

C ⊢ (e1, e2) ∈ V JτK ρ

C ⊢ (e1, e2) ∈ E JτK ρ
(val) ⊳ C ⊢ P

C ⊢ ⊲P
(weak-⊲)

C ⊢ e1 : ρ1τ
C ⊢ e1 ❀

∗ e′1 C ⊢ (e′1, e2) ∈ E JτK ρ

C ⊢ (e1, e2) ∈ E JτK ρ
(exp)

C ⊢ e1 : ρ1τ C ⊢ e2 : ρ2τ
C ⊢ e1 ❀

1 e′1 C ⊢ ⊲(e′1, e2) ∈ E JτK ρ

C ⊢ (e1, e2) ∈ E JτK ρ
(exp-⊲)

C ⊢ e′1 ❀
0 e1 C ⊢ (e′1, e2) ∈ E JτK ρ

C ⊢ (e1, e2) ∈ E JτK ρ
(red)

C ⊢ (e1, e
′
2) ∈ E JτK ρ C ⊢ e′2 � e2

C ⊢ (e1, e2) ∈ E JτK ρ
(ciu)

C ⊢ E : ρ1τ ρ′1τ
′ C ⊢ f : ρ′2τ

′ C ⊢ (e1, e2) ∈ E JτK ρ

C, x1, x2, (x1, x2) ∈ V JτK ρ, e1 ❀
∗ x1, x2 � e2 ⊢ (E[x1], f) ∈ E Jτ ′K ρ′

C ⊢ (E[e1], f) ∈ E Jτ ′K ρ′
(bind)

C ⊢ E1 : ρ1τ ρ′1τ
′ C ⊢ E2 : ρ2τ ρ′2τ

′ C ⊢ (e1, e2) ∈ E JτK ρ

C, x1, x2, (x1, x2) ∈ V JτK ρ, e1 ❀
∗ x1, x2 � e2 ⊢ (E1[x1], E2[x2]) ∈ E Jτ ′K ρ′

C ⊢ (E1[e1], E2[e2]) ∈ E Jτ ′K ρ′
(bind2)

C ⊢ (f1, f2) ∈ E Jτ ′ → τ ′′K ρ C ⊢ (e1, e2) ∈ E Jτ ′K ρ

C ⊢ (f1 e1, f2 e2) ∈ E Jτ ′′K ρ
(app)

C ⊢ (e1, e2) ∈ E Jµα. τK ρ

C ⊢ (unroll e1, unrolle2) ∈ E Jτ [µα. τ/α]K ρ
(unroll)

C ⊢ e1 ↓ ρ1(τ
′ → τ ′′) C ⊢ e2 ↓ ρ2(τ

′ → τ ′′)

C, x1, x2, (x1, x2) ∈ V Jτ ′K ρ ⊢ (e1x1, e2x2) ∈ E Jτ ′′K ρ

C ⊢ (e1, e2) ∈ V Jτ ′ → τ ′′K ρ
(funext)

Fi = fix f(xi). ei C ⊢ F1 : ρ1(τ
′ → τ ′′) C ⊢ F2 : ρ2(τ

′ → τ ′′)

⊳ C, x1, x2, (x1, x2) ∈ V Jτ ′K ρ, (F1, F2) ∈ V Jτ ′ → τ ′′K ρ ⊢ (e1[F1/f], e2[F2/f]) ∈ E Jτ ′′K ρ

C ⊢ (F1, F2) ∈ V Jτ ′ → τ ′′K ρ
(fix)

Figure 7: Some Useful Derivable Rules

4.4. Derivable Rules. Figure 7 shows a number of useful inference rules that are derivable
in the logic. To be clear, by “derivable” we mean that the proofs of these rules’ soundness
(given below in Section 4.5) is done just using the inference rules we have established so
far, without needing to appeal directly to the model and perform stepwise reasoning. In
all these rules, we assume implicitly that all propositions are well-formed. For the rules
concerning V JτK ρ and E JτK ρ, we assume that ρ binds the free variables of τ and maps
them to triples (τ1, τ2, R), where R : VRel(τ1, τ2) is provable in the ambient context.

Rule val says that E JτK ρ contains V JτK ρ. This rule is so fundamental and ubiquitously
useful that we will often elide mention of it in our proofs.

LOGICAL STEP-INDEXED LOGICAL RELATIONS ∗ 15

Rule weak-⊲ is a weakening property that is easy to derive from the distributivity
laws for the ⊲ operator. The rule employs an ⊳ operator (pronounced “earlier”) on propo-
sitions/contexts, defined as follows:

⊳ (X ;R;P)
def
= X ;R; ⊳ P

⊳ (⊲P)
def
= P

⊳P
def
= P (if P 6= ⊲P ′)

This ⊳ operator has the effect of “un-⊲-ing” (i.e., stripping the ⊲ off of) any ⊲P hypotheses
in the context. Note that this is purely a shallow syntactic operation; it does not un-⊲
any hypotheses that are propositionally equivalent to some ⊲P but not syntactically of that
form. (The reader may wonder why we define ⊳ in this syntactic way instead of building it
in as a primitive modality with the seemingly natural interpretation J⊳P Kδn = JP Kδ(n + 1).
The trouble is that this interpretation is not well-founded, since it defines the meaning of
⊳P in terms of the meaning of P at a higher step level. And indeed, our syntactic ⊳ does
not satisfy this interpretation.)

Consequently, Rule weak-⊲ says that if we want to show P is true later, given some
assumptions that are true now, and others that are true later, then we can just prove that
P is true now given that all the assumptions are true now. This is a weakening property
because, applying the rule backwards, we forget the fact that some of the hypotheses in C
(namely, those that are not of the form ⊲P) are true at an earlier world than the others.

The weak-⊲ rule is particularly useful in conjunction with the löb rule. Specifically,
thanks to the löb rule, a frequently effective approach to proving two terms e1 and e2 related
is to assume inductively that they are related later and then prove that they are related
now. Eventually, we may reduce our proof goal (via, e.g., Rule exp-⊲, explained below) to
showing that two other terms e′1 and e′2 are related later. At that point, Rule weak-⊲ allows
us to un-⊲ both our new proof goal (relatedness of e′1 and e′2) and our original löb-inductive
hypothesis (relatedness of e1 and e2) simultaneously. We will see an instance of this proof
pattern in the example in Section 5.2.

The next four rules in Figure 7 allow one to prove that two terms e1 and e2 are related
by converting one of the terms to something else. Rule exp (closure of the logical relation
under expansion) allows one to reduce e1 to some e′1 according to the ❀∗ relation and then
show that e′1 is related to e2. Rule red (closure of the logical relation under ❀0 reduction)
allows one to expand e1 to some e′1 according to the ❀

0 relation and then show that e′1 is
related to e2. Rule ciu allows one to replace e2 with some e′2 that ciu-approximates it, and
then show that e1 is related to e′2. Rule exp-⊲ is similar to Rule exp, but addresses the
case when e1 incurs an unroll-roll reduction on the way to e′1. In this case, unfolding the
definition of E JτK ρ, all we have to show is that e′1 and e2 are related later.

The aforementioned rules are all useful when we know what the terms in question
reduce/expand to. Rule bind is important because it handles the case when a term is
“stuck”. For instance, suppose we want to show that e and f are related, where e is of the
form E[e1] (i.e., e1 is in evaluation position in e, and E is the evaluation context surrounding
it). Perhaps e1 is something like y1(v1), in which case there is no way to reduce it. However,
if we can prove that y1(v1) is logically related to some other expression e2, then there are
two cases to consider. In the case that they both terminate, we can assume that there are
some values x1 and x2 such that e1 evaluates to x1, e2 is ciu-approximated by x2, and x1

16 D. DREYER, A. AHMED, AND L. BIRKEDAL

and x2 are related by V JτK ρ, and the goal is reduced to showing that E[x1] is related to f .
In the case that e1 diverges, there is nothing to show, since E[e1] will diverge, too.

The bind rule may seem at first glance a bit peculiar in that the term e2 does not
necessarily have any relationship to f , and the variable x2 does not appear anywhere on
the r.h.s. of the last premise. This peculiarity is a consequence of the rule being as general
as possible. In the specific (if common) case that f is in fact of the form E2[e2] (i.e., that
e2 is in evaluation position in f), an easy corollary of Rules bind and ciu is Rule bind2.
In addition to being more intuitive, this more symmetric-looking variant of the bind rule is
very useful in deriving compatibility properties [26], such as Rules app and unroll; these
compatibility properties are necessary in order to establish that the logical relation is a
precongruence (and hence contained in contextual approximation), and Rule bind2 helps
to reduce the derivations of these properties to the case where the e’s and f ’s are values.
Rule bind2 does not subsume Rule bind, however: the general and distinctly asymmetric
nature of the original Rule bind renders it suitable for reasoning about logical approximation
in cases where the more symmetric Rule bind2 does not apply—for instance, see the proof
of the “free theorem” example in Section 5.3.

Rule funext demonstrates a clean extensionality property for function values, which
was one of our key motivations for LSLR in the first place. (The property does not hold for
arbitrary terms in our call-by-value semantics.) It is worth noting that, in prior step-indexed
models, this extensionality property is not quite so clean to state. For example, if one were
to encode Ahmed’s relation [4] in our logic directly, the assumption (x1, x2) ∈ V Jτ ′K ρ would
have to be ⊲’d. The key to our cleaner formulation is simply that we confine the use of ⊲ in
V JτK ρ to the case when τ is a recursive type. Thus, in particular, one need not mention ⊲
when reasoning purely about functions and β-reduction.

Finally, Rule fix gives the rule for recursive functions, which are encodable in a well-
known way in terms of recursive types. We formalize the encoding as follows:

fix f(x). e
def
= λy.(unroll v) v y

where v = roll (λz.(λf.λx.e)(λy.(unroll z) z y))
for y, z 6∈ FV(e)

This encoding has the property that if F = fix f(x). e, then F (v) ❀
1 e[F/f, v/x]. Con-

sequently, to show two recursive functions related, we may löb-inductively assume they
are related while proving that their bodies are related. (For the proof that the bodies are
related, we may also un-⊲ any other ⊲ hypotheses in the ambient context C.) The implicit
use of löb induction in this rule gives it a distinctively coinductive flavor.

4.5. Proofs of Derivability. In this section, we show how to derive the rules in Figure 7.

Proposition 4.6 (Type Substitution).

(1) V Jτ [σ/α]Kρ = V JτKρ, α 7→ (ρ1σ, ρ2σ,V JσKρ).
(2) E Jτ [σ/α]Kρ = E JτKρ, α 7→ (ρ1σ, ρ2σ,V JσKρ).

Proof. By straightforward induction on the structure of τ .

Proposition 4.7. Rule val is derivable.

Proof. Immediate, since � is reflexive.

LOGICAL STEP-INDEXED LOGICAL RELATIONS ∗ 17

Proposition 4.8. Rule weak-⊲ is derivable.

Proof. Suppose C = X ;R;P. Then, ⊳ C ⊢ P implies X ;R; · ⊢ (
∧

Q∈P ⊳Q) ⇒ P . By

Rule mono and the distributivity axioms, X ;R; · ⊢ (
∧

Q∈P ⊲⊳Q) ⇒ ⊲P . Since Q ⇒ ⊲⊳Q,

we have X ;R; · ⊢ (
∧

Q∈P Q) ⇒ ⊲P , and thus C ⊢ ⊲P .

Proposition 4.9. Rule red is derivable.

Proof. First, suppose that e1 ⇓
0 x1 for some value x1. Then, e

′
1 ❀

0 e1 implies that e′1 ⇓
0 x1

as well, and the rest follows immediately from (e′1, e2) ∈ E JτK ρ.
Second, suppose that e1 ❀

1 t1 for some term t1. Then, e
′
1 ❀

0 e1 implies that e′1 ❀
1 t1

as well, so again the rest follows immediately from (e′1, e2) ∈ E JτK ρ.

Proposition 4.10. Rule exp is derivable given the additional premise that C ⊢ e1 ❀
0 e′1.

Proof. The proof is very similar to the proof of Rule red. The key bits are: (1) if e1 ⇓
0 x1

and e1 ❀
0 e′1, then e′1 ⇓

0 x1 by determinacy of reduction, and (2) if e1 ❀
1 t1 and e1 ❀

0 e′1,
then e′1 ❀

1 t1, again by determinacy of reduction.

Proposition 4.11. Rule exp-⊲ is derivable.

Proof. First, suppose that e1 ⇓
0 x1 for some value x1. Then, e1 ❀

1 e′1 yields a contradiction.
Second, suppose that e1 ❀

1 t1 for some term t1. Then, since e1 ❀
1 e′1, we have by

determinacy of reduction that either e′1 ❀
0 t1 or t1 ❀

0 e′1. Thus, by either Proposition 4.9
or 4.10, ⊲(e′1, e2) ∈ E JτK ρ implies ⊲(t1, e2) ∈ E JτK ρ, which is what we needed to show.

Proposition 4.12. Rule exp is derivable.

Proof. Assume the premises of Rule exp. We will prove the following proposition and then
instantiate t1 with e1 to obtain the desired result.

∀t1. (t1 : ρ1τ ∧ t1 ❀
∗ e′1) ⇒ (t1, e2) ∈ E JτK ρ

The proof is by löb induction, i.e., we use the löb rule to assume the above proposition
is true “later” (under a ⊲ modality) and then prove it true “now”. So assume t1 : ρ1τ and
t1 ❀

∗ e′1, and we want to prove (t1, e2) ∈ E JτK ρ. It is thus either the case that t1 ❀
0 e′1

or that there exists t′1 such that t1 ❀
1 t′1 ❀

∗ e′1. In the former case, the result follows
by Proposition 4.10 and the assumption (e′1, e2) ∈ E JτK ρ. In the latter case we have, by
the löb-inductive hypothesis (i.e., the ⊲-ed version of our original goal) together with the
distributivity of ⊲ over ∀ and ⇒, that ⊲(t′1 : ρ1τ ∧ t′1 ❀

∗ e′1) ⇒ ⊲(t′1, e2) ∈ E JτK ρ. We
already know that t′1 ❀

∗ e′1, and t′1 : ρ1τ follows by type preservation, so by Rule mono,
we have that ⊲(t′1, e2) ∈ E JτK ρ. The result then follows from t1 ❀

1 t′1 and Rule exp-⊲.

Proposition 4.13. Rule ciu is derivable.

Proof. As for Rule exp, the proof here is by löb induction. Given the premises of Rule ciu,
we prove the following and then instantiate t1 to e1:

∀t1. (t1, e
′
2) ∈ E JτK ρ ⇒ (t1, e2) ∈ E JτK ρ

Assume this is true later, and we proceed to prove it now. So assume (t1, e
′
2) ∈ E JτK ρ, and

we want to prove (t1, e2) ∈ E JτK ρ.
First, suppose t1 ⇓

0 x1. Then, there exists x2 such that (x1, x2) ∈ V JτK ρ and x2 � e′2.
Since by assumption e′2 � e2 and � is transitive, we have that x2 � e2, so we are done.

Second, suppose t1 ❀
1 t′1. Then, ⊲(t

′
1, e

′
2) ∈ E JτK ρ, so by the löb-inductive hypothesis,

⊲(t′1, e2) ∈ E JτK ρ.

18 D. DREYER, A. AHMED, AND L. BIRKEDAL

Proposition 4.14. Rule bind is derivable.

Proof. Define P (t1) to be the proposition:

∀x1, x2. ((x1, x2) ∈ V JτK ρ ∧ t1 ❀
∗ x1 ∧ x2 � e2) ⇒ (E[x1], f) ∈ E Jτ ′K ρ′

We want to prove that

∀t1. ((t1, e2) ∈ E JτK ρ ∧ P (t1)) ⇒ (E[t1], f) ∈ E Jτ ′K ρ′

By the löb rule, we assume this proposition is true later and proceed to prove it now. So
assume that (t1, e2) ∈ E JτK ρ and P (t1), and we want to prove (E[t1], f) ∈ E Jτ ′K ρ′.

First, suppose that E[t1] ⇓
0 x1 for some x1. Then, it must be the case that t1 ⇓0 y1

for some y1, and also that E[t1] ❀
0 E[y1] ⇓

0 x1. Since (t1, e2) ∈ E JτK ρ, we know there
exists some y2 such that y2 � e2 and (y1, y2) ∈ V JτK ρ. Thus, by P (t1), we know that
(E[y1], f) ∈ E Jτ ′K ρ′. Then, by Rule exp, (E[t1], f) ∈ E Jτ ′K ρ′.

Second, suppose that E[t1] ❀
1 t′1. There are two cases:

Case 1:

There exists y1 such that t1 ⇓0 y1, and also that E[t1] ❀
0 E[y1] ❀

1 t′1. The proof is
identical to the previous case shown above.

Case 2:

There exists u1 such that t1 ❀
1 u1, and also that E[t1] ❀

1 E[u1] ❀
0 t′1. Since (t1, e2) ∈

E JτK ρ, we know that ⊲(u1, e2) ∈ E JτK ρ. Also, it is easy to show that P (t1) implies P (u1).
Thus, by appealing to our löb-inductive hypothesis, we have that ⊲(E[u1], f) ∈ E Jτ ′K ρ′.
Finally, by Rule red, ⊲(t′1, f) ∈ E Jτ ′K ρ′.

Proposition 4.15. Rule bind2 is derivable.

Proof. By Rules bind and ciu, together with the fact that x2 � e2 implies E2[x2] � E2[e2],
by part (4) of Proposition 4.4.

Proposition 4.16. Rule app is derivable.

Proof. By Rule bind2, using evaluation contexts [·] e1 and [·] e2, the goal reduces to show-
ing that (x1 e1, x2 e2) ∈ E Jτ ′′K ρ under the assumption that (x1, x2) ∈ V Jτ ′ → τ ′′K ρ. By
Rule bind2 again, this time using evaluation contexts x1 [·] and x2 [·], the goal reduces to
showing that (x1 y1, x2 y2) ∈ E Jτ ′′K ρ under the assumption that (y1, y2) ∈ V Jτ ′K ρ. The
result then follows by unrolling the definition of V Jτ ′ → τ ′′K ρ.

Proposition 4.17. Rule unroll is derivable.

Proof. By Rule bind2, using the evaluation context unroll [·] on both sides, the goal re-
duces to showing that (unrollx1, unrollx2) ∈ E Jτ [µα.τ/α]K ρ under the assumption that
(x1, x2) ∈ V Jµα.τ K ρ. Unrolling the definition of V Jµα.τK ρ, we have that x1 = roll y1,
x2 = roll y2, and ⊲(y1, y2) ∈ V JτK ρ, α 7→V Jµα.τ K ρ for some y1 and y2. By Proposition 4.6,
⊲(y1, y2) ∈ V Jτ [µα.τ/α]K ρ. Also, we have that unrollxi = unroll (roll yi) ❀

1 yi (and
thus yi � unrollxi as well). Thus, the desired result follows directly by Rule exp-⊲ and
Rule ciu.

Proposition 4.18. Rule funext is derivable.

Proof. Immediate, by unfolding the definition of V Jτ ′ → τ ′′K ρ.

LOGICAL STEP-INDEXED LOGICAL RELATIONS ∗ 19

Proposition 4.19. Rule fix is derivable.

Proof. By straightforward combination of Rules löb, funext, weak-⊲, exp-⊲, and ciu,
given the fact that Fi xi ❀

1 ei[Fi/f].

4.6. Soundness and Completeness of the Logical Relation. We now state some key
theorems concerning the logical relation, the primary ones being that it is sound and com-
plete w.r.t. contextual approximation.

Definition 4.20 (Logical Approximation). Let Γ ⊢ e1 : τ and Γ ⊢ e2 : τ .
Suppose Γ = α1, . . . , αn, x1 : τ1, . . . , xm : τm. Let

X = α1
1, α

2
1, . . . , α

1
n, α

2
n, x

1
1, x

2
1, . . . , x

1
m, x2m

R = r1, . . . , rn
ρ = α1 7→ (α1

1, α
2
1, r1), . . . , αn 7→ (α1

n, α
2
n, rn)

P = r1 : VRel(α
1
1, α

2
1), . . . , rn : VRel(α1

n, α
2
n),

(x11, x
2
1) ∈ V Jτ1K ρ, . . . , (x

1
m, x2m) ∈ V JτmK ρ

γj = x1 7→xj1, . . . , xm 7→xjm (where j ∈ {1, 2})

Then

Γ ⊢ e1 �log e2 : τ
def
= X ;R;P ⊢ (ρ1γ1e1, ρ2γ2e2) ∈ E JτK ρ

Theorem 4.21 (Fundamental Theorem of Logical Relations).
If Γ ⊢ e : τ then Γ ⊢ e �log e : τ .

Proof. By induction on typing derivations. In the case when e is a variable, the goal follows
directly from the hypotheses P in Definition 4.20. All of the other cases follow immediately
from the compatibility rules, which are all completely straightforward to prove (in the style
of Rule app). The only slightly interesting compatibility rule is Rule unroll, which we
proved in Section 4.5.

Theorem 4.22 (Adequacy).
If ⊢ (e1, e2) ∈ E JτK and e1 ⇓, then e2 ⇓.

Proof. Suppose e1 ⇓ v1. Let n be the number of unroll-roll reductions that occur in the
evaluation of e1 to v1. It is easy to show by induction on n, and by unfolding the definition
of E JτK, that ⊢ ⊲n(v1, e2) ∈ E JτK (where ⊲n denotes n applications of the ⊲ modality).
Thus, ⊢ ⊲n(∃x2 ↓ τ. x2 � e2).

Appealing to the model, we have that ∀k ≥ 0. J⊲n(∃x2 ↓ τ. x2 � e2)Kk. Choosing k > n,
this means that there exists a value v2 : τ such that v2 �

ciu e2. Hence, e2 ⇓.

Theorem 4.23 (Logical Approximation ⇒ Contextual Approximation).
If Γ ⊢ e1 �

log e2 : τ , then Γ ⊢ e1 �
ctx e2 : τ .

Proof. Given a context C : (Γ ⊢ τ) (Γ′ ⊢ τ ′), we show that Γ′ ⊢ C[e1] �
log C[e2] : τ

′. The
proof of this part is by induction on the context C, and as in the proof of the Fundamental
Theorem, all of the cases follow immediately from the compatibility rules. Thus, if Γ′ is
empty, we know that ⊢ (C[e1], C[e2]) ∈ E Jτ ′K. Consequently, by Adequacy, we know that
C[e1] ⇓ implies C[e2] ⇓.

20 D. DREYER, A. AHMED, AND L. BIRKEDAL

Theorem 4.24 (Ciu-Transitivity of the Logical Relation).
If Γ ⊢ e1 �

log e′2 : τ and Γ ⊢ e′2 �
ciu e2 : τ , then Γ ⊢ e1 �

log e2 : τ .

Proof. Let X , R, P, ρ, and γj be as defined in Definition 4.20. From the second assumption,
it is easy to show by appeal to the model that X ;R;P ⊢ ρ2γ2e

′
2 � ρ2γ2e2. Thus, the result

follows immediately by Rule ciu.

Theorem 4.25 (Ciu Approximation ⇒ Logical Approximation).
If Γ ⊢ e1 �

ciu e2 : τ , then Γ ⊢ e1 �
log e2 : τ .

Proof. By the Fundamental Theorem of Logical Relations, Γ ⊢ e1 �log e1 : τ . The result
then follows directly by Theorem 4.24.

Corollary 4.26 (�ctx ≡ �ciu ≡ �log).
Γ ⊢ e1 �

ctx e2 : τ iff Γ ⊢ e1 �
ciu e2 : τ iff Γ ⊢ e1 �

log e2 : τ .

Proof. By Theorems 4.5, 4.23 and 4.25.

4.7. Symmetric Version of the Logical Relation. We have shown that our logical
relation supports sound inequational reasoning about contextual approximation, but we
would like to support equational reasoning as well. Of course, one can prove two terms
equivalent by proving that each approximates the other, but often this results in a tedious
duplication of work. Fortunately, we can define a symmetric version of our logical relation
directly in terms of the asymmetric one.

First, some notation: for a binary term relation R, let Rop denote (t2, t1).(t1, t2) ∈ R.
Also, let ρop denote the mapping with domain equal to that of ρ such that if ρ(α) =
(τ1, τ2, R), then ρop(α) = (τ2, τ1, R

op).
Now, perhaps the most natural way of defining a symmetric version of our logical

relation would be to say that two terms/values are symmetrically related if they are logically
equivalent, i.e., asymmetrically related (by E JτK) in both directions. Interestingly, this does
not work. In particular, there are a variety of properties (described below) that we would like
our symmetric relation to enjoy, one of them being the property that symmetrically-related
function values f1 and f2 (of type τ ′ → τ ′′) are precisely those that map symmetrically-
related arguments (of type τ ′) to symmetrically-related results (of type τ ′′). However, just
knowing that f1 and f2 map equivalent arguments to equivalent results does not imply that
they are equivalent themselves; to show equivalence, we would need to establish relatedness
of f1 and f2 in both directions, which would at a minimum require that they map V Jτ ′K-
related arguments (which are not necessarily equivalent) to E Jτ ′′K-related results. Merely
knowing how f1 and f2 behave on equivalent arguments is not enough to establish that.

Thus, instead, we define the symmetric relation as shown in Figure 8. Here, d is a value
variable of type bool that we assume is bound in the context in which these symmetric
relations appear. When d is true, E≈JτK ρ and V≈JτK ρ are equivalent to the asymmetric
logical relation in one direction; and when d is false, they are equivalent to the asymmetric
relation in the other direction. Thus, by proving two terms to be symmetrically-related in
a context where d’s identity is unknown, we can effectively prove logical approximation in
both directions simultaneously.

This formulation has several nice properties. First, it is straightforward to show that if
we take each case of the definition of V JτK ρ in Figure 6, replace all occurrences of V JτK ρ

LOGICAL STEP-INDEXED LOGICAL RELATIONS ∗ 21

V≈JτK ρ
def
= (t1 : ρ1τ, t2 : ρ2τ).

(d = true ⇒ (t1, t2) ∈ V JτK ρ) ∧
(d = false ⇒ (t2, t1) ∈ V JτK ρop)

E≈JτK ρ
def
= (t1 : ρ1τ, t2 : ρ2τ).

(d = true ⇒ (t1, t2) ∈ E JτK ρ) ∧
(d = false ⇒ (t2, t1) ∈ E JτK ρop)

e1 �1 e2
def
= (d = true ⇒ e2 ❀

∗ e1) ∧
(d = false ⇒ e1 � e2)

e1 �2 e2
def
= (d = true ⇒ e1 � e2) ∧

(d = false ⇒ e2 ❀
∗ e1)

Figure 8: Symmetric Version of the Fµ Logical Relation and Related Definitions

and E JτK ρ with their symmetric versions, and substitute ≡ for
def
=, we have a set of valid re-

lational equivalences. The same goes for the relational equivalences in Proposition 4.6. (The
same is not true, however, for the definition of E JτK ρ, because it is inherently asymmetric.)

The proofs of these symmetric relational equivalences are all quite easy—each one splits
into two cases, one for d = true and one for d = false. Here, we sketch the proof for the
recursive type case, which is the most interesting since it uses the löb rule.

Proposition 4.27. V≈Jµα. τ K ρ ≡ µr.(x1 ↓ ρ1(µα. τ), x2 ↓ ρ2(µα. τ)).
∃y1, y2. x1 = roll y1 ∧ x2 = roll y2 ∧

⊲(y1, y2) ∈ V≈JτK ρ, α 7→ (ρ1(µα. τ), ρ2(µα. τ), r)

Proof. Let R1 and R2 denote the relations on the left and right sides of the equivalence,
respectively. By the löb rule, we can assume that ⊲(R1 ≡ R2). By Canonical Forms, either
d = true or d = false:

Case d = true:

Unrolling definitions, the proof reduces to showing that ⊲(y1, y2) ∈ V JτK ρ, α 7→ (. . . , R1)
iff ⊲(y1, y2) ∈ V JτK ρ, α 7→ (. . . , R2). This follows from the basic axioms together with
the löb-inductive hypothesis ⊲(R1 ≡ R2).

Case d = false:

Similarly, the proof reduces to showing that ⊲(y2, y1) ∈ V JτK ρop, α 7→ (. . . , R1
op) iff

⊲(y2, y1) ∈ V JτK ρop, α 7→ (. . . , R2
op). Again, this follows from the basic axioms together

with the löb-inductive hypothesis ⊲(R1 ≡ R2).

Furthermore, we can easily derive symmetric versions of most of our derived rules. In
most cases, including all the compatibility properties, the symmetric rule looks like the
asymmetric one, except with E≈ and V≈ in place of E and V. Exceptions to this pattern
include the rules from exp to bind2 in Figure 7. In Figure 9, we give symmetric versions of
several of these, the last two of which employ the relations e1 �1 e2 and e1 �2 e2 defined in
Figure 8. These relations are merely a technical device to enable a symmetric presentation
of certain premises that have the form e2 ❀

∗ e1 for one direction of approximation and
e1 � e2 for the other direction. The proofs of these rules are all completely straightforward,
relying heavily on the fact (from Proposition 4.4) that e1 ❀

∗ e2 implies e1 ≈ciu e2. (Note

22 D. DREYER, A. AHMED, AND L. BIRKEDAL

C ⊢ e1 : ρ1τ C ⊢ e2 : ρ2τ

C ⊢ e1 ❀
∗ e′1 C ⊢ e2 ❀

∗ e′2 C ⊢ (e′1, e
′
2) ∈ E≈JτK ρ

C ⊢ (e1, e2) ∈ E≈JτK ρ
(sym-exp)

C ⊢ e1 : ρ1τ C ⊢ e2 : ρ2τ

C ⊢ e1 ❀
1 e′1 C ⊢ e2 ❀

1 e′2 C ⊢ ⊲(e′1, e
′
2) ∈ E≈JτK ρ

C ⊢ (e1, e2) ∈ E≈JτK ρ
(sym-exp-⊲)

C ⊢ e′1 ❀
0 e1 C ⊢ e′2 ❀

0 e2 C ⊢ (e′1, e
′
2) ∈ E≈JτK ρ

C ⊢ (e1, e2) ∈ E≈JτK ρ
(sym-red)

C ⊢ e1 : ρ1τ C ⊢ e2 : ρ2τ

C ⊢ (e′1, e
′
2) ∈ E≈JτK ρ C ⊢ e′1 �1 e1 C ⊢ e′2 �2 e2

C ⊢ (e1, e2) ∈ E≈JτK ρ
(sym-ciu)

C ⊢ E1 : ρ1τ ρ′1τ
′ C ⊢ E2 : ρ2τ ρ′2τ

′ C ⊢ (e1, e2) ∈ E≈JτK ρ

C, x1, x2, (x1, x2) ∈ V≈JτK ρ, x1 �1 e1, x2 �2 e2 ⊢ (E1[x1], E2[x2]) ∈ E≈Jτ ′K ρ′

C ⊢ (E1[e1], E2[e2]) ∈ E≈Jτ ′K ρ′
(sym-bind)

Figure 9: Symmetric Versions of Several Derivable Rules

that the context C appearing in all these rules is assumed to bind d in its variable context
and contain d ↓ bool in its proposition context.)

To give the reader a concrete sense of how these rules work, we present in the next
section three detailed examples of how to use them to prove contextual equivalences.

Finally, since LSLR is inspired by Plotkin and Abadi’s logic for parametricity, one
might expect to see some rule corresponding to “identity extension.” Denoting contextual
equivalence at type σ by ≈ctx

σ , identity extension would mean that, for any open type
α ⊢ τ , we would have that E≈JτK (α 7→≈ctx

σ) equals ≈ctx
τ [σ/α]. In fact, we do not have such

a rule since, as we discovered in the course of carrying out this work, identity extension
does not hold for the step-indexed model! For identity extension to hold, one would need
that contextual equivalence at any τ should equal the semantics of E≈JτK , but it only
equals the subset of E≈JτK for which the relation holds for all n, i.e., roughly, the subset
{(e1, e2) | ∀n. J(e1, e2) ∈ E≈JτK Kn}. The identity extension lemma has traditionally been
used to prove representation independence results, aka free theorems [35], and, for pure
calculi, definability results for types [30]. In spite of the lack of identity extension we are
still able to prove some free theorems, as we demonstrate in Section 5.3.

5. Examples

We now show three examples of how to use our LSLR-based logical relation to prove inter-
esting contextual equivalences.

The first example is from Crary and Harper [13] (who adapted it from one in Sumii
and Pierce [34]) and concerns representation independence of “objects” with existential
recursive type. The second, from Sumii and Pierce [34], is concerned with proving the
syntactic minimal invariant property associated with a general recursive type [27, 10, 13].
The third is a canonical example of a Wadler-style “free theorem” [35].

LOGICAL STEP-INDEXED LOGICAL RELATIONS ∗ 23

We reason informally in LSLR but present the proofs in some detail to emphasize the
use of the derivable rules from Section 4. Observe that the proofs do not involve any mention
of step indices!

5.1. Flag Objects. Consider the following type for flag objects, which have an instance
variable (with abstract type α) and two methods. The first method returns a new object
whose flag is reversed, while the second method returns the current state of the flag.

fldα = µβ. α× ((β → β)× (β → bool))
flag = ∃α. fldα

We consider two implementations of flags, in which the hidden flag state is represented by
a bool and an int, respectively. We assume that not : bool→ bool and even : int→ bool are
implemented in the obvious way.

bflag = pack bool, (roll 〈true, 〈bflip, bret〉〉) as flag
bflip = λx : fldbool. roll 〈not (fst (unrollx)), snd (unrollx)〉
bret = λx : fldbool. fst (unrollx)

iflag = pack int, (roll 〈0, 〈iflip, iret〉〉) as flag
iflip = λx : fldint. roll 〈1 + (fst (unrollx)), snd (unrollx)〉
iret = λx : fldint. even (fst (unrollx))

To prove equivalence of bflag and iflag, it suffices to show d, d ↓ bool ⊢ (bflag, iflag) ∈
E≈JflagK. Equivalently, by Rule val, since both terms are values, it is enough to show that
d, d ↓ bool ⊢ (bflag, iflag) ∈ V≈JflagK. Unfolding the definition of V≈J∃α. fldαK, we choose
α1 7→ bool, α2 7→ int, y1 7→ v1, y2 7→ v2, and r 7→R as the substitution for its existentially-
bound variables, where v1 = roll 〈true, 〈bflip, bret〉〉, v2 = roll 〈0, 〈iflip, iret〉〉, and

R = (x1 ↓ bool, x2 ↓ int).∃y ↓ int. (x1 = true ∧ 2y ⇓ x2) ∨ (x1 = false ∧ 2y+1 ⇓ x2)

Let ρ = α 7→ (bool, int, R). It now suffices to show (v1, v2) ∈ V≈JfldαKρ, or equivalently
(using the compatibility rules and several applications of Rule val):

(1) Show (true, 0) ∈ V≈JαK ρ. This is immediate from the definition of R by choosing
y 7→ 0.

(2) Show (bflip, iflip) ∈ V≈Jfldα → fldαK ρ. By the compatibility rule for functions, we
assume that (x1, x2) ∈ V≈JfldαK ρ, and are required to show:

(roll 〈not (fst (unrollx1)), snd (unrollx1)〉,
roll 〈1 + (fst (unrollx2)), snd (unrollx2)〉)

∈ E≈JfldαK ρ

By compatibility, we have that (fst (unrollx1), fst (unrollx2))∈ E≈JαKρ. Thus, by
Rule sym-bind, we can assume that (z1, z2) ∈ V≈JαK ρ ≡ R for some z1 and z2, and
the proof reduces to showing

(roll 〈not z1, snd (unrollx1)〉,
roll 〈1 + z2, snd (unrollx2)〉) ∈ E≈JfldαK ρ

By compatibility again, this reduces to showing that (not z1, 1 + z2) ∈ E≈JαK ρ. By
Rule sym-exp, it simply remains to show that not z1 and 1+ z2 evaluate to values that
are related by R. The following lemma suffices:

∀z1, z2. (z1, z2) ∈ R ⇒ ∃z′1, z
′
2. not z1 ⇓ z′1 ∧ 1 + z2 ⇓ z′2 ∧ (z′1, z

′
2) ∈ R

24 D. DREYER, A. AHMED, AND L. BIRKEDAL

Expanding out the definition of membership in R, we arrive at a strictly first-order
statement that is provable by straightforward means in the meta-logic.

(3) Show (bret, iret) ∈ V≈Jfldα→ boolK ρ. This is similar to part (2), with the proof
boiling down to the first-order statement

∀z1, z2. (z1, z2) ∈ R ⇒ even z2 ⇓ z1

5.2. Syntactic Minimal Invariance. The proof of our next example relies on Canonical
Forms, a first-order lemma about Fµ that we assume is proven outside LSLR by traditional
means. This standard lemma, which characterizes the shape of well-typed values, is only
available to us because (following Pitts [26]) we have constructed the logical relation from
syntactically well-typed terms. For further discussion of this point, see Section 7.

Let τ = µα. unit + (α → α). We are going to show that the identity function id =
λx : τ. x is equivalent to

v = fix f(x : τ). case (unrollx) ofinl ⇒roll (inl 〈〉)
|inr g⇒roll (inr (λy : τ. f(g(f y))))

This corresponds to the minimal invariant property in the domain-theoretic work of Pitts
[27], which Birkedal and Harper subsequently proved in an operational setting [10].

To prove contextual equivalence of id and v, we can show d, d ↓ bool ⊢ (id, v) ∈
V≈Jτ → τK. Our proof will be parametric in d. By the löb rule, we assume ⊲(id, v) ∈
V≈Jτ → τK and proceed to prove (id, v) ∈ V≈Jτ → τK. Now, by (the symmetric version of)
Rule funext and sym-exp, we assume (x1, x2) ∈ V≈JτK, and it suffices to show

(x1, case (unrollx2) ofinl ⇒roll (inl 〈〉)
|inr g⇒roll (inr (λy : τ. v(g(v y))))) ∈ E≈JτK

By relatedness of x1 and x2, we know that there exist y1 and y2 such that x1 = roll y1, x2 =
roll y2, and ⊲(y1, y2) ∈ V≈Junit+ (τ → τ)K. By Canonical Forms, since y2 ↓ unit+(τ → τ),
we know that either y2 = inl 〈〉 or there exists y′2 such that y2 = inr y′2. In either case,
there exists z ↓ unit + (τ → τ) such that the case expression above evaluates to roll z.
Consequently, by Rule sym-exp, the goal reduces to showing

(roll y1, roll z) ∈ V≈Jµα. unit+ (α → α)K

Unfolding the definition of V≈Jµα. unit+ (α → α)K, it suffices by Rule weak-⊲ to show

(y1, z) ∈ V≈Junit+ (τ → τ)K

under a strengthened (i.e., ⊳ ’d) context in which the ⊲ has been removed from any of our
previous assumptions. In particular, we may now assume our löb-inductive hypothesis
(id, v) ∈ V≈Jτ → τK, as well as (y1, y2) ∈ V≈Junit+ (τ → τ)K, to hold “now” as opposed to
“later”. The latter assumption yields two cases:

Case inl:

y1 = y2 = z = inl 〈〉. Trivial.

Case inr:

y1 = inr y′1, y2 = inr y′2, (y
′
1, y

′
2) ∈ V≈Jτ → τK, and z = inr (λy : τ. v (y′2 (v y))). Thus,

to complete the proof it suffices to show

(y′1, λy : τ. v (y
′
2 (v y))) ∈ V≈Jτ → τK

LOGICAL STEP-INDEXED LOGICAL RELATIONS ∗ 25

Applying Rule funext (in its symmetric form) and Rule sym-exp, we assume (z1, z2) ∈
V≈JτK, and have to show

(y′1 z1, v (y
′
2 (v z2))) ∈ E≈JτK

From (id, v) ∈ V≈Jτ → τK, together with relatedness of z1 and z2, we may conclude
by Rules app and sym-red that (z1, v z2) ∈ E≈JτK. By relatedness of y′1 and y′2 and
Rule app, we have that (y′1 z1, (y

′
2 (v z2))) ∈ E≈JτK. Thus, by Rule sym-bind, choosing

as the evaluation contexts of interest [·] and v [·], our goal reduces to showing that for
any z′1, z

′
2, if (z′1, z

′
2) ∈ V≈JτK, then (z′1, v z

′
2) ∈ E≈JτK. As before, this follows from

(id, v) ∈ V≈Jτ → τK, together with Rules app and sym-red.

5.3. A “Free Theorem”. Suppose that τ and σ are closed types, that h and f are values
such that h : ∀α.α → α → α and f : τ → σ, and that v and w are values of type τ . We will
prove that hσ (f v) (f w) contextually approximates f (h τ v w) unconditionally, and that
the reverse approximation also holds if f is total (a sufficient, but not necessary, condition),

defined as total(f)
def
= ∀x. x ↓ τ ⇒ ∃y. f x ⇓ y.

The proof is interesting in that it is mostly done in a symmetric fashion, except for
one inner lemma, which requires us to split into cases, one for each asymmetric direction
of approximation. Since one of the two directions includes an extra assumption concerning
the totality of f , we will actually prove the theorem

C ⊢ (hσ (f v) (f w), f (h τ v w)) ∈ E≈JσK

where C = d, d ↓ bool, d = false ⇒ total(f). To prove the theorem, we use Rule sym-bind

with the evaluation contexts [·] and f [·], respectively. The proof is in two parts.

Part 1 First, we prove that

(hσ (f v) (f w), h τ v w) ∈ E≈JαK ρ

where ρ = α 7→ (σ, τ,R) and

R = (y1 ↓ σ, y2 ↓ τ). (y1, f y2) ∈ E≈JσK

By Theorem 4.21, (h, h) ∈ E≈J∀α.α → α → αK. Thus, (hσ, h τ) ∈ E≈Jα → α → αK ρ. To
prove our desired result (by Rule app), it remains to show that (f v, v) ∈ E≈JαK ρ and
(f w,w) ∈ E≈JαK ρ. We show the proof for the former; the latter is exactly the same.

This is the place where we need to split into cases depending on the direction of the
proof. Both cases use the fact, due to the Fundamental Theorem, that (f v, f v) ∈ E≈JσK.

Case d = true:

We need to show (f v, v) ∈ E JαK ρ. Since (f v, f v) ∈ E JσK, by Rule bind (using
evaluation context [·]) and Rule val we may assume that there exist x1, x2 such that
(x1, x2) ∈ V JσK and x2 � f v, and it remains to show (x1, v) ∈ V JαK ρ = R. The latter is
equivalent to (x1, f v) ∈ E JσK, which follows directly from the assumptions by Rule ciu.

Case d = false:

We need to show (v, f v) ∈ E JαK ρop. Using the assumption total(f), which is available
since d = false, we know that there exists x ↓ σ such that f v ⇓ x. Thus, f v � x and
x � f v. By Rules ciu and val, it suffices to show (v, x) ∈ V JαK ρop = Rop. Unrolling

26 D. DREYER, A. AHMED, AND L. BIRKEDAL

the definition of R, we see that the goal is equivalent to (f v, x) ∈ E JσK, which follows
from (f v, f v) ∈ E JσK and f v � x by Rule ciu.

Part 2 Next, we assume that (z1, z2) ∈ V≈JαK ρ ≡ R and we need to show that

(z1, f z2) ∈ E≈JσK

But this falls out directly from the definition of R, so we are done.

6. The Merits of Our Approach

By way of comparison with previous work, we now informally present an alternative proof
of the “flag objects” example (from Section 5.1) in the style of Ahmed [4]. Following that,
we discuss how our LSLR proof relates to and improves on this alternative proof.

6.1. Flag Objects Proof With Explicit Step Manipulation. We now sketch a proof
for the “flag objects” example from Section 5.1 using Ahmed’s logical relation [4]. Since
the latter is asymmetric, to prove equivalence of bflag and iflag at type flag, we must
show that for all n ≥ 0, (n, bflag, iflag) ∈ E JflagK and (n, iflag, bflag) ∈ E JflagK, where
E J·K is the asymmetric logical relation for closed terms from Ahmed’s paper. Here, writing
(n, e1, e2) ∈ E JτK means that e1 and e2 are related for n steps—or more specifically, that
if e1 terminates in less than n steps then e2 will terminate (in any number of steps) and
the resulting values will be related for the remaining number of steps. We discuss only one
direction of the proof; the other direction is similar.

To prove that (n, bflag, iflag) ∈ E JflagK for arbitrary n ≥ 0, it suffices to show
(n, bflag, iflag) ∈ V JflagK, since bflag and iflag are values. We take τ1 = bool, τ2 = int,
and

R = { (n′, v1, v2) | ⊢ v1 : bool ∧ ⊢ v2 : int ∧
∃y : int. (v1 = true ∧ 2y ⇓ v2) ∨ (v1 = false ∧ 2y+1 ⇓ v2)}

Let ρ = α 7→ (bool, int, R). It then suffices to show, for all m < n, that

(m, roll 〈true, 〈bflip, bret〉〉, roll 〈0, 〈iflip, iret〉〉) ∈ V JfldαK ρ

Unwinding the definitions of V Jµβ. τK and V Jτ1 × τ2K, it now suffices to show the following
for all k < m:

(1) Show (k, true, 0) ∈ V JαK ρ. This is immediate from the definition of R, choosing y = 0
as before.

(2) Show (k, bflip, iflip) ∈ V Jfldα → fldαK ρ. For arbitrary j < k, assuming we are given
(j, va1, va2) ∈ V JfldαK ρ, we are required to show:

(j, roll 〈not (fst (unroll va1)), snd (unroll va1)〉,
roll 〈1 + (fst (unroll va2)), snd (unroll va2)〉) ∈ E JfldαK ρ

We assume that roll 〈not (fst (unroll va1)), snd (unroll va1)〉 evaluates to a value
vf1 in i < j steps. We are required to show that there exists a value vf2 such that
roll 〈1 + (fst (unroll va2)), snd (unroll va2)〉 evaluates to vf2 and (j − i, vf1, vf2) ∈
V JfldαK ρ. Since these expressions clearly require more than one step of evaluation, we
know that j > 2 (which is relevant here when we talk about j − 1).

LOGICAL STEP-INDEXED LOGICAL RELATIONS ∗ 27

From (j, va1, va2) ∈ V JfldαK ρ, it follows that va1 = roll v10 and va2 = roll v20, and
furthermore that v10 = 〈v11, v12〉 and v20 = 〈v21, v22〉, where (j − 1, v11, v21) ∈ V JαK ρ
and (j − 1, v12, v22) ∈ V J(fldα → fldα)× (fldα → bool)K ρ.

Hence, by the operational semantics, we have that:

roll 〈not (fst (unroll va1)), snd (unroll va1)〉 ❀
roll 〈not (fst v10), snd (unroll va1)〉 ❀
roll 〈not v11, snd (unroll va1)〉 ❀
roll 〈¬v11, snd (unroll va1)〉 ❀
roll 〈¬v11, snd v10〉 ❀
roll 〈¬v11, v12〉
= vf1

where ¬v11 is a value denoting the negation of v11.
Also, by the operational semantics:

roll 〈1 + (fst (unroll va2)), snd (unroll va2)〉 ❀
roll 〈1 + (fst v20), snd (unroll va2)〉 ❀
roll 〈1 + v21, snd (unroll va2)〉 ❀
roll 〈1+̂v21, snd (unroll va2)〉 ❀
roll 〈1+̂v21, snd v20〉 ❀
roll 〈1+̂v21, v22〉
= vf2

where 1+̂v21 is a value denoting the sum of 1 and v21.
It remains for us to show that (j − i, vf1, vf2) ∈ V JfldαK ρ. By the definition of

V Jµβ. τK and V Jτ1 × τ2K, it suffices to show that, assuming j − i > 0:
• (j − i − 1,¬v11, 1+̂v21) ∈ V JαK ρ, which follows from (j − 1, v11, v21) ∈ V JαK ρ and
the definition of R.

• (j − i − 1, v12, v22) ∈ V J(fldα → fldα)× (fldα → bool)K ρ, which follows from the fact
above that v12 and v22 are related for j − 1 steps, which means that they must be
related for fewer steps.

(3) Show (k, bret, iret) ∈ V Jfldα → boolK ρ. This is similar to the proof of part (2).

6.2. What Have We Achieved? One can see that the above proof requires quite a bit of
pedantic step manipulation that is entirely unimportant in terms of the overall proof. The
proof using LSLR allows us to ignore steps and focus on the interesting parts of the proof.

Perhaps more importantly, the above proof is almost “mindless” in the sense that it
proceeds by simply unrolling definitions. For instance, step (2) of the proof proceeds to
prove relatedness of two terms for j steps in E JfldαK ρ by symbolically evaluating them to
values and then showing that the resulting values are related for j − i steps, where i is the
number of steps it takes to evaluate the first term. This is exactly how one would attempt
to prove the subgoal if one were just to expand the definition of E JfldαK ρ. But as a result,
one is forced to talk about the particular number of steps the first term takes to evaluate,
and moreover, the idea of the proof is obscured.

In contrast, the LSLR proof of this example has a much clearer structure because it is
constructed using higher-level proof rules. In the aforementioned step (2), the LSLR proof
does not need to symbolically execute the terms because it is possible to use compatibility
rules, together with the sym-bind rule, instead. This combination is applicable precisely

28 D. DREYER, A. AHMED, AND L. BIRKEDAL

because the two terms being related have a very similar structure and only differ in one
place. Thus, the ability to prove the relatedness of the terms using those rules sheds light
on why they are equivalent.

That said, the reader may wonder: is the logic LSLR really necessary? Can we take
the proof rules that we have derived in LSLR and interpret them back into the step-indexed
model, thus resulting in proof principles for the step-indexed model that do mention steps
but nonetheless help one to write proofs in a more structured way? We believe that to some
extent this should be possible. For example, here is a variant of the bind2 rule that holds
(ignoring syntactic typing side conditions) for Ahmed’s model:

(j, e1, e2) ∈ E JτK ρ
∀i ≤ j. ∀v1, v2. (i, v1, v2) ∈ V JτK ρ =⇒ (i, E1[v1], E2[v2]) ∈ E Jτ ′K ρ′

(j, E1[e1], E2[e2]) ∈ E Jτ ′K ρ′

This proof principle is almost as clean as the bind2 rule, the only difference being that
this step-indexed version requires an explicit quantification over future worlds i, whereas in
LSLR that quantification is baked into the interpretation of the logical judgment. While
this explicit quantification is annoying, the above rule should still (we believe) be useful in
improving the structure of “direct” step-indexed proofs. (It is less clear how to interpret
the symmetric rules from Figure 9 into useful step-indexed rules.)

Thus, what we view as the major contribution of this work is the development of a set
of proof principles to enable better structuring of step-indexed proofs. By working at the
logical level, instead of directly in the step-indexed model, we have been forced to come up
with clean high-level rules that do not mention steps, but at least some of these rules should
in retrospect also be useful for improving the structure of direct step-indexed proofs.

7. Comparison With an Earlier Version of LSLR

In this section, we explain the four main differences between the present version of LSLR
and the earlier version that we described in our LICS 2009 paper [14].

Atomic Typing and Value Predicates. In the earlier version of LSLR, we built in the
atomic predicates of syntactic typing (e : τ) and value-hood (Val) as primitive notions in the
logic, instead of treating them as ordinary atomic relations as we do presently. Specifically,
we imposed a distinction in the variable context X between value variables x and term
variables t and required typing annotations on their context bindings. We also required
relation variables to be bound with explicit relation types TRel(τ1, τ2) and VRel(τ1, τ2)
(relations were restricted to be binary). In the present version, we also make use of relation
types, but these are definable in the logic and need not be made primitive.

There was in retrospect no particularly good reason for giving these predicates special
treatment, nor for restricting the arity of relations to 2. We feel our present treatment is
simpler, cleaner, and more general.

Distinction Between Logic and Model. In the earlier version of LSLR, we made a
distinction between our main logical judgment, C ⊢ P , defined by a set of core inference
rules, and its interpretation into the model, which we wrote as C |= P . This enabled a more
precise characterization of what it means for a rule (like those in Figure 7) to be “derivable”.

In the present paper, we conflate ⊢ and |=, thus allowing arbitrary new inference rules
to be added to the logic at a later time as long as they can be proven sound. We have

LOGICAL STEP-INDEXED LOGICAL RELATIONS ∗ 29

made this change because ultimately it is not clear to us why (or that) the core set of
inference rules we gave in Figure 5 are the “right” (or “canonical”) ones. They are simply
a set of sound rules that we have found to be useful for doing nearly all of our proofs
about logical relations in LSLR. However, as in the LICS paper, those core rules are not
“complete”—occasionally, as in the proof of Adequacy of our logical relation, one needs to
reason directly in the model. We therefore feel there is no particular need to grant those
core rules “definitional” status.

Completeness of the Logical Relation. In the LICS paper, we defined a logical relation
for Fµ that—like Ahmed’s original logical relation for Fµ [4]—was sound, but not complete,
with respect to contextual approximation. (The incompleteness is related to the treatment
of existential types, cf. Example 7.7.4 in Pitts [26].) The only substantive difference between
that logical relation and our present version is in the definition of E JτK ρ. If (e1, e2) ∈ E JτK ρ,
then in the case when e1 ⇓0 v1, the LICS logical relation would insist that e2 evaluate to

some value v2 such that (v1, v2) ∈ V JτK ρ. In our present logical relation, we only insist that
e2 be ciu-approximated by such a value v2. This added flexibility is important in proving
the Ciu-Transitivity property (Theorem 4.24), which is the key to showing completeness of
our present version of the logical relation.

This change to the logical relation has resulted in changes to some of the derivable rules
in Figures 7 and 9 as well. Rule ciu, for instance, is more flexible than the corresponding
Rule 3 in the LICS paper, whereas Rule bind is more restrictive than the corresponding
Rule 6 in the LICS paper. Practically speaking, though, these differences seem to be very
minor, and they have not induced any serious changes to our proofs of the examples in
Section 5.

Fixing a Technical Flaw. Our present account of LSLR fixes a technical flaw in the
LICS version, namely that three inference rules in that paper are unsound (and all three for
similar reasons). Luckily, none of the rules was of critical importance. The common error
we made in our proofs for all three rules was in forgetting that, when reasoning about the
⊲ operator, the interesting “base case” is often not world 0 but world 1.

The first unsound rule is Rule ⊲∃1 from Figure 5, in the case where X is of the form
x : τ . (Note: our present version of LSLR does not run afoul of this bug precisely because
we no longer bake typing or value predicates into the X .) The problem arises when τ is an
uninhabited type, such as ∀α.α. The ⊲∃1 rule says that ⊲∃x : τ.P implies ∃x : τ.⊲P . In
order for this to be sound it must at least be the case that J⊲∃x : τ.P K 1 implies J∃x : τ.⊲P K 1.
However, the former is trivially true, and the latter is false because there is no value of type
τ . The rule is easy to show sound under the side condition that τ is inhabited.

The second and third unsound rules are those numbered Rule 10 and Rule 8 (the
backwards direction) in the LICS paper, which are as follows:

C ⊢ ⊲(e1, e2) ∈ E Jτ [µα. τ/α]K ρ

C ⊢ (roll e1, roll e2) ∈ E Jµα. τ K ρ

C ⊢ (unroll e1, unroll e2) ∈ E Jτ [µα. τ/α]K ρ

C ⊢ (e1, e2) ∈ E Jµα. τ K ρ

The problem with these rules, again, is that the implications do not hold when the proposi-
tions are interpreted at world 1. In our buggy proofs of derivability for these rules, the error
manifested itself as a need to derive e2 ⇓ v2 in a context where we only knew ⊲(e2 ⇓ v2).
Interestingly, J⊲(e2 ⇓ v2)Kn does imply Je2 ⇓ v2Kn for all n except n = 1.

Fortunately, the only one of these rules that we actually made any use of was the last
one. We used it in the proof of the syntactic minimal invariance example, and thus our

30 D. DREYER, A. AHMED, AND L. BIRKEDAL

present proof of that example is somewhat different than the one given in the LICS paper.
In particular, in proving that example, we now make critical use of the standard Canonical
Forms property for well-typed values, which we did not in the LICS paper.

8. Related Work and Conclusion

As explained in the introduction, LSLR is greatly indebted to (1) Plotkin and Abadi’s logic
for parametricity, and (2) Appel, Melliès, Richards, and Vouillon’s “very modal model”.
However, there are also significant differences between our work and theirs.

Plotkin and Abadi’s logic was originally developed for pure System F, as was Abadi,
Cardelli and Curien’s System R [1]. (The latter is less expressive, in that the only relations
definable in the logic are those that are maps of System F functions.) In recent years,
several extensions of PAL to richer languages with effects have been proposed. Plotkin [29]
suggested a variant for a second-order linear type theory with a polymorphic fixed-point
combinator to combine polymorphism with recursion; it relies on an abstract notion of
admissible relations (see also [11]), whereas our logic LSLR does not. Bierman, Pitts and
Russo [9] equipped the language suggested by Plotkin with an operational semantics, result-
ing in a programming language called Lily. Here instead we consider a standard call-by-value
language with impredicative polymorphism and recursive types and show how to define a
logic for reasoning about that language’s operational semantics.

The main difference between our work and AMRV’s very modal model is the application:
whereas AMRV use the later operator ⊲A to reason about type safety (a unary property) in
a low-level language, we use it to reason about contextual approximation and equivalence
(binary properties) in a high-level language. Certain issues, such as the development of
both symmetric and asymmetric reasoning principles, do not arise in the unary setting.
There are other concerns that do not apply to our setting, such as the desire for non-
monotone predicates (hence our monotonicity axiom, which simplifies matters). Moreover,
a significant component of our contribution is the derivation of a set of useful, language-
specific inference rules and the application of those rules to several representative examples
from the literature.

Our application of the löb rule in connection with a logical-relations method results
in coinductive-style reasoning principles reminiscent of those used in bisimulation-based
methods like Sumii and Pierce’s [34], or Lassen and Levy’s [20]. Sumii and Pierce give
several example applications of their method in a language setting very similar to the one
we consider here. In Section 5, we already showed how to use LSLR to prove two examples
adapted from their paper, and our approach is capable of straightforwardly handling the
other examples that their method can prove as well.

That said, Sumii and Pierce do present one equivalence, the “IntSet” example at the
beginning of Section 7 of their paper, which does not seem to be provable directly within
our logic, although it is provable through a transitive combination of equivalence proofs.
They use this example to exhibit a limitation of their method with respect to reasoning
about higher-order functions, and hence to motivate an “up-to-context” extension of their
bisimulation that alleviates the problem. However, they do not actually offer a proof of the
IntSet example (using the up-to-context extension or otherwise), and we believe the proof
to be considerably more involved than for the other up-to-context examples in their paper.
Ahmed [4] has given a proof of this example using step-indexed logical relations (see her

LOGICAL STEP-INDEXED LOGICAL RELATIONS ∗ 31

technical report), but her proof is closely tailored to the specific example and seems difficult
to adapt, e.g., if the ADT in the example is extended with a “remove” operation.

The IntSet example is challenging because it involves an equivalence between two re-
cursive functions that are structurally quite dissimilar in their recursive calling patterns,
and the hard work in the proof involves demonstrating that both functions ultimately call a
certain (unknown) function on the same multiset of arguments (albeit in a different order).
The clearest way to establish this fact is using inductive reasoning about computations on
lists and trees, which can be accomplished using standard proof techniques and is orthogonal
to the coinductive, relational style of reasoning that LSLR (and in particular the ⊲ opera-
tor) provides. While for this example the inductive and coinductive bits of the proof can
be easily combined using a transitive combination of equivalences, it would be interesting
to explore in future work how to better integrate inductive reasoning into our logic.

Bisimulations have also been developed for relational reasoning in languages with gen-
eral references and/or control operators [19, 32, 31, 33]. We hope that the present work will
help to illuminate the relationship between step-indexed logical relations and bisimulation
techniques, perhaps leading to a more unifying account.

Also related to our use of the löb rule is the work of Brandt and Henglein [12], who gave
a coinductive axiomatization of recursive type equality and subtyping via a coinduction-like
rule. They also defined the semantic interpretation of their subtyping judgment using a
stratified, essentially step-indexed, interpretation.

Finally, besides step-indexed logical relations, a number of other logical relations meth-
ods have been proposed for languages with parametric polymorphism, recursion, and/or
recursive types, e.g., [25, 26, 18, 22, 10, 13]. One of the most important advances in this
domain is the idea of ⊤⊤-closure (aka biorthogonality). In developing a logical relation
for a language with impredicative polymorphism, existential types, and general recursion,
Pitts [25, 26] proposed ⊤⊤-closure as a useful operational technique for guaranteeing admis-
sibility of relations (in the denotational sense). In the step-indexed model, the whole issue
of admissibility is sidestepped. Intuitively, there is no need to worry about a fixed-point
behaving like the limit of its finite approximations if we restrict attention to how programs
behave in a finite amount of time (as the step-indexed model does).

For non-step-indexed logical relations it is well-known that ⊤⊤-closure also has the
pleasing side effect of rendering the relations complete w.r.t. contextual equivalence. This
is also the case for step-indexed logical relations, as shown in recent work of Dreyer et al. [15].
We have presented in this paper an alternative technique for ensuring completeness, namely
closure w.r.t. ciu-approximation (in the definition of E JτK ρ). We believe our approach
is simpler and more direct than ⊤⊤-closure, but neither approach subsumes the either.
On the one hand, ⊤⊤-closure is applicable in more general settings, such as lower-level
languages [8, 17] or languages with control operators [15], where the behavior of a term
depends on its evaluation context. On the other hand, this added generality means that a
⊤⊤-closed relation is incapable of validating some of the inference rules that hold in our
more restricted setting. For example, the sym-bind rule (Figure 9) would not hold in a ⊤⊤-
closed model unless we were to remove the assumptions in the last premise connecting the
xi’s and the ei’s, thus weakening the rule somewhat. We do believe, however, that it should
be possible to formalize a variant of our LSLR logical relation that uses ⊤⊤-closure instead
of ciu-closure. Understanding the tradeoffs between the two closure techniques remains an
interesting problem for future work.

32 D. DREYER, A. AHMED, AND L. BIRKEDAL

Non-step-indexed logical relations for languages with recursive types are notoriously
tricky to construct; the construction of such relations relies on the use of syntactic minimal

invariance, mimicking the construction used in domain theory [27, 10, 13]. An advantage
of this more elaborate construction over step-indexed logical relations is that the resulting
proof method is more abstract and does not involve steps. In this paper, we have shown
how to devise a more abstract proof method for step-indexed logical relations. Our resulting
proof method is at roughly the same level of abstraction as that of non-step-indexed logical
relations. This point was illustrated explicitly with the various examples in Section 5.
For yet another example, just involving recursive types, the reader might want to consider
Birkedal and Harper’s example of stream operations [10]. Their proof uses a coinduction
proof principle that is derived as a corollary of the elaborate construction of the logical
relation. This example can also be proved in LSLR in a very similar manner, except that
we use a combination of the löb and sym-exp-⊲ rules instead of actual coinduction.

We do not claim that the method presented in this paper is per se more powerful
than prior approaches. Rather, our goal is to show how to reason about step-indexed

logical relations in a more abstract way, because step-indexed relations have proven more
easily adaptable than other logical-relations methods to languages with effects (particularly
state) [3, 5, 24]. We believe that the work presented here makes an important first step
toward logical step-indexed logical relations for effectful programs. Indeed, since publication
of our original LICS paper [14], a promising variant/extension of LSLR (called LADR) has
been developed [16], which enables abstract relational reasoning about a step-indexed model
of Fµ! (an extension of Fµ with general references).

References

[1] Mart́ın Abadi, Luca Cardelli, and Pierre-Louis Curien. Formal parametric polymorphism. Theoretical
Computer Science, 121(1–2):9–58, 1993.

[2] Mart́ın Abadi and Marcelo P. Fiore. Syntactic considerations on recursive types. In LICS, 1996.
[3] Umut A. Acar, Amal Ahmed, and Matthias Blume. Imperative self-adjusting computation. In POPL,

2008.
[4] Amal Ahmed. Step-indexed syntactic logical relations for recursive and quantified types. In ESOP, 2006.

Extended/corrected version available as Harvard University TR-01-06.
[5] Amal Ahmed, Derek Dreyer, and Andreas Rossberg. State-dependent representation independence. In

POPL, 2009.
[6] Andrew W. Appel and David McAllester. An indexed model of recursive types for foundational proof-

carrying code. Transactions on Programming Languages and Systems, 23(5):657–683, 2001.
[7] Andrew W. Appel, Paul-André Melliès, Christopher D. Richards, and Jérôme Vouillon. A very modal

model of a modern, major, general type system. In POPL, 2007.
[8] Nick Benton and Chung-Kil Hur. Biorthogonality, step-indexing and compiler correctness. In ICFP,

2009.
[9] Gavin Bierman, Andrew Pitts, and Claudio Russo. Operational properties of Lily, a polymorphic linear

lambda calculus with recursion. In HOOTS, volume 41 of ENTCS, 2000.
[10] Lars Birkedal and Robert W. Harper. Constructing interpretations of recursive types in an operational

setting. Information and Computation, 155:3–63, 1999.
[11] Lars Birkedal, Rasmus E. Møgelberg, and Rasmus L. Petersen. Linear Abadi & Plotkin logic. Logical

Methods in Computer Science, 2(5:2):1–48, 2006.
[12] Michael Brandt and Fritz Henglein. Coinductive axiomatization of recursive type equality and subtyp-

ing. Fundamenta Informaticae, 33(4):309–338, 1998.
[13] Karl Crary and Robert Harper. Syntactic logical relations for polymorphic and recursive types. In

Computation, Meaning and Logic: Articles dedicated to Gordon Plotkin. ENTCS, 2007.
[14] Derek Dreyer, Amal Ahmed, and Lars Birkedal. Logical step-indexed logical relations. In LICS, 2009.

LOGICAL STEP-INDEXED LOGICAL RELATIONS ∗ 33

[15] Derek Dreyer, Georg Neis, and Lars Birkedal. The impact of higher-order state and control effects on
local relational reasoning. In ICFP, 2010.

[16] Derek Dreyer, Georg Neis, Andreas Rossberg, and Lars Birkedal. A relational modal logic for higher-
order stateful ADTs. In POPL, 2010.

[17] Chung-Kil Hur and Derek Dreyer. A Kripke logical relation between ML and assembly. In POPL, 2011.
[18] Patricia Johann and Janis Voigtländer. The impact of seq on free theorems-based program transforma-

tions. Fundamenta Informaticae, 69(1–2):63–102, 2006.
[19] Vasileios Koutavas and Mitchell Wand. Small bisimulations for reasoning about higher-order imperative

programs. In POPL, 2006.
[20] Soren B. Lassen and Paul B. Levy. Normal form bisimulation for parametric polymorphism. In LICS,

2008.
[21] Ian Mason and Carolyn Talcott. Equivalence in functional languages with effects. Journal of Functional

Programming, 1:287–327, 1991.
[22] Paul-André Melliès and Jérôme Vouillon. Recursive polymorphic types and parametricity in an opera-

tional framework. In LICS, 2005.
[23] Hiroshi Nakano. A modality for recursion. In LICS, 2000.
[24] Georg Neis, Derek Dreyer, and Andreas Rossberg. Non-parametric parametricity. In ICFP, 2009.
[25] A. M. Pitts. Parametric polymorphism and operational equivalence. Mathematical Structures in Com-

puter Science, 10:321–359, 2000.
[26] Andrew Pitts. Typed operational reasoning. In Benjamin C. Pierce, editor, Advanced Topics in Types

and Programming Languages, chapter 7. MIT Press, 2005.
[27] Andrew M. Pitts. Relational properties of domains. Information and Computation, 127:66–90, 1996.
[28] Gordon D. Plotkin. Denotational semantics with partial functions. Lecture at C.S.L.I. Summer School,

1985.
[29] Gordon D. Plotkin. Second order type theory and recursion. Notes for a talk at the Scott Fest, February

1993.
[30] Gordon D. Plotkin and Mart́ın Abadi. A logic for parametric polymorphism. In TLCA, 1993.
[31] Davide Sangiorgi, Naoki Kobayashi, and Eijiro Sumii. Environmental bisimulations for higher-order

languages. In LICS, 2007.
[32] Kristian Støvring and Soren B. Lassen. A complete, co-inductive syntactic theory of sequential control

and state. In POPL, 2007.
[33] Eijiro Sumii. A complete characterization of observational equivalence in polymorphic lambda-calculus

with general references. In CSL, 2009.
[34] Eijiro Sumii and Benjamin Pierce. A bisimulation for type abstraction and recursion. Journal of the

ACM, 54(5):1–43, 2007.
[35] Philip Wadler. Theorems for free! In FPCA, 1989.

34 D. DREYER, A. AHMED, AND L. BIRKEDAL

Appendix A. Additional Details of Fµ

Typing Contexts Γ ::= · | Γ, α | Γ, x : τ

Γ ⊢ e : τ

Γ(x) = τ

Γ ⊢ x : τ Γ ⊢ 〈〉 : unit Γ ⊢ ±n : int

Γ ⊢ true : bool Γ ⊢ false : bool

Γ ⊢ e : bool Γ ⊢ e1 : τ Γ ⊢ e2 : τ

Γ ⊢ if e then e1 else e2 : τ

Γ ⊢ e1 : τ1 Γ ⊢ e2 : τ2

Γ ⊢ 〈e1, e2〉 : τ1 × τ2

Γ ⊢ e : τ1 × τ2

Γ ⊢ fst e : τ1

Γ ⊢ e : τ1 × τ2

Γ ⊢ snd e : τ2

Γ ⊢ e : τ1

Γ ⊢ inlτ1+τ2 e : τ1 + τ2

Γ ⊢ e : τ2

Γ ⊢ inrτ1+τ2 e : τ1 + τ2

Γ ⊢ e : τ1 + τ2 Γ, x1 : τ1 ⊢ e1 : τ Γ, x2 : τ2 ⊢ e2 : τ

Γ ⊢ case e of inlx1⇒e1 | inrx2⇒e2 : τ

Γ, x : τ1 ⊢ e : τ2

Γ ⊢ λx : τ1. e : τ1 → τ2

Γ ⊢ e1 : τ2 → τ Γ ⊢ e2 : τ2

Γ ⊢ e1 e2 : τ

Γ, α ⊢ e : τ

Γ ⊢ Λα. e : ∀α. τ

Γ ⊢ e : ∀α. τ FV(τ1) ⊆ Γ

Γ ⊢ e τ1 : τ [τ1/α]

FV(τ1) ⊆ Γ Γ ⊢ e : τ [τ1/α]

Γ ⊢ pack τ1, e as∃α. τ : ∃α. τ

Γ ⊢ e1 : ∃α. τ1 FV(τ) ⊆ Γ Γ, α, x : τ1 ⊢ e2 : τ

Γ ⊢ unpacke1 asα, x in e2 : τ

Γ ⊢ e : τ [µα. τ/α] FV(µα. τ) ⊆ Γ

Γ ⊢ rollµα. τ e : µα. τ

Γ ⊢ e : µα. τ

Γ ⊢ unroll e : τ [µα. τ/α]

Figure 10: Fµ Static Semantics

LOGICAL STEP-INDEXED LOGICAL RELATIONS ∗ 35

Contexts C ::= [·] | o(e1, . . . , ei−1, C, ei+1, . . . , en) |
ifC then e1 else e2 | if e thenC else e2 | if e then e1 elseC |
〈C, e2〉 | 〈e1, C〉 | fstC | sndC |
inlτ C | inrτ C | caseC of inlx1⇒e1 | inrx2⇒e2 |
case e ofinlx1⇒C | inrx2⇒e2 | case e of inlx1⇒e1 | inrx2⇒C |
λx : τ. C | C e | eC | Λα.C | C τ |
pack τ1, C as∃α. τ | unpackC asα, x in e2 | unpack e1 asα, x inC |
rollτ C | unrollC |

⊢ C : (Γ ⊢ τ) (Γ′ ⊢ τ ′)

Γ ⊆ Γ′

⊢ [·] : (Γ ⊢ τ) (Γ′ ⊢ τ)

⊢ C : (Γ ⊢ τ) (Γ′ ⊢ bool) Γ′ ⊢ e1 : τ ′ Γ′ ⊢ e2 : τ ′

⊢ ifC then e1 else e2 : (Γ ⊢ τ) (Γ′ ⊢ τ ′)

Γ′ ⊢ e : bool ⊢ C : (Γ ⊢ τ) (Γ′ ⊢ τ ′) Γ′ ⊢ e2 : τ ′

⊢ if e thenC else e2 : (Γ ⊢ τ) (Γ′ ⊢ τ ′)

Γ′ ⊢ e : bool Γ′ ⊢ e1 : τ ′ ⊢ C : (Γ ⊢ τ) (Γ′ ⊢ τ ′)

⊢ if e then e1 elseC : (Γ ⊢ τ) (Γ′ ⊢ τ ′)

⊢ C : (Γ ⊢ τ) (Γ′ ⊢ τ1) Γ′ ⊢ e2 : τ2

⊢ 〈C, e2〉 : (Γ ⊢ τ) (Γ′ ⊢ τ1 × τ2)

Γ′ ⊢ e1 : τ1 ⊢ C : (Γ ⊢ τ) (Γ′ ⊢ τ2)

⊢ 〈e1, C〉 : (Γ ⊢ τ) (Γ′ ⊢ τ1 × τ2)

⊢ C : (Γ ⊢ τ) (Γ′ ⊢ τ1 × τ2)

⊢ fstC : (Γ ⊢ τ) (Γ′ ⊢ τ1)

⊢ C : (Γ ⊢ τ) (Γ′ ⊢ τ1 × τ2)

⊢ sndC : (Γ ⊢ τ) (Γ′ ⊢ τ2)

⊢ C : (Γ ⊢ τ) (Γ′ ⊢ τ1)

⊢ inlτ1+τ2 C : (Γ ⊢ τ) (Γ′ ⊢ τ1 + τ2)

⊢ C : (Γ ⊢ τ) (Γ′ ⊢ τ2)

⊢ inrτ1+τ2 C : (Γ ⊢ τ) (Γ′ ⊢ τ1 + τ2)

⊢ C : (Γ ⊢ τ) (Γ′ ⊢ τ1 + τ2) Γ′, x1 : τ1 ⊢ e1 : τ ′ Γ′, x2 : τ2 ⊢ e2 : τ ′

⊢ caseC of inlx1⇒e1 | inrx2⇒e2 : (Γ ⊢ τ) (Γ′ ⊢ τ ′)

Γ′ ⊢ e : τ1 + τ2 ⊢ C : (Γ ⊢ τ) (Γ′, x1 : τ1 ⊢ τ ′) Γ′, x2 : τ2 ⊢ e2 : τ ′

⊢ case e of inlx1⇒C | inrx2⇒e2 : (Γ ⊢ τ) (Γ′ ⊢ τ ′)

Γ′ ⊢ e : τ1 + τ2 Γ′, x1 : τ1 ⊢ e1 : τ ′ ⊢ C : (Γ ⊢ τ) (Γ′, x2 : τ2 ⊢ τ ′)

⊢ case e of inlx1⇒e1 | inrx2⇒C : (Γ ⊢ τ) (Γ′ ⊢ τ ′)

⊢ C : (Γ ⊢ τ) (Γ′, x : τ1 ⊢ τ2)

⊢ λx : τ1. C : (Γ ⊢ τ) (Γ′ ⊢ τ1 → τ2)

⊢ C : (Γ ⊢ τ) (Γ′ ⊢ τ2 → τ ′) Γ′ ⊢ e2 : τ2

⊢ C e2 : (Γ ⊢ τ) (Γ′ ⊢ τ ′)

Γ′ ⊢ e1 : τ2 → τ ′ ⊢ C : (Γ ⊢ τ) (Γ′ ⊢ τ2)

⊢ e1 C : (Γ ⊢ τ) (Γ′ ⊢ τ ′)

Figure 11: Fµ Program Contexts: Syntax and Static Semantics I

36 D. DREYER, A. AHMED, AND L. BIRKEDAL

⊢ C : (Γ ⊢ τ) (Γ′ ⊢ τ ′) (contd. from Figure 11)

⊢ C : (Γ ⊢ τ) (Γ′, α ⊢ τ ′)

⊢ Λα.C : (Γ ⊢ τ) (Γ′ ⊢ ∀α. τ ′)

⊢ C : (Γ ⊢ τ) (Γ′ ⊢ ∀α. τ ′) FV(τ1) ⊆ Γ′

⊢ C τ1 : (Γ ⊢ τ) (Γ′ ⊢ τ ′[τ1/α])

FV(τ1) ⊆ Γ′ ⊢ C : (Γ ⊢ τ) (Γ′ ⊢ τ ′[τ1/α])

⊢ pack τ1, C as∃α. τ ′ : (Γ ⊢ τ) (Γ′ ⊢ ∃α. τ ′)

⊢ C : (Γ ⊢ τ) (Γ′ ⊢ ∃α. τ1) FV(τ ′) ⊆ Γ′ Γ′, α, x : τ1 ⊢ e2 : τ
′

⊢ unpackC asα, x in e2 : (Γ ⊢ τ) (Γ′ ⊢ τ ′)

Γ′ ⊢ e1 : ∃α. τ1 FV(τ ′) ⊆ Γ′ ⊢ C : (Γ ⊢ τ) (Γ′, α, x : τ1 ⊢ τ ′)

⊢ unpack e1 asα, x inC : (Γ ⊢ τ) (Γ′ ⊢ τ ′)

⊢ C : (Γ ⊢ τ) (Γ′ ⊢ τ ′[µα. τ ′/α]) FV(µα. τ ′) ⊆ Γ′

⊢ rollµα. τ ′ C : (Γ ⊢ τ) (Γ′ ⊢ µα. τ ′)

⊢ C : (Γ ⊢ τ) (Γ′ ⊢ µα. τ ′)

⊢ unrollC : (Γ ⊢ τ) (Γ′ ⊢ τ ′[µα. τ ′/α])

Figure 12: Fµ Program Contexts: Static Semantics II

Appendix B. Remaining Inference Rules for LSLR

Here, we present the LSLR judgments of relation and substitution well-formedness, as well
as additional inference rules that are entirely standard. Prop is synonymous with Rel(0).

X ;R ⊢ R :: Rel(n)

r ∈ R arity(r) = n

X ;R ⊢ r :: Rel(n)

FV(e1, e2) ⊆ X

X ;R ⊢ e1 = e2 :: Prop X ;R ⊢ Val :: Rel(1)

FV(e, τ) ⊆ X

X ;R ⊢ e : τ :: Prop

FV(C, τ, τ ′) ⊆ X

X ;R ⊢ C : τ τ ′ :: Prop

FV(e1, e2) ⊆ X

X ;R ⊢ e1 ❀
{∗,0,1} e2 :: Prop

FV(e1, e2) ⊆ X

X ;R ⊢ e1 � e2 :: Prop

X ;R ⊢ ⊤ :: Prop X ;R ⊢ ⊥ :: Prop

X ;R ⊢ P :: Prop X ;R ⊢ Q :: Prop

X ;R ⊢ P ∧Q :: Prop

X ;R ⊢ P :: Prop X ;R ⊢ Q :: Prop

X ;R ⊢ P ∨Q :: Prop

X ;R ⊢ P :: Prop X ;R ⊢ Q :: Prop

X ;R ⊢ P ⇒ Q :: Prop

X ,X ′;R ⊢ P :: Prop

X ;R ⊢ ∀X ′.P :: Prop

X ;R,R′ ⊢ P :: Prop

X ;R ⊢ ∀R′.P :: Prop

X ,X ′;R ⊢ P :: Prop

X ;R ⊢ ∃X ′.P :: Prop

X ;R,R′ ⊢ P :: Prop

X ;R ⊢ ∃R′.P :: Prop

X , x;R ⊢ P :: Prop x = x1, . . . , xn

X ;R ⊢ x.P :: Rel(n)

FV(e) ⊆ X e = e1, . . . , en X ;R ⊢ R :: Rel(n)

X ;R ⊢ e ∈ R :: Prop

X ;R, r ⊢ R :: Rel(n) arity(r) = n R contractive in r

X ;R ⊢ µr.R :: Rel(n)

X ;R ⊢ P :: Prop

X ;R ⊢ ⊲P :: Prop

LOGICAL STEP-INDEXED LOGICAL RELATIONS ∗ 37

X ⊢ γ :: X ′

dom(γ) = X ′ ∀α ∈ X ′. FV(γα) ⊆ X ∀x ∈ X ′. FV(γx) ⊆ X

X ⊢ γ :: X ′

X ;R ⊢ ϕ :: R′

dom(ϕ) = R′ ∀r ∈ R′. arity(r) = n ⇒ X ;R ⊢ ϕr :: Rel(n)

X ;R ⊢ ϕ :: R′

C ⊢ P

C ⊢ P

C, C′ ⊢ P C, P ⊢ P C ⊢ ⊤

C ⊢ ⊥

C ⊢ P

C ⊢ P C ⊢ Q

C ⊢ P ∧Q

C ⊢ P ∧Q

C ⊢ P

C ⊢ P ∧Q

C ⊢ Q

C ⊢ P

C ⊢ P ∨Q

C ⊢ Q

C ⊢ P ∨Q

C ⊢ P ∨Q C, P ⊢ C C, Q ⊢ C

C ⊢ C

C, P ⊢ Q

C ⊢ P ⇒ Q

C ⊢ P ⇒ Q C ⊢ P

C ⊢ Q

C,X ′ ⊢ P

C ⊢ ∀X ′.P

C ⊢ ∀X ′.P C ⊢ γ :: X ′

C ⊢ γP

C,R′ ⊢ P

C ⊢ ∀R′.P

C ⊢ ∀R′.P C ⊢ ϕ :: R′

C ⊢ ϕP

C ⊢ γ :: X ′ C ⊢ γP

C ⊢ ∃X ′.P

C ⊢ ∃X ′.P C,X ′, P ⊢ Q

C ⊢ Q

C ⊢ ϕ :: R′ C ⊢ ϕP

C ⊢ ∃R′.P

C ⊢ ∃R′.P C,R′, P ⊢ Q

C ⊢ Q

This work is licensed under the Creative Commons Attribution-NoDerivs License. To view
a copy of this license, visit http://creativecommons.org/licenses/by-nd/2.0/ or send a
letter to Creative Commons, 171 Second St, Suite 300, San Francisco, CA 94105, USA, or
Eisenacher Strasse 2, 10777 Berlin, Germany

	1. Introduction
	1.1. Overview

	2. The Language F
	2.1. Contextual Approximation and Equivalence

	3. The Logic LSLR
	3.1. Syntax
	3.2. A ``Step-Indexed'' Model of LSLR
	3.3. Core Inference Rules

	4. A Syntactic Logical Relation for F
	4.1. Roadmap and Preliminaries
	4.2. Atomic Relations
	4.3. Logical Relation
	4.4. Derivable Rules
	4.5. Proofs of Derivability
	4.6. Soundness and Completeness of the Logical Relation
	4.7. Symmetric Version of the Logical Relation

	5. Examples
	5.1. Flag Objects
	5.2. Syntactic Minimal Invariance
	5.3. A ``Free Theorem''

	6. The Merits of Our Approach
	6.1. Flag Objects Proof With Explicit Step Manipulation
	6.2. What Have We Achieved?

	7. Comparison With an Earlier Version of LSLR
	8. Related Work and Conclusion
	References
	Appendix A. Additional Details of F
	Appendix B. Remaining Inference Rules for LSLR

